

Universidade do Minho Escola de Engenharia

Desenvolvimento de ferramenta vocacionada para o dimensionamento de estruturas metálicas de acordo com a NP EN 1993-1-1 João Miguel Morgado Eira

氺

UMinho | 2015

João Miguel Morgado Eira

Desenvolvimento de ferramenta vocacionada para o dimensionamento de estruturas metálicas de acordo com a NP EN 1993-1-1

Universidade do Minho Escola de Engenharia

João Miguel Morgado Eira

Desenvolvimento de ferramenta vocacionada para o dimensionamento de estruturas metálicas de acordo com a NP EN 1993-1-1

Dissertação de Mestrado Ciclo de Estudos Integrados Conducentes ao Grau de Mestre em Engenharia Civil

Trabalho efectuado sob a orientação de Professora Doutora Maria Isabel Brito Valente Engenheiro Nuno Miguel Mota Pires

Agradecimentos

A elaboração deste trabalho contou com a colaboração de várias pessoas que fizeram com que ele se tornasse uma experiência enriquecedora a vários níveis. Por esse motivo desejo manifestar o meu sincero agradecimento a todos os que, de uma forma ou de outra, contribuíram para a sua realização. De uma forma particular expresso a minha gratidão àqueles que deram os mais importantes contributos diretos:

- À Professora Doutora Maria Isabel Brito Valente, pela disponibilidade, organização, profissionalismo, empenho e simpatia com que, de forma incansável, orientou este projeto. A sua dedicação e conhecimentos foram essenciais para o trabalho desenvolvido.
- Ao Engenheiro Nuno Miguel Mota Pires, pela simpatia com que me acolheu na CASAIS
 Engenharia e Construção S.A., proporcionando sempre as condições mais favoráveis ao desenvolvimento do trabalho. O seu esforço e dedicação possibilitaram que este projeto fosse muito mais que um trabalho confinado a fins académicos.
- Ao Departamento de Engenharia Civil da Universidade do Minho, a todos os docentes e em especial ao Professor Rui António Rodrigues Ramos, Diretor de Curso do Mestrado Integrado em Engenharia Civil, pelo apoio e condições proporcionadas.
- À CASAIS Engenharia e Construção S.A. por acolher este projeto, e em especial a todos os que integram o Departamento Técnico pela simpatia com que me receberam.

DESENVOLVIMENTO DE FERRAMENTA VOCACIONADA PARA O DIMENSIONAMENTO DE ESTRUTURAS METÁLICAS DE ACORDO COM A NP EN 1993-1-1

João Miguel Morgado Eira Estudante do Mestrado Integrado em Engenharia Civil Universidade do Minho

O presente documento descreve o desenvolvimento de uma ferramenta informática vocacionada para o dimensionamento de estruturas metálicas de acordo com a NP EN 1993-1-1. A ferramenta *AciariUM* é direcionada para a verificação e dimensionamento aos estados limite últimos de vigas-coluna em aço sujeitas a flexão composta desviada: secções transversais em I e H, perfis dos tipos laminado a quente e reconstituído soldado. Foi desenvolvida como um instrumento de análise de elementos em aço e de verificação expedita dos resultados recolhidos a partir de programas comerciais de análise estrutural.

Porque alguns dos programas de análise estrutural disponíveis no mercado não permitem ao utilizador total controlo sobre os procedimentos que dão origem aos resultados que lhe são apresentados, o chamado efeito de "caixa negra", justifica-se a importância de dispor de ferramentas práticas, intuitivas e de utilização simples que contrariem essa tendência e que permitam validar os resultados devolvidos por esses programas.

Um estudo comparativo focado na avaliação da eficácia e versatilidade de *software* comercial de análise estrutural permitiu reforçar as considerações do parágrafo anterior. A metodologia de cálculo implementada é resultado de pesquisa e de estudos que tiveram como objetivo a procura das soluções mais adequadas. A ferramenta foi desenvolvida em formato de ficheiro do Microsoft Office Excel utilizando programação em Visual Basic.

A *AciariUM* realiza verificações aos estados limite últimos da resistência das secções transversais e da estabilidade dos elementos. Todo o algoritmo de cálculo está disponível para consulta e edição.

A ferramenta apresenta uma estrutura coerente, organizada em interfaces dedicados a procedimentos específicos bem definidos. Dispõe de diferentes módulos de introdução de dados, sendo possível recolher automaticamente informação a partir de modelos construídos no programa *Robot Structural Analysis*, o que facilita o trabalho de validação de resultados. São apresentadas em tempo real instruções e informações relativas a todos os parâmetros. No final, é gerado um relatório de cálculo pronto para exportação.

O trabalho de validação da ferramenta foi desenvolvido com a colaboração da empresa CASAIS – Engenharia e Construção S.A. Essa validação atesta a eficiência da ferramenta *AciariUM* por comparação dos resultados por ela fornecidos com os devolvidos pelos programas *Robot Structural Analysis* e *CYPE 3D* para o caso estudado. São apresentadas estratégias e definidos procedimentos de análise estrutural adequados ao referido caso de estudo.

Palavras-chave: ferramenta informática de cálculo; estruturas metálicas; vigas-coluna em aço; NP EN 1993-1-1; *AciariUM*; flexão composta desviada; estados limite últimos.

DEVELOPMENT OF A NUMERICAL TOOL DEDICATED TO THE DESIGN AND SAFETY ASSESSMENT OF STEEL STRUCTURES ACCORDING TO NP EN 1993-1-1

João Miguel Morgado Eira Estudante do Mestrado Integrado em Engenharia Civil Universidade do Minho

This document describes the development of a numerical tool dedicated to the design and safety assessment of steel structures, according to NP EN 1993-1-1. The tool, named *AciariUM*, is designed to evaluate the ultimate limit states of hot rolled and welded I and H-shaped steel elements subjected to biaxial bending with axial force. *AciariUM* was developed as an instrument of steel member analysis and as a tool to be used in the validation of results obtained from commercial software.

Some of the existing structural analysis software applications available on the market do not provide the user an absolute control over the whole calculation procedure that is the base of the given results, resulting in a "black box" effect. Therefore, it is important to have practical, intuitive and simple tools that counter this trend and allow the user to validate those results.

A comparative study focused on the evaluation of efficacy and versatility of existing commercial software applications emphasises the considerations made in the last paragraph. The implemented calculation procedure is a result of research and studies conducted with the purpose of finding the most suitable solutions. This numerical tool was developed as a Microsoft Office Excel file, using automation from Visual Basic.

AciariUM runs ultimate limit state verifications of cross-sections resistance and member's stability. The entire algorithm is available for editing.

AciariUM has a coherent structure organized in interfaces dedicated to well-defined specific procedures. Different modes of data entry are available and data can also be accessed from a structure model defined in a *Robot Structural Analysis* project, making easier the validation of results. Information and instructions concerning all parameters are presented in real time. At the end an exportable results report is generated.

The validation work was developed with the contribution of the company CASAIS – Engenharia e Construção S.A. It proved the *AciariUM* efficiency by comparing the obtained results with the ones given by the commercial software *Robot Structural Analysis* and *CYPE 3D* for the studied case. Strategies are presented and procedures are defined for structural analysis in respect to the mentioned case study.

Key-words: numerical tool; steel structures; NP EN 1993-1-1; *AciariUM*; biaxial bending with axial force; ultimate limit states.

Capítulo 1 – INTRODUÇÃO

1.1	Enquadramento	1
1.2	Objetivos	2
1.3	Organização do trabalho	3
1.4	Metodologia do trabalho desenvolvido	4

Capítulo 2 – AVALIAÇÃO DE PROGRAMAS DE CÁLCULO COMERCIAIS

2.1	Introd	ução e En	quadramento5
2.2	Valor	es de cálcu	lo das propriedades do aço estrutural5
2.3	Tipos	de perfis	metálicos6
2.4	Dime	nsionamer	to de acordo com a NP EN 1993-1-1 [1]6
	2.4.1	Moment	o crítico de encurvadura lateral (<i>M</i> _{cr})6
2.5	Softwo	ares de cá	culo de Estruturas Metálicas7
	2.5.1	A3C Col	umns Calculator (ArcelorMittal)7
	2.5.2	Software	s de análise avançada de estruturas8
2.6	Estud	o compara	tivo de softwares de cálculo de Estruturas Metálicas9
	2.6.1	Modelo	de Teste 19
		2.6.1.1	Análise de estabilidade global do elemento – Método 111
		2.6.1.2	Análise de estabilidade global do elemento – Método 2 12
	2.6.2	Modelo	de Teste 2
		2.6.2.1	Análise de estabilidade global do elemento – Método 1 15
		2.6.2.2	Análise de estabilidade global do elemento – Método 2 16
	2.6.3	Modelo	de Teste 3 17
		2.6.3.1	Análise de estabilidade global do elemento – Método 1 19
		2.6.3.2	Análise de estabilidade global do elemento – Método 2 20
	2.6.4	Modelo	de Teste 4

Índice

		2.6.4.1	Análise de estabilidade global do elemento – Método 1
		2.6.4.2	Análise de estabilidade global do elemento – Método 2
2.7	Interp	retação do	os resultados obtidos no estudo comparativo25
	2.7.1	Classific	ação da secção transversal25
	2.7.2	Verifica	ção da resistência da secção transversal26
	2.7.3	Modelaç encurvad	ão das condições de apoio e travamento lateral em verificações à lura e encurvadura lateral27
	2.7.4	Resistên	cia do elemento à encurvadura lateral
		2.7.4.1	Robot Structural Analysis
		2.7.4.2	<i>CYPE 3D</i>
		2.7.4.3	A3C Columns Calculator
	2.7.5	Avaliaçã	to da capacidade de consideração do parâmetro z_g pelos programas 34
	2.7.6	Avaliaçã	to da capacidade de determinação do parâmetro z _j pelos programas 35
	2.7.7	Análise compres	de estabilidade global de elementos em flexão composta com são
		2.7.7.1	Método alternativo 1 - Anexo A
		2.7.7.2	Método alternativo 2 - Anexo B
	2.7.8	Perfil óti	mo para a secção transversal
2.8	Guia r	esumo de	limitações e campo de aplicabilidade do <i>software</i>
	2.8.1	Robot St	ructural Analysis:
	2.8.2	CYPE 31	D
	2.8.3	A3C Co	lumns Calculator:
2.9	Notas	conclusiv	as relativamente à avaliação da performance dos programas de cálculo
	analis	ados	

Capítulo 3 – FERRAMENTA DE CÁLCULO ACIARIUM

3.1	Enquadramento	
3.2	Apresentação da ferramenta AciariUM	
3.3	Estrutura global da ferramenta AciariUM	
3.4	Estrutura interna de cada interface da ferramenta AciariUM	45
3.5	Interface I. Secção transversal e propriedades do material	46
	3.5.1 Tipo e geometria da secção transversal	

	3.5.2	Módulo (Comercial de definição da geometria da secção transversal4	-8
	3.5.3	Módulo I	Manual de definição da geometria da secção transversal4	.9
	3.5.4	Módulo	Robot Structural Analysis de definição da geometria da secçã	ίο
		transvers	al	.9
	3.5.5	Proprieda	des do material e parâmetros gerais do cálculo5	1
		3.5.5.1	Classe de resistência do aço5	1
		3.5.5.2	Propriedades gerais do aço5	1
		3.5.5.3	Coeficientes parciais de segurança5	2
3.6	Interfa	ace II. Con	dições de apoio, travamento e solicitação do elemento5	3
	3.6.1	Módulo I	Manual de definição das condições de apoio, travamento e solicitação 5	4
	3.6.2	Módulo I travamen	Robot Structural Analysis de recolha e definição das condições de apoie to e solicitação	о, 4
	3.6.3	Módulo .	Automático de Pré-Dimensionamento para modelação e determinaçã	ίο
		das condi	ções de apoio, travamento e solicitação5	5
		3.6.3.1	Definição das condições de apoio do sistema estrutural5	7
		3.6.3.2	Definição das condições de travamento do elemento viga-coluna 5	8
		3.6.3.3	Definição das condições de carregamento5	8
		3.6.3.4	Cálculo e esboço dos diagramas de esforços5	9
		3.6.3.5	Recolha de resultados	9
3.7	Interfa	ace III. Res	sistência da secção transversal aos ELU6	0
	3.7.1	Classifica	ação da secção transversal6	1
	3.7.2	Interface	III para o caso de uma secção transversal bissimétrica da Classe 1 o)u :1
	373	Linterface	III para o caso de sección transversal monossimétrica da Class	
	5.7.5	1 ou 2		;e
	3.7.4	Interface	III para o caso de uma secção transversal da Classe 3	3
	3.7.5	Interface	III para o caso de uma secção transversal da Classe 4	3
3.8	Interfa	ace IV. Res	sistência do elemento à encurvadura6	5
	3.8.1	Encurvad	lura (Varejamento)6	6
	3.8.2	Encurvad	lura Lateral (Bambeamento)6	6
		3.8.2.1	Módulo Manual de definição do valor de <i>M</i> _{cr}	6
		3.8.2.2	Módulo Automático de definição do valor de <i>M_{cr}</i>	6
	3.8.3	Encurvad	lura por esforço transverso6	8
		3.8.3.1	Módulo de Verificação6	9

	3.8.3.2 Módulo de Dimensionamento	69
3.9	Interface V. Verificação da estabilidade global	70
3.10	Interface VI. Relatório de segurança	71
3.11	Outras funcionalidades	73
3.12	Resolução de problemas/erros	73
	3.12.1 Dispositivo de Segurança com registo de alterações	73
	3.12.2 Erro no algoritmo de cálculo do Visual Basic	74
	3.12.3 Figura não exibida ou exibida a figura incorreta	74
	3.12.4 Suporte	75
3.13	Aviso Legal	75

Capítulo 4 – MÉTODOLOGIA E EXPRESSÕES DE CÁLCULO

4.1	Enqu	adramento77		
4.2	Prop	Propriedades do material (aço)77		
4.3	Coef	icientes parciais de segurança77		
4.4	Prop	riedades mecânicas da secção transversal78		
	4.4.1	Definição da geometria da secção transversal78		
	4.4.2	Determinação das propriedades mecânicas da secção transversal		
4.5	Dete	rminação de reações, esforços e parâmetros relacionados com as condições de		
	apoie	p e travamento do elemento viga-coluna		
4.6	Class	sificação das secções transversais		
4.7	Secç	ões transversais da Classe 4		
	4.7.1	Considerações gerais		
	4.7.2	Método de verificação da capacidade resistente de secções da Classe 485		
	4.7.3	Determinação das propriedades efetivas das secções da Classe 4		
	4.7.4	Cálculo da área efetiva A_{eff} e do afastamento e_N entre os centros de gravidade das áreas das secções bruta e efetiva		
	4.7.5	Cálculo do módulo de flexão efetivo em torno do eixo y $(W_{eff,y})$		
	4.7.6	Cálculo do módulo de flexão efetivo em torno do eixo $z (W_{eff,z})$		
4.8	Veri	ficação de segurança da secção transversal em ELU91		
	4.8.1	Esforço axial de tração (Nt)91		
	4.8.2	Esforço axial de compressão (N _c)92		

	4.8.3	Esforço (transverso (V)	
		4.8.3.1	Secções das Classes 1, 2 ou 3	92
		4.8.3.2	Secções da Classe 4	
	4.8.4	Esforço (de Flexão (M_y ou M_z)	93
	4.8.5	Esforço (de flexão com esforço transverso $(M_y + V_z \text{ ou } M_z + V_y)$	94
		4.8.5.1	Módulos de flexão $W_{pl,v}$ e $W_{pl,r}$ - Secções das Classes 1 e 2	96
		4.8.5.2	Módulos de flexão $W_{el,v}$ e $W_{el,r}$ - Secções da Classe 3	97
		4.8.5.3	Módulos de flexão $W_{eff,v}$ e $W_{eff,r}$ - Secções da Classe 4	
	4.8.6	Flexão c	ompsta com esforço transverso $(M_y + V_z + N \text{ ou } M_z + V_y + N)$	100
		4.8.6.1	Secções transversais duplamente simétricas das Classes 1 e 2	100
		4.8.6.2	Outras secções transversais	100
	4.8.7	Flexão c	omposta desviada $(M_y + M_z + N)$	101
		4.8.7.1	Secções transversais duplamente simétricas das Classes 1 e 2	101
		4.8.7.2	Secções transversais assimétricas das Classes 1 e 2	101
		4.8.7.3	Secções transversais da Classe 3	101
		4.8.7.4	Secções transversais da Classe 4	101
	4.8.8	Flexão c	omposta desviada com esforço transverso $(M_y + M_z + N + V)$	101
4.9	Encu	rvadura (v	varejamento)	102
4.10	Encu	rvadura la	ateral (bambeamento)	103
	4.10.1	Cálculo o	do momento crítico (M_{cr})	104
4.11	Encu	rvadura p	or esforço transverso	107
	4.11.1	Valor de	cálculo da resistência à encurvadura por esforço transverso	108
	4.11.2	Contribu	ição da alma (V _{bw,Rd})	108
	4.11.3	Contribu	ição dos banzos, V _{bf,Rd}	109
4.12	Estab	oilidade gl	lobal	109

Capítulo 5 – CASO PRÁTICO DE ESTUDO E VALIDAÇÃO

5.1	Enqua	dramento	. 113
5.2	Apresentação do caso de estudo1		
	5.2.1	Obra	. 113
	5.2.2	Caracterização geométrica da estrutura	. 114
	5.2.3	Parâmetros gerais do cálculo	. 115

	5.2.4	Ações atuantes
	5.2.5	Combinações de ações116
	5.2.6	Envolventes dos diagramas de esforços117
5.3	Cálcu	lo do valor do momento crítico <i>M</i> _{cr} 117
	5.3.1	Proposta adotada para o cálculo do valor do momento crítico M _{cr} 118
	5.3.2	Cálculo do valor do momento crítico M _{cr} nos programas de cálculo118
	5.3.3	Estratégia de modelação para que seja determinado de forma eficaz o valor do
		momento crítico M_{cr} nos programas de cálculo
		5.3.3.1 Estratégia de Modelação – Exemplo prático
5.4	Verifi	cação de segurança aos estados limite últimos (ELU)124
5.5	Verifi	cação de segurança aos ELU - Pilar A (Pórtico 2)
	5.5.1	Caracterização geométrica da secção transversal HE 340 A 126
	5.5.2	Definição dos esforços de cálculo na secção condicionante e caracterização
		geométrica do sistema estrutural
	5.5.3	Classificação da secção transversal HE 340 A 128
	5.5.4	Verificação da resistência da secção HE 340 A aos estados limite últimos 128
	5.5.5	Resistência do Pilar A à encurvadura (varejamento)
	5.5.6	Resistência do Pilar A à encurvadura lateral (bambeamento) 129
	5.5.7	Resistência do Pilar A à encurvadura por esforço transverso (enfunamento) 130
	5.5.8	Verificação do Pilar A à encurvadura tendo em conta a interação entre os esforços
		de compressão e flexão (estabilidade global)
	5.5.9	Relatório final de segurança (Pilar A)
5.6	Verifi	cação de segurança aos ELU – Viga B ₁ (Pórtico 3)
	5.6.1	Caracterização geométrica da secção transversal PRS134
	5.6.2	Definição dos esforços de cálculo na secção condicionante e caracterização
		geométrica do sistema estrutural
	5.6.3	Classificação da secção transversal PRS
	5.6.4	Verificação da resistência da secção PRS aos estados limite últimos
	5.6.5	Resistência da Viga B1 à encurvadura (varejamento)
	5.6.6	Resistência da Viga B_1 à encurvadura lateral (bambeamento) 137
	5.6.7	Resistência da Viga B_1 à encurvadura por esforço transverso (enfunamento). 139
	5.6.8	Verificação da Viga B_1 à encurvadura tendo em conta a interação entre os esforços
		de compressão e flexão (estabilidade global)140
	5.6.9	Relatório final de segurança (Viga B ₁)141

5.7	Verifi	cação de segurança aos ELU – Viga B ₂ (Pórtico 4)142
	5.7.1	Caracterização geométrica da secção transversal143
	5.7.2	Definição dos esforços de cálculo na secção condicionante e caracterização geométrica do sistema estrutural
	5.7.3	Classificação da secção transversal IPE 330
	5.7.4	Verificação da resistência da secção IPE 330 aos estados limite últimos 145
	5.7.5	Resistência da Viga B2 à encurvadura (varejamento) 146
	5.7.6	Resistência da Viga B_2 à encurvadura lateral (bambeamento) 146
	5.7.7	Resistência da Viga B_2 à encurvadura por esforço transverso (enfunamento). 148
	5.7.8	Verificação da Viga B_2 à encurvadura tendo em conta a interação entre os esforços
		de compressão e flexão (estabilidade global)
	5.7.9	Relatório final de segurança (Viga B ₂)149

Capítulo 6 – CONCLUSÃO

6.1	Considerações finais	
6.2	Desenvolvimentos futuros	
BIB	BLIOGRAFIA	155
Ane	exo A – ESTRUTURA DA FERRAMENTA ACIARIUM	159
Ane	exo B – PEÇAS DESENHADAS DO PROJETO DE	
	ARQUITETURA	
Ane	exo C – COMBINAÇÕES DE AÇÕES ELU	
Ane	exo D – VERIFICAÇÃO AOS ELU DO PILAR A	
Ane	exo E – VERIFICAÇÃO AOS ELU DA VIGA B ₁	
Ane	exo F – VERIFICAÇÃO AOS ELU DO DA VIGA B2	

Capítulo 2 – AVALIAÇÃO DE PROGRAMAS DE CÁLCULO COMERCIAIS

Figura 2.1 – Diagrama de comportamento do aço à tração5
Figura 2.2 – Sistema estruturais com possível análise através do A3C Columns Calculator 8
Figura 2.3 – Modelo de Teste 19
Figura 2.4 – Diagrama de momentos fletores na viga de teste 1 10
Figura 2.5 – Coeficientes C ₁ , C ₂ e C ₃ para o Modelo de Teste 1 10
Figura 2.6 – Coeficiente $C_{my,0}$ de acordo com o Método 1 – Modelo de Teste 1 11
Figura 2.7 – Coeficientes C_{my} e C_{mLT} de acordo com o Método 2 – Modelo de Teste 1 12
Figura 2.8 – Modelo de Teste 213
Figura 2.9 – Diagrama de momentos fletores na viga de teste 2 14
Figura 2.10 – Coeficientes C ₁ , C ₂ e C ₃ para o Modelo de Teste 2
Figura 2.11 – Coeficiente $C_{my,0}$ de acordo com o Método 1 – Modelo de Teste 2 15
Figura 2.12 – Coeficientes C_{my} e C_{mLT} de acordo com o Método 2 – Modelo de Teste 2 16
Figura 2.13 – Modelo de Teste 317
Figura 2.14 – Diagrama de momentos fletores na viga de teste 3 18
Figura 2.15 – Coeficientes C ₁ , C ₂ e C ₃ para o Modelo de Teste 3
Figura 2.16 – Coeficiente $C_{my,0}$ de acordo com o Método 1 – Modelo de Teste 3 19
Figura 2.17 – Coeficientes C_{my} e C_{mLT} de acordo com o Método 2 – Modelo de Teste 3 21
Figura 2.18 – Modelo de Teste 4
Figura 2.19 – Diagrama de momentos fletores na viga de teste 4
Figura 2.20 – Coeficientes C1, C2 e C3 para o Modelo de Teste 4
Figura 2.21 – Coeficiente $C_{my,0}$ de acordo com o Método 1 – Modelo de Teste 4 24
Figura 2.22 – Coeficientes C_{my} e C_{mLT} de acordo com o Método 2 – Modelo de Teste 4 24
Figura 2.23 – Área resistente ao esforço transverso, Av
Figura 2.24 – Ativação do módulo de cálculo automático de comprimentos de encurvadura. 27
Figura 2.25 – Módulo B. Definição de condições de apoio e travamento lateral para análise à resistência à encurradura e encurradura lateral (exemple de Modele de Teste 3)
Figure 2.26 Robot Structural Analysis Definição do tino do corgo no ionalo "Load Tyme" 20
rigura 2.20 – Koboi Siruciurai Anaiysis. Dennição do tipo de carga na janeta Loda Type . 29

Figura 2.27 - Definição de condições de apoio e travamento para verificação da resistência à
encurvadura e encurvadura lateral (exemplo do tramo central do Modelo de Teste 3)29
Figura 2.28 – Divisão do elemento em tramos de comprimentos iguais aos comprimentos entre
secções lateralmente contraventadas (exemplo do Modelo de Teste 3)
Figura 2.29 - Valor do comprimento de encurvadura comunicado manualmente ao programa
por definição do coeficiente de encurvadura β (exemplo do Modelo de Teste 3)30
Figura 2.30 – Definição do modelo para verificação à encurvadura lateral – Robot Structural
Analysis
Figura 2.31 – Efeito da posição da carga no fenómeno de encurvadura lateral

Capítulo 3 – FERRAMENTA DE CÁLCULO ACIARIUM

Figura 3.1 – Janela de apresentação com logótipo da ferramenta de cálculo AciariUM43
Figura 3.2 – Estrutura global da ferramenta AciariUM
Figura 3.3 – Barra em rodapé para navegação através dos Interfaces da ferramenta <i>AciariUM</i>
Figura 3.4 – Representação esquemática da estrutura interna dos Interfaces da ferramenta AciariUM
Figura 3.5 – Interface I. Secção transversal e parâmetros gerais do cálculo
Figura 3.6 – Dimensões das secções transversais em I e H
Figura 3.7 – Interface I (excerto). Informação relativa ao tipo e geometria do perfil transversal
Figura 3.8 – Módulo comercial de definição geométrica da secção transversal
Figura 3.9 – Módulo manual de definição geométrica da secção
Figura 3.10 – Módulo Robot Structural Analysis de definição geométrica da secção
Figura 3.11 – Seleção do elemento destacado a vermelho no programa <i>Robot Structural</i> Analysis
Figura 3.12 – Ativação do " <i>Results Connect</i> " para recolha automática das dimensões da secção transversal de um elemento selecionado num ficheiro do <i>Robot Structural Analysis</i>
Figura 3.13 – Instruções para utilização do Módulo Robot SA no Interface I da ferramenta AciariUM
Figura 3.14 – Definição da classe de resistência do aço e correspondentes valores de f_y e f_u 51
Figura 3.15 – Propriedades gerais do aço constituinte do elemento estrutural
Figura 3.16 – Janela de reposição dos valores das propriedades do material

Figura 3.17 – Coeficientes parciais de segurança
Figura 3.18 – Janela de reposição dos valores dos coeficientes parciais de segurança γ_{Mi} 52
Figura 3.19 – Interface II. Condições de apoio, travamento e solicitação
Figura 3.20 – Interface II (excerto). Módulo Manual
Figura 3.21 – Interface II (excerto). Módulo Robot Structural Analysis
Figura 3.22 – Números dos casos de carga no Robot Structural Analysis
Figura 3.23 – Posição relativa da secção transversal a verificar no elemento selecionado 54
Figura 3.24 – Instruções para utilização do Módulo Robot SA no Interface II da ferramenta AciariUM
Figura 3.25 – Interface II (excerto). Módulo Automático de determinação das condições de apoio, travamento e solicitação
Figura 3.26 – Interface II (excerto). Definição das condições de apoio do sistema estrutural. Plano xz
Figura 3.27 – Interface II (excerto). Definição das condições de apoio do sistema estrutural. Plano yx
Figura 3.28 – Interface II (excerto). Definição das condições de travamento do elemento viga- coluna para verificação à encurvadura (varejamento) e encurvadura lateral (bambeamento). 58
Figura 3.29 – Interface II (excerto). Greina de definição das condições de carregamento
Figura 3.31 – Interface II (excerto). Identificação dos setores mais comprimidos da secção a verificar
Figura 3.32 – Interface III (excerto). Grelha de cabeçalho e classificação da secção transversal
Figura 3.33 – Interface III (excerto). Cálculo relativo á classificação da secção transversal 61
Figura 3.34 b – Interface III. Secção transversal bissimétrica da Classe 1 ou 2
Figura 3.35 – Interface III. Secção transversal monossimétrica da Classe 1 ou 2
Figura 3.36 – Interface III. Secção transversal da Classe 3
Figura 3.37 b – Interface III. Secção transversal da Classe 4
Figura 3.38 – Interface III (excerto). Cálculo relativo á determinação das propriedades efetivas de secções da Classe 4
Figura 3.39 – Interface IV. Fenómenos de Encurvadura
Figura 3.40 – Interface IV (excerto). Encurvadura (Varejamento). Procedimentos A e B 66
Figura 3.41 – Interface IV (excerto). Encurvadura Lateral (Bambeamento). Procedimento C66
Figura 3.42 - Interface IV (excerto). Janela de definição dos Coeficientes Distribuição de
Momentos

Figura 3.43 – Interface IV (excerto). Janela com instruções para definição dos valores de k_z e
$k_w \dots 67$
Figura 3.44 – Interface IV (excerto). Janela de determinação do parâmetro z_g
Figura 3.45 – Interface IV (excerto): Encurvadura por esforço transverso
Figura 3.46 - Caracterização gráfica da situação definida para o que diz respeito à existência
de reforços transversais da alma
Figura 3.47 – Interface V (excerto). Estabilidade Global
Figura 3.48 – Interface V (excerto). Janelas de definição dos coeficientes de momento uniforme
equivalente $C_{my,0}$ e $C_{mz,0}$
Figura 3.49 – Interface 6 (Excerto): Cabeçalho da primeira página do relatório de segurança71
Figura 3.50 – Relatório final exportado a partir da ferramenta AciariUM (Anexo A)71
Figura 3.51 – Menu para impressão do relatório de segurança da ferramenta AciariUM72
Figura 3.52 – Menu de exportação do relatório de segurança da AciariUM em formato PDF 72
Figura 3.53 - Botões que ativam procedimentos específicos posicionados ao lado direito da
grelha de cabeçalho principal, fora do plano de visualização73
Figura 3.54 – Dispositivo de Segurança
Figura 3.55 – Erro relacionado com o algoritmo em Visual Basic74

Capítulo 4 – MÉTODOLOGIA E EXPRESSÕES DE CÁLCULO

Figura 4.1 – Dimensões principais da secção transversal78
Figura 4.2 – Área resistente ao esforço transverso, A_{vz}
Figura 4.3 – Área resistente ao esforço transverso, Avy
Figura 4.4 – Determinação do valor do comprimento de encurvadura em torno do eixo y 83
Figura 4.5 – Limites máximos das relações largura-espessura para componentes comprimidos internos (alma)
Figura 4.6 – Limites máximos das relações largura-espessura para componentes comprimidos em consola (banzos)
Figura 4.7 – Determinação da secção transversal efetiva: elementos comprimidos interiores (alma)
Figura 4.8 – Determinação da secção transversal efetiva: elementos comprimidos em consola (banzos)
Figura 4.9 – Largura <i>c</i> correspondente às partes em consola do banzo
Figura 4.10 – Secção efetiva determinada supondo compressão pura: cálculo de A_{eff} e e_N 89

Figura 4.11 – Secção efetiva determinada supondo a secção bruta sujeita apenas a um momento
fletor em relação ao eixo y: cálculo de W _{eff,y}
Figura 4.12 – Secção efetiva determinada supondo a secção bruta sujeita apenas a um momento
fletor em relação ao eixo z: cálculo de W _{eff,z}
Figura 4.13 - Parâmetros a considerar para determinação do esforço transverso elástico
resistente em função da direção considerada
Figura 4.14 – Área resistente ao esforço transverso, $A_{\nu z}$, e área restante, A_{rz}
Figura 4.15 – Área resistente ao esforço transverso, $A_{\nu z}$, e área restante, A_{rz}
Figura 4.16 – Diagrama plástico de tensões limite na secção transversal considerando redução
da tensão de cedência na área A_{vz} . Flexão em torno do eixo y
Figura 4.17 – Diagrama plástico de tensões limite na secção transversal considerando redução
da tensão de cedência na área A_{vy} . Flexão em torno do eixo z
Figura 4.18 – Diagrama elástico de tensões limite na secção transversal considerando redução
da tensão de cedência na área A_{vz} . Flexão em torno do eixo y
Figura 4.19 – Diagrama elástico de tensões limite na secção transversal considerando redução
da tensão de cedência na área $A_{\nu\nu}$. Flexão em torno do eixo z
Figura 4.20 – Diagrama elástico de tensões limite na secção transversal efetiva considerando
redução da tensão de cedência na área A_{vz}^{EFF} . Flexão em torno do eixo y
Figura 4.21 – Diagrama elástico de tensões limite na secção transversal efetiva considerando
redução da tensão de cedência na área A_{vy}^{EFF} . Flexão em torno do eixo z
Figura 4.22 – Escolha do valor do fator de imperfeição, α , em função da curva de encurvadura
Figura 4.23 – Escolha do valor do fator de imperfeição, α_{LT} , em função da curva de encurvadura.
Figura 4.24 – Posição de aplicação da carga ao nível da secção transversal (z_g) 106
Figura 4.25 – Contribuição da alma χ_w para a resistência à encurvadura por esforço transverso
Figura 4.26 – Determinação dos coeficientes de momento uniforme $C_{my,0}$ e $C_{mz,0}$

Capítulo 5 – CASO PRÁTICO DE ESTUDO E VALIDAÇÃO

Figura 5.1 - Caso de estudo: representação	o da estrutura do edifício (vista Robot Structural
Analysis)	
Figura 5.2 – Definição geométrica do "Pórtic	co-Tipo"114

Figura 5.3 – Interface I (excerto): parâmetros gerais do cálculo
Figura 5.4 – Definição de $L_{cr,z}^{banzo}$ pelos programas de cálculo estrutural
Figura 5.5 – Exemplo prático para definição de estratégia de modelação 121
Figura 5.6 – Divisão da viga em segmentos para modelação nos programas de cálculo estrutural
Figura 5.7 – Caracterização geométrica do Pilar A126
Figura 5.8 – Interface I (excerto): geometria da secção transversal HE 340 A 126
Figura 5.9 – Diagramas de esforços no Pilar A (Pórtico 2) para a combinação ELU condicionante
Figura 5.10 – Interface II (excerto): condições de apoio e solicitação do Pilar A 127
Figura 5.11 – Interface III (excerto): classificação da secção transversal HE 340 A 128
Figura 5.12 – Interface III (excerto): resistência da secção transversal HE 340 A aos ELU. 128
Figura 5.13 – Interface IV (excerto): resistência do Pilar A à encurvadura (varejamento) 129
Figura 5.14 – Interface IV (excerto): resistência do Pilar A à encurvadura lateral (bambeamento)
Figura 5.15 – Janela de definição dos coeficientes distribuição de momentos (Pilar A) 130
Figura 5.16 – Janela de definição do parâmetro z_g (Pilar A)
Figura 5.17 – Interface IV (excerto): resistência do Pilar A à encurvadura por esforço transverso
Figura 5.18 – Interface V (excerto): análise de estabilidade global do Pilar A sujeito a flexão
composta com compressão
Figura 5.19 – Janelas de definição dos coeficientes de momento uniforme (Pilar A)
Figura 5.20 – Caracterização geométrica da Viga B ₁
Figura 5.21 – Contraventamento lateral do banzo superior da Viga B
Figura 5.22 – Contraventamento lateral do banzo inferior da Viga B
Figura 5.23 – Estratégia de modelação da Viga B ₁ no <i>CYPE 3D</i>
Figura 5.24 – Interface I (excerto): definição das dimensões do perfil PRS (S4)
Figura 5.25 – Diagramas de esforços na Viga B ₁ (Pórtico 3) para a combinação ELU condicionante
Figura 5.26 – Interface II (excerto): condições de apoio e solicitação da Viga B ₁ 135
Figura 5.27 – Interface III (excerto): classificação da secção transversal PRS
Figura 5.28 – Interface III (excerto): resistência da secção transversal PRS aos ELU 136
Figura 5.29 – Interface IV (Excerto): resistência da Viga B1 à encurvadura (varejamento). 136

Figura 5.30 – Interface I (Excerto): propriedades mecânicas da secção transversal intermédia do tramo EL3 da Viga B ₁
Figura 5.31 – Janela de definição dos coeficientes distribuição de momentos (Viga B1) 138
Figura 5.32 – Janela de definição do parâmetro z_g (Viga B ₁)
Figura 5.33 – Interface IV (Excerto): determinação do valor do momento crítico M_{cr} da Viga B ₁
Figura 5.34 – Interface I (Excerto): propriedades mecânicas da secção transversal <i>PRS</i> (<i>S4</i>)
Figura 5.35 – Interface IV (excerto): resistência da Viga B ₁ à encurvadura lateral (bambeamento)
Figura 5.36 – Interface IV (excerto): resistência da Viga B ₁ à encurvadura por esforço transverso
Figura 5.37 – Interface V (excerto): análise de estabilidade global da Viga B ₁ sujeita a flexão composta com compressão
Figura 5.38 – Caracterização geométrica da Viga B2142
Figura 5.39 – Estratégia de modelação da Viga B ₂ no CYPE 3D
Figura 5.40 – Interface I (excerto): definição das dimensões do Perfil IPE 330 143
Figura 5.41 – Diagramas de esforços na Viga B2 (Pórtico 4) para a combinação ELU condicionante
Figura 5.42 – Interface II (excerto): condições de apoio e solicitação da Viga B ₂ 144
Figura 5.43 – Interface III (excerto): classificação da secção transversal IPE 330 145
Figura 5.44 – Interface III (excerto): resistência da secção transversal IPE 330 aos ELU 145
Figura 5.45 – Interface IV (Excerto): resistência da Viga B2 à encurvadura (varejamento). 146
Figura 5.46 – Interface IV (Excerto): resistência da Viga B ₂ à encurvadura lateral (bambeamento)
Figura 5.47 – Janela de definição dos coeficientes distribuição de momentos (Viga B ₂) 147
Figura 5.48 – Janela de definição do parâmetro z_g (Viga B ₂)
Figura 5.49 – Interface IV (excerto): resistência da Viga B ₂ à encurvadura por esforço transverso
Figura 5.50 – Interface V (excerto): análise de estabilidade global da Viga B ₂ sujeita a flexão composta com compressão

Capítulo 2 – AVALIAÇÃO DE PROGRAMAS DE CÁLCULO COMERCIAIS

Quadro 2.1 – Resultados Modelo de Teste 1: resistência da secção transversal e encurvadura
Quadro 2.2 – Resultados Modelo de Teste 1: resistência à encurvadura lateral
Quadro 2.3 - Resultados Modelo de Teste 1: análise de estabilidade global do elemento em flexão composta com compressão – Método 1
Quadro 2.4 - Resultados Modelo de Teste 1: análise de estabilidade global do elemento em
flexão composta com compressão - Método 213
Quadro 2.5 – Resultados Modelo de Teste 2: resistência da secção transversal e encurvadura 14
Quadro 2.6 – Resultados Modelo de Teste 2: resistência à encurvadura lateral
Quadro 2.7 - Resultados Modelo de Teste 2: análise de estabilidade global do elemento em flexão composta com compressão – Método 1
Quadro 2.8 - Resultados Modelo de Teste 2: análise de estabilidade global do elemento em flexão composta com compressão – Método 2
Quadro 2.9 – Resultados Modelo de Teste 3: resistência da secção transversal e encurvadura
Quadro 2.10 – Resultados Modelo de Teste 3: resistência à encurvadura lateral
Quadro 2.11 - Resultados Modelo de Teste 3: análise de estabilidade global do elemento em flexão composta com compressão – Método 1
Quadro 2.12 - Resultados Modelo de Teste 3: análise de estabilidade global do elemento em
Quadro 2.13 – Resultados Modelo de Teste 4: resistência da secção transversal e encurvadura
Quadro 2.14 – Resultados Modelo de Teste 4: resistência à encurvadura lateral
Quadro 2.15 - Resultados Modelo de Teste 4: análise de estabilidade global do elemento em flexão composta com compressão – Método 1
Quadro 2.16 - Resultados Modelo de Teste 4: análise de estabilidade global do elemento em flexão composta com compressão – Método 2

Quadro 2.17 - Identificação da forma (módulo) utilizada em cada programa para análise aos
fenómenos de encurvadura (B) e encurvadura lateral (LTB) em cada Modelo de Teste 27
Quadro 2.18 - Quantificação por parte do CYPE 3D dos parâmetros envolvidos no cálculo de
<i>M</i> _{cr}
Quadro 2.19 – Avaliação da capacidade de consideração do parâmetro z_g pelo software 34
Quadro 2.20 – Comparativo de soluções ótimas de dimensionamento das secções transversais
Quadro 2.21 – Guia resumo de limitações e campo de aplicação do <i>Robot Structural Analysis</i>
Quadro 2.22 – Guia resumo de limitações e campo de aplicação do CYPE 3D
Quadro 2.23 – Guia resumo de limitações e campo de aplicação do A3C Columns Calculator
Quadro 2.24 – Quadro de avaliação da performance do <i>software</i>

Capítulo 3 – FERRAMENTA DE CÁLCULO ACIARIUM

$Quadro~3.1-Dimensões~principais~da~secção~transversal~definidas~pelo~utilizador~na {\it AciariUM}$
Quadro 3.2 - Dimensões complementares e propriedades mecânicas da secção transversal
calculadas automaticamente pela ferramenta AciariUM
Quadro 3.3 - Gestão automática da informação relativa ao tipo de perfil, aos raios de
concordância r e aos cordões de soldadura cs pela ferramenta AciariUM
Quadro 3.4 - Classes de resistência do aço na base de dados da ferramenta AciariUM51
Quadro 3.5 - Parâmetros definidos no Interface II. Esforços atuantes e parâmetros que
caracterizam a geometria do sistema estrutural
Quadro 3.6 - Conjuntos de conteúdos/procedimentos no Interface III
Quadro 3.7 - Gestão dos conteúdos/procedimentos do Interface III em função da Classe da
secção
Quadro 3.8 - Conjuntos de conteúdos/procedimentos no Interface IV65

Capítulo 4 – MÉTODOLOGIA E EXPRESSÕES DE CÁLCULO

Quadro 4.1 – Dimensões principais da se	ecção transversal	/8
---	-------------------	----

Quadro 4.2 – Atribuição de valores aos coeficientes C ₁ , C ₂ e C ₃	105
Quadro 4.3 – Valores de $N_{Rk} = f_y A_i$, $M_{i,Rk} = f_y W_i$ e $\Delta M_{i,Ed}$	110

Capítulo 5 – CASO PRÁTICO DE ESTUDO E VALIDAÇÃO

Quadro 5.1 – Mapa e definição geométrica das secções transversais dos elementos do "pórtico-
tipo"
Quadro 5.2 - Restantes cargas permanentes (cobertura, revestimentos e pavimento) 115
Quadro 5.3 – Ação do vento no edifício em kN/m^2 - situações
Quadro 5.4 – Valores recomendados para os coeficientes ψ_0 para edifícios 117
Quadro 5.5 - Resumo e comparação entre as abordagens em 5.3.1 e 5.3.2 120
Quadro 5.6 – Momento crítico calculado de acordo com 5.3.1 122
Quadro 5.7 – Momento crítico M_{cr} calculado pelos programas de cálculo de acordo com 5.3.2 sem que seja respeitada uma estratégia de modelação
Quadro 5.8 – Momento crítico <i>M_{cr}</i> calculado pelos programas de cálculo de acordo com 5.3.2 respeitando a estratégia de modelação definida
Quadro 5.9 – Identificação dos grupos de elementos e do caso mais condicionante de cada um
Quadro 5.10 – Propriedades mecânicas da secção transversal HE 340 A 126
Quadro 5.11 – Verificação da resistência da secção transversal HE 340 A aos ELU 129
Quadro 5.12 – Verificação da resistência do Pilar A à encurvadura (varejamento) 129
Quadro 5.13 – Verificação da resistência do Pilar A à encurvadura lateral (bambeamento) 130
Quadro 5.14 – Verificação da resistência do Pilar A à encurvadura tendo em conta a interação entre os esforços de compressão e flexão (estabilidade global)
Quadro 5.15 - Resumo dos resultados relativos ao processo de verificação do Pilar A 132
Quadro 5.16 - Propriedades mecânicas da secção transversal PRS
Quadro 5.17 – Verificação da resistência da secção transversal PRS aos ELU
Quadro 5.18 – Verificação da resistência da Viga B1 à encurvadura (varejamento)137
Quadro 5.19 – Verificação da resistência da Viga B1 à encurvadura lateral (bambeamento)139
Quadro $5.20 - Verificação da resistência da Viga B_1 à encurvadura por esforço transverso 140$
Quadro 5.21 – Verificação da resistência da Viga B ₁ à encurvadura tendo em conta a interação entre os esforços de compressão e flexão (estabilidade global)
Quadro 5.22 – Resumo dos resultados relativos ao processo de verificação da Viga B1 141

Quadro 5.23 - Propriedades mecânicas da secção transversal IPE 330
Quadro 5.24 - Verificação da resistência da secção transversal IPE 330 aos ELU146
Quadro 5.25 – Verificação da resistência da Viga B2 à encurvadura (varejamento)146
Quadro 5.26 – Verificação da resistência da Viga B_2 à encurvadura lateral (bambeamento) 147
Quadro 5.27 – Verificação da resistência da Viga B_2 à encurvadura tendo em conta a interação
entre os esforços de compressão e flexão (estabilidade global) 149
Quadro 5.28 – Resumo dos resultados relativos ao processo de verificação da Viga B2 149

Simbolos e nomenclatura

Para os fins do presente documento utilizam-se o símbolos listados seguidamente. São ainda utilizados outros símbolos que se definem quando são referidos pela primeira vez.

- *x* eixo longitudinal de um elemento
- y eixo de uma secção transversal
- z eixo de uma secção transversal
- *b* largura de uma secção transversal
- *b*_s largura do banzo superior de uma secção transversal
- *b_i* largura do banzo inferior de uma secção transversal
- *h* altura de uma secção transversal
- h_i altura de uma alma.
- *d* altura da parte reta de uma alma
- t_w espessura da alma
- *t_f* espessura do banzo
- *t_s* espessura do banzo superior de uma secção transversal
- *t_i* espessura do banzo inferior de uma secção transversal
- r_s raio de concordância entre a alma e o banzo superior de uma secção transversal
- r_i raio de concordância entre a alma e o banzo infeior de uma secção transversal
- *cs*_s espessura do cordão de soldadura de ligação entre a alma e o banzo superior
- *cs*_i espessura do cordão de soldadura de ligação entre a alma e o banzo inferior
- f_y tensão de cedência
- f_u tensão última
- *E* módulo de elasticidade
- G módulo de distorção
- v coeficiente de Poisson em regime elástico
- α (4.2) coeficiente de dilatação térmica linear
- γ_{M0} coeficiente parcial de segurança para a resistência de secções transversais de qualquer classe
- γ_{MI} coeficiente parcial de segurança para a resistência dos elementos em relação a fenómenos de encurvadura, avaliada através de verificações individuais de cada elemento
- γ_{M2} coeficiente parcial de segurança para a resistência à rotura de secções transversais tracionadas em zonas com furos de ligação
- *A* área bruta de uma secção transversal
- A_{eff} área efetiva de uma secção transversal

<i>e</i> _{<i>N</i>,<i>y</i>}	afastamento entre os centros de gravidade das áreas das secções efetiva (A_{eff}) e bruta, segundo o eixo y
$\Delta M_{z,Ed}$	Momento devido ao afastamento $e_{N,y}$
$e_{N,z}$	afastamento entre os centros de gravidade das áreas das secções efetiva (A_{eff}) e bruta, segundo o eixo z
$\Delta M_{y,Ed}$	Momento devido ao afastamento $e_{N,z}$
A_w	área de uma alma
A_f	área de um banzo
η	coeficiente para calcular a área de corte
A_{vz}	àrea resistente ao esforço transverso V_z
A_{vy}	àrea resistente ao esforço transverso V_y
Ι	momento de inércia da secção em relação ao eixo considerado
S	momento estático de uma área relativamente a um eixo considerado
W_{pl}	módulo de flexão plástico de uma secção transversal, em relação ao eixo considerado
W_{el}	módulo de flexão elástico de uma secção transversal, em relação ao eixo considerado
$W_{e\!f\!f}$	módulo de flexão efetivo de uma secção transversal, em relação ao eixo considerado
i	raio de giração relativamente ao eixo considerado
I_T	constante de torção de St. Venant
I_w	constante de empenamento
L	comprimento total de um elemento viga-coluna
N_{Ed}	valor de cálculo do esforço axial atuante
V_{Ed}	valor de cálculo do esforço transverso atuante, na direção considerada
M_{Ed}	valor de cálculo do momento fletor atuante, em relação ao eixo considerado
N_{Rd}	valor de cálculo do esforço normal resistente à compressão de uma secção transversal
V_{Rd}	valor de cálculo do esforço transverso resistente, na direção considerada
M_{Rd}	valor de cálculo do momento fletor resistente, em relação ao eixo considerado
n	relação entre os valores de cálculo dos esforços normais atuante e resistente plástico de uma secção transversal bruta
a	relação entre a área da alma e a área bruta de uma secção transversal
$M_{N,Rd}$	valor de cálculo do momento fletor resistente, em relação ao eixo considerado, reduzido pela interação com o esforço axial
α (4.8.7)	parâmetro para tomar em consideração o efeito de flexão desviada
β	parâmetro para tomar em consideração o efeito de flexão desviada
ρ	coeficiente de redução para determinar os valores de cálculo dos momentos fletores resistentes, tendo em conta a interação com os esforços transversos
$M_{V,Rd}$	valor de cálculo do momento fletor resistente, em relação ao eixo considerado, reduzido pela interação com o esforço transverso correspondente, isto é, $M_v + V_z$ ou $M_z + V_v$
$f'_{y}(A_{vz})$	tensão de cedência reduzida adotada na área resistente ao esforço transverso A_{vz} para tomar em consideração os efeitos da presença do esforço transverso V_z no cálculo momento fletor resistente $M_{V,y,Rd}$ - Abrevia-se em $f'_{y,z}$

$f'_{y}(A_{vy})$	tensão de cedência reduzida adotada na área resistente ao esforço transverso A_{vy} para tomar em consideração os efeitos da presença do esforço transverso V_y no cálculo momento fletor resistente $M_{V,z,Rd}$ - Abrevia-se em $f'_{y,y}$
$M_{NV,Rd}$	valor de cálculo do momento fletor resistente, em relação ao eixo considerado, reduzido pela interação com os esforços axial e transverso correspondente, isto é, $M_y + N + V_z$ ou $M_z + N + V_y$
L_{cr}	comprimento de encurvadura em torno do eixo considerado
$N_{b,Rd}$	valor de cálculo do esforço normal resistente à encurvaura de um elemento comprimido em relação ao eixo considerado
χ	coeficiente de redução associado à encurvadura por flexão em torno do eixo considerado
ϕ	valor para determinar o coeficiente de redução χ
α (4.9)	fator de imperfeição para a encurvadura de elementos comprimidos
λ_1	valor da esbelteza de referência para determinar a esbelteza normalizada
$\overline{\lambda}$	esbelteza normalizada associada à encurvadura de colunas por flexão
$M_{b,Rd}$	valor de cálculo do momento fletor resistente à encurvadura lateral
χ_{LT}	coeficiente de redução para a encurvdura lateral
ϕ_{LT}	valor para determinar o coeficiente de redução χ
α_{LT}	fator de imperfeição para a encurvadura lateral
$\overline{\lambda}_{IT}$	esbelteza normalizada para a encurvadura lateral
M_{cr}	momento crítico de encurvadura lateral
$M_{cr,E}$	momento crítico elástico de encurvadura lateral
l	comprimento entre secções lateralmente contraventadas no banzo considerado
C_1	coeficiente para ter em conta a distribuição de momentos
C_2	coeficiente para ter em conta a distribuição de momentos
C_3	coeficiente para ter em conta a distribuição de momentos
k_z	fator de comprimento efetivo relativo às condições de extremidade
k_w	fator de comprimento efetivo relativo às condições de extremidade
Zg	distância em z entre o ponto de aplicação da carga e o centro de corte da secção transversal
Z_j	parâmetro que reflete o grau de assimetria da secção transversal
$V_{b,Rd}$	valor de cálculo da resistência à encurvadura por esforço transverso
$V_{b,w,Rd}$	valor de cálculo da contribuição da alma para a resistência à encurvadura por esforço transverso
$V_{b,f,Rd}$	valor de cálculo da contribuição dos banzos para a resistência à encurvadura por esforço transverso
a_w	distância entre reforços transversais da alma
f_{yw}	tensão de cedência da alma
f_{yf}	tensão de cedência dos banzos
χw	coeficiente de redução relativo à contribuição da alma para a resistência à encurvadura por esforço transverso
k_{τ}	valor mínimo do coeficiente de encurvadura por esforço transverso do painel de alma

$M_{f,Rd}$	valor de cálculo do momento fletor resistente da secção transversal constituída apenas pelas áreas efetivas dos banzos
$M_{N,f,Rd}$	valor de cálculo do momento fletor resistente da secção transversal constituída apenas pelas áreas efetivas dos banzos, reduzido pela presença de um esforço normal N_{Ed}
N _{cr}	valor crítico do esforço normal associado à encurvadura elástica por flexão em torno do eixo considerado
$N_{cr,T}$	valor crítico do esforço normal associado à encurvadura elástica por torção
$C_{my,0}$	coeficiente
$C_{mz,0}$	coeficiente
C_{my}	coeficiente de momento uniforme equivalente
C_{mz}	coeficiente de momento uniforme equivalente
C_{mLT}	coeficiente de momento uniforme equivalente
k_{yy}	fator de interação
k_{yz}	fator de interação
k_{zy}	fator de interação
k_{zz}	fator de interação
u_y	fator
u_z	fator
C_{yy}	fator
C_{yz}	fator
C_{zy}	fator
C_{zz}	fator
$\overline{\lambda}_{max}$	maior dos valores de $\overline{\lambda}_{y}$ e $\overline{\lambda}_{z}$
b_{LT}	fator
C_{LT}	fator
d_{LT}	fator

 e_{LT} fator

CAPÍTULO 1

Introdução

1.1 Enquadramento

O projeto de estruturas de aço encontra-se regulamentado pelo conjunto de normas NP EN 1993 (Eurocódigo 3). O trabalho a ser desenvolvido tem como base a referida regulamentação e culmina numa ferramenta informática prática e intuitiva, capaz de apoiar o dimensionamento de vigas-coluna metálicas sujeitas a flexão composta desviada.

À ferramenta de cálculo desenvolvida foi atribuído o nome "*AciariUM*", palavra latina que significa "aço". As letras maiúsculas "UM" são uma referência à Universidade do Minho.

A eficiência dos modelos de cálculo automático existentes, com capacidade para analisar e projetar soluções adequadas do ponto de vista estrutural, é reconhecida. O uso de modelos 3D permite uma simulação precisa dos sistemas estruturais e a abrangência da totalidade do processo de dimensionamento: modelação da estrutura, cálculo de esforços, verificações de segurança e/ou dimensionamento e otimização automática. O *Robot Structural Analysis* (*Autodesk*) e o *CYPE 3D* (*Cype*) são exemplos conceituados deste tipo de *software*.

Algumas das ferramentas que estão comercialmente disponíveis não permitem, no entanto, que o utilizador controle totalmente os procedimentos que dão origem aos resultados que lhe são apresentados. Justifica-se, portanto, a importância de dispor de ferramentas que, contrariando esta tendência, permitam validar os resultados devolvidos por programas comerciais de análise estrutural. A ferramenta desenvolvida foi concebida com o objetivo de permitir ao profissional que a opera um controlo total sobre todos os procedimentos, próximo àquele que obteria se efetuasse um cálculo manual. Todo o algoritmo e procedimento de cálculo relativo a cada parâmetro está constantemente disponível para consulta e edição. Não se ambiciona, portanto, substituir os programas de cálculo existentes, na medida em que a ferramenta não foi exatamente concebida para os mesmos fins, mas sim complementá-los.

O presente trabalho é direcionado para a análise de vigas-coluna em aço constituidas por perfis transversais em I ou H dos tipos laminado a quente ou reconstituido soldado.

As regras estabelecidas pela NP EN 1993-1-1 [1] estabelecem o processo de dimensionamento desde a fase de quantificação de esforços até à fase de verificação de segurança e disposições construtivas.

O dimensionamento de elementos em aço de acordo com a EN NP 1993-1-1 [1] tem por base a definição de quatro classes de secções transversais, definidas de acordo com a secção 5.5.2 do mesmo regulamento. Esta classificação é função da relação entre a largura e a espessura dos componentes comprimidos da secção transversal e tem como objetivo identificar em que medida a sua resistência e a sua capacidade de rotação são limitadas pela ocorrência de instabilidade local.

Os valores de cálculo da resistência de uma secção transversal, calculados de acordo com 6.2 da NP EN 1993-1-1 [1], dependem da classificação dessa secção. O efeito combinado das ações que nela atuam não deve exceder a resistência correspondente a essa combinação [1].

É também particularmente importante o estudo dos fenómenos de instabilidade (encurvadura, encurvadura lateral e encurvadura por esforço transverso) já que com muita frequência são utilizadas peças de reduzida espessura e grande esbelteza. O fenómeno de encurvadura (ou varejamento) afeta elementos esbeltos comprimidos axialmente e é verificado de acordo com 6.3.1 da NP EN 1993-1-1 [1]). O fenómeno de encurvadura lateral (ou bambeamento) afeta os banzos comprimidos de elementos sujeitos a esforços de flexão e é verificado de acordo com 6.3.2 da mesma norma. O fenómeno de encurvadura por esforço transverso (ou enfunamento) afeta principalmente almas delgadas e é verificado de acordo com a secção 5 da NP EN 1993-1-5 [3]). Para ter em conta estes efeitos são usados coeficientes de redução da capacidade resistente das secções.

O contributo da empresa CASAIS – Engenharia e construção, S.A. permitiu aplicar a ferramenta desenvolvida a casos práticos e adotar uma metodologia de constante otimização da ferramenta por forma a adequá-la aos objetivos deste trabalho e das partes envolvidas.

1.2 Objetivos

Com a realização deste trabalho pretende-se alcançar os seguintes objetivos gerais:

- Desenvolvimento de uma ferramenta de cálculo vocacionada para o dimensionamento à flexão composta desviada de vigas-coluna metálicas constituídas por secções transversais em I ou H dos tipos laminado a quente ou reconstituído soldado;
- Criação de um suporte bibliográfico completo que oriente a utilização da ferramenta de cálculo desenvolvida e que seja capaz de esclarecer a metodologia adotada em cada procedimento;
- Aplicação da ferramenta desenvolvida a casos práticos identificados no âmbito da atividade desenvolvida pela empresa CASAIS – Engenharia e Construção S.A.;

 Desenvolvimento de estratégias de análise estrutural e definição de procedimentos de análise e otimização estrutural adequados aos casos estudados.

1.3 Organização do trabalho

Numa primeira fase do trabalho, documentada no Capítulo 2 deste documento, foi realizado um estudo comparativo focado na avaliação da eficácia e versatilidade de *software* comercial de análise estrutural (analisando de forma geral o seu funcionamento e os principais resultados devolvidos) com vista a tirar conclusões objetivas relativamente às suas performances e colecionar bagagem que pudesse orientar a construção da ferramenta de cálculo. Foram utilizados os programas *Robot Structural Analysis (Autodesk)*, o *CYPE 3D (Cype)* e o *A3C Columns Calculator (Arcelor Mittal)*. Verificou-se que, em muitos casos, os resultados fogem ao controlo do utilizador, na medida em que lhe são apresentados sem que este possa ter acesso ao procedimento que lhes deu origem. Esta constatação reforçou a importância de dispor de ferramentas de utilização simples que permitam validar de forma sistemática os principais parâmetros devolvidos pelos programas comerciais de análise e dimensionamento estrutural.

A construção da ferramenta de cálculo serviu-se das conclusões recolhidas na primeira fase, apoiou-se na bibliografia disponível, e beneficiou da colaboração dos parceiros envolvidos. O Capítulo 3 deste documento assemelha-se a um manual de utilização. Documentam-se em detalhe a estrutura global da ferramenta de cálculo, a estrutura interna de cada interface e orientações para a sua utilização.

O Capítulo 4 deste documento é uma memória descritiva e justificativa da metodologia e expressões utilizadas pela ferramenta de cálculo. A metodologia de cálculo adotada respeita a bibliografia consultada. Tem por base o conjunto de normas NP EN 1993 (Eurocódigo 3), mais especificamente as partes 1 e 5.

Em cooperação com a empresa CASAIS – Engenharia e construção, S.A. a ferramenta desenvolvida no contexto deste projeto foi aplicada a casos práticos identificados no âmbito da atividade desenvolvida por esta entidade. Este trabalho é documentado no Capítulo 5 deste documento. Os resultados obtidos são validados por comparação com os devolvidos pelos programas comerciais de cálculo estrutural *Robot Structural Analysis* e *CYPE 3D*. São apresentadas estratégias e definidos procedimentos de análise estrutural adequados aos casos estudados.

No Capítulo 7 são apresentadas algumas considerações finais relativamente ao trabalho desenvolvido. A ferramenta criada é editável com o objetivo de motivar desenvolvimentos futuros. Nesse sentido, algumas propostas são apresentadas neste último capítulo.

1.4 Metodologia do trabalho desenvolvido

O trabalho desenvolvido apoiou-se fortemente na bibliografia referida e no contributo que deram ambas as partes envolvidas nesta parceira entre a Universidade do Minho e a CASAIS - Engenharia e Construção S.A.

Na realização deste projeto foi indispensável concentrar esforços para o desenvolvimento de competências na utilização de programas como o Microsoft Excel e o Visual Basic que servem como suporte à ferramenta de cálculo desenvolvida.

O contacto entre os autores deste projeto e os suportes de programas comerciais de análise estrutural permitiu um benefício mútuo. O suporte do programa *A3C Columns Calculator* (*Arcelor Mittal*) foi contactado para reportar um problema com a impossibilidade de o *software* considerar a posição de aplicação do carregamento ao nível da secção transversal do elemento a ser verificado. Em resposta o problema foi prontamente corrigido. A Top Informática foi contactada com algumas questões e sugestões relativamente ao programa *CYPE 3D* que culminaram numa reunião presencial na sua sede com vista a discutir os referidos assuntos. Também o suporte do *Robot Structural Analysis* foi contactado por correio eletrónico.

A escolha das metodologias de cálculo adotadas teve por base a realização de estudos e investigação com vista á procura da solução mais equilibrada: para cada problema a solução implementada deve ser eficiente, ter larga aceitação por parte da bibliografia consultada, e ser geral na medida em que é válida para o maior número de casos.
CAPÍTULO 2

Avaliação de programas de cálculo comerciais

2.1 Introdução e Enquadramento

No contexto deste trabalho entende-se pertinente referir os aspectos que estão na base do cálculo de estruturas em aço de acordo com o regulamento NP EN 1993-1-1 [1], que são resumidamente documentados neste capítulo.

De seguida, o capítulo centra-se num estudo comparativo de programas de cálculo disponíveis comercialmente, com o objetivo de comparar as suas performances e testar as suas limitações.

Pretende-se que esta análise sirva de ponto de partida para a construção da ferramenta que esta dissertação se propõe, ao evidenciar e comparar as várias abordagens escolhidas por outros autores.

2.2 Valores de cálculo das propriedades do aço estrutural

O diagrama tensão-extensão (Figura 2.1), obtido por caracterização do comportamento até á rotura de um provete submetido a um esforço normal de tração, fornece dados importantes para determinação de determinadas propriedades: Módulo de Elasticidade (*E*); Valor Nominal da Tensão de Cedência (f_y); Valor Nominal da Tensão Última à Tração (f_u).

Figura 2.1 – Diagrama de comportamento do aço à tração [8].

Os valores de $f_y e f_u$ dependem do tipo de aço e deverão ser recolhidos diretamente da norma do produto ou do Quadro 3.1 do regulamento NP EN 1993-1-1 [1].

No mesmo regulamento, secção 3.2.6, são definidas também as propriedades dos materiais a adotar no dimensionamento para o caso de aços estruturais por ele abrangidos [1].

2.3 Tipos de perfis metálicos

Distinguem-se vários tipos de perfis estruturais metálicos: perfis laminados, perfis soldados, perfis formados a frio, perfis tubulares.

O presente trabalho é direcionado para a verificação de elementos em aço constituídos por perfis transversais em I e H dos tipos laminado a quente e reconstituído soldado. Este capítulo restringe o estudo a perfis laminados comerciais, cujas propriedades gométricas se encontram devidamente definidas em tabelas destinadas ao efeito fornecidas pelos fabricantes.

2.4 Dimensionamento de acordo com a NP EN 1993-1-1 [1]

A parte 1 do Eurocódigo 3 (NP EN 1993-1-1 [1]) estabelece os princípios de base para o projeto de estruturas de aço [1]. Os capítulos 6 e 7 do referido documento definem o procedimento de cálculo para verificação aos estados limite últimos e de utilização, respetivamente.

Entende-se também pertinente, para o contexto do trabalho desenvolvido neste capítulo, detalhar os princípios adotados para quantificação do valor do momento crítico para a encurvadura lateral (M_{cr}), uma vez que se considera este em particular um aspecto suscetível de gerar dúvidas e/ou dificuldades (consultar 2.4.1).

2.4.1 Momento crítico de encurvadura lateral (M_{cr})

Existe um número considerável de propostas de cálculo para o momento crítico de encurvadura lateral M_{cr} . Por coerência com o *software* de cálculo analisado na secção 2.5 deste capítulo, adota-se como válida para qualquer sistema estrutural a expressão (2.1) proposta por Clark e Hill (1960) e Galéa (1981) [6], de acordo com o Anexo F da ENV 1993-1-1 [2],

$$M_{cr} = C_1 \frac{\pi^2 E_{I_z}}{(k_z l)^2} \left\{ \left[\left(\frac{k_z}{k_w} \right)^2 \frac{I_w}{I_z} + \frac{(k_z l)^2 G_{I_T}}{\pi^2 E_{I_z}} + \left(C_2 z_g - C_3 z_j \right)^2 \right]^{0.5} - \left(C_2 z_g - C_3 z_j \right)^2 \right]^{0.5} - \left(C_2 z_g - C_3 z_j \right)^2 \right\}$$
(2.1)

em que *E* é o módulo de elasticidade do material (210GPa); *l* é o comprimento do tramo entre secções lateralmente contraventadas (m); I_z é o momento de inércia em relação ao eixo *z* (m⁴);

 I_w é a constante de empenamento da secção transversal (m⁶); I_T é a constante de torção de St. Venant (m⁴) e *G* é o módulo de distorção (80,77GPa).

Os fatores de comprimento efetivo k_z e k_w dependem das condições de suporte nas secções de extremidade do segmento de barra correspondente ao comprimento *l*: o fator k_z refere-se a rotações das secções extremas em torno do eixo de menor inércia *z*; o fator k_w refere-se à restrição ao empenamento nas mesmas secções. Os fatores k_z e k_w variam entre 0,5 (deformações impedidas) e 1,0 (deformações livres), sendo iguais a 0,7 no caso de deformações livres numa extremidade e impedidas na outra. Na maior parte as situações práticas estas restrições são apenas parciais, razão pela qual se recomenda conservativamente $k_z = k_w = 1,0$ [6].

O parâmetro z_g é a coordenada em z do ponto de aplicação da carga em relação ao centro de corte da secção transversal.

O parâmetro z_j reflete o grau de assimetria da secção transversal em relação ao eixo y [6], e toma o valor zero para secções duplamente simétricas.

Os parâmetros C_1 , C_2 e C_3 , são coeficientes que têm em conta a distribuição de momentos e são selecionados a partir do Quadro F.1.2 do Anexo F da ENV 1993-1-1 [2].

2.5 Softwares de cálculo de Estruturas Metálicas

Existem no mercado ferramentas e programas de cálculo capazes de auxiliar o dimensionamento de estruturas em aço. A análise a ser levada a cabo neste capítulo centra-se num número limitado desses programas, sendo considerados os de maior prestígio.

Os programas e ferramentas em análise têm em comum a adoção das regras e procedimentos de cálculo preconizados pelo Eurocódigo 3. É no entanto de esperar diferentes abordagens e diferentes limitações nos exemplos considerados.

2.5.1 A3C Columns Calculator (ArcelorMittal)

Alguns fabricantes de perfis metálicos disponibilizam gratuitamente ferramentas de cálculo simples para auxiliar o dimensionamento dos elementos que comercializam. São normalmente ferramentas muito acessíveis mas pouco versáteis e com algumas limitações.

A *ArcelorMittal*, uma empresa metalúrgica líder a nível mundial, disponibiliza gratuitamente um conjunto de ferramentas de cálculo de elementos metálicos, das quais se destaca para o contexto do presente projeto a *A3C Columns Calculator*.

A ferramenta realiza verificações de segurança em estado limite último e em estado limite de serviço e permite a consideração de várias combinações de ações em simultâneo. Depois de

definidas condições de apoio e travamentos laterais, materiais e cargas aplicadas, é capaz de determinar autonomamente todos os parâmetros de cálculo, incluindo os envolvidos nas verificações à encurvadura e encurvadura lateral.

Como maior limitação está o facto de permitir apenas verificações em elementos (vigascoluna), simplesmente apoiados ou em consola. As condições de apoio do elemento em aço são o ponto de partida da ferramenta para a determinação dos esforços instalados, pelo que não é possível contornar esta limitação.

No plano zx (planta) o elemento é simplesmente apoiado, sendo os fenómenos de encurvadura e encurvadura lateral analisados de forma coerente com esse pressuposto.

Cada travamento lateral restringe completamente (banzos superior e inferior) a translação em y da secção a que diz respeito, não sendo possível restringir apenas um dos banzos. Estes travamentos não criam qualquer impedimento á rotação dessas secções. Travamentos intermédios podem ser acrescentados e posicionados livremente.

A Figura 2.2 ilustra os dois sistemas estruturais cuja análise sob vários esquemas de carregamento é possível recorrendo ao *A3C Columns Calculator*.

Figura 2.2 – Sistema estruturais com possível análise através do A3C Columns Calculator.

2.5.2 Softwares de análise avançada de estruturas

No cenário atual maior destaque é normalmente atribuído aos programas de análise avançada de estruturas *Robot Structural Analysis (Autodesk)* e *CYPE 3D (Cype)*.

Este tipo de programas permite a modelação, quantificação de esforços, verificação e otimização de estruturas com geometrias muito variadas.

2.6 Estudo comparativo de softwares de cálculo de Estruturas Metálicas

Por forma a comparar o desempenho dos *softwares* referidos em 2.5, são criados modelos simples para teste. As variantes são escolhidas por forma a testar aspetos específicos. Entendese que importantes disparidades poderão vir relacionadas com a atribuição de valores aos coeficientes C_1 , C_2 e C_3 , na quantificação do momento crítico de encurvadura lateral (M_{cr}) - Anexo F da ENV 1993-1-1 [2], e aos coeficientes de momento uniforme equivalente C_{my} , C_{mz} e C_{mLT} , na quantificação dos fatores de interação para verificação à flexão composta com compressão - Anexos A e B da NP EN 1993-1-1 [1], pelo que são selecionados casos notáveis simples que não suscitam dúvidas em relação à quantificação destes parâmetros.

Quatro abordagens distintas são consideradas para o teste dos mesmos modelos: solução analítica resolvida de forma manual, soluções fornecidas pelo *Robot Structural Analysis*, pelo *CYPE 3D* e pelo *A3C Columns Calculator*.

2.6.1 Modelo de Teste 1

O primeiro Modelo de Teste tem como objetivo estudar um dos esquemas estruturais e de carregamento mais básico e simples.

A análise é centrada na secção de meio vão de uma viga realizada com o perfil *IPE 500*, simplesmente apoiada, sem travamentos laterais intermédios e na qual atua o esquema de cargas representado na Figura 2.3.

Figura 2.3 – Modelo de Teste 1.

Na secção em análise atua um esforço axial de 450kN e esforço transverso nulo.

O diagrama de momentos de fletores é esboçado na Figura 2.4. Tem o seu máximo na secção de meio vão com o valor de 156.25kN.m.

Figura 2.4 – Diagrama de momentos fletores na viga de teste 1.

Os Quadros 2.1 a 2.4 resumem os resultados da análise aos estados limite últimos do Modelo de Teste 1 obtidos em cada um dos programas utilizados.

	Solução Analítica	Robot Structural Analysis	CYPE 3D	A3C Columns Calculator	Obs.
Secção Transversal	IPE 500	IPE 500	IPE 500	IPE 500	
Classe da Secção	1	1	4;1;2	1	[A]
Re	esistência das secçõe	es transversais (NP	EN 1993-1-1 [1], 6	.2)	
N _{Rd}	2714,76 kN	2714,77 kN	2614,71 kN	2710,84 kN	[B]
$V_{z,Rd}$	812,35 kN	812,35 kN	691,95 kN	811,69 kN	[D]
$M_{y,Rd}$	515,62 kN.m	515,65 kN.m	515,59 kN.m	515,68 kN.m	
De acordo com o Eu Compressão N	urocódigo 3 verifica- e o Momento Fletor	se não necessário ter M e entre o Esforços	em conta a interaçã s de Corte V e o Mor	o entre o Esforço de nento Fletor <i>M</i> .	\$
Resistência do	elemento à encurva	dura em torno do ei	xo y (NP EN 1993-	1-1 [1], 6.3.1.1)	
Lcr,y	5 m	5 m	5 m	5 m	
χy	0,99	0,99	0,99	0,99	
$N_{b,y,Rd}$	2678,19 kN	2678,20 kN	-	2678,57 kN	
Resistência do	elemento à encurva	dura em torno do ei	xo z (NP EN 1993-	1-1 [1], 6.3.1.1)	
L _{cr,z}	5 m	5 m	5 m	5 m	
χz	0,46	0,46	0,47	0,46	
$N_{b,z,Rd}$	1245,29 kN	1245,29 kN	1231,25 kN	1246,54 kN	[B]

Quadro 2.1 - Resultados Modelo de Teste 1: resistência da secção transversal e encurvadura.

Nota: O *Cype3D* classificou a mesma secção de forma distinta para diferentes verificações: resistência à compressão (e encurvadura); resistência à flexão (e encurvadura lateral); resistência à flexão composta. As classificações apresentadas dizem respeito, pela mesma ordem, a estas verificações (consultar nota [A]).

Os coeficientes C_1 , C_2 e C_3 , para	o cálculo do mome	nto crítico elástic	o de encurva	dura lateral
(M_{cr}) , são selecionados a partir de	o Quadro F.1.2 do A	nexo F da ENV1	993-1-1 [2] (Figura 2.5).

Loading and Support	Bending Moment	Value of	Constants			
Conditions	Diagram	k	C ₁	C ₂	C ₃	
W		1,0	1,132	0,459	0,525	
Î Î		0,5	0,972	0,304	0,980	

Figura 2.5 – Coeficientes C₁, C₂ e C₃ para o Modelo de Teste 1.

A viga de teste 1 é simplesmente apoiada no plano yx, o equivalente a afirmar que a rotação em torno do eixo z local é livre em ambas as extremidades. Deduz-se k_z igual a 1,0. Não estão, da mesma forma, asseguradas quaisquer restrições ao empenamento das secções de extremidades pelo que k_w é igual a 1,0.

	Solução Analítica	Robot Structural Analysis	CYPE 3D	A3C Columns Calculator	Obs.			
Resistên	Resistência do elemento à encurvadura lateral (NP EN 1993-1-1 [1], 6.3.2)							
l	5,0 m	5,0 m	5,0 m	5,0 m				
C_1	1,13	1,13	1,13	1,13	[G]			
C_2	0,46	0,46	1,00	0,45	[G]			
C_3	0,53	0,53	1,00	-	[G] [I]			
k_z ; k_w	1,0 ; 1,0	1,0 ; 1,0	1,0 ; 1,0	1,0 ; 1,0				
z_g ; z_j	0 m ; 0 m	0 m ; 0 m	0 m ; 0 m	0,25 m ; 0 m	[K]			
M_{cr}	632,63 kN.m	632,57 kN.m	631,52 kN.m	442,58 kN.m	[K]			
χ_{LT}	0,66	0,66	0,66	0,55	[K]			
$M_{b,Rd}$	339,99 kN.m	339,99 kN.m	339,72 kN.m	282,55 kN.m	[K]			

Quadro 2.2 – Resultados Modelo de Teste 1: resistência à encurvadura lateral.

2.6.1.1 Análise de estabilidade global do elemento (NP EN 1993-1-1 [1], 6.3.3) – Método 1

A determinação dos coeficientes $C_{my,0}$ e $C_{mz,0}$, para o método alternativo 1 de quantificação dos fatores de interação para análise à estabilidade global do elemento, é feita de acordo com o Quadro A.2 do Anexo A da NP EN 1993-1-1 [1] (Figura 2.6). Em função deles são determinados os coeficientes de momento uniforme equivalente C_{my} , C_{mz} e C_{mLT} .

Diagrama de momentos	C _{mi.0}
	$C_{mi,0} = 1 + 0.03 \frac{N_{Ed}}{N_{cr,i}}$

Figura 2.6 – Coeficiente $C_{my,0}$ de acordo com o Método 1 – Modelo de Teste 1.

Em que: N_{Ed} – valor de cálculo do esforço axial atuante; $N_{cr,i}$ – valor crítico do esforço normal associado à encurvadura elástica por flexão em torno do eixo *y* ou *z*.

Apresentam-se no Quadro 2.3 os resultados obtidos relativamente á análise de estabilidade global do elemento em flexão composta com compressão, adotando o Método 1 previsto no Anexo A da NP EN 1993-1-1 [1] para quantificação dos fatores de interação.

	Solução Analítica	Robot Structural Analysis	CYPE 3D	A3C Columns Calculator	Obs.					
Estabil	Estabilidade Global (NP EN 1993-1-1 [1], 6.3.3) – Método 1 (Anexo A)									
N _{cr,y}	39960,05 kN	39958,81 kN	39960,05 kN	-						
$N_{cr,z}$	1775,56 kN	1775,56 kN	1775,82 kN	-						
$N_{cr,T}$	4031,75 kN	4035,88 kN	4052,72 kN	4038,87 kN						
C_{my}	1,00	1,00	1,00	1,00	[M]					
C_{mLT}	1,23	1,23	1,23	1,23	[M]					
k_{yy} ; k_{zy}	1,29 ; 0,68	1,30 ; 0,69	1,30 ; 0,69	1,30 ; 0,69						
(1)	0,76 < 1	0,76 < 1	0,76 < 1	0,89 < 1	[L]					
(2)	0,67 < 1	0,68 < 1	0,68 < 1	0,75 < 1	[L]					
Dimensionamento da secção transversal										
Secção Transversal	IPE 500 ок	IPE 500 ок	IPE 500 ок	IPE 500 ок						

Quadro 2.3 - Resultados Modelo de Teste 1: análise de estabilidade global do elemento em flexão composta com compressão – Método 1 [1].

(1) Condição associada à encurvadura em torno de y (NP EN 1993-1-1 [1], Exp.(6.61)).

(2) Condição associada à encurvadura em torno de z (NP EN 1993-1-1 [1], Exp.(6.62)).

2.6.1.2 Análise de estabilidade global do elemento (NP EN 1993-1-1 [1], 6.3.3) – Método 2 A determinação dos coeficientes C_{my} , C_{mz} e C_{mLT} , para o método alternativo 2 de quantificação dos fatores de interação para análise à estabilidade global do elemento, é feita de acordo com o Quadro B.3 do Anexo B da NP EN 1993-1-1 [1] (Figura 2.7).

Diagrama de momentos	Domínio d	le aplicação	C _{my} e C _{mz} e C _{mLT} Carga concentrada	$\alpha_{\rm h}=0$
ψMh	$0 \leq \alpha_h \leq 1$	$-1 \le \psi \le 1$	$0{,}90+0{,}10\alpha_h$	$\psi = 1,0$
Mh Ms	1 < 2 < 0	$0 \le \psi \le 1$	$0{,}90 \pm 0{,}10\alpha_h$	C _{my} = 1,0
$\alpha_h = M_h / M_s$	$-1 \leq \alpha_h < 0$	$-1 \le \psi < 0$	$0,90 + 0,10\alpha_{\rm h}(1+2\psi)$	$C_{mLT} = 1,0$

Figura 2.7 – Coeficientes C_{my} e C_{mLT} de acordo com o Método 2 – Modelo de Teste 1.

O método alternativo 2 envolve um procedimento de cálculo mais simples que o apresentado em 2.6.1.1, com significativamente menos parâmetros envolvidos (Quadro 2.4).

	Solução Analítica	Robot Structural Analysis	CYPE 3D	A3C CC	Obs.
Estabili	dade Global (NP E	N 1993-1-1 [1], 6.3	3.3) – Método 2 (Ai	nexo B)	
C_{my}	1,00	0,90	-	1,00	[O]
C_{mLT}	1,00	0,90	-	1,00	[O]
k_{yy} ; k_{zy}	1,01 ; 0,95	0,91 ; 0,94	-;-	1,01 ; 0,95	[O]
(1)	0,63 < 1	0,59 < 1	-	0,73 < 1	[O] [L]
(2)	0,80 < 1	0,80 < 1	-	0,89 < 1	[O] [L]
	Dimension	namento da secção t	ransversal		
Seccão Transversal	IPE 500 OK	IPE 500 ok	_	IPE 500 OK	

Quadro 2.4 - Resultados Modelo de Teste 1: análise de estabilidade global do elemento em flexão composta com compressão – Método 2 [1].

(1) Condição associada à encurvadura em torno de y (NP EN 1993-1-1 [1], Exp.(6.61)).

(2) Condição associada à encurvadura em torno de z (NP EN 1993-1-1 [1], Exp.(6.62)).

2.6.2 Modelo de Teste 2

O segundo Modelo de Teste apresenta mais um caso notável da tabela F.1.2 no Anexo F da ENV1993-1-1 [3], desta vez com condições de apoio e de carregamento totalmente distintas. Pretende-se avaliar a capacidade dos programas e ferramentas de entenderem os sistemas estruturais e quantificarem parâmetros como os coeficientes C_1 , C_2 e C_3 e os fatores de comprimento efetivo k_z e k_w para situações diferentes.

A análise é centrada na secção de meio vão de uma viga realizada com o perfil *IPE 330*, biencastrada em ambos os planos (xy e xz), sem travamentos laterais intermédios e na qual atua o esquema de cargas representado na Figura 2.8.

Figura 2.8 – Modelo de Teste 2.

Na secção em análise atua um esforço axial de 450kN e esforço transverso de 50kN. O esforço de compressão pode ser simulado nos programas de cálculo com a introdução de uma variação de temperatura positiva capaz de provocar esse efeito, de acordo com a Equação (2.2),

$$\frac{\mathrm{NL}}{\mathrm{EA}} = \Delta t \times \alpha \times \mathrm{L} \Leftrightarrow \frac{450 \times 5.0}{210 \mathrm{E}^{6} \times 62.6 \mathrm{E}^{-4}} = \Delta t \times 12 \mathrm{E}^{-6} \times 5.0 \Leftrightarrow \Delta t = 28,52 \ ^{\circ}\mathrm{C}$$
(2.2)

Página | 13

em que *N* é o esforço axial atuante (450 kN); *L* é o comprimento do elemento (5,0 m); *E* é o módulo de elasticidade do material (210 GPa); Δt é a variação de temperatura (°C); α é o coeficiente de dilatação térmica linear do material (12E⁻⁶/°*C*).

O diagrama de momentos de fletores é esboçado na Figura 2.9. Tem os seus máximos nas secções de meio vão e de extremidade com os valores 62.5 kN.m e -62.5 kN.m, respetivamente.

Figura 2.9 - Diagrama de momentos fletores na viga de teste 2

O *A3C Columns Calculator* não é capaz de realizar verificações em elementos com o sistema estrutural definido para a viga de teste 2, razão pela qual não foram produzidos resultados.

Os Quadros 2.5 a 2.8 resumem os resultados da análise aos estados limite últimos do Modelo de Teste 2 obtidos em cada um dos programas utilizados.

	Solução Analítica	Robot Structural Analysis	CYPE 3D	A3C Columns Calculator	Obs.
Secção Transversal	IPE 330	IPE 330	IPE 330	IPE 330	
Classe da Secção	2	1	3;1;3	-	[A]
Re	sistência das secçõe	es transversais (NP	EN 1993-1-1 [1], 6	.2)	
N_{Rd}	1471,34 kN	1471,25 kN	1471,25 kN	-	
$V_{z,Rd}$	418,06 kN	418,00 kN	335,80 kN	-	[D]
$M_{y,Rd}$	189,02 kN.m	189,03 kN.m	188,94 kN	-	
$M_{N,y,Rd}$	165,27 kN.m	165,27 kN.m	-	-	
De acordo com o Eu Compressão N e	rocódigo 3 verifica- e o Momento Fletor	se não necessário ter M_z e entre o Esforços	em conta a interaçã s de Corte V e o Mor	o entre o Esforço de mento Fletor <i>M</i> .	e
Resistência do e	elemento à encurva	dura em torno do eix	xo y (NP EN 1993-	1-1 [1], 6.3.1.1)	
$L_{cr,y}$	2,5 m	2,5 m	2,5 m	-	
Xy	1,00	1,00	1,00	-	
$N_{b,y,Rd}$	1473,21 kN	1473,25 kN	1473,25 kN	-	
Resistência do o	elemento à encurva	dura em torno do ei	xo z (NP EN 1993-	1-1 [1], 6.3.1.1)	
L _{cr,z}	2,5 m	2,5 m	2,5 m	-	
Xz	0,75	0,75	0,75	-	
$N_{b,z,Rd}$	1110,24 kN	1110,17 kN	1110,17 kN	-	

Quadro 2.5 - Resultados Modelo de Teste 2: resistência da secção transversal e encurvadura.

Nota: O Cype3D classificou a mesma secção de forma distinta para diferentes verificações: resistência à compressão (e encurvadura); resistência à flexão (e encurvadura lateral); resistência à flexão composta. As classificações apresentadas dizem respeito, pela mesma ordem, a estas verificações (consultar nota [A]).

Loading and Support	Bending Moment Diagram	Value of	Constants		
Conditions		k	C ₁	C ₂	C ₃
F		1,0	1,565	1,257	2,640
\$ ≋		0,5	0,938	0,715	4,800

Os coeficientes C_1 , C_2 e C_3 , para o cálculo do momento crítico elástico de encurvadura lateral (M_{cr}), são selecionados a partir do Quadro F.1.2 do Anexo F da ENV1993-1-1 [2] (Figura 2.10).

Figura 2.10 – Coeficientes C₁, C₂ e C₃ para o Modelo de Teste 2.

A viga de teste 2 é bi-encastrada no plano xy, o equivalente a afirmar que a rotação em torno do eixo z local é impedida em ambas as extremidades. Deduz-se, portanto, k_z igual a 0,5. Mesmo se tratando de uma viga bi-encastrada considera-se que não estão asseguradas restrições ao empenamento das secções de extremidades pelo que k_w é igual a 1,0.

	Solução Analítica	Robot Structural Analysis	CYPE 3D	A3C Columns Calculator	Obs.			
Resistên	Resistência do elemento à encurvadura lateral (NP EN 1993-1-1 [1], 6.3.2)							
l	5,0 m	5,0 m	5,0 m	5,0 m				
C_1	0,94	0,94	1,0	-	[G]			
C_2	0,72	0,71	1,0	-	[G]			
C_3	4,80	4,80	1,0	-	[G]			
k_z ; k_w	0,5 ; 1,0	0,5;1,0	0,5;0,5	-	[F] [H]			
z_g ; z_j	0 m ; 0 m	0 m ; 0 m	0 m ; 0 m	-				
M_{cr}	301,28 kN.m	292,98 kN.m	481,81 kN.m	-	[G] [H]			
χ_{LT}	0,73	0,72	0,82	-	[G] [H]			
$M_{b,Rd}$	137,86 kN.m	136,57 kN.m	155,68 kN.m	-	[G] [H]			

Quadro 2.6 - Resultados Modelo de Teste 2: resistência à encurvadura lateral.

2.6.2.1 Análise de estabilidade global do elemento (NP EN 1993-1-1 [1], 6.3.3) - Método 1

A determinação dos coeficientes $C_{my,0}$ e $C_{mz,0}$, para o método alternativo 1 de quantificação dos fatores de interação para a análise à estabilidade global do elemento, é feita de acordo com o Quadro A.2 do Anexo A da NP EN 1993-1-1 [1] (Figura 2.11). Em função deles são determinados os coeficientes de momento uniforme equivalente C_{my} , C_{mz} e C_{mLT} ,

Figura 2.11 – Coeficiente $C_{my,0}$ de acordo com o Método 1 – Modelo de Teste 2.

em que I_i é o momento de inércia da secção em relação ao eixo considerado (y ou z).

A flecha máxima (δ_z) na viga de teste 2, considerando as suas condições de apoio e o carregamento atuante, acontece na secção de meio vão e é dada pela Equação (2.3),

$$\delta_{z} = \frac{P \cdot L^{3}}{192 \text{ EI}} = \frac{100 \times 5.0^{3}}{192 \times 200 \cdot 10^{6} \times 11770 \cdot 10^{-8}} = 2.76 \cdot 10^{-3} \text{ mm}$$
(2.3)

em que P é o valor da carga vertical concentrada a meio vão.

Quadro 2.7 - Resultados Modelo de Teste 2: análise de estabilidade global do elemento em flexão composta com compressão – Método 1 [1].

	Solução Analítica	Robot Structural Analysis	CYPE 3D	A3C Columns Calculator	Obs.		
Estabil	nexo A)						
$N_{cr,y}$	39031,52 kN	39021,24 kN	39031,52	-			
$N_{cr,z}$	2613,62 kN	2613,63 kN	2613,52	-			
$N_{cr,T}$	4425,09 kN	4340,32 kN	4428,27	-			
C_{my}	1,00	1,00	1,00	-	[M]		
C_{mLT}	1,15	1,15	1,15	-	[M]		
k_{yy} ; K_{zy}	1,15 ; 0,63	1,15 ; 0,63	1,16 ; 1,10	-	[C]		
(1)	0,83 < 1	0,83 < 1	0,74 < 1	-	[C] [L]		
(2)	0,69 < 1	0,69 < 1	0,82 < 1	-	[C] [L]		
Dimensionamento da secção transversal							
Secção Transversa	1 IPE 330 ок	IPE 330 ок	IPE 300 🗸	_			

(1) Condição associada à encurvadura em torno de y (NP EN 1993-1-1 [1], Exp.(6.61)).

(2) Condição associada à encurvadura em torno de z (NP EN 1993-1-1 [1], Exp.(6.62)).

2.6.2.2 Análise de estabilidade global do elemento (NP EN 1993-1-1 [1], 6.3.3) - Método 2

A determinação dos coeficientes C_{my} , C_{mz} e C_{mLT} , para o método alternativo 2 de quantificação dos fatores de interação para análise à estabilidade global do elemento, é feita de acordo com o Quadro B.3 do Anexo B da NP EN 1993-1-1 [1] (Figura 2.12).

Diagrama de momentos	Domínio de aplicação		C _{my} e C _{mz} e C _{mLT} Carga concentrada	$\alpha_s = 1,0$
M	$0 \le \alpha_s \le 1$	$-1 \le \psi \le 1$	$0,\!2+0,\!8\alpha_{s}\geq0,\!4$	$\psi = 1,0$
M_h	1 < ~ < 0	$0 \le \psi \le 1$	$-0.8\alpha_{s} \ge 0.4$	$C_{my} = 1,0$
$\alpha_s = M_s / M_h$	$-1 \leq \alpha_{s} < 0$	$-1 \le \psi < 0$	$0,2(-\psi) - 0,8\alpha_{s} \ge 0,4$	$C_{mLT} = 1,0$

Figura 2.12 – Coeficientes C_{my} e C_{mLT} de acordo com o Método 2 – Modelo de Teste 2.

Quadro 2.8 - Resultados Modelo de Teste 2: análise de estabilidade global do elemento em flexão composta com compressão - Método 2 [1].

	Solução Analítica	Robot Structural Analysis	CYPE 3D	A3C CC	Obs.			
Estabili	Estabilidade Global (NP EN 1993-1-1 [1], 6.3.3) – Método 2 (Anexo B)							
C_{my}	1,00	0,90	-	-	[O]			
C_{mLT}	1,00	0,90	-	-	[O]			
k_{yy} ; k_{zy}	1,00 ; 0,96	0,90;0,95	-	-	[O]			
(1)	0,76 < 1	0,72 < 1	-	-	[O]			
(2)	0,84 < 1	0,84 < 1	-	-	[O]			
Dimensionamento da secção transversal								
Sacaño Transversal	IDE 220 OV	IDE 220 ov						

Os resultados da análise são apresentados no Quadro 2.8.

Secçao Transversal IPE 330 OK

(1) Condição associada à encurvadura em torno de y (NP EN 1993-1-1 [1], Exp.(6.61)).

(2) Condição associada à encurvadura em torno de z (NP EN 1993-1-1 [1], Exp.(6.62)).

2.6.3 Modelo de Teste 3

O terceiro Modelo de Teste introduz neste capítulo a análise de elementos travados lateralmente em pontos intermédios. Pretende-se analisar a capacidade dos programas e ferramentas de interpretarem corretamente a posição destes travamentos, por forma a quantificarem comprimentos de encurvadura e parâmetros associados.

A análise é centrada na secção de meio vão de uma viga simplesmente apoiada realizada com o perfil IPE 360, com travamentos laterais nas secções correspondentes a 25% e 75% do vão (coincidentes com o ponto de aplicação das cargas), e na qual atua o esquema de cargas na Figura 2.13.

Figura 2.13 – Modelo de Teste 3.

Na secção em análise atua um esforço axial de 450kN e esforço transverso de 100kN.

O diagrama de momentos de fletores é esboçado na Figura 2.14. Tem o seu máximo entre as secções de aplicação das cargas com o valor de 125kN.m.

Figura 2.14 – Diagrama de momentos fletores na viga de teste 3.

Os Quadros 2.9 a 2.12 resumem os resultados da análise aos estados limite últimos do Modelo de Teste 3 obtidos em cada um dos programas utilizados.

	Solução Analítica	Robot Structural Analysis	CYPE 3D	A3C Columns Calculator	Obs.
Secção Transversal	IPE 360	IPE 360	IPE 360	IPE 360	
Classe da Secção	2	2	4;1;2	1	[A]
ŀ	Resistência das secç	ões transversais (N	P EN 1993-1-1, 6.2)	
N_{Rd}	1709,14 kN	1709,14 kN	1708,45 kN	1711,03 kN	[B]
$V_{z,Rd}$	476,73 kN	476,73 kN	390,75 kN	476,19 kN	[D]
$M_{y,Rd}$	239,50 kN.m	239,50 kN.m	239,47 kN.m	239,46 kN.m	
$M_{N,y,Rd}$	221,42 kN.m	221,44 kN.m	221,33 kN.m	212,59 kN.m	
De acordo com o Eu Compressão N	arocódigo 3 verifica- e o Momento Fletor	se não necessário ter M e entre o Esforços	em conta a interaçã de Corte V e o Moi	o entre o Esforço de nento Fletor M.	\$
Resistência de	o elemento à encurv	adura em torno do	eixo y (NP EN 1993	3-1-1, 6.3.1.1)	
L _{cr,y}	5 m	5 m	5 m	5 m	
Xy	0,96	0,96	0,96	0,96	
$N_{b,y,Rd}$	1647,64 kN	1647,64 kN	-	1648,35 kN	
Resistência de	o elemento à encurv	adura em torno do	eixo z (NP EN 1993	3-1-1, 6.3.1.1)	
$L_{cr,z}$	5 m	5 m	5 m	5 m	
Xz	0,78	0,78	0,78	0,78	
$N_{b,z,Rd}$	1336,76 kN	1336,76 kN	1336,21 kN	1335,31 kN	[B]

Quadro 2.9 - Resultados Modelo de Teste 3: resistência da secção transversal e encurvadura.

Nota: O Cype3D classificou a mesma secção de forma distinta para diferentes verificações: resistência à compressão (e encurvadura); resistência à flexão (e encurvadura lateral); resistência à flexão composta. As classificações apresentadas dizem respeito, pela mesma ordem, a estas verificações (consultar nota [A]).

Identifica-se o tramo central (entre travamentos intermédios) como o mais condicionante. Os coeficientes C_1 , C_2 e C_3 , para o cálculo do momento crítico de encurvadura lateral (M_{cr}), são selecionados para o tramo referido a partir do Quadro F.1.1 do Anexo F da ENV1993-1-1 [2] (Figura 2.15).

Loading and Support Conditions		Bending Moment	Value of	Constants			
		Diagram	k	C ₁	C ₂	C ₃	
۲M	wM \	$\Psi = +1$	1,0	1,000		1,000	
		0,7	1,000		1,113		
		0,5	1,000		1,144		

Figura 2.15 – Coeficientes C₁, C₂ e C₃ para o Modelo de Teste 3.

O comprimento *l* entre secções lateralmente contraventadas é igual a 2,5m. Considera-se que não existem restrições em relação à rotação em torno do eixo *z* e ao empenamento das secções de extremidade do tramo considerado. Deduz-se, portanto, k_z e k_w iguais a 1,0.

	Solução Analítica	Robot Structural Analysis	CYPE 3D	A3C Columns Calculator	Obs.
Resis	tência do elemento à	encurvadura latera	l (NP EN 1993-1-1	, 6.3.2)	
l	2,5 m	2,5 m	2,5 m	2,5 m	[E]
C_{I}	1,00	1,00	1,00	1,00	[G]
C_2	0,00	0,00	1,00	0,0	[G]
C_{3}	1,00	1,00	1,00	-	[G] [I]
k_z ; k_w	1,0 ; 1,0	1,0 ; 1,0	1,0 ; 1,0	1,0 ; 1,0	[F] [H]
Z_g ; Z_j	0 m ; 0 m	0 m ; 0 m	0 m ; 0 m	0,18 m ; 0 m	[K]
M_{cr}	681,49 kN.m	679,87 kN.m	681,66 kN.m	681,62 kN.m	
χ_{LT}	0,84	0,84	0,84	0,84	
$M_{b,Rd}$	201,33 kN.m	201,26 kN.m	201,32 kN.m	201,34 kN.m	

Quadro 2.10 – Resultados Modelo de Teste 3: resistência à encurvadura lateral

2.6.3.1 Análise de estabilidade global do elemento (NP EN 1993-1-1 [1], 6.3.3) - Método 1

A determinação dos coeficientes $C_{my,0}$ e $C_{mz,0}$, para o método alternativo 1 de quantificação dos fatores de interação para análise à estabilidade global do elemento, é feita de acordo com o Quadro A.2 do Anexo A da NP EN 1993-1-1 [1] (Figura 2.16), para o tramo entre travamentos laterais mais desfavorável (troço central). Em função deles são determinados os coeficientes de momento uniforme equivalente C_{my} , C_{mz} e C_{mLT} .

Diagrama de momentos	$C_{mi,0}$	M1= 10M1
$\begin{array}{c c} M_1 & & \\ & & \\ & & -1 \leq \psi \leq 1 \end{array} \end{array} \psi M_1$	$C_{mi,0} = 0,79 + 0,21\psi_i + 0,36(\psi_i - 0,33)\frac{N_{Ed}}{N_{cr.i}}$	$\psi = 1,0$

Figura 2.16 – Coeficiente $C_{my,0}$ de acordo com o Método 1 – Modelo de Teste 3.

Em que: N_{Ed} – valor de cálculo do esforço axial atuante; $N_{cr,i}$ – valor crítico do esforço normal associado à encurvadura elástica por flexão em torno do eixo *y* ou *z*.

	Solução Analítica		Robot Structural Analysis CYPE 3D		Obs.		
Estabili	dade Global (NP E	N 1993-1-1 [1], 6.3	.3) – Método 1 (A	nexo A)			
$N_{cr,y}$	13488,59 kN	13484,94 kN	13488,59 kN	13484,97 kN			
$N_{cr,z}$	3460,28 kN	3460,28 kN	3458,78 kN	3460,28 kN			
$N_{cr,T}$	5634,57 kN	5612,80 kN	5641,20 kN	5641,61 kN			
C_{my}	1,00	1,00	1,00	1,00	[M]		
C_{mLT}	1,12	1,12	1,12	1,12	[M]		
k_{yy} ; k_{zy}	1,15;0,63	1,14 ; 0,62	1,16 ; 0,63	1,15 ; 0,62			
(1)	0,99 < 1	0,97 < 1	0,97 < 1	0,99 < 1	[L]		
(2)	0,72 < 1	0,71 < 1	0,72 < 1	0,72 < 1	[L]		
	Dimensionamento da secção transversal						
Secção Transversal	IPE 360 ок	IPE 360 OK	IPE 360 ок	IPE 360 OK			

Quadro 2.11 - Resultados Modelo de Teste 3: análise de estabilidade global do elemento em flexão composta com compressão – Método 1.

(1) Condição associada à encurvadura em torno de y (NP EN 1993-1-1 [1], Exp.(6.61)).

(2) Condição associada à encurvadura em torno de z (NP EN 1993-1-1 [1], Exp.(6.62)).

2.6.3.2 Análise de estabilidade global do elemento (NP EN 1993-1-1 [1], 6.3.3) - Método 2

A determinação dos coeficientes C_{my} , C_{mz} e C_{mLT} , para o método alternativo 2 de quantificação dos fatores de interação para análise à estabilidade global do elemento, é feita de acordo com o Quadro B.3 do Anexo B da NP EN 1993-1-1 [1] (Figura 2.17).

Quadro 2.12 - Resultados Modelo de Teste 3: análise de estabilidade global do elemento em flexão composta com compressão – Método 2.

	Solução Analítica	Robot Structural Analysis	CYPE 3D	A3C CC	Obs.
Estabili	dade Global (NP E	N 1993-1-1 [1], 6.3	3.3) – Método 2 (A	nexo B)	
C_{my}	0,90	0,90	-	1,00	[O]
C_{mLT}	0,90	0,90	-	1,00	[O]
k_{yy} , K_{zy}	0,94 ; 0,96	0,94 ; 0,96	-;-	1,04 ; 0,97	[O]
(1)	0,86 < 1	0,84 < 1	-	0,92 < 1	[O] [L]
(2)	0,93 < 1	0,92 < 1	-	0,94 < 1	[O] [L]
	Dimensior	namento da secção t	ransversal		
Secção Transversa	IPE 360 ок	IPE 360 OK	-	IPE 360 OK	

(1) Condição associada à encurvadura em torno de y (NP EN 1993-1-1 [1], Exp.(6.61)).

(2) Condição associada à encurvadura em torno de z (NP EN 1993-1-1 [1], Exp.(6.62)).

Diagrama da momentos	Domínio do onligação	C _{my} e C _n		
Diagrama de momentos	Dominio de apricação	Carga uniforme	Carga concentrada	$M_1 = \psi M_1$
ΜψΜ	$-1 \le \psi \le 1$	0,6 + 0,4	4ψ≥0,4	ψ = 1,0

Figura 2.17 – Coeficientes C_{my} e C_{mLT} de acordo com o Método 2 – Modelo de Teste 3.

2.6.4 Modelo de Teste 4

O quarto Modelo de Teste tem como objetivo avaliar a abordagem de cálculo tomada pelos programas e ferramentas para realização de verificações em consolas, principalmente no que diz respeito à quantificação do momento crítico de encurvadura lateral (M_{cr}).

A análise é centrada na secção de encastramento de uma viga em consola realizada com perfil *IPE 400*, com travamentos laterais em ambas as secções de extremidade, e na qual atua o esquema de cargas representado na Figura 2.18.

Figura 2.18 – Modelo de Teste 4.

Na secção em análise atua um esforço axial de 450kN e esforço transverso de 25kN. O diagrama de momentos de fletores é esboçado na figura 2.19. Tem o seu máximo na secção de encastramento com o valor de 125kN.m.

Figura 2.19 - Diagrama de momentos fletores na viga de teste 4

Os Quadros 2.13 a 2.16 resumem os resultados da análise aos estados limite últimos do Modelo de Teste 4 obtidos em cada um dos programas utilizados.

	Solução Analítica	Robot Structural Analysis	CYPE 3D	A3C Columns Calculator	Obs.
Secção Transversal	IPE 400	IPE 400	IPE 400	IPE 400	
Classe da Secção	1	1	4;1;1	1	[A]
Re	esistência das secçõe	es transversais (NP	EN 1993-1-1 [1], 6	.2)	
N_{Rd}	1984,89 kN	1984,89 kN	1934,71 kN	1982,38 kN	[B]
$V_{z,Rd}$	579,27 kN	579,27 kN	466,73 kN	581,40 kN	[D]
$M_{y,Rd}$	307,18 kN.m	307,21 kN.m	307,15 kN.m	307,13 kN.m	
$M_{N,y,Rd}$	301,56 kN.m	301,59 kN.m	301,61 kN.m	282,17 kN.m	
De acordo com o Eu Compressão N	rocódigo 3 verifica- e o Momento Fletor	se não necessário ter M_z e entre o Esforços	em conta a interaçã s de Corte V e o Mor	o entre o Esforço de mento Fletor <i>M</i> .	9
Resistência do	elemento à encurva	dura em torno do ei	xo y (NP EN 1993-	1-1 [1], 6.3.1.1)	
L _{cr,y}	10 m	10 m	10 m	10 m	
χy	0,87	0,87	0,88	.88 0,87	
$N_{b,y,Rd}$	1732,28 kN	1732,28 kN	-	1732,28 kN	
Resistência do	elemento à encurva	dura em torno do ei	xo z (NP EN 1993-	1-1 [1], 6.3.1.1)	
$L_{cr,z}$	5 m	5 m	5 m	5 m	

Quadro 2.13 - Resultados Modelo de Teste 4: resistência da secção transversal e encurvadura

Nota: O Cype3D classificou a mesma secção de forma distinta para diferentes verificações: resistência à compressão (e encurvadura); resistência à flexão (e encurvadura lateral); resistência à flexão composta. As classificações apresentadas dizem respeito, pela mesma ordem, a estas verificações (consultar nota [A]).

0,41

797,88 kN

0,41

802,90 kN

[B]

0,40

802,90 kN

0,40

802,90 kN

χz

 $N_{b,z,Rd}$

Os coeficientes C_1 , C_2 e C_3 , para	o cálculo do	momento	crítico	elástico d	le encurv	vadura	lateral
(M_{cr}) , são selecionados a partir do	Quadro F.1.	1 do Anexo	o F da E	ENV1993-	-1-1 [3] (Figura	2.20).

Loading and Support	Bending Moment	Value of	Constants		
Conditions	Diagram	k	C ₁	C ₂	C ₃
$\left(\begin{array}{c} M & \psi M \\ \hline \end{array} \right)$	$\psi = 0$	1,0	1,879		0,939
		0,7	2,092		1,473
		0,5	2,150		2,150

Figura 2.20 – Coeficientes C₁, C₂ e C₃ para o Modelo de Teste 4.

A viga de teste 4 é simplesmente apoiada no plano yx, o equivalente a afirmar que a rotação em torno do eixo z local é livre em ambas as extremidades. Deduz-se k_z igual a 1,0.

	Solução Analítica	Robot Structural Analysis	CYPE 3D	A3C Columns Calculator	Obs.
Resistên	icia do elemento à e	ncurvadura lateral (NP EN 1993-1-1 [1], 6.3.2)	
l	5,0 m	5,0 m	5,0 m	5,0 m	
C_1	1,88	1,88	1,88	1,78	[G] [J]
C_2	0,00	0,00	1,00	0,00	[G]
C_3	0,94	0,94	1,00	-	[G] [I]
k_z ; k_w	1,0 ; 1,0	1,0 ; 1,0	1,0 ; 1,0	1,0 ; 1,0	
Z.g ; Z.j	0 m ; 0 m	0 m ; 0 m	0 m ; 0 m	0,20 m ; 0 m	[K]
M_{cr}	562,40 kN.m	550,92 kN.m	562,79 kN.m	531,94 kN.m	[K]
χ_{LT}	0,76	0,76	0,76	0,75	[K]
$M_{b,Rd}$	233,83 kN.m	233,45 kN.m	233,85 kN.m	230,03 kN.m	[K]

Quadro 2.14 - Resultados Modelo de Teste 4: resistência à encurvadura lateral.

2.6.4.1 Análise de estabilidade global do elemento (NP EN 1993-1-1 [1], 6.3.3) - Método 1

A determinação dos coeficientes $C_{my,0}$ e $C_{mz,0}$, para o método alternativo 1 de quantificação dos fatores de interação para análise à estabilidade global do elemento, é feita de acordo com o Quadro A.2 do Anexo A da NP EN 1993-1-1 [1] (Figura 2.21). Em função deles são determinados os coeficientes de momento uniforme equivalente C_{my} , C_{mz} e C_{mLT} .

Quadro 2.15 - Resultados Modelo de Teste 4: análise de estabilidade global do elemento em flexão composta com compressão – Método 1.

		Dahat Staniatural					
	Solução Analífica	Analysis	CYPE 3D	A3C Columns Calculator	Obs.		
Estabili	idade Global (NP E	N 1993-1-1 [1], 6.3	.3) – Método 1 (Ai	nexo A)			
$N_{cr,y}$	4793,96 kN	4793,63 kN	4793,96 kN	4793,63 kN			
$N_{cr,z}$	1092,54 kN	1092,53 kN	1092,68 kN	1092,54 kN			
$N_{cr,T}$	2828,85 kN	2715,74 kN	2834,67 kN	2836,8502 kN			
C_{my}	0,91	0,91	0,91	0,91	[M]		
C_{mLT}	1,17	1,18	1,16	1,17	[M]		
k_{yy} ; K_{zy}	1,22;0,59	1,23 ; 0,60	1,21 ; 0,59	1,22;0,60			
(1)	0,91 < 1	0,92 < 1	0,91 < 1	0,92 < 1	[L]		
(2)	0,87 < 1	0,88 < 1	0,88 < 1	0,89 < 1	[L]		
Dimensionamento da secção transversal							
Secção Transversal	l IPE 400 ок	IPE 400 ок	IPE 400 ok	IPE 400 ок			

(1) Condição associada à encurvadura em torno de y (NP EN 1993-1-1 [1], Exp.(6.61)).

(2) Condição associada à encurvadura em torno de z (NP EN 1993-1-1 [1], Exp.(6.62)).

Diagrama de momentos	C _{mi,0}	ψM ₁ = 0
M_1 $-1 \le \psi \le 1$	$\frac{f_1}{M_{\text{mi},0}} = 0,79 + 0,21\psi_i + 0,36(\psi_i - 0,33)\frac{N_{\text{Ed}}}{N_{\text{cr.i}}}$	$\psi = 0,0$

Figura 2.21 – Coeficiente $C_{my,0}$ de acordo com o Método 1 – Modelo de Teste 4.

Em que: N_{Ed} – valor de cálculo do esforço axial atuante; $N_{cr,i}$ – valor crítico do esforço normal associado à encurvadura elástica por flexão em torno do eixo *y* ou *z*.

2.6.4.2 Análise de estabilidade global do elemento (NP EN 1993-1-1 [1], 6.3.3) – Método 2

A determinação dos coeficientes C_{my} , C_{mz} e C_{mLT} , para o método alternativo 2 de quantificação dos fatores de interação para análise à estabilidade global do elemento, é feita de acordo com o Quadro B.3 do Anexo B da NP EN 1993-1-1 [1] (Figura 2.22).

Diagrama da mamantag	Domínio do onlicoção	C _{my} e C _n	_{zz} e C _{mLT}	
Diagrama de momentos	Dominio de apricação	Carga uniforme	Carga concentrada	$\psi M_1 = 0$
Μ	$-1 \le \psi \le 1$	0,6+0,4	$4\psi \ge 0,4$	ψ = 0,0

Figura 2.22 – Coeficientes C_{my} e C_{mLT} de acordo com o Método 2 – Modelo de Teste 4.

Quadro 2.16 - Resultados Modelo de Teste 4: análise de estabilidade global do elemento em flexão composta com compressão – Método 2.

	Solução Analítica	Robot Structural Analysis	CYPE 3D	A3C CC	Obs.		
Estabili	dade Global (NP E	N 1993-1-1 [1], 6.3	3.3) – Método 2 (Ai	nexo B)			
C_{my}	0,60	0,90	-	0,60	[O]		
C_{mLT}	0,60	0,90	-	0,60	[O]		
k_{yy} , K_{zy}	0,67;0,78	1,00 ; 0,91	-;-	0,67;0,84	[O]		
(1)	0,62 < 1	0,80 < 1	-	0,62 < 1	[O] [L]		
(2)	1,01 > 1	1,05 > 1	-	1,02 > 1	[O] [L]		
Dimensionamento da secção transversal							
Secção Transversal	IPE 450 ↑	IPE 450 ↑	-	IPE 450 ↑			

(1) Condição associada à encurvadura em torno de y (NP EN 1993-1-1 [1], Exp.(6.61)).

(2) Condição associada à encurvadura em torno de z (NP EN 1993-1-1 [1], Exp.(6.62)).

2.7 Interpretação dos resultados obtidos no estudo comparativo

As considerações tomadas neste subcapítulo são resultado da interpretação dos resultados obtidos no estudo comparativo realizado em 2.6.

Fazem-se corresponder as notas tomadas nesta secção com as observações marcadas na última coluna dos Quadros 2.1 a 2.16. O símbolo [] corresponde ao início da nota a que se refere, o símbolo 🕀 corresponde ao seu fim.

2.7.1 Classificação da secção transversal

Os *softwares* utilizados foram, em geral, eficazes ao realizar a classificação das secções transversais de acordo com a secção 5.5.2 da NP EN 1993-1-1 [1]. Algumas notas devem no entanto ser deixadas em relação à forma como o *CYPE 3D* realiza a classificação dessas secções.

[A] O *CYPE 3D* adotou uma abordagem diferente dos restantes programas realizando classificações distintas da mesma secção transversal para diferentes verificações relativamente ao mesmo modelo de teste:

- verificação da resistência à compressão (e encurvadura), classificando a secção transversal supondo-a sujeita a compressão pura;
- verificação da resistência à flexão (e encurvadura lateral), classificando a secção transversal suponto-a sujeita a flexão simples;
- verificação da resistência à flexão composta (análise de estabilidade global), classificando a secção com base na solicitação real na secção transversal (flexão composta).

Trata-se de uma abordagem diferente que em nada afeta os resultados finais uma vez que nenhum parâmetro é transportado dos procedimentos anteriores para o procedimento de verificação final à estabilidade global do elemento, procedimento esse que reúne a consideração de todos os fenómenos estudados em procedimentos anteriores. Isto significa que, neste último procedimento, o *CYPE 3D* recalcula os valores dos parâmetros N_{Rd} , M_{Rd} , χ_y , χ_z e χ_{LT} com base na classificação da secção transversal que considera o estado real de solicitação na peça, classificação coerente com a realizada pelos outros programas. [A]

[B] Este é o caso dos modelos de teste 1, 3 e 4, onde a classificação da seção como Classe 4 nos cálculos relativos à verificação da resistência da secção à compressão (e encurvadura) levou à consideração de uma área efetiva, A_{eff} , reduzida em relação à área bruta, que teve como consequência resultados inferiores no que diz respeito aos valores de cálculo das resistências à compressão da secção transversal, N_{Rd} (NP EN 1993-1-1 [1], 6.2.4), e à encurvadura do elemento comprimido, $N_{b,Rd}$ (NP EN 1993-1-1 [1], 6.3.1.1). [\blacksquare]

[C] O *CYPE 3D* despreza para o cálculo de classificação das secções transversais os raios de concordância que fazem a ligação entre a alma e os banzos. Este aspeto pode traduzir-se em classificações mais desfavoráveis das referidas secções quando comparadas com os resultados que se obtêm considerando a existência desses raios.

É o que acontece para o caso do modelo de teste 2, em que, para os cálculos relativos à análise de estabilidade global do elemento, é atribuída a Classe 3 à secção transversal em vez da Classe 2 que lhe seria atribuída se não fossem desprezados os raios de concordância. Para o caso referido isto refletiu-se nos valores de N_{Rd} , M_{Rd} , χ_y , χ_z e χ_{LT} considerados para verificação à estabilidade global do elemento e levou à adoção de expressões diferentes para a determinação dos fatores de iteração k_{ij} (Anexo A da NP EN 1993-1-1 [1]) – Quadro 2.7 [\bigcirc]

2.7.2 Verificação da resistência da secção transversal

Os resultados obtidos relativamente à resistência da secção transversal são em geral satisfatórios.

[D] Na quantificação da resistência ao esforço transverso o *CYPE 3D* assume uma simplificação na quantificação da área de corte (A_v) ao não ter em conta os raios de concordância entre a alma e banzos da secção, o que se traduz num valor conservativo de $V_{z,Rd}$ (resistência ao esforço transverso). O *CYPE 3D* assume simplificadamente que a área de corte é dada pela expressão (2.4), enquanto o Eurocódigo 3 propõe a expressão (2.5) para o caso de secções laminadas em I [1], de acordo com a Figura 2.23,

Figura 2.23 – Área resistente ao esforço transverso, A_v.

 $A_{v(CYPE3D)} = h \times t_w$ (2.4)

$$A_{v(EC3)} = A - 2bt_f + (t_w + 2r)t_f \ge \eta h_w t_w$$
(2.5)

em que A é a área da secção transversal; h é a altura da secção transversal; b é a largura dos banzos da secção transversal; h_w é a altura da alma da secção transversal; t_w é a espessura da alma da secção transversal; t_f é a espessura dos banzos da secção transversal; r é o raio de concordância entre alma e banzos da secção transversal. [\oplus]

2.7.3 Modelação das condições de apoio e travamento lateral em verificações à encurvadura e encurvadura lateral

Os programas apresentam várias formas (módulos) de caracterizar as condições de travamento dos elementos para análises à encurvadura (varejamento) e encurvadura lateral (bambeamento). O utilizador deverá ser capaz de avaliar qual a mais indicada a cada situação e, em cada caso, verificar por consulta dos relatórios de cálculo do programa se está a ser feita a quantificação correta dos parâmetros que caracterizam a geometria do sistema estrutural.

O Quadro 2.17 identifica, para cada Modelo de Teste, a forma (módulo) que foi utilizada em cada programa para a análise aos fenómenos de encurvadura (B) e encurvadura lateral (LTB). Os módulos são identificados em coerência com as descrições que em seguida se apresentam.

Quadro 2.17 – Identificação da forma (módulo) utilizada em cada programa para análise aos fenómenos de encurvadura (B) e encurvadura lateral (LTB) em cada Modelo de Teste

		Modelo Teste 1	Modelo Teste 2	Modelo Teste 3	Modelo Teste 4
Robot SA	В	Módulo A	Módulo A	Módulo B	Módulo A
	LTB	Módulo C	Módulo C	Módulo B	Módulo C
CUDE 1D	В	Módulo A	Módulo A	Módulo C	Módulo A
CIFESD	LTB	Módulo C	Módulo C	Módulo C	Módulo C
13C CC	В	Módulo B	Módulo B	Módulo B	Módulo B
ASCUL	LTB	Módulo B	Módulo B	Módulo B	Módulo B

Módulo A: Cálculo automático de comprimentos de encurvadura (varejamento) para o caso de elementos sem travamentos intermédios – *Robot Structural Analysis* e *CYPE 3D*.

Os programas *Robot Structural Analysis* e *CYPE 3D* dispõe de módulos de cálculo eficientes que permitem determinar automaticamente comprimentos de encurvadura (varejamento). O módulo fica ativo quando a correspondente opção é selecionada (Figura 2.24). A eficiência do Módulo A é limitada a barras contínuas sem condições de travamento em pontos intermédios.

b) *CYPE 3D*.

Figura 2.24 - Ativação do módulo de cálculo automático de comprimentos de encurvadura.

Módulo B:Cálculo automático dos parâmetros relacionados com a análise à encurvadura
(varejamento) e encurvadura lateral (bambeamento) para o caso de elementos
com ou sem travamentos intermédios – *Robot SA* e A3C Columns Calculator.

O *Robot Structural Analysis* e o *A3C Columns Calculator* dispõe de interfaces gráficos que permitem o posicionamento no espaço de travamentos laterais. A partir desse posicionamento determinam de forma eficiente todos os parâmetros relacionados com a análise aos fenómenos de encurvadura (varejamento) e encurvadura lateral (bambeamento).

O *Robot Structural Analysis* (Figura 2.25a) permite identificar de forma independente a posição de quatro tipos de travamento: travamento do elemento na direção *y*; travamento do elemento na direção *z*; travamento lateral do banzo superior; travamento lateral do banzo inferior.

O *A3C Columns Calculator* (Figura 2.25b) permite a identificação no espaço das secções lateralmente contraventadas. Cada travamento lateral restringe completamente (banzos superior e inferior) a translação em y da secção a que diz respeito, não sendo possível restringir apenas um dos banzos.

a) Autodesk Robot Structural Analysis

b) A3C Columns Calculator

Figura 2.25 – Módulo B. Definição de condições de apoio e travamento lateral para análise à resistência à encurvadura e encurvadura lateral (exemplo do Modelo de Teste 3).

No caso do *Robot Structural Analysis* o bom funcionamento do módulo fica dependente da correta definição do tipo de carga ("*Load Type*"), de acordo com a Figura 2.26.

Figura 2.26 - Robot Structural Analysis. Definição do tipo de carga na janela "Load Type".

Módulo C:Definição manual de comprimentos de encurvadura (varejamento) e encurvadura
lateral (bambeamento) para elementos com ou sem travamentos intermédios –
Robot Structural Analysis e CYPE 3D.

O *Robot Structural Analysis* e o *CYPE 3D* permitem caracterizar as condições de travamento dos elementos por definição manual dos comprimentos de encurvadura (varejamento) em torno dos eixos y e z, e do que definem como sendo os comprimentos de encurvadura lateral (bambeamento) de cada banzo, de acordo com a Figura 2.27.

b) CYPE 3D

Figura 2.27 - Definição de condições de apoio e travamento para verificação da resistência à encurvadura e encurvadura lateral (exemplo do tramo central do Modelo de Teste 3)

[E] Relativamente à análise à encurvadura lateral (bambeamento), nos casos em que existem travamentos intermédios dos banzos superior e/ou inferior, considera-se necessário adequar estratégias de modelação que permitam a determinação correta dos parâmetros envolvidos no cálculo do valor do momento crítico M_{cr} de acordo com a proposta de Clark e Hill (1960) e Galéa (1981) [6]. Propõe-se a estratégia que será apresentada em detalhe na secção 5.3.3 deste documento, e que foi desenvolvida no contexto do estudo documentado nesse capítulo. Sugere a modelação do elemento em tramos de comprimentos iguais aos comprimentos entre secções

lateralmente contraventadas, considerando para o efeito o contraventamento do banzo comprimido por ser aquele que é suscetível de sofrer do fenómeno de instabilidade em causa (Figura 2.28).

Figura 2.28 – Divisão do elemento em tramos de comprimentos iguais aos comprimentos entre secções lateralmente contraventadas (exemplo do Modelo de Teste 3).

Nesta última situação, para cada tramo do elemento de barra será necessário definir individualmente os parâmetros referidos no primeiro parágrafo deste módulo.

Nesse caso, se o comprimento de encurvadura for comunicado ao programa por definição do valor do coeficiente de encurvadura β (tal que; $L_{cr} = \beta \ge L$), deve ter-se em consideração de que se está a defini-los para tramos que são frações da barra real [15], e que, para o programa, L corresponderá portanto ao comprimento desse tramo (Figura 2.29).

Figura 2.29 – Valor do comprimento de encurvadura comunicado manualmente ao programa por definição do coeficiente de encurvadura β (exemplo do Modelo de Teste 3).

No Modelo de Teste 3 a referida estratégia foi utilizada como forma de traduzir no programa *CYPE 3D* as condições de travamento para o que diz respeito à análise à encurvadura lateral (bambeamento). O elemento foi dividido em tramos de acordo com a Figura 2.28: a distância entre secções lateralmente contraventadas *l* no tramo condicionante (o tramo central) é igual a 2,5m; não existem restrições à rotação ou ao empenamento das secções de extremidade do tramo pelo que $k_z = k_w = 1,0$.

De acordo com Quadro 2.18, apenas a Abordagem 2, a que utiliza a referida estratégia, permite a quantificação correta dos parâmetros envolvidos no cálculo de M_{cr} por parte do *CYPE 3D*.

Página | 30

	CYPE 3D – Abordagem 1	CYPE 3D – Abordagem 2		
Modelação	O elemento é modelado como uma barra única. Define-se para o elemento:	O elemento é modelado em tramos de comprimento igual às distâncias entre secções lateralmente contraventadas (Figura 2.5). Define-se para o tramo central do elemento:		
	$L_{cr}^{LT} = 2,5 \text{ m}^{(1)}$	$\beta = 1,0 \rightarrow L_{cr}^{LT} = 2,5 \text{ m}^{(1)}$		
l	l = L = 5,0 m ⁽²⁾	2,5 m		
C_1	1,0 (definido manualmente)	1,0 (definido manualmente)		
k_z ; k_w	$k_z = L_{cr}^{\scriptscriptstyle LT} / L = 0.5$; $k_w = k_z = 0.5$ ⁽²⁾	$k_z = L_{cr}^{LT}/L = 1,0$; $k_w = k_z = 1,0$		
M_{cr}	681,66 kN.m ⁽³⁾	681,66 kN.m ⁽³⁾		
χιτ	0,84	0,84		
$M_{b,Rd}$	201,32 kN.m	201,32 kN.m		

C)uadro 2.18 – (Duantificação	por parte do	CYPE 3D dos	parâmetros	envolvidos no	cálculo de M_{ℓ}	er.
~	2uuuu 2.10 (Zuummuuquo	por purce do		pulumentos		culculo de m	:r•

(1) L_{cr}^{LT} é o comprimento de encurvadura lateral do banzo comprimido pelo esforço de flexão;

(2) Os parâmetros destacados a vermelho não traduzem a realidade do Modelo de Teste 3;

(3) Para este caso específico as duas abordagens acabam por chegar ao mesmo valor do momento crítico de encurvadura lateral (M_{cr}). Isto só acontece porque o *CYPE 3D* toma para qualquer situação $k_w = k_z$, o que, por coincidência, está coerente com a realidade do Modelo de Teste 3. Embora os valores de k_w e k_z determinados de acordo com a Abordagem 1 sejam diferentes dos obtidos na Abordagem 2, nas duas situações $k_w = k_z$ o que faz com que a relação k_z/k_w na Equação (2.1) iguale a unidade, conduzindo ao mesmo valor de M_{cr} . [\blacksquare]

Para o caso do *Robot Structural Analysis*, e relativamente à análise à encurvadura lateral (bambeamento), nos casos em que existem travamentos intermédios dos banzos superior e/ou inferior, só se justifica a utilização deste módulo em situações excecionais, já que se considera o Módulo B mais simples e muito eficiente.

2.7.4 Resistência do elemento à encurvadura lateral

Todas as abordagens utilizam para quantificação do momento crítico para a encurvadura lateral (M_{cr}) a expressão (2.1) anteriormente apresentada na secção 2.4 deste capítulo.

2.7.4.1 Robot Structural Analysis

O *Robot Structural Analysis* promove uma interpretação correta da geometria dos modelos ao quantificar autonomamente todos os parâmetros de forma bastante aproximada à solução construída analiticamente. Esta eficácia torna-se possível através de um intuitivo conjunto de interfaces de definição das condições de apoio e de solicitação do sistema estrutural,

especialmente concebidos para a definição de parâmetros destinados à verificação à encurvadura lateral (Figura 2.30).

Figura 2.30 – Definição do modelo para verificação à encurvadura lateral – Robot Structural Analysis.

[F] Ao valor de k_w o *Robot Structural Analysis* atribuí por defeito o valor 1,0, decisão conservativa que se considera adequada, embora se entenda constituir uma limitação que traz problemas para os casos em que se considera garantida a restrição ao empenamento nas extremidades ($k_w \neq 1,0$). [F]

2.7.4.2 CYPE 3D

O *CYPE 3D* é capaz de produzir resultados satisfatórios num considerável, ainda que limitado, conjunto de situações.

[G] O programa não é capaz de quantificar de forma autónoma os valores dos coeficientes que têm em conta a distribuição de momentos (C_1 , C_2 e C_3). O *software* solicíta a introdução pelo utilizador do valor do coeficiente C_1 , não aceitando valores inferiores a 1,0 para este coeficiente, e assume por defeito o valor 1,0 para os coeficientes C_2 e C_3 que não são alteráveis.

Por consideração da expressão (2.1) entende-se que o problema de quantificação dos coeficientes C_2 e C_3 é anulado, não resultando em qualquer incorreção, quando os parâmetros $z_g e z_j$ são nulos, já que nesse caso se anulam as parcelas $C_2 \cdot z_g e C_3 \cdot z_j$.

Embora o *software* seja capaz de ter em conta o grau de assimetria da secção transversal em relação ao eixo y, isto é, quantificar o parâmetro z_j , resultados desadequados serão em regra

produzidos quando z_j for diferente de zero, já que, nesse caso, na Equação (2.1), o parâmetro z_j deixará de anular a parcela $C_3 \cdot z_j$.

O *software* não possibilita a definição da posição de aplicação da carga em relação ao centro de corte da secção transversal (consultar estudo de avaliação da consideração do parâmetro z_g pelos *softwares* na secção 2.7.5 deste capítulo), o que significa que para o parâmetro z_g será considerado o valor nulo em todas as situações.

Conclui-se que o *CYPE 3D* será capaz de produzir resultados satisfatórios relativamente à verificação à encurvadura lateral, especialmente no que diz respeito à quantificação do momento crítico (M_{cr}), para os casos em que a carga é aplicada ao nível do centro de corte da secção transversal ($z_g = 0$) e que a secção é duplamente simétrica ($z_j = 0$). [\bigcirc]

[H] Ainda neste contexto, especial atenção deve ser dada ao parâmetro k_w . Recomendações indicam que para este deve ser considerado de forma conservativa o valor 1.0 (o equivalente a assumir que não existem restrições ao empenamento nas extremidades), no entanto o *CYPE 3D* assume para este parâmetro o mesmo valor que for atribuído a k_z em cada caso, não sendo possível alterá-lo. A definição do valor de k_w produz alterações significativas no valor do momento crítico (M_{cr}) usado para quantificar o coeficiente de redução à encurvadura lateral (χ_{LT}), e consequentemente no valor final de cálculo do momento fletor resistente á encurvadura lateral ($M_{b,Rd}$). [H]

2.7.4.3 A3C Columns Calculator

[1] O A3C Columns Calculator foi capaz de definir os coeficientes C_1 e C_2 com sucesso. Não define, no entanto, um valor para o coeficiente C_3 . Este aspeto não é um problema dentro do campo de aplicação do *software*, cuja biblioteca de perfis transversais dispõe de apenas perfis em I e H, secções bissimétricas. O parâmetro z_j tomará sempre, portanto, o valor zero anulando a parcela $C_3 \cdot z_j$ na expressão (2.1). [4]

[J] Diferenças nos valores dos parâmetros C_1 e C_2 , relativamente aos definidos nas outras abordagens, podem ser justificadas pelo facto de o programa utilizar uma versão diferente da norma regulamentar onde constam os quadros de definição dos referidos parâmetros. Neste aspeto o programa é coerente como o livro [6]. [#]

[K] O A3C Columns Calculator contempla campos destinados à escolha da posição do ponto de aplicação da carga em z. No entanto, assume sempre que a carga está aplicada ao nível da face superior da secção (consultar estudo de avaliação de consideração do parâmetro z_g pelo software – secção 2.7.6 deste capítulo). Esta consideração resulta num efeito desfavorável (ou seja, conservativo) para a maior parte dos casos correntes, provocando a diminuição do momento crítico (M_{cr}) e, consequentemente, do valor de cálculo do momento resistente à

encurvadura lateral ($M_{b,Rd}$). Por consideração da expressão (2.1) é possível concluir que este problema se anula quando o coeficiente $C_2 = 0$. [K]

Conclui-se portanto que o A3C Columns Calculator será capaz de produzir resultados satisfatórios relativamente à verificação à encurvadura lateral, especialmente no que diz respeito à quantificação do momento crítico (M_{cr}), para os casos em que a carga é aplicada ao nível do topo da secção transversal ($z_g = h / 2$) e que a secção (bissimétrica) consta na sua biblioteca de perfis.

2.7.5 Avaliação da capacidade de consideração do parâmetro z_g pelos programas

A consideração da posição de aplicação da carga em relação ao centro de corte da secção transversal é importante no que diz respeito à avaliação da resistência à encurvadura lateral de elementos em aço. O posicionamento da carga poderá causar um efeito favorável ou desfavorável ao fenómeno, de acordo com o esquematizado na Figura 2.31.

Figura 2.31 - Efeito da posição da carga no fenómeno de encurvadura lateral

No Modelo de Teste 1 é alterada a posição de aplicação da carga para a face inferior da secção transversal e posteriormente para a sua face superior, de forma a avaliar a capacidade do *software* ter em conta o efeito favorável e desfavorável, respetivamente, desta alteração (Quadro 2.19). O parâmetro z_g deve variar. O aumento do parâmetro z_g deve resultar no aumento do valor do momento crítico (M_{cr}) e consequente no aumento do valor de cálculo do momento resistente à encurvadura ($M_{b,Rd}$). A diminuição de z_g deverá causar o efeito contrário.

	Soluç	ção Ana	lítica	Robe	ot Struc Analysi	tural s	(CYPE 31	D	A30 C	C Colum Calculate	ıns ər
Resistência à Encurvadura Lateral (NP EN 1993-1-1, 6.3.2)												
Posição da Carga	Base	Centro	Торо	Base	Centro	Торо	Base	Centro	Торо	Base	Centro	Торо
z_g (m)	-0,25	0	0,25	-0,25	0	0,25	-	0	-	-	-	0,25
$M_{cr}(kN.m)$	904,0	632,6	442,7	647,6	632,6	442,7	-	631,5	-	-	-	442,6
$M_{b,Rd}$ (kN.m)	387,6	340,0	282.4	293,2	340,0	282,4	-	339,7	-	-	-	282,6
Dimensionamento	_{IPE} 450	_{IPE} 500	_{IPE} 500	_{IPE} 450	_{IPE} 500	_{IPE} 500	-	_{IPE} 500	-	-	-	_{IPE} 500

Quadro 2.19 – Avaliação da capacidade de consideração do parâmetro z_g pelo software.

O mesmo estudo foi conduzido para os casos dos restantes modelos de teste com resultados semelhantes.

A posição da carga em relação ao centro de corte da secção transversal mostra-se suficiente para condicionar a escolha do perfil ótimo.

O *Robot Structural Analysis* permitiu com sucesso alterar o ponto de aplicação da carga para coordenadas z_g positivas, fornecendo resultados muito satisfatórios. O mesmo não aconteceu ao alterar o ponto de aplicação da carga para coordenadas z_g negativas. A quantificação de z_g neste caso é correta mas o valor do momento crítico (M_{cr}) não é o esperado. Admite-se a hipótese de o *Robot Structural Analysis* estar a aplicar um coeficiente de redução sobre a ação favorável. Neste aspeto o *software* está sempre do lado da segurança.

O *CYPE 3D* não considera este fenómeno admitindo por defeito a carga sempre aplicada ao nível do centro de corte da secção transversal. Trata-se de uma limitação importante por não estar do lado da segurança nos casos em que a carga está aplicada em pontos com coordenada z_g positiva.

O *A3C Columns Calculator* contempla campos destinados à escolha da posição do ponto de aplicação da carga em *z*. No entanto, no cálculo final assume que a carga está sempre aplicada ao nível da face superior da secção. Assim, os resultados serão excessivamente conservativos sempre que a carga estiver aplicada a um nível que não o correspondente à face superior da secção transversal.⁽¹⁾

(1) Na sequência deste trabalho o suporte do programa foi consultado e o problema foi corrigido.

2.7.6 Avaliação da capacidade de determinação do parâmetro z_j pelos programas

O parâmetro z_j tem em conta a assimetria da secção transversal, e tomará o valor zero se esta for simétrica em relação ao eixo y.

O *A3C Columns Calculator* é a única das ferramentas analisadas que não quantifica este valor. A biblioteca de perfis da ferramenta justifica este aspeto, uma vez que nela constam apenas perfis em I e H, secções bissimétricas.

2.7.7 Análise de estabilidade global de elementos em flexão composta com compressão (NP EN 1993-1-1 [1], 6.3.3)

De acordo com a NP EN 1993-1-1 [1] os elementos solicitados à flexão composta com compressão deverão satisfazer as condições propostas nas expressões (2.6) e (2.7). A verificação pressupõe a determinação dos fatores de interação k_{yy} , k_{yz} , k_{zy} , k_{zz} . A NP EN 1993-1-1 [1] propõe dois métodos alternativos de determinação destes fatores nos Anexos A e B do mesmo documento. Os dois métodos são postos à prova para cada um dos modelos de teste apresentados neste capítulo,

$$\frac{N_{Ed}}{\chi_{y} N_{Rk} / \gamma_{M1}} + k_{yy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} M_{y,Rk} / \gamma_{M1}} + k_{yz} \frac{M_{z,Ed} + \Delta M_{z,Ed}}{M_{z,Rk} / \gamma_{M1}} \le 1,0$$
(2.6)

$$\frac{N_{Ed}}{\chi_{y} N_{Rk} / \gamma_{M1}} + k_{zy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} M_{y,Rk} / \gamma_{M1}} + k_{zz} \frac{M_{z,Ed} + \Delta M_{z,Ed}}{M_{z,Rk} / \gamma_{M1}} \le 1,0$$
(2.7)

em que N_{Ed} , $M_{y,Ed}$ e $M_{z,Ed}$ são valores de cálculo do esforço de compressão e dos momentos máximos no elemento, respetivamente, em relação aos eixos y e z; $\Delta M_{y,Ed}$ e $\Delta M_{z,Ed}$ são momentos devidos ao deslocamento do eixo neutro para secções da Classe 4; χ_y e χ_z são coeficientes de redução para a encurvadura por flexão; χ_{LT} é o coeficiente de redução devido à encurvadura lateral.

[L] A dependência destes resultados do valor do coeficiente de redução devido à encurvadura lateral (χ_{LT}), que é diretamente dependente do valor do momento crítico (M_{cr}), faz com que todas as limitações associadas à verificação dos elementos à encurvadura lateral (secção 2.7.4) sejam transferidas também para este cálculo através deste coeficiente. [\mathbf{L}]

2.7.7.1 Método alternativo 1 - Anexo A (NP EN 1993-1-1 [1])

Os programas e ferramentas testados revelaram-se bastante eficazes na aplicação dos procedimentos de cálculo relativos a estas verificações, sendo capazes de determinar de forma satisfatória todos os parâmetros envolvidos no cálculo.

[M] Os coeficientes $C_{my,0}$, $C_{mz,0}$ e C_{mLT} foram, nos casos abordados, determinados de forma autónoma e com sucesso pelo *Robot Structural Analysis* e A3C Columns Calculator. No CYPE 3D os valores devem ser determinados pelo utilizador e introduzidos nos campos destinados a esse efeito. Através deles o programa é então capaz de determinar os coeficientes $C_{my} \, e \, C_{mz}$. [\mathbf{M}]

O *CYPE 3D*, além das fragilidades associados à determinação do valor de χ_{LT} , vê ainda em determinados casos os seus resultados alterados por problemas na classificação da secção transversal (secção 2.7.1 deste capítulo), como é o caso do Modelo de Teste 3.

2.7.7.2 Método alternativo 2 - Anexo B (NP EN 1993-1-1 [1])

O método alternativo 2 envolve um procedimento de cálculo mais simples com significativamente menos parâmetros envolvidos. Na maior parte dos casos abordados produziu resultados mais conservativos e menos consensuais entre as abordagens de cálculo adotadas do que o método referido em 2.7.7.1.

[N] O *CYPE 3D* não tem como opção a realização do cálculo utilizando o método alternativo 2 de quantificação dos fatores de interação (Anexo B da NP EN 1993-1-1 [1]). [ℕ]

[O] Os pogramas e ferramentas forneceram em todos os testes valores diferentes para os coeficientes C_{my} , C_{mz} e C_{mLT} de determinação dos fatores de interação. Os valores menos consensuais atribuídos a estes parâmetros tem influência direta sobre os valores dos coeficientes de interação k_{ij} e consequentemente sobre a verificação final de segurança à flexão composta com compressão. Considera-se mais eficaz o *A3C Columns Calculator* por ter produzido resultados mais próximos da solução analítica construída. [\ominus]

2.7.8 Perfil ótimo para a secção transversal

Apesar de diferenças significativas entre as abordagens serem encontradas em determinados parâmetros ao longo do processo de dimensionamento, verifica-se para os casos em estudo que as várias abordagens tendem a indicar como ótimo o mesmo perfil (Quadro 2.20).

	Solução Analítica	Robot Structural Analysis	CYPE 3D	A3C Columns Calculator	Obs.	
	Mo	odelo de Teste 1				
Método Alternativo 1	IPE 500 OK	IPE 500 OK	IPE 500 OK	IPE 500 OK		
Método Alternativo 2	IPE 500 OK	IPE 500 OK	IPE 500 OK	IPE 500 OK		
	Mo	odelo de Teste 2				
Método Alternativo 1	IPE 330 OK	IPE 330 OK	IPE 300 ↓	-	[P]	
Método Alternativo 2	IPE 330 OK	IPE 330 OK	-	-		
	Mo	odelo de Teste 3				
Método Alternativo 1	IPE 360 OK	IPE 360 OK	IPE 360 OK	IPE 360 OK		
Método Alternativo 2	IPE 360 OK	IPE 360 OK	-	IPE 360 OK		
Modelo de Teste 4						
Método Alternativo 1	IPE 400 OK	IPE 400 OK	IPE 400 OK	IPE 400 OK		
Método Alternativo 2	IPE 450 ↑	IPE 450 ↑	-	IPE 450 ↑	[Q]	

Quadro 2.20 - Comparativo de soluções ótimas de dimensionamento das secções transversais.

[P] É importante notar que em situações limite estas diferenças podem facilmente significar a sugestão como ótimo de um perfil diferente, sendo no entanto muito improvável que a sugestão recaia sobre um perfil com dimensões não imediatamente inferiores ou superiores. [₽]

[Q] Os resultados fornecidos quando utilizado o método alternativo 2 de quantificação dos fatores de interação para verificação à flexão composta com compressão (Anexo B da NP EN 1993-1-1 [1]) são, na maior parte dos casos testados, mais conservativos e menos consensuais entre as abordagens adotadas. Mesmo assim, apenas para o caso do Modelo de Teste 4 o perfil indicado como ótimo foi diferente nos dois métodos (método alternativo 1 e método alternativo 2). [\bigcirc]

2.8 Guia resumo de limitações e campo de aplicabilidade do software

Um guia resumo de limitações e campo de aplicabilidade do *software* estudado é apresentado nos Quadros 2.21 a 2.23. A coluna "secção" remete para desenvolvimento sobre cada aspeto em secções anteriores deste capítulo. A coluna "norma" remete para disposições regulamentares dispostas para cada aspeto.

2.8.1 Robot Structural Analysis:

Quadro 2.21 - Guia resumo de limitações e campo de aplicação do Robot Structural Analysis.

Limitações do software	Norma	Secção
Consideração conservativa do valor k_w com o valor 1,0 sem possibilidade de ser feita alteração.	Anexo F, ENV1993-1-1	2.7.4.1 [F]
Quantificação dos parâmetros C_{my} , C_{mz} e C_{mLT} contestável para o caso do método alternativo 2. Recomenda-se verificação destes parâmetros em cada cálculo.	Anexo B, NP EN 1993-1-1	2.7.7.2 [O]
Campo de aplicabilidade		
Qualquer situação.		

2.8.2 CYPE 3D

Quadro 2.22 – Guia resumo de limitações e campo de aplicação do CYPE 3D.

Limitações do software	Norma	Secção
A classificação da secção transversal não considera os raios de concordância entre a alma e os banzos.	(5.5.2), NP EN 1993-1-1	2.7.1 [C]
Utilização de uma fórmula simplificada conservativa para o cálculo da área resistente ao corte da secção transversal.	(6.2.6), NP EN 1993-1-1	2.7.2 [D]
Dificuldades na definição das condições de travamento lateral.	-	2.7.3 [E]
Incapacidade de definir autonomamente o coeficiente C_1 , que deve ser introduzido pelo utilizador.	Anexo F, ENV1993-1-1	2.7.4.2 [G]
Consideração dos coeficientes C_2 e C_3 com o valor 1,0 sem possibilidade de ser feita alteração.	Anexo F, ENV1993-1-1	2.7.4.2 [G]
Impossibilidade de consideração da carga aplicada a um nível que não o correspondente ao centro de corte da secção ($z_g = 0$).	Anexo F, ENV1993-1-1	2.7.4.2 [G]
Consideração do valor de k_w com o mesmo valor de k_z sem possibilidade de diferenciação entre os dois.	Anexo F, ENV1993-1-1	2.7.4.2 [H]

Incapacidade de definir automaticamente os coeficientes de momento uniforme equivalente (C_{my} , C_{mz} e C_{mLT}), que devem ser introduzidos pelo utilizador.	Anexo A, NP EN 1993-1-1	2.7.7.1 [M]
Não é incluída a opção de utilizar o método alternativo 2 para a quantificação dos fatores de interação.	Anexo B, NP EN 1993-1-1	2.7.7.2 [N]

Campo de aplicabilidade

Casos em que a carga é aplicada ao nível do centro de corte da secção transversal ($z_j = 0$) e que a secção é simétrica em relação ao eixo y ($z_j = 0$).

Casos em que k_w toma o mesmo valor que k_z .

2.8.3 A3C Columns Calculator:

Quadro 2.23 - Guia resumo de limitações e campo de aplicação do A3C Columns Calculator

Norma	Secção
-	2.5.1
Anexo F, ENV1993-1-1	2.7.4.3 [I]
Anexo F, ENV1993-1-1	2.7.4.3 [K]
Anexo B, NP EN 1993-1-1	2.7.7.2 [O]
	Norma - Anexo F, ENV1993-1-1 Anexo F, ENV1993-1-1 Anexo B, NP EN 1993-1-1

Campo de aplicabilidade

Sistemas estruturais com geometria de acordo com a secção 2.6.1.1 deste capítulo.

Secções em I e H pré-definidas.

Casos em que a carga é aplicada ao nível do topo da secção transversal (zg = h/2).⁽¹⁾

(1) Na sequência deste trabalho o suporte do programa foi consultado e o problema foi corrigido.

2.9 Notas conclusivas relativamente à avaliação da performance dos programas de cálculo analisados

O Quadro 2.24 classifica o desempenho dos programas testados através de um sistema de avaliação devidamente legendado, com especial enfoque na capacidade de o *software* quantificar os principais parâmetros relativos ao dimensionamento de vigas-coluna em aço de acordo com a NP EN 1993-1-1 [1] e tendo por base a seguinte escala:

- 1 Efetua o cálculo autonomamente com sucesso e sem limitações.
- 2 O parâmetro é introduzido manualmente pelo utilizador.
- 3 A metodologia de cálculo está correta mas o parâmetro é suscetível de ser influenciado por outros que são definidos de forma discutível.
- 4 Em algumas situações efetua o cálculo de forma discutível.
- 5 Não efetua o cálculo.

Quadro 2 24 -	Quadro	de avalia	cão da	performance	do	software
Quadi 0 2.24 -	Quadro	uc avana	çao ua	performance	u0	sojiware.

	Robot S.A.	CYPE 3D	<i>A3C C.C.</i>
Versatilidade de sistemas estruturais	Versátil	Versátil	Limitado
Classificação da secção	• 1	• 4	• 1
Resistência da secção transversal			
Determinação de N _{cRd}	• 1	• 3	• 1
Determinação de V _{cRd}	• 1	• 4	• 1
Determinação de <i>M</i> _{cRd}	• 1	• 1	• 1
Resistência do elemento à encurvadura			
Determinação de comprimentos de encurvadura (lcr)	• 1	• 1	• 1
Determinação de N _{b,Rd}	• 1	• 3	• 1
Resistência do elemento à encurvadura lateral			
Determinação dos coeficientes C_1 , C_2 e C_3	• 1	• 2	• 1
Capacidade de ter em conta a posição de aplicação da carga em $z(z_g)$	• 1	• 5	• 5
Capacidade de ter em conta o grau de assimetria da secção (<i>z_j</i>)	• 1	• 3	• 5
Capacidade de ter em conta as restrições nas secções de extremidade ($k_z \in k_w$)	• 4	• 4	• 4
Determinação de <i>M</i> _{cr}	• 1	• 3	• 3
Determinação de M_{bRd}	• 1	• 3	• 3
Análise da estabilidade global do elemento			
Método alternativo 1			
Determinação de C_{my} , C_{mz} e C_{mLT}	• 1	• 2	• 1
Determinação dos fatores de iteração k _{ij}	• 1	• 3	• 3
Verificação das condições de segurança	• 1	• 3	• 3
Método alternativo 2			
Determinação de C_{my} , C_{mz} e C_{mLT}	• 4	• 5	• 4
Determinação dos fatores de iteração k _{ij}	• 3	• 5	• 3
Verificação das condições de segurança	• 3	• 5	• 3
Pode-se afirmar como conclusão que o *Robot Structural Analysis* é o *software* mais adequado no que diz respeito ao dimensionamento de vigas-coluna em aço de acordo com a norma NP EN 1993-1-1 [1]. Prima pela eficácia do processo de cálculo, pela versatilidade e pela forma intuitiva como dispõe os interfaces de modelação das condições de apoio e solicitação da estrutura.

Dentro de um limitado campo de aplicação, cada um dos outros programas e ferramentas de cálculo testados (*CYPE 3D* e *A3C Columns Calculator*) será capaz de alcançar resultados também satisfatórios. Para isso, será importante que o utilizador tenha presentes as limitações, pressupostos e especificidades de cada programa.

É essencial controlar e validar de forma sistemática os principais parâmetros devolvidos pelos programas, de modo a produzir resultados com segurança.

Reunidas estas condições, e atendendo ao aspeto mais importante, isto é, o resultado final do processo de verificação e dimensionamento, importa referir que as várias abordagens tendem a indicar como ótimo o mesmo perfil, o que por si só demonstra a eficiência dos programas de cálculo apresentados.

CAPÍTULO 3

Ferramenta de Cálculo AciariUM

3.1 Enquadramento

O presente capítulo tem como objetivo apresentar a ferramenta de cálculo desenvolvida no contexto desta dissertação, definir a sua estrutura por forma esclarecer a organização dos seus conteúdos, e fornecer orientações para a sua utilização.

3.2 Apresentação da ferramenta AciariUM

A ferramenta *AciariUM* (Figura 3.1) foi desenvolvida como meio de análise de elementos em aço e de verificação expedita dos resultados recolhidos a partir de programas comerciais de análise estrutural. Permite ao utilizador um controlo total sobre os resultados, na medida em que todo o algoritmo e procedimento de cálculo relativo a cada parâmetro está constantemente disponível para consulta e edição.

Figura 3.1 – Janela de apresentação com logótipo da ferramenta de cálculo AciariUM.

A ferramenta *AciariUM* é direcionada para a análise e dimensionamento de vigas-coluna em aço sujeitas a flexão composta desviada. Permite modelação das condições de apoio e solicitação do elemento em aço, determinação de esforços, e realização de verificações relacionadas com a resistência da secção transversal e fenómenos de instabilidade. Estão abrangidas secções transversais em I e H monossimétricas e bissimétricas, perfis dos tipos laminado a quente e reconstituído soldado.

A ferramenta de cálculo é apresentada em formato de ficheiro do Office Excel 2013 com permissão para macros (ficheiro *.xlsm*). O código em Visual Basic gere principalmente conteúdo gráfico e processos de otimização. A pasta "Conteúdo Gráfico" contém figuras que são chamadas pela ferramenta *AciariUM* em função das opções do seu algoritmo. O funcionamento correto da ferramenta implica que esta pasta esteja guardada na mesma pasta onde está guardado o referido ficheiro *.xlsm*.

3.3 Estrutura global da ferramenta AciariUM

A ferramenta é apresentada ao utilizador dividida em diferentes interfaces/separadores que devem funcionar pela ordem em que são apresentados na Figura 3.2.

Figura 3.2 – Estrutura global da ferramenta AciariUM.

Cada interface/separador é dedicado a procedimentos específicos devidamente definidos:

- Interface I Caracterização geométrica e mecânica da secção transversal, definição das propriedades do material e parâmetros gerais do cálculo;
- Interface II Determinação/definição dos esforços de cálculo na secção a verificar e dos parâmetros que caracterizam a geometria do elemento em análise (comprimento, comprimentos de encurvadura e comprimentos entre secções lateralmente contraventadas);
- Interface III Classificação e verificação da resistência da secção transversal aos estados limite últimos;
- Interface IV Verificações de segurança à encurvadura (varejamento), encurvadura lateral (bambeamento) e encurvadura por esforço transverso (enfunamento);
- Interface V Análise de estabilidade global de elementos em flexão composta com compressão;
- Interface VI Relatório final.

Página | 44

A navegação através dos Interfaces na ferramenta *AciariUM* faz-se selecionando o separador pretendido a partir da barra em rodapé (Figura 3.3).

I. Secção Transversal II. Apoio e Solicitação III. Resistência da Secção ELU IV. Fenómenos de Encurvadura V. Estabilidade Global VI. Relatório Final

Figura 3.3 – Barra em rodapé para navegação através dos Interfaces da ferramenta AciariUM.

3.4 Estrutura interna de cada interface da ferramenta AciariUM

Os interfaces, de uma forma geral, partilham de uma estrutura interna comum, de acordo com o esquema na Figura 3.4.

LAcia	riUM ^{EC3-1-1}	INTE	RFAC	E [Nº]. τίτι	JLO D	O INTE	RFAC	E.																							
DESIGN	IAÇÃO		DIMENS	ÕES PRIM	ICIPAIS D	DA SECÇÂ	O TRAN	ISVERSA	ıL.	A	(G	DIMEN	SÕES COI	MPLEME	NTARES	5	EIXO P	RINCIPA	L DE INÉ	RCIA Y			EIXO F	RINCIP	AL DE INÉ	RCIA Z					
IPE	300	h mm	b₂ mm	bi mm	tv mm	t: mm	ti mm	Гя mm	n mm	A cm ²	zca mm	yca mm	hi mm	d mm	CS# mm	CSi mm	ly cm ⁴	W _{5.P4P} cm ³	W _{3.inf} cm ³	Wpla cm ³	iş cm	Ave cm ²	lz cm ⁴	W _{2,pup} cm ³	Wzini cm ³	Wplz cm ³	iz cm	A _{vy} cm ²	IT cm ⁴	lw x 10 ⁻³ cm ⁶		Е
$f_{y[MPa]}$	275	300	150	150	7	11	11	15	15	53,81	150	75	278,6	248,6	0	0	8356,1	557,1	557,1	628,4	12,5	25,7	603,7	80,5	80,5	125,2	3,3	34,0	20,1	125,9		0,92
SOLICI	TAÇÃO	NA SECÇ	ÃO COM	DICION	ANTE	N _{Ed}	200	,00	kN	V _{Ed,z}	6,	,27	kN	$M_{\text{Ed},\gamma}$	74	,64	kN.m	$V_{\text{Ed},\gamma}$	5,	00	kN	M _{Ed,z}	10	,00	kN.m					CL	ASSE	1
A. TÍ1	ULO E		ллин	O DE P	ROCED	IMENT	os																					(REFERÊN	ICIA NOR	MATIVA]	IN	IFO
PA	RÂMET	rros a	LTERÁ	/EIS		50,00	tas com truções e omenda	kN ções.	OK [SIGNIF VERIFIC DE SEG	60% ICA QUE CADAS AS URANÇA	ESTÃO S CONDI]	IÇÕES					PARÂ	METRO	os não	ALTER	ÁVEIS		100,0	D	kN	KO [SIGNIFI VERIFIC DE SEGU	120% CA QUE ADAS A JRANÇA	NÃO ES S CONDIO A]	tão ções			
																								João M. Prof. Isabel Eng.º Migu	M. Eira Valente el Pires	* () Uni Esc	iversidade cola de Enç	do Minh genharia	° <	GRU CA	SAIS

Figura 3.4 - Representação esquemática da estrutura interna dos Interfaces da ferramenta AciariUM.

Em cabeçalho está fixa a grelha de definição da secção transversal e das correspondentes propriedades mecânicas, a identificação dos esforços na secção transversal a ser verificada e a respetiva classificação (com exceção dos interfaces anteriores aos procedimentos de definição destes parâmetros).

Os conteúdos restantes (conjuntos de procedimentos) são móveis (permitem *scroll down*). Aparecem abaixo agrupados de forma independente dos restantes

São alteráveis apenas os parâmetros destacados com letra de cor azul em fundo branco. As células não alteráveis estão bloqueadas para edição.

Notas com instruções e recomendações acompanham os campos de definição de cada parâmetro. Para que sejam exibidas bastará que seja selecionada a célula correspondente.

O ícone "*INFO*" tem como função fornecer ao utilizador informações ou instruções adicionais sobre a definição de parâmetros. Depois de pressionado o ícone, e nos casos em que ele tem ligação ativa, é aberta uma janela onde são comunicadas ao utilizador as instruções referidas.

É respeitado um constante procedimento de determinação da capacidade resistente da secção transversal e comparação com o valor do correspondente esforço atuante. Associado a cada verificação de segurança, individualmente, surge o ícone "OK" ou "KO" que sinaliza, respetivamente, o cumprimento ou não cumprimento desses requisitos, e o correspondente rácio

de eficiência ζ (ou *Ef.*) que indica a percentagem da resistência que está a ser "utilizada" pelo efeito das ações correspondentes (Equação (3.1)).

$$E_d/R_d = \xi \tag{3.1}$$

em que:

 E_d valor de cálculo do efeito da(s) ação/ações;

- *R_d* valor de cálculo da resistência correspondente.
- ζ rácio de eficiência em percentagem (%);

3.5 Interface I. Secção transversal e propriedades do material

O Interface I apresenta-se de acordo com a Figura 3.5 (ver em escala maior no Anexo A.1).

[]Ac	iariUM	INTE	RFACE I.	SECÇÃ	O TRAN	ISVER	SAL E	PROP	RIEDA	DES D	о ма	TERIA	L														MODULO D	E CÁLCULO:	COMERCIAL
DESIC	INAÇÃO		DIMENSÕES P	RINCIPAIS	DA SECÇ	ÃO TRAI	NSVERSA	L	А	c	G	DIMENS	ões coi	MPLEME	ENTARES		EIXO F	RINCIPA	AL DE INÉ	RCIA Y			EIXO P	RINCIPA	L DE INÉ	RCIA Z			
IPE	300	h mm 200	b₂ bi mm mr	tw mm	t₃ mm 10.7	ti mm 10.7	rs mm	n mm 15	A cm ²	Zcg mm	yca mm 75	hi mm 278.6	d mm	CS: mm	CSi mm	ly cm ⁴	Wysep cm ³	Wginf cm ³	Wpty cm ³	ls cm 12.46	Avz cm ²	l2 cm ⁴	Wz.sup cm ³	Wzini cm ³	Wplz cm ³	la cm a as	Avy I1 cm ² cm	r lwx10 ⁻³ 1 ⁴ cm ⁶	3
¹ y [MPa]	2/5	300	150 15) /,1	10,7	10,7	15	15	53,81	150	75	278,0	248,0	U	0	8300	557,1	557,1	028,4	12,40	25,68	603,7	80,5	80,5	125,2	3,30	34,03 20,	12 125,9	0,92
ø		ÓDUL	MANUAL	DEFINIÇÃ	O MANUA	AL DAS DI	MENSÕES	DA SECÇ	ÃO TRAN	SVERSAL							INFC	0					bs					FI	a da
	-			1	DIMENSÕE	S PRINCI	PAIS RECO	OLHIDAS I		DESK ROB	от	Α	c	G	DIMEN	ISÕES CO	MPLEMEN	NTARES	il	F-75					ts +z		TIFO DE FER	Larnir	lado
	-	SECÇÃO	TIPO DE PERF	IL h	bs	b	tw	t _s	ti	r,	r,	A	z _{CG}	Ycg	hi	d	cs,	cs_i	11	rcs		-)	$-(\mathcal{P})$				CORDÕES DE	SOLDADURA	:
	N.	IPE 300	Perfil Lamina	mm 10 300	mm 150	mm 150	mm 7.1	mm 10.7	mm 10.7	mm 15	mm 15	cm* 53.8	mm 150.0	mm /5.0	279	mm 749	mm 0.00	mm 0.00				-	← t _w				NÃO EXISTE SOLDADURA	VI CORDÕES (-	DE
			1 6111 6011110		100		7,2	20,7	10,7	10	10	33,0	150,0	75,0	2/5	245	0,00	0,00	1	h hi d				У	•				
K	M	ÓDUL	ROBOT ST	RUCTU	RAL ANA	ALYSIS	RECEBER	PROPRI	EDADES D	A SECÇÃO	TRANSV	ERSAL A F	PARTIR DO	O ROBOT	SA		INFC	v 🕗										BANZO	
ELE	MENTO			(DIMENSÕE	S PRINCI	PAIS RECO	ILHIDAS I	DO AUTOE	DESK ROB	от	Α	c	G	DIMEN	ISÕES CO	MPLEMEN	NTARES		rcs			Ô				ALMA		
NO.	L	SECÇÃO	TIPO DE PERF	L h	bs	b	tw	t,	ti	r _s	r,	Α,	Z _{CG}	Ycg	hi	d	cs _s	cs_i							ti .z			\smile	
15	m 1.67	IPE 330	Perfil Lamina	mm lo 330	mm 160	160	7.5	mm 11.5	mm 11.5	mm 18	mm 18	62.6	mm 165.0	mm 80.0	307	271.0	mm 0.00	mm 0.00			ll		bi						
	-,-:	_					.,.	,-	,-								-,				_	_	_	_	_	_			
CLA	SSE DE AQ	:0	AÇO DA CLASS	S275			PROPR	IEDADES		E	2	10	GPa	α	1,20	DE-06	/к					COEFIC	IENTES		YMO		1,00		
CON	TITUINTE	DO	fy 27	5 MPa			GE	RAIS		G	80	,77	GPa	Gm	78	350	Kg/m ³		Redefin NP EN 199	nir 3-1-1		PARCI	AIS DE		Y _{M1}		1,00		Redefinir NP EN 1993-1-1
ES	TRUTURAL		fu 43	MPa			DOM	ATERIAL		v	0	,3		n	1,	20						SEGUI	(ANÇA		Y _{M2}		1,25		

Figura 3.5 – Interface I. Secção transversal e parâmetros gerais do cálculo.

Este espaço é destinado à definição dos seguintes parâmetros:

- Tipo e geometria da secção transversal (ver 3.5.1);
- Propriedades do material (aço) e parâmetros gerais do cálculo (ver 3.5.2).

3.5.1 Tipo e geometria da secção transversal

A geometria da secção transversal é comunicada à ferramenta através da definição das suas dimensões principais, de acordo com o Quadro 3.1 que está em coerência com a Figura 3.6.

A ferramenta *AciariUM* considera as dimensões principais da secção transversal para determinar automáticamente dimensões complementares e propriedades mecânicas da secção transversal de acordo com o Quadro 3.2.

Símbolo	Designação
h	altura;
b_s	largura do banzo superior;
b_i	largura do banzo inferior;
t_w	espessura da alma;
t_s	espessura do banzo superior;
t_i	espessura do banzo inferior;
r_s	raio de concordância entre a alma e o banzo superior;
r_i	raio de concordância entre a alma e o banzo inferior;
CS_S	espessura do cordão de soldadura que faz a ligação entre a alma e o banzo superior;

Quadro 3.1 - Dimensões principais da secção transversal definidas pelo utilizador na AciariUM.

*cs*_i espessura do cordão de soldadura que faz a ligação entre a alma e o banzo inferior.

a) Perfil transversal laminado a quente b) Perfil transversal reconstituído soldado

Figura 3.6 - Dimensões das secções transversais em I e H.

Quadro 3.2 – Dimensões complementares e propriedades mecânicas da secção transversal calculadas automaticamente pela ferramenta *AciariUM*.

Símbolo	Designação
hi	altura da alma;
d	altura da parte reta da alma;
A	área;
Z_{cg}	coordenada em z do centro de gravidade da secção transversal;
y_{cg}	coordenada em y do centro de gravidade da secção transversal;
Ι	momento de inércia em relação ao eixo considerado (y e z);
W	módulo de flexão elástico em relação ao eixo considerado (y e z);
W_{pl}	módulo de flexão plástico em relação ao eixo considerado (y e z);
A_{v}	área resistente ao esforço transverso na direção considerada (y e z);
I_T	constante de torção de St. Venant;
I_w	constante de empenamento.

O espaço do Interface I identificado na Figura 3.7 é informativo. Identifica o tipo de perfil transversal selecionado (perfil laminado a quente ou reconstituido soldado) e faz corresponder gráficamente os parâmetros a definir pelo utilizador às dimensões da secção transversal.

a) Perfil transversal laminado a quenteb) Perfil transversal reconstituído soldadoFigura 3.7 – Interface I (excerto). Informação relativa ao tipo e geometria do perfil transversal.

Estão disponíveis no Interface I três módulos de definição do tipo e geometria da secção transversal:

Módulo Comercial (3.5.2) – seleção de um perfil comercial a partir da base de dados;

- Módulo Manual (3.5.3) definidas manualmente as dimensões principais da secção;
- Módulo Robot Structural Analysis (3.5.4) as dimensões da secção transversal são recolhidas automaticamente a partir de um ficheiro do *Robot SA* aberto no computador.

3.5.2 Módulo Comercial de definição da geometria da secção transversal

A geometria da secção transversal é definida por seleção de um perfil comercial a partir de listas que estão disponíveis na base de dados na ferramenta *AciariUM*.

As listas surgem nas células do cabeçalho correspondentes ao campo "Designação", de acordo com a Figura 3.8. Na base de dados estão depositados perfis laminados comerciais das famílias IPE, IPE A, IPE O, HE AA, HE A, HE B e HE M. É deixada em aberto a possibilidade de definição de novas famílias de perfis transversais.

Figura 3.8 – Módulo comercial de definição geométrica da secção transversal.

Para que este módulo esteja ativo basta que estejam desmarcadas as caixas de verificação correspondentes à ativação dos outros módulos.

3.5.3 Módulo Manual de definição da geometria da secção transversal

A geometria da secção transversal é definida comunicando manualmente à ferramenta de cálculo cada uma das dimensões principais da secção transversal.

O módulo ficará ativo se estiver marcada a caixa de verificação correspondente (Figura 3.9). O utilizador poderá atribuir um nome à secção definida.

💕 🗹 N	IÓDULO	MANUAL D	efinição	MANUA	L DAS DIN	NENSÕES	DA SECÇ	ÃO TRAN	SVERSAL							INFO	0
<u> </u>			DI	MENSÕE	S PRINCIP	AIS RECO	LHIDAS D		ESK ROB	от	Α	C	G	DIMEN	ISÕES CO	MPLEMEN	NTARES
	SECÇÃO	TIPO DE PERFIL	h	b _s	b _i	tw	ts	ti	rs	r	Α	Z _{CG}	Ycg	hi	d	cs _s	cs _i
-			mm	mm	mm	mm	mm	mm	mm	mm	cm ²	mm	mm	mm	mm	mm	mm
	IPE 300	Perfil Laminado	300	150	150	7,1	10,7	10,7	15	15	53,8	150,0	75,0	279	249	0,00	0,00

Figura 3.9 – Módulo manual de definição geométrica da secção.

A ferramenta gere automaticamente a informação relativa ao tipo de perfil escolhido, aos raios de concordância r e aos cordões de soldadura cs de acordo com o Quadro 3.3.

Quadro 3.3 – Gestão automática da informação relativa ao tipo de perfil, aos raios de concordância *r* e aos cordões de soldadura *cs* pela ferramenta *AciariUM*.

Ação por parte do utilizador		Resposta por parte da AciariUM
Tipo de Perfil = Laminado	\rightarrow	cs = 0
Tipo de Perfil = Soldado	\rightarrow	r = 0
r eq 0	\rightarrow	Tipo de Perfil = Laminado; $cs = 0$
$cs \neq 0$	\rightarrow	Tipo de Perfil = Soldado; $r = 0$

3.5.4 Módulo Robot Structural Analysis de definição da geometria da secção transversal

A geometria da secção transversal é recolhida automáticamente a partir de um ficheiro do *Robot Structural Analysis* aberto no computador.

O módulo ficará ativo se estiver marcada a caixa de verificação correspondente (Figura 3.10).

K PRO	M	ÓDULC	ROBOT STRU	JCTUR	AL ANA	LYSIS	RECEBER	R PROPRIE	DADES D	A SECÇÃO	TRANSV	ERSAL A F	PARTIR DO	ROBOT	SA		INFC	9 (2)
ELEM	ENTO			DI	MENSÕE	5 PRINCIP	AIS RECO	OLHIDAS D		ESK ROB	от	Α	C	G	DIMEN	ISÕES COI	MPLEMEN	NTARES
NO	L	SECÇÃO	TIPO DE PERFIL	h	b _s	b _i	tw	ts	ti	rs	r,	Α	z _{cg}	Ycg	hi	d	CS ₅	cs _i
NO.	m			mm	mm	mm	mm	mm	mm	mm	mm	cm ²	mm	mm	mm	mm	mm	mm
15	1,67	IPE 330	Perfil Laminado	330	160	160	7,5	11,5	11,5	18	18	62,6	165,0	80,0	307	271,0	0,00	0,00

Figura 3.10 – Módulo Robot Structural Analysis de definição geométrica da secção.

Para que o módulo funcione é necessário que esteja um ficheiro do *Robot Structural Analysis* aberto no computador e que seja feito clique sobre o elemento que contem a secção a identificar para que este fique seleccionado (Figura 3.11).

Figura 3.11 - Seleção do elemento destacado a vermelho no programa Robot Structural Analysis.

Depois de seleccionado o elemento, bastará abrir a ferramenta *AciariUM* e no separador *"Results Connect"*, na barra de ferramentas, pressionar o botão *"Calculate all"* (Figura 3.12).

XI	5	• 🔿	~ ¥									Aci	riUM - N	Aódulo Rob	ot Structur	al Analysis.x	lsm - Excel												?	Ŧ	- 8	×
FICHEIRC	B	ASE	INSERIR	ESQUE	MA DE PÁ	SINA	FÓRMULAS	S DA	DOS	REVER	VER	PROGRAM	ADOR	RESULTS	CONNECT	Foxit PD	F INQU	IRE													Iniciar s	essão
	P	PDF		Formula wizard	Rob Ral E Bar	t Structu orces - v/	ral Analysis alues	\$		-	nsert select formula	ed Modif	Calcu	late Calcul	ite Units	Help Help Help	t															
Comandos	da Ba	arra de	Ferramenta	s			Formula d	definition						Tools		About																^
AO31				* :	× v	f_x							Calo	ulate all																		~
A	в	с	D	E	F	i H	i i u	K	L	M	N	0	P	ulate all op	ened work	books		w x	Y	z /	A A	AC	AD	AE	AF	AG	AH	AI	AJ	AK	AL	/ -
2	Acia	riUM	INTE	RFACE	I. SECÇ	ÃO TR	ANSVER	RSAL E	PROP	RIED	ADES D	O MATE	રા/ 🗟	Results Co Mais inform	nnect nações												мо	DULO DE	ÁLCULO:	RO	вот	

Figura 3.12 – Ativação do "*Results Connect*" para recolha automática das dimensões da secção transversal de um elemento selecionado num ficheiro do *Robot Structural Analysis*.

Depois de concluídos os referidos procedimentos a secção é automáticamente identificada. A ferramenta de cálculo recolhe, a partir do ficheiro do *Robot Structural Analysis* e nos campos destinados ao efeito, as dimensões principais da secção transversal de acordo com a Figura 3.10.

Não é possível definir no *Robot Structural Analysis* o tipo de perfil (laminado ou soldado) ou a espessura dos cordões de soldadura *cs* que fazem a ligação entre a alma e os banzos da secção transversal. Por este motivo a definição destes parâmetros na ferramenta *AciariUM* é manual e é feita uma gestão semelhante à referida no Quadro 3.3.

Estas mesmas instruções podem ser consultadas pelo utilizador na ferramenta *AciariUM* premindo o botão "*Info*" que abre a janela apresentada na Figura 3.13 (Passos 1 e 2).

Figura 3.13 – Instruções para utilização do Módulo Robot SA no Interface I da ferramenta AciariUM.

Página | 50

3.5.5 Propriedades do material e parâmetros gerais do cálculo

3.5.5.1 Classe de resistência do aço

A Classe de resistência do aço é definida no espaço do Interface I identificado na Figura 3.14.

TIPO DE AÇO CONSTITUINTE DO ELEMENTO ESTRUTURAL	AÇO DA CLASSE \$275 fy \$235 fy \$255 fu \$355 fu \$450 \$(D)	TIPO DE AÇO CONSTITUINTE DO ELEMENTO ESTRUTURAL	AÇO DA CLASSE S275 fy 275 MPa fu 430 MPa	TIPO DE AÇO CONSTITUINTE DO ELEMENTO ESTRUTURAL	AÇO DA CLASSE S/ ID fy 250 MPa fu 430 MPa
a)	Situação 1	b)	Situação 2	c)	Situação 3

Figura 3.14 – Definição da Classe de resistência do aço e correspondentes valores de f_y e f_u .

A ferramenta tem na sua base de dados quatro Classes de aço para as quais define automaticamente os valores nominais da tensão de cedência f_y e da tensão última à tração f_u de acordo com o Quadro 3.1 do regulamento NP EN 1993-1-1 [1] e o Quadro 3.4 deste documento. Os valores de f_y e f_u propostos pela ferramenta para cada Classe de aço são válidos para secções cujos componentes (alma e banzos) têm espessuras nominais *t* inferiores a 40mm.

	Valor nominal de f.	Valor nominal de f_{μ}
Classe do Aço	(MPa)	(MPa)
S235	235	360
S275	275	430
S355	355	490
S450	440	550

Quadro 3.4 - Classes de resistência do aço na base de dados da ferramenta AciariUM.

As referidas Classes de aço podem ser selecionadas a partir da lista que surge na célula correspondente à sua definição (Figura 3.14 – Situação 1).

É possivel a definição direta e de forma manual dos valores de $f_y e f_u$. São adimissiveis quaisquer valores. Nesse caso o campo correspondente á definição da Classe do aço mostrará o texto "S/ ID" (Figura 3.14 – Situação 3).

3.5.5.2 Propriedades gerais do aço

As propriedades gerais do aço constituinte do elemento estrutural são definidas no espaço do Interface I identificado na Figura 3.15.

PROPRIEDADES	E	210	GPa	α	1,20E-06	/к	
GERAIS	G	80,77	GPa	G _m	7850	Kg/m ³	Redefinir NP EN 1993-1-1
DO MATERIAL	v	0,3		η	1,20		

Figura 3.15 – Propriedades gerais do aço constituinte do elemento estrutural.

Na secção 3.2.6 da norma NP EN 1993-1-1 [1] são definidas as propriedades a adotar nos cálculos para o caso dos aços estruturais por ela abrangidos.

A ferramenta *AciariUM* permite a alteração livre destas propriedades. Os valores propostos pelo Eurocódigo 3 poderão ser repostos a qualquer altura clicando no botão "Redifinir" que abre a janela exibida na Figura 3.16.

NP EN 1993-1-1 (CITAÇÃO)	
3.2.6 Valores de cálculo das propriedades do	os materiais
(1)No caso dos aços estruturais abrangidos p deverão ser as seguintes:	bela presente Norma, as propriedades a adoptar nos cálculo
 módulo de elasticidade 	$E = 210\ 000\ N\/mm^2$
 módulo de distorção 	$G = \frac{E}{2(1+v)} \approx 81000 \text{ N/mm}^2$
- coeficiente de Poisson em regime elástico	v = 0,3
 coeficiente de dilatação térmica linear 	$\alpha = 12 \times 10^{-6} \text{ por K} (\text{para T} \le 100 \text{ °C})$

Figura 3.16 – Janela de reposição dos valores das propriedades do material.

O clique no botão "Aceitar" repõe, no espaço do Interface I identificado na Figura 3.15, as propriedades do aço estrutural propostas pela NP EN 1993-1-1 [1]. O clique no botão "Cancelar" fecha a janela sem que seja executada qualquer outra ação.

3.5.5.3 Coeficientes parciais de segurança

Os coeficientes parciais segurança são definidos no espaço do Interface I na Figura 3.17.

COEFICIENTES	Υмо	1,00	
PARCIAIS DE	Yмı	1,00	Redefinir NP EN 1993-1-1
SEGURANÇA	ү м2	1,25	

Figura 3.17 – Coeficientes parciais de segurança.

Os valores numéricos recomendados para os coeficientes parciais de segurança γ_{Mi} para edifícios são definidos de acordo com a secção 6.1(1) da NP EN 1993-1-1 [1].

A ferramenta *AciariUM* permite a alteração livre destes parâmetros. Os valores propostos pelo Eurocódigo 3 poderão ser repostos clicando no botão "Redefinir" que abre a janela exibida na Figura 3.18. Os botões "Aceitar" e "Cancelar" têm funções idênticas às descritas em 3.5.5.2.

Coeficientes parciais de segurança - NP EN 1993-1-1	×
NP EN 1993-1-1 (CITAÇÃO)	
6.1 Generalidades	
(1)Os coeficientes parciais de segurança γ_M definidos em 2.4.3 deverão ser aplicados, aos diversos va característicos da resistência indicados na presente secção 6, do seguinte modo:	lores
 resistência das secções transversais de qualquer classe: 	γмо
 resistência dos elementos em relação a fenómenos de encurvadura, avaliada através de verificações individuais de cada elemento: 	γмі
 resistência à rotura de secções transversais traccionadas em zonas com furos de ligação; 	γ _{м2}
NOTA 2B: Os coeficientes parciais de segurança γ_{MR} para edificios poderão ser definidos no Anexo Nacional. Os valores nume recomendados para edificios são os seguintes: $\gamma_{MR} = 1.00;$ $\gamma_{MR} = 1.00;$ $\gamma_{MR} = 1.25.$	hricos
Cancelar /	ceitar

Figura 3.18 – Janela de reposição dos valores dos coeficientes parciais de segurança γ_{Mi} .

3.6 Interface II. Condições de apoio, travamento e solicitação do elemento

O Interface II apresenta-se de acordo com a Figura 3.19 (ver em escala maior no Anexo A.2).

[]_Aci														MAN	IUAL																	
DESIG	ESIGNAÇÃO DIMENSÕES PRINCIPAIS DA SECÇÃO TRANSVERSAL A CO DIMENSÕES COMPLEMENTARES EIXO PRINCIPAL DE INÉRCIA Y EIXO PRINCIPAL DE INÉRCIA Z																															
IPE	PE 300 h br bi tv tr ti rr r A zca yca h d csr csi ly Wyne Wyn ly An li Wrze Wze Wyn i An mm mm													Avy cm ²	IT cm ⁴	l⊮ x 10 ⁻⁵ cm ⁶		3														
$f_{\gamma[MPa]}$	true 300 150 7.1 10.7 15 3.8.1 15 3.8.1 15 3.8.1 15.8.8.1 15 3.8.1 15.8.8.1 15														125,9	[0,92															
•	M	ÓDULC	MANU	JAL I	NTRODU	ÇÃO MAN	UAL DO	VALOR DE	CÁLCUL	O DOS ESF	ORÇOS A	TUANTE	S NA SECÇ	ÃO A VER	RIFICARE	DOS PAR	ÂMETRO	6 GEOMÉT	ricos q	UE CARAG	CTERIZAM	O SISTEM	/IA ESTRU	TURAL				INFO (?	OCULTAR /	MOSTRA	AR 🗌
MÓDULO ROBOT STRUCTURAL ANALYSIS RECEBER VALORES DIRETAMENTE DE UM HCHERO DO AUTODESK ROBOT STRUCTURAL ANALYSIS ABERTO NESTE COMPUTADOR INFO 📀 OCULTAR/MOSTRAR													AR 🗌																			
0	MÓDULO AUTOMÁTICO MODELAÇÃO DAS CONDIÇÕES DE APOIO E SOLICITAÇÃO DO ELEMENTO ESTRUTURAL PARA CÁLCULO AUTOMÁTICO DOS PARĂMETROS CORRESPONDENTES PELA FERRAMENTA													AR 🗆																		

Figura 3.19 - Interface II. Condições de apoio, travamento e solicitação.

O Interface tem como função determinar ou identificar os esforços atuantes na secção em análise, e definir parâmetros que caracterizam a geometria do sistema estrutural (Quadro 3.5).

Quadro 3.5 – Parâmetros definidos no Interface II. Esforços atuantes e parâmetros que caracterizam a geometria do sistema estrutural.

Símbolo	Designação
N_{Ed}	valor de cálculo do esforço normal atuante (kN);
$M_{y,Ed}$	valor de cálculo do momento fletor atuante, em relação ao eixo y (kN.m);
$V_{z,Ed}$	valor de cálculo do esforço transverso atuante na direção z (kN);
$M_{z,Ed}$	valor de cálculo do momento fletor atuante, em relação ao eixo z (kN.m);
$V_{y,Ed}$	valor de cálculo do esforço transverso atuante na direção y (kN);
L	comprimento total do elemento viga-coluna (m);
$L_{cr,y}$	comprimento de encurvadura em torno do eixo y (m);
$L_{cr,z}$	comprimento de encurvadura em torno do eixo z (m);
$l_{z,sup}$	comprimento entre secções lateralmente contraventadas - banzo superior (m);
$l_{z,inf}$	comprimento entre secções lateralmente contraventadas – banzo inferior (m).

De acordo com a Figura 3.19 estão disponíveis no Interface II três módulos de definição dos referidos parâmetros:

Módulo Manual (3.6.1) – definidos manualmente pelo utilizador todos os parâmetros;

Módulo Robot Structural Analysis (3.6.2) – recolha automática de parâmetros a partir de um ficheiro do *Robot Structural Analysis* aberto no computador.

0

Módulo Automático de Pré-Dimensionamento (3.6.3) – modelação das condições de apoio, travamento e solicitação do elemento estrutural para cálculo automático dos parâmetros pela ferramenta *AciariUM*.

A caixa de seleção à esquerda do título de cada módulo permite ativar o correspondente modo de cálculo. A caixa de verificação á direita ("*Ocultar / Mostrar*") permite optar por ocultar ou mostrar os procedimentos relativos a cada módulo.

Módulo Manual de definição das condições de apoio, travamento e solicitação 3.6.1

No Módulo Manual o utilizador insere diretamente o valor final dos parâmetros a quantificar nos campos destinados ao efeito (Figura 3.20).

Figura 3.20 – Interface II (excerto). Módulo Manual.

Este módulo é adequado para situações em que o utilizador conhece à partida os esforços de cálculo atuantes na secção condicionante. É exemplo deste tipo de situações o caso em que se pretende utilizar a ferramenta como meio de validação de resultados previamente obtidos a partir de software comercial de análise estrutural.

3.6.2 Módulo Robot Structural Analysis de recolha e definição das condições de apoio, travamento e solicitação

O Módulo Robot Structural Analysis (Figura 3.21) permite a recolha automática dos esforços atuantes na secção identificada (N_{Ed} , $M_{y,Ed}$, $M_{z,Ed}$, $V_{z,Ed}$ e $V_{y,Ed}$) a partir de um ficheiro do Robot Structural Analysis aberto no computador.

Kontext and the second structural analysis aberto neste computador INFO 2 ocultar / mostrar												
IDENTIFICAÇÃO DA SECÇÃO A VERIFICAR	BARRA NO.		CASO CARGA NO. 9	COMB 1		POSIÇÃO SECÇÃO 0,5	x L = 2,50 m NOME SECÇÃO IPE 3	300 L [EL.BARRA] 5,00 m				
SOLICITAÇÃO NA SECÇÃO CONDICIONANTE	N _{Ed} 200,00	kN	M _{Ed.y} 74,64 kN.m	V _{Ed.z} 6,27	kN	M _{Ed.z} 10,00	kN.m V _{Ed.y} 5,00 kN.m	FLEXÃO COMPOSTA DESVIADA				
PARÂMETROS GEOMÉTRICOS DO ELEMENTO	COMPRIMENTO	5,00	m COMPRIMENTOS DE ENCUR	VADURA L cr.y 2,50	m	L _{cr.z} 2,00 m	COMPRIMENTOS ENTRE SECÇÕES CONTRAVENTADAS	l _{sup} 2,00 m l _{inf} 2,00 m				

Figura 3.21 – Interface II (excerto). Módulo Robot Structural Analysis.

Cabe ao utilizador definir na ferramenta AciariUM o número do caso de carga que pretende considerar e a posição relativa da secção a verificar no elemento selecionado. O número dos casos de carga definidos no Robot Structural Analysis pode ser consultado na janela "Load Types" do programa, de acordo com a Figura 3.22. A posição relativa da secção transversal no elemento é definida de acordo com a Figura 3.23.

	iption			
Number:	10	Label:	1	
Nature:	dead \checkmark	Subnature:	Structural	`
Name:	COMB2			
		Add	Modify	
No.	Case name		Nature	^
No.	Case name		Nature	^
1	Peso Próprio		Structural	
2	Revestimentos Col	berturas e	Non-structural	
3	Sobrecarga Plataf	orma	Category H	-
4	Sobrecarga Cober	tura	Category H	
5	Vento 0º		wind	
6	Vento 180º		wind	
	Vento 90º (centra	do)	wind	
7				
7 8	Vento 90º (extrem	10)	wind	
7 8 9	Vento 90º (extrem COMB1	10)	wind Structural	~

carga no Robot Structural Analysis.

Posição relativa = x / L		łz
		ÿÿ
		!z
	L	

Figura 3.22 – Números dos casos de Figura 3.23 – Posição relativa da secção transversal a verificar no elemento selecionado.

O procedimento a realizar para recolha dos parâmetros é identico ao proposto na secção 3.5.4 deste documento, utilizando o *Results Connect*.

O comprimento total do elemento a verificar (*L*), os comprimentos de encurvadura ($L_{cr,y}$ e $L_{cr,z}$) e os comprimentos entre secções lateralmente contraventadas dos banzos superior e inferior ($l_{z,sup}$ e $l_{z,inf}$) são introduzidos manualmente pelo utilizador nos campos destinados ao efeito.

Estas mesmas instruções podem ser consultadas pelo utilizador na ferramenta *AciariUM* premindo o botão "*Info*" que abre a janela apresentada na Figura 3.24 (Passos 1, 2 e 3).

Figura 3.24 - Instruções para utilização do Módulo Robot SA no Interface II da ferramenta AciariUM.

3.6.3 Módulo Automático de Pré-Dimensionamento para modelação e determinação das condições de apoio, travamento e solicitação

O Módulo Automático (Figura 3.25) é o mais indicado para pré-dimensionamento ou para situações em que se pretenda estimar resultados de forma rápida.

Figura 3.25 – Interface II (excerto). Módulo Automático de determinação das condições de apoio, travamento e solicitação.

Este espaço possibilita a modelação completa do sistema estrutural (condições de apoio e travamento) e correspondente solicitação, a partir da qual a ferramenta determina um conjunto de parâmetros.

Ao utilizador cabe definir:

- o comprimento total do elemento viga-coluna a analisar, *L* (ver 3.6.3.1);
- as condições de apoio nas extremidades do elemento (ver 3.6.3.1).
- a posição dos travamentos laterais para análise à encurvadura (varejamento) (ver 3.6.3.2).
- a posição dos travamentos laterais nos banzos superior e inferior para análise à encurvadura lateral (bambeamento) (ver 3.6.3.2).
- um conjunto de cargas verticais concentradas e distribuídas aplicadas na barra (ver 3.6.3.3).
- o valor do esforço axial N_{Ed} instalado (ver 3.6.3.3).
- a coordenada em x da secção/tramo a verificar (ver 3.6.3.5).

A ferramenta *AciariUM* parte desta informação para desenhar diagramas de momentos fletores $M_{y,Ed}$ e esforços transversos $V_{z,Ed}$, de acordo com 3.6.3.4, e devolver a informação identificada no Quadro 3.5.

O módulo automático interpreta a solicitação no elemento viga-coluna como um problema plano. Não estão, portanto, abrangidas situações em que se geram esforços de flexão em torno do eixo z. Nesses casos os valores de $M_{z,Ed}$ e $V_{y,Ed}$ poderão ser comunicado de forma manual pelo utilizador à ferramenta.

3.6.3.1 Definição das condições de apoio do sistema estrutural

As condições de apoio do elemento viga-coluna são definidas no plano xz (alçado), selecionando a partir de um conjunto de sistemas bem definidos aquele que melhor as traduz (Figura 3.26).

Figura 3.26 - Interface II (excerto). Definição das condições de apoio do sistema estrutural. Plano xz.

As translações horizontal (δ_x) e vertical (δ_z) no plano xz e a rotação θ_y são automaticamente classificadas como "fixas" ou "livres" para as duas extremidades depois de selecionado o esquema estrutural que melhor traduz as condições de apoio da barra.

A translação horizontal (δ_y) no plano yz e as rotações θ_x e θ_z devem receber a mesma classificação de forma manual pelo utilizador (a azul na Figura 3.26).

No plano *yx* (planta) as restrições definidas para as translações horizontal (δ_x) e vertical (δ_y) e para a rotação θ_z são utilizadas para que a ferramenta identifique, interprete e represente o esquema estrutural nesse plano, de acordo com a Figura 3.27. Nesta versão da ferramenta *AciariUM* a alteração das restrições referidas neste parágrafo não terá influência nos resultados, uma vez que os comprimentos de encurvadura em torno do eixo z se consideram iguais à distância entre secções lateralmente contraventadas.

Figura 3.27 – Interface II (excerto). Definição das condições de apoio do sistema estrutural. Plano yx.

A informação relativa à rotação θ_x não é utilizada pela ferramenta.

3.6.3.2 Definição das condições de travamento do elemento viga-coluna

As condições de travamento do elemento viga-coluna são definidas individualmente para o que diz respeito às verificações à encurvadura (varejamento) e encurvadura lateral (bambeamento), de acordo com a Figura 3.28. Para os dois casos o método baseia-se na definição das coordenadas em x de um número limitado de travamentos que restringem apenas a translação em y. Devem obrigatoriamente ser inseridos por ordem crescente das coordenadas em x da sua posição. É possível definir até treze travamentos de cada tipo.

Estes travamentos são definidos de forma independente no banzo superior e inferior para o que diz respeito às verificações à encurvadura lateral (bambeamento).

Figura 3.28 – Interface II (excerto). Definição das condições de travamento do elemento viga-coluna para verificação à encurvadura (varejamento) e encurvadura lateral (bambeamento).

As condições de apoio e travamento lateral são o ponto de partida para a determinação automática de comprimentos de encurvadura e comprimentos entre secções lateralmente contraventadas.

3.6.3.3 Definição das condições de carregamento

As condições de carregamento do sistema estrutural são traduzidas por definição de um conjunto de cargas concentradas e distribuídas aplicadas no elemento viga-coluna e do valor de cálculo do esforço normal atuante N_{Ed} . O conjunto de cargas verticais é definido em *z*, na direção normal à barra. As cargas distribuídas podem ser retangulares, triangulares ou trapezoidais. O carregamento é definido pela coordenada em *x* (*m*) do seu ponto de aplicação e pela sua intensidade (em *kN*), na grelha apresentada na Figura 3.29.

Figura 3.29 - Interface II (excerto). Grelha de definição das condições de carregamento.

Página | 58

Os parâmetros β_{ESQ} e β_{DIR} são fatores de redistribuição do momento fletor por forma a ter em conta alguma capacidade de rotação permitida por encastramentos não perfeitos ou ligações de continuidade nas extremidades esquerda e direita, respetivamente, da barra.

3.6.3.4 Cálculo e esboço dos diagramas de esforços

Para cada carga definida ao nível do elemento viga-coluna a ferramenta calcula as forças de reação que resultam nos apoios e os esforços de corte e de flexão que surgem em cada ponto ao

longo do desenvolvimento da barra.

Os valores finais das reações nos apoios são incluídos no esquema de cargas apresentado de acordo com a Figura 3.25.

Os diagramas de esforços transversos e momentos fletores são obtidos por sobreposição dos efeitos de cada carga, e são automaticamente esboçados da forma que se ilustra na Figura 3.30.

Figura 3.30 – Interface II (excerto). Diagramas de esforços.

3.6.3.5 Recolha de resultados

Terminada a modelação das condições de apoio, travamento e solicitação do elemento estrutural, cabe ao utilizador identificar a coordenada em x (no elemento) da secção que pretende verificar para obter resultados.

A ferramenta exibe, para a secção transversal identificada, o esquema onde identifica os setores mais comprimidos dessa secção (Figura 3.31).

Figura 3.31 – Interface II (excerto). Identificação dos setores mais comprimidos da secção a verificar.

Finalmente, a *AciariUM* filtra e devolve, para a secção identificada e correspondente tramo do elemento de barra, a informação identificada no Quadro 3.5. Embora este módulo não inclua o cálculo de esforços no plano xy, o valor de $V_{y,Ed}$ e $M_{z,Ed}$ podem ser comunicados de forma manual pelo utilizador à ferramenta à ferramenta.

3.7 Interface III. Resistência da secção transversal aos ELU

No Interface III (Figura 3.32) é classificada a secção transversal e verificada a sua resistência aos estados limite últimos. Não é solicitada a intervenção por parte do utilizador neste interface. Nas secções 4.6 e 4.8 serão apresentados com mais detalhe os princípios relacionados com a classificação de secções transversais e verificação de estados limite últimos, respetivamente.

[]Ac	ariUM	INTERFACE III. RESISTÊNCIA DA SECÇÃO TRANSVERSAL [ELU]														SI	CÇÃO BIS	SIMÉTRI	CA													
DESIG	NAÇÃO	1	DIMENS	ÕES PRIN	ICIPAIS I	DA SECÇİ	ÃO TRAN	ISVERSA	L	A	c	G	DIMENS	ÕES CON	NPLEME	NTARES		EIXO F	RINCIPA	L DE IN	RCIA Y			EIXO P	RINCIPA	L DE INÉ	RCIA Z					
IPF	300	h	bs	bi	tx	ts	ti	Гs	n	Α	ZCG	усв	hi	d	CS 8	CSi	ly .	$W_{y,sup}$	Wginf	Wpty	İş	Avz	h	Wz.sup	Wzité	Wplz	i.	Ava	lτ	lv x 10 ⁻³		8
		mm	mm	mm	mm	mm	mm	mm	mm	cm ²	mm	mm	mm	mm	mm	mm	cm ⁴	cm ³	cm ³	cm ³	cm	cm ²	cm ⁴	cm ³	cm ³	cm ³	cm	cm ²	cm ⁴	cm ⁶		
f _{y [MPa]}	275	300	150	150	7,1	10,7	10,7	15	15	53,81	150	75	278,6	248,6	0	0	8356	557,1	557,1	628,4	12,46	25,68	603,7	80,5	80,5	125,2	3,35	34,03	20,12	125,9		0,92
SOLICITAÇÃO NA SECÇÃO CONDICIONANTE N _{Ed} 200,00 kN V _{E6.2} 6,27 kN M _{E6.4} 74,64 kN.m V _{E6.7} 5,00 kN M _{E6.2} 10,00 kN.m 1														1																		
	CLASSIFICAÇÃO DA SECÇÃO A secção IPE300 sujeita a Flexão Composta Desviada é da Classe 1. CLASSIFICAÇÃO DA SECÇÃO A Secção IPE300 sujeita a Flexão Composta Desviada é da Classe 1.													1																		

Figura 3.32 - Interface III (excerto). Grelha de cabeçalho e classificação da secção transversal.

O interface gere automaticamente os conteúdos (ou conjuntos de procedimentos) que exibe. Distinguem-se os conjuntos de procedimentos A a H definidos no Quadro 3.6. Surgem no Interface III da ferramenta *AciariUM* pela mesma ordem que aqui são referidos.

Ref ^a	Designação	Cálculo ⁽¹⁾
А	Verificação da resistência da secção transversal a esforços simples.	4.8.1 a 4.8.4
В	Avaliação da necessidade de consideração do efeito do esforço transverso no cálculo dos esforços resistentes definidos para a flexão composta.	4.8.5
С	Interações $[M + V]$: cálculo do momento fletor resistente reduzido pela interação com o esforço transverso.	4.8.5
D	Interações $[M + N + V]$: cálculo do momento fletor resistente reduzido pela interação com os esforços axial e transverso, para o caso de secções transversais bissimétricas das Classes 1 ou 2.	4.8.6
E	Interação $[M_y + M_z + N + V]$: verificação à flexão composta desviada, para o caso de secções transversais bissimétricas das Classes 1 ou 2.	4.8.7.1
F	Interação $[M_y + M_z + N + V]$: verificação à flexão composta desviada, para o caso de secções transversais monossimétricas das Classes 1 ou 2.	4.8.7.2
G	Interação $[M_y + M_z + N + V]$: verificação à flexão composta desviada, para o caso de secções transversais da Classe 3	4.8.7.3
Н	Interação $[M_y + M_z + N + V]$: verificação à flexão composta desviada, para o caso de secções transversais da Classe 4.	4.8.7.4

(1) secção deste documento onde constam a metodologia e as expressões usadas para efeitos de cálculo no referido procedimento.

A gestão dos conteúdos exibidos é feita pelo Interface III em função da Classe da secção transversal, de acordo com o definido no Quadro 3.7.

Classe da Secção Transversal	Procedimentos	Consultar
Secção transversal bissimétrica da Classe 1 ou 2	A; B; C; D; E	3.7.2
Secção transversal monossimétrica da Classe 1 ou 2	A; B; C; F	3.7.3
Secção transversal da Classe 3	A; B; C; G	3.7.4
Secção transversal da Classe 4	A; B; C; H	3.7.5

Quadro 3.7 - Gestão dos conteúdos/procedimentos do Interface III em função da Classe da secção.

3.7.1 Classificação da secção transversal

O cálculo relativamente á classificação da secção transversal é ocultado por defeito. O clique na caixa de verificação correspondente permite que ele seja exibido para consulta (Figura 3.33).

CLASSIFICAÇÃO DA SECÇÃO A secção IPE300 sujeita a Fle	xão Composta Desviada é da Classe 1.		CLASSE 1											
CLASSIFICAÇÃO DA SEÇÃO TRANSVERSAL: FLEXÃO COMPOSTA EM TORI	CLASSIFICAÇÃO DA SEÇÃO TRANSVERSAL: FLEXÃO COMPOSTA EM TORNO DO EIXO Y COM COMPRESSÃO													
CLASSIFICAÇÃO DO BANZO COMPRIMIDO	CLASSIFICAÇÃO DA ALMA		CLASSIFICAÇÃO DA SECÇÃO											
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Secção de Classe 1											
FEERMEPLASTICO Ngind 1479,83 FEERMEPLASTICO ψ -0,73 SUPORIOS STUG/ROLUMTEN FEER SUPERIOR SUPORIOS STUG/ROLUMTE IN A FIBM A FEERIOR SUPORIOS STUG/ROLUMTE IN A FIBM A FEERIOR Mjunite 0 0 ψ -0,73 132,449 275,00 -200,67 -0,73	$\begin{array}{c c} PEGIMEPLSTICO & d^*_{N}(free) & 102,43 & \alpha & 0,71 \\ \\ PEGIMEELISTICO & \Psi & -0,73 \\ \\ \\ AImasujettaaumdiagramadetens\deltaesvariavel(classe1ou2) \end{array}$													
CLASSIFICAÇÃO DA SEÇÃO TRANSVERSAL: FLEXÃO COMPOSTA EM TORI	NO DO EIXO Z COM COMPRESSÃO		NP EN 1993-1-1 Quadro 5.2											
CLASSIFICAÇÃO DO BANZO		CLASSIFICAÇÃO DA ALMA	CLASSIFICAÇÃO DA SECÇÃO											
BANZO SUPERIOR Bs 150,0 rs 15,00 rcss 15,00 c (rmm) 56,45 ts 10,7 c/t 5,28	BANZO INFERIOR Bi 150,0 ri 15,00 rcsi 15,00	d/tw 35.01												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Classe 1 \rightarrow c/t \leq 8,32Classe 2 \rightarrow c/t \leq 9,24Banzo de Classe 1Classe 3 \rightarrow c/t \leq 13,80	Classe 1 $c/t \le 30,51$ Classe 2 $c/t \le 35,13$ Classe 3 $c/t \le 38,83$	Secção de Classe											
REGIME PLÁSTICO α 1,000 REGIME ELÁSTICO Ψ -0,73 Ψ' 0,349 kσ 0,505	REGIME PLASTICO α 1,000 REGIME ELÁSTICO Ψ -0,73 Ψ' 0,349 kσ 0,505	REGIME PLASTICO Nf2 585,75 dN (mm) -67,47 REGIME ELASTICO Ψ -0,73 bt (mm) 63,2797												
$ \begin{array}{c c} \text{situação limite} & \overline{M_{UMITE}} & \sigma_{E} & \sigma_{0} & \Psi \\ \text{considerada:} & 19,15 & -200,67 & 275,00 & -0,73 \end{array} $	$ \begin{array}{c} \text{SITUAÇÃO LIMITE} & \overline{M_{\text{LIMITE}}} & \sigma_{\text{E}} & \sigma_{0} & \Psi \\ \text{CONSIDERADA} & 19,15 & -200,67 & 275,00 & -0,73 \\ \end{array} $													
CLASSIFICAÇÃO DA SEÇÃO TRANSVERSAL: FLEXÃO COMPOSTA DESVIAD	A		NP EN 1993-1-1 Quadro 5.2											
CLASSIFICAÇÃO DA SECÇÃO			Seccão de Classe 1											

Figura 3.33 – Interface III (excerto). Cálculo relativo á classificação da secção transversal.

3.7.2 Interface III para o caso de uma secção transversal bissimétrica da Classe 1 ou 2

No caso de uma secção transversal bissimétrica da Classe 1 ou 2 o Interface III exibe os conjuntos de procedimentos A, B, C, D e E, de acordo com a Figura 3.34 (ver Anexo A.3.1).

[]_Acia		INTE	RFAC	E III. F	RESIST	ÊNCIA	DA S	ECÇÃ	O TRA	NSVER	SAL [ELU]																	si	CÇÃO BIS	SIMÉTRI	CA
DESIG	NAÇÃO		DIMENS	ÕES PRIN	CIPAIS E	DA SECÇÂ	O TRAN	SVERSA	L	A	(CG	DIMENS	ões coi	MPLEME	NTARES		EIXO	PRINCIPA	L DE INÉ	ÍRCIA Y			EIXO P	RINCIPA	L DE INÉ	RCIA Z					
IPE	300	h	b:	bi	tw	t,	ti	Fs.	ri	A	ZCG	yca	hi	d	CS1	CSi	وا م	W _{9,88}	p Wyini	Wply	iy cm	Avz	- h 4	Wz,sup	Wzjré	WpLz	i:	Avg	lr 4	lv x 10 ⁻⁸		ε
f _{y [MPa]}	275	300	150	150	7,1	10,7	10,7	15	15	53,81	150	75	278,6	248,6	0	0	8356	557,:	1 557,1	628,4	12,46	25,68	603,7	80,5	80,5	125,2	3,35	34,03	20,12	125,9		0,92
SOLICITAÇÃO NA SECÇÃO CONDICIONANTE N _{E3} 200,00 km V _{E4.2} 6,27 km M _{E6.4} 74,64 km.m V _{E6.4} 5,00 km M _{E6.2} 10,00 km.m																																
 c	CLASSIFICAÇÃO DA SECÇÃO A secção IPE300 sujeita a Flexão Composta Desviada é da Classe 1. CLASSE 1																															
A. RE	SISTÊN	cia da	SECCA	ÁO TRAI	NSVER	SAL A I	ESFORC	OS SI	NPLES																					NP	EN 1993-	1-1. 6.2
Traçã	io		Nt.Rd	1479	9,83	kN	OK	0%	NPEN1	993-1-1 (6	2.3)																					
Com	pressão		N _{c.Rd}	1479	9,83	kN	OK	14%	NPEN1	993-1-1 (6	2.4)																					
Esfor	ço Trans	verso	V _{z.Rd}	407,	,75	kN	OK	2%	NPEN1	993-1-1 (6	2.6)	com S _y	314,18	cm ³																		
Mon	ento Fle	tor	M _{y.Rd}	172,	,80	kN.m	OK	43%	NPEN1	993-1-1 (6	2.5)																					
Esfor	ço Trans	verso	V _{y.Rd}	540,	,32	kN	OK	1%	NPEN1	993-1-1 (6	2.6)	com S _z	56,51	cm ³																		
Mon	ento Fle	tor	M _{z.Rd}	34,	44	kN.m	OK	29%	NPEN1	993-1-1 (6	2.5)																					

Figura 3.34 a – Interface III. Secção transversal bissimétrica da Classe 1 ou 2 (Parte 1).

Figura 3.34 b - Interface III. Secção transversal bissimétrica da Classe 1 ou 2 (Parte 2).

3.7.3 Interface III para o caso de secção transversal monossimétrica da Classe 1 ou 2

No caso de uma secção transversal monossimétrica da Classe 1 ou 2 o Interface III exibe os conjuntos de procedimento A, B, C e F, de acordo com a Figura 3.35 (ver Anexo A.3.2).

INTERFACE III. RESISTÊNCIA DA SECÇÃO TRANSVERSAL [ELU]			SECÇÃO MONOSSIMÉTRICA
DESIGNAÇÃO DIMENSÕES PRINCIPAIS DA SECÇÃO TRANSVERSAL A	CG DIMENSÕES COMPLEMENTARE	ES EIXO PRINCIPAL DE INÉRCIA Y	EIXO PRINCIPAL DE INÉRCIA Z	
S1 h br bi tw tr ti rr ri A 2co mm mm <th>γca hi d cs₂ csi mm mm mm mm mm 80 278,6 248,6 0 0</th> <th>ly Wy.sup Wy.lef Wpty ly cm⁴ cm³ cm³ cm³ cm 8338 578,1 535,4 627,4 12,45</th> <th>Ave Iz Wzrop Wzrr/ Wylz Iz cm² cm⁴ cm³ cm³ cm³ cm 25,68 611,8 76,47 87,39 125,8 3,372</th> <th>A_{eg} IT Ivx 10⁻³ ε cm² cm⁴ cm⁶ </th>	γca hi d cs₂ csi mm mm mm mm mm 80 278,6 248,6 0 0	ly Wy.sup Wy.lef Wpty ly cm ⁴ cm ³ cm ³ cm ³ cm 8338 578,1 535,4 627,4 12,45	Ave Iz Wzrop Wzrr/ Wylz Iz cm ² cm ⁴ cm ³ cm ³ cm ³ cm 25,68 611,8 76,47 87,39 125,8 3,372	A _{eg} IT Ivx 10 ⁻³ ε cm ² cm ⁴ cm ⁶
SOLICITAÇÃO NA SECÇÃO CONDICIONANTE N _{Ed} 200,00 kN V _{Ed.z} 6	27 kN M _{Ed.y} 74,64	kN.m V _{Ed.y} 5,00 kN	M _{Ed,2} 10,00 kN.m	
CLASSIFICAÇÃO DA SECÇÃO A secção S1 sujeita a Flexão Composta Desvia	da é da Classe 1.			CLASSE 1
A. RESISTÊNCIA DA SECCÃO TRANSVERSAL A ESFORCOS SIMPLES				NP EN 1993-1-1. 6.2
Tração N _{u.8d} 1479,83 KN OK 0% NPEN1593-1-1 (6.2.3) Compressão N _{e.8d} 1479,83 KN OK 14% NPEN1593-1-1 (6.2.3) Edforço Transverso V _{2.8d} 407,75 KN OK 2% NPEN1593-1-1 (6.2.6) Momento Fletor M _{V.8d} 172,52 KN. OK 43% NPEN1593-1-1 (6.2.6) Momento Fletor M _{V.8d} 540,32 N OK M NPEN1593-1-1 (6.2.6) Momento Fletor M _{2.8d} 34,58 KN. OK 2% NPEN1593-1-1 (6.2.6)	com S_{γ} 313,68 cm ³ com S_{2} 56,77 cm ³			
B. AVALIAÇÃO DA NECESSIDADE DA CONSIDERAÇÃO DO EFEITO DO ESFORCO	TRANSVERSO NO CÁLCULO DOS	ESFORCOS RESISTENTES DEFINIDOS	PARA A FLEXÃO COMPOSTA	NP EN 1993-1-1 6.2.10
ESFORÇO TRANSVERSO NA DIREÇÃO 2 [ASSOCIADO AO MOMENTO PLETOR M.] Vg1A2 (NN) 6,272] < 50% Vg1A2 (KN) 407.8 p 0.00 Não é necessário proceder a qualquer redução do valor de cálculo dos esforços resistentes definidos para fiexão composta. To transverso de la qualquer redução do valor de cálculo dos esforços resistentes definidos para fiexão composta. To transverso de la qualquer redução do valor de cálculo dos esforços resistentes definidos para fiexão composta. To transverso de la qualquer redução do valor de cálculo dos esforços resistentes definidos para fiexão composta. To transverso de la qualquer redução do valor de cálculo dos esforços resistentes definidos para fiexão composta. To transverso de la qualquer redução do valor de cálculo dos esforços resistentes definidos para fiexão composta. To transverso de la qualquer redução do valor de cálculo dos esforços resistentes definidos para fiexão composta. To transverso de la qualquer redução do valor de cálculo dos esforços resistentes definidos para fiexão composta. To transverso de la qualquer redução do valor de cálculo dos esforços resistentes definidos para fiexão composta. To transverso de la qualquer redução do valor de cálculo dos esforços resistentes definidos para fiexão composta. To transverso de la qualquer redução do valor de cálculo dos esforços resistentes definidos para fiexão composta. To transverso de la qualquer redução do valor de cálculo dos esforços resistentes definidos para fiexão composta. To transverso de la qualquer redução do valor de cálculo dos esforços resistentes definidos para fiexão composta. To transverso de la qualquer redução do valor de cálculo dos esforços resistentes definidos para fiexão composta. To transverso de la qualquer redução do valor de cálculo dos esforços reducer do valor de cálculo dos esforços reducer do valor de la qualquer de la	Pytheti 275,0 Fy 275,0 NÃO NECESSÁRIO CONSIDERAR A INTERAÇÃO I Antes estante Antes estante Área restante Antes arestante Antes arestante Área 25,68 Area 26,13 Iyra 2445,3 Iyra 5893,0 Wpi.tar 209,0 Wpi.tar 406,7	ESFORÇO TRANSVERSO NA DIREÇÃO Y Vr ₁₅₄ (IN) 5 < 50% Nilo é necessário proceder a qualquer reduçã ficado comporta.	ASSOCIADO AO MOMENTO FLETOR M.) Veji Bay (NN) 540,3 p o do valor de cálculo dos esforços resistentes definidos transportantes de finidos transportantes d	0,00 Γ [*] ₁₇ (6%) 275,0 Γ ₁₇ 275,0 ματα a NAO NECESSÁRIO CONSIDERAM ANTERAÇÃO 1 ANO RECESSÁRIO CONSIDERAM ANTERAÇÃO 1 4 Area resistente ao Est. Transversov, Área restante Ary 34,03 A ₁₇ 19,78 1,4α 609,9 1,4π 1,9 W _{μ1,2} 120,9 W _{μ1,2} 4,8
C. INTERAÇÃO [M + V] ESFORÇO DE FLEXÃO COM ESFORÇO TRANSVERSO				NP EN 1993-1-1. 6.2.8
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	sistente [MRd.y] $r'_{y,Av} \cdot f'_{yz} + W_{y,Ar} \cdot f_{y}$ r'_{M0}	Não é necessário ter em conta a interaç PL MV ^{erg} _{Z,Rd} 34,58 MV ^{re} _{Z,Rd} 34,58	ão do esforço de corte [Vy] com o momento flet kN.m OK 29% MV.z.Rd	tor resistente [MRd.z] $_{d} = \frac{W_{z,Av} \cdot f_{yy} + W_{z,Ar} \cdot f_{y}}{\gamma_{M0}}$
F. INTERAÇÃO $[M_{\gamma} + M_{z} + N + V]$ flexão composta desviada com esforço tra	NSVERSO		[SECÇÕES TRANSVERSAIS MONOSSIMÉTRICAS D	A CLASSE 1 OU 2] NP EN 1993-1-1. 6.2.9
$\label{eq:critério de segurança:} \underbrace{\frac{N_{Ed}}{N_{pl,Rd}} + \frac{M_{Ed}}{M_{pl,\chi,Rd}} \leq 1.0}_{\substack{N_{Ed}\\ 16\%}}$	A 0.29 <		Ск ск ск ск ск ск ск ск	0.87 <

Figura 3.35 – Interface III. Secção transversal monossimétrica da Classe 1 ou 2.

3.7.4 Interface III para o caso de uma secção transversal da Classe 3

No caso de uma secção transversal da Classe 3 o Interface III exibe os procedimentos A, B, C e G, de acordo com a Figura 3.36 (ver Anexo A.3.3).

TadanUM INTERFACE III. RESISTÊNCIA DA SECÇÃO TRANSVERSAL [ELU]	SECÇÃO BISSIMÉTRICA
S2 h bs to to <thto< th=""> to to to<th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th></thto<>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
SOLICITAÇÃO NA SECÇÃO CONDICIONANTE N _{Ed} 200,00 kn V _{Ed,z} 6,27 kn M _{Ed,y} 74	.64 kN.m V _{Ed,y} 5,00 kN M _{Ed,z} 10,00 kN.m
CLASSIFICAÇÃO DA SECÇÃO A secção S2 sujeita a Flexão Composta Desviada é da Classe 3.	CLASSE 3
A. RESISTÊNCIA DA SECCÃO TRANSVERSAL A ESFORCOS SIMPLES	NP EN 1993-1-1. 6.2
Tração N _{u.Rd} 1440,41 kN OK 0% NPEN1993-1-1 (6.2.3) Compressão N _{c.Rd} 1440,41 kN OK 14% NPEN1993-1-1 (6.2.3) Enforço Transverso V _{2.Rd} 300,16 kN OK 14% NPEN1993-1-1 (6.2.6) com S _y 306,69 cm ³ Momento Flator M _{x.Rd} 150,71 KK.m OK 15% NPEN1993-1-1 (6.2.6) com S _x 306,69 cm ³ Enforço Transverso V _{x.Rd} 341,49 KN OK 15% NPEN1993-1-1 (6.2.6) com S _x 79,42 cm ³ Momento Flator M _{x.Rd} 29,36 KLm OK 34% NPEN1993-1-1 (6.2.5)	
B. AVALIAÇÃO DA NECESSIDADE DA CONSIDERAÇÃO DO EFEITO DO ESFORCO TRANSVERSO NO CÁLCULO	DOS ESFORÇOS RESISTENTES DEFINIDOS PARA A FLEXÃO COMPOSTA NP EN 1993-1-1 6.2.10
ESFORÇO TRANSVERSO NA DIREÇÃO Z [ASSOCIADO AO MOMENTO FLETOR M.]	ESFORÇO TRANSVERSO NA DIREÇÃO Y [ASSOCIADO AO MOMENTO FLETOR M2]
V _{2.Ed} (kN) 6,271 < 50% V _{p1.Rd.2} (kN) 384,2 ρ 0,00 f ¹ _V (Avg) 275,0 f _V 275,0	V _{y,Ed} (kN) 5 < 50% V _{pLRd,y} (kN) 511,5 ρ 0,00 f ¹ _y (Aw) 275,0 f _y 275,0
Não é necessário proceder a qualquer redução do valor de cálculo dos esforços resistentes NÃO NECESSÁRIO CONSIDERAR	Não é necessário proceder a qualquer redução do valor de cálculo dos esforços resistentes definidos para a NÃO NECESSÁRIO CONSIDERAR
definidos para a flexão composta.	flexão composta. A INTERAÇÃO !
Image: Constraint of the state of	F3300000 Watt Arr Arran restantee Arran restantee Marran Marran Marran Marran Marran Marran Mara Mara Marran
C. INTERAÇÃO [M + V] ESFORÇO DE FLEXÃO COM ESFORÇO TRANSVERSO	NP EN 1993-1-1. 6.2.8
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Não é necessário ter em conta a interação do esforço de corte [Vy] com o momento fletor resistente [MRd.z] EL MV [*] _{LRd} 29.36 kN.m. OK 34% MV [*] _{LRd} 29.36 kN.m. OK 34%
G. INTERAÇÃO [M _y + M _z + N + V] FLEXÃO COMPOSTA DESVIADA COM ESFORÇO TRANSVERSO	[SECÇÕES TRANSVERSAIS DA CLASSE 3] NP EN 1993-1-1. 6.2.9
$\label{eq:criteriodesegurance} \begin{array}{ c c c c c c c } \hline A & 0.29 &< 1.0 \\ \hline & & contraining Zo \\ \hline & \frac{N_{Ed}}{N_{pkRd}} + \frac{M_{Edy}}{M_{d,yRd}} + \frac{M_{Edx}}{M_{dz,Rd}} \leq 1.0 \\ \hline & & contraining Zo \\ \hline & contraining Zo \\ \hline &$	OK OK 0,97 < 1,0

Figura 3.36 – Interface III. Secção transversal da Classe 3.

3.7.5 Interface III para o caso de uma secção transversal da Classe 4

No caso de uma secção transversal da Classe 4 o Interface III exibe os procedimentos A, B, C e H, de acordo com a Figura 3.37 (ver Anexo A.3.4).

[]_Acia	riUM	INTE	RFAC	E III. I	RESIST	ÊNCIA	A DA S	ECÇÃ	O TRA	NSVER	SAL [ELU]																	s	ECÇÃO BISS	IMÉTRICA
DESIG	IAÇÃO	1	DIMENS	ČES PRIM	ICIPAIS E	DA SECÇÂ	O TRAN	ISVERSA	L	A	(G	DIMEN	SÕES CO	MPLEME	NTARES		EIXO F	RINCIPA	L DE INÉ	RCIA Y			EIXO P	RINCIPA	L DE INÉ	RCIA Z				
S3 f _{y [MPa]}	275	h mm 300	b₅ mm 200	bi mm 200	tv mm 7,1	ts mm 7	ti mm 7	rs mm 5	n mm 5	A cm ² 48,52	zca mm 150	ycg mm 100	hi mm 286	d mm 276	CSs mm 0	CSi mm O	lş cm ⁴ 7438	W _{3.540} cm ³ 495,9	Wy.hri cm ³ 495,9	Wpla cm ³ 558,4	i, cm 12,38	Ave cm ² 24,37	lz cm ⁴ 934,2	W2.54p cm ³ 93,42	WzJirł cm ³ 93,42	Wptz cm ³ 143,7	iz cm 4,388	A _{vg} cm ² 28,21	Ιτ cm ⁴ 8,6	lv x 10 ⁻⁵ cm ⁶ 200,3	ε 0,92
SOLICITAÇÃO NA SECÇÃO CONDICIONANTE N _{Ed} 200,00 km V _{E6.7} 6,27 km M _{E6.7} 74,64 km.m V _{E6.7} 5,00 km M _{E6.7} 10,00 km.m																															
C C	CLASSIFICAÇÃO DA SECÇÃO A secção S3 sujeita a Flexão Composta Desviada é da Classe 4.																														
	DETERMINAÇÃO DAS PROPRIEDADES EFETIVAS DA SECÇÃO DA CLASSE 4 NP EN 1993-1-16.2.9.3 (2)																														
A _{EFF}	Ager 47.31 cm ² W _{eff55} 493 cm ³ W _{eff55} 495 cm ³ W _{eff50} 93.42 cm ³ W _{eff560} 93.42 cm ³ Φ ₈₆₀₀₀ 0.00 mm Δ ₆₆₇ 0.00 kN.m e ₁₀ 0.00 mm Δ ₆₆₇ 0.00 kN.m																														
A. RE	SISTÊNG	CIA DA	A SECCÂ	ÁO TRA	NSVER	SAL A I	SFOR	os sin	IPLES																					NP E	1993-1-1. 6.2
Traçã	0		N _{u.Rd}	133	4,32	kN	OK	0%	NPEN1	993-1-1 (6.	2.3)																				
Com	oressão		N _{c.Rd}	130	0,89	kN	ОК	15%	NPEN1	993-1-1 (6.	2.4)																				
Esfor	ço Transv	/erso	V _{z.Rd}	300),20	kN	OK	2%	NPEN1	993-1-1 (6.	2.6)	$com \ S_{\gamma}$	278,40	cm ³																	
Morr	ento Flet	tor	M _{y.Rd}	135	62	kN.m	OK	55%	NPEN1	993-1-1 (6.	2.5)																				
Esfor	co Transv	/erso	V _{y.Rd}	144	,68	kN	ОК	3%	NPEN1	993-1-1 (6.	2.6)	com S _z	71,76	cm ³																	
Morr	ento Flet	tor	M _{z.Rd}	25	,69	kN.m	OK	39%	NPEN1	993-1-1 (6.	2.5)																				

Figura 3.37 a - Interface III. Secção transversal da Classe 4 (Parte 1).

Figura 3.37 b - Interface III. Secção transversal da Classe 4 (Parte 2).

Os cálculos relativos à determinação das propriedades efetivas de secções da Classe 4 são ocultados por defeito. O clique na caixa de verificação correspondente permite que sejam exibidos para consulta (Figura 3.38).

DETERMIN	IAÇÃO DAS PI	ROPRIED	ADES E	FETIVA	S DA SE	CÇÃO D	A CLAS	SE 4																NP EN 19	93-1-1 6.2.9.3 (2)
A _{EFF} 47,31	cm ²	W _{yEFF,S}	493	cm ³	W _{yEFF,I}	495	cm ³		N _{zEFF,DIR} 93,	2 cm ³	W _{zEFF,E}	sq 93,42 cm ³		e _{Nz (mm)}	0,00	mm	Δ _{My}	0,00	kN.m	e _{Ny}	0,00	mm	Δ _{MZ}	0,00 kN.m	
A _{Eff}	SECÇÃO SUE DETERMINAÇÃ	METIDA IO DA ÁRE	A COM	PRESSS	O UNIF E DOS M	DRME DMENTO	S SECUNE	DÁRIOS (ΔΙ	√z E ΔNγ) RESU	LTANTES	DAS EXCE	VTRICIDADES (eMy	E eMz) ENT	RE OS CE	NTROS D	E GRAVID	ADE DAS	SECÇÕES	EFETIVA E BRUTA.			Cs			
SECÇÃO TOTAL A (cm2) 48,52 ζq (mm) 150,00 σ (tars) 41,22 ψ 1,00 E,N (mm) -	DET. D/ Comprisión Comprisión	BANZO S BANZO AL	ETIVA DO SUPERIOR NFERIOR MA	b (mm) 200 200 b (mm) 276,0	t _(mm) 7 7 t _(mm) 7,1	с 91,45 91,45 91,45 4,000	ψ 1,00 1,00 kσ 4,00	kσ 0,43 0,43 λρ 0,74	λρ 0,759 > 0,759 > > 0,6	0,74 0,74 0,74	RANSVER $8 \longrightarrow$ $8 \longrightarrow$ ρ 0,94!	p cgrs (m) 0,991 90,65 0,991 90,65 0,991 90,65 bc.eff (mm) bg1 (mn) 9 262 131	(4.4) b _{(FF (mm)} 198,4 198,4 b _{e2 (mm)} 131		A _{EFF} (om2) Z _{cg} (mm) A _{V2} (m2) Φ _{N2} (mm) Δ _{M2} (kH,m)	47,31 150,00 20,72 0,00 0,00	efetiva σ _(MPa) ψ A ₅₂ (m2) e _{N2} (mm) Δ _{M2} (k), m	42,28 1,00 26,58 0,00 0,00			hh	rcs.		- tu - tu - tu - cu - cu	b * z b b o b o b o b o b o b o b o b o b o
$\mathbf{W}_{\mathrm{eff,y}}$	SECÇÃO SUE DETERMINAÇÃ	O DO MÓ	A FLEX	ÁO SIMF FLEXÃO E	ILES EM	DEFETIV	DO EIXO) Y NO DO EIX	OY(W _{EFF,y})												[Curl		Cluff	
SECÇÃO TOTAL	DET. D/	A ÁREA EF	ETIVA DO	S ELEMEN	NTOS DE P	LACA CO	MPRIMIC	IOS QUE C	DNSTITUEM A	SECÇÃO T	RANSVER	SAL NP EN 1993-1-5	(4.4)		SECÇÃO	EFETIVA		E	STADO DE TENSÃO			6.	— bs —	с. t. †+1	
$\begin{array}{c} A_{(gm2)} = 48,5206\\ \hline Z_{G}(mm) = 150\\ \sigma_{5}(msy) = 150,517\\ \sigma_{5}(msy) = -150,52\\ \psi_{TOTAL} = -1,000\\ \hline E.N_{(mm)} = 150,0\\ \hline \sigma_{5,ALMA} = 138,5\\ \hline \sigma_{1,ALMA} = -138\\ \hline \psi_{ALMA} = -1\\ \end{array}$	Coopelields Traclosedo Disgrass vatiled di teacifica	BANZO S BANZO S AL	UPERIOR NFERIOR MA	b _(mm) 200 200 b _(mm) 276,0 b _{t(mm)} 138	t _(mm) 7 7 t _(mm) 7,1 b _{c(mm)} 138,0	с 91,45 91,45 -1,000 b _{c,eff (mm} 138	ψ 1,00 1,00 kσ 23,88 b _{e1(mm)} 55,2	kσ 0,43 0,43 λp 0,303 b _{e2 (mm)} 82,8	λp 0,759 > 0,759 > ≤ 0,8	0,74 0,74	8 → 8 → 1,000	ρ CEFF (mm) 0,991 90,65 1,000 91,45	b _{EFF (mm)} 198,4 200		Aerr (cm2) Zog (mm) IyEFF (cm4) WyErr,5 WyErr,1	48,41 149,66 7414 493 495			151,34 -150,66 Ψτοται 139,26 -138,58 Ψ _{ALMA} 149,66	-1,00	rcs. h hi d	- Ciat	bi	(c) (c) (c) (c)	b. be
W _{eff,z}	SECÇÃO SUE				LES EM	FORNO) Z	0.7/04/													,	acionado		-
ID. BANZOS	[B] MAIOR [b] MENOR	LARGURA	Banzo S Banzo I	iuperior Inferior	BS BI	B _(mm) b _(mm)	200 200	t (mm) t (mm)	7 r _{(m} 7 r _{(m}) 5) 5	rcs (mr	n) 5,00 n) 5,00						SECÇÃO A _{EFF (cm2)}	EFETIVA 47,53			۷	2	-bs	
TOTAL		DE	r. da áre	A EFETIV	A DOS ELE	MENTOS	DE PLAC	A COMPRI	MIDOS QUE C	NSTITUE	M A SECÇİ	ÃO TRANSVERSAL N	P EN 1993-	1-5 (4.4)				Yog (mm)	934,2			rcs,			t, *z
A (cm2) 48,5206 γ _{cg (mm)} 100,0 σ _{8.01R} 107,04 σ _{8.55Q} -107,04	Disgrams variant de tensões Disgrams variant de tensões	BS BI	C ₁ C ₂ C ₁	b _(mm) 200 200	t _(mm) 7 7	c 91,45 91,45 91,45 91,45	ψ _{BANZO} -1,000 -1,000	ψ ₁ 1,00 -0,09 1,00	ψ ₂ ψ 0,09 0,0 -1,00 11, 0,09 0,0	ko 9 0,55 0 - 9 0,55	λp 3 0,669 3 0,669	 ρ ≥ 0,748 1,000 	C _{t (mm)} 0 91,45 0 91.45	c _{c(mm)} 91,45 0 91,45	C _{CEFF (mm)} 91,45 0 91,45 0	b _{EFF (mm)} 200 200		WzEFF,DIR WzEFF,ESQ E G _{8,DIR}	93,42 93,42 STADO DE TENSÃO 107,04 -107.04 Ψ _{8,84N20}	-1,000	h	hi d			Υ.
ψs -1,00 σ _{b.DiR} 107,04 σ _{b.ESQ} -107,04 ψ _b -1,00	Comprimido	AL	MA	b _(mm) 276,0	-1 t _(mm) 7,1	ψ _{ALMA} 1,000	kσ 4,00	λp 0,74	> 0,6	3 —	ρ > 0,94	b _{c,eff(mm)} b _{e1(mm} 9 262 131) b _{e2 (mm)} 131	5	0			σ _{b,ESQ} σ _{b,ESQ} E.N. ₈	107,04 -107,04 100,00	-1,000			- G	bi	ti ,-z

Figura 3.38 – Interface III (excerto). Cálculo relativo á determinação das propriedades efetivas de secções da Classe 4.

3.8 Interface IV. Resistência do elemento à encurvadura

No interface IV o elemento viga-coluna é verificado em relação a fenómenos de instabilidade. Distinguem-se os conjuntos de procedimentos A a D definidos no Quadro 3.8. Surgem no Interface IV da ferramenta *AciariUM* pela mesma ordem que aqui são referidos.

Out a day 2.0 C	1	de contexides/		. Interfood IV
Quadro $3.8 - C$	onjuntos	de conteudos/	procedimentos i	10 Interface I v

Ref ^a	Designação	Consultar	Cálculo ⁽¹⁾
А	Verificação à encurvadura (varejamento) em torno do eixo y.	3.8.1	4.9
В	Verificação à encurvadura (varejamento) em torno do eixo z.	3.8.1	4.9
С	Verificação á encurvadura lateral (bambeamento).	3.8.2	4.10
D	Verificação á encurvadura por esforço transverso (enfunamento).	3.8.3	4.11

(1) secção deste documento onde constam a metodologia e as expressões usadas para efeitos de cálculo no referido procedimento.

O Interface IV apresenta-se d	e acordo com a Figura 3.	.39 (ver em escala maior no	Anexo A.4).
-------------------------------	--------------------------	-----------------------------	-------------

Figura 3.39 – Interface IV. Fenómenos de Encurvadura.

3.8.1 Encurvadura (Varejamento)

O espaço do Interface IV (conjuntos de procedimentos A e B) representado na Figura 3.40 é destinado à verificação de segurança do elemento em relação à encurvadura (varejamento). O método e expressões de cálculo estão de acordo com 4.9. A intervenção por parte do utilizador não é requerida para definição de qualquer parâmetro.

VERIFICAÇÃO À ENCURVADURA EM TORNO DO EIXO Y	[VAREJAMENTO - ENCURVADURA POR ESFORÇO AXIAL]	NP EN 1993-1-1. 6.3.1.1(3)
N _{b Rd.y} 1469,70 kN OK 13,6% L _{cr,y}	2,50 $\lambda_{\rm Y}$ 0,23 $\alpha_{\rm Y}$ 0,21 $\varphi_{\rm Y}$ 0,53 $\chi_{\rm F}$ 0,99	
VERIFICAÇÃO À ENCURVADURA EM TORNO DO EIXO Z	[VAREJAMENTO - ENCURVADURA POR ESFORÇO AXIAL]	NP EN 1993-1-1. 6.3.1.1(3)
N _{b Rd.z} 853,94 kN OK 23,4% L _{cr,z}	3,00 λ_{z} 1,03 α_{z} 0,34 φ_{z} 1,17 χ_{z} 0,58	

Figura 3.40 - Interface IV (excerto). Encurvadura (Varejamento). Procedimentos A e B.

3.8.2 Encurvadura Lateral (Bambeamento)

O espaço do Interface IV (conjunto de procedimentos C) representado na Figura 3.41 é destinado à verificação de segurança do elemento em relação à encurvadura lateral (bambeamento).

C. VERIFICAÇÃO À ENCURVADURA LATERAL [BAMBEAME	ENTO - ENCURVADURA POR MOMENTO FLETOR]		NP EN 1993-1-1. 6.3.2											
DETERMINAÇÃO DO VALOR DO MOMENTO CRÍTICO (M _{CR}) PARA A E	DETERMINAÇÃO DO VALOR DO MOMENTO CRÍTICO (M _{CR}) PARA A ENCURVADURA LATERAL - PROPOSTA DE CLARK AND HILL (1960) E GALÉA (1981); AUTORCO:													
 CÁLCULO AUTOMÁTICO DO VALOR DE M_{CR} C	$M_{cr} = C_1 \frac{\pi^2 E I_Z}{(k_z l)^2} \left\{ \left[\left(\frac{k_z}{k_w} \right)^2 \frac{I_{w_+}(k_z l)^2 G I_T}{I_z \pi^2 E I_z} + (C_2 z_g - C_2 z_g$	$(C_{3}z_{j})^{2} = (C_{2}z_{g} - C_{3}z_{j}) = 696,02$	kN.m VALORES M _{CR} 696 kN.m PROPOSITOS M ⁴ _{CR} 1863 kN.m											
COEFICIENTES DISTRIBUIÇÃO DE MOMENTOS INFO 🕢	FATORES DE COMPRIMENTO EFETIVO INFO ?	POSIÇÃO DA CARGA NA SECÇÃO INFO 🖓	GRAU DE ASSIMETRIA DA SECÇÃO INFO 🤇											
C1 1,29 C2 1,56 C3 0,75 REDETINIE VALORES C FORMA DO DIAGRAMA DE MOMENTOS	BAN20 COMPRIMIDO: SUPERIOR FATORES COMPRIMENTO FETIVO kg kg 1,00 COMPRIMENTO FINTE SECCÔES I(m) LATREMU COMBRENIES 5		21 0 m β 0,5 hg 289,3 mm BANZO COMPRIMIDO: SUPERIOR I _R 300,9 cm ⁴ BANZO TRACIONADO: I _R 300,9 cm ⁴											
DETERMINAÇÃO DO VALOR DE CÁLCULO DO MOMENTO RESISTENTI M _{b yAd} 159,81 kN.m. OK. 47% Mor. 696	E À ENCURVADURA LATERAL: kN.m M ^E _{cs} 1863 kN.m λ _t τ 0,50 α _t τ 0,21	φ _{ιτ} 0,66 χ _{ιτ} 0,92												

Figura 3.41 – Interface IV (excerto). Encurvadura Lateral (Bambeamento). Procedimento C.

A intervenção por parte do utilizador neste espaço é solicitada para quantificação do valor do momento crítico para a encurvadura lateral, M_{cr} . O parâmetro poderá ser definido manualmente pelo utilizador, ou determinado automaticamente pela ferramenta *AciariUM*.

3.8.2.1 Módulo Manual de definição do valor de M_{cr}

O módulo manual de definição de M_{cr} é adequado para o caso em que o utilizador tencione obter este valor por outro meio (recomenda-se por exemplo o software *LTBeam* desenvolvido pelo CTICM).

3.8.2.2 Módulo Automático de definição do valor de M_{cr}

O módulo automático de definição de M_{cr} tem por base a proposta de Clark e Hill (1960) e Galéa (1981) [6], de acordo com 4.10.1, e implica a definição por parte do utilizador de um conjunto de parâmetros.

Página | 66

Os parâmetros C_1 , C_2 e C_3 são coeficientes que têm em conta a distribuição de momentos. São definidos por seleção de um dos casos constantes na janela apresentada na Figura 3.42 [2]. A janela é aberta quando premido o botão "*Redefinir Valores*".

Defin	nição dos valores dos coefi	cientes C1,	C2, C3			×		De	finição dos valores dos coefi	icientes C1,	C2, C3			×
Quadro 1 Quadro 2								Quadro 1 Quadro 2						
							ш	Condições de apoio e	Diagrama de	Valor	C	onstante	s	
								carregamento	Momentos Fletores	de kz	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	
									$\psi = +1$	1.0	1.000		1.000	
										0.7	1.000		1.115	
									w = + 3/4	1.0	1.000		0.998	
	D: 1	X7 3	0	onstanta				· · · ·	0.7	1.270		1.565	C	
Condições de apoio e	Diagrama de Momentos Eletores	Valor de k	C	onstante	3					0.5	1.305		2.283	0
carregamento	womentos rictores	ut Ag	C_1	C_2	C_3				$\psi = + \frac{1}{2}$	1.0	1.323		0.992	0
W Second		1.0	1.132	0.459	0.525	С				0.7	1.473		1.556	
[] []		0.5	0.972	0.304	0.980	0			$w = + \frac{1}{4}$	1.0	1.514		2.2/1	
. w . I		1.0	1 285	1 562	0.753				φ	0.7	1.739		1.531	C
honoronionada I		0.5	0.712	0.652	1.070	0				0.5	1.788		2.235	C
-								$M \qquad \psi M$	$\psi = 0$	1.0	1.879		0.939	C
		1.0	1.365	0.553	1.780	0		↓ ↓		0.7	2.092		1.473	0
I I		0.5	1.070	0.432	3.050			J L		0.5	2.150		2.150	
A I		1.0	1.565	1.257	2.640	c			$\psi = -\frac{1}{4}$	1.0	2.281		0.855	
} + −- ≬ └		0.5	0.938	0.715	4.800	0				0.7	2.558		1.540	
EL EL	~									0.5	2.609		0.676	
		1.0	1.046	0.430	1.120	0			ψ = - ½	0.7	3.009		1 059	C
L/4 L/4 L/4 L/4		0.5	1.010	0.410	1.390					0.5	3.093		1.546	C
					ок				$\psi = -\frac{3}{4}$	1.0	2.927		0.366	0
						·				0.7	3.009		0.575	С
										0.5	3.093		0.837	0
									ψ = - 1	1.0	2.752		0.000	0
										0.7	3.063		0.000	C
										0.5	3.149		0.000	
													OK	
						-								

a) Quadro 1.

b) Quadro 2.

Figura 3.42 – Interface IV (excerto). Janela de definição dos Coeficientes Distribuição de Momentos.

Os fatores de comprimento efetivo k_z e k_w dependem das condições de apoio nas secções de extremidade do elemento viga-coluna [6]. Estes valores são definidos manualmente pelo utilizador. O botão "*INFO*" associado ao campo de definição destes parâmetros abre a janela (Figura 3.43) onde são fornecidas instruções para a sua quantificação.

Figura 3.43 – Interface IV (excerto). Janela com instruções para definição dos valores de k_z e k_w .

O botão "*Determinar*" está associado á janela de definição da posição de aplicação da carga ao nível da secção transversal (Figura 3.44), isto é, do parâmetro z_g . A coordenada em z da posição de aplicação da carga pode ser definida manualmente. Em alternativa pode ser definida a

posição através das opções "Face Superior", "Centro de Corte" ou "Face Inferior" da secção transversal, a partir da qual a ferramenta calcula automaticamente o valor do parâmetro z_g .

Figura 3.44 – Interface IV (excerto). Janela de determinação do parâmetro z_g .

O valor do parâmetro z_j é calculado automaticamente de acordo com a geometria e solicitação definidas nos Interfaces I e II.

3.8.3 Encurvadura por esforço transverso

A verificação à encurvadura por esforço transverso é realizada no espaço do Interface IV (conjunto de procedimentos D) identificado na Figura 3.45. O método e expressões de cálculo serão posteriormente apresentados na secção 4.11.

D. VERIFICAÇÃO À ENCU	JRVADURA F	POR ES	FORÇO	TRAN	SVERSC) [ENFUNAM	ENTO]														NP EN 1993-1-1. Anexo A
ESFORÇO TRANSVERSO RESIST	ENTE PLÁSTICO	ELU)	V _{pl,Rd}	40	7,75	kN	ОК	NPEN19	93-1-1 (6	i.2.6)	com S	314,178	cm ³								EXT. INT. EXT.
ALMA NÃO REFORÇADA	h _w /t _w	39,24	<	72	/η ε	55,46	\longrightarrow	Não há	i necesi	dade de	existire	em refor	ços tran	sversais!							B5
REFORÇOS TRANSVERSAIS	EXTREMIDADE	Não	RÍG	IDOS		INTERMÉDIOS	Não		a (m)		-		L (m)	5,0	00		TMIZAR	REFORÇ	OS TRAN	SVERSAIS	S BI
REFORÇOS LONGITUDINAIS	Não															4	Arredonda	mento	a múltiplo	os de 5cm.	
ALMA REFORÇADA h _w /t _w 39,24 < 31/η ε $\sqrt{k_{\star}}$ - \longrightarrow Não há necesidade de verificar a chapa em relação à resistência à encurvadura por esforço transversol												9 <mark>. kτ - kτ_{si} 0 a/h</mark> ; -									
Verificação da chapa em relação à resistência à encurvadura por esforço transverso Ni														NOTAS E CHAMADAS DE ATENÇÃO							
V _{b Rd} [kN] - =	Vb _{w.Rd} -	+	Vb _{f.Rd}	-		DE	TERMINAÇ	ÇÃO DA	SECÇÂ	O EFET	IVA CO	NSTITUÍ	DA APE	NAS PEI	LAS ÁR	EAS EFE	TIVAS D	OS BAI	VZOS		
ОК	χ., -		CASE	3					b (mm)	t _(mm)	с	ψ	kσ	λρ				ρ	CEFF (mm)	b _{EFF (mm)}	O método de cálculo do valor de VbRd é
	σ _{E (MPa)} 123,27		SECÇÃO	TOTAL		сомините ВА	NZO SUPER	IOR	150	10,7	56,45	1,00	0,43	0,306	≤	0,748	\longrightarrow	1,000	56,45	150	válido se existirem reforços transversais pelo
	λ, -		A (cm2)	53,812		TRACIONADO BA	NZO INFERI	IOR	150	10,7	56,45	1,00	0,43	0,306	≤	0,748	\longrightarrow	1,000	56,45	150,00	menos nos apoios.
			Zcg (mm)	150																	
	0 _{5.0001} 171.14 sección sección Agricon 32.10																				
			σ _{i (MPa)}	-96,81		constituída apena	s Z _{cg(mm)}	150,00			132.10		05.39								RESTRIÇÕES DE VALIDADE:
			ψτοται	-0,566		pelas áreas efetivo	38 LyEFF (cm4)	6720		WH,Rd	125,19	WINERd	53,28								Reforços transversais rígidos.
willing optimize optimize											с	-	Inexistência de reforços longitudinais.								

Figura 3.45 – Interface IV (excerto): Encurvadura por esforço transverso.

A representação no canto superior direito do conjunto de procedimentos D caracteriza graficamente a situação definida para o que diz respeito à existência de reforços transversais da alma de acordo com a Figura 3.46.

Figura 3.46 – Caracterização gráfica da situação definida para o que diz respeito à existência de reforços transversais da alma.

A ferramenta AciariUM permite que este espaço seja utilizado de duas formas distintas:

- Módulo de Verificação: o utilizador define manualmente todos os parâmetros envolvidos no cálculo por forma a verificar a segurança de uma situação existente (3.8.3.1).
- Módulo de Dimensionamento: o utilizador solicita à ferramenta que otimize o número de reforços transversais a colocar por forma a que seja verificada a segurança à encurvadura por esforço transverso com o número mínimo de reforços transversais (3.8.3.2).

3.8.3.1 Módulo de Verificação

A ferramenta *AciariUM* começa por verificar se o elemento necessita ou não de possuir reforços transversais pelo menos nos apoios. Em caso negativo está à partida verificada a segurança à encurvadura por esforço transverso sem que seja necessário qualquer reforço transversal da alma. Esta informação serve como base à eventual opção de colocação desses elementos.

O espaço que se segue destina-se à definição dos eventuais reforços transversais de extremidade e intermédios:

- relativamente aos reforços transversais nas extremidades, marcar a opção "Sim" equivale a comunicar que eles existem; a opção "Não" significará o contrário; em caso afirmativo define-se se são reforços "Rígidos" ou "Não Rígidos".
- relativamente aos reforços transversais intermédios é selecionada de forma equivalente a opção correspondente à sua existência ou não existência; em caso afirmativo é definida a distância *a* entre esses reforços.

A partir destas opções é avaliada a necessidade de verificar o elemento à encurvadura por esforço transverso e é determinado o valor de cálculo do esforço transverso resistente à encurvadura por esforço transverso, $V_{b,Rd}$.

Na situação presente, a ferramenta não está preparada para o caso em que existem reforços longitudinais.

3.8.3.2 Módulo de Dimensionamento

O botão "Otimizar Reforços Transversais" desencadeia um processo de otimização que devolve a distância *a* máxima entre reforços transversais que faz com que seja verificada a resistência do elemento à encurvadura por esforço transverso. A ferramenta *AciariUM* arredonda essa distância a múltiplos de 5cm. Se a = "-" significa que não é necessário qualquer reforço da alma.

3.9 Interface V. Verificação da estabilidade global

No Interface V são verificados os elementos em flexão composta com compressão. O interface apresenta-se de acordo com a Figura 3.47 (ver em escala maior no Anexo A.5).

INTERFACE V. ANÁLISE DA ESTABILIDADE GLOBAL DE ELEMENTOS EM FLEXÃO COMPOSTA COM COMPRESSÃO									
DESIGNAÇÃO DIMENSÕES PRINCIPAIS DA SECÇÃO TRANSVERSAL	A CG DIMENSÕES COMPLEMENTARES EIXO PRINCIPAL DE INÉRCIA Y	EIXO PRINCIPAL DE INÉRCIA Z							
IPE 300 h b: bi tw ts ti rs ri mm mm<	A zca yca hi d cs: cs: li W_{inve W_{kvit} W_{kit} i, cm ² mm mm mm mm mm mm cm ⁴ cm ³ cm ³ cm ⁴ cm ³ cm ⁴ cm ³ cm ⁴	Are I: Wzmp Wzmy Wpt: I: Arg IT Ivx10 ² cm ² cm ⁴ cm ³ cm ³ cm ³ cm ² cm ⁴ cm ⁶							
SOLICITAÇÃO NA SECÇÃO CONDICIONANTE N _{Ed} 200,00 kN	V _{Ed.z} 6,27 kN M _{Ed.y} 74,64 kN.m V _{Ed.y} 5,00 kN	M _{Ed.z} 10,00 kN.m CLASSE 1							
ENCURVADURA TENDO EM CONTA A INTERAÇÃO ENTRE COMPRESSÃO E FLEXÃO MÉTODO ALTERNATIVO 1 - NP EN 1993-1-1 ANEXO A									
PARÂMETROS ENCURVADURA L _{cr,y} 2,50 L _{cr,z} 2,00 L	$5,00 \qquad \lambda_{Y} 0,23 \lambda_{z} 0,69 \lambda_{LT} 0,925 \qquad \chi_{Y} 0,99 \chi_{z}$	0,79 χ _{ιτ} 0,72							
ESFORÇOS NORMAIS CRÍTICOS N _{cr,y} 27710 kn N _{cr,z} 312	B kN N _{cr,T} 4895 kN FATORES u _y 1,00 u _z 0,99	$w_{\gamma} 1,13 w_{z} 1,50 n_{\text{pl}} 0,14 \lambda_{\text{max}} 0,69$							
COEFICIENTES DE MOMENTO UNIFORME EQUIVALENTE AUTO MECE © CÁLCULO AUTOMÁTICO DOS VALORES DE Cmujo e Cmujo C CÁLCULO MANUAL DOS VALORES DE Cmujo e Cmujo	$ \begin{array}{ c c c c c } \hline \mbox{504.9 kN.m} & \mbox{C1} & \mbox{1.29} & \lambda_{0} & \mbox{0.58} \end{array} > 0, \\ 2\sqrt{C_{I}} \sqrt[4]{\left(1 - \frac{N_{Ed}}{N_{cr,z}}\right)} (1 - \frac{N_{Ed}}{N_{cr,TF}}) \Rightarrow \end{array} $								
Cmy,0 MODULO DE CÁLCULO AUTOMÁTICO Parametros OPÇÃO LINHA Nº 2	$C_{mLP} = \frac{1}{C_{mLP}} \frac{\left D_{mLP} - D_{mL$	ψ _γ - δ _γ 20 mm VALOR PROPOSTO PARA U ε _γ 3,60 M _{Edv} 64,69 KN.m O PARÂMETRO Cm ₉ .8 Cm ₁₀ .0 1,01 U							
Cmz,0 MODULO DE CÁLCULO AUTOMÁTICO Parametros OPÇÃO LINHA Nº 4	$\begin{tabular}{ c c c c c } \hline L & L & L & L & L & L & L & L & L & L$	ψ ₂ - δ ₂ - mm VALOR PROPOSTO PARA Cm2.0 1,00							
FATORES a _{LT} 1,00 b _{LT} 0,03 c _{LT} 0,39 d _{LT} 0,65	e _{LT} 1,84 FATORES C _W 1,00 C _{V2} 0,88	C _{zy} 0,89 C _{zz} 0,93							
FATORES DE INTERAÇÃO k ₁₁ 1.07 k ₁₂ 0.84 k ₁₂ 0.62 k ₁₂ 1.14									
$\frac{\text{COND}(\text{z}\text{G}\text{ associably a few tornode y})}{\text{NPEN 1933-1-1.6.3.3(4) EVP 6.61}} \frac{N_{\text{Ed}}}{\chi_{y} N_{\text{Ex}}/\gamma_{\text{MI}}} + k_{yy} \frac{M_{y,\text{Ed}} + \Delta M_{y,\text{Ed}}}{M_{x,\text{Ed}}/\gamma_{\text{MI}}} + k_{yy} \frac{M_{x,\text{Ed}} + \Delta M_{y,\text{Ed}}}{M_{x,\text{Ed}}/\gamma_{\text{MI}}} = 1.02 > 1.0 \text{ KO} 102\%$									
$\begin{array}{c} \text{condição associada à encurvadura em torno de z} \\ \text{np en 1993-1-1.6.3.3(4) exp 6.62} \end{array} \\ \end{array} \\ \begin{array}{c} N_{Ec} \\ \hline \chi_y N_{Rk} \end{array}$	$\frac{1}{\gamma_{M1}} + k_{sy} \frac{M_{yEd} + \Delta M_{yEd}}{\chi_{LT} M_{yEk} / \gamma_{M1}} + k_{sz} \frac{M_{zEd} + \Delta M_{zEd}}{M_{zEk} / \gamma_{M1}} = 0,87 < 1,0 $ OK	87%							

Figura 3.47 – Interface V (excerto). Estabilidade Global.

A intervenção por parte do utilizador é requerida, neste espaço, para quantificação dos coeficientes de momento uniforme equivalente $C_{my,0}$ e $C_{mz,0}$. Os parâmetros poderão ser definidos manualmente ou quantificados de forma automática pela ferramenta *AciariUM*.

O módulo automático quantifica $C_{my,0}$ e $C_{mz,0}$ com base no Quadro A.2 do Anexo A da NP EN 1993-1-1 [1]. O quadro é apresentado nas janelas (Figura 3.48) que abrem quando pressionados os botões "*Redefinir Parâmetros*". Cabe ao utilizador selecionar a situação que se aplica ao caso que pretende estudar e, em cada caso, definir os parâmetros que forem solicitados.

	NP EN 1993-1-1 C	uadro A.2 - Coeficientes de Momento Uniforme Equivalente Cmy,0			NP EN 1993-1-1 C	Quadro A.2 - Coeficientes de Momento Uniforme Equivalente Cmz,0	×
	Diagrama de momentos	C _{mi,0}]	L	Diagrama de momentos	C _{mi,0}	
c	M_1 ψM_1 -1 $\leq \psi \leq 1$	$C_{mi,0} = 0,79 + 0,21\psi_i + 0,36(\psi_i - 0,33)\frac{N_{Ed}}{N_{er,i}}$	M1 kNLm yM1 kNLm	c	M_1 ψM_1 $-1 \le \psi \le 1$	$C_{mi,0} = 0,79 + 0,21\psi_i + 0,36(\psi_i - 0,33)\frac{N_{Ed}}{N_{er,i}}$	M1 kN.m yM1 kN.m
		$C_{mi,0} = 1 + \left(\frac{\pi^2 E I_i \left \delta_x\right }{L^2 \left M_{i,Ed}\left(x\right)\right } - 1\right) \frac{N_{Ed}}{N_{cr,i}}$	My,Ed 64,69 k9Lm		M(x)	$C_{mi,0} = l + \Biggl(\frac{\pi^2 E I_i \delta_x }{L^2 \left M_{i,Ed}(x) \right } - 1 \Biggr) \frac{N_{Ed}}{N_{eri}}$	My,Ed kNum
		M _{i,Ed} (x) valor máximo do momento M _{y,Ed} ou M _{z,Ed} correspondente a uma análise de primeira ordem				M _{LEd} (x) valor máximo do momento M _{y,Ed} ou M _{z,Ed} correspondente a uma análise de primeira ordem	ðx mm
		0x Hecha maxima ao longo do elemento				0x necha maxima ao longo do elemento	
c		$C_{mi,0} = 1 - 0.18 \frac{N_{Ed}}{N_{cr.i}}$		c		$C_{mi,0} = 1 - 0.18 \frac{N_{Ed}}{N_{cr,i}}$	
c		$C_{mi,0} = 1 + 0.03 \frac{N_{Ed}}{N_{cr,i}}$	ОК	e l		$C_{mi,0} = 1 + 0.03 \frac{N_{Ed}}{N_{cr,i}}$	ОК

Figura 3.48 – Interface V (excerto). Janelas de definição dos coeficientes de momento uniforme equivalente $C_{my,0}$ e $C_{mz,0}$.

3.10 Interface VI. Relatório de segurança

No Interface 6 (Figura 3.49) é feita uma avaliação final do cumprimento de todos os requisitos de segurança. É produzido um relatório, pronto para exportação, de todos os resultados obtidos do processo de verificação e dimensionamento.

IAC	iariUN	IN	TERFA	ACE V	l. REL	ATÓRI	O FIN	AL D	E SEGL	JRANÇ	A	João M Prof. Isabel Eng.º Migu	. M. Eira IValente uel Pires	* 🗘	Univers Escola	idade do Mi de Engenhari	nho a		SAIS
O ELEN CLASSE	ELEMENTO SUJEITO A FLEXÃO COMPOSTA DESVIADA E CONSTITUIDO PELO PERFIL TRANSVERSAL IPE 300 S275 (SECÇÃO DA ASSE 1) NÃO VERIFICA TODAS AS CONDIÇÕES DE SEGURANÇA.																		
DESIG	NAÇÃO		DIMEN	SÕES PRI	NCIPAIS D	DA SECÇÃ	O TRANS	SVERSA		А		CG	DIM	ENSÕES CO	MPLEME	NTARES	PR	OPRIED	DES
IPE	300	h mm	bs mm	bi mm	tw mm	ts mm	ti mm	rs mm	ri mm	A cm ²	ZCG mm	ycg mm	hi mm	d mm	CSs mm	CSi mm	E GPa	v -	η -
f _{y [MPa]}	275	300	150	150	7,1	10,7	10,7	15	15	53,81	150	75	278,6	5 248,6	0	0	210	0,3	1,2
h h d			BAN			ly cm ⁴ 8356	EIXO P Wy.sup cm ³ 557,1 EIXO P	PRINCIPA Wy.inf cm ³ 557,1 PRINCIPA	L DE INÉR Wpl.y cm ³ 628,4 L DE INÉR	CIA Y iy cm 12,46 CIA Z	Avz cm ² 25,68	0,	ε 92	CLASSI AÇO D/ fy fu	E DE RES A CLASSE 235 360 OEFICIEN	ISTÊNCIA S275 MPa MPa TES			
	5	b) t	-z	200.00				Iz cm ⁴ 603,7	Wz.sup cm ³ 80,5	Wz.inf cm ³ 80,5	Wpl.z cm ³ 125,2	iz cm 3,35	Avy cm ² 34,03	I⊤ cm⁴ 20,12	lw x 10 ⁻³ cm ⁶ 125,9	γM0 γM1 γM2	1,00 1,00 1,25)
S	OLICITAÇ	ÇAO NA S	ECÇAO	NEd	200,00	kN	MEd.γ	74,64	kN	VEd.z	6,27	kN.m	MEd.z	10,00	kN	VEd.y	5,00	kN.m	
C	CLASSIFICAÇÃO DA SECÇÃO A secção IPE sujeita a Flexão Composta Desviada é da Classe 1. CLASSE 1																		

Figura 3.49 – Interface 6 (Excerto): Cabeçalho da primeira página do relatório de segurança.

São excluídos do relatório de segurança os cálculos intermédios relativos á classificação da secção transversal e á determinação das propriedades efetivas das secções da Classe 4.

A área de impressão está ajustada para que o ficheiro seja exportado em formato A4. Não é necessário que o utilizador realize qualquer reajuste. O ficheiro deverá ser composto por duas a três páginas (Figura 3.50, ver em tamanho real no Anexo A.6). As instruções para exportação apresentadas neste subcapítulo são válidas para o *Office Excel 2013*.

Figura 3.50 – Relatório final exportado a partir da ferramenta AciariUM (Anexo A.6).

Para impressão do relatório de segurança deve estar aberto o Interface VI. Premindo as teclas *CTRL* + *P* é aberto o menu de impressão (Figura 3.51). Na janela aberta realizar os seguintes procedimentos: em "*Definições*" selecionar "*Imprimir Folhas Ativas*"; em "*Impressora*" selecionar a impressora pretendida; premir o botão "*Imprimir*".

		AciariUM EC3.xlsm - Excel	? – 8 ×
(ϵ)			Iniciar sessão
Informações	Imprimir		
Novo]	
Abrir	Copias: I 🗸		_
Guardar	Imprimir	O ELEMENTO SUJEITO A FLEXÃO COMPOSTA DESVIADA E CONSTITUIDO PELO PERFIL TRANSVERSAL IPE 300 5275 (SECÇÃO DA CLASSE 1) OX 96%	
Guardar como	Impressora [©]	VERIFICA TODAS AS CONDIÇÕES DE SEGURANÇA. DISIGNIÇÃO DIMENSÕIS PRINCIPAIS DA SECÇÃO TRANSVERIAL A CG DIMENSÕIS COMPLEMENTARES PROPRIEDADES	
Imprimir	Send To OneNote 2013	IPE 300 h bs bit tw ts tris rr A 250 ycc hs d CSs CSI E v n fmm mm mm <td< th=""><th></th></td<>	
Partilhar	Pronto Propriedades da Impressora	Lipson 275 300 150 150 7,1 10,7 10 15 53,812 150 75 278,6 0 210 0,3 1,2 Image: State Stat	
Exportar	Definições		
Fechar	Imprimir Folhas Ativas	1 hr d * 48506,1 557,00° 525,	
Conta	Imprimir apenas as folhas ativas	b Ws.exp Ws.ix Wy/s is Aγγ (17 bix 32 ⁴ γ/40 1,00 cm ² cm	
Oncões	Agrupadas	SOUCTIAÇÃO NA SECÇÃO Ner 200,00 kN Vérz 6,27 kN Nerz 74,64 kN,m Vérz 500 kN Mérz 20,00 kN,m	
063000	1,2,3 1,2,3 1,2,3	CLASSIFICAÇÃO DA SECÇÃO A secção IPE sujeita a Flexão Composta Desviada é da Classe 1. CLASSE 1	
	Orientação Vertical 👻	III. RESISTÊNCIA DA SECÇÃO TRANSVERSAL AOS ESTADOS LIMITES ÚLTIMOS (ELU) SECÇÃO BESIMÉTRICA	
	A4	RESISTÊNCIA DA SECÇÃO TRANSVERSAL A ESFORÇOS SIMPLES INPENSIÓN DE DE DE DE DE DE DE DE DE DE DE DE DE	
	21 cm x 29,7 cm	Tração N _{6,86} 14/9/33 NN UK UN NPRIND 51-1 (6.2.3) Compressão N _{6,86} 1479/33 NN OK 14% NPRIND 51-1 (6.2.4)	
	Última Definição de Margens P	Esforço Transverso V _{CAL D} 407,75 kN 0K 2/6 steruzos-1-1 (s.z.s) com S, 334,33 om* Momento Fletor M _(2.6) (r) 172,80 kN.m 0K 43% steruzos-1-1 (s.z.s)	
	Ajustar Todas as Colunas numa	Esforço Transversio V _{LM bi} 540,32 kN 000 136 Metrasisis-14 (62.6) com 3, 5651 cm ³ Momento Retor M _{C4E(1)} 34,44 kN.m 000 25% Metrasisis-14 (62.5)	
	Encolher a impressão para cab	AVALIJAÇÃO DA NECESSIDADE DA CONSIDERAÇÃO DO EFEITO DO ESFORÇO TRANSVERSO Nº EN 1943-1-1 6.2.10 Nº EN 1943-1-1 6.2.10	
	Configurar Página	ESFORÇO TRANSVERSO EM 2-2 [ASSOCIADO AO MOMENTO FLETOR M.] ESFORÇO TRANSVERSO EM Y-Y [ASSOCIADO AO MOMENTO FLETOR M.]	
		V _{Eds} /v 6,27 < 508	
	4 1 40 2 3	Addition grant finite compatible. Addition grant finite compatible.<	•
	1 002 -		

Figura 3.51 – Menu para impressão do relatório de segurança da ferramenta AciariUM.

Para exportar o documento em formato PDF deve ser premida, com o Interface VI aberto, a tecla *F12* para abrir o menu "*Guardar como*" (Figura 3.52). Na janela aberta realizar os seguintes procedimentos: selecionar em "*Guardar com o tipo*" a opção "*PDF* (*.*pdf*)"; premir o botão "*Guardar*".

X ∄		Guardar como				×
€ ∋ - ↑ 🎩 > PA	STA		~ Ç	Procurar em PASTA		٩
Organizar 👻 Nova pas	sta				•	0
Microsoft Excel	Nome	Da	ata de modificaç	Tipo	Tamanho	
★ Favoritos		Nenhum item co	rresponde à pesquis	sa.		
Ambiente de trab						
Dropbox						
S Locais recentes						
🗼 Transferências 🗸						
Nome de ficheiro: Aciar	riUM - Relatório de Cálculo EL	U.pdf				~
Guardar com o tipo: PDF (*.pdf)					~
Autores: User		Etiquetas: Adicionar un	ma etiqueta			
Otimizar para: (Padrão (publicação online e impressão)	Abrir o public	o ficheiro após a :ação			
C) Tamanho mínimo (publicação online)					
	Opções					
Ocultar pastas			Ferramentas	- Guardar	Cancelar	•

Figura 3.52 – Menu de exportação do relatório de segurança da AciariUM em formato PDF.

3.11 Outras funcionalidades

Junto ao cabeçalho principal de cada interface da ferramenta *AciariUM*, do lado direito e fora da plano de visualização pré-definido, existem botões (Figura 3.53) que ativam procedimentos específicos.

	EIXO PRINCIPAL DE INÉRCIA Y						EIXO	PRINCIPA	L DE INÉ	RCIA Z					AJUSTAR
ly	W _{y,sup}	W _{y,inf}	W _{pl.y}	İy	Avz	lz	Wz,sup	Wz,inf	W _{pl.z}	İz	Avy	١т	Iw x 10 ⁻³	з	VISUALIZAÇAO
cm⁴	cm³	cm³	cm³	cm	cm²	cm⁴	cm³	cm³	cm³	cm	cm⁴	cm⁴	cm°		
8356	557,1	557,1	628,4	12,46	25,68	603,7	80,5	80,5	125,2	3,35	34,03	20,12	125,9	0,92	ATUALIZAR PAGINA
kN.m	$V_{\text{Ed},y}$	0,	10	kN	M _{Ed,z}	-0,	.29	kN.m							MOSTRAR TUDO

Figura 3.53 – Botões que ativam procedimentos específicos posicionados ao lado direito da grelha de cabeçalho principal, fora do plano de visualização.

O botão "*Ajustar Visualização*" ajusta automaticamente o nível de zoom de todos os interfaces da ferramenta de cálculo ao plano de visualização pré-definido, o que permite que a *AciariUM* tome a mesma forma em ecrãs com resoluções diferentes. O mesmo procedimento que é ativado por este botão é realizado sempre que a *AciariUM* é aberta.

Os botões "Atualizar Página" e "Mostrar Tudo" destinam-se à utilização avançada da ferramenta, como forma de auxílio a operações de edição da AciariUM. O botão "Mostrar Tudo" faz com que sejam exibidos todos os conteúdos da página, mesmo aqueles que não se aplicam á situação a ser verificada e que, portanto, são ocultados para o caso presente. O botão "Atualizar Página" desfaz o efeito anterior atualizando a página e os seus conteúdos para o estado normal.

3.12 Resolução de problemas/erros

São apresentadas neste subcapítulo sugestões de resolução de possíveis problemas ou erros que possam eventualmente ocorrer na ferramenta *AciariUM*.

O suporte (3.12.4) deverá ser consultado se, depois de realizados os procedimento propostos, o erro persistir.

3.12.1 Dispositivo de Segurança com registo de alterações

A ferramenta *AciariUM* é gerida por código em Visual Basic que controla um conjunto de procedimentos. Foi exaustivamente testada por forma a identificar, corrigir e prevenir eventuais erros que forcem o algoritmo de cálculo a parar.

Como dispositivo de segurança é gerada uma mensagem de aviso (Figura 3.54) sempre que um interface em que foram efetuadas alterações for fechado. O utilizador deverá entender que os

procedimentos VBA não estão a funcionar corretamente quando, nessas condições, a mensagem não for exibida.

Figura 3.54 – Dispositivo de Segurança.

Se se verificar essa situação é aconselhável reiniciar a ferramenta, preferencialmente sem guardar alterações.

3.12.2 Erro no algoritmo de cálculo do Visual Basic

Se um erro deste tipo acontecer é provável que surja uma janela do género da apresentada na Figura 3.55: o botão "*End*" permite fechar a janela; o botão "*Debug*" permite consultar a linha de código onde ocorreu o erro. Sugere-se que seja premido o botão "End". É possível que os procedimentos VBA não funcionem corretamente a partir desse momento. Nesse caso o dispositivo de segurança apresentado em 3.12.1 ajudará a confirmar essa situação. Se se verificar essa situação é aconselhável reiniciar a ferramenta, preferencialmente sem guardar alterações.

	Microsoft Visual Basic
Run-time error :	
Continue	End Debug Help

Figura 3.55 – Erro relacionado com o algoritmo em Visual Basic.

3.12.3 Figura não exibida ou exibida a figura incorreta

A ferramenta *AciariUM* apresenta figuras de dois tipos no que diz respeito à forma como são apresentadas: figuras que estão inseridas no ficheiro *.xlsm* e que fazem, portanto, parte dele; figuras que estão armazenadas na pasta "Conteúdo Gráfico" que acompanha o referido ficheiro e que são chamadas pela ferramenta *AciariUM* em função das opções do seu algoritmo.

Se as figuras do primeiro tipo não forem exibidas significará, provavelmente, que o computador está sem memória. Aconselha-se fechar outos programas abertos e reiniciar a ferramenta.

Se as figuras do segundo tipo não forem exibidas ou não for exibida a figura correta deverá verificar-se se, de acordo com 3.2, a pasta "Conteúdo Gráfico" está guardada na mesma pasta que o ficheiro *.xlsm*.

Se as situações referidas estiverem salvaguardadas e o erro persistir poderá significar que o código em VBA não está a funcionar corretamente. Sugerem-se os procedimentos referidos em 3.8.7.1 para resolver a situação.

3.12.4 Suporte

Comentários ou sugestões poderão ser enviados para o autor deste documento através do endereço de email <u>aciarum_ec3@gmail.com</u> ou qualquer outro meio.

3.13 Aviso Legal

O autor da *AciariUM* declina toda e qualquer responsabilidade relativamente à utilização da ferramenta por terceiros. Essa responsabilidade é inteiramente remetida para o utilizador.
CAPÍTULO 4

Método e expressões de cálculo

4.1 Enquadramento

O presente capítulo tem como objetivo documentar e resumir a metodologia e o conjunto de expressões usadas pela ferramenta *AciariUM* no processo de verificação e dimensionamento de vigas-coluna em aço aos estados limite últimos (ELU) de acordo com a NP EN 1993-1-1 [1].

As expressões apresentadas são válidas para o caso de secções transversais em I ou H simétricas relativamente ao seu eixo local *z*, de acordo com a Figura 4.1. São apresentadas as variantes para os casos de perfis laminados a quente e perfis reconstituídos soldados.

4.2 Propriedades do material (aço)

As propriedades do aço estrutural são definidas no Interface I da ferramenta AciariUM (3.5.2).

A tensão de cedência f_y (MPa) é determinada em função da classe de resistência definida para o aço estrutural de acordo com o Quadro 3.1 da NP EN 1993-1-1 [1]. Os valores nominais da tensão de cedência f_y e da tensão última à tração f_u são definidos para as classes de aço na base de dados da ferramenta *AciariUM* de acordo com o Quadro 3.4.

Para o caso de aços estruturais abrangidos pela NP EN 1993-1-1 [1], as restantes propriedades a adotar nos cálculos deverão ser, de acordo com a secção 3.2.6 da mesma norma, as seguintes:

- módulo de elasticidade: E = 210 GPa ;
- coeficiente de Poisson em regime elástico: v = 0,3;
- módulo de distorção: $G = E/2(1 + v) \approx 80,77 \text{ GPa}$;
- coeficiente de dilatação térmica linear: $\alpha = 12 \times 10^{-6}$ por K ;
- massa volúmica: $G_m = 7850 \text{Kg/m}^3$.

4.3 Coeficientes parciais de segurança

Os valores numéricos recomendados para os coeficientes parciais de segurança γ_{Mi} para edifícios, de acordo com a secção 6.1(1) da NP EN 1993-1-1 [1], são os seguintes: $\gamma_{M0} = 1,00$; $\gamma_{M1} = 1,00$; $\gamma_{M2} = 1,25$.

4.4 Propriedades mecânicas da secção transversal

A geometria da secção transversal é definida no Interface I da ferramenta *AciariUM* (ver 3.5.1). No mesmo espaço são determinadas automaticamente as propriedades mecânicas dessa secção.

4.4.1 Definição da geometria da secção transversal

Estão disponíveis na ferramenta *AciariUM* três módulos de definição da geometria da secção transversal (ver 3.5.1). Em qualquer um dos casos são definidas, direta ou indiretamente, as principais dimensões dessa secção, de acordo com o Quadro 4.1 e a Figura 4.1.

Símbolo	Designação				
h	altura;				
b_s	largura do banzo superior;				
b_i	largura do banzo inferior;				
t_w	spessura da alma;				
t_s	espessura da alma; espessura do banzo superior;				
t _i	espessura do banzo superior; espessura do banzo inferior; raio de concordância entre a alma e o banzo superior:				
r_s	raio de concordância entre a alma e o banzo superior;				
r_i	raio de concordância entre a alma e o banzo inferior;				
CS_S	espessura do cordão de soldadura que faz a união entre a alma e o banzo superior;				
cs_i	espessura do cordão de soldadura que faz a união entre a alma e o banzo inferior;				
	bs ts + z ts + z ts + z				

Quadro 4.1 - Dimensões principais da secção transversal.

Figura 4.1 - Dimensões principais da secção transversal.

A geometria da secção transversal é o ponto de partida para o cálculo automático das suas propriedades mecânicas, de acordo com 4.4.2.

4.4.2 Determinação das propriedades mecânicas da secção transversal

As equações apresentadas são utilizadas pela ferramenta para determinação das propriedades mecânicas de secções transversais em I ou H simétricas em relação ao seu eixo local z, e definidas geometricamente de acordo com 4.4.1.

Altura da alma, h_w – Equação (4.1).

$$\mathbf{h}_{w} = \mathbf{h} - \left(\mathbf{t}_{s} + \mathbf{t}_{i}\right) \tag{4.1}$$

Altura da parte reta da alma, d – Equação (4.2).

$$\mathbf{d} = \mathbf{h} - \left(\mathbf{t}_{s} + \mathbf{r} \mathbf{c} \mathbf{s}_{s} + \mathbf{t}_{i} + \mathbf{r} \mathbf{c} \mathbf{s}_{i}\right) \tag{4.2}$$

Distância relativa à zona correspondente ao raio de concordância ou cordão de soldadura, rcs – Equações (4.3) e (4.4).

$$rcs = cs$$
 para perfis laminados. (4.3)

$$rcs = \sqrt{2} \times cs$$
 para perfis soldados. (4.4)

Coordenada em z da posição do centro de gravidade, z_{cg} , medida a partir da extremidade inferior da secção transversal – Equação (4.5).

$$z_{cg} = b_{s} t_{s} \left(h - \frac{t_{s}}{2} \right) + b_{i} t_{i} \left(h - \frac{t_{i}}{2} \right) + h_{w} t_{w} \left(t_{i} + \frac{h_{w}}{2} \right) + 2 \left(1 - \frac{\pi}{4} \right) r_{s}^{2} \left(t_{i} + h_{w} - \frac{10 - 3\pi}{12 - 3\pi} r_{s} \right) + 2 \left(1 - \frac{\pi}{4} \right) r_{i}^{2} \left(t_{i} + \frac{10 - 3\pi}{12 - 3\pi} r_{i} \right)$$

$$(4.5)$$

Coordenada em y da posição do centro de gravidade, y_{cg} , medida a partir da extremidade mais à esquerda da secção transversal – Equações (4.6) e (4.7).

$$y_{cg} = \begin{bmatrix} b_{s}t_{s}b_{s}/2 + b_{i}t_{i}\left(\frac{b_{s}-b_{i}}{2} + b_{i}/2\right) \\ + \left(1 - \frac{\pi}{4}\right)r_{s}^{2}\left(\frac{b_{s}}{2} - \frac{t_{w}}{2} - \frac{10 - 3\pi}{12 - 3\pi}r_{s}\right) + \left(1 - \frac{\pi}{4}\right)r_{s}^{2}\left(\frac{b_{s}}{2} + \frac{t_{w}}{2} + \frac{10 - 3\pi}{12 - 3\pi}r_{s}\right) \\ + \left(1 - \frac{\pi}{4}\right)r_{i}^{2}\left(\frac{b_{s}}{2} - \frac{t_{w}}{2} - \frac{10 - 3\pi}{12 - 3\pi}r_{i}\right) + \left(1 - \frac{\pi}{4}\right)r_{i}^{2}\left(\frac{b_{s}}{2} + \frac{t_{w}}{2} + \frac{10 - 3\pi}{12 - 3\pi}r_{i}\right) \end{bmatrix} \div A \begin{bmatrix} para \\ b_{s} \ge b_{i} \end{bmatrix}$$
(4.6)

$$y_{cg} = \begin{bmatrix} b_{i}t_{i}b_{i}/2 + b_{s}t_{s}\left(\frac{b_{i}-b_{s}}{2} + b_{s}/2\right) \\ + \left(1 - \frac{\pi}{4}\right)r_{s}^{2}\left(\frac{b_{i}}{2} - \frac{t_{w}}{2} - \frac{10 - 3\pi}{12 - 3\pi}r_{s}\right) + \left(1 - \frac{\pi}{4}\right)r_{s}^{2}\left(\frac{b_{i}}{2} + \frac{t_{w}}{2} + \frac{10 - 3\pi}{12 - 3\pi}r_{s}\right) \\ + \left(1 - \frac{\pi}{4}\right)r_{i}^{2}\left(\frac{b_{i}}{2} - \frac{t_{w}}{2} - \frac{10 - 3\pi}{12 - 3\pi}r_{i}\right) + \left(1 - \frac{\pi}{4}\right)r_{i}^{2}\left(\frac{b_{i}}{2} + \frac{t_{w}}{2} + \frac{10 - 3\pi}{12 - 3\pi}r_{i}\right) \end{bmatrix} \div A \begin{bmatrix} para \\ b_{s} < b_{i} \end{bmatrix}$$
(4.7)

Área da secção transversal, A – Equação (4.8).

$$A = b_{s} t_{s} + b_{s} t_{s} + h_{w} t_{w} + 2 \cdot \left(1 - \frac{\pi}{4}\right) \cdot \left(r_{s}^{2} + r_{i}^{2}\right)$$
(4.8)

Área resistente ao esforço transverso V_z , $A_{\nu z}$ – Equações (4.9) e (4.10) (Figura 4.2).

$$A_{vz} = A - (b_i \cdot t_i + b_s \cdot t_s) + (t_w + 2 \cdot r_s) \cdot t_s/2 + (t_w + 2 \cdot r_i) \cdot t_i/2 \text{ para perfis laminados}$$
(4.9)

$$A_{vz} = h_w \cdot t_w$$
 para perfis soldados (4.10)

a) Perfil transversal laminado a quente

b) Perfil transversal reconstituído soldado Figura 4.2 – Área resistente ao esforço transverso, $A_{\nu z}$.

Área resistente ao esforço transverso na direção V_y , A_{vy} – Equação (4.11), (Figura 4.3).

$$A_{vy} = b_s t_s + b_i t_i \tag{4.11}$$

Momento de inércia, I, da secção em torno do eixo considerado – Equações (4.12) e (4.13).

$$I_{y} = \frac{b_{s}t_{s}^{3}}{12} + b_{s}t_{s}\left(h - \frac{t_{s}}{2} - z_{cg}\right)^{2} + \frac{b_{i}t_{i}^{3}}{12} + b_{i}t_{i}\left(z_{cg} - \frac{t_{i}}{2}\right)^{2} + \frac{t_{w}h_{w}^{3}}{12} + t_{w}h_{w}\left(t_{i} + \frac{h_{w}}{2} - z_{cg}\right)^{2} + 2 \cdot \frac{11}{2100}r_{s}^{4} + 2 \cdot \left(1 - \frac{\pi}{4}\right) \cdot r_{s}^{2} \cdot \left(h - t_{s} - \frac{10 - 3\pi}{12 - 3\pi} \cdot r_{s} - z_{cg}\right)^{2} + 2 \cdot \frac{11}{2100}r_{i}^{4} + 2 \cdot \left(1 - \frac{\pi}{4}\right) \cdot r_{i}^{2} \cdot \left(z_{cg} - t_{i} - \frac{10 - 3\pi}{12 - 3\pi} \cdot r_{s}\right)^{2}$$

$$(4.12)$$

$$I_{z} = \frac{t_{s}b_{s}^{3}}{12} + \frac{t_{i}b_{i}^{3}}{12} + \frac{h_{w}t_{w}^{3}}{12} + 2 \cdot \frac{11}{2100} \cdot r_{s}^{4} + 2 \cdot \left(1 - \frac{\pi}{4}\right) \cdot r_{s}^{2} \cdot \left(\frac{t_{w}}{2} - \frac{10 - 3\pi}{12 - 3\pi} \cdot r_{s}\right)^{2} + 2 \cdot \frac{11}{2100} \cdot r_{i}^{4} + 2 \cdot \left(1 - \frac{\pi}{4}\right) \cdot r_{i}^{2} \cdot \left(\frac{t_{w}}{2} - \frac{10 - 3\pi}{12 - 3\pi} \cdot r_{i}\right)^{2}$$

$$(4.13)$$

Módulo de flexão elástico, W, em torno do eixo considerado - Equações (4.14).

$$W_{y,sup} = \frac{I_y}{h - z_{cg}} ; W_{y,inf} = \frac{I_y}{z_{cg}} ; W_{z,sup} = \frac{I_z}{b_s/2} ; W_{z,inf} = \frac{I_z}{b_i/2}$$
(4.14)

em que:

- $W_{y,sup}$ e $W_{y,inf}$ módulos de flexão elásticos em torno do eixo y, calculados relativamente às fibras superior e inferior, respetivamente, da secção transversal;
- $W_{z,sup}$ e $W_{z,inf}$ módulos de flexão elásticos em torno do eixo z, calculados relativamente às fibras esquerda ou direita (é indiferente uma vez que são equidistantes do centro de gravidade) dos banzos superior e inferior, respetivamente.

Módulo de flexão plástico em torno do eixo y, $W_{pl,y}$ – Equação (4.15), válida para os casos em que o eixo neutro plástico, *EN*, se situa na parte reta da alma (a maior parte dos casos práticos).

$$W_{pl,y} = b_{s} t_{s} \cdot \left(h - \frac{t_{s}}{2} - EN\right) + b_{i} t_{i} \cdot \left(EN - \frac{t_{i}}{2}\right) + (h_{w} + t_{i} - EN) \cdot t_{w} \cdot \left(\frac{h_{w} + t_{i} - EN}{2}\right) + (EN - t_{i}) \cdot t_{w} \cdot \left(\frac{EN - t_{i}}{2}\right) + 2\left(1 - \frac{\pi}{4}\right) \cdot r_{s}^{2} \cdot \left(h - t_{s} - \frac{10 - 3\pi}{12 - 3\pi}r_{s} - EN\right) + 2\left(1 - \frac{\pi}{4}\right) \cdot r_{i}^{2} \cdot \left(EN - t_{i} + \frac{10 - 3\pi}{12 - 3\pi}r_{i}\right)$$

$$(4.15)$$

em que a coordenada em z, EN, da posição do eixo neutro plástico é determinada de acordo com: EN = $[b_s t_s - b_i t_i - 2(1 - \pi/4) \cdot (r_i^2 - r_s^2) + (h - t_s + t_i) \cdot t_w]/2 t_w$.

Módulo de flexão plástico em torno do eixo z, $W_{pl,z}$ – Equação (4.16).

$$W_{pl,z} = b_{s} t_{s} \frac{b_{s}}{4} + b_{i} t_{i} \frac{b_{i}}{4} + h_{w} t_{w} \frac{t_{w}}{4} + 2\left(1 - \frac{\pi}{4}\right) \cdot r_{s}^{2} \cdot \left(\frac{t_{w}}{2} + \frac{10 - 3\pi}{12 - 3\pi}r_{s}\right) + 2\left(1 - \frac{\pi}{4}\right) \cdot r_{i}^{2} \cdot \left(\frac{t_{w}}{2} + \frac{10 - 3\pi}{12 - 3\pi}r_{i}\right)$$

$$(4.16)$$

Raio de giração, *i*, em torno do eixo considerado – Equações (4.17).

$$i_y = \sqrt{\frac{I_y}{A}}$$
; $i_z = \sqrt{\frac{I_z}{A}}$ (4.17)

Constante de torção de St.Venant, I_T – Equação (4.18).

$$I_{T} = \frac{(b_{s} - 0.63t_{s})t_{s}^{3}}{3} + \frac{(b_{i} - 0.63t_{i})t_{i}^{3}}{3} + \frac{h_{i}t_{w}^{3}}{3} + \frac{h_{i}t_{w}^{3}}{3} + \frac{h_{i}t_{w}^{3}}{3} + \frac{h_{i}t_{w}^{3}}{4} + \frac{t_{w}}{t_{s}} \cdot \left(0.145 + 0.1 \cdot \frac{r_{s}}{t_{s}}\right) \cdot \left(\frac{(r_{s} + t_{w}/2)^{2} + (r_{s} + t_{s})^{2} - r_{s}^{2}}{2r_{s}t_{s}}\right)^{4} + \frac{t_{w}}{t_{i}} \cdot \left(0.145 + 0.1 \cdot \frac{r_{i}}{t_{i}}\right) \cdot \left(\frac{(r_{i} + t_{w}/2)^{2} + (r_{i} + t_{i})^{2} - r_{i}^{2}}{2r_{i}t_{i}}\right)^{4}$$

$$(4.18)$$

Constante de empenamento, I_w – Equação (4.19).

$$\mathbf{I}_{w} = \left[1 + \left(\frac{\mathbf{b}_{s}}{\mathbf{b}_{i}}\right)^{-3} + \left(\frac{\mathbf{t}_{s}}{\mathbf{t}_{i}}\right)^{-1}\right] + \frac{\mathbf{b}_{s} \mathbf{t}_{s} \left(\mathbf{h}_{w} + \frac{\mathbf{t}_{s}}{2} + \frac{\mathbf{t}_{i}}{2}\right)^{2}}{12}$$
(4.19)

4.5 Determinação de reações, esforços e parâmetros relacionados com as condições de apoio e travamento do elemento viga-coluna

As considerações tomadas neste subcapítulo dizem respeito ao "Módulo Automático" de determinação das condições de apoio, travamento e solicitação no Interface II da ferramenta *AciariUM* (ver 3.6.3).

Para cada carga definida ao nível do elemento viga-coluna a ferramenta calcula as forças de reação que resultam nos apoios e os esforços de corte e de flexão que surgem em cada ponto ao longo do desenvolvimento da barra. O cálculo está refinado a 200 pontos separados de uma distância de L/200. O efeito de cada carga é determinado de acordo com [14].

O comprimento de encurvadura em torno do eixo y, $L_{cr,y}$, é definido de acordo com a Figura 4.4 [5], depois de o utilizador caracterizar as condições de apoio do elemento por seleção de um dos casos apresentados na mesma figura.

Figura 4.4 – Determinação do valor do comprimento de encurvadura em torno do eixo y [5].

O comprimento de encurvadura em torno do eixo z, $L_{cr,z}$, é tomado como igual à distância entre secções lateralmente contraventadas, l, no tramo que contem a secção a verificar, considerando para o efeito os travamentos laterais relativos à verificação à encurvadura (varejamento).

4.6 Classificação das secções transversais

A classificação das secções transversais é realizada no Interface III da ferramenta *AciariUM* (ver 3.7.1) de acordo com a secção 5.5 da NP EN 1993-1-1 [1]. Tem como objetivo identificar em que medida a sua resistência e a sua capacidade de rotação são limitadas pela ocorrência de encurvadura local e depende da relação entre a largura e a espessura dos seus componentes comprimidos. Uma secção transversal é classificada de acordo com a classe mais elevada dos seus componentes [1].

Os valores limites da relação entre as dimensões dos componentes comprimidos das Classes 1, 2 e 3 são indicado no Quadro 5.2 da NP EN 1993-1-1 [1] (Figuras 4.5 e 4.6 deste documento). Um componente que não satisfaça os limites da Classe 3 indicados nesse quadro é considerado como sendo da Classe 4.

*) $\psi \leq -1$ aplica-se quando a tensão de compressão $\sigma \leq f_y$ ou quando a extensão de tracção $\epsilon_y > f_y / E$.

Figura 4.6 – Limites máximos das relações largura-espessura para componentes comprimidos em consola (banzos). Quadro 5.2 da NP EN 1993-1-1 (editado) [1].

4.7 Secções transversais da Classe 4

O cálculo das propriedades efetivas de uma secção da Classe 4 é realizado no Interface III da ferramenta *AciariUM* (ver 3.7.5) logo após a classificação dessa secção.

4.7.1 Considerações gerais

A resistência de secções da Classe 4 é determinada com base nas áreas efetivas dos elementos de placa comprimidos (banzos e/ou alma), as quais permitem calcular as características das secções a utilizar nas verificações de segurança: A_{eff} – área efetiva da secção transversal; I_{eff} – momento de inércia da secção efetiva em relação ao eixo considerado; W_{eff} – módulo de flexão da secção efetiva em relação ao eixo considerado [1]. A determinação da secção efetiva dos elementos de placa comprimidos da secção transversal é feita de acordo com a secção 4 da NP EN 1993-1-5 [3] (4.7.3 deste documento).

A verificação aos ELU de uma secção da Classe 4 trata-se, portanto, de um cálculo em regime elástico, semelhante ao adotado para o caso de secções da Classe 3, que assenta na consideração de uma secção efetiva reduzida em relação à secção bruta.

Para as secções transversais assimétricas, nas quais atua um esforço normal de compressão, o eventual afastamento (e_{Nz} ; e_{Ny}) entre os centros de gravidade das áreas das secções efetiva (A_{eff}) e bruta (A), introduz momentos adicionais (a serem somados aos existentes), de acordo com a Equação (4.20), que são tidos em conta na verificação da secção transversal [1]. Entende-se, portanto, que também a situação caracterizada por uma secção da Classe 4 com banzos diferentes sujeita a compressão simples será tratada, devido ao surgimento de um momento $\Delta M_{y,Ed}$, como um problema de flexão composta.

$$\Delta M_{z,Ed} = N_{Ed} e_{Nz} ; \Delta M_{y,Ed} = N_{Ed} e_{Ny}$$
(4.20)

4.7.2 Método de verificação da capacidade resistente de secções da Classe 4

A NP EN 1993-1-1 propõe dois métodos de verificação da capacidade resistente de secções da Classe 4 [9].

O "Método Aproximado" [9], aquele que é utilizado pela ferramenta *AciariUM*, consiste em considerar a tensão máxima de cada elemento igual à tensão de cedência f_y do aço. O critério de verificação da capacidade resistente da secção a respeitar é o seguinte (Equação (4.21)) [1]:

$$\frac{N_{Ed}}{A_{eff} f_y / \gamma_{M0}} + \frac{M_{y,Ed} + N_{Ed} e_{Ny}}{W_{eff, y,min} f_y / \gamma_{M0}} + \frac{M_{z,Ed} + N_{Ed} e_{Nz}}{W_{eff, z,min} f_y / \gamma_{M0}} \le 1,0$$
(4.21)

em que:

- A_{eff} área efetiva da secção transversal, determinada admitindo que está submetida a compressão uniforme (ver 4.7.3);
- $W_{eff,min}$ módulo de flexão efetivo da secção transversal (referente à fibra da secção onde a tensão elástica é mais elevada), quando submetida apenas a um momento fletor em relação ao eixo considerado (ver 4.7.4 e 4.7.5);
- e_N afastamento entre os centros de gravidade da área efetiva (A_{eff}) e da área bruta (A) da secção transversal, quando esta se encontra submetida apenas à compressão (ver 4.7.3).

O "Método Iterativo" admite a determinação da secção eficaz com base nas solicitações que estão realmente presentes na secção transversal (e não no estado limite último) [9]. Compara, de acordo com a Equação (4.22), a tensão atuante ($\sigma_{x,Ed}$) na fibra mais afastada da secção efetiva (admitindo um diagrama elástico de tensões) com a tensão limite de elasticidade de cálculo f_{yd} (f_y/γ_{M0}) [1].

$$\sigma_{x,Ed} \le f_{yd} \tag{4.22}$$

Este método exige um processo iterativo de determinação da tensão máxima $\sigma_{x,Ed}$. Em cada etapa do processo, uma nova secção efetiva é determinada a partir da secção bruta, tendo como base as tensões obtidas para a secção efetiva da etapa anterior [9].

O "Método Iterativo" é em regra um pouco mais favorável que o "Método Aproximado" [9]. A sua implementação não apresenta dificuldades para os casos de compressão simples, flexão simples ou flexão composta. A consideração do diagrama de tensões real na secção transversal exige, no entanto, para os casos de flexão desviada ou flexão composta desviada, ter em conta um número excessivamente grande de possibilidades de posicionamento do eixo neutro.

Por estes motivos, e neste contexto, não se considera viável a implementação do "Método Iterativo". O "Método Aproximado" é implementado em coerência com as propostas da maior parte da bibliografia consultada e dos programas de cálculo testados.

Para um melhor entendimento relativamente a estes métodos, especialmente ao "Método Iterativo" que não é abordado neste documento, sugere-se a consulta de [9]. São apresentados metodologias e exemplos de aplicação práticos para o caso de uma secção em I comprimida e fletida segundo o eixo principal de inércia (flexão composta em torno do eixo y).

4.7.3 Determinação das propriedades efetivas das secções da Classe 4

A secção transversal efetiva é determinada de acordo com a secção 4.4 da NP EN 1993-1-5 [3].

A parte efetiva da alma é determinada, em função da distribuição de tensões nesse elemento, por aplicação das expressões no Quadro 4.1 do referido documento (Figura 4.7).

	Elementos comprimidos interiores (alma)					
Distribuição de	e tensõe	s (compressão posit	iva)	Largura e	fetiva ^p b _{et}	ff
σi		σ2		$\psi = 1$:		
	b _{e1}	b be2		$b_{\text{eff}} = \rho \overline{b}$ $b_{\text{el}} = 0.5 \ b_{\text{eff}}$ $b_{\text{e2}} = 0.5 \ b_{\text{eff}}$	= 0,5 $b_{\rm eff}$	
$\sigma_1 \qquad \qquad \sigma_2 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$				$1 > \psi \ge 0;$ $b_{\text{eff}} = \rho \overline{b}$ $b_{\text{el}} = \frac{2}{5 - \psi} b_{\text{eff}} \qquad b_{\text{e2}} = \frac{1}{2} b_{\text{eff}}$	$= b_{\rm eff} - b_{\rm e}$	1
σ_1 b_c b_c b_t σ_2 b_{e1} b_{e2} σ_2 σ_2				$\psi < 0$: $b_{\text{eff}} = \rho b_{\text{c}} = \rho \overline{b} / (1 - \psi b_{\text{eff}})$ $b_{\text{el}} = 0,4 \ b_{\text{eff}}$) = 0,6 b _{eff}	
$\psi = \sigma_2 / \sigma_1$	1	$1 > \psi > 0$	0	$0 > \psi > -1$	-1	$-1 > \psi \ge -3$
Coeficiente de encurvadura k_{σ}	4,0	8,2 / (1,05 + ψ)	7,81	$7,81 - 6,29\psi + 9,78\psi^2$	23,9	$5,98(1-\psi)^2$

Figura 4.7 – Determinação da secção transversal efetiva: elementos comprimidos interiores (alma). Quadro 4.1 da NP EN 1993-1-5 [3] (editado).

A largura \overline{b} corresponde á altura *d* da parte reta da alma. O coeficiente de encurvadura k_{σ} é o correspondente à razão de tensões ψ e às condições de fronteira.

O coeficiente de redução ρ , para elementos comprimidos interiores (alma), é calculado de acordo com as Equações (4.23) e (4.24).

$$\rho = 1 \text{ para } \overline{\lambda}_{p} \le 0.5 + \sqrt{0.085 - 0.055\psi}$$
 (4.23)

$$\rho = \frac{\overline{\lambda}_{p} - 0.055(3 + \psi)}{\overline{\lambda}_{p}^{2}} \text{ para } \overline{\lambda}_{p} > 0.5 + \sqrt{0.085 - 0.055\psi}$$
(4.24)

Em que: $\overline{\lambda}_{p} = \frac{\overline{b}/t}{28,4\epsilon\sqrt{k_{\sigma}}}$; *t* – espessura *t_w* da alma.

A parte efetiva dos banzos é determinada, em função da distribuição de tensões nesse elemento, por aplicação das expressões no Quadro 4.2 da NP EN 1993-1-5 [3] (Figura 4.8).

Elementos comprimidos em consola (banzos)							
Distribuição de tensões (compressão positiva)				Largura efetiva ^p $b_{\rm eff}$			
σ_2				$1 > \psi \ge 0:$ $b_{\rm eff} = \rho c$			
σ_2 σ_1 σ_1				$\psi < 0$: $b_{\rm eff} = \rho b_{\rm c} = \rho$	οc / (1 – ψ)		
$\psi = \sigma_2 / \sigma_1$		1	0	-1	$-1 1 \ge \psi \ge -3$		
Coeficiente de encurvad	lura k_{σ}	0,43	0,57	57 0,85 0,57 - 0,21 ψ + 0,07 ψ^2		$0,07\psi^2$	
σ_1				$1 > \psi \ge 0:$ $b_{\text{eff}} = \rho c$			
σ_1 σ_2 σ_2 σ_2 σ_2				$\psi < 0$: $b_{\text{eff}} = \rho b_{\text{c}} = \rho c / (1 - \psi)$			
$\psi = \sigma_2 / \sigma_1$	1	1 > 1	$\mu > 0$	0	$0 > \psi > -1$	-1	
Coeficiente de encurvadura k_{σ}	0,43	0,578 / (<i>ψ</i> + 0,34		1,70	$1,7-5\psi+17,1\psi^2$	23,8	

Figura 4.8 – Determinação da secção transversal efetiva: elementos comprimidos em consola (banzos). Quadro 4.2 da NP EN 1993-1-5 [3] (editado).

A largura *c* corresponde á largura da parte em consola do banzo (Figura 4.9).

Figura 4.9 – Largura c correspondente às partes em consola do banzo.

O coeficiente de redução ρ , para elementos em consola (banzos), é calculado de acordo com as Equações (4.25) e (4.26).

$$\rho = 1 \text{ para } \overline{\lambda_p} \le 0.748$$
 (4.25)

$$\rho = \frac{\overline{\lambda}_p - 0.188}{\overline{\lambda}_p^2} \text{ para } \overline{\lambda}_p > 0,748 \tag{4.26}$$

Em que: $\bar{\lambda}_{p} = \frac{\bar{b}/t}{28.4\epsilon\sqrt{k_{\sigma}}}$

Página | 88

4.7.4 Cálculo da área efetiva A_{eff} e do afastamento e_N entre os centros de gravidade das áreas das secções bruta e efetiva

A área efetiva da secção transversal A_{eff} e o afastamento e_N , entre os centros de gravidade da mesma área efetiva (A_{eff}) e da correspondente área bruta (A), são calculados com base na secção efetiva determinada supondo a secção bruta submetida a esforço axial uniforme (compressão ou tração de forma coerente com o sinal do esforço axial atuante na secção transversal).

Quando o esforço é de compressão o cálculo é realizado de acordo com as Equações (4.27) e (4.28) em coerência com a Figura 4.10.

Figura 4.10 – Secção efetiva determinada supondo compressão pura: cálculo de A_{eff} e e_N .

$$\mathbf{e}_{\mathrm{Nz}} = \begin{vmatrix} \mathbf{z}_{\mathrm{cg}} - \mathbf{z}_{\mathrm{cg},\mathrm{EFF}} \end{vmatrix} \tag{4.27}$$

Em que: z_{cg} e $z_{cg,eff}$ – coordenadas em z das posições dos centros de gravidade das secções bruta e efetiva, respetivamente.

$$A_{eff} = (2_{c_{s,eff}} + t_{w} + 2_{rcs_{s}}) \times t_{s} + (2_{c_{i,eff}} + t_{w} + 2_{rcs_{i}}) \times t_{i} + (b_{e2} + rcs_{s} + b_{e1} + rcs_{i}) \times t_{w}$$
(4.28)

Qualquer secção transversal sujeita a tração pura é completamente efetiva.

4.7.5 Cálculo do módulo de flexão efetivo em torno do eixo y $(W_{eff,y})$

O módulo de flexão efetivo da secção transversal em torno do eixo y (referente à fibra da secção onde a tensão elástica é mais elevada) é calculado com base na secção efetiva determinada

supondo a secção bruta submetida apenas a momento fletor em relação ao eixo y. É calculado de acordo com a Equação (4.29), de forma coerente com a Figura 4.11.

Figura 4.11 – Secção efetiva determinada supondo a secção bruta sujeita apenas a um momento fletor em relação ao eixo y: cálculo de $W_{eff,y}$.

$$\begin{split} I_{y,eff} &= \frac{b_{s,eff} \cdot t_s^3}{12} + b_{s,eff} \cdot t_s \cdot \left(h - t_s/2 - z_{cg,eff}\right)^2 + \frac{b_i \cdot t_i^3}{12} + b_i \cdot t_i \cdot \left(z_{cg,eff} - t_i/2\right)^2 \\ &+ \frac{t_w \cdot (b_{e1} + r_s)^3}{12} + t_w \cdot (b_{e1} + r_s) \cdot \left(h - z_{cg,eff} - t_s - (b_{e1} + r_s)/2\right)^2 \\ &+ \frac{t_w \cdot (b_{e2} + z_{cg,eff} - t_i)^3}{12} + t_w \cdot (b_{e2} + z_{cg,eff} - t_i) \cdot \left(z_{cg} - t_i - (b_{e2} + z_{cg,eff} - t_i)/2\right)^2 \quad (4.29) \\ &+ 2 \cdot (11/2100) \cdot r_s^4 + 2 \cdot (1 - \pi/4) \cdot r_s^2 \times \left(h - t_s - \frac{10 - 3\pi}{12 - 3\pi} \cdot r_s - z_{cg,eff}\right)^2 \\ &+ 2 \cdot (11/2100) \cdot r_s^4 + 2 \cdot (1 - \pi/4) \cdot r_s^2 \times \left(h - t_s - \frac{10 - 3\pi}{12 - 3\pi} \cdot r_s - z_{cg,eff}\right)^2 \end{split}$$

Considera-se para este cálculo o valor da posição do centro de gravidade $z_{cg,eff}$ correspondente à secção efetiva determinada de acordo com a Figura 4.11.

As considerações tomadas nesta secção são válidas para o caso de momento fletor M_y positivo. São adaptadas de forma análoga para o caso de M_y negativo.

4.7.6 Cálculo do módulo de flexão efetivo em torno do eixo z ($W_{eff,z}$)

O módulo de flexão efetivo da secção transversal em torno do eixo z (referente à fibra da secção onde a tensão elástica é mais elevada) é calculado com base na secção efetiva determinada supondo a secção bruta submetida apenas a momento fletor em relação ao eixo z. É calculado de acordo com a Equação (4.30), de forma coerente com a Figura 4.12.

Figura 4.12 – Secção efetiva determinada supondo a secção bruta sujeita apenas a um momento fletor em relação ao eixo z: cálculo de $W_{eff,z}$.

$$\begin{split} I_{z,eff} &= \frac{t_{s} b_{s,eff}^{3}}{12} + t_{s} b_{s,eff} \times \left(b_{s,eff} / 2 - y_{cg,eff} \right)^{2} + \frac{t_{i} \cdot b_{i,eff}^{3}}{12} + t_{i} b_{i,eff} \times \left(b_{i,eff} / 2 - y_{cg,eff} \right)^{2} \\ &+ \frac{h_{i} t_{w}^{3}}{12} + h_{i} t_{w} \times \left(b_{s} / 2 - y_{cg,eff} \right)^{2} \\ &+ 2 \cdot (11/2100) \cdot r_{s}^{4} + 2 \cdot (1 - \pi/4) \cdot r_{s}^{2} \times \left(\frac{b_{s}}{2} - \frac{t_{w}}{2} - \frac{10 - 3\pi}{12 - 3\pi} \cdot r_{s} - y_{cg,eff} \right)^{2} \\ &+ 2 \cdot (11/2100) \cdot r_{i}^{4} + 2 \cdot (1 - \pi/4) \cdot r_{i}^{2} \times \left(\frac{b_{s}}{2} - \frac{t_{w}}{2} - \frac{10 - 3\pi}{12 - 3\pi} \cdot r_{i} - y_{cg,eff} \right)^{2} \end{split}$$

$$(4.30)$$

Considera-se para este cálculo o valor da posição do centro de gravidade $y_{cg,eff}$ correspondente à secção efetiva determinada de acordo com a Figura 4.12.

As considerações tomadas nesta secção são válidas para o caso de momento fletor M_z positivo e $b_s \ge b_i$. São adaptadas de forma análoga para o caso de M_z negativo e/ou $b_s < b_i$.

4.8 Verificação de segurança da secção transversal em ELU

A resistência da secção transversal em relação aos estados limite últimos é verificada no Interface III da ferramenta de cálculo (ver 3.7).

4.8.1 Esforço axial de tração (N_t)

O valor de cálculo do esforço normal resistente à tração, $N_{t,Rd}$, é dado, de acordo com a secção 6.2.3 da NP EN 1993-1-1 [1], pela Equação (4.31).

$$\mathbf{N}_{\mathrm{t,Rd}} = \mathbf{A}_{\mathrm{f}_{\mathrm{y}}} / \gamma_{\mathrm{M0}} \tag{4.31}$$

Página | 91

4.8.2 Esforço axial de compressão (N_c)

O valor de cálculo do esforço normal resistente à compressão, $N_{c,Rd}$, é dado, de acordo com as expressões 6.10 e 6.11 da NP EN 1993-1-1 [1], pelas Equações (4.32) e (4.33).

$$N_{c,Rd} = A_{f_y} / \gamma_{M0}$$
 para secções transversais das Classes 1, 2 ou 3 (4.32)

$$N_{c,Rd} = A_{eff} f_v / \gamma_{M0}$$
 para secções transversais da Classe 4 (4.33)

A área efetiva (A_{eff}) da secção transversal é determinada de acordo com a secção 4.7.4 deste documento.

No caso de secções da Classe 4 com banzos diferentes deverá ser tomado em consideração o momento adicional $\Delta M_{y,Ed}$ (Equação (4.20)) devido ao afastamento e_{Nz} (Equação (4.27)) entre os centros de gravidade das áreas das secções efetiva e bruta. Neste caso, a situação deverá ser abordada como um problema de flexão composta de acordo com a secção 4.8.6 deste documento.

4.8.3 Esforço transverso (V)

A verificação de segurança em relação à resistência das secções transversais ao esforço transverso é feita de acordo com a secção 6.2.6 da NP EN 1993-1-1 [1].

4.8.3.1 Secções das Classes 1, 2 ou 3

O valor de cálculo do esforço transverso plástico resistente é calculado a partir da Equação (4.34).

$$V_{pl,Rd} = \frac{A_v(f_y/\sqrt{3})}{\gamma_{M0}} \text{ para secções transversais das Classes 1, 2 ou 3}$$
(4.34)

Em que: A_v – área resistente ao esforço transverso: A_{vz} (se considerado o esforço transverso V_z) ou A_{vv} (se considerado o esforço transverso V_v).

4.8.3.2 Secções da Classe 4

O valor de cálculo do esforço transverso elástico resistente é calculado, relativamente a um ponto crítico da secção transversal, a partir da Equação (4.35).

$$V_{el,Rd} = \frac{f_y}{\sqrt{3}\gamma_{M0}} \times \frac{I \times t}{S} \quad \text{para secções transversais da Classe 4}$$
(4.35)

em que:

- *S* momento estático, relativamente ao eixo principal da secção, da parte da secção transversal situada entre o ponto crítico considerado e a fronteira da secção;
- *I* momento de inércia da secção total (Equação (4.12) ou (4.13));
- t espessura da secção no ponto considerado.

Os parâmetros a considerar no cálculo são identificados na Figura 4.13 em função da direção do esforço transverso atuante considerado. Ainda na mesma figura é identificada a linha sobre a qual se consideram situados os pontos críticos da secção transversal. O momento estático S é relativo ao eixo principal da secção e corresponde á área pintada a azul.

Figura 4.13 – Parâmetros a considerar para determinação do esforço transverso elástico resistente em função da direção considerada.

4.8.4 Esforço de Flexão $(M_y \text{ ou } M_z)$

O valor de cálculo do momento fletor resistente em relação aos eixos $y(M_{y,Rd})$ e $z(M_{z,Rd})$ é dado, respetivamente, pelas Equações (4.36) e (4.37), de acordo com a secção 6.2.5 da NP EN 1993-1-1 [1].

$$\mathbf{M}_{\mathrm{y,Rd}} = \frac{\mathbf{W}_{\mathrm{y}} \mathbf{f}_{\mathrm{y}}}{\gamma_{\mathrm{M0}}} \tag{4.36}$$

$$\mathbf{M}_{z,\mathrm{Rd}} = \frac{\mathbf{W}_{z} \mathbf{f}_{y}}{\gamma_{\mathrm{M0}}}$$
(4.37)

Em que: W – módulo de flexão adequado considerado do seguinte modo: $W = W_{pl}$ para secções transversais das Classes 1 ou 2; $W = W_{el}$ para secções transversais da Classe 3; $W = W_{eff}$ para secções transversais da Classe 4.

É calculado o módulo de flexão efetivo, W_{eff} , da secção transversal, de acordo com as secções 4.7.5 ou 4.7.6 deste documento.

4.8.5 Esforço de flexão com esforço transverso $(M_y + V_z \text{ ou } M_z + V_y)$

Na presença de esforço transverso, os seus efeitos deverão ser tomados em consideração no cálculo do momento fletor resistente – NP EN 1993-1-1 (6.2.8) e (6.2.10) [1], exceto quando cumprido o critério na Equação (4.38).

$$\mathbf{V}_{\mathrm{Ed}} \le 0.5 \, \mathbf{V}_{\mathrm{pl,Rd}} \tag{4.38}$$

O critério deve ser verificado de forma independente para os casos de consideração do esforço transverso nas direções $z(V_z)$ e $y(V_y)$.

O efeito do esforço transverso V_z é tido em conta no cálculo do momento fletor resistente $M_{y,Rd}$ da secção transversal, adotando, na área resistente ao esforço transverso A_{vz} , uma tensão de cedência reduzida, f'_y ($A_{v,z}$), de acordo com a Equação (4.39) – NP EN 1993-1-1 6.2.8(3) [1].

$$f_{y}(A_{v,z}) = (1-\rho) \times f_{y}$$
 em que $\rho = \left(\frac{2V_{z,Ed}}{V_{pl,z,Rd}} - 1\right)^{2}$ (4.39)

O valor de $V_{pl,z,Rd}$ é determinado de acordo com 4.8.3.1. A área resistente ao esforço transverso $A_{v,z}$ (com tensão de cedência $f'_y(A_{v,z})$ que se abrevia em $f'_{y,z}$) e a área restante $A_{r,z}$ (com tensão de cedência f_y) são definidas de acordo com a Figura 4.14.

Figura 4.14 – Área resistente ao esforço transverso, A_{vz} , e área restante, A_{rz} .

O efeito do esforço transverso V_y é tido em conta no cálculo do momento fletor resistente $M_{z,Rd}$ da secção transversal, adotando, na área resistente ao esforço transverso A_{vy} , uma tensão de cedência reduzida, f'_y ($A_{v,y}$), de acordo com a Equação (4.40) – NP EN 1993-1-1 6.2.8(3) [1].

$$f_{y}(A_{v,y}) = (1-\rho) \times f_{y}$$
 em que $\rho = \left(\frac{2V_{y,Ed}}{V_{pl,y,Rd}} - 1\right)^{2}$ (4.40)

O valor de $V_{pl,y,Rd}$ é determinado de acordo com 4.8.3.1. A área resistente ao esforço transverso $A_{v,y}$ (com tensão de cedência $f'_y(A_{v,y})$, que se abrevia em $f'_{y,y}$) e a área restante $A_{r,y}$ (com tensão de cedência f_y) são definidas de acordo com a Figura 4.15.

Figura 4.15 – Área resistente ao esforço transverso, A_{vz} , e área restante, A_{rz} .

O cálculo do momento fletor resistente em torno do eixo considerado reduzido pela interação com o correspondente esforço transverso passa pela aplicação da Equação geral (4.41).

$$\mathbf{M}_{\mathrm{V,pl,Rd}} = \frac{\mathbf{W}_{\mathrm{s}}\mathbf{f}_{\mathrm{y}} + \mathbf{W}_{\mathrm{v}}\mathbf{f}_{\mathrm{y}}}{\gamma_{\mathrm{M0}}} \tag{4.41}$$

em que:

- W_{ν} módulo de flexão relativo à área resistente ao esforço transverso (A_{ν}) em torno do eixo considerado;
- W_r módulo de flexão relativo à área restante (A_r) em torno do eixo considerado.

Os módulos de flexão adequados, $W_v \in W_r$, são considerados do seguinte modo:

- $W_{pl,v}$ e $W_{pl,r}$ para o caso de secções transversais das Classes 1 e 2 secção 4.8.5.1.
- $W_{el,v}$ e $W_{el,r}$ para o caso de secções transversais da Classe 3 secção 4.8.5.2.
- $W_{eff,v}$ e $W_{eff,r}$ para o caso de secções transversais da Classe 4 secção 4.8.5.3.

4.8.5.1 Módulos de flexão $W_{pl,v}$ e $W_{pl,r}$ - Secções das Classes 1 e 2

O módulo de flexão plástico, W_{pl} , relativo a uma determinada área e em torno de determinado eixo, é igual ao somatório dos momentos estáticos, S, em relação ao mesmo eixo, dos subelementos de área que a constituem (Equação (4.42)).

$$\mathbf{W}_{\mathrm{pl}} = \sum \mathbf{S}_{\mathrm{i}} = \sum \mathbf{A}_{\mathrm{i}} |\mathbf{y}_{\mathrm{Gi}}| \tag{4.42}$$

em que:

 S_i momento estático da área do elemento *i*;

 A_i área do elemento i;

 y_{Gi} distância do centro de gravidade do elemento *i* ao eixo neutro plástico.

O diagrama de tensões limite relativo à flexão em torno do eixo *y*, em regime plástico, é definido em coerência com a Figura 4.16.

Figura 4.16 – Diagrama plástico de tensões limite na secção transversal considerando redução da tensão de cedência na área A_{vz} . Flexão em torno do eixo y.

Deduzem-se a partir do esquema na Figura 4.16 os seguintes parâmetros:

 $W_{pl,y,v}$ módulo de flexão plástico em torno do eixo y, relativo á área A_{vz} .

 $W_{pl,y,r}$ módulo de flexão plástico em torno do eixo y, relativo á área A_{rz} .

O diagrama de tensões limite relativo à flexão em torno do eixo *z*, em regime plástico, é definido em coerência com a Figura 4.17.

Figura 4.17 – Diagrama plástico de tensões limite na secção transversal considerando redução da tensão de cedência na área A_{vy} . Flexão em torno do eixo z.

Deduzem-se a partir do esquema na Figura 4.17 os seguintes parâmetros:

 $W_{pl,z,v}$ módulo de flexão plástico em torno do eixo z, relativo á área A_{vy} .

 $W_{pl,z,r}$ módulo de flexão plástico em torno do eixo z, relativo á área A_{ry} .

4.8.5.2 Módulos de flexão $W_{el,v}$ e $W_{el,r}$ - Secções da Classe 3

O módulo de flexão elástico, W_{el} , relativo a uma determinada área e em torno de determinado eixo, é a relação entre o momento de inércia *I* dessa área em relação a esse eixo e a distância *v* do ponto onde a tensão elástica é mais elevada ao mesmo eixo (Equação (4.43)).

$$\mathbf{W}_{\rm el} = \mathbf{I}/\mathbf{v} \tag{4.43}$$

O diagrama de tensões limite relativo à flexão em torno do eixo y, em regime elástico, é definido em coerência com a Figura 4.18.

Figura 4.18 – Diagrama elástico de tensões limite na secção transversal considerando redução da tensão de cedência na área A_{vz} . Flexão em torno do eixo y.

Deduzem-se a partir do esquema na Figura 4.18 os seguintes parâmetros:

 $W_{el,y,v}$ módulo de flexão elástico em torno do eixo y, relativo á área A_{vz} .

 $W_{el,y,r}$ módulo de flexão elástico em torno do eixo y, relativo á área A_{rz} .

O diagrama de tensões limite relativo à flexão em torno do eixo *z*, em regime elástico, é definido em coerência com a Figura 4.19.

Figura 4.19 – Diagrama elástico de tensões limite na secção transversal considerando redução da tensão de cedência na área A_{vy} . Flexão em torno do eixo z.

Deduzem-se a partir do esquema na Figura 4.19 os seguintes parâmetros:

 $W_{el,z,v}$ módulo de flexão elástico em torno do eixo z, relativo á área A_{vy} .

 $W_{el,z,r}$ módulo de flexão elástico em torno do eixo z, relativo á área A_{ry} .

4.8.5.3 Módulos de flexão Weff, e Weff, - Secções da Classe 4

A determinação do momento fletor resistente, reduzido pela interação com o esforço transverso atuante, de secções transversais da Classe 4, é um cálculo em regime elástico que se sustenta nos mesmos princípios propostos na secção anterior para o caso de secções da Classe 3. A consideração das áreas resistente ao esforço transverso A_{ν} e restante A_r deve, no entanto, ter em conta as correspondentes reduções da secção transversal bruta de acordo com 4.7.

O diagrama de tensões limite relativo à flexão em torno do eixo *y*, em regime elástico, é definido em coerência com a Figura 4.20. A secção efetiva considerada é determinada de acordo com 4.7.5.

Figura 4.20 – Diagrama elástico de tensões limite na secção transversal efetiva considerando redução da tensão de cedência na área A_{vz}^{EFF} . Flexão em torno do eixo y.

Deduzem-se a partir do esquema na Figura 4.20 os seguintes parâmetros:

- $W_{eff,y,v}$ módulo de flexão efetivo em torno do eixo y, relativo á área A_{vz}^{EFF} .
- $W_{eff,y,r}$ módulo de flexão efetivo em torno do eixo y, relativo á área A_{π}^{EFF} .

O diagrama de tensões limite relativo à flexão em torno do eixo *z*, em regime elástico, é definido em coerência com a Figura 4.21. A secção efetiva considerada é determinada de acordo com 4.7.6.

Figura 4.21 – Diagrama elástico de tensões limite na secção transversal efetiva considerando redução da tensão de cedência na área A_{vy}^{EFF} . Flexão em torno do eixo *z*.

Deduzem-se a partir do esquema na Figura 4.21 os seguintes parâmetros:

- $W_{eff,z,v}$ módulo de flexão efetivo em torno do eixo z, relativo á área A_{vy}^{EFF} .
- $W_{eff,z,r}$ módulo de flexão efetivo em torno do eixo z, relativo á área A_{ry}^{EFF} .

4.8.6 Flexão composta com esforço transverso $(M_y + V_z + N \text{ ou } M_z + V_y + N)$

4.8.6.1 Secções transversais duplamente simétricas das Classes 1 e 2

Na presença de esforço normal, o seu efeito no cálculo do momento fletor resistente plástico deve ser tomado em consideração de acordo com a secção 6.2.9 da NP EN 1993-1-1.

Dispensa-se a consideração do efeito do esforço normal no cálculo do momento fletor resistente plástico, em relação ao eixo y, quando é satisfeito o critério na Equação (4.44).

$$N_{Ed} \le 0.25 N_{pl,Rd} \quad \cap \quad N_{Ed} \le \frac{0.5 h_w t_w f_y}{\gamma_{M0}}$$

$$(4.44)$$

Dispensa-se a consideração do efeito do esforço normal no cálculo do momento fletor resistente plástico, em relação ao eixo z, quando é satisfeito o critério na Equação (4.45).

$$N_{Ed} \le \frac{h_w t_w f_y}{\gamma_{M0}} \tag{4.45}$$

O momento fletor resistente plástico em torno do eixo y, reduzido pela interação com o esforço normal, é calculado de acordo com a Equação (4.46).

$$M_{N,y,Rd} = M_{pl,y,Rd} (1-n)/(1-0.5a) \text{ mas } M_{N,y,Rd} \le M_{pl,y,Rd}$$
 (4.46)

Em que: $n = N_{Ed}/N_{pl,Rd}$; $a = (A-2b_{tf})/A \text{ mas } a \le 0,5$.

O momento fletor resistente plástico em torno do eixo z, reduzido pela interação com o esforço normal, é calculado de acordo com as Equações (4.47) ou (4.48).

$$\mathbf{M}_{\mathrm{N},\mathrm{z},\mathrm{Rd}} = \underline{\mathbf{M}}_{\mathrm{pl},\mathrm{z},\mathrm{Rd}} \left[1 - \left(\frac{\mathbf{n} - \mathbf{a}}{1 - \mathbf{a}}\right)^2 \right] \quad \text{para } \mathbf{n} > \mathbf{a}$$
(4.47)

$$\mathbf{M}_{\mathrm{N},\mathrm{z},\mathrm{Rd}} = \underline{\mathbf{M}}_{\mathrm{pl},\mathrm{z},\mathrm{Rd}} \quad \text{para } \mathrm{n} \le \mathrm{a} \tag{4.48}$$

Os efeitos da presença de esforço transverso são considerados substituindo nas Equações (4.46) a (4.48) os valores dos momentos fletores resistentes (M_{pl} , neste caso – sublinhados a azul nas equações) pelos correspondentes valores reduzidos pela interação com o esforço transverso de acordo com 4.8.5 (ou seja, $M_{V,pl}$). Designa-se o valor do momento fletor plástico resistente reduzido pela interação com os esforços axial e transverso por $M_{NV,pl,Rd}$.

4.8.6.2 Outras secções transversais

Para o caso de secções transversais não duplamente simétricas das Classes 1 e 2 e secções transversais das Classes 3 e 4, a verificação é realizada de acordo com o estabelecido para verificação à flexão composta desviada na secção 4.8.7 deste documento.

Página | 100

4.8.7 Flexão composta desviada $(M_y + M_z + N)$

4.8.7.1 Secções transversais duplamente simétricas das Classes 1 e 2

A segurança é verificada se for satisfeito o critério na Equação (4.49).

$$\left[\frac{M_{y,Ed}}{MN_{pl,y,Rd}}\right]^{\alpha} + \left[\frac{M_{z,Ed}}{MN_{pl,z,Rd}}\right]^{\beta} \le 1,0$$
(4.49)

Em que: $\alpha = 2$; $\beta = 5n$, mas $\beta \ge 1$; $n = N_{Ed}/N_{pl,Rd}$.

4.8.7.2 Secções transversais assimétricas das Classes 1 e 2

Para o caso de secções transversais das Classes 1 e 2 com banzos diferentes não é aplicável a Equação (4.49). Considera-se verificada a segurança se satisfeito o critério na Equação (4.50).

$$\frac{N_{Ed}}{N_{pl,Rd}} + \frac{M_{Ed}}{M_{pl,y,Rd}} + \frac{M_{Ed}}{M_{pl,z,Rd}} \le 1,0$$
(4.50)

4.8.7.3 Secções transversais da Classe 3

A segurança é verificada se for satisfeito o critério na Equação (4.51).

$$\frac{N_{Ed}}{N_{pl,Rd}} + \frac{M_{Ed,y}}{M_{el,y,Rd}} + \frac{M_{Ed,z}}{M_{el,z,Rd}} \le 1,0$$

$$(4.51)$$

4.8.7.4 Secções transversais da Classe 4

A segurança é verificada se for satisfeito o critério na Equação (4.52).

$$\frac{N_{Ed}}{A_{eff} f_y / \gamma_{M0}} + \frac{M_{Ed,y} + N_{Ed} e_{Ny}}{M_{eff,y,Rd}} + \frac{M_{Ed,z} + N_{Ed} e_{Nz}}{M_{eff,z,Rd}} \le 1,0$$
(4.52)

O cálculo da Área Efetiva (A_{eff}), do Módulo de Flexão Efetivo (W_{eff}), e das excentricidades (e_{Ny} e e_{Nz}), é realizado de acordo com a secção 4.7 deste documento.

4.8.8 Flexão composta desviada com esforço transverso $(M_y + M_z + N + V)$

Os efeitos da presença de esforço transverso são tidos em conta no cálculo dos momentos fletores resistentes da secção transversal.

A verificação da resistência da secção transversal à flexão composta desviada com esforço transverso é feita de acordo com a secção 4.8.7 deste documento. Para esse efeito, são substituídos os valores dos momentos fletores resistentes $M_{pl,Rd}$, $M_{el,Rd}$ e $M_{eff,Rd}$, nas expressões (4.50), (4.51) e (4.52), respetivamente, pelos correspondentes valores dos momentos fletores

resistentes reduzidos pela interação com o esforço transverso de acordo com 4.8.5 ($M_{V,pl,Rd}$, $M_{V,el,Rd}$ e $M_{V,eff,Rd}$).

Para o caso específico de secções transversais bissimétricas das Classes 1 ou 2 o valor de $M_{Npl,Rd}$, na Equação (4.49), é calculado de acordo com 4.8.6.1 atendendo às considerações dispostas no último parágrafo dessa secção para a consideração do efeito da presença do esforço transverso. Substitui-se portanto $M_{N,pl,Rd}$ pelo correspondente $M_{NV,pl,Rd}$.

4.9 Encurvadura (varejamento)

Verifica-se a segurança á encurvadura se o esforço axial de compressão atuante, N_{Ed} , for inferior ou igual ao esforço axial resistente á compressão com encurvadura, $N_{b,Rd}$, calculado de acordo com as Equações (4.53) ou (4.54).

O procedimento é repetido pela ferramenta de cálculo para verificação aos modos de encurvadura em relação aos eixos y e z.

$$N_{b,Rd} = \chi A f_y / \gamma_{M1}$$
 para secções transversais das Classes 1, 2 ou 3. (4.53)

$$N_{b,Rd} = \chi A_{eff} f_v / \gamma_{M1}$$
 para secções transversais da Classe 4. (4.54)

O fator de redução, χ , para cada modo de encurvadura, é calculado aplicando a Equação (4.55).

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} \tag{4.55}$$

Em que: $\Phi = 0.5 \left[1 + \alpha \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda}^2 \right]$

O fator de imperfeição, α , é determinado, para cada modo de encurvadura, por um algoritmo cujos procedimentos são coerentes com o Quadro 6.2 da NP EN 1993-1-1 [1] apresentado na Figura 4.22 (editado). No caso de perfis laminados com banzos diferentes é considerado pela ferramenta, para efeitos de determinação do fator de imperfeição, o banzo com maior largura, *b* (tomando em conta a correspondente espessura, *t*). No caso de perfis soldados com banzos diferentes é considerado, para o mesmo efeito, o banzo com maior espessura, *t*.

Figura 4.22 – Escolha do valor do fator de imperfeição, α, em função da curva de encurvadura – Quadro 6.2 da NP EN 1993-1-1 [1] (editado).

O valor da esbelteza normalizada, $\overline{\lambda}$, para cada modo de encurvadura, é determinado de acordo com as Equações (4.56) ou (4.57).

$$\overline{\lambda} = \frac{L_{cr}}{i} \frac{1}{\lambda_1}$$
 para secções transversais das Classes 1, 2 ou 3. (4.56)

$$\overline{\lambda} = \frac{L_{cr}}{i} \frac{\sqrt{A_{eff}/A}}{\lambda_1} \text{ para secções transversais da Classe 4.}$$
(4.57)

em que:

A área total da secção transversal;

A_{eff} área efetiva da secção transversal (consultar secção 4.7.4 deste documento);

 λ_{I} esbelteza de referência, calculada através de $\lambda_{I} = \pi \sqrt{E/f_{v}}$

 L_{cr} e *i* comprimento de encurvadura e raio de giração, respetivamente, referentes ao modo de encurvadura a ser verificado.

4.10 Encurvadura lateral (bambeamento)

Elementos em flexão são verificados à encurvadura lateral de acordo com a secção 6.3.2 da NP EN 1993-1-1 [1] (Equação (4.58)).

$$\mathbf{M}_{b,Rd} = \chi_{LT} \mathbf{W}_{y} \frac{\mathbf{f}_{y}}{\gamma_{M1}}$$
(4.58)

Página | 103

Em que: W_y – módulo de flexão adequado considerado do seguinte modo: $W_y = W_{pl,y}$ para secções transversais das Classes 1 ou 2; $W_y = W_{el,y}$ para secções transversais da Classe 3; $W_y = W_{eff,y}$ para secções transversais da Classe 4;

Adotam-se as expressões propostas na secção 6.3.2.2 do mesmo documento [1] para o cálculo do coeficiente de redução para a resistência à encurvadura lateral, χ_{LT} (Equação (4.59)).

$$\chi_{\rm LT} = \frac{1}{\Phi_{\rm LT} \sqrt{\Phi_{\rm LT}^2 - \overline{\Phi_{\rm LT}}^2}} \quad \text{mas} \quad \chi_{\rm LT} \le 1,0 \tag{4.59}$$

Em que: $\Phi = 0.5 \cdot \left[1 + \alpha_{LT} (\overline{\lambda}_{LT} - 0.2) + \overline{\lambda}_{LT}^2 \right]$

O fator de imperfeição, α_{LT} , é determinado por um algoritmo cujos procedimentos são coerentes com o Quadro 6.4 da NP EN 1993-1-1 [1] apresentado na Figura 4.23 (editado). No caso de secções com banzos diferentes é considerado, para efeitos de determinação do fator de imperfeição, o banzo com maior largura, *b*.

Secção transversal	Limites	Curva de encurvadura	αιτ
Secções em I laminadas	$h/b \le 2$ $h/b > 2$	a b	0,21 0,34
Secções em I soldadas	$h/b \le 2$ $h/b > 2$	c d	0,49 0,76

Figura 4.23 – Escolha do valor do fator de imperfeição, α_{LT}, em função da curva de encurvadura – Quadro 6.4 da NP EN 1993-1-1 (editado).

O valor da esbelteza adimensional, $\overline{\lambda}_{LT}$, é determinado de acordo com a Equação (4.60).

$$\overline{\lambda}_{LT} = \sqrt{\frac{W_y f_y}{M_{cr}}}$$
(4.60)

em que:

- M_{cr} momento crítico elástico para a encurvadura lateral, determinado de acordo com a secção 4.10.1 deste documento;
- W_y módulo de flexão adequado considerado de forma coerente com o considerado na Equação (4.58).

4.10.1 Cálculo do momento crítico (Mcr)

A quantificação do momento crítico para a encurvadura lateral, M_{cr} , é realizada de acordo com a proposta por Clark e Hill (1960) e Galéa (1981) [6], utilizando a Equação (4.61), e requer a

quantificação de um conjunto de parâmetros para a qual é necessária a intervenção por parte do utilizador no Interface IV da ferramenta *AciariUM* (ver 3.8.2).

$$M_{cr} = C_1 \frac{\pi^2 E_{I_z}}{(k_z l)^2} \left\{ \left[\left(\frac{k_z}{k_w} \right)^2 \frac{I_w}{I_z} + \frac{(k_z l)^2 G_{I_T}}{\pi^2 E_{I_z}} + \left(C_2 z_g - C_3 z_j \right)^2 \right]^{0.5} - \left(C_2 z_g - C_3 z_j \right) \right\}$$
(4.61)

Os parâmetros $E \in G$ são propriedades do material (aço) definidas em 4.3.

Os parâmetros I_z , I_w e I_T são propriedades mecânicas da secção transversal definidas em 4.4.2.

O comprimento l corresponde à distância entre secções lateralmente contraventadas, considerando para o efeito o contraventamento do banzo comprimido pelo esforço de flexão em torno do eixo y, uma vez que é este aquele que é suscetível de sofrer do fenómeno de instabilidade em causa.

Os fatores de comprimento efetivo k_z e k_w dependem das condições de suporte nas secções de extremidade do segmento de barra correspondente ao comprimento *l*: o fator k_z refere-se a rotações das secções extremas em torno do eixo de menor inércia *z*; o fator k_w refere-se à restrição ao empenamento nas mesmas secções. Os fatores k_z e k_w variam entre 0,5 (deformações impedidas) e 1,0 (deformações livres), sendo iguais a 0,7 no caso de deformações livres numa extremidade e impedidas na outra. Na maior parte as situações práticas estas restrições são apenas parciais, razão pela qual se recomenda conservativamente $k_z = k_w = 1,0$ [6].

Os coeficientes C_1 , C_2 e C_3 , que têm em conta a distribuição de momentos, definem-se com base no Quadro 4.2.

Condições de apoio e	Diagrama de	Valor	Coeficientes		
carregamento	Momentos Fletores	de k_z	C_1	<i>C</i> ₂	<i>C</i> ₃
		1,0 0,5	1,132 0,972	0,459 0,304	0,525 0,980
₩ ₩		1,0 0,5	1,285 0,712	1,562 0,652	0,753 1,070
		1,0 0,5	1,365 1,070	0,553 0,432	1,780 3,050
₽ ↓		1,0 0,5	1,565 0,938	1,257 0,715	2,640 4,800
		1,0 0,5	1,046 1,010	0,430 0,410	1,120 1,390

Quadro 4.2 a – Atribuição de valores aos coeficientes C_1 , C_2 e C_3 (Parte 1).

Condições de apoio e	Diagrama de	Valor	C	Coeficient	es
carregamento	Momentos Fletores	de k_z	C_{I}	C_2	<i>C</i> ₃
	$\psi = +1$	1,0 0,7 0,5	1,000 1,000 1,000		1,000 1,113 1,144
	$\psi = + \frac{3}{4}$	1,0 0,7 0,5	1,141 1,270 1,305		0,998 1,565 2,283
	$\psi = + \frac{1}{2}$	1,0 0,7 0,5	1,323 1,473 1,514		0,992 1,556 2,271
	$\psi = + \frac{1}{4}$	1,0 0,7 0,5	1,563 1,739 1,788		0,977 1,531 2,235
$\left(\begin{array}{c} \mathbf{M} & \mathbf{\psi} \mathbf{M} \\ \mathbf{M} & \mathbf{\psi} \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{array} \right)$	$\psi = 0$	1,0 0,7 0,5	1,879 2,092 2,150		0,939 1,473 2,150
	$\psi = -\frac{1}{4}$	1,0 0,7 0,5	2,281 2,538 2,609		0,855 1,340 1,957
	$\psi = -\frac{1}{2}$	1,0 0,7 0,5	2,704 3,009 3,093		0,676 1,059 1,546
	ψ = - 3/4	1,0 0,7 0,5	2,927 3,009 3,093		0,366 0,575 0,837
	ψ = - 1	1,0 0,7 0,5	2,752 3,063 3,149		0,000 0,000 0,000

Quadro 4.2 b – Atribuição de valores aos coeficientes C_1 , C_2 e C_3 (Parte 2).

O parâmetro z_g corresponde à coordenada em z do ponto de aplicação da carga ao nível da secção transversal, de acordo com a Figura 4.24. Recorde-se que o posicionamento z_g da carga pode produzir um efeito estabilizador ou instabilizador que se reflete, respetivamente, no aumento ou diminuição do valor de M_{cr} .

Figura 4.24 – Posição de aplicação da carga ao nível da secção transversal (z_g) .

O parâmetro z_j reflete o grau de assimetria da secção transversal. É determinado automaticamente pela ferramenta de acordo com as Equações (4.62) ou (4.63). É função da geometria da secção transversal e do seu estado de solicitação.

 $z_i = 0.8 \cdot (2 \cdot \beta_f - 1) \cdot h_g / 2.0$ quando $\beta_f > 0.5$ (4.62)

$$z_{\rm i} = 1,0 \cdot (2 \cdot \beta_{\rm f} - 1) \cdot h_{\rm g}/2,0$$
 quando $\beta_{\rm f} > 0,5$ (4.63)

Em que: h_g – distância entre os centros de corte dos banzos que, neste caso, coincidem com os seus centros de gravidade.

O parâmetro β_f é determinado de acordo com a Equação (4.64).

$$\beta_{\rm f} = \frac{I_{\rm fc}}{I_{\rm fc} + I_{\rm ft}} \tag{4.64}$$

em que:

 I_{fc} momento de inércia do banzo comprimido relativamente ao eixo z;

 I_{ft} momento de inércia do banzo tracionado relativamente ao eixo z.

O momento de inércia do banzo considerado em torno do eixo z é calculado de acordo com a Equação (4.65).

$$I = \frac{t \times b^3}{12} \tag{4.65}$$

Em que: t – espessura do banzo; b – largura do banzo.

4.11 Encurvadura por esforço transverso

A verificação da resistência à encurvadura por esforço transverso em estado limite último é efetuada de acordo com a secção 5 da NP EN 1993-1-5 [3]. O método utilizado pela ferramenta *AciariUM* é limitado a casos em que a alma não possui reforços longitudinais.

Considera-se que almas não reforçadas (reforços transversais) com h_w/t superior a $72/\eta \varepsilon$ deverão possuir reforços transversais pelo menos nos apoios. Assume-se verificada a segurança em caso contrário.

Considera-se que almas reforçadas (reforços transversais) com h_w/t superior a $31/\eta \varepsilon \sqrt{k_\tau}$ deverão ser verificadas em relação à resistência à encurvadura por esforços transverso de acordo com a secção 4.8.1 deste documento. Assume-se verificada a segurança em caso contrário.

4.11.1 Valor de cálculo da resistência à encurvadura por esforço transverso

O valor de cálculo da resistência à encurvadura por esforço transverso é calculado, de acordo com a secção 5.2(1) da NP EN 1993-1-5 [3], através da Equação (4.66).

$$\mathbf{V}_{b,Rd} = \mathbf{V}_{bw,Rd} + \mathbf{V}_{bf,Rd} \le \frac{\eta \mathbf{f}_{yw} \mathbf{h}_w \mathbf{t}}{\sqrt{3}\gamma_{M1}}$$
(4.66)

Em que: $V_{bw,Rd}$ e $V_{bf,Rd}$ – contribuição da alma e dos banzos, respetivamente, para a resistência à encurvadura por esforço transverso.

4.11.2 Contribuição da alma (V_{bw,Rd})

A contribuição da alma, V_{bw,Rd}, é calculada de acordo com a Equação (4.67).

$$V_{bw,Rd} = \frac{\chi_w f_{yw} h_w t}{\sqrt{3} \gamma_{M1}}$$
(4.67)

O parâmetro χ_w é determinado de acordo com o Quadro 5.1 - NP EN 1993-1-5 [3] (Figura 4.25).

	Reforço de extremidade rígido	Reforço de extremidade não rígido
$\overline{\lambda}_{\rm w} < 0.83 / \eta$	η	η
$0,83 / \eta \leq \overline{\lambda}_{\rm w} < 1,08$	$0,83 / \overline{\lambda}_{w}$	$0,83 / \overline{\lambda}_{w}$
$\overline{\lambda}_{\mathrm{w}} \ge 1,08$	$1,37 / \left(0,7 + \overline{\lambda}_{w}\right)$	$0,83 / \overline{\lambda}_{w}$

Figura 4.25 – Contribuição da alma χ_w para a resistência à encurvadura por esforço transverso – Quadro 5.1 da NP EN 1993-1-5.

O parâmetro de esbelteza normalizada, $\overline{\lambda}_w$, é determinado pela Equação (4.68).

$$\overline{\lambda}_{\rm w} = 0.76 \sqrt{f_{\rm yw}/\tau_{\rm cr}} \tag{4.68}$$

Em que: $\tau_{cr} = k_{\tau}/\sigma_{E}$

O valor de σ_E é determinado a partir da Equação (4.69) considerando *b* igual à altura h_w da alma e *t* igual à espessura t_w da alma.

$$\sigma_{\rm E} = \frac{\pi^2 E t^2}{12(1 - v^2)b^2} \,\mathrm{em} \,[\mathrm{MPa}] \tag{4.69}$$

O coeficiente de encurvadura por corte, k_{τ} , é obtido através das Equações (4.70) ou (4.71). Coerente com as limitações do método que se apresenta neste capítulo será admitir $k_{\tau sl}=0$, o equivalente a considerar que a alma não possui reforços longitudinais.

$$k_{\tau} = 5,34 + 4,00 (h_w/a)^2 + k_{\tau sl}$$
 quando $a/h_w \ge 1$ (4.70)

$$k_{\tau} = 5,34 + 5,34 (h_w/a)^2 + k_{\tau sl}$$
 quando $a/h_w < 1$ (4.71)

Em que: *a* – distância entre reforços transversais.

4.11.3 Contribuição dos banzos, V_{bf,Rd}

Quando a resistência dos banzos não é totalmente utilizada na resistência ao momento fletor, ou seja, $M_{y,Ed} < M_{f,Rd}$, a contribuição desses banzos é calculada através da Equação (4.72). É considerada nula em caso contrário ($V_{bf,Rd}=0$).

$$\mathbf{V}_{\mathrm{bf,Rd}} = \frac{\mathbf{b}_{\mathrm{f}} \mathbf{t}_{\mathrm{f}}^{2} \mathbf{f}_{\mathrm{yf}}}{c \,\gamma_{\mathrm{M1}}} \left| 1 - \left(\frac{\mathbf{M}_{\mathrm{Ed,y}}}{\mathbf{M}_{\mathrm{f,Rd}}}\right)^{2} \right|$$
(4.72)

As dimensões $b_f e t_f$ correspondem, respetivamente, á largura e espessura do banzo com menor contribuição para a resistência ao esforço normal, ou seja, o banzo com menor área. O valor de b_f é limitado a 15 ε t_f de cada lado da alma.

O parâmetro $M_{f,Rd} = M_{f,k} / \gamma_{M0}$ é o momento resistente da secção transversal constituída apenas pelas áreas efetivas dos banzos, determinadas tendo em conta o estado real de tensão induzido na peça pela combinação de esforços $N_{Ed} + M_{y,Ed}$.

O valor de c é determinado de acordo com a Equação (4.73).

$$c = a \left(0,25 + \frac{1.6b_{f} t_{f}^{2} f_{yf}}{t h_{w}^{2} f_{yw}} \right)$$
(4.73)

4.12 Estabilidade global

Elementos em flexão composta com compressão são verificados de acordo com a secção 6.3.3 da NP EN 1993-1-1 [1] – Equações (4.74) e (4.75) deste documento.

$$\frac{N_{Ed}}{\chi_{y}N_{Rk}/\gamma_{M1}} + k_{yy}\frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT}M_{y,Rk}/\gamma_{M1}} + k_{yz}\frac{M_{z,Ed} + \Delta M_{z,Ed}}{M_{z,Rk}/\gamma_{M1}} \le 1,0$$
(4.74)

$$\frac{N_{Ed}}{\chi_{y} N_{Rk} / \gamma_{M1}} + k_{zy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} M_{y,Rk} / \gamma_{M1}} + k_{zz} \frac{M_{z,Ed} + \Delta M_{z,Ed}}{M_{z,Rk} / \gamma_{M1}} \le 1,0$$
(4.75)

N_{Ed} , $M_{y,Ed}$ e $M_{z,Ed}$	valores de cálculo do esforço de compressão e dos momentos máximos no
	elemento, respetivamente, em relação aos eixos y e z;
$\Delta M_{y,Ed} \ e \ \Delta M_{z,Ed}$	momentos devidos ao deslocamento do eixo neutro de acordo com 4.7 para as
	secções da Classe 4 (ver Quadro 4.3);
$\chi_y e \chi_z$	coeficientes de redução devidos à encurvadura (varejamento), conforme 4.9;
χLT	coeficiente de redução devido à encurvadura lateral, conforme 4.10;
k_{yy} , k_{yz} , k_{zy} , k_{zz}	fatores de interação.
$N_{Rk}, M_{y,Rk} e M_{z,R}$	valores característicos do esforço normal e dos momentos fletores resistentes da secção transversal condicionante, respetivamente, em relação aos eixos $y \in z$.

Os valores de $N_{Rk} = f_y A_i$, $M_{i,Rk} = f_y W_i$ e $\Delta M_{i,Ed}$ são definidos de acordo com o Quadro 4.3.

Classe	1	2	3	4
Ai	A	A	A	$A_{e\!f\!f}$
W_y	$W_{pl,y}$	$W_{pl,y}$	$W_{el,y}$	$W_{eff,y}$
W_z	$W_{pl,z}$	$W_{pl,z}$	$W_{el,z}$	$W_{eff,z}$
$\varDelta M_{y,Ed}$	0	0	0	$e_{N,y} N_{Ed}$
$\varDelta M_{z,Ed}$	0	0	0	$e_{N,z} N_{Ed}$

Quadro 4.3 – Valores de $N_{Rk} = f_y A_i$, $M_{i,Rk} = f_y W_i e \Delta M_{i,Ed}$ [1].

Os fatores de interação k_{ij} são determinados de acordo com o Anexo A da referida norma. Nesse contexto considera-se conveniente esclarecer o método de quantificação de determinados parâmetros (Equações (4.76) a (4.80)).

• Esforço normal crítico de encurvadura elástica por flexão em torno do eixo y, N_{cr,y}:

$$N_{cr,y} = \frac{\pi^2 E I_y}{L_{cr,y}}$$
(4.76)

• Esforço normal crítico de encurvadura elástica por flexão em torno do eixo z, $N_{cr,z}$:

$$N_{cr,z} = \frac{\pi^2 E I_z}{L_{cr,z}}$$
(4.77)

• Esforço normal crítico de encurvadura elástica por torção, *N*_{cr,T}:

$$N_{cr,T} = \left[\frac{E I_w \pi^2}{L_{cr,z}^2} + G I_T\right] \times \frac{A}{I_y + I_z}$$
(4.78)

• Esbelteza normalizada relativa à encurvadura lateral para o caso de momento fletor uniforme $\overline{\lambda_0}$:

$$\overline{\lambda_0} = \sqrt{\frac{W_{pl,y} f_y}{M_{cr}^E}}$$
(4.79)

• Momento crítico elástico, M_{cr}^{E} :

$$\mathbf{M}_{cr}^{E} = \frac{\pi^{2} E \mathbf{I}_{z}}{(\mathbf{k}_{z} \mathbf{L})^{2}} \left[\left(\frac{\mathbf{k}_{z}}{\mathbf{k}_{W}} \right)^{2} \frac{\mathbf{I}_{W}}{\mathbf{I}_{z}} + \frac{(\mathbf{k}_{z} \mathbf{L})^{2} \mathbf{G} \mathbf{I}_{T}}{\pi^{2} E \mathbf{I}_{z}} \right]^{0.5}$$
(4.80)

Em que: os parâmetros se identificam de acordo com a secção 4.10.1 deste documento.

A definição dos coeficientes de momento uniforme equivalente $C_{my,0}$ e $C_{mz,0}$, para determinação dos fatores de interação, é feita com recurso ao Quadro A.2 do Anexo A da NP EN 1993-1-1 [1], apresentado na Figura 4.26 deste documento.

Diagrama de momentos	$C_{mi,0}$
$M_1 \qquad \qquad \psi M_1 \\ -1 \le \psi \le 1$	$C_{mi,0} = 0,79 + 0,21\psi_i + 0,36(\psi_i - 0,33)\frac{N_{Ed}}{N_{cr.i}}$
	$C_{mi,0} = 1 + \left(\frac{\pi^{2} EI_{i} \delta_{x} }{L^{2} M_{i,Ed}(x) } - 1\right) \frac{N_{Ed}}{N_{cr,i}}$
	$M_{i,Ed}(x)$ valor máximo do momento $M_{y,Ed}$ ou $M_{z,Ed}$ correspondente a uma análise de primeira ordem
	$ \delta_x $ flecha máxima ao longo do elemento
	$C_{mi,0} = 1 - 0.18 \frac{N_{Ed}}{N_{cr.i}}$
	$C_{mi,0} = 1 + 0.03 \frac{N_{Ed}}{N_{cr.i}}$

Figura 4.26 – Determinação dos coeficientes de momento uniforme $C_{my,0}$ e $C_{mz,0}$. Quadro A.2 do Anexo A da NP EN 1993-1-1.
CAPÍTULO 5

Caso prático de estudo e validação

5.1 Enquadramento

O caso de estudo apresentado neste capítulo foi desenvolvido em colaboração com a empresa CASAIS – Engenharia e Construção, SA. Neste contexto, a ferramenta *AciariUM* é utilizada para verificação de segurança aos estados limite últimos (ELU) de um edifício projetado e construído pela referida entidade.

O presente capítulo tem dois objetivos principais:

- validar os resultados fornecidos pela ferramenta de cálculo desenvolvida confrontando-os com os resultados devolvidos pelos programas *Robot Structural Analysis* e *CYPE 3D* para o caso de estudo referido;
- desenvolver e apresentar as estratégias de modelação e cálculo adotadas no estudo deste caso.

O edifício foi anteriormente modelado no *software CYPE 3D* e o correspondente ficheiro foi fornecido pelo projetista. A mesma estrutura foi novamente modelada no programa *Robot Structural Analysis* e os resultados dos esforços obtidos foram considerados na análise efetuada com a ferramenta *AciariUM*.

São alvo de revisão algumas opções relacionadas com a definição de comprimentos de encurvadura e parâmetros relacionados com este fenómenos de instabilidade. Assumem-se corretas as opções do projetista relativamente à consideração e quantificação de ações no processo de verificação e dimensionamento.

5.2 Apresentação do caso de estudo

5.2.1 Obra

A empreitada de construção do Estaleiro de Moçambique em Matola, no minicípio de Maputo (Moçambique), ocupa uma área de implantação de aproximadamente 23.000 m² e é constituída por doze edifícios distintos e independentes.

O edifício cuja estrutura é verificada neste capítulo é um de dois edifícios principais que foram projetados em estrutura metálica e têm como destino utilização de tipo industrial.

As peças desenhadas do projeto de arquitectura do Edifício 2 do Estaleiro de Moçambique são apresentadas no Anexo B deste documento.

Os materiais considerados nas estruturas metálicas foram os seguintes: Aço S275 JR em perfis, barras e chapas; Aço S275 JO em tubos; Parafusos classe 8.8.

5.2.2 Caracterização geométrica da estrutura

A estrutura do edifício é representada na Figura 5.1. É constituída por dez pórticos (Pórticos 1 a 10) que distam 5,70 m entre si.

a) Representação 3D.

b) Representação em planta.

Figura 5.1 - Caso de estudo: representação da estrutura do edifício (vista Robot Structural Analysis).

O chamado "Pórtico-Tipo", que se repete ao longo do desenvolvimento do edifício, é definido geometricamente de acordo com a Figura 5.2.

Figura 5.2 - Definição geométrica do "Pórtico-Tipo".

O Quadro 5.1 é um mapa de definição geométrica das secções transversais dos elementos identificados na Figura 5.2.

Designação	Geometria	h inicial	h_{final}	b	t_w	t	r	CS	Flementos
Designação	Geometria	mm	mm	mm	mm	mm	mm	mm	Liementos
HE 340 A	b t t z	330	330	300	9,5	16,5	27	-	$P_A;P_F$
PRS	tw y	660	330	160	8,0	21,0	-	-	$V_{A1}; V_{B1}$
IPE 330	h	330	330	160	7,5	11,5	18	-	$V_{A2}; V_{B2}$
IPE 450	t .z	450	450	190	9,4	14,6	21	-	$V_{\rm C}$

Quadro 5.1 - Mapa e definição geométrica das secções transversais dos elementos do "pórtico-tipo".

Nota: Dimensões em mm; Identificação dos elementos em conformidade com a Figura 5.2.

5.2.3 Parâmetros gerais do cálculo

Os parâmetros gerais do cálculo são definidos no Interface I da ferramenta AciariUM.

TIPO DE AÇO	AÇO DA CLASSE S275	PROPRIEDADES	E	210	GPa	α	1,20E-06	/к		COEFICIENTES	Умо	1,00	
CONSTITUINTE DO ELEMENTO	fy 275 MPa	GERAIS	G	80,77	GPa	Gm	7850	Kg/m ³	Redefinir NP EN 1993-1-1	PARCIAIS DE	YM1	1,00	Redefinir NP EN 1993-1-1
ESTRUTURAL	fu 430 MPa	DO MATERIAL	v	0,3		η	1,20			JEGORANÇA	Y _{M2}	1,25	

a) Tipo de Aço. b) Propriedades do material c) Coef. Parciais de Segurança Figura 5.3 – Interface I (excerto): parâmetros gerais do cálculo.

A estrutura é contruída em aço da classe S275 (Figura 5.3a).

Os valores de cálculo das propriedades do material (Figura 5.3b) e os valores numéricos recomendados para os coeficientes parciais de segurança γ_{Mi} para edifícios (Figura 5.3c) são definidos de acordo com a NP EN 1993-1-1 [1].

5.2.4 Ações atuantes

A informação nesta secção está de acordo com a memória descritiva e justificativa do projeto de estabilidade da obra.

É considerado o seguinte conjunto de cargas permanentes atuante na estrutura:

- Peso próprio do aço constituinte dos elementos estruturais (G_{kl}): 78,5 kN/m³.
- Restantes cargas permanentes (G_{k2}) correspondentes ao peso próprio da cobertura, revestimentos e pavimentos, de acordo com o Quadro 5.2.

Quadro 5.2 – Restantes cargas permanentes (cobertura, revestimentos e pavimento).

Designação	Carga uniformemente distribuída	Unidade
Cobertura e Revestimento em Chapa Sandwich ⁽¹⁾	0,2 (1)	
Pavimento/Outros plataforma do Piso "Mezanine"	4,1	kN/m ²
Piso 0	4,0	

(1) carga uniformemente distribuída vertical aplicada aos "painéis" da cobertura, das fachadas e laterais.

Os valores característicos das sobrecargas a considerar são definidos de acordo com o Regulamento de Segurança e Ações para Edifícios e Pontes (R.S.A.) [16]:

- Sobrecarga na cobertura: $0,3 \text{ kN/m}^2(Q_{kl});$
- Sobrecarga na Plataforma do Piso "*Mezanine*": 5 kN/m² (Q_{k2});
- Sobrecarga no Piso 0: 3,0 kN/m²;

A quantificação da ação do vento é feita considerando quatro situações distintas (Quadro 5.3):

— A ação do vento é quantificada de acordo com o R.S.A. [16] adotando os seguintes parâmetros de cálculo: zona B; rugosidade aerodinâmica do Solo Tipo II; pressão dinâmica do vento (W_k) variável em altura. Os coeficientes de forma para paredes e cobertura a aplicar são os especificados no Anexo I do RSA. Os valores no Quadro 5.3 foram recolhidos do modelo fornecido pelo projetista.

Quadro 5.3 – Ação do vento no edifício em kN/m^2 - situações.

5.2.5 Combinações de ações

Designa-se por "Ação Permanente" (G_k) o grupo $G_{kl} + G_{k2}$. Designa-se por "Sobrecarga" (Q_k) o grupo $Q_{kl} + Q_{k2}$. Não é admitida a hipótese de atuação do vento (Q_k) em várias direções, em simultâneo.

As combinações de ações para situações de projeto persistentes ou transitórias (combinações fundamentais) são geradas de acordo com o disposto na secção 6.4.3.2 do regulamento NP EN 1990 [4]. O formato geral dos efeitos das ações deverá ser (Equação (5.1)):

$$\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \gamma_P P + \gamma_{Q,1} Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$
(5.1)

em que:

"+" significa "a combinar com";

" Σ " significa "o efeito combinado de";

Página | 116

- $G_{k,j}$ valor característico da ação permanente *j*;
- $Q_{k,1}$ valor característico da ação variável de base da combinação;
- γ_{Gj} coeficiente parcial relativo à ação permanente *j*;
- γ_{Qi} coeficiente parcial relativo à ação variável *i*;
- $\psi_{0,i}$ coeficiente para determinação do valor de combinação da ação variável *i*.

Os valores dos coeficientes ψ_0 para edifícios (Quadro 5.4) são definidos de acordo com o Quadro A1.1 do regulamento NP EN 1990 [4], em coerência com as opções do projetista.

Tipo de ação	Ação	ψ_0
Sobrecargas em edifícios	Q_k	0
Ação do vento em edifícios	W_k	0,6

Quadro 5.4 – Valores recomendados para os coeficientes ψ_0 para edifícios.

As combinações dos efeitos das ações consideradas são definidas de acordo com o Quadro C.1, apresentado no Anexo C.

5.2.6 Envolventes dos diagramas de esforços

Os resultados fornecidos pelos programas de cálculo estrutural *Robot Structural Analysis* e *CYPE 3D* para a envolvente de diagramas de esforços (combinações ELU), apresentaram entre eles diferenças inferiores a 3%. Para extração de resultados a partir da ferramenta *AciariUM* são considerados os valores propostos pelo *Robot Structural Analysis*.

5.3 Cálculo do valor do momento crítico M_{cr}

A simulação eficaz das condições reais de um sistema estrutural nos programas de cálculo estrutural (*Robot Structural Analysis* e *CYPE 3D*, neste caso) implica, por vezes, a adoção de estratégias de modelação.

Neste contexto, especialmente no que diz respeito á verificação á encurvadura lateral dos elementos, é necessário conhecer as opções do *software* utilizado para poder procurar a solução que melhor traduza as condições de travamento dos elementos e que permita o cálculo eficaz dos respetivos momentos críticos M_{cr} .

A estratégia apresentada em 5.3.3 sugere a forma como os elementos devem ser modelados nos programas de cálculo *Robot Structural Analysis* e *CYPE 3D* para que o momento crítico M_{cr} seja por eles determinado de forma eficaz.

Existe correspondência direta entre os subcapítulos 5.3.1 e 5.3.2: o primeiro define a forma como devem ser determinados os parâmetros relacionados com a quantificação do momento crítico M_{cr} de acordo com a proposta apresentada; o segundo documenta a forma como os programas de cálculo referidos quantificam os mesmos parâmetros.

As considerações tomadas neste subcapítulo em relação ao *Robot Structural Analysis* são válidas para o caso em que o utilizador, por qualquer motivo, decida caracterizar manualmente as condições de travamento dos banzos superior e inferior do elemento de barra (para o que diz respeito à análise à encurvadura lateral) por definição, de forma idêntica ao que é feito no *CYPE 3D*, daquilo que os programas definem como sendo o comprimento de encurvadura lateral de cada um desses banzos, $L_{cr,z}^{banzo}$ de acordo com o Módulo C definido em 2.7.3. É importante referir que o *Robot Structural Analysis*, ao contrário do *CYPE 3D*, disponibiliza um método muito eficiente e mais simples que o que aqui está a ser referido, que passa pela definição no espaço dos referidos travamentos através da qual calcula automaticamente todos os parâmetros relacionados com a análise ao fenómeno de encurvadura lateral (Módulo B definido em 2.7.3). Neste último caso não é necessário respeitar uma estratégia de modelação do género da referida.

A estratégia apresentada, portanto, não tem muito interesse para o caso do *Robot Structural Analysis*, mas é essencial para o caso do *CYPE 3D*.

5.3.1 Proposta adotada para o cálculo do valor do momento crítico M_{cr}

O cálculo do momento crítico M_{cr} é feito de acordo com a Equação (4.61) com base na proposta de Clark e Hill (1960) e Galéa (1981) [6]. Os parâmetros envolvidos são definidos em coerência com o documentado na secção 4.10.1 deste documento.

5.3.2 Cálculo do valor do momento crítico *M_{cr}* nos programas de cálculo

As considerações tomadas nesta secção são válidas para o caso em que a caracterização das condições de travamento dos banzos superior e inferior do elemento é feita de forma manual por definição daquilo que os programas definem como sendo o comprimento de encurvadura lateral de cada um desses banzos, de acordo com o Módulo C definido em 2.7.3.

Embora se baseiem na mesma proposta que a referida em 5.3.1 para o cálculo do valor do momento crítico M_{cr} , os programas de cálculo estrutural *Robot Structural Analysis* e *CYPE 3D*, em alguns casos, tomam opções diferentes para quantificação dos mesmos parâmetros.

Os programas consideram l (na Equação (4.61)) igual ao comprimento total do elemento de barra, L (de acordo com o definido pelo utilizador, considerando que uma viga ou pilar podem ser modelados em vários segmentos, isto é, elementos de barra).

Solicitam a definição por parte do utilizador do que identificam como sendo o comprimento de encurvadura lateral de cada banzo, $L_{cr,z}^{banzo}$ da barra de comprimento L, na lógica do que é esquematizado na Figura 5.4 para o caso do banzo superior.

Figura 5.4 – Definição de $L_{cr,z}^{banzo}$ pelos programas de cálculo estrutural.

O parâmetro k_z , correspondente à barra de comprimento *L*, é determinado pelos programas de acordo com a Equação (5.2).

$$k_z = L_{cr,z}^{\text{banzo}} / L \tag{5.2}$$

em que, $L_{cr,z}^{banzo}$ é o comprimento de encurvadura lateral do banzo considerado.

De acordo com esta abordagem, a parcela $k_z \cdot l$, na Equação (4.61), é, portanto, igual a $L_{cr,z}^{banzo}$. Adicionalmente, o *Robot Structural Analysis* considera $k_w = 1,0$ para qualquer caso. O *CYPE* 3D admite $k_w = k_z$ para qualquer situação.

O *Robot Structural Analysis* define automaticamente os coeficientes C_1 , C_2 e C_3 com base na forma do diagrama de momentos fletores ao longo do comprimento total *L* do elemento de barra (de acordo com o definido pelo utilizador, considerando que uma viga ou pilar podem ser modelados em vários segmentos, isto é, elementos de barra). O *CYPE 3D* solicita a definição do coeficiente C_1 pelo utilizador e assume $C_2 = 1,0$ e $C_3 = 1,0$.

5.3.3 Estratégia de modelação para que seja determinado de forma eficaz o valor do momento crítico M_{cr} nos programas de cálculo

O Quadro 5.5 resume e estabelece comparação entre as abordagens em 5.3.1 e 5.3.2, relativamente à forma como são determinados os parâmetros envolvidos na quantificação do momento crítico M_{cr} de acordo com a Equação (4.61).

*	Proposta Clark e Hill (1960) e	Robot SA (532)	CYPE 3D (5 3 2)			
	Galéa (1981) [6] (5.3.1)	R0001 5A (5.5.2)	CITEJD(5.5.2)			
1	Comprimento entre secções	Comprimento total do elemento de barra, $L^{(1)}$.				
i	lateralmente contraventadas, <i>l</i> .					
	Fatores de comprimento efetivo	$L = I^{banzo}/I$ em que I^{banzo}	é o comprimento de			
k-	dependentes das condições de	$K_z = L_{cr,z} / L$, chi que $L_{cr,z}$	norimido pelo esforco de			
102	apoio nas extremidades do	flexão em torno do eixo y e é d	efinido pelo utilizador			
	segmento de comprimento $l: k=1,0$		erindo pero utilizador.			
k	para deformações livres; <i>k=0,5</i>	1.0	$k_{m} = k_{r}$			
<i>n</i> _w	para deformações impedidas.	1,0	$\kappa_w - \kappa_z$			
	Coeficientes definidos de acordo	Coeficientes definidos de				
	com o quadro na Figura 4.24 com	acordo com o quadro na Figura	O coeficiente C_1 é			
	base na forma do diagrama de	4.24 com base na forma do	definido manualmente			
C_i	momentos ao longo do	diagrama de momentos fletores	pelo utilizador.			
	comprimento l entre secções	ao longo do comprimento total	O programa considera			
	lateralmente contraventadas e no	L do elemento de barra ⁽¹⁾ e no	$C_2 = C_3 = 1,0$			
	valor definido para k_z .	valor definido para k_z .				

Quadro 5.5 – Resumo e comparação entre as abordagens em 5.3.1 e 5.3.2.

* Designação do parâmetro na expressão de cálculo de M_{cr} - Equação (4.61).

(1) de acordo com o definido pelo utilizador considerando que uma viga ou pilar podem ser modelados em vários segmentos, isto é, elementos de barra.

As abordagens apresentadas devolvem, na maior parte dos casos, diferentes valores para os parâmetros mencionados no Quadro 5.5, o que se reflete no valor do momento crítico M_{cr} .

De uma forma geral, entende-se que a estratégia a adotar, para traduzir o proposto em 5.3.1 nos programas de cálculo estrutural, passará pela modelação de cada elemento (viga ou pilar) como um conjunto de subelementos de comprimentos iguais às distâncias entre secções lateralmente contraventadas, adequando de forma equivalente os parâmetros que caracterizam a geometria de cada tramo.

O exemplo no final desta secção documenta a estratégia utilizada para traduzir as condições reais de travamento de um caso específico nos programas de cálculo *Robot Structural Analysis* e *CYPE 3D*. A estratégia apresentada é válida para o caso exposto. Para cada situação será necessário analisar as especificidades do sistema estrutural e adaptar a estratégia por forma a encontrar a solução que melhor traduza as condições reais desse sistema.

5.3.3.1 Estratégia de Modelação – Exemplo prático

Considere-se o elemento representado na Figura 5.5 constituído pelo perfil *IPE* 400 (S275) e sujeito ao correspondente diagrama de momentos $M_{y,Ed}$.

Figura 5.5 – Exemplo prático para definição de estratégia de modelação.

Na alínea a) deste exemplo o valor do momento crítico M_{cr} é calculado de acordo com a proposta de Clark e Hill (1960) e Galéa (1981) [6], respeitando o definido em 5.3.1. Na alínea b) fica provado que os programas de cálculo considerados não devolvem resultados satisfatórios quando, neste contexto, não se respeita uma estratégia de modelação semelhante à que se propõe na alínea seguinte. Na alínea c) a modelação do elemento nos programas de cálculo respeita a estratégia aí descrita. Prova-se a eficácia dessa estratégia através dos resultados obtidos, a serem comparados com os valores calculados na alínea a).

a) Cálculo do valor de M_{cr} de acordo com a proposta apresentada em 5.3.1

O Quadro 5.6 apresenta, de acordo com 5.3.1, para o caso proposto, os valores dos comprimentos *l* entre secções lateralmente contraventadas e os fatores de comprimento efetivo k_z e k_w correspondentes a cada tramo e a cada banzo. Os resultados relativamente aos valores dos momentos críticos M_{cr} foram determinados pela ferramenta *AciariUM*.

É suscetível de sofrer de fenómenos de instabilidade o banzo comprimido pelo esforço de flexão em torno do eixo y, assim: são tidas em conta as condições de travamento do banzo inferior para verificação à encurvadura lateral dos tramos A e B; são tidas em conta as condições de travamento do banzo superior para verificação à encurvadura lateral dos tramos C e D.

Para o caso do Tramo AB, e por desenvolvimento da Equação (4.61), obtém-se o valor do momento crítico M_{cr} de acordo com a Equação (5.3). Considera-se que $z_g = 0$ (carga aplicada ao nível do centro de corte da secção transversal) e $z_j = 0$ (secção bissimétrica). Não existem restrições ao empenamento e a rotação em torno do eixo *z* das secções de extremidade do tramo, pelo que $k_w = 1,0$ e $k_z = 1,0$.

$$M_{cr} = 1,88 \frac{\pi^2 200 \cdot 10^{-6} \times 1318 \cdot 10^{-8}}{(1,0\cdot4,0)^2} \times \left[\left(\frac{1,0}{1,0}\right)^2 \frac{490 \cdot 10^{-9}}{1318 \cdot 10^{-8}} + \frac{(1,0\cdot4,0)^2 \times 81 \cdot 10^6 \times 51 \cdot 10^{-8}}{\pi^2 200 \cdot 10^6 \times 1318 \cdot 10^{-8}} \right]^{0,5} = 794,45 \text{ kN.m}$$
(5.3)

	Т	'ramo .	A	Г	Tramo B		,	Tramo C			Tramo D		
Banzo	$l_{(m)}$	k_z	k_w	<i>l</i> (<i>m</i>)	k_z	k_w	$l_{(m)}$	k_z	k_w	$l_{(m)}$	k_z	k_w	
Superior	2,0	1,0	1,0	2,0	1,0	1,0	2,0	1,0	1,0	2,0	1,0	1,0	
Banzo	l_{ℓ}	m)	k	z	k_w		l_{ℓ}	m)	k	z	k	w	
Inferior	4,	,0	1	,0	1	,0	4,	0	1,	1,0 1,0		,0	
C_1	$C_{I} = 1,88$			$C_1 = 1,88$			$C_1 = 1,32$						
M _{cr}	-794,45 kN.m						+ 2667,44 kN.m			+ 1878,14 kN.m			

Quadro 5.6 – Momento crítico calculado de acordo com 5.3.1.

Nota: l – comprimento entre secções lateralmente contraventadas de acordo com a Figura 5.6.

b) Cálculo do valor de M_{cr} pelos programas não adotando uma estratégia de modelação

Se a viga for modelada nos programas de cálculo estrutural como um elemento único, e na lógica da abordagem apresentada em 5.3.2, serão definidos para a barra de comprimento L os correspondentes parâmetros de acordo com as Equações 5.4 e 5.5.

$$L_{cr,z}^{sup} = 2,0 \,\mathrm{m} \rightarrow k_z^{sup} = L_{cr,z}^{sup}/L = 2,0/8,0 = 0,25$$
 (5.4)

$$L_{cr,z}^{inf} = 4,0m \rightarrow k_z^{inf} = L_{cr,z}^{inf}/L = 4,0/8,0 = 0,50$$
 (5.5)

em que $L_{cr,z}^{sup}$ e $L_{cr,z}^{inf}$ são os comprimentos de encurvadura lateral dos banzos superior e inferior.

Neste caso, seriam obtidos os resultados apresentados no Quadro 5.7, de acordo com 5.3.2, a serem comparados com valor de M_{cr} = -794,45 kN.m obtido no Quadro 5.6 com base em 5.3.1.

		$L_{(m)}$	k_z	k_w	
	Banzo sup.	80	0,25	1,0	Com $C_1 = 3,15$ definido automaticamente
Robot SA	Banzo inf.	8,0	0,50	1,0	pelo programa Robot SA com base na forma
	M_{cr}	-9	53,76 kN.	.m	do diagrama de momentos total.
		$L_{(m)}$	k_z	k_w	
	Banzo sup.	80	0,25	0,25	Com $C_I = 1,51$ definido manualmente com
CYPE 3D	Banzo inf.	8,0	0,50	0,50	base na forma do diagrama de momentos
	M _{cr}	-63	8,44 kN.n	n ⁽¹⁾	no banzo inferior e em $k_z = 0,5$.

Quadro 5.7 – Momento crítico M_{cr} calculado pelos programas de cálculo de acordo com 5.3.2 sem que seja respeitada uma estratégia de modelação.

(1) Se C_1 =3,15 (valor considerado pelo *Robot Structural Analysis*) $\rightarrow M_{cr}$ = 1331,84 kN.m; Se C_1 =1,88 (de acordo com 5.3.1, Quadro 5.6) $\rightarrow M_{cr}$ = 794,48 kN.m⁽²⁾.

(2) Para o exemplo apresentado na Figura 5.6 tem-se, de acordo com o Quadro 5.6 (com base em 5.3.1), $k_z = k_w$ (= 1,0). Nos casos em que $k_z = k_w$, em particular, a abordagem adotada pelo *CYPE 3D* permitirá obter o mesmo valor do momento crítico M_{cr} que a abordagem no Quadro 5.6, uma vez que o *CYPE 3D* toma sempre $k_z = k_w$. Embora os valores k_z e k_w , determinados com base em 5.3.1, sejam diferentes dos correspondentes valores determinados de acordo com 5.3.2, se $k_z = k_w$ nas duas situações, então a razão k_z / k_w , na Equação (4.61), igualará a unidade, e estão reunidas condições para se obterem os mesmos valores de M_{cr} . Para isso deverá ser assegurada a correta definição do coeficiente distribuição de momentos C_1 de acordo com 5.3.1.

Não se consideram satisfatórios os resultados obtidos no Quadro 5.7, na medida em que os valores de *l*, k_z , k_w e, consequentemente, M_{cr} se afastam dos resultados obtidos de acordo com 5.3.1 (Quadro 5.6). Esta diferença pode tornar-se mais expressiva em outras situações.

c) Cálculo de M_{cr} pelos programas atendendo á estratégia definida em 5.3.3

Para tradução das condições de travamento do sistema estrutural nos programas *Robot Structural Analysis* e *CYPE 3D* propõe-se a estratégia de divisão da viga em segmentos de comprimento igual ao comprimento entre secções lateralmente contraventadas (Figura 5.6). Considera-se para o efeito o contraventamento do banzo comprimido, por ser este aquele que é suscetível de sofrer do fenómeno de instabilidade em causa.

Figura 5.6 – Divisão da viga em segmentos para modelação nos programas de cálculo estrutural.

Definem-se manualmente para cada tramo os comprimentos de encurvadura lateral dos banzos superior e inferior ($L_{cr,z}^{banzo} = l$, neste caso). A partir desse valor os programas definem automaticamente k_z e k_w de acordo com 5.3.2.

De acordo com o Quadro 5.9 a estratégia definida na Figura 5.7 é capaz de reproduzir as condições reais de travamento do sistema estrutural, e permite que os programas de cálculo estrutural devolvam resultados aproximados dos obtidos no Quadro 5.6.

		Tramo A		Tramo B	Tramo C			Tramo D		
		$L_{(m)}$	k_z	k_w	$L_{(m)}$	k_z	k_w	$L_{(m)}$	k_z	k_w
Robot SA	Banzo Sup.	4.0	1,0 (2)	1,0 ⁽¹⁾	2,0	1,0	1,0 (1)	2,0	1,0	1,0 (1)
	Banzo Inf.	4,0	1,0	1,0 ⁽¹⁾		1,0	1,0 (1)		1,0	1,0 (1)
	M_{cr}	- 782,76 kN.m			+ 2658,32 kN.m			+ 1852,34 kN.m		
	Banzo Sup.	4.0	1,0 (2)	1,0 ⁽¹⁾	2.0	1,0	1,0 (1)	2.0	1,0	1,0 (1)
CYPE 3D	Banzos Inf.	4,0	1,0	1,0 ⁽¹⁾	2,0	1,0	1,0 (1)	2,0	1,0	1,0 (1)
	M _{cr}	-7	95,48 kN	N.m	+ 2669,73 kN.m			+ 1860,29 kN.m		

Quadro 5.8 – Momento crítico M_{cr} calculado pelos programas de cálculo de acordo com 5.3.2 respeitando a estratégia de modelação definida.

Em que: L – comprimento total do segmento de barra (AB, C ou D).

(1) valor definido automaticamente pelo programa;

(2) valor unitário mantido conservativamente por defeito uma vez que o parâmetro não tem qualquer influência no cálculo por se referir ao banzo tracionado que não é suscetível de instabilizar.

5.4 Verificação de segurança aos estados limite últimos (ELU)

Neste subcapítulo é documentado o processo de verificação de segurança aos estados limite últimos daqueles que se identificam como sendo os elementos principais do "pórtico-tipo", identificados de acordo com a Figura 5.2: Pilares A e F; Vigas A e B.

Por questões essencialmente relacionadas com a conceção, o processo de verificação e dimensionamento atende a uma intenção de uniformização:

- os pórticos são geometricamente iguais, identifica-se portanto um pórtico-tipo que se repete ao longo do desenvolvimento do edifício.
- o "pórtico-tipo" é simétrico (a menos da plataforma correspondente ao piso "Mezanine").

Os grupos de elementos identificados no Quadro 5.9 devem assim partilhar da mesma secção transversal. Neste contexto, justifica-se que sejam apresentados resultados para o caso mais condicionante de cada um dos três grupos identificados. A solução estende-se aos restantes elementos do mesmo grupo.

Grupo	Descrição	Elementos	Secção Transversal	Caso condicionante
1	Pilares	P_A ; P_F	HE 340 A	Pórtico 2 (P _A)
2	Vigas (Perfis Soldados)	$V_{A1;}V_{B1}$	PRS	Pórtico 3 (V _{B1})
3	Vigas (Perfis Laminados)	$V_{A2;}V_{B2}$	IPE 330	Pórtico 4 (V _{B2})

Quadro 5.9 - Identificação dos grupos de elementos e do caso mais condicionante de cada um.

Nota: As secções transversais têm correspondência com as definidas no Quadro 5.1; Os Pórticos são identificados de acordo com o definido na Figura 5.2.

O Pilar A (Pórtico 2), a Viga B₁ (Pórtico 3) e a Viga B₂ (Pórtico 4) são verificados aos estados limite últimos (ELU) nas secções 5.5, 5.6 e 5.7, respetivamente, deste documento. Identifica-se a Combinação de Ações N°2 como aquela que é a mais condicionante.

Os diagramas de esforços, para os elementos a verificar e, em cada caso, para a combinação condicionante, são esboçados nas Figuras 5.9, 5.25 e 5.41.

São apresentados os resultados fornecidos por três abordagens distintas: ferramenta de cálculo *AciariUM*, programas *Robot Structural Analysis* e *CYPE 3D*. Para cada caso, e relativamente a cada assunto, são apresentados quadros comparativos dos principais resultados fornecidos pelas três ferramentas.

Porque a ferramenta *AciariUM* e o programa *Robot Structural Analysis*, de acordo com 5.2.6, partiram dos mesmos valores de cálculo dos esforços atuantes, e porque os valores utilizados pelo *CYPE 3D* apresentam ligeiras diferenças relativamente aos primeiros, estão a partida justificadas pequenas discrepâncias que possam surgir, nos resultados finais do processo de verificação aos ELU devolvidos pelo *CYPE 3D*, relativamente às outras abordagens.

5.5 Verificação de segurança aos ELU - Pilar A (Pórtico 2)

A secção transversal do Pilar A é constituída pelo perfil laminado comercial HE 340 A (S275).

No Anexo D.1 são documentados os Interfaces da ferramenta *AciariUM* usada para verificação de segurança aos ELU do Pilar A do Pórtico 2. Os dados e os resultados que neles figuram dizem respeito a esse cálculo.

Identifica-se como condicionante o tramo do pilar compreendido entre a secção correspondente ao Piso 0 e a secção ao nível da plataforma do piso "*Mezanine*" (2,90m). Não se prevê que os fenómenos de instabilidade condicionem o dimensionamento, razão pela qual se considera por simplificação e conservativamente que as duas secções estão completamente contraventadas mas não existem travamentos laterais entre as duas.

O elemento a verificar é caracterizado geometricamente de acordo com os dados na Figura 5.7. Ilustra-se apenas o tramo inferior do pilar.

Figura 5.7 - Caracterização geométrica do Pilar A.

5.5.1 Caracterização geométrica da secção transversal HE 340 A

No Interface I (Figura 5.8) da ferramenta *AciariUM* o Módulo Comercial (consultar 3.5.2) permite selecionar o perfil *HE 340 A* a partir de uma base de dados. A ferramenta parte das dimensões principais do perfil para calcular automaticamente as propriedades mecânicas da secção transversal.

Figura 5.8 - Interface I (excerto): geometria da secção transversal HE 340 A.

O Quadro 5.10 compara os principais resultados obtidos relativamente às propriedades mecânicas da secção transversal *HE 340 A*.

	A	I_y	W_y	$W_{pl,y}$	i_y	A_{vz}	I_z	W_{z}	$W_{pl,z}$	i_z	A_{vy}	I_T
	cm^2	cm^4	cm ³	cm ³	cm	cm^2	cm^4	cm ³	cm ³	cm	cm^2	cm^4
AciariUM	133,5	27693	1678,3	1850,5	14,4	45,0	7436	459,7	755,9	7,5	105,3	127,2
Robot SA	133,5	27693	-	1850,6	14,4	45,0	7436	-	755,9	7,5	110,4	123,0
CYPE 3D	133,5	27690	-	1850.0	-	31,4	7436	-	755,9	-	105,3	127,2

Quadro 5.10 – Propriedades mecânicas da secção transversal HE 340 A.

5.5.2 Definição dos esforços de cálculo na secção condicionante e caracterização geométrica do sistema estrutural

Identifica-se como condicionante a secção de topo (x = 2,90 m) do tramo inferior do Pilar A, onde atuam os esforços identificados na Figura 5.9. A Combinação de Ações ELU 2 é a condicionante.

Figura 5.9 - Diagramas de esforços no Pilar A (Pórtico 2) para a combinação ELU condicionante.

No Interface II da ferramenta *AciariUM*, de acordo com a Figura 5.10, é ativado o Módulo *Robot Structural Analysis* (ver 3.5.4).

• 🗽 MÓDULO ROBOT STRUCTURAL ANALYSIS RECEBER VALORES DIRETAMENTE DE UM FICHEIRO DO AUTODESK ROBOT STRUCTURAL ANALYSIS ABERTO NESTE COMPUTADOR INFO 2 OCULTAR / MOSTRAR 🗹								
IDENTIFICAÇÃO DA SECÇÃO A VERIFICAR	BARRA NO. 27	CASO CARGA NO. 10	COMB 2	POSIÇÃO SECÇÃO 1,0 x L = 2,90 m	NOME SECÇÃO HEA340 L [EL.BARRA] 2,90 m			
SOLICITAÇÃO NA SECÇÃO CONDICIONANTE	N _{Ed} 459,15 kN	M _{Ed.y} -418,84 kN.m V	Ed.z -143,93 kN	M _{Ed.z} -0,44 kN.m V _{Ed.y} -0	,15 kN.m FLEXÃO COMPOSTA DESVIADA			
PARÂMETROS GEOMÉTRICOS DO ELEMENTO	COMPRIMENTO L 2,90	m COMPRIMENTOS DE ENCURVAD	DURA L _{cr.y} 7,00 m	L cr.z 2,90 m COMPRIMENTOS ENTRE S	ECÇÕES CONTRAVENTADAS l_{sup} 2,90 m l_{inf} 2,90 m			

Figura 5.10 - Interface II (excerto): condições de apoio e solicitação do Pilar A.

É aberto o ficheiro do *Robot Structural Analysis* que contêm a modelação do Edifício e selecionado o Pilar A do Pórtico 2.

Na ferramenta *AciariUM*, no campo "*Caso de Carga No*.", é identificado o Caso de Carga Nº10, o correspondente no programa à Combinação de Ações ELU Nº2 (aquela que se identifica como sendo a mais desfavorável). No campo "*Posição da Secção*" é definida a posição relativa da secção condicionante no elemento.

No separador "*Results Connect*" da barra de ferramentas do Microsoft Excel é ativada a opção "*Calculate all*". Os valores de cálculo dos esforços atuantes na secção a verificar são automaticamente recolhidos a partir do ficheiro do *Robot Structural Analysis* aberto no computador. Estes procedimentos podem ser consultados em maior detalhe em 3.5.4.

Os parâmetros geométricos que caracterizam o elemento são comunicados à ferramenta no mesmo espaço (Figura 5.10). São inseridos de forma manual nos campos da ferramenta *AciariUM* destinados ao efeito, em coerência com o que foi definido na Figura 5.7: L = 2,90 m; $L_{cr,y} = 7,0$ m; $L_{cr,z} = 2,90$ m; $l_{sup} = 2,90$ m; $l_{inf} = 2,90$ m.

5.5.3 Classificação da secção transversal HE 340 A

A classificação da secção transversal é realizada no espaço do Interface III da *AciariUM* identificado na Figura 5.11. Todas as ferramentas utilizadas indicam que a secção transversal *HE 340 A*, quando sujeita a flexão composta desviada, é da Classe 1.

CLASSIFICAÇÃO DA SECÇÃO A secção HE A340 sujeita a Flex	ão Composta Desviada é da Classe 1.		CLASSE 1
CLASSIFICAÇÃO DA SEÇÃO TRANSVERSAL: FLEXÃO COMPOSTA EM TORNO	DO EIXO Y COM COMPRESSÃO		NP EN 1993-1-1 Quadro 5.2
CLASSIFICAÇÃO DO BANZO COMPRIMIDO	CLASSIFICAÇÃO DA ALMA		CLASSIFICAÇÃO DA SECÇÃO
BANZO INFERIOR c (mm) 118.25 t (mm) 16.5 c/t 7.17 Classe 1 → cf ≤ 8.3 Classe 2 → cf ≤ 9.2 Banzo de Classe 1 Classe 3 → cf ≤ 12.9 Recore Classe 1 0.75 Recore Classe 0 0.75 Recore Classe 1 multiple DamEnts in FERMS RECORE CLASSE 0 0.475 Recore Classe 0 0.75	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Secção de Classe 1
-519,3 -275,00 -343,80 -0,80 -0,80 -0,80	Alma sujeita a um diagrama de tensões variável (classe 1 ou 2)		
CLASSIFICAÇÃO DA SEÇÃO TRANSVERSAL: FLEXÃO COMPOSTA EM TORNO	DO EIXO Z COM COMPRESSÃO		NP EN 1993-1-1 Quadro 5.2
CLASSIFICAÇÃO DO BANZO		CLASSIFICAÇÃO DA ALMA	CLASSIFICAÇÃO DA SECÇÃO
BANZO SUPERIOR Bs 300,0 rs 27,00 rcss 27,00 c (mm) 118,25 ts 16,5 c/t 7,17	BANZO INFERIOR Bi 300,0 ri 27,00 rcsi 27,00 c (mm) 118,25 ti 16,5 c/t 7,17	d/tw 25,58	
$ \begin{array}{cccc} {\rm Classe } 1 & \rightarrow & c/t \leq & 8,32 \\ {\rm Classe } 2 & \rightarrow & c/t \leq & 9,24 \\ {\rm Classe } 3 & \rightarrow & c/t \leq & 13,88 \end{array} $	$\begin{array}{rcl} {\sf Classe 1} & ightarrow c/t & ightarrow 8,32\\ {\sf Classe 2} & ightarrow c/t & ightarrow 9,24\\ {\sf Classe 3} & ightarrow c/t & ightarrow 13,88 \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Secção de Classe 1
REGIME FLASTICD α 1,000 REGIME ELASTICD Ψ -0,75 Ψ' 0,310 kσ 0,512	REGME PLASTICO α 1,000 PEGIME ELASTICO Ψ -0,75 Ψ' 0,310 kσ 0,512	REGME PLASTICO Nf2 862,13 dN (mm) -53,87 REGME ELASTICO Ψ -0,75 bt (mm) 128,553	Botão com imagem
SITUAÇÃO LIMITE M_LIMITE Φ _E Φ ₀ Ψ COMSDERADA: -119,27 275,00 -206,20 -0,75	STUAÇÃO LIMITE MUMATE OE OD U CONSIDERADA. 119,27 -206,20 275,00 -0,75		
CLASSIFICAÇÃO DA SEÇÃO TRANSVERSAL: FLEXÃO COMPOSTA DESVIADA			NP EN 1993-1-1 Quadro 5.2
CLASSIFICAÇÃO DA SECÇÃO			Secção de Classe 1

Figura 5.11 – Interface III (excerto): classificação da secção transversal HE 340 A.

5.5.4 Verificação da resistência da secção HE 340 A aos estados limite últimos

A resistência da secção transversal aos estados limite últimos é verificada no Interface III da ferramenta *AciariUM* (Figura 5.12).

A. RESISTÊNCIA DA	SECÇÃO	TRANSVE	RSAL A	ESFORC	OS SIM	IPLES							NP EN 1993-1-1. 6.2
Tração	Let [2670 50	L-M	OK	094	NDEN1992 1 1 (6 2 2)							
Comprozeão	*LRd	2670.50	LM	OK	1.20/	NDEN1002 1 1 (6.2.3)							
Compressao in	*c.Rd	3070,30	NN I	OK	1570	NPEN1555-1-1 (0.2.4)							
Estorço Transverso V	z.Rd	/13,68	KN	UK	20%	NPEN1993-1-1 (6.2.6)	com S _y 925,24 cm*						
Momento Fletor N	Λ _{γ.Rd}	508,88	kN.m	ОК	82%	NPEN1993-1-1 (6.2.5)							
Esforço Transverso V	y.Rd	1671,19	kN	ОК	0%	NPEN1993-1-1 (6.2.6)	com S ₂ 354,62 cm ³						
Momento Fletor N	M _{z.Rd}	207,89	kN.m	ОК	0%	NPEN1993-1-1 (6.2.5)							
B. AVALIAÇÃO DA N	IECESSI	DADE DA (ERAÇÃO	DO EF	EITO DO ESFORCO) TRANSVERSO NO CÁLCULO E	OS ESFORCO	OS RESISTEN	ITES DEFINIDOS PARA A FL	EXÃO COMPOSTA		NP EN 1993-1-1 6.2.10
ESFORÇO TRANSVERSO		ÇÃO Z (ASS	DCIADO AC	MOMENT	O FLETOP	R M ₇]		ESFORÇ	O TRANSVERS	SO NA DIREÇÃO Y (ASSOCIADO A	O MOMENTO FLETOR M2]		
V _{z Ed} (kN) 143,9	<	50% V _{ni}	Rd z (kN)	713,7		ρ 0,00	f' _{v (Avr)} 275,0 f _v 275,0	VyEd	(kN) 0,15	< 50% V _{pl.Rd.v} (kN)	1671	ρ 0,00	f' _{v (4w)} 275,0 f _v 275,0
Não é pecessário proceder	a qualque	r reducão do v	alor de cál	culo dos es	forcos re	esistentes	NÃO NECESSÁRIO CONSIDERAR	Não é ne	cessário proced	er a qualquer redução do valor de ci	ilculo dos esforcos resisten	tes definidos para a	NÃO NECESSÁRIO CONSIDERAR
definidos para a flexão com	posta.						A INTERAÇÃO !	flexão co	mposta.				A INTERAÇÃO !
C. INTERAÇÃO [M Não é necessário ter em	Avz (f) Arz (f) + V] ES	b. Vd to to b. FFORÇO DE I interação d		,2 COM ESFC de corte	fy Ty DRÇO T [Vz] cor	RANSVERSO	Årea resistente ao Årea resistente ao f.st. Tansverso V, Årea restante Å.a. 44.95 Å.a. 44.95 Å.a. 44.95 Å.a. 44.95 Å.a. 44.95 Å.a. 45.8.6 M.a. 130.9 Asset 458.6 M.a. 458.6 M.a. 458.6 M.a. 458.6 M.a. 458.6	secção DA CLASSE 1 OU 2 Não é u	114834 OSYD 114834 OSYD eccessário ter	em conta a interação do esforço	Fy Fy	fry fr tr tr tr tr tr tr tr tr tr tr tr tr tr	Årea resistente av tsf. Transverso V, Avy Årea resitante År, 105.26 År, 28.22 L, Jr. 742.5.0 L, Jr. 10.5 Wpt, p.k. 742.5.0 L, Jr. 10.5 NP EN 1993-1-1. 6.2.8 13.4 13.4
PL MVv.Rd	508,8	8 kN.m	ОК	82% 82%		M _{V.y.Rd} =	$\frac{W_{y,Av} \cdot f'_{yz} + W_{y,Av} \cdot f_{y}}{\gamma_{M0}}$	PL	MV ^{sep} MV ^{ir(}	207,89 kN.m OK	0%	$M_{V.z.Rd} = \frac{W}{M}$	$\frac{z \cdot Av \cdot f'yy + W_{z \cdot Ar} \cdot f_y}{\gamma_{MO}}$
WW Vy.Rd	_ 00/0	-	- On				(MU		vz.Nd				1 10
INTERAÇÃO [M + N	1 + V] I	FLEXÃO CO	MPOSTA	COM ESFO	RÇO TRA	NSVERSO [SECÇÌ	ÕES TRANSVERSAIS BISSIMÉTRICAS DAS C	ASSES 1 OU 2]					NP EN 1993-1-1. 6.2.9
INTERALGAD [W + N + V] FLEXAD COMPOSTA COM ESPORÇO TRANSVERSO [SECCOSS TRANSVERSO [SECCOSS TRANSVERSO] NP EN 1993-1-1. 6.29 É necessário ter em conta a interação do esforço axial (N) com o momento fletor (M) resistente em relação ao eixo y-y. MN _{MAY} 508,88 kbi.m OK 83% No é necessário ter em conta a interação do esforço axial (N) com o momento fletor (M) resistente em relação ao eixo z-z, razão pela qual não efetuada qualquer reduzão desse valor. MN _{RAY} 207,89 kbi.m OK 0%													
INTERAÇÃO [M _y +	M _z + N	+ V] FLEX	ãо сом	POSTA D	ESVIAD	A COM ESFORÇO TRAN	VERSO			[5	ECÇÕES TRANSVERSAIS BIS	SIMÉTRICAS DA CLAS	SE 1 OU 2] NP EN 1993-1-1. 6.2.9
CRITÉRIO DE SEGURANÇA	$\left[\frac{M_3}{MN_F}\right]$	$\left[\frac{\alpha_{Ed}}{\alpha_{y,Rd}}\right]^{\alpha} + \left[$	Mz,Ed MNpl,z,R	$\begin{bmatrix} \beta \\ \beta \end{bmatrix} \le 1, 0$	0 [0,69 < 1,00	ОК 69%						

Figura 5.12 – Interface III (excerto): resistência da secção transversal HE 340 A aos ELU.

O Quadro 5.11 compara os principais resultados obtidos relativamente à verificação da resistência da secção transversal *HE 340 A* aos estados limite últimos.

Página | 128

	$N_{c,Rd}$	$M_{y,Rd}$	$V_{z,Rd}$	$M_{z,Rd}$	$V_{y,Rd}$	$M_{V,y,Rd}$	$M_{V,z,Rd}$	$M_{NV,y,Rd}$	$M_{NV,z,Rd}$	FCD
	kN	kN.m	kN	kN.m	kN	kN.m	kN.m	kN.m	kN.m	
AciariUM	3670,5	508,9	713,7	207,9	1671,2	508,9	207,9	508,9	207,9	69%
Robot SA	3670,5	508,9	713,7	207,9	1752,6	-	-	508,9	207,9	69%
CYPE 3D	3671,3	508,8	497,75	207,9	1671,6	-	-	508.8	207,9	65%

Quadro 5.11 - Verificação da resistência da secção transversal HE 340 A aos ELU.

FCD - verificação à flexão composta desviada (eficiência) de acordo com o critério na Equação (4.49).

5.5.5 Resistência do Pilar A à encurvadura (varejamento)

A resistência do elemento à encurvadura (varejamento) é verificada no Interface IV da ferramenta de cálculo (Figura 5.13).

A. VERIFICAÇÃO À ENCURVADURA EM TORNO DO) EIXO Y (VAREJAMENTO)	NP EN 1993-1-1. 6.3.1.1(3)
N _{b y.Rd} 3144,66 kN OK 14,6%	$L_{cr,v} 7,00 \lambda_{v} 0,56 \alpha_{v} 0,34 \varphi_{v} 0,72 \chi_{v} 0,86$	
B. VERIFICAÇÃO À ENCURVADURA EM TORNO DO	EIXO Z (VAREJAMENTO)	NP EN 1993-1-1. 6.3.1.1(3)
N _{b z.Rd} 3197,11 kN OK 14,4%	$L_{cr,z} 2,91 \lambda_z 0,45 \alpha_z 0,49 \varphi_z 0,66 \chi_z 0,87$	

Figura 5.13 – Interface IV (excerto): resistência do Pilar A à encurvadura (varejamento).

O Quadro 5.12 compara os principais resultados obtidos relativamente à verificação do Pilar A à encurvadura (varejamento).

	λν	α_{v}	$\boldsymbol{\varphi}_{\mathrm{v}}$	Xv	NhyRd	Ef.	λ_{τ}	α,	Ø 7	X 7	$N_{h, z, Rd}$	Ef.
	,	9	15	λ,	kN	5	~	~	1~	71~	kN	5
AciariUM	0,56	0,34	0,72	0,86	3144,7	15%	0,45	0,49	0,66	0,87	3197,1	15%
Robot SA	0,56	0,34	0,72	0,86	3142,8	15%	0,45	0,49	0,66	0,87	3197,1	15%
CYPE 3D	0,56	0,34	0,72	0,85	3137,2	15%	0,45	0,49	0,66	0,87	3197,1	15%

Quadro 5.12 - Verificação da resistência do Pilar A à encurvadura (varejamento).

5.5.6 Resistência do Pilar A à encurvadura lateral (bambeamento)

A resistência do elemento à encurvadura lateral (bambeamento) é verificada no Interface IV da ferramenta *AciariUM* (Figura 5.14).

C. VERIFICAÇÃO À ENCURVADURA LATERAL (BAMBEAMENTO)		NP EN 1993-1-1. 6.3.2
DETERMINAÇÃO DO VALOR DO MOMENTO CRÍTICO (M _{CR}) PARA A ENCURVADURA LATERAL - PROPOSTA DE CLARK AND HILL (1960	D) E GALÉA (1981):	AUTOMODE
$ \begin{array}{c} \widehat{} & \text{cálculo automático do valor de } M_{cr} \\ \widehat{} & \text{M}_{cr} = C_1 \frac{\pi^2 E_{I_Z}}{(k_z l)^2} \left[\left(\frac{k_z}{k_w} \right)^2 \frac{I_w}{I_z} + \frac{(k_z l)^2 G_{I_T}}{\pi^2 E_{I_Z}} + (C_{2zg} - \frac{1}{2} C_{2zg} + C_{2zg} - \frac{1}{2} C_{2zg} + C_{$	$(C_3 z_j)^2 = (C_2 z_g - C_3 z_j) = 5940,69 \text{ kN.m}$	VALORES PROPOSTOS Mcs 5941 kN.m 3162 kN.m
COEFICIENTES DISTRIBUIÇÃO DE MOMENTOS INFO 🖓 FATORES DE COMPRIMENTO EFETIVO INFO 🖓	POSIÇÃO DA CARGA NA SECÇÃO INFO 🖓	GRAU DE ASSIMETRIA DA SECÇÃO INFO 🤉
C1 1,88 C2 0,00 C3 0,94 BANZO COMPRIMIDO: INFERIOR REDEFINIR VALORES X FATORES COMPRIMENTO EFETIVO FORMA DO DIAGRAMA DE MOMENTOS k _x 1,00 k _y 1,00	DETERMINAR	zj 0 m β 0,5 hg 313,5 mm BANZO COMPRIMIDO:
$\psi = 0$ COMPRIMENTO ENTRE SECÇÕES I(m) LATERALM. CONTRAVENTADAS 2,91	28 0,000 em metros	INFERIOR I _{fc} 3713 cm ⁴ BANZO TRACIONADO:
DETERMINAÇÃO DO VALOR DE CÁLCULO DO MOMENTO RESISTENTE À ENCURVADURA LATERAL:		
$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $	1 \$\Phi_{LT}\$ 0,55 \$\colored L_LT\$ 0,98	

Figura 5.14 - Interface IV (excerto): resistência do Pilar A à encurvadura lateral (bambeamento).

Identifica-se o banzo inferior, por ser o banzo comprimido pelo esforço de flexão em torno do eixo *y*, aquele que é suscetível de sofrer deste fenómeno de instabilidade.

Os coeficientes distribuição de momentos, C_i , são definidos na janela associada ao botão *"Redefinir Valores"* (Figura 5.15). Na janela associada ao botão *"Determinar"* (Figura 5.16), é definido o parâmetro z_g marcando a opção correspondente à aplicação da carga ao nível do centro de corte da secção transversal.

Figura 5.15 – Janela de definição dos coeficientes distribuição de momentos (Pilar A).

Figura 5.16 – Janela de definição do parâmetro z_g (Pilar A).

O Quadro 5.13 compara os principais resultados obtidos relativamente à verificação do Pilar A à encurvadura lateral (bambeamento).

	~ 1 ' (^ ' 1 D'1	A \ 1 1	· 1/1 1 · · · ·
Quadro 5.13 – Verifica	ação da resistência do Pila	ir A a encurvadura la	teral (bambeamento).
•	2		· · · · · · · · · · · · · · · · · · ·

	C_1	C_2	C_3	k _{z,inf}	k _{w,inf}	M_{cr}	λ_{LT}	α_{LT}	φ_{LT}	χlT	$M_{b,Rd}$	Ef.
						kN.m						
AciariUM	1,88	0	0,94	1,00	1,00	5940,7	0,29	0,21	0,55	0,98	498,3	84%
Robot SA	1,88	0	0,94	1,00	1,00	5929,3	0,29	0,21	0,55	0,98	498,3	84%
CYPE 3D	1,88	-	-	1,00	1,00	5942,0	0,29	0,21	0,55	0,98	498,2	84%

5.5.7 Resistência do Pilar A à encurvadura por esforço transverso (enfunamento)

A resistência do elemento à encurvadura por esforço transverso é verificada no Interface IV da ferramenta *AciariUM* (Figura 5.17).

D. VERIFICAÇÃO À ENCL	JRVADU	JRA PO	OR ESP	ORCO	TRANS	SVERSC	C [ENFUNA	MENTO]																NPE	N 1993-1	-1. Anexo A
ESFORÇO TRANSVERSO RESISTE	ENTE PLÁS	STICO (E	LU)	V _{pl,Rd}	713	3,68	kN	OK NPEN1	993-1-1 (6	.2.6)	com S	925,238	cm ³									EXT.		INT.		EXT.
ALMA NÃO REFORÇADA	h"/	′t _w	31,26	<	72	/η ε	55,46 —	→ Não h	á necesi	dade de	e existire	m refor	ços tran	sversais!												BS
REFORÇOS TRANSVERSAIS REFORÇOS LONGITUDINAIS	EXTREM Não	IDADE	Não	RÍG	DOS		INTERMÉDIO	os Não	a _w (m)		•		L (m)	2,9	1		OTMIZAR Arredonda	REFORÇ	OS TRAN	ISVERSA os de Scr	IS m.		a		a	BI
ALMA REFORÇADA h _u /t _u 31,26 < 31/η ε √k _τ - >> Não há necesidade de verificar a chapa em relação à resistência à encurvadura por esforço transverso! kτ												kτ	- k	τ _{si}	0 a,	/h _i -										
VERIFICAÇÃO DA CHAPA EM F	ICAÇÃO DA CHAPA EM RELAÇÃO À RESISTÊNCIA À ENCURVADURA POR ESFORÇO TRANSVERSO NOTAS E CHAMADAS DE ATENÇÃO																									
V _{b Rd} [kN] - =	$Vb_{w,Rd}$	-	+	Vb _{f.Rd}	-			DETERMINAÇÃO	DA SEC	ção efe	ETIVA CO	NSTITU	ÍDA APE	NAS PELA	S ÁRE	AS EFETI	AS DOS	BANZO)S							
ОК	Xu	•		CASE	4				b _(mm)	t _(mm)	с	ψ	kσ	λρ				ρ	CEFF (mm)	b _{EFF (mm}	a)	0 méto	do de cálo	ulo do	valor de	VbRd é
	σ _{ε (MPa)}	194,19		SECÇÃO	TOTAL		TRACIONADO	BANZO SUPERIOR	300	16,5	118,25	1,00	0,43	0,416	≤	0,748	\longrightarrow	1,000	118,25	300		válido se e	xistirem	reforços	transve	ersais pelo
	λ,,	1.0		A (cm2)	133,47		сомрямых (BANZO INFERIOR	300	16,5	118,25	1,00	0,43	0,416	≤	0,748	\longrightarrow	1,000	118,25	300,00)		menos	s nos ap	olos.	
				Zcg (mm)	165																					
σ _{x10491} -215.2 SECCÃO EFETIVA A _{(2F1(m2)} 99,00																										
				σ _{i (MPa)}	283,96		constituída ape	anas z _{cg(mm)} 165,00			405 70		227.25									R	ESTRIÇÕ	ES DE V	ALIDADI	E:
				ψτοται	-0,758		pelas áreas efet	tivas l _{yEFF (cm4)} 24347		WIK,Rd	403,75	WINK,Rd	337,33									Re	forços tra	ansversa	ais rígido	os.
	E.N. jmm 187,7 dos bancos. W ₄ gr# 1475,6 br 300 tr 16,5 c -											Inexist	ência de i	reforços	longitu	dinais.										

Figura 5.17 - Interface IV (excerto): resistência do Pilar A à encurvadura por esforço transverso.

A ferramenta e o programa *CYPE 3D* indicam que não existe necessidade de verificar o Pilar A à encurvadura por esforço transverso.

No relatório de cálculo fornecido pelo *Robot Structural Analysis* não foram apresentados resultados em relação a este assunto, razão pela qual se considera que o programa não faz esta verificação.

5.5.8 Verificação do Pilar A à encurvadura tendo em conta a interação entre os esforços de compressão e flexão (estabilidade global)

A análise de estabilidade global de elementos em flexão composta com compressão é realizada no Interface V da ferramenta *AciariUM* (Figura 5.18).

ENCURVADURA	A TENDO EM COM	ΙΤΑ Α Ι	NTERA	ção ei	NTRE C	OMPRI	ESSÃO E	FLEXÃO	MÉTO	DO ALT	ERNA	TIVO 1 -	NP EN :	1993-1-1	ANEXO	A									NP EN 19	93-1-1. AI	nexo A
PARÂMETROS ENG	CURVADURA	L _{cr,y}	7,00	L _{cr,z}	2,91	L	2,91		λγ	0,56	λ_{z}	0,45	λ_{LT}	0,293		Xγ	0,86	Xz	0,87	XLT	0,98						
ESFORÇOS NORM	AIS CRÍTICOS	N _{cr,y}	11714	kN	N _{cr,z}	18199	kN	N _{cr,T} 2	0870 kr	N			FAT	ORES	uy	0,99	u _z	1,00	wγ	1,10	Wz	1,50	n _{pl}	0,13 λ _{max} 0,56]		
	E MOMENTO UNIFO O AUTOMÁTICO DOS O MANUAL DOS VAL	RME EC VALORE DRES DE	UIVALEI S DE Cmy Cmy.0 e C	NTE .0 e Cmz.0 mz.0	AUTO MODE	M ^E _{CR}	3162	kN.m	C1 :	1,88	λο	0,40	> 0,2	$2\sqrt{C_14}$	$1 - \frac{N_E}{N_{cr}}$	$\frac{d}{r,z} \left(1 - \frac{1}{r}\right)$	N _{Ed} N _{cr,TF}	$\overline{)} \Rightarrow$	C _{my} C _{mz} C _{mLT}	0,94 0,79 1,00	← ←	С _{ту,0} С _{та,0}	0,79 0,79	4			
C _{my,0}	MODULO DE CÁLCULO AUTOMÁTICO	Rede Parâm	finir ietros	QUADR OPÇÃO	D A.2 NPE	N1993-1-	DIAGRA	AMA DE M	OMENTC Ω¥≤1	DS FLETO	RES N	1 _{Ed,y} ENTR C _{mi,0} :	e secç = 0,79 +	ÕES LATEI • 0,21ψ _i +	RALMEN ⁻ 0,36(ψ _i	-0,33)	RAVENTA N _{Ed} N _{er.i}	ADAS:	ψ_{γ} ϵ_{γ}	0,00 7,25	$\begin{array}{c} \delta_y \\ M_{Edy} \end{array}$	•	mm KN.m	VALOR PROPOSTO PARA O PARÂMETRO Cmg0	C _{my,0}	0,79	0,79
Cmz,0	MODULO DE CÁLCULO AUTOMÁTICO	Rede Parân	finir ietros	QUADRO OPÇÃO	D A.2 NPE	N1993-1-	DIAGR/	AMA DE M	OMENTC ≦ψ≤1	OS FLETO	RES N	I _{Ed,2} ENTR	E SECÇÓ = 0,79 ·	ÕES LATER + 0,21ψ _i +	RALMENT - 0,36(ψ	TE CONT - 0,33)	RAVENTA $\frac{N_{Ed}}{N_{er,i}}$	ADAS:	Ψ: ε _z	0,00	δ _z M _{Edz}	-	mm KN.m	VALOR PROPOSTO PARA O PARÂMETRO Cm20	C _{mz,0}	0,79	0,79
FATORES a	t _{LT} 1,00 b _{LT}	0,00	CLT	0,28	d _{LT}	0,01	e _{LT}	4,31					FAT	ORES	C _{vv}	1,01	C _{yz}	0,96	Czy	0,99	C ₂₂	0,82]				
FATORES DE INTE	FATORES DE INTERAÇÃO k _u 0,58 k _u 0,51 k _u 0,98																										
CONDIÇÃO ASSO NP EN 1993-1-1 6.3.3 CONDIÇÃO ASSO NP EN 1993-1-1 6.3.3	CIADA À ENCURVAE 3(4) EXP 6.61 CIADA À ENCURVAE 3(4) EXP 6.62	URA EN	1 TORNO	D DE Y	$\frac{1}{\chi_{1}}$	$\frac{N_{Ed}}{N_{Rk}/\gamma}$ $\frac{N_{Ed}}{N_{Rk}/\gamma}$	$+ k_{yy}$ $- + k_{zy}$ MI	$\frac{M_{y,Ed} + \lambda}{\chi_{LT}M_{y,I}}$ $\frac{M_{y,Ed} + \lambda}{\chi_{LT}M_{y,I}}$	$\frac{\Delta M_{y,Ed}}{Rk/\gamma_{M1}}$ $\frac{\Delta M_{y,Ed}}{Rk/\gamma_{M1}}$	$+k_{yz}\frac{M}{k_{zz}}$	M _{z,Ed} M _z M _{z,Ed}	$+\Delta M_{z,E}$ R_{k}/γ_{M1} $+\Delta M_{z,E}$ R_{k}/γ_{M1}	<u>id</u> :	-	0,96 0,57	<	1,0 1,0	ОК	96% 57%								

Figura 5.18 – Interface V (excerto): análise de estabilidade global do Pilar A sujeito a flexão composta com compressão.

É ativado o cálculo automático dos coeficientes de momento uniforme $C_{my,0}$ e $C_{mz,0}$. A determinação destes parâmetros é auxiliada pelas janelas associadas aos botões "*Redefinir Parâmetros*" (Figura 5.19). É selecionado o primeiro dos casos constantes do Quadro A.2 da NP EN 1993-1-1 [1].

	NP EN 1993-1-1 Q	uadro A.2 - Coeficientes de Momento Uniforme Equivalente Cmy,0	×			NP EN 1993-1-1 C	Quadro A.2 - Coeficientes de Momento Uniforme Equivalente Cmz,0	×
	Diagrama de momentos	$C_{mi,0}$				Diagrama de momentos	$C_{mi,0}$	
¢	M_1 ψM_1 -1 $\leq \psi \leq 1$	$C_{mi,0} = 0,79 + 0,21\psi_i + 0,36(\psi_i - 0,33) \frac{N_{Ed}}{N_{er,i}}$	M1 -420,60 kN.m wM1 0 kN.m	œ	-	M_1 ψM_1 $-1 \le \psi \le 1$	$C_{mi,0} = 0,79 + 0,21\psi_i + 0,36(\psi_i - 0,33)\frac{N_{Ed}}{N_{er,i}}$	M1 -0,44 kN.m wM1 0,00 kN.m
6		$\mathbf{C}_{mi,0} = 1 + \left(\frac{\pi^2 \mathbf{E} \mathbf{I}_i \left \boldsymbol{\delta}_x \right }{\mathbf{L}^2 \left \mathbf{M}_{i,\text{Ed}} \left(\mathbf{x} \right) \right } - 1 \right) \frac{\mathbf{N}_{\text{Ed}}}{\mathbf{N}_{\text{cris}}}$	My,Ed kN.m			M(x)	$\mathbf{C}_{\mathrm{ns},0} = \mathbf{I} + \left(\frac{\pi^2 \mathbf{E} \mathbf{I}_i \left \boldsymbol{\delta}_x \right }{L^2 \left \mathbf{M}_{i,\mathrm{Ed}} \left(\mathbf{x} \right) \right } - 1 \right) \frac{\mathbf{N}_{\mathrm{Ed}}}{\mathbf{N}_{\mathrm{cr},i}}$	My,Ed kN.m
	▲ M(x)	M _{i,Ed} (x) valor máximo do momento M _{y,Ed} ou M _{z,Ed} correspondente a uma análise de primeira ordem	ðx mm			▲ M(x)	M _{LEd} (x) valor máximo do momento M _{y,Ed} ou M _{z,Ed} correspondente a uma análise de primeira ordem	ðx mm
		δ _x flecha máxima ao longo do elemento					δ _x flecha máxima ao longo do elemento	
¢		$C_{mi,0} = 1 - 0.18 \frac{N_{Ed}}{N_{er,i}}$		c			$C_{mi,0} = 1 - 0.18 \frac{N_{Ed}}{N_{cr,i}}$	
¢		$C_{mi,0} = 1 + 0.03 \frac{N_{Td}}{N_{cr.i}}$	ок	c			$C_{mi,0} = 1 + 0.03 \frac{N_{Ed}}{N_{cr.i}}$	ок

Figura 5.19 – Janelas de definição dos coeficientes de momento uniforme (Pilar A).

O Quadro 5.14 compara os principais resultados obtidos relativamente à análise de estabilidade global do Pilar A.

	N _{cr,y}	N _{cr,z}	$N_{cr,T}$	λ_0	C_{my}	C_{mz}	C_{mLT}	a_{LT}	b_{LT}	C_{LT}	d_{LT}	e_{LT}
	kN	kN	kN									
AciariUM	11714	18199	20870	0,40	0,94	0,79	1,00	1,00	0,00	0,28	0,01	4,31
Robot	11670	18200	20765	0,40	0,94	0,79	1,00	1,00	0,00	0,29	0,01	4,33
CYPE 3D	11525	18200	20883	0,39	0,94	0,79	1,00	1,00	0,00	0,26	0,01	4,11
	C	C	C	C	k	k	k	k	Verit	ficação	Verif	icação
	Cyy	C_{yz}	C_{zy}	Uzz	Куу	K_{yz}	κ_{zy}	K _{ZZ}	(Exp.6.61)		(Exp	.6.62)
AciariUM	1,01	0,96	0,99	0,82	0,96	0,58	0,51	0,99	9	6%	57	7%
Robot	1,01	0,96	0,99	0,82	0,96	0,58	0,51	0,99	9	6%	57	7%
CYPE 3D	1,01	0,97	0,99	0,83	0,97	0,59	0,51	0,97	9	2%	54	4%

Quadro 5.14 – Verificação da resistência do Pilar A à encurvadura tendo em conta a interação entre os esforços de compressão e flexão (estabilidade global).

5.5.9 Relatório final de segurança (Pilar A)

O Pilar A do Pórtico 2, caso mais condicionante de entre os elementos do Grupo1 (grupo definido de acordo com o Quadro 5.9), verifica a segurança em relação aos estados limite últimos. A taxa de eficiência, de acordo com a ferramenta *AciariUM*, é de 96%.

No Interface VI da ferramenta *AciariUM* é produzido um relatório de cálculo completo pronto a ser exportado, que é apresentado no Anexo D.2 deste documento. Os relatórios de cálculo produzidos pelos programas *Robot Structural Analysis* e *CYPE 3D* para este caso são apresentados nos Anexos D.3 e D.4, respetivamente.

O Quadro 5.15 resume e compara os principais resultados obtidos no processo de verificação.

	$N_{c,Rd}$	$M_{y,Rd}$	$V_{z,Rd}$	$M_{z,Rd}$	$V_{y,Rd}$	FCD	$N_{b,y,Rd}$	$N_{b,z,Rd}$	$M_{b,Rd}$	$V_{b,Rd}$	Ver.	Ver.
	kN	kN.m	kN	kN.m	kN		kN	kN	kN.m	kN	(6.61)	(6.62)
AciariUM	3670,5	508,9	713,7	207,9	1671,2	69%	3144,7	3197,1	498,3	-	96%	57%
Robot	3670,5	508,9	713,7	207,9	1752,6	69%	3142,8	3197,1	498,3	-	96%	57%
CYPE 3D	3671,3	508,8	497,75	207,9	1671,6	65%	3137,2	3197,1	498,2	-	92%	54%

Quadro 5.15 - Resumo dos resultados relativos ao processo de verificação do Pilar A.

FCD - verificação à flexão composta desviada (eficiência) de acordo com o critério na Equação (4.49).

As diferentes abordagens consideram diferentes áreas A_{ν} resistentes ao esforço transverso, o que se reflete nos valores da resistência da secção transversal ao corte.

As diferenças nos resultados apresentados pelo *CYPE 3D* acontecem principalmente porque, neste caso, o programa partiu de valores dos esforços atuantes ligeiramente inferiores.

5.6 Verificação de segurança aos ELU – Viga B₁ (Pórtico 3)

A Viga B_1 é caracterizada geometricamente de acordo com os dados na Figura 5.20. É constituída por um perfil reconstituído soldado (*PRS*) de altura variável.

No Anexo E.1 são documentados os Interfaces da ferramenta *AciariUM* usada para verificação de segurança aos ELU da Viga B_1 do Pórtico 3.

Figura 5.20 - Caracterização geométrica da Viga B1.

O elemento é um tramo da viga B. A viga B tem comprimento total de 15 m. Considera-se o comprimento de encurvadura em torno do eixo y igual ao comprimento da viga ($L_{cr,y}$ =15 m).

Toma-se o comprimento de encurvadura do tramo a analisar em torno do eixo z igual ao comprimento entre secções lateralmente contraventadas, isto é, entre madres ($L_{cr,z}$ = 1,65 m).

A encurvadura para fora do plano é evitada com recurso a um sistema composto definido de acordo com as Figuras 5.21 e 5.22 [6]:

- O aparafusamento das madres ao banzo superior garante o contraventamento lateral da viga, impedindo deslocamentos transversais do banzo comprimido (Figura 5.21). O travamento do banzo superior é feito em secções espaçadas de 1,65m.
- O sistema materializado de acordo com a Figura 5.22 impede a translação lateral do banzo inferior e a rotação do elemento em torno do seu eixo longitudinal. O banzo inferior é travado a cada 1,65m.

Figura 5.21 – Contraventamento lateral do banzo superior da Viga B.

De acordo com a estratégia definida em 5.3.3 a modelação da Viga B₁ no programa *CYPE 3D* é realizada dividindo-a em subelementos (EL1, EL2 e EL3) de comprimentos iguais às distâncias entre secções lateralmente contraventadas (l = 1,65m), de acordo com a Figura 5.23.

Figura 5.23 – Estratégia de modelação da Viga B₁ no CYPE 3D.

Não existem restrições à rotação em torno do eixo *z* nas secções de extremidade dos tramos de comprimento *l*. Para cado tramo definem-se os comprimentos de encurvadura, $L_{cr,y} = 15,0$ m e $L_{cr,z} = 1,65$ m, e os comprimentos de encurvadura lateral de cada banzo, $L_{cr,z}^{banzo} = 1,65$ m. A verificação incide sobre o mais condicionante dos três tramos (EL3).

5.6.1 Caracterização geométrica da secção transversal PRS

No Interface I (Figura 5.24) é ativado o Módulo Manual (consultar 3.5.3) de definição das dimensões da secção transversal. É comunicada individualmente cada uma das dimensões principais da secção transversal à ferramenta de cálculo. A ferramenta *AciariUM* parte dessa informação para calcular automaticamente as propriedades mecânicas da secção transversal.

	MÓDULO MANUAL DEFINIÇÃO MANUAL DAS DIMENSÕES DA SECÇÃO TRANSVERSAL INFO ?																	
<u> </u>	-			DI	MENSÕE	S PRINCIP	AIS RECO	LHIDAS D		DESK ROB	от	Α	C	G	DIMEN	SÕES CO	MPLEMEN	NTARES
	-	SECÇÃO	TIPO DE PERFIL	h	b _s	b _i	tw	t _s	ti	rs	r,	Α	Z _{CG}	Ycg	hi	d	CS _s	cs _i
	<u> </u>			mm	mm	mm	mm	mm	mm	mm	mm	cm ²	mm	mm	mm	mm	mm	mm
-	- \	PRS	Perfil Soldado	660	160	160	8	21	21	0	0	116,6	330,0	80,0	618	618	0,00	0,00

Figura 5.24 – Interface I (excerto): definição das dimensões do perfil PRS (S4).

O Quadro 5.16 compara os principais resultados obtidos relativamente às propriedades mecânicas da secção transversal.

	Α	I_y	W_y	$W_{pl,y}$	i_y	A_{vz}	I_z	W_z	$W_{pl,z}$	i_z	A_{vy}	I_T
	cm^2	cm^4	cm ³	cm ³	cm	cm^2	cm^4	cm^3	cm ³	cm	cm^2	cm^4
AciariUM	116,6	84358	2556,3	2910,9	26,9	49,4	1436	179,5	278,7	3,5	67,2	103,6
Robot SA	116,6	84358	2556,3	-	26,9	59,3	1436	179,5	-	3,5	67,2	101.1
CYPE 3D	116,6	84358	2556,3	-	-	49,4	1436	179,5	278,7	-	67,2	109,3

Quadro 5.16 - Propriedades mecânicas da secção transversal PRS.

5.6.2 Definição dos esforços de cálculo na secção condicionante e caracterização geométrica do sistema estrutural

Identifica-se como condicionante a secção S4 da Viga B_1 onde atuam os esforços identificados na Figura 5.25. A Combinação de Ações ELU 2 é a condicionante.

Figura 5.25 – Diagramas de esforços na Viga B₁ (Pórtico 3) para a combinação ELU condicionante.

No Interface II da ferramenta *AciariUM* é selecionado o Módulo Manual (consultar 3.5.3) de introdução do valor de cálculo dos esforços atuantes na secção a verificar e dos parâmetros geométricos que definem o sistema estrutural (Figura 5.26). São introduzidos os dados recolhidos das Figuras 5.20 e 5.25.

MÓDULO MANUAL INTRODU	IÇÃO MANUAL DO	VALOR DE C	ÁLCULO DOS ESF	ORÇOS ATUANTES M	NA SECÇÃO A VERIFI	ICAR E DOS PARÂMETRO	OS GEOMÉTRICOS QUE CARA	CTERIZAM O SISTEMA ESTRUTURAL	INFO ? ocultar/mostrar 🗹
SOLICITAÇÃO NA SECÇÃO CONDICIONANTE	N _{Ed} 7	4,24 k	N M _{Ed.y}	-393,30	kN.m V _{Ed.z}	-70,14 kN	M _{Ed.z} -1,04	kN.m V _{Ed.y} -0,07 kN.m	FLEXÃO COMPOSTA DESVIADA
PARÂMETROS GEOMÉTRICOS DO ELEMENTO	COMPRIMENTO	L	5,00 m	COMPRIMENTOS DE	E ENCURVADURA	L _{cr.y} 15,00 m	L _{cr.z} 1,65 m	COMPRIMENTOS ENTRE SECÇÕES CONTRAVENTADAS	l _{sup} 1,65 m l _{inf} 1,65 m

Figura 5.26 – Interface II (excerto): condições de apoio e solicitação da Viga B1.

5.6.3 Classificação da secção transversal PRS

A classificação da secção transversal *PRS* é realizada no Interface III (Figura 5.27). Todas as abordagens indicam que a secção transversal sujeita a flexão composta desviada é da Classe 3.

CLASSIFICAÇÃO DA SECÇÃO A secção PRS sujeita a Flexão C	omposta Desviada é da Classe 3.		CLASSE 3
CLASSIFICAÇÃO DA SEÇÃO TRANSVERSAL: FLEXÃO COMPOSTA EM TORNO	DO EIXO Y COM COMPRESSÃO		NP EN 1993-1-1 Quadro 5.2
CLASSIFICAÇÃO DO BANZO COMPRIMIDO	CLASSIFICAÇÃO DA ALMA		CLASSIFICAÇÃO DA SECÇÃO
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Secção de Classe 3
-719,3 -275,00 287,73 -0,96 -686,71 -262,27 275,00 -0,95	Alma sujeita a um diagrama de tensões variável (classe 3 ou 4)		
CLASSIFICAÇÃO DA SEÇÃO TRANSVERSAL: FLEXÃO COMPOSTA EM TORNO	DO EIXO Z COM COMPRESSÃO		NP EN 1993-1-1 Quadro 5.2
CLASSIFICAÇÃO DO BANZO		CLASSIFICAÇÃO DA ALMA	CLASSIFICAÇÃO DA SECÇÃO
BANZO SUPERIOR Bs 160,0 rs 0,00 rcss 0,00 c (mm) 76 ts 21 c/t 3,62	BANZO INFERIOR Bi 160,0 ri 0,00 rcsi 0,00 c (mm) 76 ti 21 c/t 3,62	d/tw 77,25	
$ \begin{array}{rcl} \mbox{Classe 1} & \rightarrow & \mbox{c/t} \leq & \mbox{8,32} \\ \mbox{Classe 2} & \rightarrow & \mbox{c/t} \leq & \mbox{9,24} \\ \mbox{Classe 3} & \rightarrow & \mbox{c/t} \leq & \mbox{14,47} \\ \end{array} $	$\begin{array}{rcl} \mbox{Classe 1} & \rightarrow & c/t & \leq & 8,32 \\ \mbox{Classe 2} & \rightarrow & c/t & \leq & 9,24 \\ \mbox{Classe 3} & \rightarrow & c/t & \leq & 14,47 \end{array} \\ \end{array} \\ \begin{array}{rcl} \mbox{Banzo de Classe 1} \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Secção de Classe
REGIME PLÁSTICO α 1,000 REGIME ELÁSTICO Ψ -0,95 Ψ' 0,072 kσ 0,555	REGIME PLASTICD α 1,000 REGIME ELASTICD Ψ -0,95 Ψ' 0,072 kσ 0,555	REGIME FLASTICO Nf2 1452,00 dN (mm) -111,29 REGIME ELASTICO Ψ -0,95 bt (mm) 78,1045	Botão com imagem
STUAÇÃO LIMTE Μ _{LIMITE} σ _E σ ₀ ψ COMBLETADA -48,23 275,00 -262,27 -0,95	SITUAÇÃO LIMATE Μ _{LIMITE} σ _E σ _D Ψ COMBIGERADA 48,23 -262,27 275,00 -0,95		
CLASSIFICAÇÃO DA SEÇÃO TRANSVERSAL: FLEXÃO COMPOSTA DESVIADA			NP EN 1993-1-1 Quadro 5.2
CLASSIFICAÇÃO DA SECÇÃO			Secção de Classe 3

Figura 5.27 - Interface III (excerto): classificação da secção transversal PRS.

5.6.4 Verificação da resistência da secção PRS aos estados limite últimos

A resistência da secção transversal aos estados limite últimos é verificada no Interface III da ferramenta de cálculo (Figura 5.28).

Figura 5.28 - Interface III (excerto): resistência da secção transversal PRS aos ELU.

O Quadro 5.17 compara os principais resultados obtidos relativamente à verificação da resistência da secção transversal *PRS* aos estados limite últimos.

	$N_{c,Rd}$	$M_{y,Rd}$	$V_{z,Rd}$	$M_{z,Rd}$	$V_{y,Rd}$	$M_{V,y,Rd}$	$M_{V,z,Rd}$	$M_{NV,y,Rd}$	$M_{NV,z,Rd}$	FCD
	kN	kN.m	kN	kN.m	kN	kN.m	kN.m	kN.m	kN.m	
AciariUM	3207,6	703,0	785,0	49,4	1066,9	703,0	49,4	703,0	49,4	60%
Robot SA	3207,6	703,0	942,0	49,4	1066,9	-	-	-	-	60%
CYPE 3D	3207,6	703,0	785,0	49,4	1066,9	-	-	-	-	60%

Quadro 5.17 - Verificação da resistência da secção transversal PRS aos ELU.

FCD - verificação à flexão composta desviada (eficiência) de acordo com o critério na Equação (4.51).

5.6.5 Resistência da Viga B₁ à encurvadura (varejamento)

A resistência do elemento à encurvadura (varejamento) é verificada no Interface IV da ferramenta de cálculo (Figura 5.29).

VERIFICAÇÃO À ENCURVADURA EM TORNO DO EIXO Y	[VAREJAMENTO - ENCURVADURA POR ESFORÇO AXIAL]	NP EN 1993-1-1. 6.3.1.1(3)
N _{b Rd.y} 2614,74 kN OK 2,8% L _{cr,1}	$15,00 \lambda_{Y} 0,64 \alpha_{y} 0,34 \varphi_{y} 0,78 \chi_{y} 0,82$	
VERIFICAÇÃO À ENCURVADURA EM TORNO DO EIXO Z	[VAREJAMENTO - ENCURVADURA POR ESFORÇO AXIAL]	NP EN 1993-1-1. 6.3.1.1(3)
N _{b Rd.z} 2627,17 kN OK 2,8% L _{cr,1}	1,65 λ_z 0,54 α_z 0,49 φ_z 0,73 χ_z 0,82	

Figura 5.29 – Interface IV (Excerto): resistência da Viga B1 à encurvadura (varejamento).

O Quadro 5.18 compara os principais resultados obtidos relativamente à verificação da Viga B₁ à encurvadura (varejamento).

	λ_y	α_y	$\boldsymbol{\varphi}_{y}$	Хy	$N_{b,y,Rd}$	Ef.	λ_z	α_z	$\boldsymbol{\varphi}_z$	Xz	$N_{b,z,Rd}$	Ef.
					kN						kN	
AciariUM	0,64	0,34	0,78	0,82	2614,7	3%	0,54	0,49	0,73	0,82	2627,2	3%
Robot SA	0,69	0,34	0,82	0,79	2531,1	3%	0,53	0,49	0,72	0,82	2646,0	3%
CYPE 3D	0,64	-	-	1,00	-	-	0,54	-	-	1,00	-	-

Quadro 5.18 – Verificação da resistência da Viga B₁ à encurvadura (varejamento).

5.6.6 Resistência da Viga B₁ à encurvadura lateral (bambeamento)

A resistência do elemento à encurvadura lateral (bambeamento) é verificada no Interface IV da ferramenta de cálculo. Identifica-se o banzo superior, por ser o banzo comprimido pelo esforço de flexão em torno do eixo *y*, aquele que é suscetível de sofrer deste fenómeno de instabilidade.

Existe pouca orientação para a determinação do momento crítico no caso de elementos com secção variável, sendo habitual, de forma conservativa, determinar o momento crítico elástico com base na secção de menor inércia [7]. O *CYPE 3D* considerou, para as situações testadas, a secção de maior altura (S4) para determinação do valor do momento crítico. O *Robot Structural Analysis* foi mais ponderado, considerando para o cálculo a secção central (média) do tramo. De entre as propostas, opta-se por adotar a metodologia proposta pelo *Robot SA*.

No Interface I, de acordo com a Figura 5.30, a altura da secção transversal é alterada para $h_{médio}$, a altura da secção transversal intermédia do tramo EL3. A medida é determinada de acordo com a Equação (5.6) para o caso em que a variação da altura da secção transversal é linear. As propriedades mecânicas dessa secção são determinadas automaticamente.

$$h_{médio} = \frac{h_{inicial} + h_{final}}{2} = \frac{660 + 550}{2} = 605 \text{ mm}$$
(5.6)

P 🗹	MÓDULO MANUAL DEFINIÇÃO MANUAL DAS DIMENSÕES DA SECÇÃO TRANSVERSAL																
- \			DI	MENSÕE	S PRINCIP	AIS RECO	LHIDAS D		DESK ROB	от	Α	C	G	DIMEN	SÕES CO	MPLEMEN	NTARES
- \	SECÇÃO	TIPO DE PERFIL	h	b _s	bi	tw	t₅	ti	rs	ri	Α	z _{cg}	Ycg	hi	d	cs _s	cs _i
· ·			mm	mm	mm	mm	mm	mm	mm	mm	cm ²	mm	mm	mm	mm	mm	mm
	PRS	Perfil Soldado	605	160	160	8	21	21	0	0	112,2	302,5	80,0	563	563	0,00	0,00

Figura 5.30 – Interface I (Excerto): propriedades mecânicas da secção transversal intermédia do tramo EL3 da Viga B₁.

No Interface IV, na janela associada ao botão "*Redefinir Valores*" (Figura 5.31), são definidos os coeficientes distribuição de momentos, C_i . O parâmetro z_g é definido marcando a opção correspondente à aplicação da carga ao nível da face superior da secção transversal na janela associada ao botão "*Determinar*" (Figura 5.32).

De	finição dos valores dos coefi	cientes C1,	C2, C3			>
Quadro 1 Quadro 2						
Condições de apoio e	Diagrama de	Valor	C	onstante	s]
carregamento	Momentos Fletores	de kz	<i>C</i> ₁	<i>C</i> ₂	C_3	
a W is		1.0	1.285	1.562	0.753	
boursessee		0.5	0.712	0.652	1.070	C
					OK	1
					UN	

Figura 5.31 – Janela de definição dos coeficientes distribuição de momentos (Viga B₁).

Figura 5.32 – Janela de definição do parâmetro z_g (Viga B₁).

Ainda no mesmo interface é ativada a opção correspondente ao cálculo automático do valor do momento crítico M_{cr} . O valor proposto para o parâmetro é automaticamente transportado para o campo destinado à sua definição (Figura 5.33). Está, portanto, encontrado o valor de M_{cr} .

C. VERIFICAÇÃO À ENCURVADURA LATERAL IBAMBEAN	MENTO]			NP EN 1993-1-1. 6.3.2
DETERMINAÇÃO DO VALOR DO MOMENTO CRÍTICO (M _{CR}) PARA A	ENCURVADURA LATERAL - PROPOSTA DE CLARK AND HILL (196	0) E GALÉA (1981):		AUTOMODE
 CÁLCULO AUTOMÁTICO DO VALOR DE M_{CR} CÍDEFINIÇÃO MANUAL DO VALOR DE M_{CR} 	$M_{cr} = C_1 \frac{\pi^2 E I_z}{(k_z l)^2} \left\{ \left[\left(\frac{k_z}{k_w} \right)^2 I_w + \frac{(k_z l)^2 G I_T}{\pi^2 E I_z} + \left(C_{2zg} - \frac{1}{2} \right)^2 \frac{1}{2} \right] \right\} $	$\left[C_{3} z_{j} \right]^{0,5} - \left(C_{2} z_{g} - C_{3} z_{j} \right)^{2} =$	1258,79 kN.m	VALORES MCR 1259 KN.m PROPOSTOS M ^E c. 3329 KN.m
COEFICIENTES DISTRIBUIÇÃO DE MOMENTOS INFO 🕗	FATORES DE COMPRIMENTO EFETIVO INFO 🖓	POSIÇÃO DA CARGA NA SECÇÃO	INFO 🕗	GRAU DE ASSIMETRIA DA SECÇÃO INFOQ
C1 1,29 C2 1,56 C3 0,75 REDEFINIR VALORES C FORMA DO DIAGRAMA DE MOMENTOS	BANZO COMPRIMIDO: INFERIOR FATORES COMPRIMENTO EFETIVO kz 1,00 ky ky <t< th=""><th>DETERMINAR</th><th></th><th>zj 0 m β 0,5 hg 584 mm BANZO COMPRIMIDO: 25.0 4</th></t<>	DETERMINAR		zj 0 m β 0,5 hg 584 mm BANZO COMPRIMIDO: 25.0 4
	COMPRIMENTO ENTRE SECÇÕES I (m) LATERALM. CONTRAVENTADAS 1,65	7g 0,303 em metros]	INFERIOR I _{tc} /16,8 cm ⁴ BANZO TRACIONADO: SUPERIOR I _t 716,8 cm ⁴
DETERMINAÇÃO DO VALOR DE CÁLCULO DO MOMENTO RESISTEN	ITE À ENCURVADURA LATERAL:			
M _{b y.Rd} 434,76 kN.m OK 90% M _{CR} 125	59 kN.m M_{CR}^{E} 3329 kN.m λ_{LT} 0,75 α_{LT} 0,77	6 φ _{LT} 0,99 χ _{LT} 0,61		

Figura 5.33 – Interface IV (Excerto): determinação do valor do momento crítico M_{cr} da Viga B₁.

O modo de cálculo de M_{cr} é então alterado para Manual. A ferramenta mantem assim o último valor definido para este parâmetro. Nenhuma alteração de outro parâmetro fará, a partir deste momento, com que o valor determinado para o momento crítico M_{cr} se altere automaticamente.

As propriedades da secção transversal são reestabelecidas no Interface I para as dimensões correspondentes à secção a verificar (Figura 5.34).

💕 🗹 I	MÓDULO MANUAL DEFINIÇÃO MANUAL DAS DIMENSÕES DA SECÇÃO TRANSVERSAL INFO ဈ																
			DI	MENSÕES	S PRINCIP	AIS RECO	OLHIDAS D		DESK ROB	от	Α	C	G	DIMEN	SÕES CO	MPLEME	NTARES
	SECÇÃO	TIPO DE PERFIL	h	bs	b _i	tw	ts	ti	rs	r,	Α	z _{cg}	Ycg	hi	d	CS _s	csi
· ∧-			mm	mm	mm	mm	mm	mm	mm	mm	cm ²	mm	mm	mm	mm	mm	mm
	PRS	Perfil Soldado	660	160	160	8	21	21	0	0	116,6	330,0	80,0	618	618	0,00	0,00

Figura 5.34 – Interface I (Excerto): propriedades mecânicas da secção transversal PRS (S4).

De volta ao Interface IV (Figura 5.35) são finalmente recolhidos os valores de cálculo do momento fletor resistente à encurvadura lateral, $M_{b,Rd}$, e dos parâmetros correspondentes.

C. VERIFICAÇÃO À ENCURVADURA LATERAL IBAMBEAME	ΝΤΟΙ				NP EN 1993-1-1. 6.3.2
DETERMINAÇÃO DO VALOR DO MOMENTO CRÍTICO (M _{CR}) PARA A EN	ICURVADURA LATERAL - PROPOSTA DE CLARK AND HILL (196	0) E GALÉA (1981):			MANUAL MODE
 CÁLCULO AUTOMÁTICO DO VALOR DE M_{CR} CÁLCULO AUTOMÁTICO DO VALOR DE M_{CR} M <	$\mathbf{I}_{cr} = \mathbf{C}_{1} \frac{\pi^{2} \mathbf{E} \mathbf{I}_{z}}{(\mathbf{k}_{z})^{2}} \left\{ \left[\left(\frac{\mathbf{k}_{z}}{\mathbf{k}_{w}} \right)^{2} \frac{\mathbf{I}_{w}}{\mathbf{I}_{z}} + \frac{(\mathbf{k}_{z})^{2} \mathbf{G} \mathbf{I}_{T}}{\pi^{2} \mathbf{E} \mathbf{I}_{z}} + (\mathbf{C}_{2} \mathbf{z}_{g} - \mathbf{C}_{1} \mathbf{z})^{2} \mathbf{G}_{1} \right] \right\}$	$\left[-C_{3}z_{j}\right]^{0,5} - \left(C_{2}z_{g} - C_{3}z_{j} \right)^{2} = $	1258,79 kN.m	VALORES M _{CR} PROPOSTOS M ^E _{CR}	1467 kN.m 3619 kN.m
COEFICIENTES DISTRIBUIÇÃO DE MOMENTOS INFO	FATORES DE COMPRIMENTO EFETIVO INFO 😧	POSIÇÃO DA CARGA NA SECÇÃO	INFO 🕢	GRAU DE ASSIMETRIA DA SECÇÃO	INFO
C1 1,29 C2 1,56 C3 0,75 REDEFINIR VALORES C FORMA DD DIAGRAMA DE MOMENTOS	BANZO COMPRIMIDO: INFERIOR FATORES COMPRIMENTO EFETIVO k, 1,00 k, 1,00 k, 1,00 COMPRIMENTO ENTRE SECÇÕES 1(m) LATERALM. CONTRAVENTADAS 1,65	DETERMINAR 28 0,303 em metros		zj 0 m β 0,5 hg BANZO COMPRIMIDO: Inferior INFERIOR Ig BANZO TRACIONADO: superior SUPERIOR Ig	639 mm 716,8 cm ⁴ 716,8 cm ⁴
DETERMINAÇÃO DO VALOR DE CÁLCULO DO MOMENTO RESISTENTE	À ENCURVADURA LATERAL:				
M _{b y.Rd} 430,68 kN.m OK 91% M _{CR} 1259	kN.m M^{E}_{CR} 3619 kN.m λ_{LT} 0,75 α_{LT} 0,7	76 φ _{LT} 0,99 χ _{LT} 0,61			

Figura 5.35 – Interface IV (excerto): resistência da Viga B1 à encurvadura lateral (bambeamento).

O Quadro 5.19 compara os resultados obtidos relativamente à verificação da Viga B_1 à encurvadura lateral (bambeamento).

Quadro 5.19 – Verificação da resistência da Viga B1 à encurvadura lateral (bambeamento).

	C_1	C_2	C_3	l	k _{z,inf}	k _{w,inf}	Z_g	M_{cr}	λ_{LT}	α_{LT}	φ_{LT}	χlt	$M_{b,Rd}$	Ef.
				m			mm	kN.m						
AciariUM	1,29	1,56	0,75	1,65	1,00	1,00	302,5	1258,8	0,75	0,76	0,99	0,61	430,7	91%
Robot SA	1,28	1,56	0,75	1,65	1,00	1,00	302,5	1263,0	0,75	0,76	0,99	0,61	431,2	91%
CYPE 3D	1,29	1,00	1,00	1,65	1,00	1,00	0,0	4681,9	0,39	0,76	0,65	0,86	604,1	65%

O *CYPE 3D* não permitiu considerar a carga aplicada ao nível da face superior da secção transversal. Tomou $z_g = 0$, o equivalente a admitir que a carga está aplicada ao nível do centro de corte da mesma secção. Este é o principal motivo para as diferenças nos resultados obtidos face às outras abordagens. Neste aspeto o programa não está do lado da segurança.

5.6.7 Resistência da Viga B₁ à encurvadura por esforço transverso (enfunamento)

De acordo com a ferramenta *AciariUM* (Figura 5.36) e o programa *CYPE 3D* a Viga B_1 deve possuir reforços transversais pelo menos nos apoios e ser verificada à encurvadura por esforço transverso (enfunamento).

D. VERIFICAÇÃO À ENCU	VERIFICAÇÃO À ENCURVADURA POR ESFORCO TRANSVERSO IENFUNAMENTOI NP EN 1993-1-1. Anexo A																								
ESFORÇO TRANSVERSO RESISTE	NTE PLÁSTICO	(ELU)	V _{pl,Rd}	78	4,97	kN	ОК	NPEN1	993-1-1 (6	.2.6)	com S	1455,44	cm ³								EXT.		INT.		EXT.
ALMA NÃO REFORÇADA	h"/t"	77,25	>	72	/η ε	55,46		> Deve	m existir	reforço	s transv	ersais pe	elo men	os nos aj	oios!										BS
REFORÇOS TRANSVERSAIS	EXTREMIDADE	Sim	RÍG	IDOS		INTERMÉ	DIOS N	0	a _w (m)	5,	00		L (m)	5,0	00		DTMIZAR	REFORÇ	OS TRAN	ISVERSAIS		jl –		a	ВІ
REFORÇOS LONGITUDINAIS	INAO																Arredond	amento	amutupio	os de som.		*	· •		
ALMA REFORÇADA	h _w /t _w	77,25	>	31/ŋ	$\varepsilon \sqrt{k_\tau}$	55,5		A cha	pa deve	ser veri	ficada er	m relaçã	o à resis	tência à	encurv	adura po	r esforço	o transv	erso!		 kτ	5,40	kτ _{st}	0 a	/ h _i 8,09
VERIFICAÇÃO DA CHAPA EM R	ELAÇÃO À RES	ISTÊNCIA	À ENCU	IRVADU	RA POR	ESFORÇO	TRANSVER	so													NO	TAS E CH	AMADAS	DE ATE	NÇÃO
V _{b Rd} [kN] 684,1 =	Vb _{w.Rd} 677,5	5 +	Vb _{f.Rd}	6,6			DETE	MINAÇÃO	DA SEC	ÇÃO EFE	TIVA CO	ONSTITUI	ÍDA APE	NAS PEL	AS ÁRE/	S EFETI	VAS DOS	BANZO	S						
ОК	χ., 0,86		CASE	4					b (mm)	t (mm)	с	ψ	kσ	λρ				ρ	CEFF (mm)	b _{EFF (mm)}					
10%	σ _{t (MPa)} 31,81		SECÇÃO	D TOTAL		TRACIONADO	BANZO S	IPERIOR	160	21	76	1,00	0,43	0,210	≤	0,748	\longrightarrow	1,000	76,00	160					
	λ _w 0,96		A (cm2)	116,64		COMPRIMID	BANZO II	FERIOR	160	21	76	1,00	0,43	0,210	5	0,748	\longrightarrow	1,000	76	160,00					
			Z _{cg} (mm)	330																					
			σ _{s (MPa)}	-147,5		SECÇÃO EF	ETIVA AEFF	:m2) 67,20															a		-
			σ _{i (MPa)}	160,22		constituída a	apenas Z _{cg} (_{sm)} 330,00		Mene	571.86	Marina	548.88									RESTRIÇ	OES DE V	ALIDAD	E:
			Ψτοται	-0,921		pelas áreas e dos baoz	efelivas l _{yEFF}	(m4) 68623													F	leforços	transvers	ais rígid	os.
			E.N (mm)	343,7		200 0010	anzos. W _{YEFF} 2079,5 br 160 tr 21 c 1,435								1,435	Inexi	stência d	e reforço:	longitu	udinais.					

Figura 5.36 – Interface IV (excerto): resistência da Viga B1 à encurvadura por esforço transverso.

No relatório de cálculo fornecido pelo *Robot Structural Analysis* não são apresentados resultados relativos a este assunto, razão pela qual se considera que o programa não faz esta verificação.

O Quadro 5.20 compara os resultados obtidos relativamente à verificação da Viga B_1 à encurvadura por esforço transverso (enfunamento).

	d/t_w	$\frac{72}{\epsilon}$	χw	λ_w	$V_{bw,Rd}$	$V_{bf,Rd}$	$V_{b,Rd}$	Ef.
		η			kN	kN	kN	
AciariUM	77,3	55,5	0,86	0,96	677,6	6,6	684,1	10%
Robot SA	77,3	55,5	-	-	-	-	-	-
CYPE 3D	77,3	55,5	0,86	0,97	673,6	-	677,6	10%

 $Quadro \ 5.20 - Verificação \ da \ resistência \ da \ Viga \ B_1 \ à \ encurvadura \ por \ esforço \ transverso.$

O *CYPE 3D* não tem em conta a contribuição do banzo ($V_{bf,Rd}$) para a resistência à encurvadura por esforço transverso.

5.6.8 Verificação da Viga B₁ à encurvadura tendo em conta a interação entre os esforços de compressão e flexão (estabilidade global)

A análise de estabilidade global de elementos em flexão composta com compressão é realizada no Interface V da ferramenta *AciariUM* (Figura 5.37).

Note-se que o momento crítico elástico $M_{cr,E}$, que transita do Interface IV, é determinado, neste caso, com base nas propriedades mecânicas da secção central do elemento de barra, depois de aplicados os procedimentos definidos em 5.6.6. No mesmo contexto, o parâmetro χ_{LT} é calculado com base nas propriedades mecânicas da secção a verificar (S4) mas considerando o momento crítico M_{cr} determinado com base nas propriedades da secção transversal intermédia.

É ativada a opção de definição manual dos coeficientes de momento uniforme $C_{my,0}$ e $C_{mz,0}$. Aceitam-se os valores propostos pelo *Robot Structural Analysis*: $C_{my,0} = C_{mz,0} = 1,0$.

Os resultados são exibidos de acordo com a Figura 5.37.

INCURVADURA TENDO EM CONTA A INTERAÇÃO ENTRE COMPRESSÃO E FLEXÃO MÉTODO ALTERNATIVO 1 - NP EN 1933-1-1 ANEXO A NP EN 1933-1-1. AMEXO A NP EN 1933-1-1. AMEXO A										
PARÂMETROS ENCURVADURA L _{cr,y} 15,00 L _{cr,z}	1,65 L 5,00 λ_{γ} 0,64 λ_{z} 0,54	$\lambda_{LT} = 0,747$ $\chi_{\gamma} = 0,82$ $\chi_{z} = 0,82$ $\chi_{LT} = 0,61$								
ESFORÇOS NORMAIS CRÍTICOS N _{Cr,y} 7771 kN	N _{cr,2} 10934 kN N _{cr,T} 16285 kN	FATORES u _γ 1,00 u _z 1,00 w _y 1,14 w _z	1,50 n _{ρ1} 0,02 λ _{max} 0,64							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
FATORES a _{LT} 1,00 b _{LT} 0,00 c _{LT} 0,31	d _{LT} 0,05 e _{LT} 3,23	FATORES C ₁₁ 1,00 C ₁₂ 0,86 C ₂₁ 0,99 C ₂₂	0,97							
FATORES DE INTERAÇÃO k _{yy} 1,01 k _{yz} 1,01	k _{zy} 1,01 k _{zz} 1,01									
CONDIÇÃO ASSOCIADA À ENCURVADURA EM TORNO DE Y NP EN 1993-1-1 6.3.3(4) EXP 6.61	$\frac{N_{\text{Ed}}}{\chi_y N_{\text{Rk}}/\gamma_{\text{M1}}} + k_{yy} \frac{M_{y,\text{Ed}} + \Delta M_{y,\text{Ed}}}{\chi_{\text{LT}} M_{y,\text{Rk}}/\gamma_{\text{M1}}} + k_{yz} \frac{M_{z,\text{Ed}} + \Delta M_{z,\text{Rk}}}{M_{z,\text{Rk}}/\gamma_{\text{M1}}}$	id = 0.97 < 1,0 OK 97%								
CONDIÇÃO ASSOCIADA À ENCURVADURA EM TORNO DE Z NP EN 1993-1-1 6.3.3(4) EXP 6.62	$\frac{N_{\text{Ed}}}{\chi_y N_{\text{Rk}}/\gamma_{\text{M1}}} + k_{zy} \frac{M_{y,\text{Ed}} + \Delta M_{y,\text{Ed}}}{\chi_{\text{LT}} M_{y,\text{Rk}}/\gamma_{\text{M1}}} + k_{zz} \frac{M_{z,\text{Ed}} + \Delta M_{z,\text{d}}}{M_{z,\text{Rk}}/\gamma_{\text{M1}}}$	id : = 0,97 < 1,0 OK 97%								

Figura 5.37 – Interface V (excerto): análise de estabilidade global da Viga B₁ sujeita a flexão composta com compressão.

O Quadro 5.21 compara os resultados obtidos relativamente à verificação da Viga B_1 à encurvadura tendo em conta a interação entre os esforços de compressão e flexão.

	N _{cr,y}	N _{cr,z}	$N_{cr,T}$	λο	C_{my}	C_{mz}	C_{mLT}	a_{LT}	b_{LT}	C_{LT}	d_{LT}	e_{LT}
	kN	kN	kN									
AciariUM	7771	10934	16285	0,46	1,00	1,00	1,00	1,00	0,00	0,31	0,05	3,23
Robot SA	6475	10905	16162	0,46	1,00	1,00	1,00	1,00	0,00	0,33	0,06	3,47
CYPE 3D	7771	10934	16378	0,44	1,00	1,00	1,00	1,00	-	-	-	-
	C	C	C	C	l.	l.	l.	k	Veri	ficação	Verif	icação
	Суу	C_{yz}	C_{zy}	C_{ZZ}	Куу	Kyz	ĸzy	ĸzz	(Exp.6.61)		(Exp	.6.62)
AciariUM	1,00	0,86	0,99	0,97	1,01	1,01	1,01	1,01	01 97%		97	7%
Robot SA	1,00	0,85	0,99	0,97	1,01	1,01	1,01	1,01	97%		98	3%
CYPE 3D	-	-	-	-	1,01	1,01	1,01	1,01	7	0%	70)%

Quadro 5.21 – Verificação da resistência da Viga B₁ à encurvadura tendo em conta a interação entre os esforços de compressão e flexão (estabilidade global).

As diferenças nos resultados para o caso do programa *CYPE 3D* estão relacionadas com o facto de o *software* não permitir considerar a carga aplicada a um nível que não o correspondente ao centro de corte da secção transversal, o que se reflete, no que diz respeito a este cálculo, no valor de χ_{LT} .

5.6.9 Relatório final de segurança (Viga B₁)

A Viga B_1 do Pórtico 3, caso mais condicionante de entre os elementos do Grupo 2 (grupo definido de acordo com o Quadro 5.9), verifica a segurança em relação aos estados limite últimos. A taxa de eficiência, de acordo com a ferramenta *AciariUM*, é de 97%.

No Interface VI da ferramenta *AciariUM* é produzido um relatório de cálculo completo pronto a ser exportado, que é apresentado no Anexo E.2 deste documento. Os relatórios de cálculo produzidos pelos programas *Robot Structural Analysis* e *CYPE 3D* para este caso são apresentados nos anexos E.3 e E.4, respetivamente.

O Quadro 5.22 resume e compara os principais resultados obtidos no processo de verificação.

Quadro 5.22 – Resumo dos resultados relativos ao processo de verificação da Viga B₁.

	$N_{c,Rd}$	$M_{y,Rd}$	$V_{z,Rd}$	$M_{z,Rd}$	$V_{y,Rd}$	FCD	$N_{b,y,Rd}$	$N_{b,z,Rd}$	$M_{b,Rd}$	$V_{b,Rd}$	Ver.	Ver.
	kN	kN.m	kN	kN.m	kN		kN	kN	kN.m	kN	(6.61)	(6.62)
AciariUM	3207,6	703,0	785,0	49,4	1066,9	60%	2614,7	2627,2	430,7	684,1	97%	97%
Robot SA	3207,6	703,0	942,0	49,4	1066,9	60%	2531,1	2646,0	431,2	-	97%	98%
CYPE 3D	3207,6	703,0	785,0	49,4	1066,9	60%	-	-	604,1	677,6	70%	70%

FCD - verificação à flexão composta desviada (eficiência) de acordo com o critério na Equação (4.51).

As diferentes abordagens consideram diferentes áreas A_v resistentes ao esforço transverso, o que se reflete nos valores da resistência da secção transversal ao corte.

As diferenças nos resultados apresentados pelo *CYPE 3D* acontecem principalmente porque o programa não permite considerar a aplicação da carga ao nível do topo da secção transversal, o que se reflete no valor do momento crítico M_{cr} .

5.7 Verificação de segurança aos ELU – Viga B₂ (Pórtico 4)

A secção transversal da Viga B₂ é constituída pelo perfil laminado comercial IPE 330 (S275).

No Anexo F.1 são documentados os Interfaces da ferramenta *AciariUM* usada para verificação de segurança aos ELU da Viga B_2 do Pórtico 4. Os dados e os resultados que nele figuram dizem respeito a esse cálculo.

O elemento a verificar é caracterizado geometricamente de acordo com os dados na Figura 5.38.

Figura 5.38 – Caracterização geométrica da Viga B₂.

O elemento é um tramo da Viga B. A Viga B tem comprimento total de 15 m. Considera-se o comprimento de encurvadura em torno do eixo y igual ao comprimento da viga ($L_{cr,y}$ =15 m).

Toma-se o comprimento de encurvadura do tramo a analisar em torno do eixo z igual ao comprimento entre secções lateralmente contraventadas, isto é, entre madres ($L_{cr,z}$ = 1,65 m).

A encurvadura para fora do plano é evitada com recurso a um sistema composto já definido para o caso anterior de acordo com as Figuras 5.21 e 5.22 [6].

De acordo com a estratégia definida em 5.3.3 a Viga B_2 é modelada no programa *CYPE 3D* (Figura 5.39) dividida em tramos de comprimento igual à distância entre secções lateralmente contraventadas.

Figura 5.39 – Estratégia de modelação da Viga B₂ no CYPE 3D.

Não existem restrições à rotação em torno do eixo *z* nas secções de extremidade dos tramos de comprimento *l*. Para cada tramo são comunicados ao programa os comprimentos de encurvadura, $L_{cr,y} = 15,0$ m e $L_{cr,z} = 1,65$ m, e os comprimentos de encurvadura lateral de cada banzo, $L_{cr,z}^{banzo} = 1,65$ m. A verificação incide sobre o mais condicionante dos seis tramos (EL6).

5.7.1 Caracterização geométrica da secção transversal

Embora o perfil *IPE 330* exista na base de dados da ferramenta *AciariUM*, opta-se por ativar no Interface I o Módulo Robot Structural Analysis para recolher automaticamente as principais dimensões da secção transversal a partir de um ficheiro do programa *Robot Structural Analysis* aberto no computador. A ferramenta *AciariUM* parte dessa informação para calcular automaticamente as propriedades mecânicas da secção transversal (Figura 5.40).

PHO	🔀 🗹 MÓDULO ROBOT STRUCTURAL ANALYSIS RECEBER PROPRIEDADES DA SECÇÃO TRANSVERSAL A PARTIR DO ROBOT SA 🛛 INFO 📀																	
ELEM	ENTO			DIMENSÕES PRINCIPAIS RECOLHIDAS DO AUTODESK ROBOT									C	G	DIMEN	ISÕES COI	MPLEMEN	NTARES
NO	L	SECÇÃO	TIPO DE PERFIL	h	b _s	b _i	tw	ts	ti	rs	r	Α	z _{cg}	Ycg	hi	d	CSs	cs _i
NO.	m			mm	mm	mm	mm	mm	mm	mm	mm	cm ²	mm	mm	mm	mm	mm	mm
15	1,67	IPE 330	Perfil Laminado	330	160	160	7,5	11,5	11,5	18	18	62,6	165,0	80,0	307	271,0	0,00	0,00

Figura 5.40 – Interface I (excerto): definição das dimensões do Perfil IPE 330.

O Quadro 5.23 compara os principais resultados obtidos no que diz respeito às propriedades mecânicas da secção transversal *IPE 330*.

	Α	I_y	W_y	$W_{pl,y}$	i_y	A_{vz}	I_z	W_z	$W_{pl,z}$	i_z	A_{vy}	I_T
	cm^2	cm^4	cm ³	cm ³	cm	cm^2	cm^4	cm ³	cm ³	cm	cm^2	cm^4
AciariUM	62,6	11767	713,1	804,3	13,7	30,8	788	98,5	153,7	3,5	39,6	28,1
Robot SA	62,6	11767	-	804,0	-	30,8	1095	-	153,7	-	42,3	25,7
CYPE 3D	62,6	11770	713,1	804,0	-	24,8	788	98,5	154,0	-	39,6	28,2

Quadro 5.23 – Propriedades mecânicas da secção transversal IPE 330.

5.7.2 Definição dos esforços de cálculo na secção condicionante e caracterização geométrica do sistema estrutural

Identifica-se como condicionante a secção S7 da Viga B_2 onde atuam os esforços identificados na Figura 5.41. A Combinação de ações ELU 2 é a condicionante.

Figura 5.41 – Diagramas de esforços na Viga B2 (Pórtico 4) para a combinação ELU condicionante.

No Interface II da ferramenta *AciariUM* (Figura 5.42) é ativado o Módulo *Robot Structural Analysis* (consultar 3.5.4). No ficheiro do *Robot Structural Analysis* que contêm a modelação do Edifício é selecionada a Viga B₂ do Pórtico 4.

É identificado na ferramenta o Caso de Carga Nº10, o correspondente no programa à Combinação 2 (aquela que se identifica como sendo a mais desfavorável).

No separador "*Results Connect*" da barra de ferramentas do Microsoft Excel é dada ordem de cálculo. Os valores de cálculo dos esforços atuantes na secção a verificar são automaticamente recolhidos a partir de um ficheiro do *Robot Structural Analysis* aberto no computador.

Os parâmetros geométricos que definem o sistema estrutural são comunicados à ferramenta no mesmo espaço (Figura 5.42). São inseridos de forma manual nos campos da ferramenta *AciariUM* destinados ao efeito, em coerência com o que foi definido na Figura 5.38: L = 10 m; $L_{cr,y} = 15$ m; $L_{cr,z} = 1,65$ m; $l_{sup} = 1,65$ m; $l_{inf} = 1,65$ m.

• K MÓDULO ROBOT STRUCTURAL ANALYSIS RECEBER VALORES DIRETAMENTE DE UM FICHEIRO DO AUTODESK ROBOT STRUCTURAL ANALYSIS ABERTO NESTE COMPUTADOR INFO 🖓 OCULTAR/MOSTRAF										AR 🔽			
IDENTIFICAÇÃO DA SECÇÃO A VERIFICAR BARRA NO. 15 CASO CARIGA NO. 10 COMB 2 POSIÇÃO SECÇÃO 1,0 x.L = 1,65 m NOME SECÇÃO IPE330											0 L [EL.BARRA]	1,65	m
SOLICITAÇÃO NA SECÇÃO CONDICIONANTE	N _{Ed}	Ntd 69,92 kN Mtay -115,06 kN.m Vtdz -44,10 kN Mtdz 0,05 kN.m Vtay 0,01 kN.m								FLEXÃO COMPOSTA	DESVIADA		
PARÂMETROS GEOMÉTRICOS DO ELEMENTO COMPRIMENTO L 10,00 m COMPRIMENTOS DE ENCURVADURA L $_{\alpha\gamma}$ 15,00 m L $_{\alpha'2}$ 1,65 m Comprimentos entre secções contraventadas l_{uop} 1,65 m									sup 1,65 m	l inf 1,65	m		

Figura 5.42 – Interface II (excerto): condições de apoio e solicitação da Viga B2.

5.7.3 Classificação da secção transversal IPE 330

A classificação da secção transversal é realizada no Interface III (Figura 5.43). Todas as abordagens indicam que a secção transversal *IPE 330*, quando sujeita a flexão composta desviada, é da Classe 1.

CLASSIFICAÇÃO DA SECÇÃO A secção IPE 330 sujeita a Flex	ão Composta Desviada é da Classe 1.		CLASSE 1
CLASSIFICAÇÃO DA SEÇÃO TRANSVERSAL: FLEXÃO COMPOSTA EM TORNO	DO EIXO Y COM COMPRESSÃO		NP EN 1993-1-1 Quadro 5.2
CLASSIFICAÇÃO DO BANZO COMPRIMIDO	CLASSIFICAÇÃO DA ALMA		CLASSIFICAÇÃO DA SECÇÃO
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Secção de Classe 1
CLASSIFICAÇÃO DA SEÇÃO TRANSVERSAL: FLEXÃO COMPOSTA EM TORNO	DO EIXO Z COM COMPRESSÃO		NP EN 1993-1-1 Quadro 5.2
CLASSIFICAÇÃO DO BANZO		CLASSIFICAÇÃO DA ALMA	CLASSIFICAÇÃO DA SECÇÃO
BANZO SUPERIOR Bs 160.0 rs 18.00 rcss 15.00 Classe 1 > cf ≤ 8.25 ts 11.5 cft 5.07 Classe 2 > cf ≤ 8.23 ts 11.5 cft 5.07 Classe 2 > cft ≤ 8.20 Banzo de Classe 1 10.00	BANZO INFERIOR Bi 160.0 ri 18.00 rcsi 18.00 Classe 1 → c/r 58,25 ti 11.5 c/r 5.07 Classe 2 → c/r 5 9,24 Banco de Classe 1 Classe 2 → c/r 5 3,00 FEURERANTO α 1,000 REDRETARTO α 1,000 - - 0,301 ko 0,513 REDRETARTO ω -0,52 ψ° 0,301 ko 0,513	d/tw 36,13 Classe 1 c/t ≤ 30,51 classe 2 c/t ≤ 36,31 Classe 2 c/t ≤ 38,83 Alma de Classe 1 classe 3 Classe 3 c/t ≤ 38,83 non-classe 3 c/t ≤ 38,83 REGRERLASICO W -0,92 bf (mm) 100,15 REGRERLASICO W -0,92 bf (mm) 76,6135	Secção de Classe 1 Botão com Imagem
CONSIDERADA 25,99 -252,66 275,00 -0,92	CONRIDERADA: 25,99 -252,66 275,00 -0,92		
CLASSIFICAÇÃO DA SEÇÃO TRANSVERSAL: FLEXÃO COMPOSTA DESVIADA			NP EN 1993-1-1 Quadro 5.2
CLASSIFICAÇÃO DA SECÇÃO			Secção de Classe 1

Figura 5.43 – Interface III (excerto): classificação da secção transversal IPE 330.

5.7.4 Verificação da resistência da secção IPE 330 aos estados limite últimos

A resistência da secção transversal aos estados limite últimos é verificada no Interface III da ferramenta de cálculo (Figura 5.44).

A. RESISTÊNCIA DA SECCÃO TRANSVERSAL A ESFORCOS SIMPLES	NP EN 1993-1-1.6.2
Tração N _{1.80} 1721,67 kN OK 0% NPEN1993-1-1 (6.2.3) Compressão N _{6.83} 1721,67 kN OK 4% NPEN1993-1-1 (6.2.4) Edrorgo Transvero V _{6.80} 489,15 kN OK 9% NPEN1993-1-1 (6.2.4) Edrorgo Transvero V _{6.80} 221,19 kN.m OK 52% NPEN1993-1-1 (6.2.6) com s _p 402,17 cm ³ Edrorgo Transvero V _{6.80} 221,19 kN.m OK 52% NPEN1993-1-1 (6.2.6) com s _p 402,17 cm ³ Momento Fletor M _{6.80} 422,26 kN.m OK 0% NPEN1993-1-1 (6.2.5) com s _p 68,16 cm ³	
B. AVALIAÇÃO DA NECESSIDADE DA CONSIDERAÇÃO DO EFEITO DO ESFORCO TRANSVERSO NO CÁLCULO DO	S ESFORCOS RESISTENTES DEFINIDOS PARA A FLEXÃO COMPOSTA NP EN 1993-1-16.2.10
ESFORÇO TRANSVERSO NA DIREÇÃO Z (ASSOCIADO AO MOMENTO FLETOR M.) V_EEg (KN) 44,1 < 50% Vpi.Raz (KN) 489,2 p 0,00 f [*] vi.Raz 275,0 f _v 275,0 Não encessário proceder a qualquer redução do valor de cálculo dos esforços resistentes definidos para a fieldo composta. Não NECESSÁRIO CONSIDERAR definidos para a fieldo composta. Não NECESARIO CONSIDERAR definidos para a fieldo dos esforços resistentes territoria do composta. Não NECESARIO CONSIDERAR definidos para a fieldo composta. Não NECESARIO CONSIDERAR definidos para a fieldo dos esforços resistentes Não NECESARIO CONSIDERAR definidos para a fieldo composta. Não NECESARIO CONSIDERAR definidos para a fieldo dos esforços resistentes territoria dos para a fieldo dos esforços resistentes Não NECESARIO CONSIDERAR definidos para a fieldo dos esforços resistentes Não NECESARIO CONSIDERAR definidos para a fieldo dos esforços resistentes territoria dos para a fieldo dos esforços resistentes Não NECESARIO CONSIDERAR definidos para a fieldo dos esforços resistentes Não NECESARIO CONSIDERAR definidos para a fieldo dos esforços resistentes Não NECESARIO CONSIDERAR definidos para a fieldo dos esforços resistentes Não NECESARIO CONSIDERAR definidos para a fieldo dos esforços resistentes Não NECESARIO CONSIDERAR definidos para a fieldo dos esforços resistentes Não NECESARIO CONSIDERAR definidos para a fieldo dos esforços resistentes Não NECESARIO CONSIDERAR definidos para a fieldo dos esforços resistentes Não NECESARIO CONSIDERAR definidos para a fieldo dos esforços resistentes Não NECESARIO CONSIDERAR definidos para a fieldo dos esforços resistentes Não NECESARIO CONSIDERAR definidos para a fieldo dos esforços resistentes Não NECESARIO CONSIDERAR definidos para a fieldo dos esforços resistentes Não NECESARIO CONSIDERAR definidos para a fieldo dos esforços resistentes Não NECESARIO CONSIDERAR definidos para a fieldo dos esforços resistentes Não NECESARIO CONSIDERAR definidos para a fieldo dos esforços resistentes Não NECESARIO CO	ESFORÇO TRANSVERSO NA DIREÇÃO Y [ASSOCIADO AO MOMENTO FLETOR M.] V ₃ Les (M) 0,01 < 50% V ₂ Les v ₁ (M) 628,4 p 0,00 f ² v ₁ (Av) 275,0 f ₂ 275,0 Niló e necessário proceder a qualquer redução do valor de calculo dos esforços resistentes definidos para AMKESSARIO CONDIBEARA MAINTERAÇÃO I MAINTERAÇÃO I Averson do valor de calculo dos esforços resistentes definidos para AMA MARESSARIO CONDIBEARA Averson do valor de calculo dos esforços resistentes definidos para AMA MARESSARIO CONDIBEARA Averson do valor de calculo dos esforços resistentes definidos para AMA MARESSARIO CONDIBEARA Averson do valor de calculo dos esforços resistentes definidos para A MAINTERAÇÃO I Averson do valor de calculo dos esforços resistentes definidos para A MAINTERAÇÃO I Averson do valor de calculo dos esforços resistentes definidos para A MAINTERAÇÃO I Averson do valor de calculo dos esforços resistentes definidos para A MAINTERAÇÃO I Averson do valor de calculo dos esforços resistentes definidos para A MAINTERAÇÃO I Averson do valor de calculo dos esforços resistentes definidos para A MAINTERAÇÃO I Averson do valor de calculo dos esforços resistentes definidos para A MAINTERAÇÃO I Averson do valor de calculo dos esforços resistentes definidos para A MAINTERAÇÃO I Averson do valor de calculo dos esforços resistentes definidos para A MAINTERAÇÃO I Averson do valor de calculo dos esforços resistentes definidos para A MAINTERAÇÃO I Averson do valor de calculo dos esforços resistentes definidos para A MAINTERAÇÃO I Averson do valor de calculo dos esforços resistentes definidos para A MAINTERAÇÃO I Averson do valor de calculo dos esforços resistentes definidos para A MAINTERAÇÃO I Averson do valor de calculo dos esforços resistentes definidos para A MAINTERAÇÃO I Averson do valor de calculo dos esforços resistentes definidos para A MAINTERAÇÃO I Averson do valor de calculo dos esforços resistentes definidos para A MAINTERAÇÃO I Averson do valor de calculo dos esforços resistentes definidos para A MAI
C. INTERAÇÃO [M + V] ESFORÇO DE FLEXÃO COM ESFORÇO TRANSVERSO	NP EN 1993-1-1. 6.2.8
$\label{eq:rescaled_rescale} \begin{array}{ c c c c c } \hline Nilo & \acute{e}nccessifio ter am conta a interação do esforço de corte [V2] com o momento fletor resistente [MRd.y] \\ \hline PL & MV \zeta_{Md}^{*} & 221.19 & kN.m & OK & 52\% & M_{V,Y,Rd} = \frac{W_{Y,AV}\cdot f_{YZ} + W_{Y,AV}\cdot f_{Y}}{\gamma_{MO}} \\ \hline \end{array}$	$ \begin{array}{c c} Nilo \ \acute{e} \ necessário \ ter \ em \ conta \ a \ interação \ do \ esforço \ de \ corte \ [Vy] \ com \ o \ momento \ fletor \ resistente \ [MRd.z] \\ \hline PL & \begin{array}{c} MV_{LM}^{2d} & \begin{array}{c} 42,26 \\ MV_{LM}^{2d} & \begin{array}{c} 42,26 \\ 42,26 \end{array} \ kN.m \end{array} \begin{array}{c} OK & OK \\ OK & OK \end{array} \end{array} \begin{array}{c} M_{V.z.Rd} = \begin{array}{c} W_{z.Av} \cdot f_{yy} + W_{z.Av} \cdot f_{y} \\ \gamma_{M0} \end{array} $
D. INTERAÇÃO [M + N + V] FLEXÃO COMPOSTA COM ESFORÇO TRANSVERSO	[SECÇÕES TRANSVERSAIS BISSIMÉTRICAS DAS CLASSES 1 OU 2] NP EN 1993-1-1. 6.2.9
$\label{eq:response} \begin{split} & \text{Nio \acute{e} necessário ter em conta a interação do esforço axial [N] com o momento fletor resistente [MRd] em relação ao eixo y, razão pela qual não efetuada qualquer reduzão desse valor. \\ \hline \textbf{PL} & \text{MNV}_{yRd} & \hline 221,19 & \text{IN.m} & \hline \textbf{OK} & 52\% & M_{NV} p_{1,YRd} = M_V p_{1,YRd} (l-n)/(l-0,5a) \\ \hline \textbf{Com: n} = N_{Ld}/N_{pLRd} & \hline 0,04 & a = (A-2b_{1c})/A mas a \leq 0.5 & \hline 0,21 & \text{Note: } M_{NV} p_{1,YRd} = M_{NV} p_{1,YRd} M_{NV} p_{1,YRd} = M_{NV} p_{1,YRd} M_{NV} p_{1,YRd} = M_{NV} p_{1,YRd} M_{NV} p_{1,YRd} = M_{NV} p_{1,YRd} M_{NV} p_{1,YRd} = M_{NV} p_{1,YRd} M_{NV} p_{1,YRd} = M_{NV} p_{1,YRd} M_{NV} p_{1,YRd} = M_{NV} p_{1,YRd} M_{NV} p_{1,YRd} = M_{NV} p_{1,YRd} M_{NV} p_{1,YRd} = M_{NV} p_{1,YRd} M_{NV} p_{1,YRd} = M_{NV} p_{1,YRd} M_{NV} p_{1,YRd} = M_{NV} p_{1,YRd} M_{NV} p_{1,YRd} = M_{NV} p_{1,YRd} M_{NV} p_{1,YRd} = M_{NV} p_{1,YRd} M_{NV} p_{1,YRd} = M_{NV} p_{1,YRd} M_{NV} p_{1,YRd} = M_{NV} p_{1,YRd} M_{NV} p_{1,YRd} = M_{NV} p_{1,YRd} M_{NV} p_{1,YRd} = M_{NV} p_{1,YRd} M_{NV} p_{1,YR$	$\begin{split} & \text{Não é necessário ter em conta a interação do esforço axial [N] com o momento fletor resistente [MRd] em relação ao eixo z, razão pela qual não efetuada qualquer reduzão desse valor. \\ & \text{PL} \qquad \text{MNV}_{zRd} \qquad \frac{42,26}{1-a} \text{ sN.m} \qquad \text{OK} \qquad \text{OK} \qquad \text{M}_{NV,pLzRd} = \text{M}_{V,pLzRd} \left[1 - \left(\frac{n-a}{1-a}\right)^2\right] \text{ para n} > a \\ & \text{Com: } n = \text{N}_{Ed}/\text{N}_{pLRd} \qquad 0.04 \qquad a = (A-2b_{1\ell})/A \text{ mas a} \le 0.5 \qquad \text{Oz1} \qquad \text{Note: } \text{M}_{NV}_{yLzRd} = \text{M}_{V}_{pLzRd} \text{ para m} \le a \le 0.5 \\ & \text{Note: } \text{M}_{NV}_{pLzRd} = \text{M}_{V}_{pLzRd} \text{ para m} \le a \le 0.5 \\ & \text{Oz1} \qquad \text{Note: } \text{M}_{NV}_{pLzRd} = \text{M}_{V}_{pLzRd} \text{ para m} \le a \le 0.5 \\ & \text{Note: } \text{M}_{NV}_{pLzRd} = \text{M}_{V}_{pLzRd} \text{ para m} \le a \le 0.5 \\ & \text{Note: } \text{M}_{NV}_{pLzRd} = \text{M}_{V}_{pLzRd} \text{ para m} \le 0.5 \\ & \text{Note: } \text{M}_{NV}_{PLzRd} = \text{M}_{V}_{PLzRd} \text{ para m} \le 0.5 \\ & \text{Note: } \text{M}_{NV}_{PLzRd} = \text{M}_{V}_{PLzRd} \text{ para m} \le 0.5 \\ & \text{Note: } \text{M}_{NV}_{PLZRd} = \text{M}_{V}_{PLZRd} \text{ para m} \le 0.5 \\ & \text{Note: } \text{M}_{NV}_{PLZRd} = \text{M}_{V}_{PLZRd} \text{ para m} \le 0.5 \\ & \text{Note: } \text{M}_{NV}_{PLZRd} = \text{M}_{V}_{PLZRd} \text{ para m} \le 0.5 \\ & \text{M}_{NV}_{V}_{PLZRd} = \text{M}_{V}_{PLZRd} \text{ para m} \le 0.5 \\ & \text{M}_{NV}_{V}_{PLZRd} = \text{M}_{V}_{PLZRd} \text{ para m} \le 0.5 \\ & \text{M}_{NV}_{V}_{PLZRd} = \text{M}_{V}_{PLZRd} \text{ para m} = 0.5 \\ & \text{M}_{NV}_{V}_{PLZRd} = \text{M}_{V}_{V}_{PLZRd} \text{ para m} = 0.5 \\ & \text{M}_{NV}_{V}_{PLZRd} = \text{M}_{V}_{V}_{PLZRd} \text{ para m} = 0.5 \\ & \text{M}_{V}_{V}_{V}_{PLZRd} = \text{M}_{V}_{V}_{V}_{V}_{V}_{V}_{V}_{V}_{V}_{V$
E. INTERAÇÃO $[M_y + M_z + N + V]$ flexão composta desviada com esforço transverso	[SECQÕES TRANSVERSAIS BISSIMÉTRICAS DA CLASSE 1 OU 2] NP EN 1993-1-1. 6.2.9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 β 1

Figura 5.44 – Interface III (excerto): resistência da secção transversal IPE 330 aos ELU.

O Quadro 5.24 compara os principais resultados obtidos relativamente à verificação da resistência da secção transversal *IPE 330* aos estados limite últimos.

_												
		$N_{c,Rd}$	$M_{y,Rd}$	$V_{z,Rd}$	$M_{z,Rd}$	$V_{y,Rd}$	$M_{V,y,Rd}$	$M_{V,z,Rd}$	$M_{NV,y,Rd}$	$M_{NV,z,Rd}$	FCD	
		kN	kN.m	kN	kN.m	kN	kN.m	kN.m	kN.m	kN.m		
	AciariUM	1721,7	221,2	489,2	42,3	625,4	221,2	42,3	221,2	42,3	27%	
	Robot SA	1721,7	221,2	489,2	42,3	671,3	-	-	221.1	42,3	27%	
	CYPE 3D	1721,5	221.1	393,0	42,4	628,3	-	-	221.1	42,4	27%	

Quadro 5.24 – Verificação da resistência da secção transversal IPE 330 aos ELU.

FCD - verificação à flexão composta desviada (eficiência) de acordo com o critério na Equação (4.49).

5.7.5 Resistência da Viga B₂ à encurvadura (varejamento)

A resistência do elemento à encurvadura (varejamento) é verificada no Interface IV da ferramenta de cálculo (Figura 5.45).

A. VERIFICAÇÃO À ENCURVADURA EM TORNO DO	DEIXO Y (VAREJAMENTO)	NP EN 1993-1-1. 6.3.1.1(3)
N _{b y.Rd} 849,07 kN OK 8,2%	$L_{cr, \gamma} \ \ 15,00 \ \ \lambda_{\gamma} \ \ 1,26 \ \ \alpha_{\gamma} \ \ 0,21 \ \ \varphi_{\gamma} \ \ 1,41 \ \ \chi_{\gamma} \ \ 0,49$	
B. VERIFICAÇÃO À ENCURVADURA EM TORNO DO	DEIXO Z IVAREJAMENTO	NP EN 1993-1-1. 6.3.1.1(3)
N _{b z.Rd} 1494,50 kN OK 4,7%	$L_{c_{7,2}} \ \ 1,65 \ \ \lambda_{z} \ \ 0,54 \ \ \alpha_{z} \ \ 0,34 \ \ \varphi_{z} \ \ 0,70 \ \ \chi_{z} \ \ 0,87$	

Figura 5.45 – Interface IV (Excerto): resistência da Viga B₂ à encurvadura (varejamento).

O Quadro 5.25 compara os resultados obtidos relativamente à verificação da Viga B_2 à encurvadura (varejamento).

	λ_y	α_y	φ_y	χy	$N_{b,y,Rd}$	Ef.	λ_z	α_z	φ_z	χz	$N_{b,z,Rd}$	Ef.
					kN						kN	
AciariUM	1,26	0,21	1,41	0,49	849,1	8%	0,54	0,34	0,70	0,87	1494,5	5%
Robot SA	1,26	0,21	1,41	0,49	849,1	8%	0,54	0,34	0,70	0,87	1494,5	5%
CYPE 3D	1,24	0,21	1,38	0,50	842,9	8%	0,53	0,34	0,70	0,87	1494,5	5%

Quadro 5.25 – Verificação da resistência da Viga B₂ à encurvadura (varejamento).

As diferenças nos resultados devolvidos pelo *CYPE 3D* justificam-se pelo facto de o programa ter considerado para a secção transversal, e exclusivamente para os cálculos relacionados com a resistência da secção transversal à compressão e com a resistência do elemento à encurvadura (varejamento), a Classe 4.

5.7.6 Resistência da Viga B₂ à encurvadura lateral (bambeamento)

A resistência do elemento à encurvadura lateral (bambeamento) é verificada no Interface IV da ferramenta de cálculo (Figura 5.46).

Identifica-se o banzo superior, por ser o banzo comprimido pelo esforço de flexão em torno do eixo y na secção condicionante, aquele que é suscetível de sofrer deste fenómeno de instabilidade.

C. VERIFICAÇÃO À ENCURVADURA LATERAL [BAMBEAME	ENTO]			NP EN 1993-1-1. 6.3.2
DETERMINAÇÃO DO VALOR DO MOMENTO CRÍTICO (M _{CR}) PARA A E	NCURVADURA LATERAL - PROPOSTA DE CLARK AND HILL (196	0) E GALÉA (1981):		AUTO MODE
 ✓ GÁLCULO AUTOMÁTICO DO VALOR DE M_{CR} ✓ ✓ DEFINIÇÃO MANUAL DO VALOR DE M_{CR} 	$\mathbf{M}_{\mathrm{cr}} = \mathbf{C}_{1} \frac{\pi^{2} \mathbf{E} \mathbf{I}_{z}}{(\mathbf{k}_{z})^{2}} \left\{ \left[\left(\frac{\mathbf{k}_{z}}{\mathbf{k}_{w}} \right)^{2} \frac{\mathbf{I}_{w}}{\mathbf{I}_{z}} + \frac{(\mathbf{k}_{z} \mathbf{I})^{2} \mathbf{G} \mathbf{I}_{T}}{\pi^{2} \mathbf{E} \mathbf{I}_{z}} + \left(\mathbf{C}_{2} \mathbf{z}_{g} - \frac{\mathbf{C}_{z}}{\mathbf{E}_{z}} \right)^{2} \mathbf{E}_{z} \right\} \right\}$	$\left[(C_{3}z_{j})^{2} \right]^{0,5} - (C_{2}z_{g} - C_{3}z_{j}) = $	395,22 kN.m	VALORES PROPOSTOS M _{CR} 395,2 kN.m M ^E _{CR} 1023 kN.m
COEFICIENTES DISTRIBUIÇÃO DE MOMENTOS INFO 😧	FATORES DE COMPRIMENTO EFETIVO INFO 🖓	POSIÇÃO DA CARGA NA SECÇÃO	INFO 🕗	GRAU DE ASSIMETRIA DA SECÇÃO INFO 🤉
C1 1,29 C2 1,56 C3 0,75 REDEFINIR VALORES C FORMA DO DIAGRAMA DE MOMENTOS	BANZO COMPRIMIDO: INFERIOR FATORES COMPRIMENTO EFETIVO k k 1,00 k 1,00 COMPRIMENTO ENTRE SECÇÕES I(m) LATERALM. CONTRAVENTADAS 1,65	ZE 0,165 em metros		2j 0 m β 0,5 hg 318,5 mm BANZO COMPRIMIDIO:
DETERMINAÇÃO DO VALOR DE CÁLCULO DO MOMENTO RESISTENTE	E À ENCURVADURA LATERAL:			
М _{ь у.Rd} 167,19 kN.m ОК 69% М _{ск} 395,2	2 kN.m M^{E}_{CR} 1023 kN.m λ_{LT} 0,75 α_{LT} 0,3	4 φ _{LT} 0,87 χ _{LT} 0,76		

Figura 5.46 – Interface IV (Excerto): resistência da Viga B2 à encurvadura lateral (bambeamento).

No Interface IV, na janela de definição dos coeficientes distribuição de momentos, é selecionada a opção marcada na Figura 5.47. O parâmetro z_g é automaticamente determinado pela ferramenta *AciariUM* depois de marcada na janela apresentada na Figura 5.48 a opção correspondente á aplicação da carga ao nível da face superior da secção transversal.

						Posição de aplicação da carga ao nivel da secção transversal
						zg <u>165</u> mm
Definição dos valores dos coef	cientes C1,	C2, C3			×	+ ^z C Definir manualmente
Condições de apoio e carregamento Diagrama de Momentos Fletores	Valor de k _z	C1	Constante	es C3		Carga apicada o nível de:
	1.0 0.5	1.285 0.712	1.562 0.652	0.753 1.070	• C	C Centro de Corte
				ОК		-Z OK

Figura 5.47 – Janela de definição dos coeficientes distribuição de momentos (Viga B₂).

Figura 5.48 – Janela de definição do parâmetro z_g (Viga B₂).

Ainda no Interface IV é marcada a opção correspondente ao cálculo automático do valor do momento crítico. O valor proposto para o parâmetro é automaticamente transportado para a janela destinada à sua definição.

O Quadro 5.26 compara os resultados obtidos relativamente à verificação do elemento à encurvadura lateral (bambeamento).

	C_1	C_2	C_3	L	k _{z,inf}	k _{w,inf}	Z_{g}	M_{CR}	λ_{LT}	α_{LT}	φ_{LT}	χ _{LT}	$M_{b,Rd}$	Ef.
				m			mm	kN.m						
AciariUM	1,29	1,56	0,75	1,65	1,00	1,00	165,0	395,22	0,75	0,34	0,87	0,76	167,2	69%
Robot SA	1,28	1,56	0,75	1,65	1,00	1,00	165,0	392,35	0,75	0,34	0,88	0,75	166,8	69%
CYPE 3D	1,29	1,00	1,00	1,65	1,00	1,00	0,0	1319,3	0,41	0,34	0,62	0,92	203,9	55%

Quadro 5.26 – Verificação da resistência da Viga B₂ à encurvadura lateral (bambeamento).

O *CYPE 3D* não permitiu considerar a carga aplicada ao nível da face superior da secção transversal. Este é o motivo para as diferenças nos resultados obtidos face às outras abordagens. Esta é uma opção que não está do lado da segurança.

5.7.7 Resistência da Viga B₂ à encurvadura por esforço transverso (enfunamento)

De acordo com a ferramenta *AciariUM* (Figura 5.49) e o programa *CYPE 3D* não existe necessidade de verificar a Viga B_2 à encurvadura por esforço transverso (enfunamento).

D. VERIFICAÇÃO À ENCU	IRVADURA	POR ES	ORCO	TRAN	SVERS	D [ENFUN	IAMENTO]														NP EN 1993-1-1. Anexo A
ESFORÇO TRANSVERSO RESISTE	NTE PLÁSTICO	(ELU)	V _{pl,Rd}	48	9,15	kN	OK NPEN1	993-1-1 (6	5.2.6)	com S	402,165	cm ³									EXT. INT. EXT.
ALMA NÃO REFORÇADA	h _w /t _w	40,93	<	72	/η ε	55,46	→ Não	iá necesi	idade de	existire	em refor	os tran	sversais!								BS BS
REFORÇOS TRANSVERSAIS	EXTREMIDAD	Não	RÍG	DOS		INTERMÉ	DIOS Não	a _w (m)				L (m)	10,	00		DTMIZAR	REFORÇ	OS TRAN	ISVERSAIS	s	ВІ
REFORÇOS LONGITUDINAIS	Não															Arredond	amento	a múltipl	os de 5cm	ı.	aa
ALMA REFORÇADA	h _w /t _w	40,93	<	31/r	$\epsilon \sqrt{k_{\tau}}$		→ Não I	iá necesi	idade de	verifica	r a chap	a em rel	ação à re	sistên	ia à enc	urvadura	por es	forço tra	insverso	o!	kτ - kτ _{si} 0 a/h _i -
VERIFICAÇÃO DA CHAPA EM F	RELAÇÃO À RE	SISTÊNCIA	À ENCU	RVADU	RA POR	ESFORÇO	TRANSVERSO														NOTAS E CHAMADAS DE ATENÇÃO
V _{b Rd} [kN] - =	Vb _{w.Rd} -	+	Vb _{f.Rd}	-			DETERMINAÇÃO	DA SEC	ÇÃO EFE	TIVA CO	ONSTITU	DA APE	NAS PELA	S ÁRE	AS EFETI	AS DOS	BANZO)S			
ОК	χ		CASE	4				b _(mm)	t _(mm)	с	ψ	kσ	λρ				ρ	CEFF (mm)	b _{EFF (mm)})	O método de cálculo do valor de VbRd é
	σ _{έ (MPa)} 113,2	8	SECÇÃO	TOTAL		TRACIONADO	BANZO SUPERIOR	160	11,5	58,25	1,00	0,43	0,294	≤	0,748	\longrightarrow	1,000	58,25	160		válido se existirem reforços transversais pelo
	λ,, -		A (cm2)	62,606		COMPREMIEC	BANZO INFERIOR	160	11,5	58,25	1,00	0,43	0,294	5	0,748	\rightarrow	1,000	58,25	160,00		menos nos apolos.
			Z _{cg (mm)}	165																	
			$\sigma_{s(MPa)}$	-150,2		SECÇÃO EF	ETIVA A EFF (cm2) 36,80														
			$\sigma_{i(MPa)}$	172,51		constituída a	apenas z _{cg(mm)} 165,00		Men	155.61	Muun	144.86									RESTRIÇÕES DE VALIDADE:
			ψ_{TOTAL}	-0,871		pelas áreas e	efetivas LyEFF (cm4) 9337		····, Ka	100,01	····NE,KO	211,00									Reforços transversais rígidos.
			E.N (mm)	176,4		COS Darie	W _{yEFF} 565,86							br	160	t _f	11,5	с	1.1		Inexistência de reforços longitudinais.

Figura 5.49 – Interface IV (excerto): resistência da Viga B₂ à encurvadura por esforço transverso.

No relatório de cálculo fornecido pelo *Robot Structural Analysis* não foram apresentados resultados relativos a este assunto, razão pela qual se considera que o programa não faz esta verificação.

5.7.8 Verificação da Viga B₂ à encurvadura tendo em conta a interação entre os esforços de compressão e flexão (estabilidade global)

A análise de estabilidade global de elementos em flexão composta com compressão é realizada no Interface V da ferramenta *AciariUM* (Figura 5.50).

É ativada a opção de definição manual dos coeficientes de momento uniforme $C_{my,0}$ e $C_{mz,0}$. Aceitam-se os valores propostos pelo *Robot Structural Analysis*: $C_{my,0} = C_{mz,0} = 1,0$.

ENCURVADURA TENDO EM CONTA A INTERAÇÃO ENTRE COMPRESSÃO E FLEXÃO MÉTODO ALTERNATIVO 1 - NP EN 1993-1-1 ANEXO A NP EN 1993-1-1. ANEXO A NP EN 1993-1-1. ANEXO A												
PARÂMETROS ENCURVADURA L _{cr,y} 15,00 L _{cr,z}	1,65 L 10,0	ο λ _γ 1	1,26 λ _z 0,54	$\lambda_{LT} = 0,748$	χ, (0,49 χ _z	0,87 χι	0,76				
ESFORÇOS NORMAIS CRÍTICOS N _{CT,Y} 1084 kN	N _{cr,z} 5999 kN	N _{cr,T} 8692 kN	N	FATORES	u _y 0,97	u _z 1,00	w _y 1,1	3 w _z	1,50 n _{pl}	0,04 λ _{ma}	ах 1,26	
COEFICIENTES DE MOMENTO UNIFORME EQUIVALENTE C International de la complete de l	MANUAL MCCE M ^E CR 102	kN.m C1 1	1,29 λ _o 0,47	$> 0, 2\sqrt{C_1} \sqrt[4]{}$	$1 - \frac{N_{Ed}}{N_{cr,z}} \left(1 - \frac{N_{Ed}}{N} \right)$	$\left(\frac{N_{Ed}}{J_{cr,TF}}\right) \Rightarrow$	C _{my} 1,0 C _{mz} 1,0 C _{mz} 1,0 C _{mLT} 1,0) ←) ← L	C _{my,0} 1,00 C _{mz,0} 1,00]		
FATORES a _{LT} 1,00 b _{LT} 0,00 c _{LT} 0,29	d _{LT} 0,00 e _{LT}	2,98		FATORES	C _{vv} 0,99	C _{yz} 0,84	C _{zy} 0,9	5 C ₁₂	0,92			
FATORES DE INTERAÇÃO k _{yy} 1,05 k _{yz} 0,81	k _{zy} 0,59 k _{zz}	1,10										
CONDIÇÃO ASSOCIADA À ENCURVADURA EM TORNO DE Y NP EN 1993-1-1 6-3.3(4) EXP 6-61	$\frac{N_{Ed}}{\chi_y N_{Rk}/\gamma_{M1}} + 1$	$\sum_{yy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} M_{y,Rk}/\gamma_{M1}}$	$+k_{yz}rac{M_{z,Ed}+\Delta M_z}{M_{z,Rk}/\gamma_{M1}}$. <u>Ed</u> =	0,81 < 1,	0 ОК	81%					
CONDIÇÃO ASSOCIADA À ENCURVADURA EM TORNO DE Z NP EN 1993-1-1 6.3.3(4) EXP 6.62	$-\frac{N_{Ed}}{\chi_yN_{Rk}/\gamma_{M1}}+1$	$\sum_{zy} rac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} M_{y,Rk}/\gamma_{M1}}$	$+k_{zz}rac{M_{z,Ed}+\Delta M_z}{M_{z,Rk}/\gamma_{M1}}$	<u>.Ed</u> : =	0,45 < 1,	0 ОК	45%					

Figura 5.50 – Interface V (excerto): análise de estabilidade global da Viga B₂ sujeita a flexão composta com compressão.

O Quadro 5.27 compara os resultados obtidos relativamente à verificação à encurvadura tendo em conta a interação entre os esforços de compressão e flexão (estabilidade global).
	N _{cr,y}	N _{cr,z}	$N_{cr,T}$	λ_0	C_{my}	C_{mz}	C_{mLT}	a_{LT}	b_{LT}	C_{LT}	d_{LT}	e_{LT}	
	kN	kN	kN										
AciariUM	1083,9	5999,3	8691,9	0,47	0,99	1,00	1,00	1,00	0,00	0,29	0	2,98	
Robot SA	1083,9	6000,0	8622,8	0,47	0,99	1,00	0,99	1,00	0,00	0,30	0,00	3,02	
CYPE 3D	1081,4	5875,8	3026,6	0,84	0,99	1,00	1,02	1,00	0,00	0,23	0,04	2,36	
	C	C	C	C	ŀ	Ŀ	l.	ŀ	Verif	icação	Verifi	cação	
	C_{yy}	C_{yz}	C_{zy}	C_{zz}	κ_{yy}	κ_{yz}	κ_{zy}	ĸzz	(Exp	.6.61)	(Exp.	6.62)	
AciariUM	0,99	0,84	0,95	0,92	1,05	0,81	0,59	1,10	81	1%	45	%	
Robot SA	0,99	0,83	0,95	0,92	1,03	0,81	0,58	1,10	80)%	45	%	
CYPE 3D	0,99	0,87 0,94 0,		0,93	1,05	0,78	0,59	1,09	67	7%	39%		

Quadro 5.27 – Verificação da resistência da Viga B₂ à encurvadura tendo em conta a interação entre os esforços de compressão e flexão (estabilidade global).

As diferenças nos resultados para o caso do programa *CYPE 3D* estão relacionadas com o facto de o *software* não permitir considerar a carga aplicada a um nível que não o correspondente ao centro de corte da secção transversal, o que se reflete, no que diz respeito a este cálculo, no valor de χ_{LT} .

5.7.9 Relatório final de segurança (Viga B₂)

A Viga B_2 do Pórtico 3, caso mais condicionante de entre os elementos do Grupo 3 (grupo definido de acordo com o Quadro 5.9), verifica a segurança em relação aos estados limite últimos. A taxa de eficiência, de acordo com a ferramenta *AciariUM*, é de 80%.

No Interface VI da ferramenta *AciariUM* é produzido um relatório de cálculo completo pronto a ser exportado, que é apresentado no Anexo F.2 deste documento. Os relatórios de cálculo produzidos pelos programas *Robot Structural Analysis* e *CYPE 3D* para este caso são apresentados nos anexos F.3 e F.4, respetivamente.

O Quadro 5.28 resume e compara os principais resultados obtidos no processo de verificação.

	$N_{c,Rd}$	$M_{y,Rd}$	$V_{z,Rd}$	$M_{z,Rd}$	$V_{y,Rd}$	FCD	$N_{b,y,Rd}$	$N_{b,z,Rd}$	$M_{b,Rd}$	$V_{b,Rd}$	Ver.	Ver.
	kN	kN.m	kN	kN.m	kN		kN	kN	kN.m	kN	(6.61)	(6.62)
AciariUM	1721,7	221,2	489,2	42,3	625,4	27%	849,1	1494,5	167,2	-	81%	45%
Robot SA	1721,7	221,2	489,2	42,3	671,3	27%	849,1	1494,5	166,8	-	80%	45%
CYPE 3D	1721,5	221.1	393,0	42,4	628,3	27%	842,9	1494,5	203,9	-	67%	39%

Quadro 5.28 - Resumo dos resultados relativos ao processo de verificação da Viga B2.

FCD - verificação à flexão composta desviada (eficiência) de acordo com o critério na Equação (4.49).

As diferentes abordagens consideram diferentes áreas A_{ν} resistentes ao esforço transverso, o que se reflete nos valores da resistência da secção transversal ao corte.

As diferenças nos resultados apresentados pelo *CYPE 3D* acontecem principalmente porque o programa não permite considerar a aplicação da carga ao nível da face superior da secção transversal, o que se reflete no valor do momento crítico M_{cr} .

CAPÍTULO 6

Conclusão

6.1 Considerações finais

Ao longo de todo o documento foram feitas observações, justificadas opções e tiradas conclusões. Como síntese são referidas neste capítulo algumas considerações finais relativamente ao projeto desenvolvido no contexto desta dissertação.

Do estudo comparativo realizado no Capítulo 2 deste documento pode concluir-se que o *Robot Structural Analysis* é o programa que reúne mais valências e versatilidade no tipo de análise levada a cabo neste documento.

A utilização de programas comerciais de análise estrutural implica conhecer as particularidades do software escolhido, de forma a adequar estratégias de modelação em função das suas características. É importante perceber as limitações de cada programa para poder interpretar corretamente os resultados. É essencial controlar e validar de forma sistemática os principais parâmetros devolvidos para produzir resultados com segurança.

De entre os principais aspetos a serem considerados aquando da utilização de um dos programas comerciais de cálculo referidos neste documento chama-se a atenção para:

- a impossibilidade de o CYPE 3D considerar a carga aplicada a um nível que não o correspondente ao centro de corte da secção transversal, aspeto que, em algumas situações, poderá estar do lado da insegurança;
- a eventual necessidade de respeitar uma estratégia de modelação, de acordo com o definido em 5.3.3, que permita traduzir corretamente as condições de travamento do elemento e assim quantificar corretamente os parâmetros relacionados com a análise à encurvadura lateral (bambeamento).

Porque alguns dos programas comerciais de análise estrutural disponíveis no mercado não permitem ao utilizador total controlo sobre os procedimentos que dão origem aos resultados que lhe são apresentados, justifica-se a importância de dispor de ferramentas práticas, intuitivas e de utilização simples que contrariem essa tendência, e que permitam validar os resultados devolvidos por esses programas.

Considera-se que a ferramenta *AciariUM* é capaz de responder às referidas necessidades. Aproxima o processo de cálculo, no que diz respeito ao controlo que permite ao utilizador sobre esse processo, do cálculo manual: todo o algoritmo e procedimento de cálculo relativo a cada parâmetro está constantemente disponível para consulta. Foi ainda desenvolvida uma ligação da ferramenta com o programa *Robot Structural Analysis* para permitir a comunicação automática de dados entre os dois, tornando o processo de validação de resultados rápido e simples.

A *AciairUM* está organizada em interfaces. Cada um desses interfaces realiza procedimentos específicos bem definidos e foi desenhado com preocupação organizativa e estética. A ferramenta dispõe de diferentes módulos de introdução de dados que a tornam bastante versátil. Produz um relatório final de cálculo pronto para exportação. Este documento, em particular o terceiro capítulo, serve como um manual de utilização da ferramenta que deve sempre acompanhá-la.

A metodologia de cálculo de verificação aos estados limite últimos de vigas-coluna em aço está definida na NP EN 1993-1-1 [1]. Existem, no entanto, alguns aspetos que não estão totalmente detalhados. Na bibliografia consultada encontram-se, por vezes, diferentes métodos para dar solução a um mesmo problema. A escolha das metodologias de cálculo implementadas teve por base a procura da solução mais equilibrada. Para cada problema, a solução implementada deve ser eficiente, ter larga aceitação na bibliografia consultada, e ser geral, na medida em que é válida para o maior número de casos.

De entre os procedimentos cuja metodologia adotada pode ser menos consensual, por existirem outras propostas para resolução desses problemas, destacam-se os seguintes:

- Determinação do valor do Momento Crítico para a encurvadura lateral, M_{cr} . A NP EN 1993-1-1 [1] não fornece orientações relativamente à determinação deste parâmetro. Existem vários métodos propostos para a sua determinação. Foi implementada a proposta de Clark e Hill (1960) e Galéa (1981) [6], de acordo com 4.10.1, por ser aquela que mais aceitação tem junto da maioria dos autores e trabalhos científicos incluídos na bibliografia consultada e dos programas testados.
- Determinação das propriedades efetivas das secções transversais da Classe 4. De acordo com o explicado em 4.7.2, existem métodos iterativos que consideram o estado de tensão real na peça e que são, em regra, um pouco mais favoráveis que o adotado. Este tema foi alvo de um intenso trabalho de procura da melhor solução e os referidos métodos iterativos foram implementados em versões provisórias da ferramenta de cálculo. Identificou-se que o método aproximado é o mais indicado por ser aquele que é válido para o maior número de casos. É portanto este o método incluído na versão final da *AciariUM*.
- Determinação da área A_{vy} resistente ao esforço transverso V_y . A proposta apresentada em 4.4.2 está coerente com a maior parte da bibliografia consultada, não é, no entanto, totalmente consensual que, no caso de perfis laminados, a área A_{vy} corresponde à área dos banzos.

— Consideração dos efeitos da presença do esforço transverso no cálculo dos esforços resistentes definidos para a flexão composta. O método adotado em 4.8.5 resulta da interpretação das orientações fornecidas pelo Eurocódigo 3. Não foram encontrados na bibliografia exemplos de aplicação que corroborassem este método nem que propusessem um outro.

O trabalho desenvolvido em colaboração com a empresa CASAIS – Engenharia e Construção S.A. atesta a eficiência da ferramenta *AciariUM* por comparação dos resultados por ela fornecidos com os devolvidos pelos programas *Robot Structural Analysis* e *CYPE 3D* para o caso estudado.

A realização deste projeto envolveu outras atividades. Trabalhar de perto com o departamento técnico da empresa CASAIS - Engenharia e Construção S.A. revelou-se um contributo valioso para o trabalho desenvolvido. Uma visita à serralharia O Setenta em Adaúfe (Braga) permitiu conhecer o processo de fabricação de estruturas metálicas e algumas generalidades sobre tendências do mercado.

6.2 Desenvolvimentos futuros

A ferramenta de cálculo *AciariUM* é editável por qualquer pessoa que tenha conhecimentos em Microsoft Office Excel e Visual Basic. Este aspeto tem como objetivo motivar desenvolvimentos futuros e confere-lhe grande margem para progressão. O utilizador poderá facilmente adicionar á ferramenta *AciariUM* novos conjuntos de procedimentos que, somados aos já existentes, deem resposta às suas necessidades.

Apesar de o trabalho desenvolvido ter ido além daquilo que foi inicialmente proposto e incluir também assuntos que pertencem já à parte 5 do conjunto de normas NP EN 1993 [3], existe ainda um conjunto quase ilimitado de matérias que poderão ser incluídas na ferramenta de cálculo. A escolha de novas matérias que possam integrar a *AciariUM* virá sempre em função das necessidades de cada utilizador.

Propõe-se, com vista a desenvolvimentos futuros, algumas matérias que, no contexto dos assuntos abordados neste projeto, se revelaram mais pertinentes aquando da aplicação da ferramenta a casos práticos:

- A ferramenta AciariUM é direcionada para a verificação aos estados limite últimos de vigas-coluna em aço. Propõe-se criar um novo interface que apoie a realização de verificações relacionadas com os estados limite de utilização de acordo com a secção 7 da NP EN 1993-1-1 [1]: deformação vertical, deformação horizontal e efeitos dinâmicos.
- A ferramenta AciariUM permite a verificação de vigas-coluna em aço constituídas por secções transversais em I ou H. Propõe-se o alargamento da ferramenta para que inclua

outros perfis transversais, como por exemplo perfis em U, T e secções cheias, secções tubulares, cantoneiras e secções em caixão. Deve no entanto notar-se que este não será um trabalho simples, uma vez que implicará alterações profundas na ferramenta ao nível dos conteúdos mas também da sua estrutura, especialmente para o que diz respeito á definição geométrica das secções transversais, ao cálculo das suas propriedades mecânicas, à classificação dessas secções, ao cálculo das áreas resistentes aos esforços transversos, à análise relativamente a fenómenos de instabilidade.

- O Módulo Automático de modelação das condições de apoio, travamento e solicitação do elemento estrutural, no Interface II da ferramenta *AciariUM*, permite que três tipos de carga possam ser adicionados ao esquema estrutural: carga pontual (normal à barra), carga uniformemente distribuída (normal à barra) e esforço axial. Propõe-se adicionar a este módulo a possibilidade de introdução de momentos fletores a serem aplicados a qualquer ponto na barra. É um trabalho que não oferece dificuldades.
- No conjunto de procedimentos D do Interface IV, dedicado à verificação à encurvadura por esforço transverso do elemento estrutural, é dimensionado o espaçamento máximo entre reforços transversais, de acordo com a secção 5 da NP EN 1993-1-5 [3], por forma a que seja verificada a resistência ao referido fenómeno de instabilidade. Propõe-se incluir um módulo para dimensionamento desses reforços.

[1] NP EN 1993-1-1. 2010, Eurocódigo 3 – Projeto de estruturas de aço, Parte 1-1: Regras gerais e regras para edifícios. CT 115 (LNEC).

[2] ENV 1993-1-1 (Annex F). Eurocode 3 – Design of Steel Structures, Part 1-1: General Rules and Rules for Buildigns. Afnor, 1992.

[3] NP EN 1993-1-5. 2012, Eurocódigo 3 – Projeto de estruturas de aço, Parte 1-5: Elementos estruturais constituídos por placas. CT 115 (LNEC).

[4] NP EN 1990. 2009, Eurocódigo – Bases para o projeto de estruturas. CT 115 (LNEC).

[5] NP EN 1992-1-1. 2010, Eurocódigo 2 – Projeto de estruturas de betão, Parte 1-1: Regras gerais e regras para edifícios. CT 115 (LNEC).

[6] SILVA, L. A. P. S., SIMÕES, R. e GERVÁSIO, H., Design of Steel Structures, ECCS, Ernst Sohn, 2010.

[7] SILVA, L. A. P. S. e GERVÁSIO, H., Manual de Dimensionamento de Estruturas Metálicas: Métodos Avançados, CMM, 2007.

[8] VALENTE, M.I.B, Apontamentos Teóricos e Práticos de Estruturas Metálicas, Universidade do Minho, 2014.

[9] RAMOS, R.A.R, Nova filosofia de cálculo de estruturas de aço – Eurocódigo 3, Departamento de Engenharia Civil da Faculdade de Engenharia da Universidade do Porto, Junho de 1993.

[10] BEG, D., KUHLMANN, U., DAVAINE, L., BRAUN, B., Design of Plated Structures, ECCS, Ernst Sohn, 2010.

[11] BOISSONNADE, N., GREINER, R., JASPART, J.P. e LINDNER, J., Rules for Member Stability in EN1993-1-1: Background documentation and design guidelines, ECCS, 2006.

[12] SCHILEICH, J.B., MATHIEU, J. e CONAN, Y., Design Handbook for Braced or Non-Sway Steel Buildings According to Eurocode 3, ECCS, 2000.

[13] JOHANSSON B., MAQUOI, R., SEDLACEK, G., MÜLLER, C., BEG, D., Commentary and worked examples to EN 1993-1-5 "Plated structural elements", ECCS, 2007.

[14] FARINHA, J. S. Brazão e REIS, A. Correia – Tabelas técnicas, 1998.

[15] Cype Enginieros S.A., Calculations Manual: Cype Metal 3D. Spain, 1st edition, November 2010.

[16] Regulameno de Segurança e Ações para Edifícios e Pontes. 1983. Imprensa Nacional Casa da Moeda.

Anexo A

Estrutura da Ferramenta AciariUM

Interfaces e relatório final de cálculo da ferramenta de cálculo *AciariUM*, apresentados de acordo com o Capítulo 3 deste documento.

- A.1 Interface I: Secção transversal e propriedades do material;
- A.2 Interface II: Condições de apoio, travamento e solicitação do elemento estrutural;
- A.3.1 Interface III: Resistência da secção transversal (ELU) Secção bissimétrica da Classe 1;
- A.3.2 Interface III: Resistência da secção transversal (ELU) Secção monossimétrica da Classe 1;
- A.3.3 Interface III: Resistência da secção transversal (ELU) Secção da Classe 3;
- A.3.4 Interface III: Resistência da secção transversal (ELU) Secção da Classe 4;
- A.4 Interface IV: Fenómenos de Encurvadura;
- A.5 Interface V: Análise da estabilidade global de elementos em flexão composta com compressão;
- A.6 Interface VI: Relatório final de cálculo exportado a partir da ferramenta *AciariUM*.

[]_Aci	ariUM	INTE	RFAC	E I. SI	ecção	TRAN	ISVER	SAL E	PROP	RIEDA	DES D	о ма	TERIA	L														MOD	ULO DE C	ÁLCULO:	COME	ERCIAL			
DESIG	NAÇÃO		DIMENS	ÕES PRIM	NCIPAIS I	DA SECÇİ	ÃO TRAI	NSVERSA	L	А	(DG	DIMENS	ões cor	MPLEME	NTARES		EIXO F	PRINCIPA	AL DE INÉ	ÍRCIA Y	EIXO PRINCIPAL DE INÉRCIA Z				RCIA Z									
IPE	300	h mm	b₅ mm	bi mm	tv mm	t: mm	ti mm	r₅ mm	ri mm	A cm ²	ZCG mm	yca mm	hi mm	d mm	CS₂ mm	CSi mm	ly cm ⁴	W3.540 cm ³	Wsiri cm ³	Wplg cm ³	iş cm	Ave cm ²	lz cm ⁴	W2.5up cm ³	Wzin/ cm ³	Wplz cm ³	i: cm	Avs cm ²	IT cm ⁴	lw x 10 ⁻³					
f _{y[MPa]}	275	300	150	150	7,1	10,7	10,7	15	15	53,81	150	75	278,6	248,6	0	0	8356	56 557,1 557,1 628,4 12,46 25,68 603,7 80,5 80,5							125,2	3,35	34,03	20,12	125,9	[0,92				
F		IÓDUL	O MAN	UAL D	EFINIÇÃO	MANUA	IL DAS DI	MENSÕES	DA SECÇ	ÃO TRAN	SVERSAL							INFO	0 🕗					bs				TIPO D	E PERFIL	Lami	nado	1			
- DIMENSÕES								PAIS RECO	LHIDAS	DO AUTO	ESK ROB	ют	Α	C	G	DIMEN	ISÕES CO	MPLEME	NTARES		Trade.			_		ts +2									
	- SECÇÃO TIPO DE PERFIL h b _s					bs	b	tw	t,	tj	r _s	n,	A	ZCG	Ycg	hi	d	CS ₅	csi					-10			9			CORDOES DE SOLDADURA:					
	- mm mm				mm	150	mm	mm	mm	mm	mm	cm*	mm	mm	mm	mm	mm	mm		→ ← t _w				NAO EXISTEM CORDÕES DE SOLDADURA.											
IPE 300 Perfil Laminado 300 150					150	150	7,1	10,7	10,7	15	15	53,8	150,0	75,0	2/9	249	0,00	0,00	1	h hid				У			JOLDA	DOTIN.							
K		IÓDUL	O ROBO	OT STR	UCTUR	AL ANA	LYSIS RECEBER PROPRIEDADES DA SECÇÃO TRANSV						ERSAL A	PARTIR DO	O ROBOT	SA		INFO) ()										1	BANZO					
ELEN	IENTO				DI	MENSÕE	S PRINCIPAIS RECOLHIDAS DO AUTODESK ROBOT						Α	CG DIMENSÕES C			ISÕES CO	OMPLEMENTARES						(P)					ALMA	7					
NO.	L	SECÇÃO	TIPO DI	PERFIL	h	b _s	bi	tw	t,	tj	r,	n,	A	Z _{CG}	Ycs	hi (d cs _s cs _i					ti -z							\smile					
	m				mm	mm	mm	mm	mm	mm	mm	mm	cm ⁴	mm	mm	mm	mm	mm	mm					bi											
15	15 1,67 IPE 330 Perfil Laminado 330 160						160	7,5	11,5	11,5	18	18	62,6	165,0	80,0	307	2/1,0	0,00	0,00																
CLAS	CLASSE DE ACO										E	2	10	GPa	α	1,20)E-06	/к			1					Ymo		1,00				1			
CONS	TITUINTE	DO	fv	275	MPa			PROPR	IEDADES RAIS	5	6	80	77	GPa	6	78	350	Kg/m ³		Redefi	nir		COEFIC	AIS DE				1.00			Redefir	nir			
EL	EMENTO			1y 273 Mir		WIFa		DO MATERIAL					00,77		Gru G _m		,000				3-1-1		SEGU	RANÇA		TM1		4.05			NP EN 199	3-1-1			
	fu 430 MPa										v		,5		η	1,	20									¥м2		1,25							
	toku M. Bra Peri Lated Vitarie																							J Prof. Eng	oão M. M. Eira Isabel Valente L ^e Miquel Pires	×	\bigcirc	Universida Escola de f	de do Min Ingenharia	ho 🤜		SAIS			

Figura A.1 – Interface I. Secção transversal e propriedades do material.

Figura A.2 – Condições de apoio, travamento e solicitação do elemento estrutural.

Figura A.3 – Interface III. Resistência da secção transversal aos estados limite últimos: secções bissimétricas da Classe 1 ou 2.

Figura A.4 – Interface III. Resistência da secção transversal aos estados limite últimos: secções monossimétricas da Classe 1 ou 2.

Figura A.5 – Interface III. Resistência da secção transversal aos estados limite últimos: secções da Classe 3.

INTERFACE III. RESISTÊNCIA DA SECÇÃO TRANSVERSAL [ELU]	SECÇÃO BISSIMÉTRICA													
DESIGNAÇÃO DIMENSÕES PRINCIPAIS DA SECÇÃO TRANSVERSAL A CG DIMENSÕES COMPLEMENTAL S3	NES EIXO PRINCIPAL DE INÉRCIA Y EIXO PRINCIPAL DE INÉRCIA Z EIXO PRINCIPAL DE INÉRCIA Z ii I, WLsne Wunt Wati Is Anc Iz Wzsne Wzsne Kanis Ir Iox10 ³ m cm ⁵ cm ³ cm ³ cm ⁴													
SOLICITAÇÃO NA SECÇÃO CONDICIONANTE N _{Ed} 200,00 KN V _{Ed,2} 6,27 KN M _{Ed,y} 74,64	kN.m V _{Ed.y} 5,00 kN M _{Ed.2} 10,00 kN.m													
CLASSIFICAÇÃO DA SECÇÃO A secção S3 sujeita a Flexão Composta Desviada é da Classe 4.	CLASSE 4													
T DETERMINAÇÃO DAS PROPRIEDADES EFETIVAS DA SECÇÃO DA CLASSE 4	NP EN 1993-1-1 6.2.9.3 (2)													
Ager 47.31 cm ² W _v ers, 493 cm ³ W _v ers, 495 cm ³ W _{ters,08} 93.42 cm ³ W _{ters,08} 93.42 cm ³	e _{Rtr(mm)} 0,00 mm Δ _{My} 0,00 kN.m e _{Ny} 0,00 mm Δ _{MZ} 0,00 kN.m													
A. RESISTÊNCIA DA SECÇÃO TRANSVERSAL A ESFORCOS SIMPLES	NP EN 1993-1-1. 6.2													
Tragio N _k I334,22 IN OK OK PNEN1993-1-1(6.2.9) Compression N _k I300,89 IN OK OK PNEN1993-1-1(6.2.9) Enforp Transvers V _{k.80} 300,20 IN OK S% NPEN1993-1-1(6.2.9) Momento Fletor M _k Table OK S% NPEN1993-1-1(6.2.6) com s, 278,40 Z78,40 m³ Momento Fletor M _k Table N OK S% NPEN1993-1-1(6.2.6) com s, 278,40 Table Momento Fletor M _k Table N OK S% NPEN1993-1-1(6.2.6) com s, 71,76 Table Momento Fletor M _k Z5,69 Km OK 3% NPEN1993-1-1(6.2.5)														
B. AVALIAÇÃO DA NECESSIDADE DA CONSIDERAÇÃO DO EFEITO DO ESFORCO TRANSVERSO NO CÁLCULO DOS ESFORCOS RESISTENTES DEFINIDOS PARA A FLEXÃO COMPOSTA														
ESFORÇO TRANSVERSO NA DIREÇÃO Z (ASSOCIADO AO MOMENTO FLETOR M.)] VEG2 (KN) 6,271 < 50% V _{p1/Bd2} (KN) 366,9 p 0,00 F _{V1/Bd2} 275,0 f _y 275,0														
C. INTERAÇÃO [M + V] ESFORÇO DE FLEXÃO COM ESFORÇO TRANSVERSO	NP EN 1993-1-1. 6.2.8													
Não é necessário ter em conta a interação do esforço de corte [Vz] com o momento fletor resistente [MRd.y] Não é necessário ter em conta a interação do esforço de corte [Vz] com o momento fletor resistente [MRd.y] Não é necessário ter em conta a interação do esforço de corte [Vz] com o momento fletor resistente [MRd.z] EFF MVv _{kd} 135,62 kn.m OK 55% MVv,Rd = Wv,Nrdy MVv,Rd = VV.V.Rd = Wv.V.Rdy MVv.Rdy VVvVRd 136,23 kn.m OK 55% MVv,Rd = $W_{v,Nrd}$ 25,69 kn.m OK 39% MVv.Rd = $W_{v,Rd}$														
H. INTERAÇÃO [M _y + M _z + N + V] FLEXÃO COMPOSTA DESVIADA COM ESFORÇO TRANSVERSO	[SECÇÕES TRANSVERSAIS DA CLASSE 4] NP EN 1993-1-1. 6.2.9													
$\label{eq:criterio} \begin{array}{ c c c c c c } \hline A & 0.31 & < 1.0 & O \\ \hline & & O \\ \hline $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
	Adak M Eine Pet taset Vaeen Engr Magel Pes													

Figura A.6 – Interface III. Resistência da secção transversal aos estados limite últimos: secções da Classe 4.

INTERFACE IV. FENÓMENOS DE ENCURVADURA														
DESIGNAÇÃO DIMENSÕES PRINCIPAIS DA SECÇÃO TRANSVERSAL A CO DIMENSÕES COMPLEMENTARES EIXO PRINCIPAL DE INÉRCIA Y EIXO PRINCIPAL DE INÉRC	CIA Z													
IPE 300 h bs bit ts ts <tht> ts ts</tht>	iz Avy IT Iv x 10 ⁻³ [©]													
f_(Net) 275 300 150 150 7 11 15 15 53,81 150 75 278,6 248,6 0 0 8356 557,1 557,1 628,4 12,46 25,68 603,7 80,5 80,5 125,2	3,35 34,03 20,12 125,9 0,92													
SOLICITAÇÃO NA SECÇÃO CONDICIONANTE N _{Ed} 200,00 kn V _{Ed,z} 6,27 kn M _{Ed,y} 74,64 kn.m V _{Ed,y} 5,00 kn M _{Ed,z} 10,00 kn.m	CLASSE 1													
A. VERIFICAÇÃO À ENCURVADURA EM TORNO DO EIXO Y (VAREJAMENTO)	NP EN 1993-1-1. 6.3.1.1(3)													
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$														
B. VERIFICAÇÃO À ENCURVADURA EM TORNO DO EIXO Z IVAREJAMENTO	NP EN 1993-1-1. 6.3.1.1(3)													
N _{b 2.8d} 1169,90 kN OK 17,1% L _{cr.z} 2,00 λ _z 0,69 α _z 0,34 φ _z 0,82 χ _z 0,79														
C. VERIFICAÇÃO À ENCURVADURA LATERAL (BAMBEAMENTO)	NP EN 1993-1-1. 6.3.2													
DETERMINAÇÃO DO VALOR DO MOMENTO CRÍTICO (M _{GI}) PARA A ENCURVADURA LATERAL - PROPOSTA DE CLARK AND HILL (1960) E GALÉA (1981):														
$ = \frac{1}{ \mathbf{k} ^2} CALCULO AUTOMÁTICO DO VALOR DE MGR Mcr = C1 \frac{\pi^2 E I_z}{(k_z l)^2} \left[\left[\left(\frac{k_z}{k_w} \right)^2 \frac{I_w + (k_z l)^2 G I_T}{I_z + (k_z l)^2 G I_T} + (C_2 z_g - C_3 z_j)^2 \right]^{-0.5} - (C_2 z_g - C_3 z_j)^2 \right]^{-0.5} - (C_2 z_g - C_3 z_j)^2 = 201.87 \text{ kN.m} $														
COEFICIENTES DISTRIBUIÇÃO DE MOMENTOS INFO 2 FATORES DE COMPRIMENTO EFETIVO INFO 2 POSIÇÃO DA CARGA NA SECÇÃO INFO 2 GRAU DE ASSIM	IETRIA DA SECÇÃO INFOQ													
C1 1,29 C3 1,56 C3 0,75 BANZO COMPRIMENTO S DETERMINAR 2 23 FORMA DO DIAGRAMA DE MOMENTOS FATORES COMPRIMENTO FETIVO FATORES COMPRIMENTO FETIVO K, 1,00 K, 1,00 1,00 BANZO COMPRIMENTO FETIVO BANZO COMPRIMENTO FETIVO COMPRIMENTO ENTRE SECÇÕES I(m) Z8 0,150 BANZO TRU	0 m 0.5 hg 289.3 mm MPRIMIDC: Hg 300.9 cm ⁴ ACIONADO: Hg 300.9 cm ⁴													
DETERMINAÇÃO DO VALOR DE CÁLCULO DO MOMENTO RESISTENTE À ENCURVADURA LATERAL: M _{b y 866} 123,92 kN.m QK 60% M _{cs} 201,9 kN.m Å _t 0,93 q _{s7} 0,21 ψ _{t7} 1,00 χ _{t7} 0,72														
D. VERIFICAÇÃO À ENCURVADURA POR ESFORCO TRANSVERSO [ENFUNAMENTO]	NP EN 1993-1-1. Anexo A													
ESPORÇO TRANSVERSO RESISTENTE FLASTICO (EU) V _{0,R0} 407.75 KN OK NPENI959-1-1 (6.2.6) com 5 34,175 cm ²	EXT. INT. EXT.													
Auton may recompute $\Pi_{ij} I_{ij}$ 35.24 × $I/I 1$ 33.40 · 2 reconstruction of the necessade of existing reconstructions in the reconstruction of th														
REFORCES TRANSVERSALS EXTREMUNUE INZO REFORCES TRANSVERSALS AND A MIGLIOUS INTERNETURUS INZO A MIGLIOUS AND A M	аа													
ALMA REFORÇADA h _w /t _w 39,24 < 31/η ε √k _τ - → Não há necesidade de verificar a chapa em relação à resistência à encurvadura por esforço transverso!	kτ - kτ _{si} 0 a/h _i -													
VERIFICAÇÃO DA CHAPA EM RELAÇÃO À RESISTÊNCIA À ENCURVADURA POR ESFORÇO TRANSVERSO	NOTAS E CHAMADAS DE ATENÇÃO													
Vb _{WRd} - + Vb _{WRd} - + Vb _{WRd} - DETERMINAÇÃO DA SECÇÃO EFETIVA CONSTITUÍDA APENAS PELAS ÁREAS EFETIVAS DOS BANZOS														
OK χ _m - CASE 3 b _(mm) t _(mm) c ψ ko λρ ρ c _{arrinn} b _{BT} σ _(MM) 123.27 δ _b A SSC40 TOTAL coverand BANZO SUPERIOR 150 10.0 56.45 1,00 0,43 0,306 ≤ 0,748 → 1,000 56.45 150 0,7 56.45 1,000 0,43 0,306 ≤ 0,748 → 1,000 56.45 1000 0,43 0,306 ≤ 0,748 → 1,000 56.45 1,000 0,43 0,306 ≤ 0,748 → 1,000 56.45 1,000 0,43 0,306 ≤ 0,748 → 1,000 56.45 150.00 1,011 <t< th=""><th>O método de cálculo do valor de VbRd é 'álido se existirem reforços transversais pelo menos nos apoios.</th></t<>	O método de cálculo do valor de VbRd é 'álido se existirem reforços transversais pelo menos nos apoios.													
SECCAD CFETIVA 07, UPUSA 04, 05,56 SECCAD CFETIVA 25, 05,00 Security 04, 05,05 <td>RESTRIÇÕES DE VALIDADE: Reforços transversais rígidos. Inexistência de reforços longitudinais.</td>	RESTRIÇÕES DE VALIDADE: Reforços transversais rígidos. Inexistência de reforços longitudinais.													
Jadio M.M. Bra Perti tatuki Vatera Bry Vagan Rea	Universidade do Minho Escola de Engenharia													

Figura A.7 – Interface IV. Fenómenos de encurvadura.

INTERFACE V. ANÁLISE DA ESTAB	ILIDADE GLOBAL DE ELEMENTOS EM	FLEXÃO COMPOSTA COM CO	OMPRESSÃO		
DESIGNAÇÃO DIMENSÕES PRINCIPAIS DA SECÇÃO TRAN	ISVERSAL A CG DIMENSÕE	ES COMPLEMENTARES EIXO PR	INCIPAL DE INÉRCIA Y	EIXO PRINCIPAL DE INÉRCIA Z	
IPE 300 h bz bi tv tz ti fy[MPa] 275 300 150 150 7,1 10,7 10,7	r₂ rı A zca yca hı mm mm cm² mm mm mm r 15 15 53,81 150 75 278,6 2	d CSr CSi Jy Wysup mm mm mm cm ⁴ cm ³ 48,6 0 0 8356 557,1	Wsint Wplg is Ave Iz cm ³ cm ³ cm cm ² cm ⁴ 557,1 628,4 12,46 25,68 603,7	Wz.sup Wz.in/ Wplz iz A cm³ cm³ cm³ cm 7 80,5 80,5 125,2 3,35 34	Avy Ir Ivx 10 ⁻³ ε cm ² cm ⁴ cm ⁶
SOLICITAÇÃO NA SECÇÃO CONDICIONANTE N _{Ed} 200),00 kN V _{Ed,z} 6,27 kN N	M _{Ed,y} 74,64 kN.m V _{Ed,y}	5,00 kN M _{Ed,2} 1	0,00 kN.m	CLASSE 1
ENCURVADURA TENDO EM CONTA A INTERAÇÃO EN	ITRE COMPRESSÃO E FLEXÃO MÉTODO ALTE	ERNATIVO 1 - NP EN 1993-1-1 ANEXO A			NP EN 1993-1-1. Anexo A
PARÂMETROS ENCURVADURA L _{cr,y} 2,50 L _{cr,z}	2,00 L 5,00 λ _γ 0,23	λ_z 0,69 λ_{LT} 0,925	χ _γ 0,99 χ _z 0,79 χ _{LT}	0,72	
ESFORÇOS NORMAIS CRÍTICOS N _{cr,y} 27710 kN	N _{cr,z} 3128 kN N _{cr,T} 4895 kN	FATORES U _y	1,00 u ₂ 0,99 w _y 1,13	w _z 1,50 n _{pl} 0,14 λ	umax 0,69
COEFICIENTES DE MOMENTO UNIFORME EQUIVALENTE © Cálculo Automático dos Valores de C _{mu} a e C _{mu} a C Calculo Manual dos Valores de C _{mu} a e C _{mu} a	MUTO MCCR 504,9 kN.m C1 1,29	λ_{o} 0,58 > 0,2 $\sqrt{C_{1}}\sqrt[4]{\left(1-\frac{N_{Ec}}{N_{cr}}\right)}$	$\frac{1}{2}\left(1-\frac{N_{Ed}}{N_{cr,TF}}\right) \Rightarrow \begin{vmatrix} \mathbf{c}_{my} & 1.00 \\ \mathbf{c}_{mz} & 1.00 \\ \mathbf{c}_{mtr} & 1.06 \end{vmatrix}$	← C _{my,0} 1,01 ← C _{mz,0} 1,00	
Cmy,0 MODULO DE CÁLCULO AUTOMÁTICO OPÇÃO I	IA.2 NPEN1993-1-J INHA № 2	$\frac{\text{RES } M_{\text{Ed.}} \text{ ENTRE SECCÕES LATERALMENTI}}{C_{\text{mi},0} = 1 + \left(\frac{\pi^2 \text{EI}_i \delta_x }{L^2 M_{i,\text{Ed.}}(x) } - 1\right)}$	$\begin{array}{c} \hline \begin{array}{c} \hline \\ N_{Ed} \\ \hline \\ N_{er,i} \end{array} \end{array} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $	δ _y 20 mm VALOR PRO M _{Εθγ} 64,69 KN.m Ο PARÂN	DPOSTO PARA VIETRO Cmy,0 1,01
Cmz,0 MODULO DE CÁLCULO Redefinir Parâmetros OPÇÃO L	IA.2 NPEN1993-1-J	$\frac{\text{RES } M_{\text{Ed,z}} \text{ ENTRE SECÇÕES LATERALMENTI}}{C_{\text{mi,0}} = 1 + 0.03 \frac{N_{\text{Ed}}}{N_{\text{cr,i}}}}$	CONTRAVENTADAS: ψz - φz - εz -	δ _z - mm VALOR PRO M _{Edz} - KN.m O PARÂN	VPOSTO PARA METRO Cmz,0 Cmz,0 1,00
FATORES a _{LT} 1,00 b _{LT} 0,03 c _{LT} 0,39	d _{LT} 0,63 e _{LT} 1,84	FATORES C _{vv}	1,00 C _{yz} 0,88 C _{zy} 0,89	C ₁₂ 0,93	
FATORES DE INTERAÇÃO k _{yy} 1,07 k _{yz} 0,84	k _{zy} 0,62 k _{zz} 1,14				
CONDIÇÃO ASSOCIADA À ENCURVADURA EM TORNO DE Y NP EN 1993-1-1.6.3.3(4) EXP 6.61 CONDIÇÃO ASSOCIADA À ENCURVADURA EM TORNO DE Z NP EN 1993-1-1.6.3.3(4) EXP 6.62	$\label{eq:main_state} \begin{split} & \frac{N_{Ed}}{\chi_y N_{Rk}/\gamma_{M1}} + k_{yy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} M_{y,Rk}/\gamma_{M1}} + k_{yz} \frac{M}{\chi_{LT}} \frac{N_{Ed}}{\chi_y N_{Rk}/\gamma_{M1}} + k_{yz} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} M_{y,Rk}/\gamma_{M1}} + k_{zz} \frac{M}{\chi_{LT}} \frac{M_{y,Rk}}{\chi_{LT} M_{y,Rk}/\gamma_{M1}} + k_{zz} \frac{M}{\chi_{LT}} $		 > 1,0 KO 102% < 1,0 OK 87% 		
				João M. M. Eira Prof. Isotel Visiente Eng [®] Miguel Pres	ersidade do Minho Xa de Engenharia

Figura A.8 – Interface V. Análise da estabilidade global de elementos em flexão composta com compressão.

AciariUM **INTERFACE VI. RELATÓRIO FINAL DE SEGURANÇA** Prof. Isabel Valente Eng.º Miguel Pires

Escola de Engenharia

MN_{pl,y,Rd} IV. RESISTÊNCIA DO ELEMENTO A FENÓMENOS DE ENCURVADURA

MN_{pl.z.R}

≤1.0

0,48

CRITÉRIO DE SEGURANÇA

VERIFICAÇÃO À ENCURVADURA EM TORNO DO EIXO Y [VAREJAMENTO] NP EN 1993-1-1. 6.3.1.1(3) N_{b y.Rd} 1469,70 kN **OK** 14% 2,5 m λ_Y 0,23 α_v 0,21 φ_v 0,53 χ_y 0,99 L_{cr,v} NP EN 1993-1-1. 6.3.1.1(3) VERIFICAÇÃO À ENCURVADURA EM TORNO DO EIXO Z [VAREJAMENTO] Página | 169 N_{b z.Rd} λ_Y 0,69 α_y 0,34 φ_y 0,82 1169.90 kN **OK** 17% 2 m χ_v 0,79 Lcr.v Página 1 de 3

ОК

48%

Com: a

2

β 1

1,00

<

ANEXO I. NOTAÇÃO:

A	área da secção transversal (cm ²)
Z _{cg}	coordenada em z da posição do centro de gravidade da secção transversal (mm)
y _{cg}	coordenada em y da posição do centro de gravidade da secção transversal (mm)
I _(i)	momento de inércia da secção transersal em relação ao eixo (i) (cm 4)
W _{y.sup}	módulo de flexão elástico em relação ao eixo y, relativo à fibra superior da secção transversal (cm ³)
W _{y.inf}	módulo de flexão elástico em relação ao eixo y, relativo à fibra inferior da secção transversal (cm ³)
W _{z.sup}	módulo de flexão elástico em relação ao eixo z, relativo à fibra extrema esquerda ou direita do banzo superior (cm 3)
W _{z.inf}	módulo de flexão elástico em relação ao eixo z, relativo à fibra extrema esquerda ou direita do banzo inferior (cm 3)
W _{pl.y}	módulo de flexão plástico da secção transversal (cm ³)
i _(i)	raio de giração da secção transversal relativo ao eixo (i) (cm)
A _{v.(i)}	área resistente aos esforço transverso V $_{(i)}$ (cm 2)
Ι _Τ	constante de torção de St. Venant (cm ⁴)
l _w	constante de empenamento (cm ⁶)
E	módμo.de elasticidade (GPa)
Fagn	Codrictente de Poisson em regime elástico

η	coeficiente para calcular a área de corte
f _y	tensão de cedência (MPa)
f _u	tensão última (MPa)
YM(i)	coeficientes parcias de segurança q _{MO} , q _{M1} , q _{M2}
ε	fator que depende de f _y
N _{Ed}	valor de cálculo do esforço normal atuante (kN)
M _{(i).Ed}	valor de cálculo do momento fletor atuante, em relação ao eixo (i) (kN.m)
V _{(i).Ed}	valor de calculo do estorço transverso atuante na direção (i) (KN)
N _{t.Rd}	valor de calculo do estorço normal resistente de tração (kN)
N _{c.Rd}	Valor de calculo do estorço normai resistente de compressao (kN)
IVI(i).Rd	Valor de calculo do momento netor resistente em relação ao eixo (r) (KN.m)
V(i).Rd	Valor de calculo do estor to transverso resistence na direção (r) (kv)
Δ	area resistence do estolço transverso $v_2(tn)$
A	area restance relativamente a area n_{y_d} (n_{y_d}) (cm) / área restance relativamente a area n_{y_d} (n_{y_d}) (cm) / área restance a area n_{y_d} (n_{y_d}) (cm) / (n_{y_d})
Acu	and a concentration of the second se
0	coeficiente de reduciõn de determinar os valores de cálculo dos momentos fletores resistentes, tendo em conta a interação com os esforcos transversos
	tensão de cedência reduzida adotada na área resistente ao esforço transverso Ay, para tomar em consideração os efeitos da presença do esforço transverso V, no cálculo
T _y (A _{v.z})	momento fletor resistente $M_{v,y,Rd}$ - Abrevia-se em f' _{y,z} (MPa)
f' (A)	tensão de cedência reduzida adotada na área resistente ao esforço transverso A _{vy} para tomar em consideração os efeitos da presença do esforço transverso V _y no cálculo do
' y(' 'v.y'	resistente M _{V.z.Rd} - Abrevia-se em f [*] y.y (MPa)
W sup el.y.A(i)	módulo de flexão elástico da área A(i) em relação ao eixo y, relativo à fibra superior da secção transversal
W inf el.y.A(i)	módulo de flexão elástico da área A(i) em relação ao eixo y, relativo à fibra inferior da secção transversal
W sup el.z.A(i)	modulo de flexão elastico da area A(I) em relação ao eixo z, relativo à fibra extrema esquerda ou extrema direita do banzo superior da secção transversal
VV el.z.A(i)	mouulo de flexão elastico da area A(i) em relação ao eixo z, relativo a fibra extrema esquerda ou extrema direita do banzo inferior da secção transversal
W eff.y.A(i)	mouno de nexao electivo da alea A(i) em relação ao eixo y, relativo à fibra inferior da coseña transverral
W sup	mouno de riezao erectivo da area A(i) em relação ao eixo y, relativo à fibra extrema esquerda ou extrema direita (caso mais desfavorável) do bapao superior da sessão transversal
W inf	mouno de nexao electivo da area A(i) em relação ao eixo 2, relativo à fibra extrema esquerda ou extrema direita (caso mais desfavorável) do banzo inferior da secção transversal
My u Rd	valor de cálculo do energe de la secto resistente M. est reduzido de la interação com o esforco transverso V com relação à fibra superiorde a secto transverso di (K.M.)
My v Rd inf	valor de cálculo do momento fletor resistente M, par reduzido pela interação com o esforco transverso V., com relação à fibra inferior da secção transversal (kN.m)
v.y.itu iii	valor de cálculo do momento fletor resistente M. en reduzido pela interação com o esforço transverso V., com relação à fibra esquerda ou direita da secção transversal (a
M _{V.z.Rd} sup	mais desfavorável) do banzo superior (kN.m)
M	valor de cálculo do momento fletor resistente M _{z.R} d reduzido pela interação com o esforço transverso V _v , com relação à fibra esquerda ou direita da secção transversal (a
····v.z.kd inf	mais desfavorável) do banzo inferior (kN.m)
M _{NV.y.Rd}	valor de cálculo do momento fletor resistente plástico $M_{pl,Rd}$ reduzido pelos esforços normal N_{Ed} e transverso $V_{z,Ed}$ (kN.m)
M _{NV.z.Rd}	valor de calculo do momento fletor resistente plastico $M_{pl,Rd}$ reduzido pelos esforços normal N_{ed} e transverso $V_{y,ed}$ (kN.m)
N _{b.(i).Rd}	Valor de calculo do estorço normal resistente a encurvadura em relação ao eixo (i) de um elemento comprimido (KN)
L _{cr.(i)}	Comprimento de encurvadura em relação ao eixo (i) (xiv)
	espieteza normalizada associada a elutivadura de elementação ao exo (i)
φ _(i)	Nor de imperies de la decembra de clicatera en companya de seconda de clicatera de la clicatera de
X(i)	coeficiente de redução para o modo de encurvadura em relação ao eixo (i)
M _{cr}	momento crítico de encurvadura lateral (kN.m)
M _{cr.E}	momento crítico elástico de encurvadura lateral (kN.m)
C _(i)	coeficientes C ₁ , C ₂ e C ₃ dependendentes da forma do diagrama de momentos fletores e das condições de apoio nas extremidades do tramo de comprimento / a analisar
l	comprimento entre secções lateralmente contraventadas no banzo considerado (m)
k _z	fator de comprimento efetivo referente às restrições à rotação em torno do eixo z das secções de extremidade do tramo de comprimento l
k _w	fator de comprimento efetivo referente às restrições ao empenamento das secções de extremidade do tramo de comprimento /
Zg	coordenada em z do ponto de aplicação da carga em relação ao centro de corte da secção transversal (m)
Z _j	parametro que traduz o grau de assimetría da secção transversal em relação ao eixo y (m)
νι _{b.Rd}	valor de calculo do momento netor resistente a encurvadora lateral (KN.M)
	esuencea numerfairão para a ancunvadura lateral
μ _{LT}	valor para determinar o coeficiente de reducão v _{ez}
XIT	coeficiente de redução para a encurvadura lateral
a _w	distância entre reforços transversais da alma (m)
V _{b.w.Rd}	valor de cálculo da contribuição da alma para a resistência à encurvadura por esforço transverso (kN)
V _{b.f.Rd}	valor de cálculo da contribuição dos banzos para a resistência à encurvadura por esforço transverso (kN)
Χw	coeficiente de redução para a encurvadura por esforço transverso
$M_{f.Rd}$	valor de cálculo do momento fletor resistente da secção transversal constituída apenas pelas áreas efetivas dos banzos (kN.m)
M _{N.f.Rd}	valor de cálculo do momento fletor resistente da secção transversal constituída apenas pelas áreas efetivas dos banzos, reduzido pela presença de um esforço normal N _{Ed} (kN.m)
V _{b.Rd}	valor de cálculo da resistência à encurvadura por esforço transverso
N _{cr.y}	valor critico do estorço normal associado à encurvadura elástica por flexão em torno do eixo y (kN)
N _{cr.z}	valor crítico do estorço normal associado à encurvadura elástica por flexão em torno do eixo z (kN)
N _{cr.T}	vaior critico do estorço normai associado a encurvadura elastica por torção (KN)
C _{mz}	coeficiente de momento uniforme equivalente
A	área efetiva de uma seccão transversal (cm ²)
W _{v.eff} s	módulo de flexão efetivo em relação ao eixo y, relativo à fibra superior da secção transversal (cm ³)
W _{y.eff.i}	módulo de flexão efetivo em relação ao eixo y, relativo à fibra inferior da secção transversal (cm ³)
W _{z.eff.DIR}	módulo de flexão efetivo em relação ao eixo z, relativo à fibra extrema esquerda da secção transversal (cm ³)
W _{z.eff.ESQ}	módulo de flexão efetivo em relação ao eixo z, relativo à fibra extrema direita da secção transversal (cm ³)
e _{Nz}	afastamento entre os centros de gravidade das áreas das secções efetiva (A _{eff}) e bruta (A), segundo o eixo z (mm)
Δ _{My}	valor de cálculo do momento adicional atuante devido ao afastamento e _{NZ (KN m})
e _{Ny}	afastamento entre os centros de gravidade das áreas das secções efetiva (A _{eff}) e bruta (A), segundo o eixo y (mm)

Anexo B

Peças desenhadas do Projeto de Arquitetura

Peças desenhadas do projeto de arquitetura do Edifício 2 do Estaleiro de Moçambique, apresentado no Capítulo 5 deste documento:

- Planta do Piso 0;
- Planta do Piso 1;
- Planta da Cobertura;
- Perfis A, B, C, D;
- Perfis E, F, G.

Anexo C

Combinações de Ações ELU

Combinações de ações para situações de projeto persistentes ou transitórias (combinações fundamentais) consideradas para verificação aos ELU do caso estudado no Capítulo 5 deste documento. São geradas de acordo com o disposto na secção 6.4.3.2 do regulamento NP EN 1990 [4].

Nº	γg	$\mathbf{G}_{\mathbf{k}}$	+	γq	x	ψ0	Qk	+	γq	x	ψ0	W_{k1}	+	γq	x	Ψ0	W_{k2}	+	γq	x	ψ0	W _{k3}	+	γq	x	ψ0	W _{k4}
Ca	rgas Po	erma	nen	tes G	k:																						
1	1,35	G_k	+	0	x	1	Q_k	+	0	X	0	\mathbf{W}_{k1}	+	0	X	0	W_{k2}	+	0	x	0	W_{k3}	+	0	x	0	W_{k4}
Aç	ão Vai	riáve	l de	Base	- 5	Sobr	ecar	ga	Q _k (-	+ W	∕ _k fav	vorávo	el):														
2	1,35	G_k	+	1,50	x	1	\mathbf{Q}_k	+	0	X	0	\mathbf{W}_{k1}	+	0	X	0	W_{k2}	+	0	x	0	W_{k3}	+	0	x	0	W _{k4}
3	1,00	G_k	+	1,50	x	1	\mathbf{Q}_k	+	0	X	0	\mathbf{W}_{k1}	+	0	X	0	\mathbf{W}_{k2}	+	0	x	0	W_{k3}	+	0	x	0	W_{k4}
Αç	ão Vai	riáve	l de	Base	- 5	Sobr	ecar	ga	Q _k (-	⊦W	_{k1} de	sfavo	ráv	el):													
4	1,35	G_k	+	1,50	x	1	\mathbf{Q}_k	+	1,5	X	0,6	\mathbf{W}_{k1}	+	0	X	0	W_{k2}	+	0	x	0	W_{k3}	+	0	x	0	W_{k4}
5	1,00	G_k	+	1,50	x	1	\mathbf{Q}_k	+	1,5	X	0,6	\mathbf{W}_{k1}	+	0	X	0	\mathbf{W}_{k2}	+	0	x	0	\mathbf{W}_{k3}	+	0	x	0	W_{k4}
Aç	ão Vai	riáve	l de	Base	- 5	Sobr	ecar	ga	Q _k (-	⊦W	_{k2} de	sfavo	ráv	el):													
6	1,35	G_k	+	1,50	x	1	\mathbf{Q}_k	+	0	X	0	\mathbf{W}_{k1}	+	1,5	X	0,6	W_{k2}	+	0	x	0	W_{k3}	+	0	x	0	W_{k4}
7	1,00	G_k	+	1,50	x	1	\mathbf{Q}_k	+	0	X	0	\mathbf{W}_{k1}	+	1,5	X	0,6	W_{k2}	+	0	x	0	W_{k3}	+	0	x	0	W_{k4}
Aç	ão Vai	riáve	l de	Base	- 5	Sobr	ecar	ga	Q _k (-	⊦W	_{k3} de	sfavo	ráv	el):													
8	1,35	G_k	+	1,50	x	1	\mathbf{Q}_k	+	0	x	0	\mathbf{W}_{k1}	+	0	X	0	\mathbf{W}_{k2}	+	1,5	x	0,6	W_{k3}	+	0	x	0	W_{k4}
9	1,00	G_k	+	1,50	X	1	\mathbf{Q}_k	+	0	X	0	\mathbf{W}_{k1}	+	0	X	0	W_{k2}	+	1,5	x	0,6	W_{k3}	+	0	x	0	W_{k4}
Aç	ão Vai	riáve	l de	Base	- 5	Sobr	ecar	ga	Q _k (-	⊦W	_{k4} de	sfavo	ráv	el):													
10	1,35	G_k	+	1,50	x	1	\mathbf{Q}_k	+	0	x	0	\mathbf{W}_{k1}	+	0	X	0	\mathbf{W}_{k2}	+	0	x	0	W_{k3}	+	1,5	x	0,6	W_{k4}
11	1,00	G_k	+	1,50	X	1	\mathbf{Q}_k	+	0	X	0	\mathbf{W}_{k1}	+	0	X	0	W_{k2}	+	0	x	0	W_{k3}	+	1,5	x	0,6	W_{k4}
Αç	ão Vai	riáve	l de	Base	_`	Vent	to Qi	c1:																			
12	1,35	G_k	+	1,50	x	0	\mathbf{Q}_k	+	1,5	x	1	\mathbf{W}_{k1}	+	0	X	0	\mathbf{W}_{k2}	+	0	x	0	W_{k3}	+	0	x	0	W_{k4}
13	1,00	G_k	+	1,50	X	0	\mathbf{Q}_k	+	1,5	X	1	\mathbf{W}_{k1}	+	0	X	0	W_{k2}	+	0	x	0	W_{k3}	+	0	x	0	W_{k4}
Aç	ão Vai	riáve	l de	Base	_	Ven	to Q	k2:																			
14	1,35	G_k	+	1,50	x	0	\mathbf{Q}_k	+	0	x	0	\mathbf{W}_{k1}	+	1,5	X	1	\mathbf{W}_{k2}	+	0	x	0	W_{k3}	+	0	x	0	W_{k4}
15	1,00	G_k	+	1,50	X	0	\mathbf{Q}_k	+	0	X	0	\mathbf{W}_{k1}	+	1,5	X	1	W_{k2}	+	0	x	0	W_{k3}	+	0	x	0	W_{k4}
Aç	ão Vai	riáve	l de	Base	_	Ven	to Q	k3:																			
16	1,35	G_k	+	1,50	x	0	\mathbf{Q}_k	+	0	x	0	\mathbf{W}_{k1}	+	0	X	0	W_{k2}	+	1,5	x	1	W_{k3}	+	0	x	0	W_{k4}
17	1,00	G_k	+	1,50	x	0	\mathbf{Q}_k	+	0	x	0	\mathbf{W}_{k1}	+	0	X	0	W_{k2}	+	1,5	x	1	W_{k3}	+	0	x	0	W_{k4}
Aç	ão Vai	riáve	l de	Base	_	Ven	to Q	k4:																			
18	1,35	G_k	+	1,50	х	0	\mathbf{Q}_k	+	0	x	0	W_{k1}	+	0	x	0	W_{k2}	+	0	x	0	W_{k3}	+	1,5	x	1	W_{k4}
19	1,00	G_k	+	1,50	x	0	\mathbf{Q}_k	+	0	x	0	W_{k1}	+	0	x	0	W_{k2}	+	0	x	0	W_{k3}	+	1,5	x	1	W_{k4}

Quadro C.1 - Combinações de Ações ELU referentes ao caso de estudo apresentado no Capítulo 5.
Verificação aos ELU do Pilar A

Verificação aos ELU do Pilar A do Pórtico 2, de acordo com a secção 5.5 deste documento.

- **D.1** Interfaces da ferramenta *AciariUM* utilizada para verificação de segurança aos ELU do Pilar A do Pórtico 2.
- **D.2** Relatório de cálculo exportado a partir da ferramenta *AciariUM* relativo à verificação aos ELU do Pilar do Pórtico 2.
- **D.3** Relatório de cálculo exportado a partir do programa *Robot Structural Analysis* relativo à verificação aos ELU do Pilar do Pórtico 2.
- **D.4** Relatório de cálculo exportado a partir do programa *CYPE 3D* relativo à verificação aos ELU do Pilar do Pórtico 2.

Verificação aos ELU do Pilar A

Verificação aos ELU do Pilar A do Pórtico 2, de acordo com a secção 5.5 deste documento.

Anexo D.1

Interfaces da ferramenta *AciariUM* utilizada para verificação de segurança aos ELU do Pilar A do Pórtico 2.

[]_Acia	ariUM	INT	ERFAC	CE I. S	ECÇÃC	TRAN	ISVER	SAL E	PROP	RIEDA	DES D	O MA	TERIA	L														MOD	JLO DE C	ÁLCULO:	сом	IERCIAL
DESIG	NAÇÃO		DIMENS	ÕES PRI		DA SECÇÎ	ÃO TRAI	NSVERS/	AL.	Α	(G	DIMEN	ões co	MPLEME	NTARES	6	EIXO F	PRINCIPA	AL DE INE	ÉRCIA Y			EIXO F	PRINCIPA	L DE INÉ	RCIA Z					
HE A	340	h mm	bs mm	bi mm	tv mm	t₅ mm	ti mm	rs mm	n mm	A cm ²	Zcg mm	yca mm	hi mm	d mm	CS₂ mm	CSi mm	ly cm ⁴	Wy.sup cm ³	Wyini cm ³	WpLy cm ³	iy cm	Av2 cm ²	l2 cm ⁴	Wz.sup cm ³	Wzini cm ³	WpLz cm ³	iz cm	Avy cm ²	IT cm ⁴	lw x 10 ⁻⁵		3
$\mathbf{f}_{\mathbf{y}[MPa]}$	275	330	300	300	9,5	16,5	16,5	27	27	133,5	165	150	297	243	0	0	27693	1678	1678	1850	14,4	44,95	7436	495,7	495,7	755,9	7,464	105,3	127,2	1824		0,92
F		IÓDUL	O MAN	IUAL 1	DEFINIÇÃO) MANUA	AL DAS DI	MENSÕE	S DA SECÇ	ÃO TRAN	VERSAL							INFC	0 🕗		r	_		b		-		TIPO DI	PERFIL	Lami	nado	
	-				D	IMENSÕE	S PRINCI	PAIS REC	OLHIDAS	DO AUTOE	ESK ROE	от	Α		G	DIME	NSÕES CO	MPLEME	NTARES					_		ts +z						
		SECÇÃO	TIPOD	E PERFIL	h	b _s	bi	tw	ts	ti	rs	r,	A	z _{cg}	Ycs	hi	d	cs _s	csi					- (Ľ				CORDÕ	ES DE SO	LDADURA	<i>.</i>	
	<u>\</u> -				mm	mm	mm	mm	mm	mm	mm	mm	cm*	mm	mm	mm	mm	mm	mm				-	+ t,	,			NÃO EX	ISTEM C	ORDÕES	DE	
-	- \	HE A 34	e Pertil I	aminado	330	300	500	9,5	16,5	16,5	27	27	133,5	165,0	150,0	297	243	0,00	0,00	1	h hid				У			JOLDA	/011A.			
		IÓDUL	O ROB	OT STR	UCTUR	AL ANA	ALYSIS	RECEBE	R PROPRI	EDADES D	A SECÇÃ	O TRANSV	ERSAL A	PARTIR D	O ROBOT	SA		INFC	D 🕗										1	BANZO		
ELEN	ENTO				D	IMENSÕE	S PRINCI	PAIS REC	OLHIDAS	DO AUTOE	ESK ROE	от	Α	0	G	DIME	NSÕES CO	MPLEME	NTARES	1	rcs	h	J	C					ALMA	Ċ		
NO.	L	SECÇÃO	TIPOD	E PERFIL	h	bs	b	tw	ts	ti	rs	r,	A	z _{cg}	Ycg	hi	d	css	csi							ti .z						
	m				mm	mm	mm	mm	mm	mm	mm	mm	cm ²	mm	mm	mm	mm	mm	mm					bi		1						
27	2,91	HEA 34	0 Perfil I	aminado	330	300	300	9,5	16,5	16,5	27	27	133,5	165,0	150,0	297	243,0	0,00	0,00													
CLAS		0	ACO DA	CLASSE	\$275]					E	2	10	GPa	α	1.2	0E-06	/ĸ			- 1					Vuo	[1.00				
CONS	ITUINTE	DO	6.	275				PROPF	REDADES	5	6		77	CDa		-,-	250	Kalm ³		Redefi	nir		COEFIC					1.00			Redefi	inir
EL	EMENTO		iy	2/5	IMPa			DO M	ATERIAL		0	00	,//	GPa	Gm		000	Kg/III		NP EN 199	3-1-1		SEGU	RANÇA		YM1		1,00			NP EN 199	93-1-1
ESI	RUTUKA	L	fu	430	MPa						v	0	,3		η	1	,20									Ү м2		1,25				
																								Prof.	oão M. M. Eira Isabel Valente	×	\bigcirc	Universida Escola da E	de do Min	ho 🧹		SAIS

Figura D.1 – Interface I. Secção transversal e propriedades do material: Pilar A do Pórtico 2.

[]_Acia		INTE	RFAC	e II. c	ONDI	ÇÕES I	DE APO	010, Т	RAVA	MENT	O E SC	DLICIT	AÇÃO	DO EL	EMEN	ITO ES	TRUT	JRAL										MODU	LO DE C	ÁLCULO:	ROBOT
DESIG	NAÇÃO	l.	DIMENS	ÕES PRIM		DA SECÇÂ	O TRAN	SVERSA	L	Α	o	G	DIMENS	ões coi	MPLEME	NTARES		EIXO F	PRINCIPA	L DE INÉ	RCIA Y			EIXO F	RINCIPA		ÉRCIA Z				
HE A	340	h	bs	bi	tv	ts	ti	rs mm	n	A m ²	Zcg	уса	hi	d	CSs	CSi	ly 4	W _{3.sup}	W ₃ inf	Wply	iy cm	Avz	lz	Wz.sup	Wzini	Wplz	iz cm	Aug 2	Iт 4	lv x 10 ⁻⁵	з
f _{y [MPa]}	275	330	300	300	9,5	16,5	16,5	27	27	133,5	165	150	297	243	0	0	27693	1678	1678	1850	14,4	44,95	7436	495,7	495,7	755,9	7,464	105,3	127,2	1824	0,92
	<u>р</u> мо	ÓDULO	MANU	JAL I	NTRODUÇ	ÃO MAN	UAL DO V	ALOR DE	CÁLCUL	D DOS ESF	ORÇOS A	TUANTE	5 NA SECÇ	ão a ver	RIFICAR E	DOS PAR	ÂMETROS	GEOMÉ	TRICOS QI	UE CARAC	TERIZAN	1 O SISTEN	/IA ESTRU	JTURAL				INFO (? 0	OCULTAR /	MOSTRAR
•	🛴 м	ÓDULO	ROBO	T STRU	ICTURA		YSIS	RECEBE	R VALORI	S DIRETAI	MENTE DE	UM FIC	HEIRO DO	AUTODE	SK ROBO	T STRUCT	URAL AN/	ALYSIS AE	BERTO NE	STE COMP	PUTADO	1						INFO 🤇	2 0	OCULTAR /	MOSTRAR 🔽
IDENT	FICAÇÃO	DA SE	ÇÃO A	VERIFIC	AR	BARR	ANO.	27		CASO CA	RGA NO.	10		CON	VIB 2			POSIÇÃO) SECÇÃO	1,0	xL =	2,90	m	NOME	SECÇÃO	HEA	\340	L [EL.B	ARRA]	2,9	0 m
SOLICI	TAÇÃO I	IA SECÇ	ÃO CON	DICION	ANTE	N _{Ed}	459	9,15	kN	M _{Ed.y}	-418	3,84	kN.m	V _{Ed.z}	-143	3,93	kN	$\mathbf{M}_{\mathrm{Ed.z}}$	-0,	44	kN.m	V _{Ed.y}	-0,	,15	kN.m		FL	EXÃO COM	IPOSTA	DESVIADA	
PARÂN	IETROS	GEOMÉ	TRICOS	DO ELEM	ENTO	COMPRI	MENTO	L	2,90	m	COMPRI	MENTOS	DE ENCUR	VADURA	L cr.y	7,00	m	L cr.z	2,90	m	COMPR	RIMENTOS	ENTRE SI	ECÇÕES CO	ONTRAVEN	ITADAS	l _{sup}	2,90	m	l _{inf}	2,90 m
0	м	ÓDULO	AUTO	MÁTIC	0 ма	DELAÇÃO	DAS CO	NDIÇÕES	DE APOI	D E SOLICI	TAÇÃO D	O ELEME	NTO ESTR	UTURALI	PARA CÁL	CULO AU	TOMÁTIC	O DOS P/	ARÂMETR	OS CORRI	ESPONDE	ENTES PEL	A FERRAI	MENTA				INFO (2 0	OCULTAR /	MOSTRAR 🔲
																								J Prof. Eng	oão M. M. Eira Isabel Valente .º Miguel Pires	*	\bigcirc	Universidad Escola de En	e do Mini Igenharia	ho <	

Figura D.2 – Interface II. Condições de apoio, travamento e solicitação do elemento estrutural: Pilar A do Pórtico 2.

Figura D.3 - Interface III. Resistência da secção transversal (ELU): Pilar A do Pórtico 2.

DESIGNAÇÃO DIMENSÕES PRINCIPAIS DA SECÇÃO TRANSVERSAL A CG DIMENSÕES COMPLEMENTARES EIXO PRINCIPAL DE INÉRCIA Y EIXO PRINCIPA	L DE INÉRCIA Z
HE A 340 h b ₁ t _ν t	W _{plz} iz A _{vg} Iτ Iv x 10 ⁻³ ε
f _(loga) 275 303 300 010 17 17 27 27 133,5 155 150 297 243 0 0 27593 1678 1450 1436 495,7 495,7	755,9 7,464 105,3 127,2 1824 0,92
SOLICITAÇÃO NA SECÇÃO CONDICIONANTE N _{Ed} 459,15 kn V _{Ed.z} -143,93 kn M _{Ed.y} -418,84 kn.m V _{Ed.y} -0,15 kn M _{Ed.z} -0,44 kn.m	CLASSE 1
	NP EN 1993-1-1. 6.3.1.1(3)
N. 7 3144.66 M. OK 14.6% L. 700 & 0.56 g. 0.34 d. 0.72 Y. 0.96	
B. VERIFICAÇÃO À ENCURVADURA EM TORNO DO EIXO Z (VAREJAMENTO)	NP EN 1993-1-1. 6.3.1.1(3)
$N_{b z.Rd} \qquad 3197,11 kN \qquad OK \qquad 14,4\% \qquad L_{cr,z} \qquad 2,91 \lambda_z \qquad 0,45 \alpha_z \qquad 0,49 \varphi_z \qquad 0,66 \chi_z \qquad 0,87$	
C. VERIFICAÇÃO À ENCURVADURA LATERAL (BAMBEAMENTO)	NP EN 1993-1-1. 6.3.2
DETERMINAÇÃO DO VALOR DO MOMENTO CRÍTICO (M _{CII}) PARA A ENCURVADURA LATERAL - PROPOSTA DE CLARK AND HILL (1960) E GALÉA (1981):	AUTO MODE
\sim \sim Cálculo Automático do Valor de M _{GR} \sim \sim E I $\left[\left(L_{1}^{2} \right)^{2} L_{1}^{2} \left(L_{1}^{2} \right)^{2} G L_{T}^{2} \left(L_{1}^{2} \right)^{2} \left(L_{1}^{2} \right$	
$M_{cr} = C_1 \frac{\pi L_{1z}}{(k_z)^2} \left \left \frac{k_z}{k_w} \right \frac{T_w + (k_z T) C_1 T_1}{T_z} + (C_{2zg} - C_{3zj})^2 - (C_{2zg} - C_{3zj})^2 \right = 5940,69 \text{ kN.m}$	PROPOSTOS M ^E _{CR} 3162 kN.m
C_ 1.88 C_ 0.00 C_ 0.94 BANZO COMPRIMIDO: INFERIO	zj 0 m
REDEFINIR VALORES X FATORES COMPRIMENTO EFETTVO DETERMINAR	β 0,5 hg 313,5 mm
FORMA DO DIAGRAMA DE MOMENTOS k _x 1,00 k _w 2,00	BANZO COMPRIMIDO:
	INFERIOR I _{fc} 3713 cm ⁴
Unitranice in the security of	SUPERIOR Int 3713 cm4
M _{by,Rd} 498,29 kN.m OK 84% M _{CR} 5941 kN.m M ⁴ _{CR} 3162 kN.m λ _t 0,29 α _t 0,21 φ _t 0,55 χ _t 0,98	
D. VERIFICAÇÃO À ENCURVADURA POR ESFORCO TRANSVERSO [ENFUNAMENTO]	NP EN 1993-1-1. Anexo A
ESFORÇO TRANSVERSO RESISTENTE PLÁSTICO (ELU) V _{pl,Rd} 713,68 kN OK NPEN1993-1-1 (6.2.6) com s 925,238 cm ³	EXT. INT. EXT.
ALMA NÃO REFORÇADA h _w /t _w 31,26 < 72/η ε 55,46 — Não há necesidade de existirem reforços transversais!	
REFORÇOS TRANSVERSAIS EXTEMUADE Não RÍGIDOS INTERMÉDIOS Não a _u (m) - L(m) 2,91 OTMIZAR REFORÇOS TRANSVERSAIS	
REPORÇOS LONGITUDINAIS Nao Arredondamento a multiplos de som	
ALMA REFORÇADA h_w/t_w 31.26 < 31./1 $\epsilon \sqrt{k_{\pm}}$ - Não ha necesidade de verificar a chapa em relação a resistência a encurvadura por esforço transverso	
VERIFICAÇÃO DA CHAPA EM RELAÇÃO A RESISTENCIA A ENCURVADURA POR ESFORÇO TRANSVERSO V	NOTAS E CHAMADAS DE ATENÇÃO
	O mátede de sálavile de vales de V/bRd á
Cr(Mar) Cr(Mar)	válido se existirem reforços transversais pelo
λ _w - A [m2] 133,47 conversion BANZO INFERIOR 300 16,5 118,25 1,00 0,43 0,416 ≤ 0,748 → 1,000 118,25 300,00	menos nos apoios.
Zegimi 105 a. max - 2152	
G(MAP) 283,96 constitution april 26,00 Mar 405.79 Mar 327.35	RESTRIÇÕES DE VALIDADE:
Urona - 0.758 pelas areas delivas l _{aper} teniz 24347 reve	Reforços transversais rígidos.
E.N.(mm) 167.7 Wyger 14/5,6 by 300 tr 16,5 C -	inexistencia de retorços iongitudinais.
Jols M. M. En Port labol Vietnet	Universidade do Minho Escola de Engenharia
cy, wykr res	

Figura D.4 – Interface IV. Fenómenos de Encurvadura: Pilar A do Pórtico 2.

	INTE	RFACI	V. A	NÁLIS	SE DA I	ESTABIL	DADE	GLOBAL	DE ELE	MEN	TOS EN	1 FLEXÃO	COMP	OSTA	сом с	OMP	RESSÃ	D										
DESIGNAÇÃO	1	DIMENSÕ	ES PRIN	ICIPAIS I	DA SECÇÂ	O TRANSV	RSAL	А	с	G	DIMENS	ÕES COMPLE	MENTARE	s	EIXO F	RINCIPA	L DE INÉ	RCIA Y			EIXO F	RINCIPA	L DE INÉ	RCIA Z				
HE A 340 f _{y [MPa]} 275	h mm 330	b₅ mm 300	bi mm 300	t⊽ mm 9,5	t₅ mm 16,5	ti mm r 16,5	rs n nm mr 27 21	A cm ² 133,5	zca mm 165	ycs mm 150	hi mm 297	d cs mm mr 243 0	: CSi n mm O	lı cm ⁴ 27693	W _{3,sup} cm ³ 1678	Wyini cm ³ 1678	W _{ply} cm ³ 1850	i, cm 14,4	Av2 cm ² 44,95	l₂ cm ⁴ 7436	W _{2,гир} cm ³ 495,7	W _{2,inf} cm ³ 495,7	W _{pl2} cm ³ 755,9	i₂ cm 7,464	Awy Ir cm ² cm ² 105,3 127	lw x 10 ⁻³ * cm ⁶ ,2 1824		ε 0,92
SOLICITAÇÃO	NA SECÇ	ÃO CON	DICION	ANTE	N _{Ed}	459,1	kN	V _{Ed,z}	-143	3,93	kN	M _{Ed,y}	418,84	kN.m	$V_{\text{Ed},\gamma}$	-0,	,15	kN	M _{Ed,z}	-0,	44	kN.m				c	LASSE	1
ENCURVAD	URA TE	NDO EI		ΙΤΑ Α Ι	NTERA	ÃO ENTR	E COM	RESSÃO	E FLEXÃ	O MÉ	TODO AL	TERNATIVO	1 - NP EN	1993-1-1	ANEXO	A										NP EN 19	93-1-1. A	nexo A
PARÂMETRO	S ENCUR	VADURA		L _{cr,y}	7,00	L _{cr,z} 2	91 L	2,91		λ_{γ}	0,56	λ _z 0,4	5 λ _{ιτ}	0,293		Xγ	0,86	Χz	0,87	XLT	0,98							
ESFORÇOS N	ORMAIS	CRÍTICOS		N _{cr,y}	11714	kN N	cr,z 181	99 kN	N _{cr,T}	20870	kN		FA	TORES	uγ	0,99	uz	1,00	wy	1,10	Wz	1,50	n _{pl}	0,13	λ _{max} 0,5	6		
COEFICIENT	S DE MO	OMENTO	UNIFO	RME EQ VALORE DRES DE	UIVALEN S DE Cmy. Cmy.0 e Cn	ITE / N) e Cmz.0 12.0	ME	3162	kN.m	C1	1,88	λ ₀ 0,4	0 > 0,	$2\sqrt{C_1}^4$	$\left(1-\frac{N_1}{N_c}\right)$	$\frac{d}{r,z} \left(1 - \frac{d}{r,z}\right)$	N _{Ed} N _{cr,TF}	$\overline{)} \Rightarrow $	C _{my} C _{mz} C _{mLT}	0,94 0,79 1,00	← ←	C _{my,0} C _{mz,0}	0,79 0,79	4				
Cmy,0		MODULO CÁLCUL AUTOMÁI	DE D ICO	Rede Parâm	finir etros	QUADRO A.: OPÇÃO LINH	NPEN1993 A Nº 1	-1-1 DIAGE	AMA DE	MOMEN 1 ≤ ψ ≤ 1	ITOS FLET	ORES M _{Ed,y} E	NTRE SECC	:ÕES LATE + 0,21ψ _i ·	RALMEN + 0,36(ψ _i	$-0,33)\frac{1}{1}$	RAVENTI N _{Ed} N _{er.i}	ADAS:	ψ _γ ε _γ	0,00 7,25	$\delta_y \\ M_{Edy}$	•	mm KN.m	VALOR I O PAR	PROPOSTO PAR RÂMETRO Cm40	^{:A} C _{my,0}	0,79	0,79
Cmz,0		Modulo cálcul Automát	DE D ICO	Rede Parâm	finir etros	QUADRO A.: OPÇÃO LINH	NPEN1993 A Nº 1	-1-1 DIAGE	AMA DE	MOMEN 1 ≤ ψ ≤ 1	ITOS FLET	ORES M _{Ed,z} El	NTRE SECÇ _{mi,0} = 0,79	:ÕES LATE + 0,21ψ _i	RALMEN + 0,36(ψ	TE CONT i – 0,33)	RAVENTA N _{Ed} N _{er.i}	ADAS:	ψ2 ε2	0,00	δ_z M_{Edz}	-	mm KN.m	VALOR I O PAR	PROPOSTO PAR RÂMETRO Cmz,0	A C _{mz,0}	0,79	0,79
FATORES	a _{LT}	1,00	b _{LT}	0,00	CLT	0,28	I _{LT} 0,0	1 e _{LT}	4,31				FA	TORES	C _{vv}	1,01	C _{yz}	0,96	Czy	0,99	Czz	0,82						
FATORES DE	INTERA	ÃO	k _{yy}	0,96	k _{yz}	0,58	ε _{εγ} 0,5	1 k ₂₂	0,98																			
CONDIÇÃO A NP EN 1993-1-:	. SSOCIAE . 6.3.3(4) E	DA À ENC XP 6.61	JRVAD	URA EN	I TORNO	DEY	$\frac{N_{\rm F}}{\chi_{\rm y} N_{\rm Rk}}$	$\frac{d}{\gamma_{M1}} + k_y$	$\frac{M_{y,Ed}}{\chi_{LT}M}$	+ ΔM_y $I_{y,Rk}/\gamma_N$. <u>Ed</u> + k _{yz}	$\frac{M_{z,Ed} + \Delta N}{M_{z,Rk}/\gamma_j}$	1 _{z,Ed}	-	0,96	<	1,0	ОК	96%									
CONDIÇÃO A NP EN 1993-1-	SSOCIAE 6.3.3(4) E	DA A ENC XP 6.62	JRVAD	URA EN	1 TORNO	DE Z	$\frac{1N_E}{\chi_y N_{Rk}}$	$\frac{d}{\gamma_{M1}} + k_z$	$\frac{M_{y,Ed}}{\chi_{LT}M}$	$\gamma_{\rm y,Rk}/\gamma_{\rm N}$	$\frac{Ed}{41}$ + k _{zz}	$M_{z,Ed} + \Delta N$ $M_{z,Rk}/\gamma_1$	1 <u>z,Ed</u> : 41	=	0,57	<	1,0	ОК	57%									
																					Prof. Eng	oão M. M. Eira Isabel Valente L ^e Miguel Pires	*	\bigcirc	Universidade do I Escola de Engenha	Vinho aria		SAIS

Figura D.5 – Interface V. Análise de estabilidade global de elementos em flexão composta com compressão: Pilar A do Pórtico 2.

Verificação aos ELU do Pilar A

Verificação aos ELU do Pilar A do Pórtico 2, de acordo com a secção 5.5 deste documento.

Anexo D.2

Relatório de cálculo exportado a partir da ferramenta *AciariUM* relativo à verificação aos ELU do Pilar A do Pórtico 2.

João M. M. Eira AciariUM **INTERFACE VI. RELATÓRIO FINAL DE SEGURANÇA** Prof. Isabel Valente Eng.º Miguel Pires O ELEMENTO SUJEITO A FLEXÃO COMPOSTA DESVIADA E CONSTITUIDO PELO PERFIL TRANSVERSAL HEA 340 5275 (SECÇÃO DA CLASSE 1)

ОК 96% VERIFICA TODAS AS CONDIÇÕES DE SEGURANÇA. DIMENSÕES PRINCIPAIS DA SECÇÃO TRANSVERSAL DIMENSÕES COMPLEMENTARES DESIGNAÇÃO PROPRIEDADES bi А d F h bs tw ts ti rs ri ZCG усg hi CSs CSi ν η 340 HE A GPa mm mm mm mm mm mm mm mm cm² mm mm mm mm mm mm f_{y [MPa]} 0 0 275 330 300 300 9.5 16.5 16.5 27 27 133.47 165 150 297 243 210 0.3 1.2 b. CLASSE DE RESISTÊNCIA FIXO PRINCIPAL DE INÉRCIA TIPO DE PERFIL: LAMINADO ts +2 Wy.sup Wy.inf Wpl.y Avz ACO DA CLASSE \$275 ly İy r. cm³ cm³ 235 cm⁴ cm³ cm² fv MPa cm t, 27693 1678,3 1678,3 1850,5 14,404 44,95 0,92 fu 360 MPa EIXO PRINCIPAL DE INÉRCIA Z n ١z Wz.sup Wz.inf Wpl.z İz Avy Iт lw x 10⁻¹ γмо 1.00 cm³ cm³ cm⁶ 1,00 cm cm³ cm cm cm **γ**M1 7435,5 495,7 495,7 755,95 7,4638 105,26 127,2 1824,4 1,25 **γ**M2 SOLICITAÇÃO NA SECÇÃO 459,15 -418,84 kN -143.93 kN.m -0.44 -0.15 kN.m NEd kΝ MEd.v VEd.z MEd.z kΝ VEd.v

Universidade do Minho

Escola de Engenharia

CASAIS

CLASSE

SECCÃO BISSIMÉTRICA

NP FN 1993-1-1, 6.2

NP EN 1993-1-1 6.2.10

1

CLASSIFICAÇÃO DA SECÇÃO

A secção HEA 340 sujeita a Flexão Composta Desviada é da Classe 1.

III. RESISTÊNCIA DA SECÇÃO TRANSVERSAL AOS ESTADOS LIMITES ÚLTIMOS (ELU)

RESISTÊNCIA DA SECO	ÃO TRANS	SVERSAL A ESF	ORÇOS SI	MPLES			
Tração	N _{t,Rd}	3670,50	kN	ОК	0%	NPEN1993-1-1 (6.2.3)	
Compressão	$N_{c,Rd}$	3670,50	kN	ОК	13%	NPEN1993-1-1 (6.2.4)	
Esforço Transverso	$V_{z.Rd}$	713,68	kN	ОК	20%	NPEN1993-1-1 (6.2.6)	com S _y 925,24 cm ³
Momento Fletor	M _{y.Rd}	508,88	kN.m	ОК	82%	NPEN1993-1-1 (6.2.5)	
Esforço Transverso	V _{y.Rd}	1671,19	kN	ОК	0%	NPEN1993-1-1 (6.2.6)	com S _z 354,62 cm ³
Momento Fletor	$M_{z.Rd}$	207,89	kN.m	ОК	0%	NPEN1993-1-1 (6.2.5)	

AVALIAÇÃO DA NECESSIDADE DA CONSIDERAÇÃO DO EFEITO DO ESFORCO TRANSVERSO NO CÁLCULO DOS ESFORÇOS RESISTENTES DEFINIDOS PARA A FLEXÃO COMPOSTA

INTERAÇÃO [M + V] ESFORÇO DE FLEXÃO COM ESFORÇO TRANSVERSO	ES TRANSVERSAIS DAS CLASSES 1, 2, 3 OU 4] NP EN 1993-1-1. 6.2.8
Não é necessário ter em conta a interação do esforço de corte [Vz] com o momento fletor resistente [MRd.y]	Não é necessário ter em conta a interação do esforço de corte [Vy] com o momento fletor resistente [MRd.z]
$ \begin{array}{ c c c c c c c c } \hline \textbf{MV}_{\textbf{y}.\text{Rd}}^{\text{sup}} & 508,88 & \text{kN.m} & \textbf{OK} & 82\% \\ \hline \textbf{MV}_{\textbf{y}.\text{Rd}}^{\text{inf}} & 508,88 & \text{kN.m} & \textbf{OK} & 82\% \\ \hline \textbf{MV}_{\textbf{y}.\text{Rd}}^{\text{inf}} & 508,88 & \text{kN.m} & \textbf{OK} & 82\% \\ \hline \end{array} $	$ \begin{array}{ c c c c c c c } \hline S & MV_{z,Rd}^{uup} & 207,89 & kN.m & OK & 0\% \\ \hline MV_{z,Rd}^{inf} & 207,89 & kN.m & OK & 0\% \\ \hline MV_{z,Rd}^{inf} & 207,89 & kN.m & OK & 0\% \\ \hline \end{array} \\ \end{array} \\ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
INTERAÇÃO [M + N + V] FLEXÃO COMPOSTA COM ESFORÇO TRANSVERSO	ES TRANSVERSAIS BISSIMÉTRICAS DAS CLASSES 1 OU 2] NP EN 1993-1-1. 6.2.9
É necessário ter em conta a interação do esforço axial [N] com o momento fletor resistente [MRd] em relação ao eixo y.	Não é necessário ter em conta a interação do esforço axial [N] com o momento fletor resistente [MRd] em relação ao eixo z, razão pela qual não efetuada qualquer reduzão desse
OF MNV Vy.Rd 475,96 kN.m OK 88% MNV.pl.y.Rd=MV.pl.y.Rd (l-n) V 0 <th>Of the set of the se</th>	Of the set of the se
Note: $M_{NV,pl,y,Rd} \le M_{pl,y,Rd}$ Com: $n = N_{Ed}/N_{pl,Rd}$ 0,13 $a = (A - A_{Pl,Rd})$	$2b_{t_f}$ /A mas $a \le 0.5$ 0.13 Note: $M_{NV.pl.z.Rd} = M_{V.pl.z.Rd}$ para $n \le a$
INTERAÇÃO $[M_v + M_z + N + v]$ flexão composta desviada com esforço transv	ERSO [SECÇÕES TRANSVERSAIS BISSIMÉTRICAS DA CLASSE 1 OU 2] NP EN 1993-1-1. 6.2.9
$\textbf{CRITÉRIO DE SEGURANÇA} \left[\frac{M_{y,Ed}}{MN_{pl,y,Rd}}\right]^{\alpha} + \left[\frac{M_{z,Ed}}{MN_{pl,z,Rd}}\right]^{\beta} \le 1,0 \textbf{0,78} < \textbf{1,00}$	ΟΚ 78% Com: α 2 β 1
IV. RESISTÊNCIA DO ELEMENTO A FENÓMENOS DE ENCURVADURA	
VERIFICAÇÃO À ENCURVADURA EM TORNO DO EIXO Y [VAREJAMENTO]	NP EN 1993-1-1. 6.3.1.1(3)
$\label{eq:kn} \begin{array}{ c c c c c c c } \hline N_{by,Rd} & 3144,66 & kN & \hline OK & 15\% & L_{cr,y} & \hline 7 & m & \lambda_{\gamma} & \hline 0,56 & \alpha_{\gamma} & \hline \end{array}$	0,34 φ _γ 0,72 χ _γ 0,86
VERIFICAÇÃO À ENCURVADURA EM TORNO DO EIXO Z [VAREJAMENTO]	NP EN 1993-1-1. 6.3.1.1(3)

Página 1 de 3

$\overline{\lambda_0} = \sqrt{\frac{W_{pl,y} f_y}{M_{cr}^e}} = 0,40 > 0,2\sqrt{C_l} \sqrt{\left(1 - \frac{N_{Ed}}{N_{cr,z}}\right) \left(1 - \frac{N_{Ed}}{N_{cr,TF}}\right)}$	= 0,27 \implies Cmy 0,00 Cmz 1,01 CmLT 0,00
FATORES a _{LT} 1,00 b _{LT} 0,00 c _{LT} 0,28 d _{LT} 0,00	P1 e _{LT} 4,31 FATORES C _{yy} 1,01 C _{yz} 0,96 C _{zy} 0,99 C _{zz} 0,82
FATORES DE INTERAÇÃO k _{yy} 0,96 k _{yz} 0,58 k _{zy} 0	0,51 k _{zz} 0,98
CONDIÇÃO ASSOCIADA À ENCURVADURA EM TORNO DE Y NP EN 1993-1-1 6.3.3(4) EXP 6.61	$\frac{N_{Ed}}{\chi_{y} N_{Rk}/\gamma_{M1}} + k_{yy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} M_{y,Rk}/\gamma_{M1}} + k_{yz} \frac{M_{z,Ed} + \Delta M_{z,Ed}}{M_{z,Rk}/\gamma_{M1}} = 0,96 < 1,0 \text{ or } 96\%$
CONDIÇÃO ASSOCIADA À ENCURVADURA EM TORNO DE Y NP EN 1993-1-1 6.3.3(4) EXP 6.61	$\frac{N_{Ed}}{\chi_v N_{Rk}/\gamma_{M1}} + k_{zy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} M_{y,Rk}/\gamma_{M1}} + k_{zz} \frac{M_{z,Ed} + \Delta M_{z,Ed}}{M_{z,Rk}/\gamma_{M1}} : = 0,57 < 1,0 \text{ OK } 57\%$

ANEXO I. NOTAÇÃO:

A	área da secção transversal (cm ²)
Z _{cg}	coordenada em z da posição do centro de gravidade da secção transversal (mm)
y _{cg}	coordenada em y da posição do centro de gravidade da secção transversal (mm)
I _(i)	momento de inércia da secção transersal em relação ao eixo (i) (cm⁴)
W _{y.sup}	módulo de flexão elástico em relação ao eixo y, relativo à fibra superior da secção transversal (cm ³)
W _{y.inf}	módulo de flexão elástico em relação ao eixo y, relativo à fibra inferior da secção transversal (cm ³)
W _{z.sup}	módulo de flexão elástico em relação ao eixo z, relativo à fibra extrema esquerda ou direita do banzo superior (cm 3)
W _{z.inf}	módulo de flexão elástico em relação ao eixo z, relativo à fibra extrema esquerda ou direita do banzo inferior (cm ³)
W _{pl.y}	módulo de flexão plástico da secção transversal (cm ³)
i _(i)	raio de giração da secção transversal relativo ao eixo (i) (cm)
A _{v.(i)}	área resistente aos esforço transverso V $_{(l)}$ (cm 2)
I _T	constante de torção de St. Venant (cm ⁴)
l _w	constante de empenamento (cm ⁶)
E	ածիպել de elasticidade (GPa)
Fagn	Coeficiente de Poisson em regime elástico

η	coeficiente para calcular a área de corte
f _y	tensão de cedência (MPa)
f _u	tensão última (MPa)
Υ Μ(i)	coeficientes parcias de segurança γ _{M0} , γ _{M1} , γ _{M2}
8	rator que depende de r _y
Muse	valor de cálculo do estorço normal atuante (kiv) valor de cálculo do momento fletor atuante, em relação ao eivo (i) (kN m)
V(i) Ed	valor de cálculo do momento netor atuante, em relação do enco (i) (kN)
N+ Rd	valor de cálculo do esforço normal resistente de tração (kN)
N _{c.Rd}	valor de cálculo do esforço normal resistente de compressão (kN)
M _{(i).Rd}	valor de cálculo do momento fletor resistente em relação ao eixo (i) (kN.m)
V _{(i).Rd}	valor de cálculo do esforço transverso resistente na direção (i) (kN)
A _{v.z}	área resistente ao esforço transverso Vz (cm ²)
A _{r.z}	área restante relativamente à área A_{vz} (A- A_{vz}) (cm ²)
A _{v.y}	área resistente ao esforço transverso V _y (cm ²)
A _{r.y}	(area restante relativamente à area Avy (A-Avy) (cm2)
ρ	coericiente de redução para determinar os valores de calculo dos momentos fletores resistentes, tendo em conta a interação com os estorços transversos
f' _y (A _{v.z})	tensad de cedencia reduzida adotada ina area resistente ao estor o transverso A _{vz} para tomar em consideração os ereitos da presença do estor o transverso v _z no calculo momento fietor resistente M _v , _a , - Abrevia-se em f ¹ (MPa)
	tensão de cedência reduzida adotada na área resistente ao esforço transverso A _w para tomar em consideração os efeitos da presença do esforço transverso V _v no cálculo do
т _у (А _{v.y})	resistente M _{V.z.Rd} - Abrevia-se em f' _{y.y} (MPa)
W sup el.y.A(i)	módulo de flexão elástico da área A(i) em relação ao eixo γ, relativo à fibra superior da secção transversal
W inf el.y.A(i)	módulo de flexão elástico da área A(i) em relação ao eixo y, relativo à fibra inferior da secção transversal
W sup el.z.A(i)	módulo de flexão elástico da área A(i) em relação ao eixo z, relativo à fibra extrema esquerda ou extrema direita do banzo superior da secção transversal
Wel.z.A(i)	módulo de flexão elástico da área A(i) em relação ao eixo z, relativo à fibra extrema esquerda ou extrema direita do banzo inferior da secção transversal
Weff.y.A(i)	modulo de flexao efetivo da area A(i) em relação ao eixo y, relativo à fibra superior da secção transversal
W eff.y.A(i)	mouno de nexao erenvo da area A(i) em relação ao eixo y, relativo à fibra interior da secção transversal
W eff.z.A(i)	miodulo de flexão efetivo da área A(i) em relação ao eixo z, relativo à fibra extrema esquerda ou extrema direita (caso mais desfavorável) do banzo superior da secção transversal
My pd	valor de cálculo do momento fletor resistente M. p. reduzido pela interação com o esforco transverso V. com relação à fibra superior da secção transversal (kN m)
My v Rd inf	valor de cálculo do momento fletor resistente M _{V,Rd} reduzido pela interação com o esforço transverso V ₂ , com relação à fibra inferior da secção transversal (kN.m)
v.y.nd iii	valor de cálculo do momento fletor resistente M _{z.Rd} reduzido pela interação com o esforço transverso V _v , com relação à fibra esquerda ou direita da secção transversal (a
IVI _{V.z.Rd} sup	mais desfavorável) do banzo superior (kN.m)
	valor de cálculo do momento fletor resistente M _{z.R} d reduzido pela interação com o esforço transverso V _y , com relação à fibra esquerda ou direita da secção transversal (a
V.2.Ru IIII	mais desfavorável) do banzo inferior (kN.m)
M _{NV.y.Rd}	valor de calculo do momento fletor resistente plastico $M_{pl,Rd}$ reduzido pelos esforços normal N_{ed} e transverso $V_{z,Ed}$ (kN.m)
IVI _{NV.z.Rd}	valor de cálculo do momento necor resistence plastico w _{plas} recuzido percessivos normal w_{ed} e transverso $v_{y,ed}$ (kn.m)
1 b.(i).Rd	valor de calculo do estor o norman estistence a eliculivadura en relação ao eixo (r) de un elemento comprimito (kiv)
$\frac{L_{cr.(i)}}{\lambda_{(i)}}$	esbleteza normalizada associada à encurvadura em relação ao eixo (i)
α(i)	fator de imperfeição para a encurvadura de elementos comprimidos associado à encurvadura em relação ao eixo (i)
Φ _(i)	valor para determinar o coeficiente de redução $\chi_{(i)}$
X(i)	coeficiente de redução para o modo de encurvadura em relação ao eixo (i)
M _{cr}	momento crítico de encurvadura lateral (kN.m)
M _{cr.E}	momento crítico elástico de encurvadura lateral (kN.m)
C _(i)	coeficientes C ₁ , C ₂ e C ₃ dependendentes da forma do diagrama de momentos fletores e das condições de apoio nas extremidades do tramo de comprimento / a analisar
<u>l</u>	comprimento entre secções lateralmente contraventadas no banzo considerado (m)
K _Z	lator de comprimento eleuvo referente as resurições a rotação em torno do exo 2 das secções de extremidade do tranto de comprimento r Estas do comprimento efetivo referente as restrições a rotação em torno do exo 2 das secções de extremidade do tranto de comprimento r
7	naco de complimiento electivo reference as restrições ao empenaniento das secções de extremadade do rando de complimiento r
-g Z:	contentado en la de porteción da companya en relação do centre da securida contentada (m)
M _{b.Rd}	valor de cálculo do momento fletor resistente à encurvadura lateral (kN.m)
λ_{LT}	esbelteza normalizada para a encurvadura lateral
α_{LT}	fator de imperfeição para a encurvadura lateral
φ _{lt}	valor para determinar o coeficiente de redução χ _{LT}
XLT	coeficiente de redução para a encurvadura lateral
a _w	distância entre reforços transversais da alma (m)
V _{b.w.Rd}	valor de cálculo da contribuição da alma para a resistência à encurvadura por estorço transverso (kN)
v b.f.Rd	valor de calculo da contribuição dos parazas para a resistencia a encurvadura por estorço transverso (KN) coeficiente de reducão nara a encurvadura nor esforco transverso
Xw Mc-	valor de cálculo do momento fletor resistente da sección transversal constituída anenas nelas áreas efetivas dos hanzos (kN m)
MN f.Rd	valor de cálculo do momento fletor resistente da secção transversal constituída apenas pelas áreas efetivas dos banzos, reduzido pela presenca de um esforco normal N_{e4} (kN.m)
V _{b.Rd}	valor de cálculo da resistência à encurvadura por esforço transverso
N _{cr.y}	valor crítico do esforço normal associado à encurvadura elástica por flexão em torno do eixo y (kN)
N _{cr.z}	valor crítico do esforço normal associado à encurvadura elástica por flexão em torno do eixo z (kN)
N _{cr.T}	valor crítico do esforço normal associado à encurvadura elástica por torção (kN)
C _{my}	coeficiente de momento uniforme equivalente
Cmz	coeficiente de momento uniforme equivalente
	coericiente de momento uniforme equivalente
A _{eff}	jarea etetiva de uma secção transversal (cm ⁻)
W	mouulo de nexao eletivo em relação ao eixo y, relativo à fibra inferior da secção transversal (CM ⁻)
W _{7 off DIP}	módulo de flexão efetivo em relação ao eixo z, relativo à fibra extrema esquerda da seccão transversal (cm ³)
W _{z.eff.FSO}	módulo de flexão efetivo em relação ao eixo z, relativo à fibra extrema direita da secção transversal (cm ³)
e _{Nz}	afastamento entre os centros de gravidade das áreas das secções efetiva (A _{eff}) e bruta (A), segundo o eixo z (mm)
Δ _{My}	valor de cálculo do momento adicional atuante devido ao afastamento e _{Nz (kN.m)}
e _{Ny}	afastamento entre os centros de gravidade das áreas das secções efetiva (A _{eff}) e bruta (A), segundo o eixo y (mm)
Δ _{Mz}	valor de cálculo do momento adicional atuante devido ao afastamento e _{Ny} (kN.m)

Verificação aos ELU do Pilar A

Verificação aos ELU do Pilar A do Pórtico 2, de acordo com a secção 5.5 deste documento.

Anexo D.3

Relatório de cálculo exportado a partir do programa *Robot Structural Analysis* relativo à verificação aos ELU do Pilar A do Pórtico 2.

Autodesk Robot Structural Analysis Professional 2016 Author: Address:

File: **Caso de Estudo.rtd** Project: Caso de Estudo

		5	
	MEMBE	ER: 27 P	lar A_27 ; COORDINATE: x = 0.50 L = 1.455 m
		ū	oss-section properties: HEA 340
	133.473	cm2	Cross-section area
	110.388	cm2	Shear area - y-axis
	44.950	cm2	Shear area - z-axis
	123.000	cm4	Torsional constant
	27693.100	cm4	Moment of inertia of a section about the <u>yang</u>
	7436.000	cm4	Moment of inertia of a section about the zaxis
,	1850.620	cm3	Plastic section modulus about the y (major) axis
N	755.963	cm3	Plastic section modulus about the Ztminor) axis
	33.000	сш	Height of cross-section
	30.000	сш	Width of cross-section
	1.650	cu	Flance thickness
	0.950	сш	Web thickness
	14.404	cu	Radius of ovration - v-a x is
	7 464	5	Padius of Avration - 2-3-45
		5	Induted of Byration - Arganes
	00.1		ivet area to gross arearatio Forton for Au coloniation
	1.20		
			Material
е			S 275 (S2745)
	275.0000	MPa	Design veet of material
	430.0000	MPa	limit tensile stress - characteristic value
	1.00		Partial safety factor
	1.00		P <u>a</u> rītar safety factor
-	1.25		Partial safety factor
		۳ ۵	signations of additional codes:
12		1	EN 1001 1 2.2002 Eiro loode on a structure
4 5		n li	
7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EN 1993-1-2:2005 - Steel structures - fire design
13		111	EN 1993-1-3:2005 - Steel structures from cold-formed se
15		, "(P	EN 1993-1-5:2005 - Steel structures - plated elements
11	μ. Ι	h.	ECCS No111:2001 - Guidebook with recommendations f
311			ENV 1993-1-1:1992 - Steel structures - general code
			Clase of section
	ni ^g		
	<u>=</u> 1.825	cm	flange width
	<u>ि</u> 1.650	cm	flange thickness
	<u> </u>		Flange slenderness
чц 			Flance class
u (d)	- 100	ŝ	Much boicat
ηų.	24.300	5	
	0.400	CIII	VV eD Thickness
~	25.58		Web slenderness
	0.86		Relative extent of the compressed plastic zone
	-0.75		Stress or strain ratio
: 26/10/15			Page : 1

Autodesk Robot Structural Analysis Professional 2016 Author: Address:

File: **Caso de Estudo.rtd** Project: Caso de Estudo

.VV w/tw)lim .SZ	values	Ξ כ	
v/tw)lim /tw SZ	-		Web class
SZ	55.46		limit slenderness of a web for shear
ZS	31.26		web slenderness for shear $\underline{\vec{z}}$
	Plastic		Web class (shear)
	-		Section type
		Ра	rameters of buckling analysis:
out the y axis	s of cross-secti	uo	
rve,y	q		Buckling curve
,	7.000	E	Effective buckling length
'n	48.60		Slenderness ratio
۲ ک	0.56		Non-dimensional slend. ratio for buetting
a, y	0.34		imperfection factor
	0.72		Coefficient for calculation of X
	0.86		Reduction factor for buckling
b,Rd	3144.6707	КN	Design buckling resistance of comp. member
out the z axis	s of cross-secti	uo	
rve.z	0		Buckling curve
Z	2.910	E	Effective buckling length
nz	38.99		Slenderness ratio
- u	0.45		Non-dimensionatestand ratio for buckling
	0.49		imperfection factor
Ļ	0.66		Coefficient for Tralculation of X
	0.87		Reduction factor for buckling
b,Rd	3197.1392	Å	Design buckling resistance of comp. member
	-	Parameter	s of lateral-torsional buckling analysis:
neral method	d [6322]		50 10 10
ddn	2.910	" Ε	Lateral buckling length of upper flange
wol	2 910	ε	l ateral buckling length of lower flange
MOI,	1.88		Later a bucking renger or rower manage Factor for Mcr calculations
	0.00	b	Factor for Mcr calculations
	0.94	- 40 ⁰¹	Factor for Mcr calculations
	1827067.027	cm6	Warping constant
	0.000	cm	Distance from the point where the load is applied to the
	5929.2759	kN*m	Critical moment for lateral-torsional buckling
n_LT	<u>(</u> 20		Non-dimens. slend. ratio for lattors. buckling
ve,LT	e Juli		Lateral buckling curve
1,LT	- - - - - - - - - - - - - - - 		Imperfection factor for lateral buckling curves
L	<u> </u>		Coefficient for calculation of XLT
L	0.98		Reduction factor for lateral-torsional buckling
Tugh		Parameters	s of global stability analysis of member
thad of infor	action paramet	ar calculati	one - Annov A
	40000 paramen 11713 7118	er calculati kN	bils - Allitex A Euler buckling load in v direction
	18200.0442	, Y	Euler buckling load in z direction
, F	20765.4611	Å	Critical force (lateral-torsional buckling)
-			
Date : 26/10/15			Pade : 2

Traject class of existing Simple description efficient for calculation of interaction coefficients by efficient for calculation of interaction coe	Project: Caso de Estudo	Symbol description	n Design elastic resistance moment	n Design moment resistance of a compressed section part	n Reduced design plastic resistance moment $ar{z}$	Design plastic shear resistance	Verification formulas:			N,Ed/Nc,Kd	(My,Ed/MN,y,Rd)^ 2.00 + (Mz,Ed/MN,z,Rd)	Vy,Ed/Vy,c,Rd	Vz,Ed/Vz,c,Rd		Max(Lambda,y/Lambda,max ; L <u>amb</u> đa,z/Lambda,max)	My,Ed,max/Mb,Rd	N.Ed/(Xv*N.Rk/gM1) + kvv*MtEd.max/(XLT*Mv.Rk/gM1	N,Ed/(Xz*N,Rk/gM1) + kzy [*] My,Ed,max/(XLT*My,Rk/gM1		Ratio:	Efficiency ratio										ulter of the second second second second second second second second second second second second second second s				ψa																			
Froget: Laso de seuto Symbol description Simbol description Symbol description Siffeent for calculation of interaction coefficients ki afficient for calculation of interaction coefficients ki afficient for calculation of interaction coefficients ki afficient related to ratio of section properties Section strot Sifficient for calculation of interaction coefficients ki afficient related to bending moment displation intermet related to bending moment intermet related to bending moment intermet related to bending moment intermet related to bending moment intermet related to bending moment displation intermet ed to bend		Values Unit	136.3267 kN*n	207.8898 kN*n	207.8898 kN*n	713.6850 kN		- - ;	ngth check:	0.13	0.17	0.00	0.20	ity check of member:	0.23	0.84	0.96	0.57	-		0.06	0.00	Г	ŀ		1	5		a	v-a	z-a	st	arti	arti			- 	<u> </u>	ہ	B S	<u>}</u>	ati	ati					ŀ	5			1	7	
Tropert. Caso de Estudo Symbol description Sinter selated to bending moment distribution arameter related to bending moment distribution arameter related to bending moment distribution arameter related to bending moment distribution arameter related to bending moment distribution arameter related to bending moment distribution arameter related to bending moment distribution arameter related to bending moment distribution arameter related to bending moment distribution arameter related to bending moment distribution arameter related to bending moment distribution arameter related to bending moment distribution arameter related to bending moment distribution arameter related to bending moment distribution arameter related to bending moment distribution	ddress:	Svmbol	Mz,el,Rd	Mz,c,Rd	MN,z,Rd	Vz,c,Rd		;	Section stre	UFS[NC]	UFS[NcMyMz	UFS[Vy]	UFS[Vz]	Global stabi	UFB[Lambda	UFB[My]	UFBINVMVMz	UFB[NzMyMz			RAT		Saction		MEMBER: 2		Cross-section	properties	Cross-sectior	Shear area -	Shear area -	Torsional cor	Moment of in	Moment of in	Plastic sectio	Plactic coctio	Lastic sectio	Height of cro	Width of cros	rialige unch		Kadius of gyr	Radius of gyr	(6.2.2.2)	(626(3))	10.0.20	Material		C 27E / C 27	(3.2)	(3.2)	(0.1.(1))	11 - 1	
			cij	di	ΨΨ	, II									dj di		cii		di																																			
	Project: Caso de Estudo	Values Unit Symbol description	0.99 Coefficient for calculation of interaction coefficients kij	1.00 Coefficient for calculation of interaction coefficients kij	1.10 Coefficient related to ratio of section properties $\underline{\underline{z}}$	1.50 Coefficient related to ratio of section properties $\vec{z} = \vec{z}$	0.40 Relative slenderness for lateral buckling (constant agent	0.79 Parameter related to bending moment distribution	U./9 Parameter related to bending moment distribution	0.94 Parameter related to bending moment distribution	0.79 Parameter related to bending moment distribution	0.79 Parameter related to bending moment dhat ibution	0.94 Parameter related to bending moment distribution	1.00 Parameter related to bending moment distribution	1.00 Coefficient for calculation of inte <u>ract</u> ion coefficients kij	0.00 Coefficient for calculation of CAT	1.01 Coefficient for calculation of meridaction coefficients kii	0.28 Coefficient for calculation of Az	0.96 Coefficient for calculation and interaction coefficients kil	0.01 Coefficient for calculatement Czv	0 00 Coefficient for celoritation of interestion coefficients kii	0.33 Occiment for caregories of interaction occiments ny Conficient for caregoriation of C.77	0.82 Configuration for cardination of the action coefficients kii		0.96 interaction parameter	0.58 Interaction	0.51 Interacti <u>e</u> r pärameter	0.98 Intera <u>etten</u> parameter			459.1505 kN axia force N.Ed	-209.4176 kN*m – Tranding moment My Ed	-418.8353 kN*m ≣nament	-0.2126 kN 30 handing moment M2 Ed	0.1461 RN schear force VV Ed	-143 9206 ± KN - hhore from Vy ted			ے Design forces:	3270美力主体 N Desicn compression resistance	o 1 <u>0 date</u> o n.N. Presidente estatance o 16 de estas N.N. Dociente hubble estatance		-498.2992 kN°m Design buckling resistance moment	axis õ€ ēross-section	508.9205 kN*m Design plastic resistance moment			😨 ⁻ 508.9205 kN*m Design moment resistance	508 9205 kN*m Reduced design plastic resistance moment	1/02.0449 KN Uesign plastic shear resistance	axis of cross-section	207.8898 kN*m Design plastic resistance moment		

Verificação aos ELU do Pilar A

Verificação aos ELU do Pilar A do Pórtico 2, de acordo com a secção 5.5 deste documento.

Anexo D.4

Relatório de cálculo exportado a partir do programa *CYPE 3D* relativo à verificação aos ELU do Pilar A do Pórtico 2.

Bar N41/N113

Section: HE 340 A Material: Steel (S275 (EN	1993-1-1	(()					
	Noc	les			Mechanical ch	aracteristics	
٢	Initial	Final	(m)	Area (cm²)	$I_{v}^{(1)}$ (cm4)	$I_z^{(1)}$ (cm4)	It ⁽²⁾ (cm4)
4	N41	N113	2,910	133.50	27690.00	7436.00	127.20
	Notes: ⁽¹⁾ Inert	ia with respe rm torsional	ect to the indi moment of ii	cated axis nertia			
			Buck	ling	_	Lateral buck	ing
;		X	olane	XZ plane	Top	fl.	Bot. fl.
	β	1	00	2.43	1.0	00	1.00
	ť	5	910	7.057	2.9	10	2.910
	ڻ	0	290	0.790	1.0	00	1.000
	ű		1			1.879	
	Notation: B: Buck L _x : Buck C _m : Mor	ling coefficie kling length ment coeffici	ent (m) ent				
	ر: د <u>ا</u>	ICAL INVITED	וווסמוורפרוסוו	Idctof			

	SUBIC	VERIFIED $\eta = 91.3$	
	M _t V _r	D N P 0	
	M ₂ V ₂	D. N. P 🗇	
	M,	M _{tot} = 0.00 D.N.P. ¹³	
	2V,V2 M,MN	x: 0.208 m ₁₁ < 0.1	
	NM,Mz	x: 2.91 m η = 91.3	
-1:/NA 2010	M _z V,	x: 0 208 m η < 0 1	
VP EN 1993-1	M _x V _z	x: 0.208 m η < 0.1	
DCODE 3 h	٧	η < 0.1	
CKS (EUR	V ₂	η = 28 . 0	
CHE	Mz	x: 2.91 m $\eta = 0.2$	
	M,	x: 2.91 m ŋ = 81.5	e istance stance
	Nc	x: 0 m ŋ = 14.7	pressed flang ar force Z res crc ear resistance ance ance
	ż	N _{to} = 0.00 D N P ⁽¹⁾	the drawn of the connection of
	~~~ ₂	x: 0.208 m $\lambda_{w} \leq \lambda_{w,mw}$ Verified	ng of the web inc not of the web inc sector restance or axial restance is bending resist is bending resist is bending not blined bending no wibined bending al restance al restance al restance to the origin of control of the sector of the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector a
	IPG	N41/N113	Modelion Modelion Mill Comparison Mill

# Crushing of the web induced by the compressed flange (Eurocode 3 EN 1993-1-5: 2006, Article 8)

The following criteria must be satisfied:

 $\frac{h_w}{t_w} \leq k \frac{E}{f_y^f} \sqrt{\frac{A_w}{A_{f_c,ef}}}$ 

Produ

31.26 ≤ 230.61 ✓

**h**_w : 297.00 mm

**h**_w: Height of the web. t..: Web thickness, Where:

t: Web thickness.	ţ	9.50	шш	
A: Area of the web.	A	28.22	cm ²	
$A_{ic, et}$ : Reduced area of the compressed flange.	$A_{fc,ef}$	: 49.50	cm ²	
k: Coefficient which depends on the class of the section.	¥	0.40		
E: Modulus of Elasticity.	ш	: 210000	MPa	
$\mathbf{f}_{y^{*}}$ : Steel elastic limit of the compressed flange.	f,	: 275.00	МРа	
Where:				

Resistance to axial tension (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.3)

 $f_{yf} = f_{y}$ 

The check does not proceed, as there is no tensile axial force.

## Compression resistance (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.4)

The following criteria must be satisfied:

0.126	
 ד	
य । य ।	
$= \frac{N_{c,E}}{N_{c,R}}$	
۲	

0.147	
 F	
, <u>Ed</u> ≤ 1 ,Rd	
אר ב א	

The worst case design force occurs at node N41, for load combination 1.35.SW+1.5.SOBRE..

 $N_{ced}$ : Worst case design compressive axial force.

**N**_{с,Еd} : 461.58 kN

	Z X				cm ²	МРа		
	3671.25		6	4	133.50	275.00		
	c,Rd		SS		 ¥	<b>f</b> _{vd} :		
	z		C					
The normal design compression force $N_{{\scriptscriptstyle c}^{Rd}}$ should be taken as:	$\mathbf{N}_{c, \mathbf{Rd}} = \mathbf{A} \cdot \mathbf{f}_{yd}$	Where:	Class: Section class, depending on its deformation capacity and	development of plastic resistance of the compressed elements of a section.	A: Area of the gross section for class 1, 2 and 3 sections.	f _v : Steel design strength.	$\mathbf{f}_{yd} = \mathbf{f}_y / \gamma_{WO}$	Where:

Frai Steel design strength.  $f_{rai}$ : Steel design strength.  $f_{rai} = f_{r}/\gamma_{ro}$ Where: Where:  $f_{rai} = f_{r}/\gamma_{ro}$   $f_{rai}$ : Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table 3.1)  $\gamma_{rai}$ : Partial safety factor of the material.  $\gamma_{rai}$ : Partial safety factor of the material.  $\gamma_{rai}$ : Partial safety factor of the material.  $N_{b, rai} = \chi \cdot A \cdot f_{roi}$ Where: A. Area of the gross section for class 1, 2 and 3 sections.  $f_{rai} = f_{r}/\gamma_{roi}$ Where:  $M_{b, rai}$ 

**f**_y : *275.00* MPa

1.00

ΥM0 :

N_{b,Rd} : 3137.18 kN

**A** : 133.50 cm²  $f_{vd}$  : 275.00 MPa

Where:

, ты f.; Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table 3.1)  $\gamma_{M1}$ : Partial safety factor of the material.

**f**_v : 275.00 MPa

1.00

 $\chi$ : Reduction coefficient due to buckling.  $\Phi + \sqrt{\Phi^2 - \left(\overline{\lambda}\right)^2} \leq 1$ ---| | χ

χ_x : 0.85 χ_z : 0.87

0.89

χ_τ :

0.72

.. Å

Where:

 $\alpha$ : Elastic imperfection coefficient.

0.64 .. ф

0.66 - : •  $\Phi = \mathbf{0.5} \cdot \left[ \mathbf{1} + \alpha \cdot \left( \overline{\lambda} - \mathbf{0.2} \right) + \left( \overline{\lambda} \right)^2 \right]$ 

0.34 0.49 α_γ : α_z :

άŢ

 $\overline{\lambda}$ : Reduced slenderness.

 $\overline{\lambda} = \sqrt{\frac{A \cdot f_y}{N_{cr}}}$ 

0.45

ייייי אייייייי אייייייי

0.56 0.42

0.49

..

Página | 207

	 The f
ágina   208	

Ρ

N _α : <u>11524.78</u> kN N _{αν} : <u>11524.78</u> kN	N _{erz} : <u>18200.04</u> kN	<b>N</b> _{ст.} т : <u>20883.05</u> kN	e 6.2.5)		ր ։ <b>0.798</b>	11 : 0.815 V		M _{E4} ⁺ : <i>405.90</i> kN·m		M _{Ed} : <u>41.86</u> kN m	<b>М</b> _{с,кd} : <u>508.75</u> kN·m	Class : 2	W _{H\Y} : <u>1850.00</u> cm³	<b>f</b> _{vd} : <u>275.00</u> MPa		Ymo: <u>1.00</u> MFG		М _{ьяd} : <u>498.18</u> kN·m	W _{H\Y} : <u>1850.00</u> cm³	<b>f</b> _{yd} : 2 <i>75.00</i> MPa		<b>f</b> _v : <u>275.00</u> MPa	00'T . INI	χır : 0.98		φιτ : <u>0.55</u> αιτ : <u>0.21</u>	MI . 0.24
<ul> <li>N_a: Critical elastic buckling axial force, obtained from the smallest of the following values:</li> <li>N_a, Critical elastic buckling axial force with respect to the Y axis.</li> </ul>	N _{o.2} : Critical elastic buckling axial force with respect to the Z axis.	Nert: Critical elastic puckling axial force due to torsion.	Y - Axis bending resistance (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article	The following criteria must be satisfied:	$\eta = \frac{M_{\rm Ed}}{M_{\rm c,Rel}} \leq 1$	$\eta = \frac{M_{ed}}{M_{oRd}} \le 1$	For positive bending: The worst case design force occurs at node N113, for load combination 1.35-SW+1,5-SOBRE.	■ Met*: Worst case design bending moment.	To introgram containty. The worst case design force occurs at node N113, for load combination SWH-1.5-fuerce@oogram.com	Mer.: Worst case design bending moment. Whe design bending moment resistance Mere is given by:	$\mathbf{M}_{c,R,d} = \mathbf{W}_{D,V} \cdot \mathbf{f}_{rd}$	Where: Where: Class: Section dass, depending on its deformation capacity and development of plastic resistance of the flat elements of a section submitted to reimble benchion	<b>W</b> ₄₄ : Plastic strength modulus corresponding to the fibre with greatest tension, for dass 1 and 2 sections.	$f_{rd}$ : Steel design strength. $f_{rd} = f_r/\gamma_{r0}$	Where: C: Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table	o) γ _{we} : Partial safety factor of the material.	Lateral buckling resistance: (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.3.2) The design bending moment resistance $M_{\rm had}$ is given by:	$\mathbf{M}_{\mathbf{b},\mathbf{pd}} = \chi_{LT} \cdot \mathbf{W}_{\mathbf{p},\mathbf{y}} \cdot \mathbf{f}_{\mathbf{pd}}$	West: Plastic strength modulus corresponding to the fibre with greatest tension, for class 1 and 2 sections.	$f_{ya}$ : Steel design strength.	$\mathbf{f}_{rd} = \mathbf{f}_{r/\gamma_{NL}}$ Where:	f.; Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table 3.1) 	ym: rando anety raccol or the macerial. χω: Reduction factor due to lateral buckling.	$z_{tr}=\frac{1}{\Phi_{tr}+\sqrt{\Phi_{tr}^2-\overline{z}_{tr}^2}}\leq 1$	Where: $(\overline{z}, \overline{z}, \overline{z}^2)$	$\Phi_{LT} = 0.5 \cdot \left[1 + \alpha_{LT} \cdot (\lambda_{LT} - 0.2) + \lambda_{LT}\right]$ $\alpha_{LT}$ : Elastic imperfection coefficient:	

 
 Is
 7436.00
 cm4

 It
 127.20
 cm4

 Is
 1224000.00
 cm6

 Is
 210000
 MPa

 Is
 210000
 MPa

 Is
 210000
 MPa

 Is
 2.910
 m

 Is
 2.910
 m
 5942.01 kN·m ШШ шШ ШШ E 1.00 0.29 1.00 0.46 0.46 0.00 0.00 0.00 0.00 <u>λ</u>ιτ : .. ع ... N .. N .. Ñ .. ບິ .. Ű ۲. ۲ .. ¥ .. N  ${\bf k}_{\rm wi}$  Effective length coefficient, which depends on the warping restrictions at the ends of the bar  $\mathbf{k}_{\rm x}$  : Effective length coefficient, which depends on the rotation restrictions at the ends of the bar.  $\mathbf{z}_{\mathfrak{s}'}$  Distance between the application point of the load and the shear centre, with respect to the Z-axis.  $-(C_2 \cdot z_g - C_3 \cdot z_j)$  $\mathbf{C}_i;$  Factor which depends on the support conditions and bending moment envelope of the bar.  $\mathbf{C}_{2};$  Factor which depends on the support conditions and bending moment envelope of the bar.  $\mathbf{C}_{s;}$  Factor which depends on the support conditions and bending moment envelope of the bar. The critical elastic lateral buckling moment ' $M_{
m a'}$ ' is established in the following way:  $\mathbf{z}_{s}.$  Distance in the direction of the Z-axis between the shear centre and the geometric centre.  ${\bf z}_{\rm s};$  Distance in the direction of the Z axis between the load application point and the geometric centre.  $\mathbf{I}_{z}:$  Moment of inertia of the gross section, with respect to the Z-axis.  $\mathbf{z}_{i}$ : Asymmetric parameter of the section, with respect to the Y-axis.  $\boldsymbol{M}_{\boldsymbol{\alpha}} = \boldsymbol{C}_1 \cdot \frac{\pi^2 \cdot \boldsymbol{E} \cdot \boldsymbol{I}_1}{L^2_c} \cdot \left[ \left[ \left( \frac{k_c}{k_w} \right)^2 \cdot \frac{I_w}{I_z} + \frac{L^2_c \cdot \boldsymbol{G} \cdot \boldsymbol{I}_1}{\pi^2 \cdot \boldsymbol{E} \cdot \boldsymbol{I}_1} + \left( \boldsymbol{C}_2 \cdot \boldsymbol{Z}_g - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_1 \right)^2 \right]^{-1/2} - \frac{1}{2} \boldsymbol{C}_2 \cdot \boldsymbol{Z}_2 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_2 \right] \boldsymbol{C}_2 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 \cdot \boldsymbol{Z}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 - \boldsymbol{C}_3 -$ M_a: Critical elastic lateral buckling moment.  $\boldsymbol{L}_{c}$  : Effective buckling length of the bottom flange.  $\mathbf{L}_{c}^{*}$ : Effective buckling length of the top flange.  $\mathbf{I}_t$ : Uniform torsional moment of inertia.  $\boldsymbol{z_{j}} = \boldsymbol{z_{s}} - 0.5 \cdot \int\limits_{\boldsymbol{x}} \left(\boldsymbol{y^{2}} + \boldsymbol{z^{2}}\right) \cdot \left(\boldsymbol{z}/\boldsymbol{I_{y}}\right) \cdot d\boldsymbol{A}$ L_w: Section warping constant.E: Modulus of Elasticity. G: Elastic modulus of steel.  $\overline{\overline{\lambda}}_{LT} = \sqrt{\frac{W_{pl,y}\cdot f_y}{M_{cr}}}$  $\boldsymbol{z_g} = \boldsymbol{z_a} - \boldsymbol{z_s}$ Where: Where:

Produced by an educational version of CYPE

## Z - Axis bending resistance (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.5)

The following criteria must be satisfied:

$\eta = \frac{M_{Ed}}{M_{c,Rd}} \leq 1$	 ג	0.002 🗸
or positive bending: The worst case design force occurs at node N113, for load combination ដល់អាវ 1 ក្បារទំព័ត្រភាព		
our is of conductions. material material for the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second	: * ^{* *3} 8	<i>0.24</i> kN·m
in insertion contains. The worst case design force occurs at node N113, for load combination 1.35-SW+1.5CBRE.		
Med. Worst case design bending moment.	М _{еd}	0.40 kN·m
The design behavior in the second of $\mathbf{M}_{c,\mathbf{kd}}$ is given by. $\mathbf{W}_{c,\mathbf{kd}} = \mathbf{W}_{pl,z} \cdot f_{yd}$		207.87 kN m
Where:		
<b>Class</b> : Section class, depending on its deformation capacity and development of plastic resistance of the flat elements of a section submitted to simple bending.	Class :	2
$W_{\mu,z}$ : Plastic strength modulus corresponding to the fibre with greatest tension, for class 1 and 2 sections.	: مار ار	<i>755.90</i> cm ³
$\mathbf{f}_{yd}$ : Steel design strength. $\mathbf{f}_{yd} = f_y/\gamma_{yto}$	f _{vd} :	<i>275.00</i> MPa
Where:		
f.: Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table 3.1)	 f	<i>275.00</i> MPa
γ _w : Partial safety factor of the material.	, omy	1.00

## Resistance to shear in the Z direction (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.6)

The following criteria must be satisfied:

. 0.280	
F	
$\eta = \frac{V_{\text{Ed}}}{V_{c,\text{Rd}}} \leq 1$	

worst case design force occurs for load combination 1.35.SW+1.5.SOBRE.	
ed: Worst case design shear force.	<b>V</b> ^{Ed} : 139.49 kN
ear resistance V _{ered} is given by:	
$e_{rea} = A_v \cdot \frac{f_{rea}}{\sqrt{3}}$	<b>V</b> _{с,Rd} : <u>497.75</u> kN
(here:	
Av: Transverse shear area.	<b>A</b> _v : 31.35 cm ²
$\mathbf{A_v} = \mathbf{h} \cdot \mathbf{t_w}$	
Where:	
h: Depth of the section.	<b>h</b> : 330.00 mm
t: Web thickness.	<b>t</b> _w : 9.50 mm
f _w : Steel design strength.	<b>f</b> _{yd} : 275.00 MPa
$\mathbf{f}_{yd} = \mathbf{f}_y / \gamma_{MO}$	
Where:	
f,: Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table 3 1)	EdW DO JEC . J
γ	Ymo : 1.00
buckling of the web: (Eurocode 3 EN 1993-1-5: 2006, Article 5)	
hough transverse stiffeners have not been provided, it is not necessary to the buckling resistance of the web, as the following is verified:	
$\frac{1}{2} < \frac{72}{10} \cdot \varepsilon$	31.26 < 55.46
here:	
$\lambda_w$ : Slenderness of the web.	λ _w : 31.26
$\lambda_w = \frac{d}{t_w}$	
$\lambda_{\max}$ : Maximum slenderness.	λ _{max} : 55.46
$\lambda_{\max} = \frac{72}{\eta} \cdot \epsilon$	
$\eta$ : Coefficient which allows to consider the additional resistance in plastic regime because of hardening due to deformed material.	η: <i>1.20</i>
s: Reduction factor.	є : 0.92
$c = \sqrt{\frac{f_{ee}}{f_{\gamma}}}$	
Where:	
f: Reference elastic limit.	<b>f</b> _{ref} : 235.00 MPa

f, : 275.00 MPa

f.: Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table 3.1)

Resistance to shear in the Y direction (Eurocode 3 NP EN 1993-1-1:/NA 201	0, Article 6.2.6)
The following criteria must be satisfied:	
$\eta = \frac{V_{\text{ed}}}{V_{\text{c,Rd}}} \leq 1$	η < <u>0.001</u> /
The worst case design force occurs for load combination 1.35-SW+1.5-SOBRE.	
$\mathbf{V}_{Ed}$ : Worst case design shear force.	V _{Ed} : 0.14 kN
The shear resistance $V_{c,Rd}$ is given by:	
$V_{c,Rd} = A_V \cdot \frac{f_{yd}}{\sqrt{3}}$	<b>V</b> _{с,Rd} : <u>1671.62</u> kN
Where:	
<b>A</b> .: Transverse shear area.	<b>A</b> [,] : 105.29 cm ²
$\mathbf{A}_{\mathbf{v}} = \mathbf{A} - \mathbf{d} \cdot \mathbf{t}_{\mathbf{v}}$	
Where:	
A: Area of the gross section.	<b>A</b> : 133.50 cm ²
d: Height of the web.	<b>d</b> : 297.00 mm
L, CLAID JACKTESS.	
Tra: steel design strengtn.	Tyd : 275.00 MPa
C Where:	
C Table 3.1) Teld strength. (Eurocode 3 NP EN 1993-1-1://NA 2010, Table 3.1)	<b>f</b> v : <i>275.00</i> MPa
γ _{we} : Partial safety factor of the material.	ΥM0 : 1.00
enoite:	
Combined bending moment Y and shear force Z resistance (Eurocode 3 NI Article 6.2.8)	• EN 1993-1-1:/NA 2010,
t is not necessary to reduce the design bending resistance, as the worst base shear force V _{ed} is not greater than 50% of the design shear gresistance V _{ed} .	
Produ V _{ed} < V _{cRd} 139.	l9 kN ≤ 248.87 kN
	•
0.208 m from node N41, for load combination 1.35-SW+1.5-SOBRE.	
Ved: Worst case design shear force.	V _{Ed} : 139.49 kN
$V_{c,kd}$ : Design resistant shear force.	V _{с,Rd} : 497.75 kN
CURIDITIEU DERIVITY INVITENT 2 AND SHEAT FORCE T RESISTANCE (EULOCOUE 3 NY	OTOZ ANI TTTCCELT NO
It is not necessary to reduce the design bending resistance, as the worst case shear force $V_{\text{ed}}$ is not greater than 50% of the design shear resistance $V_{\text{edd}}$ .	
$V_{ed} \le \frac{V_{eRd}}{2} 0.3$	l4 kn ≤ 835.81 kn 🗸
The worst case design forces occur at a point situated at a distance of 0.208 m from node N41, for load combination 1.35·SW+1.5·SOBRE.	
Ved: Worst case design shear force.	V _{Ed} : 0.14 kN
$V_{c_{Rd}}$ : Design resistant shear force.	<b>V</b> _{с,Rd} : <u>1671.62</u> kN

Produced by an educational version of CYPE

### n : 0.638 🗸 The following criteria must be satisfied: $\eta = \left[\frac{M_{y,\text{Ed}}}{M_{y,\text{Rd},y}}\right]^{\alpha} + \left[\frac{M_{z,\text{Ed}}}{M_{y,\text{Rd},z}}\right]^{\beta} \leq 1$

Combined bending and axial resistance (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.9)

$$\eta = \frac{N_{c\,\text{Ed}}}{\chi_{s} + \delta + f_{yd}} + k_{ys} \cdot \frac{M_{y\,\text{Ed}}}{\chi_{zr} + W_{ys}} + k_{yz} \cdot \frac{M_{y\,\text{Ed}}}{W_{p,z} + f_{yd}} \le 1$$

$$\eta = \frac{N_{c,Ed}}{\chi_z \cdot A \cdot f_{pd}} + k_{yy} \cdot \frac{M_{y,Ed}}{\chi_{LT} \cdot W_{ply} \cdot f_{pd}} + k_{zz} \cdot \frac{M_{y,Ed}}{W_{pl,z} \cdot f_{pd}} \leq 1$$

$$\eta : \qquad 0.538 \qquad \forall$$

The worst case design forces occur at node N113, for load combination 1.35-SW+1.5-SOBRE..

÷				
٨	here:			
	$N_{ced}$ : Compressive axial force to be withstood from the analysis.	<b>N</b> _{c,Ed} :	452.49	R K
	$M_{\nu,\epsilon d},~M_{\nu,\epsilon d}.$ Worst case bending moments, in accordance with the Y and Z axes resonctively.	• • • • • • • •	405.90	k N N N
	used responses of the first seconding to its deformation capacity and plastic resistance devolutions of its first sharenes. For evid load and evidence	M _{z,Ed} : Class :	0.40 2	
	<ul> <li>Constant developments of the device secretary for axial road and provided construction.</li> <li>M M - Doduced decise electic secretary handled moments about the V</li> </ul>	2	1001	N N
नत	Press, Press, respectively.	M _{N.Rd.y} .	207.87	k k k
01 C 1	$\boldsymbol{M_{N,Rd,Y}} = \boldsymbol{M_{p,RdY}} \cdot (1-n)/(1-0.5\cdot a) \leq \boldsymbol{M_{p,Rd,Y}}$			1
uor	$n \leq a \rightarrow M_{N_1Rd,z} = M_{p_1Rd,z}$			
vers	$\alpha=2\ ;\ \beta=5\cdot n\geq 1$	σ	2.000	
leuc	Where:	 Е	1.000	
<u>cerio</u>	$\mathbf{n} = N_{c,cd}/N_{b,Rd}$	 E	0.123	
npa	$N_{\mu,\kappa d}$ : Compressive resistance of the gross section.	. Ν _{Ρί,Rd}	3671.25	K K
ue A	Manaw, Manawa: Bending resistance of the gross section in plastic conditions, with respect to the Y and Z axes, respectively.	M _{pl,Rd,y} : M _{pl,Rd,z} :	508.75 207.87	k k k
	$\mathbf{a} = (A - Z \cdot b \cdot t_f) / A \le 0.5$	 0	0.26	
onc	A: Area of the gross section.	A	133.50	cm²
<u> </u>	<b>b</b> : Flange width.	 9	30.00	Ê,
	$\mathbf{t}_i$ : Thickness of the flange.	 تر	16.50	un E
Bu	Ickling resistance: (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.3.3)			
	A: Area of the gross section.	× ×	133.50	cm ²
	W _{MY} , W _{Mx} : Plastic resistance moduli corresponding to the fibre with greatest stress about the Y and Z axes, respectively.	V pt.v .: V pt.z .:	1850.00 755.90	ເມື່ອ
	$\mathbf{f}_{vec}$ : Steel design strength.	f _{vd} :	275.00	МРа
	$\mathbf{f}_{yd} = \mathbf{f}_y / \gamma_{\text{ML}}$			
	Where:			
	<b>f</b> .: Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table 3.1)	 ث	275.00	MPa
	$\gamma_{m1}$ . Partial safety factor of the material.	: TWX	1.00	
	K _w , K _w , K _w , K _w : Interaction coefficients.			
	$\boldsymbol{K}_{\boldsymbol{W}} = C_{m, V} \cdot C_{m, LT} \cdot \frac{\mu_{V}}{1 - \frac{N_{eL}}{N_{eV}}} \cdot \frac{1}{C_{W}}$	<b>К</b> ^w :	0.97	
	$\mathbf{K}_{yz} = C_{mz} \cdot \frac{\mu_y}{N} \cdot \frac{1}{2} \cdot 0.6 \cdot \sqrt{\frac{W_z}{W_z}}$	:		
	$1 - \frac{1}{1-c_z} = c_{yz}$ $1 - \frac{1}{c_{yz}}$	κ _{vz} :	0.58	1



$\boldsymbol{C}_{\boldsymbol{m},\boldsymbol{LT}} = \boldsymbol{C}_{m,\boldsymbol{V}}^2 \cdot \frac{\boldsymbol{a}_{\mathrm{TT}}}{\sqrt{\left(1 - \frac{N_{\mathrm{ed}}}{N_{\mathrm{er},\mathrm{T}}}\right) \cdot \left(1 - \frac{N_{\mathrm{ed}}}{N_{\mathrm{er},\mathrm{T}}}\right)}}$	<b>C</b> _{m,LT} :	1.00	
$\epsilon_{\mathbf{v}} = \frac{M_{y,\text{set}}}{N_{\text{set}}}, \frac{A}{W_{\text{set},y}}$	: ^s	6.47	
$C_{m,ror}$ , $C_{m,zo}$ : Equivalent uniform bending moment factors.	 U U	0.79	
$\mathbf{G}_{::}$ Factor which depends on the support conditions and bending moment envelope of the bar.	С ^и т, С	1.88	
$\chi_{\mu}, \chi_{z};$ Buckling reduction coefficients, about the Y and Z axes, respectively.	: ^X	1.00	
$\chi_{ur}$ : Lateral buckling reduction coefficient. $\widetilde{\lambda}_{uur}$ : Maximum slenderness between $\widetilde{\lambda}_{v}$ and $\widetilde{\lambda}_{v}$ . $\widetilde{\lambda}_{ur}$ , $\widetilde{\lambda}_{v}$ : Reduced slendernesses with respect to the Y and Z axes, respectively.	$\frac{\chi_{LT}}{\lambda_{V}}$ : $\frac{\chi_{LT}}{\lambda_{V}}$ : $\frac{\chi_{LT}}{\lambda_{V}}$ : $\frac{\chi_{LT}}{\lambda_{V}}$ :	0.98 0.98 0.56 0.56	
$\overline{\lambda}_{\rm cr}$ : Reduced slenderness. $\overline{\lambda}_{\rm cr}$ : Reduced slenderness, with respect to lateral buckling, for a uniform bending moment.	$\overline{\lambda}_{LT}$ : $\overline{\lambda}_{0}$ :	0.29	
$W_{a,\gamma}, W_{a,i}$ : Elastic resistant modules corresponding to the compressed fibre, about the Y and Z axes, respectively. $N_{a,\gamma}$ : Critical elastic buckling axial force with respect to the Y axis. $N_{a,\gamma}$ : Critical elastic buckling axial force with respect to the Z axis. $N_{a,\gamma}$ : Critical elastic buckling axial force due to torsion. $I_{a}$ : Moment of inertia of the gross section, with respect to the Y-axis.	$\begin{array}{c} \bigvee \\ W_{e_{1,\mathbf{y}}} \\ N \\ N \\ N \\ C_{c_{1,\mathbf{y}}} \\ H_{y} \\ H_{y} \end{array}$	1678.18 495.73 11524.78 18200.04 20883.05 27690.00	č v v v v v v v v v v v v v v v v v v v
$\mathbf{I}_{t}$ : Uniform torsional moment of inertia.	 H	127.20	cm4

### Combined bending, axial and shear resistance (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.10) onal version of CYPE

It is not necessary to reduce the design bending and axial force resistance, as the buckling effect can be ignored due to shear. Additionally, the worst case design shear force  $V_{eat}$  is less than or equal to 50% of the design shear resistance  $V_{eat}$ .

Define worst case design forces occur at a point situated at a distance of the 20208 m from node N41, for load combination to 1.35.SW+1.5.SOBRE.+0.9.Direcção90grausposiçãocentral.

V_{Ed,z}: Worst case design shear force.  $V_{\text{Ed},z} \leq \frac{V_{c,\text{Rd},z}}{2}$ Where:

V_{c,Rd,z}: Design resistant shear force.

> 131.75 kN ≤ 248.87 kN

z z V_{6/4,2} : 131.75 V_{6/Rd,2} : 497.75

Torsional resistance (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.7)

The check does not proceed, as there is no torsional moment.

# Combined Z shear and torsional resistance (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.7)

There is no interaction between torsional moment and shear force for any combination. Therefore the check does not proceed.

Produced by an educational version of CYPE

### Anexo E

### Verificação aos ELU da Viga B₁

Verificação aos ELU da viga B1 do Pórtico 3, de acordo com a secção 5.6 deste documento.

- E.1 Interfaces da ferramenta *AciariUM* utilizada para verificação de segurança aos ELU da viga B₁ do Pórtico 3.
- E.2 Relatório de cálculo exportado a partir da ferramenta *AciariUM* relativo à verificação aos ELU da viga B₁ do Pórtico 3.
- E.3 Relatório de cálculo exportado a partir do programa *Robot Structural Analysis* relativo à verificação aos ELU da viga B₁ do Pórtico 3.
- E.4 Relatório de cálculo exportado a partir do programa *CYPE 3D* relativo à verificação aos ELU da viga B₁ do Pórtico 3.

### Anexo E

### Verificação aos ELU da Viga B₁

Verificação aos ELU da viga  $B_1$  do Pórtico 3, de acordo com a secção 5.6 deste documento.

### Anexo E.1

Interfaces da ferramenta *AciariUM* utilizada para verificação de segurança aos ELU da viga B₁ do Pórtico 3.

INTERFACE I. SECÇÃO TRANSVERSAL E PROPRIEDADES DO MATERIAL														MOD	JLO DE CA	MANUAL															
DESIG	NAÇÃO		DIMENSÕ	ES PRIN		DA SECÇÂ	O TRAN	ISVERSA	L	A	c	G	DIMENS	ões cor	MPLEME	NTARES		EIXO PRINCIPAL		L DE INÉRCIA Y		EIXO PRINCI		RINCIPAL	IPAL DE INÉRCIA Z						
PRS		h	bs mm	bi	t _w	ts mm	ti	fs mm	ri mm	A cm ²	Zca	yca mm	hi	d	CSs mm	CSi	ly cm ⁴	Wy.sup	Wyinf	Wpty cm ³	i,	Ava cm ²	lz cm ⁴	W2.sup	Wzinf	Wplz	iz cm	Avg	lτ cm ⁴	ly x 10 ⁻³	з
f _{y [MPa]}	275	660	160	160	8	21	21	0	0	116,6	330	80	618	618	0	0	84358	2556	2556	2911	26,89	59,33	1436	179,5	179,5	278,7	3,509	67,2	103,6	1463	0,92
¥	N	ÓDULO	MANU	JAL DI	efinição	MANUA	L DAS DII	MENSÕES	DA SECÇ	ÃO TRANS	VERSAL							INFO	0				I	bs		1			PERFIL	Lamina	do
	-				DI	MENSÕES	5 PRINCIE	PAIS RECO	LHIDAS (	DO AUTOD	ESK ROB	от	Α	C	G	DIME	ISÕES CON	<b>IPLEMEN</b>	ITARES		ree.		_	-		ts +z					
		SECÇÃO	TIPO DE	PERFIL	h	b _s	b	tw	t,	ti	r _s	ri	Α,	ZCG	Ycg	hi	d	CS ₅	csi					$\bigcirc$				CORDÕ	ES DE SOL	DADURA:	
	1	DDC	Dorfillo	ninada	mm	mm	mm 160	mm	 	mm	mm	mm	cm*	mm	mm	mm	mm	mm	mm					+ tw				NÃO EX SOLDAI	ISTEM CO DURA:	ORDÖES DE	
	. /	PRS	Permita	iiiiauo	000	100	100	0	21	21	0	0	110,0	550,0	80,0	010	010	0,00	0,00		h h⊧d				У,						
K		ÓDULO	ROBO	T STRU	JCTUR	AL ANA	LYSIS	RECEBER	PROPRIE	EDADES D/	N SECÇÃO	TRANSV	ERSAL A P	PARTIR DO	ROBOT	SA		INFO	0										1	BANZO	
ELEN	IENTO										ESK ROBOT			CG		DIMENSÕES CO		OMPLEMENTARES						( n)						<u> </u>	
					DI	MENSÕES	5 PRINCIE	PAIS RECO	LHIDAS L	DO AUTOD	ESK ROB	от	Α	0	G	DIME	ISÕES CON	<b>IPLEMEN</b>	ITARES		rcsi	_		Q					Alma		
NO.	L	SECÇÃO	TIPO DE	PERFIL	DI h	MENSÕES b _s	b _i	tw	t ₅	DO AUTOD	ESK ROB	ot r _i	A	Z _{CG}	G Y _{CG}	hi	ISÕES CON d	CS ₅	CS _i		rcs			Ø		tı .z			Alma	$\mathcal{I}$	
NO.	L m	SECÇÃO	TIPO DE	PERFIL	h mm	MENSÕES b, mm	b _i mm	tw mm	t _s mm	t _i mm	r _s mm	or r _i mm	A A cm ²	Z _{CG} mm	G Ycg mm	hi mm	d mm		cs _i mm		rcs			bi		tı , z			ALMA	$\mathcal{O}$	
NO. 27	L m 2,91	SECÇÃO HEA 340	TIPO DE Perfil Lai	PERFIL ninado	b mm 330	MENSÕES b _s mm 300	b _i mm 300	PAIS RECC tw mm 9,5	t _s mm 16,5	t _i mm 16,5	r _s mm 27	ot r _i mm 27	A A cm ² 133,5	z _{CG} mm 165,0	G Y _{CG} mm 150,0	bimer hi mm 297	d mm 243,0	CS ₅ mm 0,00	cs _i mm 0,00		rcs			bi —		tı ,-z			ALMA		
NO. 27 CLAS	L m 2,91	SECÇÃO HEA 340	TIPO DE Perfil Lai	PERFIL minado LASSE	DI h 330 \$275	MENSÕES b, mm 300	b _i mm 300	PAIS RECO tw mm 9,5	t _s mm 16,5	t _i mm 16,5	r _s mm 27 E	ot r _i mm 27 2:	A A cm ² 133,5	Z _{CG} mm 165,0 GPa	G	DIMEN hi mm 297	d d 243,0 DE-06	ирцемен cs ₅ mm 0,00 / к	cs _i mm 0,00		rcs			bi		ti -z		1,00	ALMA		
NO. 27 CLAS CONS	L m 2,91 SE DE AG	SECÇÃO HEA 340	TIPO DE Perfil Lan AÇO DA C	PERFIL minado LASSE	DI h 330 \$275 MPa	b _s mm 300	bi mm 300	PAIS RECO tw mm 9,5 PROPR GE	EDADES	t _i mm 16,5	r₅ mm 27 E G	ot r _i mm 27 2:	A A cm ² 133,5	Z _{CG} mm 165,0 GPa GPa	G Ycg mm 150,0 α Gm	DIME hi 297 1,20	d mm 243,0 DE-06	APLEMEN CS ₅ mm 0,00 / K Kg/m ³	cs _i mm 0,00	Redefi	nir		COEFIC			<b>t</b> i <b>,</b> - z Умо		1,00	ALMA		Redefinir
NO. 27 CLAS CONS ⁻ EL EST	L m 2,91 SE DE AG TITUINTE EMENTO	SECÇÃO HEA 340	TIPO DE Perfil La AÇO DA C fy	PERFIL minado LASSE 275 430	DI h 330 \$275 MPa	MENSÕES b _s mm 300	5 PRINCIF b _i mm 300	PAIS RECO tw mm 9,5 PROPR GE DO M/	EDADES RAIS	t _i mm 16,5	r _s mm 27 E G	ot r _i mm 27 2: 80	A A cm ² 133,5 10 ,77	C Z _{CG} mm 165,0 GPa GPa	G Ycs mm 150,0 α G _m	DIMEN hi mm 297 1,20 7:	d mm 243,0 DE-06	APLEMEN CS ₅ mm 0,00 / K Kg/m ³	cs _i mm 0,00	Redefin NP EN 1993	nir 3-1-1		COEFIC			<b>t</b> , -z Умо Ум1		1,00 1,00	ALMA	NE	Redefinir EN 1993-1-1
NO. 27 CLAS CONS EL EST	L m 2,91 SE DE AG TITUINTE EMENTO RUTURA	SECÇÃO HEA 340	TIPO DE Perfil Lau AÇO DA C fy fu	PERFIL ninado LASSE 275 430	DI h 330 S275 MPa MPa	MENSÕES b _s mm 300	5 PRINCIF b _i mm 300	PAIS RECO tw mm 9,5 PROPRI GEI DO M/	t _s mm 16,5 EDADES RAIS ITERIAL	t _i mm 16,5	r _s mm 27 E G v	ot ri 27 22 80	A A cm ² 133,5 10 ,77 ,3	C Z _{CG} mm 165,0 GPa GPa	G Ycs mm 150,0 α G _m η	DIMER hi 297 1,20 71 1,21	d mm 243,0 DE-06 350 20	APLEMEN CS ₅ mm 0,00 / K Kg/m ³	cs _i mm 0,00	Redefii NP EN 199	nir 3-1-1		COEFICI PARCI/ SEGUR	IENTES AIS DE ANÇA		Чмо Умо Ум1 Ум2		1,00 1,00 1,25	ALMA	NE	Redefinir EN 1993-1-1

Figura E.1 – Interface I. Secção transversal e propriedades do material: Viga  $B_1$  do Pórtico 3.

INTERFACE II. CONDIÇÕES DE APOIO, TRAVAMENTO E SOLICITAÇÃO DO ELEMENTO ESTRUTURAL													MOD	ULO DE C	ÁLCULO:	MANUAL															
DESIGNAÇÃO DIMENSÕES PRINCIPAIS DA SECÇÃO TRANSVERSAL A CG DIMENSÕES COMPLEMENTARES EIXO PRINCIPAL DE INÉRCÍA Y EIXO PRINCIPAL DE INÉRCÍ														ÉRCIA Z																	
PRS		h mm	b₅ mm	bi mm	tv mm	t₅ mm	ti mm	r₅ mm	ri mm	A cm ²	ZCG mm	yca mm	hi mm	d mm	CS₅ mm	CSi mm	lş cm ⁴	Wy.sup cm ³	Wyini cm ³	Wplg cm ³	i, cm	Ave cm ²	lz cm ⁴	Wz.sup cm ³	Wzini cm ³	Wplz cm ³	iz cm	Avs cm ²	lτ cm ⁴	lw x 10 ⁻³ cm ⁶	ε
$f_{\gamma \left[ MPa\right] }$	275	660	160	160	8	21	21	0	0	116,6	330	80	618	618	0	0	84358	2556	2556	2911	26,89	51,12	1436	179,5	179,5	278,7	3,509	67,2	103,6	1463	0,92
•	MC	ÓDULO	MAN	JAL I	INTRODU	IÇÃO MAN	NUAL DO	VALOR D	E CÁLCUL	O DOS ESF	ORÇOS A	ATUANTE	S NA SECÇ	ÃO A VEF	RIFICAR E	DOS PAR	ÂMETRO	GEOMÉT	TRICOS Q	UE CARA	CTERIZAN	1 O SISTEN	1A ESTRU	JTURAL				INFO	<b>?</b> (	DCULTAR /	MOSTRAR 🗹
SOLICI	AÇAO N	IA SECÇ		DICION	ANTE	N _{Ed}	74	,24	kN	M _{Ed.y}	-39	3,30	kN.m	V _{Ed.z}	-70	0,14	kN	M _{Ed.z}	-1	,04	kN.m	V _{Ed.y}	-0	,07	kN.m		FL	EXAO COI	MPOSTA	DESVIADA	
PARÂN	ETROS	GEOMÉ	TRICOS	DO ELEM	IENTO	COMPR	IMENTO	L	5,00	m	COMPR	IMENTOS	DE ENCUR	VADURA	L cr.y	15,00	m	L _{cr.z}	1,65	m	COMPR	RIMENTOS	ENTRE S	ECÇÕES CO	ONTRAVEN	ITADAS	l _{sup}	1,65	m	l _{inf}	1,65 m
T 🚺 MÓDULO ROBOT STRUCTURAL ANALYSIS RECEBER VALORES DIRETAMENTE DE UM FICHEIRO DO AUTODESK ROBOT STRUCTURAL ANALYSIS ABERTO NESTE COMPUTADOR INFO 🥥 OCULTAR / MOSTRA											MOSTRAR 📃																				
🖆 MÓDULO AUTOMÁTICO MODELAÇÃO DAS CONDIÇÕES DE APOIO E SOLICITAÇÃO DO ELEMENTO ESTRUTURAL PARA CÁLCULO AUTOMÁTICO DOS PARÂMETROS CORRESPONDENTES PELA FERRAMENTA INFO Q OCULTAR / MOSTRA												MOSTRAR 🗖																			
bilit M L Bin Pert Luster Visione Eg * Mojul Pers											i <b>de do Minl</b> Engenharia	ho <																			

Figura E.2 – Interface II. Condições de apoio, travamento e solicitação do elemento estrutural: Viga B₁ do Pórtico 3.



Figura E.3 – Interface III. Resistência da secção transversal (ELU): Viga B1 do Pórtico 3.

DESIGNAÇÃO DIMENSÕES PRINCIPAIS DA SECÇÃO TRANSVERSAL A CG DIMENSÕES COMPLEMENTARES EIXO PRINCIPAL DE INÉRCIA Y EIXO PRINCIPAL DE INI	ÉRCIA Z
PRS h bs bi tv ts ti rs ri A Zoo yoo hi d Css csi ly Wywy Wyw Wyw iy Av lz Wzwy Wyw Wyz mm mm mm mm mm mm mm mm mm mm mm mm mm	iε Avy Iτ Iv x 10 ⁻³ ε cm cm ² cm ⁴ cm ⁶
f_then         275         660         160         160         8         21         21         0         0         116.6         330         80         618         618         0         0         84358         2556         2911         26,89         49,44         1436         179,5         179,5         278,7	3,509 67,2 103,6 1463 0,92
SOLICITAÇÃO NA SECÇÃO CONDICIONANTE N _{Ed} 74,24 kn V _{Ed.z} -70,14 kn M _{Ed.y} -393,30 kn.m V _{Ed.y} -0,07 kn M _{Ed.z} -1,04 kn.m	CLASSE 3
A. VERIFICAÇÃO À ENCURVADURA EM TORNO DO EIXO Y IVAREJAMENTO	NP EN 1993-1-1. 6.3.1.1(3)
N _{by,Rd} 2614,74 kN OK 2,8% L _{cr,r} 15,00 λ _r 0,64 α _r 0,34 φ _r 0,78 χ _r 0,82	
	NP FN 1993-1-1, 6.3.1.1(3)
N _{b 2.84} 2628.38 kN OK 2.8% $L_{cr2}$ 1.65 $\lambda_{c}$ 0.54 $\alpha_{c}$ 0.49 $\phi_{c}$ 0.73 $\chi_{c}$ 0.82	
C. VERIFICACAO A ENCURVADURA LATERAL [BAMBEAMENTO]	NP EN 1993-1-1. 6.3.2
DETERMINAÇÃO DO VALOR DO MOMENTO CRÍTICO (M _{GR} ) PARA A ENCURVADURA LATERAL - PROPOSTA DE CLARK AND HILL (1960) E GALÉA (1981);	MANUAL MODE
$ \begin{array}{c} \overbrace{\qquad} CALCULO AUTOMÁTICO DO VALOR DE M_{CR}} \\ & \swarrow \\ \hline \\ e & \swarrow \\ DEFINIÇÃO MANUAL DO VALOR DE M_{CR}} \end{array} \qquad M_{Cr} = C_1 \frac{\pi^2 E I_z}{(k_z l)^2} \left\{ \left[ \left( \frac{k_z}{k_w} \right)^2 \frac{I_w + (k_z l)^2 G I_T}{I_z - \pi^2 E I_z} + \left( C_2 z_g - C_3 z_j \right)^2 \right]^{n/2} - \left( C_2 z_g - C_3 z_j \right)^2 \right]^{n/2} \\ = 1258,79  \text{kn.m} $	VALORES M _{CR} 1467 kN.m PROPOSTOS M ^E _{CR} 3619 kN.m
COEFICIENTES DISTRIBUIÇÃO DE MOMENTOS INFO 🤉 FATORES DE COMPRIMENTO EFETIVO INFO 🤉 POSIÇÃO DA CARGA NA SECÇÃO INFO 🤉 GRAU DE ASS	IMETRIA DA SECÇÃO INFO 🖓
C1 1,29 C2 1,56 C3 0,75 BANZO COMPRIMIDO: INFERIOR	0 m
EDEFINITIVATORES C FATORES COMPRIMENTO FETTIVO	0,5 hg 639 mm
	INFERIOR I _{fc} 716,8 cm ⁴
COMPRIMINTO INTER SECCIOS 1(m) 22 0.033 LATERALM. CONTRAVINADAS 155 em metro	TRACIONADO:
	······································
DETERMINAÇÃO DO VALOR DE CÁLCULO DO MOMENTO RESISTENTE À ENCURVADURA LATERAL:	
M _{b y,8d} 430,68 kN.m OK 91% M _{cR} 1259 kN.m M ^e _{CR} 3619 kN.m A ₁ T 0,75 α ₁ T 0,76 Φ ₁ T 0,99 X ₁ T 0,61	
D. VERIFICAÇÃO À ENCURVADURA POR ESFORCO TRANSVERSO [ENFUNAMENTO]	NP EN 1993-1-1. Anexo A
ESFORÇO TRANSVERSO RESISTENTE PLÁSTICO (ELU) V _{pl.8d} 784.97 kN OK NPEN1993-1-1 (6.2.6) com s 1455,44 cm ³	EXT. INT. EXT.
ALMA NÃO REFORÇADA h _u /t _u 77,25 > 72,7η ε 55,46 —— Devem existir reforços transversais pelo menos nos apolos!	
REFORÇOS TRANSVERSAIS EXTREMIDADE SIM RIGIDOS INTERMÉDIOS Não a _u (m) 5,00 L(m) 5,00 OTMIZAR REFORÇOS TRANSVERSAIS	ВІ
REFORÇOS LONGITUDINAIS Não Arredondamento a múltiplos de Scm.	
ALMA REFORÇADA h_/t_ 77.25 > 31/1 ¢ √k 55.5 — A chapa deve ser verificada em relação à resistência à encurvadura por esforço transverso!	kτ 5,40 kτ _{si} 0 a / h _i 8,09
VERIFICAÇÃO DA CHAPA EM RELAÇÃO À RESISTÊNCIA À ENCURVADURA POR ESFORÇO TRANSVERSO	NOTAS E CHAMADAS DE ATENÇÃO
V _{BRE} [KN] 654, ] = V5 _{6,88} b//,55 + V9 _{FRE} 6,6 DETERMINAÇÃO DA SEÇÃO EFETIVA CONSTITUIDA APENAS PELAS AREAS EFETIVAS DOS BANZOS	
UN         X ₀ 0.00         Custe         0 _[mn] 0 _[mn] c         ψ         Ko         Ap         p         Cerr[mn]         Derminic         Cerr[mn]	
λ _w 0.96         A. (set)         116.64         coverance         BANZO INFERIOR         160         21         76         1.00         0.43         0.210         ≤         0.748         →         1.000         76         160.00	
c ₄ (mm) -147.5 sercio sertino -67.20	
σ _{1,0079} 150,22         constitution services         Z _{eg} (m)         330,00         M _{eff} 571,86         M _{Meff} 548,88	RESTRIÇÕES DE VALIDADE:
$\Psi_{1774}$ - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1.974) - (1	nerorços transversais rigidos. Inexistência de reforços longitudinais.
iche M. H. Gra Pot taovi Viene By Magn	Universidade do Minho Escola de Engenharia

Figura E.4 – Interface IV. Fenómenos de Encurvadura: Viga  $B_1$  do Pórtico 3.
		RFACE V.	ANÁLI	SE DA	ESTA	BILIDA	DE GL	OBAL	DE ELE	MEN	TOS EN	VI FLEX	XÃO C	омро	OSTA C	ом с	OMPF	RESSÃ	0										
DESIGNAÇÃ	D	DIMENSÕES PR	INCIPAIS	DA SECÇ	ÃO TRA	NSVERSA	iL.	A	o	G	DIMENS	ÕES COI	MPLEME	NTARES		EIXO P	RINCIPA	L DE INÉ	RCIA Y			EIXO I	PRINCIPA	L DE INÉ	RCIA Z				
PRS	h	b₅ bi	tw	ts	ti	٢s	n	A	ZCG	yca	hi	d	CS3	CSi	ly .	W _{3.sup}	Wginf	Wpts	İş	Ave	la .	Wa,sup	Wzini	Wplz	iz.	Avg	IT	v x 10 ⁻⁵	з
f _{v (MPal} 27	660	mm mm 160 160	mm 8	mm 21	mm 21	mm 0	mm O	cm* 116.6	mm 330	mm 80	mm 618	mm 618	mm O	mm O	cm ⁻ 84358	cm" 2556	cm* 2556	cm ⁻ 2911	cm 26.89	cm* 49,44	cm ⁻ 1436	cm* 179.5	cm ² 179.5	cm" 278,7	cm 3,509	cm* 67.2	cm ⁻ 103.6	cm* 1463	0.92
1 (mm a) = 1						_							-	_											-,				
SOLICITAÇÃ	O NA SEC	ÇÃO CONDICIO	NANTE	N _{Ed}	74	1,24	kN	V _{Ed,z}	-70	,14	kN	M _{Ed,y}	-39	3,30	kN.m	V _{Ed,y}	-0,	.07	kN	M _{Ed,z}	-1,	04	kN.m					CLA	SSE 3
ENCURVA	DURA T	ENDO EM CO	NTA A I	NTERA	ÇÃO E	NTRE C	OMPR	ESSÃO E	FLEXÃ	<b>ю</b> мé	TODO AI	TERNA	TIVO 1 -	NP EN 1	1993-1-1	ANEXO	A										P	IP EN 1993	-1-1. Anexo A
PARÂMETE	OS ENCUR	RVADURA	L _{er,y}	15,00	L _{er,z}	1,65	L	5,00		λγ	0,64	λ	0,54	$\lambda_{LT}$	0,747		Ху	0,82	Χz	0,82	Xlt	0,61							
ESFORÇOS	NORMAIS	CRÍTICOS	N _{cr,y}	7771	kN	N _{cr,z}	10934	kN	N _{cr,T}	16285	kN			FAT	ORES	uy	1,00	uz	1,00	wy	1,14	wz	1,50	n _{pl}	0,02	$\lambda_{max}$	0,64		
	TES DE M Álculo A Álculo N	OMENTO UNIF UTOMÁTICO DO 1ANUAL DOS VA	ORME EC S VALORE LORES DE	Cmy.0 e C	NTE 1.0 e Cmz.0 	MANUAL MODE	M ^E _{CR}	3619	kN.m	C1	1,29	λο	0,44	> 0,2	$2\sqrt{C_1}$	$1 - \frac{N_{\rm H}}{N_{\rm c}}$	$\left(\frac{d}{r,z}\right) \left(1 - \frac{d}{r,z}\right)$	$\frac{N_{Ed}}{N_{cr,TF}}$	$\overline{c}$ $\Rightarrow$	C _{my} C _{mz} C _{mLT}	1,00 1,00 1,00	← ←	C _{my,0} C _{mz,0}	1,00 1,00	]				
FATORES	a _{LT}	1,00 b _{LT}	0,00	CLT	0,31	d _{LT}	0,05	e _{LT}	3,23					FAT	ORES	C _{vv}	1,00	C _{yz}	0,86	Czy	0,99	C ₂₂	0,97						
FATORES	DE INTERA	<b>IÇÃO</b> k _{yy}	1,01	k _{yz}	1,01	k _{zy}	1,01	k ₂₂	1,01																				
CONDIÇÃO NP EN 1993- CONDIÇÃO	ASSOCIA I-1 6.3.3(4) ASSOCIA	DA À ENCURVA EXP 6.61 DA À ENCURVA	DURA EN DURA EN	I TORNO	D DE Y D DE Z	$\overline{\chi}_{2}$	N _{Ed} N _{Rk} /Y	$\frac{1}{M_{1}} + k_{yy}$	$\frac{M_{y,Ed}}{\chi_{LT}M}$	$+\Delta M_y$ $I_{y,Rk}/\gamma_1$ $+\Delta M_y$	$\frac{k_{\text{Ed}}}{k_{\text{M1}}} + k_{\text{yz}}$	$\frac{M_{z,Ed}}{M_{z,I}}$	$+\Delta M_{z,1}$ $R_{k}/\gamma_{M1}$ $+\Delta M_{z,1}$	Ed Ed:	=	0,97	<	1,0 1,0	ок	97% 97%									
NF 2N 1995	(-1 0.3.3(4)	LAF 0.02				χ	(IN _{Rk} / )	M1	χ _{LT} M	y,Rk/Yy	41	IVI _{Z,I}	Rk/ 7 _{M1}									Pro	João M. M. Eira (. Isabel Valenta 1g.º Miguel Pires	*		<b>Universidad</b> Escola de Er	le do Minh ngenharia	. <	

Figura E.5 – Interface V. Análise de estabilidade global de elementos em flexão composta com compressão: Viga $B_1$  do Pórtico 3.

## Anexo E

## Verificação aos ELU da Viga B₁

Verificação aos ELU da viga  $B_1$  do Pórtico 3, de acordo com a secção 5.6 deste documento.

## Anexo E.2

Relatório de cálculo exportado a partir da ferramenta *AciariUM* relativo à verificação aos ELU da viga  $B_1$  do Pórtico 3.



Página | 225

VERIFICAÇÃO À ENCURVADURA LATERAL [BAMBEAMENTO] NP EN 1993-1-1. 6.3.2
MOMENTO CRÍTICO PARA A ENCURVADURA LATERAL McR: VALOR DO MOMENTO CRÍTICO McR DEFINIDO MANUALMENTE PELO UTILIZADOR: McR 1258,79 kN.m
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
VERIFICAÇÃO À ENCURVADURA POR ESFORÇO TRANSVERSO [ENFUNAMENTO] NP EN 1993-1-5 5
ALMA NÃO REFORÇADA:       INT.       EXT.       INT.       EXT.       BS         h_w/t_w       77,25       >       72/η ε       55,465       Devem existir reforços transversais pelo menos nos apoios!       INT.       EXT.       INT.       EXT.       BS         ALMA COM REFORÇOS TRANSVERSAIS:       EXTREMIDADE       Não       INTERMÉDIOS       Não       ESPAÇAMENTO ENTRE REFORÇOS:       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a
$\begin{bmatrix} \text{CONTRIBUIÇÃO DA ALMA} & V_{bw,Rd} - kN & V_{bw,Rd} = \frac{\chi_w f_{yw} h_w t}{\sqrt{3} \gamma_{M1}} & \text{com } \chi_w - \sigma_E & 31,81 \text{ MPa } \lambda_w & - \end{bmatrix}$ $\begin{bmatrix} \text{CONTRIBUIÇÃO BANZOS} & V_{bf,Rd} - kN & V_{bf,Rd} = \frac{b_f t_f^2 f_{yf}}{c \gamma_{M1}} \left[ 1 - \left( \frac{M_{Ed,y}}{M_{f,Rd}} \right)^2 \right] & \text{com } M_{N_{f,Rd}} & 548,88 \end{bmatrix}$

## V. VERIFICAÇÃO DO ELEMENTO Á ESTABILIDADE GLOBAL

ENCURVADURA TENDO EM CONTA A INTERAÇÃO ENTRE	E COMPRESSÃO E FLEXÃO MÉTODO 1 - NP EN 1993-1-1 ANEXO A NP EN 1993-1-1. Anexo A
ESFORÇOS NORMAIS CRÍTICOS N _{cr.y} 7770,74 kN N _{cr.z} 10	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
COEFICIENTES DE MOMENTO UNIFORME:	
VALORES DOS PARÂMETROS Cmy.0 e Cmz.0 DEFINIDOS MAN	UALMENTE PELO UTILIZADOR: Cmy.0 1,00 Cmz.0 1,00
$\overline{\lambda_0} = \sqrt{\frac{W_{pl,y} f_y}{M_{cr}^e}} = 0,44 > 0,2\sqrt{C} \sqrt[4]{\left(1 - \frac{N_{Fd}}{N_{cr,z}}\right) \left(1 - \frac{N_{Fd}}{N_{cr,TF}}\right)}$	$= 0,23 \implies C_{my} 0,00 \qquad C_{mz} 1,00 \qquad C_{mLT} 0,00$
FATORES $a_{LT}$ 1,00 $b_{LT}$ 0,00 $c_{LT}$ 0,31 $d_{LT}$ 0,00	05         e _{LT} 3,23         FATORES         C _{yy} 1,00         C _{yz} 0,86         C _{zy} 0,99         C _{zz} 0,97
FATORES DE INTERAÇÃO     k _{yy} 1,01     k _{yz} 1,01	1,01 k _{zz} 1,01
CONDIÇÃO ASSOCIADA À ENCURVADURA EM TORNO DE Y NP EN 1993-1-1 6.3.3(4) EXP 6.61	$\boxed{\frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{M1}} + k_{yy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} M_{y,Rk} / \gamma_{M1}} + k_{yz} \frac{M_{z,Ed} + \Delta M_{z,Ed}}{M_{z,Rk} / \gamma_{M1}}}{M_{z,Rk} / \gamma_{M1}}} = 0,97 < 1,0 \text{ OK } 97\%$
CONDIÇÃO ASSOCIADA À ENCURVADURA EM TORNO DE Y NP EN 1993-1-1 6.3.3(4) EXP 6.61	$\frac{N_{Ed}}{\chi_y N_{Rk}/\gamma_{M1}} + k_{zy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} M_{y,Rk}/\gamma_{M1}} + k_{zz} \frac{M_{z,Ed} + \Delta M_{z,Ed}}{M_{z,Rk}/\gamma_{M1}} : = 0,97 < 1,0 \text{ OK 97\%}$

## ANEXO I. NOTAÇÃO:

A	área da sercião transversal (cm ² )
Zeg	area da secular denistretar (en )
V	coordenada em y da posição do centro de gravidade da secrão transversal (mm)
1 cg	contanta de inárcia da sercia transeral em relación a elivo (i) (cm ⁴ )
W	momento de flavão difeiros am calçaño can en ve avalada de cavo de socrão transvercal (cm ³ )
W	modulo de ficado clastico em relação do civo y, relativo a hora superior da secção transversar (cm.)
W/	mouto de fiexa e assiste em relação ao exo y, relativo a nora interior da secular dataversar (cm 3 )
W z.sup	modulo de flexao elastico em relação do eixo 2, relativo a nora extrema esquerad ou direita do baros inferior $(cm^3)$
vv z.inf	
vv pl.y	modulo de fiexao plastico da secção transversal (cm.)
I _(i)	raio de giração da secção transversal relativo ao eixo (i) (cm)
A _{v.(i)}	area resistente aos esforço transverso V _(i) (cm ⁻ )
I _T	constante de torção de St. Venant (cm ⁴ )
l _w	constante de empenamento (cm ⁶ )
E	módulo de elasticidade (GPa)
v	coeficiente de Poisson em regime elástico
η	coeficiente para calcular a área de corte
f _y	tensão de cedência (MPa)
f _u	tensão última (MPa)
Y _{M(i)}	coeficientes parcias de segurança γ _{M0} , γ _{M1} , γ _{M2}
ε	fator que depende de f _y
N _{Ed}	valor de cálculo do esforço normal atuante (kN)
M _{(i).Ed}	valor de cálculo do momento fletor atuante, em relação ao eixo (i) (kN.m)
V _{(i).Ed}	valor de cálculo do esforço transverso atuante na direção (i) (kN)
N _{t.Rd}	valor de cálculo do esforço normal resistente de tração (kN)
N _{c.Rd}	valor de cálculo do esforço normal resistente de compressão (kN)
M _{(i).Rd}	valor de cálculo do momento fletor resistente em relação ao eixo (i) (kN.m)
V _{(i).Rd}	valor de cálculo do esforço transverso resistente na direção (i) (kN)
A _{v.z}	área resistente ao esforço transverso V _z (cm ² )
A _{r.z}	área restante relativamente à área A _{vz} (A-A _{vz} ) (cm ² )
A _{v.y}	área resistente ao esforço transverso V _y (cm 2 )
A _{r.y}	área restante relativamente à área A _{vy} (A-A _{vy} ) (cm ² )
Págin	godfi 2216 de redução para determinar os valores de cálculo dos momentos fletores resistentes, tendo em conta a interação com os esforços transversos
f'.(A)	ten são de cedência reduzida adotada na área resistente ao esforço transverso A reas tomar em consideração os efeitos da presença do esforço transverso V, no cálculo

response de cedência reduzida adotada na área resistente ao esforço transverso A_{vz} para tomar em consideração os efeitos da presença do esforço transverso V_z no cálculo Página 2 de 3

' y\' 'v.z/	momento fletor resistente M., Abrevia-se em f (MPa)
	momento inclusive restriction $W_{V,R}$ is not as a construction of the $W_{V,R}$ in $W_{V,R}$ is a second of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second
f' _y (A _{v.y} )	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the
W sup	resistence my _{2,k0} - rose ta con yy (mol) módulo de flevão elástico da área Ali) em relação ao eixo y, relativo à fibra superior da serção transversal
W inf	módulo de flexão elástico da área (i) em reução do emo () relativo à fibra inferior da servão transversal
W sup	modulo de flavão elestero da área A(i) em relição do eixo 7, relativo a mineror da sequera americana direita do bazo superior da secreão transversal
W el.Z.A(i)	modulo de fexao elistico da area A(i) em relação ao eixo z, relativo a hija extrema esquerta do accuran adireita do bazos inferior da secção transversar módulo de flexão elístico da área A(i) em relação ao eixo z, relativo a hija extrema esquerta do accura direita do bazos inferior da secção transversar
vvel.z.A(i)	modulo de fexao elastico da área A(i) em relação ao eixo z, relativo a hina extrema esquerta do castrema financia do banzo mientor da secção transversal
VV eff.'y.A(i)	modulo de flexao efetivo da afea A(i) em relação ao civo y, relativo a nora superior da secção transversal
VV eff.y.A(i)	modulo de flexado eretivo da area A(f) em relação ao eixo y, relativo a nora minerior da secção transversan A de la de sector de área A(f) em relação ao eixo y, relativo a nora minerior da secção transversan
VV eff.z.A(i)	modulo de fiexão eretivo da area A(I) em relação ao eixo 2, relativo a nora extrema esqueroa ou extrema direita (caso mais destavoravel) do banzo superior da secção transversal
VV eff.z.A(i)	modulo de fiexao eretivo da area A(i) em relação ao eixo 2, relativo a fibra extrema esquerda ou extrema direita (caso mais destavoravel) do banzo interior da seção transversal
M _{V.y.Rd}	valor de calculo do momento tietor resistente M _{y,Rd} reduzido pela interação com o estorço transverso V ₂ , com relação a tibra superior da secção transversal (RN.M)
WV.y.Rd inf	valor de calculo do momento tietor resistente M _{y,Rd} reduzido pela interação com o estorço transverso V ₂₂ com relação a tibra interior da secção transversal (kN.m)
M _{V.z.Rd sup}	valor de calculo do momento tietor resistence M _{2,Rd} reduzido pela interação com o estorço transverso $v_{y}$ com relação a fibra esquerda ou direita da secção transversal (a
	mais destavoravel) do banzo superior (kN.m)
M _{V.z.Rd inf}	valor de calculo do momento fietor resistente $M_{2,R}$ d reduzido pela interação com o estorço transverso $V_{y}$ , com relação a fibra esquerda ou direita da secção transversal (a
N.4	mais destavoravelj do banzo interior (kv.m) valez de sčelulo de memorto fictor zestopte pláctice Mroduzide pales enferens permal N e transverse V(kV.m)
IVI _{NV.y.Rd}	valor de calculo de amente fictor resistence plastico $m_{plika}$ reducido pelos enforces normal $m_{Ed}$ e transverso $V_{zEd}$ (NN.II)
IVI _{NV.z.Rd}	valor de calculo do momento netor resistente plastico $M_{pl,Rd}$ reduzido pelos estorços normal $N_{ed}$ e transverso $V_{y,Ed}$ (Ni.m)
N _{b.(i).Rd}	valor de calculo do esforço normal resistente a encurvadura em relação ao eixo (i) de um elemento comprimido (kN)
Lcr.(i)	comprimento de encurvadura em relação ao eixo (i) (KN)
Λ _(i)	esbleteza normalizada associada à encurvadura em relação ao eixo (i)
α(i)	fator de imperfeição para a encurvadura de elementos comprimidos associado à encurvadura em relação ao eixo (i)
Φ _(i)	valor para determinar o coeficiente de redução $\chi_{(i)}$
X(i)	coeficiente de redução para o modo de encurvadura em relação ao eixo (i)
M _{cr}	momento crítico de encurvadura lateral (kN.m)
M _{cr.E}	momento crítico elástico de encurvadura lateral (kN.m)
C _(i)	coeficientes C1, C2 e C3 dependendentes da forma do diagrama de momentos fletores e das condições de apoio nas extremidades do tramo de comprimento / a analisar
1	comprimento entre secções lateralmente contraventadas no banzo considerado (m)
kz	fator de comprimento efetivo referente às restrições à rotação em torno do eixo z das secções de extremidade do tramo de comprimento l
k _w	fator de comprimento efetivo referente às restrições ao empenamento das secções de extremidade do tramo de comprimento l
Zg	coordenada em z do ponto de aplicação da carga em relação ao centro de corte da secção transversal (m)
zj	parâmetro que traduz o grau de assimetria da secção transversal em relação ao eixo y (m)
M _{b.Rd}	valor de cálculo do momento fletor resistente à encurvadura lateral (kN.m)
$\lambda_{LT}$	esbelteza normalizada para a encurvadura lateral
$\alpha_{LT}$	fator de imperfeição para a encurvadura lateral
φ _{LT}	valor para determinar o coeficiente de redução 🚛
XIT	coeficiente de redução para a encurvadura lateral
aw	distância entre reforcos transversais da alma (m)
VhwRd	valor de cálculo da contribuição da alma para a resistência à encurvadura por esforco transverso (kN)
Vhfpd	valor de cálculo da contribuição dos banzos para a resistência à encurvadura por esforco transverso (kN)
V	coeficiente de reducão para a encurvadura por esforro transverso
Mend	valor de cálculo do momento fletor resistente da serção transversal constituída anenas pelas áreas efetivas dos banzos (kN m)
MN 6 Del	valor de cálculo do momento fletor resistente da serção transversal constituída apenas pelas áreas efetivas dos banzos, reduzido pela presenca de um esforço normal N _{ed} (kN m)
VLD	
• b.Rd	valor de disclose de l'esticación de enclusione de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la constru
NI NI	valor efficie de asforça normal associado à encuradaria elastica por nexas en torno do eixo y (kiv)
N Cr.z	valor critico de esforço normal asociado a encuradura estructa por nesso en terrão (kN)
C C	
C	
C _{mz}	
H _{eff}	area eretiva de uma secção transversal (cm ⁻ )
VV _{y.eff.s}	modulo de tiexao etetivo em relação ao eixo y, relativo à fibra superior da secção transversal (cm ⁻ )
W _{y.eff.i}	módulo de flexão efetivo em relação ao eixo y, relativo à fibra inferior da secção transversal (cm ³ )
W _{z.eff.DIR}	módulo de flexão efetivo em relação ao eixo z, relativo à fibra extrema esquerda da secção transversal (cm ³ )
W _{z.eff.ESQ}	módulo de flexão efetivo em relação ao eixo z, relativo à fibra extrema direita da secção transversal (cm ³ )
e _{Nz}	atastamento entre os centros de gravidade das áreas das secções efetiva (A _{eff} ) e bruta (A), segundo o eixo z (mm)
Δ _{My}	valor de cálculo do momento adicional atuante devido ao afastamento e _{Nz (kN.m} )
e _{Ny}	afastamento entre os centros de gravidade das áreas das secções efetiva (A _{eff} ) e bruta (A), segundo o eixo y (mm)
Δ _{Mz}	valor de cálculo do momento adicional atuante devido ao afastamento e $_{ m Ny}$ (kN.m)

## Anexo E

## Verificação aos ELU da Viga B₁

Verificação aos ELU da viga  $B_1$  do Pórtico 3, de acordo com a secção 5.6 deste documento.

## Anexo E.3

Relatório de cálculo exportado a partir do programa *Robot Structural Analysis* relativo à verificação aos ELU da viga B₁ do Pórtico 3.

-	Project: Caso de Estudo v5	Unit   Symbol description	17 Flande slanderness			50 cm Web height	00 cm Web thickness	15 Web slenderness	53 Relative extent of the compressed plastic zone	35 Stress or strain ratio	3 Web class	16 limit slenderness of a web for shear	25 web slenderness for shear	er Web class (shear)	3 Section type	Documentaria of history and hairs		ection	b Buckling curve	as m Effective huckling length				24 IIIIIpertection lactor	20 Doctination for building	sol kN Design buckling compared of compared		ecuori <u>zzz</u> d Bucklian-Arinza	c bucking buck	Stenderness ratio	133 Non-dimensional slend, ratio for buckling	19 <u> </u>	Z2 ₹Coefficient for calculation of X	32 Reduction factor for buckling	14 配下 Design buckling resistance of comp. member		Parameters of lateral-torsional buckling analysis:	-	2 m Lateral buckling length of upper flange	32 m Lateral buckling length of lower flange	28 Factor for Mcr calculations	56 Factor for Mcr calculations	75 Factor for Mcr calculations	26 cm6 Warping constant	50 cm Distance from the point where the load is applied to the	18 kN*m Critical moment for lateral-torsional buckling	75 Non-dimens. slend. ratio for lat. tors. buckling	d Lateral buckling curve	76 Immerfection factor for lateral buckling curves	Coefficient for calculation of XI T		Page : 2
Pt		Values	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.C		61.16	0.8(	76.4	0	<u>, 0</u>		55.4	: 22	Slend				is of cross-s		14 25	14:00	S AC				0.0	ie of cross-e	Is of cross-s	1 61	46	10	70	0	0.0	2646.02			od [6.3.2.2]	1.6	, tá	а П П	1	0	<u>€</u> 1 <u>2</u> 24392.82	30.2	⁼ 1262.98 ⁻	0		C		;;	
ombinations)	ddress:	Symbol	6)/HD	1 52	LTZ.	~	>	w/tw	fa	si	LW	w/tw)lim	w/tw	TSZ	Ļ			bout the y ax	urve.v	cr v	u.y	arriy	an y	la,y		y V h Rd	hout the 7 av		ul ve,2	amz	am z	fa.z		N	lz,b,Rd	-		eneral metho	cr,upp	cr,low	Σ	2	ņ	~	0	for 🔒	am_LT	urve.LT	fa I T	I T	-	ate : 20/09/15
	Project: Caso de Estudo v5	Symbol description		51 ; COORDINATE: x = 1.00 L = 1.652 m		Cross-section properties: PRS1		Cross-section area	Shear area - y-axis	Shear area - z-axis	Torsional constant	Moment of inertia of a section about the <u>varis</u>	Moment of inertia of a section about the zaxis	Elastic section modulus about the y-axis- upper edge	Elastic section modulus about the <u>yearis</u> - lower edge	Elastic section modulus about th <u>e za</u> xis	Height of cross-section	Top flange width	Bottom flance width				web thickness	Radius of gyrarion	Not among a memory of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco	ivet area to area ratio Factor for Averal ation				Destront vield strength of material	muit tensile stress - characteristic value	Partial safety factor		Partial safety factor		besignations of additional codes:	EN 1991-1-2:2003 - Fire loads on a structure	EN 1993-1-2:2005 - Steel structures - fire design	EN 1993-1-3:2005 - Steel structures from cold-formed se	EN 1993-1-5:2005 - Steel structures - plated elements	ECCS No111:2001 - Guidebook with recommendations f	ENV 1993-1-1:1992 - Steel structures - general code			upper flange width	upper flange thickness	Flange slenderness	Flange class	Inwer flance width	lower flange thickness		Page : 1
	Project: Caso de Estudo v5	Unit Symbol description		MEMBER: 51 ; COORDINATE: x = 1.00 L = 1.652 m		Cross-section properties: PRS1		) cm2 Cross-section area	) cm2 Shear area - y-axis	s cm2 Shear area - z-axis	cm4 Torsional constant	i cm4 Moment of inertia of a section about the <u>y_axis</u>	r cm4 Moment of inertia of a section about the advised and a section about the advised and a section about the advised and a section about the advised and a section about the advised and a section about the advised and a section about the advised and a section about the advised and a section about the advised and a section about the advised and a section about the advised and a section about the advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised and advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised advised adv	) cm3 Elastic section modulus about the y-axis- upper edge	) cm3 Elastic section modulus about the प्रेंड्क्सॉंड - lower edge	) cm3 Elastic section modulus about th <u>e</u> ∄āxis	) cm Height of cross-section	) cm Top flange width _ 글َ도	cm Bottom flance width						Not price and an article			daterial:		Desirem vield strength of material	MPa Themsele stress - characteristic value	Partial safety factor	ĒPartial safetv factor	Partial safety factor		🚊 🗟 Designations of additional codes:	EN 1991-1-2:2003 - Fire loads on a structure	EN 1993-1-2:2005 - Steel structures - fire design	EN 1993-1-3:2005 - Steel structures from cold-formed se	EN 1993-1-5:2005 - Steel structures - plated elements	ECCS No111:2001 - Guidebook with recommendations f	ENV 1993-1-1:1992 - Steel structures - general code		Class of section	o cm upper flange width	o cm upper flange thickness	Flange slenderness	Flange class	cm Inwer flange width	cm lower flance thickness		Page:1
	Project: Caso de Estudo v5	Values Unit Symbol description		MEMBER: 51 ; COORDINATE: x = 1.00 L = 1.652 m		Cross-section properties: PRS1		116.640 cm2 Cross-section area	67.200 cm2 Shear area - y-axis	59.328 cm2 Shear area - z-axis	101.074 cm4 Torsional constant	84357.895 cm4 Moment of inertia of a section about the <u>vaaris</u>	1436.237 cm4 Moment of inertia of a section about the 호텔axis	2556.300 cm3 Elastic section modulus about the y-axis- upper edge	2556.300 cm3 Elastic section modulus about the <u>yearis</u> - lower edge	179.530 cm3 Elastic section modulus about the Faxis	66.000 cm Height of cross-section	16.000 cm Top flange width	16.000 cm Bottom flance width	1100 cm Tan Barran 197 man						1.00 Instance to <u>Heas</u> area raud 1.20 Factor for <del>Av</del> -Tailoulation		inaterial:	C 0325 FC 075 V	275 0000 MPa Destrim vield strength of material	430.0000 MPa finalitic tensile stress - characteristic value	1.00 — Partial safety factor	1.00	1.25 Partial safety factor		ु हे Designations of additional codes:	EN 1991-1-2:2003 - Fire loads on a structure	EN 1993-1-2:2005 - Steel structures - fire design	ے آئے EN 1993-1-3:2005 - Steel structures from cold-formed se	EN 1993-1-5:2005 - Steel structures - plated elements	ECCS No111:2001 - Guidebook with recommendations ft	ENV 1993-1-1:1992 - Steel structures - general code			7.280 cm upper flange width	2.100 cm upper flange thickness	3.47 Flange stenderness	1 Flange class	7 280 cm Inwerflance width	2 100 cm lower flance thickness		Page:1

Loomp member of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec J/(XLT*My,Rk/gM1) + k J/(XLT*My,Rk/gM1) + k ompressed section part 91 Mz,Ed/Mz,c,Rd au,ty,Ed)^2)/(fy/gM0) mbda,z/Lambda,max) lo v5 (Manual tudo v5 torsion torsion ption m Mz

## Anexo E

## Verificação aos ELU da Viga B₁

Verificação aos ELU da viga  $B_1$  do Pórtico 3, de acordo com a secção 5.6 deste documento.

## Anexo E.4

Relatório de cálculo exportado a partir do programa *CYPE 3D* relativo à verificação aos ELU da viga  $B_1$  do Pórtico 3.

Bar N39/N215							
Section: PRS1 (H:660/5: Material: Steel (S275 (EN	50)x8x1( 1993-1	50x21 (De-1))	apth 660.0	) / 550.0 n	(m		
•	ž	odes	-		lechanical cha	aracteristics	0
Ν	Initial	Final	(m)	Area (cm²)	I _v ⁽²⁾ (cm4)	I _z ⁽²⁾ (cm4)	I _t ⁽³⁾ (cm4)
	N39	N215	1.650	116.64	84357.89	1436.24	109.33
	Notes: ⁽¹⁾ The ⁽²⁾ Ine ⁽³⁾ Uni	: mechanical   rtia with resp form torsiona	properties and ect to the india I moment of ir	the displayed c cated axis nertia	liagram correspor	nd to the initial s	section (N39)
			Buck	ing		_ateral buck	ing
×		×	plane	XZ plane	Top	fl.	Bot. fl.
	ß		00	60'6	1.0	0	1.00
	ť	1.	650	15.000	1.6	50	1.650
[	ڻ	1	000	1.000	1.0	00	1.000
]	Ű		1			1.290	
	Notation: B: Bu L _x : Bu C _m : M C _n : C	ckling coeffici ickling length oment coeffic itical momen.	ent (m) ient t modification	factor			
Bar 2, N N	ž	CHECKS (EUROC	ODE 3 NP EN 199 V, M,V2	3-1-1:/NA 2010) M ₂ V, NM ₂ M ₂	NM,M ₂ V,V ₂ M ₁	M,V ₂	I,V, Status
$\begin{array}{c c} & X: 1.444 m & X: 1.65 m & X: 0 m \\ & \lambda_{n,min} & \lambda_{n,min} & \eta = 1.5 & \eta = 2.8 \\ & Varificat & \eta = 1.5 & \eta = 2.8 \end{array}$	x: 0 m x: η = 65.1 η =	0 m x: 0 m 1.2 n = 10.4	$\eta < 0.1$ $\eta < 0.1$	$\eta < 0.1$ x: 0 m $\eta = 70$	2 η < 0.1 x: 1.6	5 m x: 1.65 m 1 n = 4.4 n <	$c_{0.1}$ VERIFIED $\eta = 70.2$
O Control of the web induced by the compressed fail - Constroy of the web induced by the compressed fail - Constroy of the web induced by the compressed fail - Constrong measurement - Constrong measurement - Constrong measurement - Constrong measurement - Mark Constrong demain pair and and residence MAR, Constrond demain pair and and residence MAR, Constrond demain pair and and residence MAR, Constrong demain pair and and residence - MAR, Constrond demain pair and and residence - MAR, Constrond demain pair and and residence - MAR, Constrond demain pair and and residence - MAR, Constrond demain pair and and residence - MAR, Constrond demain pair and and residence - MAR, Constrond demain pair and and residence - MAR, Constrond demain pair and and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond demain pair and residence - Constrond	arge resistance roc						
Crushing of the web indu	ced by tl	ie compre	essed flan	ge (Eurococ	le 3 EN 1993-	1-5: 2006, /	Article 8)
orteria must be	e satisfieo	÷					
$\frac{h_w}{t_w} \leq k \frac{E}{f_{yf}} \sqrt{\frac{A_w}{A_{fc,ef}}}$						65 <b>.</b> 22 ≤ 25	i5.34 🗸
Where:							
<b>h</b> w: Height of the web.						<b>h</b> w : 52	1.75 mm
<b>t</b> : Web thickness.						<b>t</b> ".	. <i>00</i> mm
<b>A</b> _w : Area of the web.						A : 4.	1.74 cm ²
Arc, ef: Reduced area of the	ne compr	essed flang	je.			A _{tc,ef} : <u>3</u> .	3.60 cm ²
<ul> <li>K: Coerricient which dep F. Modulus of Flasticity</li> </ul>	Dends on	cne class o	r the sectio	-		<u>х</u> п	0.30 MDa
fu: Steel elastic limit of	the comp	ressed flar	Jge.			<b>f</b> ⁴ : 27	75,00 MPa
-			5				

## Resistance to axial tension (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.3)

The following criteria must be satisfied:

>	
0.015	
 ד	
	an force occurs at node N215, for load combination
1	se desig
$\eta = \frac{N_{t,Ed}}{N_{t,Rd}}$	orst ca
F	The v

w+L.S.W+L.ecçao9ugrausposiçaoextremo.	
$N_{ted}$ : Worst case design axial tensile force.	Nt, ed : 44.07
The design tensile resistance <b>N</b> tred is given by:	

х Х

	N.Rd : 2965.60 kN		<b>A</b> : 107.84 cm ²	<b>f</b> _{yd} : <i>275.00</i> MPa	
e design tensile resistance <b>N</b> trad is given by:	$N_{t,Rd} = A \cdot f_{yd}$	Where:	A: Gross transverse section of the bar.	$\mathbf{f}_{yd}$ : Steel design strength.	i i i i i i i i i i i i i i i i i i i

**f**_y : <u>275.00</u> MPa γ_{M0} : <u>1.00</u>

f.: Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table 3.1)

 $\boldsymbol{f_{yd}}=\boldsymbol{f_y}/\gamma_{M0}$ Where:  $\gamma_{\text{MO}}$ : Partial safety factor of the material

Produced by an educational version of CYPE

 $f_{\boldsymbol{\mu}'}$  : Steel elastic limit of the compressed flange. Where :

 $f_{y^f} = f_y$ 

Compression resistance (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6. The following criteria must be satisfied:	6.2.4)
$\eta = \frac{N_{c, Ed}}{N_{c, Rd}} \leq 1$	ຖ : 0.028 🗸
The worst case design force occurs at node N39, for load combination 1.35-SW+1.5-SOBRE.	
$N_{c,Ed}$ : Worst case design compressive axial force.	N _{с,€d} : 73.96 kN
The normal design compression force $\mathbf{N}_{c, \text{Rel}}$ should be taken as:	
$N_{c,Rd} = A_{ef} \cdot f_{yd}$	N _{с,Rd} : <i>2633.93</i> kN
Where: <b>Class</b> : Section class, depending on its deformation capacity and development of plastic resistance of the compressed elements of a	a Class : 4
section. A _{ef} : Effective cross sectional area for class 4 sections. f _{ue} : Steel design strength.	<b>A</b> _{ef} : <u>95.78</u> cm ² <b>f</b> _{yd} : <u>275.00</u> MPa
$\mathbf{f}_{\mathbf{rd}} = \mathbf{f}_{\mathbf{r}}/\gamma_{MD}$	
Where: <b>f</b> ,: Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table 3.1)	<b>f</b> , : 275.00 MPa
<ul> <li>p. "we': Partial safety factor of the material.</li> <li>b. "postial safety factor of the material.</li> <li>b. "postial"</li> <li>c. "Buckling resistance: (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article</li> </ul>	Ymo : 1.00
$\overline{v_{0}}$ (5.3.1) Vert the slenderness $\overline{\lambda} \le 0.2$ or the ratio $N_{ete}$ / $N_{er} \le 0.04$ , the buckling effect $\overline{v_{0}}$ be ignored and only the resistance of the transverse section has to be	
use to the standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard sta Standard standard overline{\lambda}$ : 0.58	
$\lambda = \sqrt{\frac{A_{ei} \cdot f_{y}}{N_{ei}}}$	
ced N _{6.64} /N ₆₇ : Axial force ratio.	N _{c,Ed} /N _{cr} : 0.010
Where:	
호l A Effective cross sectional area for class 4 sections. f.: Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, 	A _{ef} : <u>95.78</u> cm ²
Note: Critical elastic buckling axial force, obtained from the	N
National of the rollowing values. N _{ev} , Critical elastic buckling axial force with respect to	NG - 7770 74 KN
$N_{exc}$ : Critical elastic buckling axial force with respect to	
ure 2 axis. $N_{\alpha,\gamma}$ : Critical elastic buckling axial force due to torsion.	N _{α,T} : <u>10933.95</u> ΚΝ N _{α,T} : <u>16378.29</u> ΚΝ
V - Avis handing resistance (Furgende 3 ND EN 1903-1-1-/NA 2010 Artic	
T - TAKE DETINING LESISCENCE (LUICOUGE J INT LIN 1990-1-1-1.) INT 2010, AUG	
$\eta = \frac{M_{Hd}}{M_{c,Rd}} \le 1$	μ : <b>0.560 √</b>
$\eta = \frac{M_{\rm Ed}}{M_{\rm Loc}} \le 1$	11 : 0.651
- 'D'Kd	

The worst case design force occurs at node N39, for load combination SW+1.5-Direcção180graus.			
$M_{\text{Ed}}^{+}$ : Worst case design bending moment.	¥ ^{₽9}	271.52	kN.
For negative bending: The worst rase design forces actives at node N39 for load combination			
1.35-SW+1.5-SOBRE.			
Med : Worst case design bending moment.	Med	393.41	kN-
i ne design bending moment resistance M _{elka} is given by: M = W . f	2		N/I
••c,Rd = ••ely •yd Mthara	c,Rd	102.98	
whete: <b>Class:</b> Section class, depending on its deformation capacity and <b>class:</b> Section submitted development of plastic resistance of the flat elements of a section submitted	Class	ŝ	I
to simple bending. W _{ay} : Elastic strength modulus corresponding to the fibre with greatest	V.	2556.30	c
tension, for class 3 sections.	•		1
$\mathbf{f}_{\mathbf{v}}$ : Steel design strength. $\mathbf{f}_{\mathbf{v}} = f/x$	1 vd	275.00	МР
VV/ PV-			
witche. f.: Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table			
3.1) y _{we} : Partial safety factor of the material.	Υ ^{M0}	275.00 1.00	MP
Lateral buckling resistance: (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.3.2)		001	1
The design bending moment resistance M _{bad} is given by:			
$\mathbf{M}_{\mathbf{b},\mathbf{Rd}} = \chi_{LT} \cdot \mathbf{M}_{\mathbf{c}_{1},\mathbf{y}} \cdot \mathbf{f}_{yd}$	M _{b,rd}	604.14	ч К
<ul> <li>Where:</li> <li>W . Flastic strandth modulus corresonnding to the fibre with greatest</li> </ul>	X	7552 30	Ę
tension, for class 3 sections.		000000	5
<b>F</b> _{yd} : Steel design strength.	f _{vd} .	275.00	MPa
$f_{\rm vd} = f_{\rm v}/\gamma_{\rm NL}$			
Where:			
	÷	275.00	MPa
φ γ _{w1} : Partial safety factor of the material.	YMI	1.00	
$\chi_{tr}$ : Reduction factor due to lateral buckling.			
$\chi_{LT} = \frac{1}{2} \leq 1$		0.86	
	ļ		
$\Phi_{LT} = 0.5 \cdot \begin{bmatrix} 1 + \alpha_{LT} \cdot (\lambda_{LT} - 0.2) + \lambda_{LT} \end{bmatrix}$	φιτ	0.65	
$\alpha_{ur}$ : Elastic imperfection coefficient.	α ^{Γ1}	0.76	
$\overline{\lambda}_{LT} = \sqrt{\frac{W_{ely} - \hat{t}_y}{M}}$	$\overline{\lambda}_{LT}$	0.39	
	3		
$M_{\alpha}$ : Critical elastic lateral buckling moment: The critical elastic lateral buckling moment ' $M_{\alpha}$ ' is established in the following way:	Σ	4681.85	ż I
$\boldsymbol{M}_{\boldsymbol{c}\boldsymbol{r}} = \boldsymbol{C}_{1} \cdot \frac{\pi^{2} \cdot \boldsymbol{E} \cdot \boldsymbol{I}_{1}}{L_{c}^{2}} \cdot \left[ \left[ \left( \frac{k_{z}}{k_{w}} \right)^{2} \cdot \frac{I_{w}}{l_{z}} + \frac{L_{z}^{2} \cdot \boldsymbol{G} \cdot \boldsymbol{I}_{1}}{\pi^{2} \cdot \boldsymbol{E} \cdot \boldsymbol{I}_{1}} + \left( \boldsymbol{C}_{2} \cdot \boldsymbol{Z}_{9} - \boldsymbol{C}_{3} \cdot \boldsymbol{Z}_{1} \right)^{2} \right]^{-1} - \left( \boldsymbol{C}_{2} \cdot \boldsymbol{Z}_{9} - \boldsymbol{C}_{3} \cdot \boldsymbol{Z}_{1} \right) \right]$			
Where: T · Moment of inartia of the proce sertion with researct to the Z-avis	-		ġ
Information of the group of the group section, with respect to the 2-axis. I.: Uniform torsional moment of inertia.	ι	109.33	Ë È
I: Section warping constant.	Ĩ	1466114.12	Ğ
E: Modulus of Elasticity.	ш	210000	MPa
G: Elastic modulus of steel.	יט	81000	MP
L: Effective buckling length of the top flange.	<u> </u>	1.650	E E
C1: Factor which depends on the support conditions and bending moment	ĭΰ	1.29	
envelope of the bar.			I
<b>C</b> ₃ : Factor which depends on the support conditions and bending moment envelope of the bar.	ບິ	1.00	I
_			

For positive bending:

Página | 236

$\mathbf{G}_{:}$ Factor which depends on the support conditions and bending moment envelope of the bar.	 ບົ	1.00	
$\mathbf{k}_{\rm s}$ : Effective length coefficient, which depends on the rotation restrictions at the ends of the bar	, Å	1.00	
${\bf k}_{\rm wi}$ Effective length coefficient, which depends on the warping restrictions at the ends of the bar.	 *	1.00	
$\mathbf{z}_{s}$ : Distance between the application point of the load and the shear centre, with respect to the Z-axis.	n N	0.00	E
$z_{g} = z_{a} - z_{s}$			
Where:			
z.: Distance in the direction of the Z axis between the load application point and the geometric centre.	Ň	0.00	E
z.: Distance in the direction of the Z-axis between the shear centre and the geometric centre.	Ň	0.00	E I
<b>z</b> _i : Asymmetric parameter of the section, with respect to the Y-axis. <b>z</b> _i $- z_{i} = 0$ or $f(x_{i}^{2}, -z_{i}^{2}) - z_{i}$	 N	0.00	E
$AD \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \\ \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} \chi L \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix}$			

## Z - Axis bending resistance (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.5)

The following criteria must be satisfied:

η : 0.012 V	M _{ed} * : <u>0.92</u> kN·m	M _{Ed} : <u>0.85</u> kN·m M _{Edd} : <u>76.64</u> kN·m	Class :	W _{Pl₂} : <u>278.69</u> cm³	<b>f</b> _{yd} : <u>275.00</u> MPa	<b>f</b> , : <u>275.00</u> MPa Yee : <u>1.00</u>
$\eta = \frac{\eta_{Ed}}{M_{c,Rd}} \le 1$	for positive bending: The worst case design force occurs at node N39, for load combination N.35.SW+1.5-SOBRE Met** Worst case design bending moment. For negative bending: The worst case design force occurs at node N39, for load combination	화 W+1.5-DirecçãoOgraus 전 Mer : Worst case design bending moment. The design bending moment resistance Mere is given by: 전 Mered Evolo:2 for	Where: <b>Class</b> : Section class, depending on its deformation capacity and development of plastic resistance of the flat elements of a section submitted to simple bending.	$W_{\text{M4}^2}$ : Plastic strength modulus corresponding to the fibre with greatest tension, for class 1 and 2 sections.	$f_{yd}$ : Steel design strength. $f_{yd} = f_y/\gamma_{\rm Ho} \label{eq:phi}$ Where:	f,: Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table 3.1) γ: Partial safety factor of the material.

## Resistance to shear in the Z direction (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.6)

The following criteria must be satisfied:

 $\eta = \frac{V_{Ed}}{V_{c,Rd}} \leq 1$ 

n : 0.089 V

V_{b,Rd,max} : 941.96 kN

χw : 0.86

 $\chi_{w}$ : Contribution factor of the web to buckling resistance:

Where:

 $\overline{\lambda}_w \ge 0.83 / \eta \rightarrow \chi_w = 0.83 / \overline{\lambda}_w$ 

η: Conversion factor.

Where:

η: *1.20* 

$\eta = \frac{V_{\text{efd}}}{V_{0,\text{Red}}} \leq 1$	η: <u>0.104</u>
The worst case design force occurs at node N39, for load combination 1.35-SW+1.5-SOBRE.	
$V_{ed}$ . Worst case design shear force.	V _{Ed} : 70.19 kN
The shear resistance $V_{c,Rd}$ is given by:	
$\mathbf{V}_{c,\mathbf{Rd}} = A_v \cdot \frac{f_{vd}}{\sqrt{3}}$	<b>V</b> _{с,Rd} : <u>784,97</u> kN
Where:	
A.: Transverse shear area.	<b>A</b> _v : <u>49.44</u> cm ²
Av = u · L _w Where	
d: Height of the web.	<b>d</b> : 618.00 mm
<b>t</b> _w : Web thickness.	<b>t</b> ": <i>8,00</i> mm
$f_{rd}$ : Steel design strength.	<b>f</b> vª : <u>275.00</u> MPa
$\mathbf{I}\mathbf{y}\mathbf{d} = \mathbf{I}\mathbf{y}/\gamma\mathbf{M}0$	
Where:	
Table 3.1)	<b>f</b> , : 275.00 MPa
ο Physic Partial safety factor of the material.	γM0 : 1.00
Shear buckling of the web: (Eurocode 3 EN 1993-1-5: 2006, Article 5) Wo transverse stiffeners have been used, therefore the buckling resistance of The web does not need to be checked, as the following is not complied with:	
$\mathbf{d} < \frac{\mathbf{d}}{\mathbf{t}_{w}} < \frac{72}{\pi}$ .	77.25 < 55.46
an ed Mhere: A: Slenderness of the web.	λ : 77 25
y [™] =   d	
ع ٩	
λ	λ _{max} : 55.46
$\lambda_{\max} = \frac{1}{\eta} \cdot \varepsilon$	
$\eta$ : Coefficient which allows to consider the additional resistance in plastic regime because of hardening due to deformed material.	ຖ : <i>1.20</i>
ɛ: Reduction factor.	s : 0.92
$\mathbf{s} = \sqrt{\frac{f_{ref}}{f_{v}}}$	
Where:	
fret: Reference elastic limit.	<b>f</b> _{ref} : 235.00 MPa
Table 3.1) The strength (Eurocode 5 NY EN 1993-1-1./NA 2010)	<b>f</b> , : <u>275.00</u> MPa
The resisted shear force of the web due to shear buckling <b>V</b> _{b.Rd} , is given by:	
$\mathbf{V}_{\mathbf{b},\mathbf{Rd}} = \frac{\chi_{\mathbf{w}}\cdot\mathbf{r}_{\mathbf{v}}\cdot\mathbf{u}\cdot\mathbf{r}_{\mathbf{w}}}{\sqrt{3}\cdot\mathbf{v}_{\mathbf{w}}} \leq \frac{\eta\cdot\mathbf{r}_{\mathbf{v}}\cdot\mathbf{u}}{\sqrt{3}\cdot\mathbf{v}_{\mathbf{w}}}$	$\mathbf{V}_{\mathbf{b},\mathbf{Rd}} : \frac{673.61}{2000}  \mathrm{kN}$
TWI ) X TWI ) X	V _{b,Rd,max} : 941.96 KIN

λ _w : 0.97	ɛ : <u>0.92</u> d : <u>618.00</u> mm t _w : <u>8.00</u> mm	<b>f</b> , : <u>275.00</u> МРа үм : <u>1.00</u>	110, Article 6.2.6)	ի < <u>0.001</u> > ր	:	Ved : 0.06 KN	V _{c,Rd} : 1066.94 kN	<b>A</b> _v : <u>67.20</u> cm ²			<b>d</b> : <u>116.64</u> cm ² <b>d</b> : 618.00 mm	<b>t.</b> : 8.00 mm	<b>f</b> _{vd} : <i>275.00</i> MPa	:	<b>f</b> y : <u>275.00</u> МРа үма : <u>1.00</u>	NP EN 1993-1-1:/NA 2010,		i.19 kN ≤ 392.48 kN 🗸		<b>V</b> _{Ed} : 70.19 kN	V _{c.Rd} : 784.97 kN	
$\bar{\lambda}_{\rm w}$ : Modified slenderness, when there are only transverse stiffeners at the supports. - $d/t$	λw = $\frac{-5.4\%}{86.4 \cdot \epsilon}$ ε: Reduction factor. <b>d</b> : Height of the web. <b>t</b> _w : Web thickness.	<b>f</b> ₄ : Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table 3.1) γ _M : Partial safety factor of the material	Resistance to shear in the Y direction (Eurocode 3 NP EN 1993-1-1:/NA 20 The following criteria must be satisfied:	$\eta = \frac{V_{\text{est}}}{V_{\text{c,Rd}}} \leq 1$	The worst case design force occurs for load combination 1.35-SW+1.5-SOBRE.	Vest Worst case design shear force. The shear resistance V _{est} is given by:	$\mathbf{V}_{c,\text{red}} = \mathbf{A}_{v} \cdot \frac{\mathbf{f}_{red}}{\sqrt{3}}$	version Where: A.: Transverse shear area.	$\mathbf{A}_{\mathbf{v}} = \mathbf{A} - \mathbf{d} \cdot \mathbf{t}_{\mathbf{w}}$	Where:	dia dia section.	t.,: Web thickness.	d fyd: Steel design strength.	Ind         = 1, / 7 №           Where:         Where:           ft;         Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010,	Table 3.1) ₇ : Partial safety factor of the material.	Combined bending moment Y and shear force Z resistance (Eurocode 3 I	It is not necessary to reduce the design bending resistance, as the worst It is not necessary to reduce than 50% of the design shear resistance V _{exe} .	$V_{ed} \leq \frac{V_{c,Rd}}{2}$ 70	The worst case design forces occur for load combination 1.35.SW+1.5.SOBRE.	$\mathbf{V}_{\mathbf{ed}}$ : Worst case design shear force.	$V_{cRd}$ : Design resistant shear force.	

# Combined bending moment Z and shear force Y resistance (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.8)

It is not necessary to reduce the design bending resistance, as the worst case shear force  $V_{\epsilon_{Rd}}$  is not greater than 50% of the design shear resistance  $V_{\epsilon_{Rd}}$ .

<				
	$V_{ed} \leq \frac{V_{e,Rd}}{2}$ 0.06	VI N	533.47 kN	>
The 1.3	worst case design forces occur for load combination 5·SW+1.5·SOBRE.			
	V _{Ed} : Worst case design shear force.	<: د	0.06	х Х
	V _{sRd} : Design resistant shear force.	V _{c,Rd} :	1066.94	к К
ပိ	mbined bending and axial resistance (Eurocode 3 NP EN 1993-1-1:/NA 201	0, Artic	de 6.2.9)	
Th∈	e following criteria must be satisfied:			
	$\eta = \frac{N_{c,fed}}{N_{p,Red}} + \frac{M_{\gamma,fed}}{M_{e,Red,\gamma}} + \frac{M_{z,fed}}{M_{e,Red,z}} \leq 1$	 F	0.601	
	$\eta = \frac{N_{cEd}}{2} + k_{\infty} \cdot \frac{M_{yEd}}{2} + k_{\infty} \cdot \frac{M_{zEd}}{2} + k_{\infty} \cdot \frac{M_{zEd}}{2} \leq 1$	۶	COF 0	
	$X_y \cdot A \cdot t_{yd} = $ $\chi_{tT} \cdot W_{e_ty} \cdot t_{yd} = $ $Y = W_{e_{tZ}} \cdot t_{yd}$	-	0.702	
	$\eta = \frac{N_{c\text{Ed}}}{\chi_{z}\cdot A \cdot f_{rd}} + k_{zv} \cdot \frac{M_{y,\text{Ed}}}{\chi_{L1}\cdot W_{e_{1}v}\cdot f_{rd}} + k_{zz} \cdot \frac{M_{z,\text{Ed}}}{W_{e_{1}z}\cdot f_{rd}} \leq 1$	 F	0.702	
The 1.3	e worst case design forces occur at node N39, for load combination 5.5W+1.5.SOBRE.			

Where:

Produced by an

N_{сеd} : <u>73.96</u> kN М_{уеd} : <u>393.41</u> kN·m *702.98* kN·m 
 Nрика
 3207.60
 kN

 Mei, Rd.y
 :
 702.98
 kN-r
 49.37 0.92 ω M_{z,Ed} * M_{el,Rd,z} : •• Class  $M_{y,ee,v}\,M_{z,ed}$  : Worst case bending moments, in accordance with the Y and Z axes, respectively. **Class:** Section class, according to its deformation capacity and plastic resistance development of its flat elements, for axial load and simple bending.  $M_{a_1Ma_2V},\,M_{a_1Ma_2x}$  : Bending resistance of the gross section in elastic conditions, with respect to the Y and Z, respectively.  $N_{\mu,\kappa d}$  : Compressive resistance of the gross section. N_{c.ed}: Worst case design compressive axial force.

kN·m

Buckling resistance: (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.3.3) A: Area of the gross section.

kN·m

A: Area of the gross section.	 •	116.64	cm²
W4, W4, Elastic resistant modules corresponding to the compressed	V _{el.y} :	2556.30	сш ³
	۲. الاطن	179.53	сш³
$\mathbf{f}_{yd}$ : Steel design strength.	f _{vd} :	275.00	МРа
$\mathbf{f}_{yd} = \mathbf{f}_{y}/\gamma_{M1}$			
Where:			
<b>f</b> ;: Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table 3.1)	 ئو	275.00	МРа
$\gamma_{M1}$ : Partial safety factor of the material.	Ума :	1.00	
$K_{w}$ , $K_{w}$ , $K_{w}$ , $K_{w}$ : Interaction coefficients.			

K_w : 1.01  $-\frac{\mu_y}{N_{cr,y}}$ 1- $\boldsymbol{k_{yy}} = \boldsymbol{C}_{m,y} \cdot \boldsymbol{C}_{m,LT}$ 

<b>K</b> ₁ : <u>1.01</u>	K _{sv} : <u>1.01</u>	$K_{zz}$ : 1.01		Hv : <u>1.00</u>	μ _* : <u>1.00</u>	a _{LT} : <u>1.00</u>	0.44 > 0.23	C _{m,} : 1.00	C _{m,z} : 1.00	<b>C</b> _{m,t1} : <u>1.00</u>	ε _v : 24.27	$C_{m,v,0}$ : 1.00	$c_{m,z,0}$ : <u>1.00</u> $c_1$ : <u>1.29</u>	Xx : <u>1.00</u> x- : 1.00	$ \frac{\chi_{\rm LT}}{\tilde{\lambda}_{\rm v}} : \frac{0.86}{0.64} $	$\frac{\overline{\lambda}_{\rm tr}}{\overline{\lambda}_{\rm o}}: = \frac{0.39}{0.44}$	N _{er,y} : 7770.74 kN	N _{erz} : <u>10933.95</u> KN N _{er} T : 16378.29 KN	<b>I</b> _v : <u>84357.89</u> cm4 <b>I</b> _t : <u>109.33</u> cm4
$\textbf{K}_{\textbf{yz}} = C_{m_{z}} \cdot \frac{\mu_{y}}{1 - \frac{N_{ef}}{N_{ef}}}$	$\textbf{K}_{\textbf{zv}} = \textbf{C}_{m,v} \cdot \textbf{C}_{m,l^{T}} \cdot \frac{\mu_{z}}{1-\frac{N_{ed}}{N_{ed}}}$	$\textbf{K_{zz}} = C_{m,z} \cdot \frac{\mu_z}{1-\frac{N_{zd}}{N_{u,z}}}$	μ _ν , μ _z , a _t r: Auxiliary terms:	$\mu_{\mathbf{v}} = \frac{1 - \frac{N_{\text{fed}}}{N_{\text{cry}}}}{1 - \chi_{\mathbf{v}} \cdot \frac{N_{\text{fed}}}{N_{\text{cry}}}}$	$\mu_z = \frac{1 - \frac{N_{ed}}{N_{er,z}}}{1 - \chi_z \cdot \frac{N_{ed}}{N_{er,z}}}$	$\mathbf{a}_{\mathrm{LT}} = 1 - \frac{\mathrm{I}_{\mathrm{L}}}{\mathrm{I}_{\mathrm{Y}}} \ge 0$	Given that: $\overline{\lambda_o} > 0.2 \cdot \sqrt{C_1} \cdot \sqrt[4]{\left(1 - \frac{N_{\text{Ed}}}{N_{\sigma,z}}\right) \cdot \left(1 - \frac{N_{\text{Ed}}}{N_{\sigma,T}}\right)}$	$\boldsymbol{C}_{m,\boldsymbol{y}} = \boldsymbol{C}_{m,\boldsymbol{y},\boldsymbol{0}} + \left(1 - \boldsymbol{C}_{m,\boldsymbol{y},\boldsymbol{0}}\right) \cdot \frac{\sqrt{\epsilon_{\boldsymbol{y}}} \cdot \boldsymbol{a}_{\mathrm{T}}}{1 + \sqrt{\epsilon_{\boldsymbol{y}}} \cdot \boldsymbol{a}_{\mathrm{T}}}$	$C_{m,z} = C_{m,z,0}$	$\boldsymbol{C}_{m,tT} = \boldsymbol{C}_{m,y}^2 \cdot \frac{\boldsymbol{a}_{tT}}{\sqrt{\left(1-\frac{N_{\text{fed}}}{N_{\sigma,\tau}}\right)\cdot \left(1-\frac{N_{\text{fed}}}{N_{\sigma,\tau}}\right)}}$	$\epsilon_{\mathbf{y}} = \frac{M_{y, \mathrm{Ed}}}{N_{\mathrm{el}}} \cdot \frac{A}{N_{\mathrm{el}, \mathrm{y}}}$	$C_{m,y,o}, C_{m,z,o}$ : Equivalent uniform bending moment factors.	$\mathbf{C}_i$ : Factor which depends on the support conditions and bending moment envelope of the bar.	$\chi_{\nu},\chi_{\nu}$ : Buckling reduction coefficients, about the Y and Z axes, respectively.	$\chi_{u^*}$ . Lateral buckling reduction coefficient. $\widetilde{\lambda}_u,~\widetilde{\lambda}_z.$ Reduced slendernesses with respect to the Y and Z axes, respectively.	$\overline{\lambda}_{u^*};$ Reduced slenderness. $\overline{\lambda}_{u^*};$ Reduced slenderness, with respect to lateral buckling, for a uniform bending moment.	$\mathbf{N}_{\mathrm{ev}}$ : Critical elastic buckling axial force with respect to the Y axis.	$N_{\sigma,\gamma}$ : Critical elastic buckling axial force with respect to the Z axis. $N_{\sigma,\gamma}$ : Critical elastic buckling axial force due to torsion.	$\mathbf{I}_{v}$ : Moment of inertia of the gross section, with respect to the Y-axis. $\mathbf{I}_{v}$ : Uniform torsional moment of inertia.

Produced by an educational version of CYPE

//NA 2010, Article	
3 NP EN 1993-1-1	
stance (Eurocode	
al and shear resi	
ined bending, axi	-
Comb	6.2.10

It is not necessary to reduce the design bending and axial force resistance, as the buckling effect can be ignored due to shear. Additionally, the worst case design shear force  $V_{\epsilon a}$  is less than or equal to 50% of the design shear resistance  $V_{caso}$ .

The worst case design forces occur for load combination SW+1.5-Direcção180graus.  $\bm{V_{\text{Ed},z}} \leq \frac{V_{c,\text{Rd},z}}{2}$ 

$\mathbf{b}$	
392.48 kN	
VI N	
64.57	

 $V_{\text{Ed,z}}$ : Worst case design shear force.  $V_{c,\text{Rd},z}$ : Design resistant shear force.

Where:

V_{edz} : <u>64.57</u> kN V_{e,rdz} : <u>784.96</u> kN

## Torsional resistance (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.7)

The following criteria must be satisfied:

10000 > h		<b>М</b> т, _{Еd} : <i>0.00</i> kN·m		<b>М</b> т, _{Rd} : <u>8.12</u> kN·m		W ₁ : 51.17 cm ³	<b>f</b> _{vd} : 275.00 MPa				<b>f</b> _y : <i>275.00</i> MPa	γmo : 1.00
$\eta = \frac{M_{T,Ret}}{M_{T,Ret}} \le 1$	Dr he worst case design force occurs at node N215, for load combination SW+1.5.Direcção180graus.	M _{T,Ed} : Worst case design torsional moment.	or the design torsional moment resistance M _{t.Rd} is given by:	$\mathbf{M}_{T,\text{Red}} = \frac{1}{\sqrt{3}} \cdot \mathbf{W}_{T} \cdot \mathbf{f}_{yd}$	Where:	Wr: Torsion resistance module.	<b>f</b> _{yd} : Steel design strength.	$\mathbf{F}_{\mathbf{yd}} = \mathbf{f}_{\mathbf{y}} / \gamma_{\mathbf{N}0}$	Where:	f;: Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010,	Table 3.1)	$\gamma_{MO}$ : Partial safety factor of the material.

Combined Z shear and torsional resistance (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.7)

The following criteria must be satisfied:

n : 0.044 V	V _{ed} : 28.39 kN	M _{T,Ed} : <u>0.00</u> kN·m	V _{ріл.ка} : <u>645.24</u> kN	V _{Piked} : <u>645.25</u> kN ^{51,84} : <u>0.00</u> MPa	$W_{r}$ : $51.17 \text{ cm}^3$ $f_{yd}$ : $275.00 \text{ MPa}$	<b>f</b> , : <u>275.00</u> МРа Үмо : <u>1.00</u>
$\eta = \frac{V_{ed}}{V_{\mu 17,Rd}} \leq 1$ The worst race design forces occur at node N215. For load combination	1.35-SW+1.5-SOBRE.+0.9-Direcção90grausposiçãoextremo. Ver: Worst case design shear force.	$M_{\pi^{gal}}$ : Worst case design torsional moment. The reduced design resistant shear force $V_{\mu_{\pi,\pi_{Rd}}}$ is given by:	$V_{pl,T,Rd} = \sqrt{1 - \frac{1}{1.25} \cdot f_{yd}} \sqrt{3} \cdot V_{pl,Rd}$ Where:	$V_{plikel}$ : Design resistant shear force. $\tau_{r_{F,Eel}}$ : Tangential stresses due to torsion. $\tau_{r,Eel} = \frac{M_{r,Eel}}{W_t}$	Where: $\mathbf{W}_{ri}$ : Torsion resistance module. $\mathbf{f}_{rai}$ : Steel design strength. $\mathbf{f}_{rai} = f_{v}/\gamma_{mo}$ Where:	<b>f</b> ₁ : Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table 3.1) γ: Partial safety factor of the material.

# Combined Y shear and torsional resistance (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.7)

The following criteria must be satisfied:

$\frac{V_{ed}}{V_{p,T,Rel}} \leq 1$	Ĕ	0.001	>
sign forces occur for load combination 8RE +0.9 Direcção90grausposiçãoextremo.			
ise design shear force.	<ul> <li>Page</li> </ul>	0.04	х Х
case design torsional moment. In resistant shear force V منتعم is given by:	М _{т,ed}	0.00	kN
^{− τ₁ t_{ed} <u>− τ₁ t_{ed}</u> · V_{pl,Rd}}	V	1066.94	Z Y
scinn racistant chear forre	>	102201	Z
igential stresses due to torsion.	T _{T,Ed}	00.0	MPa
$a = \frac{M_{T,Ed}}{W_t}$			1
lere:			
W ₁ : Torsion resistance module.	Ň	52.06	cm ³
el design strength.	<b>f</b> _{vd} :	275.00	МРа
$f = f_y / \gamma_{MO}$			
here:			
f ₂ : Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table 3.1)	 4	275.00	MPa
$\gamma_{mo}$ : Partial safety factor of the material.	. ОМД	1.00	

Produced by an educational version of CYPE

Página | 240

## Anexo F

## Verificação aos ELU da Viga B2

Verificação aos ELU da viga B₂ do Pórtico 4, de acordo com a secção 5.7 deste documento.

- **F.1** Interfaces da ferramenta *AciariUM* utilizada para verificação de segurança aos ELU da viga B₂ do Pórtico 4.
- **F.2** Relatório de cálculo exportado a partir da ferramenta *AciariUM* relativo à verificação aos ELU da viga B₂ do Pórtico 4.
- **F.3** Relatório de cálculo exportado a partir do programa *Robot Structural Analysis* relativo à verificação aos ELU da viga B₂ do Pórtico 4.
- **F.4** Relatório de cálculo exportado a partir do programa *CYPE 3D* relativo à verificação aos ELU da viga B₂ do Pórtico 4.

## Anexo F

## Verificação aos ELU da Viga B2

Verificação aos ELU da viga B2 do Pórtico 4, de acordo com a secção 5.7 deste documento.

## Anexo F.1

Interfaces da ferramenta *AciariUM* utilizada para verificação de segurança aos ELU da viga B₂ do Pórtico 4.

LAciari	UM	INTE	RFAC	E I. SI	ECÇÃC	TRAN	ISVER	RSAL E	PROP	RIEDA	DES D	O MA	TERIA	L														MODU	ILO DE C	ÁLCULO:	RO	овот
DESIGN	ĄÇÃO		DIMENS	ÕES PRII		DA SECÇ	ÃO TRAI	NSVERSA	AL.	А		G	DIMEN	SÕES COI	MPLEME	NTARES	5	EIXO F	RINCIPA	L DE INÉRCIA Y		EIXO PRINCI			PRINCIPA	L DE INÉ	RCIA Z					
PE 330		h	b۶	bi	tu	ts	ti	r:	n	A	Zcg	уса	hi	d	CS:	CSi	ly 4	Wy.sup	Wyini 3	W _{ply}	İy	Av2	2 4	W2.sup	Wzité	WpL2	i.	Avy	IT 4	lw x 10 ⁻³		ε
f _{y [MPa]}	275	330	160	160	7,5	11,5	11,5	18	18	62,61	165	80	307	271	0	0	11767	cm 713,1	cm 713,1	cm 804,3	13,71	cm 30,81	cm 788	cm 98,51	cm 98,51	cm 153,7	3,548	cm 39,58	cm 28,15	cm 199,1		0,92
<b>1</b>	MÓDULO MANUAL DEFINIÇÃO MANUAL DAS DIMENSÕES DA SECÇÃO TRANSVERSAL										PERFIL	Lami	nado																			
					D	IMENSÕE	S PRINCI	PAIS RECO	OLHIDAS	DO AUTO	DESK ROE	от	Α	C	G	DIME	NSÕES CO	MPLEME	ITARES		1225			_		t, +z				com	liuuo	
	-	SECÇÃO	ÃO TIPO DE PERFII		h	bs	bi	tw	ts	ti	rs	r,	A	z _{CG}	Ycg	hi	d	css	$cs_i$		rcs			- (°	)			CORDÕE	S DE SOI	LDADURA		
	<u>`</u>	105 000	and Deality amined		mm	mm	mm 160	mm	mm	mm	mm 10	mm 10	cm*	mm	mm mm		mm mm		mm				-	- t,	v			NÃO EX SOLDAD	ISTEM C	ORDÕES	DE	
-	IPE 330 Perfil Lamin				550	100	100	7,5	11,5	11,5	10	10 10		103,0 80,0		307	2/1	0,00	0,00		h hid				у	<b>'</b> •						
K.	M	ÓDUL	O ROBC	OT STR	UCTUR	AL ANA	ALYSIS	RECEBE	R PROPRI	EDADES D	A SECÇÃ	O TRANSV	ERSAL A	PARTIR DO	O ROBOT	SA		INFC	0										1	BANZO		
ELEME	OTV				D	IMENSÕE	S PRINCI	PAIS RECO	OLHIDAS	DO AUTODESK ROBOT			Α	CG		DIME	NSÕES CO	MPLEMENTARES			rcs			C	)				ALMA	7		
NO.	L	SECÇÃO	TIPO DE	PERFIL	h	h b _s		tw	ts	ti	r,	r,	A	Z _{CG}	Ycs	hi	d	cs _s	$cs_i$	si						ti j.z						
15	m	IDE 220	Dorfills	minado	 220	160	160	 7 E	11 5	11 E	10	10	cm*	165.0	mm eo.o	mm 207	271.0	mm	mm					- bi								
13	1,07	IPE 330	Permita	immauo	330	100	100	7,5	11,5	11,5	10	10	02,0	105,0	80,0	307	2/1,0	0,00	0,00		_	_	_						_			
CLASSE	DE AÇ	0	AÇO DA	CLASSE	S275						E	2	10	GPa	α	1,20	DE-06	/к								Умо		1,00				
CONSTIT	CONSTITUINTE DO ELEMENTO ESTRUTURAL		fy	275	MPa			GE	RAIS	>	G	80	,77	GPa	Gm	71	850	Kg/m ³		Redefi	nir		PARC	IAIS DE		Y _{M1}		1,00			Redefin	inir
ELEN			fu 430		MPa			DO MATERIAL			L		0.3		n	1.20		-		NP EN 1993-1-1			SEGU	RANÇA		VM2		1.25		i I	Nh EN 193	92-1-1
						1					_																					
																									ioão M. M. Eira			Iniversidad	le do Mini	ho 🚽	GRUF	PO

Figura F.1 – Interface I. Secção transversal e propriedades do material: Viga  $B_2$  do Pórtico 4.

[]_Acia	riUM	INTE	RFAC	e II. c	ONDI	ÇÕES I	DE AP	010, 1	RAVA	MENT	O E S	OLICIT	<b>ĂÇÃO</b>	DO EL	EMEN	TO ES	TRUT	JRAL										MOD	ULO DE C	ÁLCULO:	ROBOT
DESIG	IAÇÃO		DIMENS	ÕES PRIM		DA SECÇÂ	O TRAN	ISVERSA	L	А		CG	DIMENS	ões cor	MPLEMEN	ITARES		EIXO P	RINCIPA	L DE INÉ	RCIA Y			EIXO F	RINCIPA	L DE IN	ÉRCIA Z				
IPE	330	h mm	b₅ mm	bi mm	t⊮ mm	t₃ mm	ti mm	r⊧ mm	ri mm	A cm ²	ZCG mm	yca mm	hi mm	d mm	CS₂ mm	CSi mm	ly cm ⁴	Wş.sup cm ³	Wşiri cm ³	Wplu cm ³	i, cm	Avz cm ²	lz cm ⁴	Wzsup cm ³	Wzini cm ³	WpLz cm ³	i₂ cm	Avs cm ²	IT cm ⁴	lw x 10 ⁻³ cm ⁶	ε
$f_{\gamma[MPa]}$	275	330	160	160	7,5	11,5	11,5	18	18	62,61	165	80	307	271	0	0	11767	713,1	713,1	804,3	13,71	30,81	788	98,51	98,51	153,7	3,548	39,58	28,15	199,1	0,92
0	м	ÓDULO	MANU	JAL I	NTRODU	ÇÃO MAN	UAL DO V	/ALOR DI	CÁLCUL	O DOS ESF	ORÇOS A	ATUANTE	S NA SECÇ	ÃO A VER	RIFICAR E D	IOS PAR	ÂMETROS	GEOMÉT	RICOS QI	UE CARAG	TERIZAM	O SISTEN	MA ESTRU	JTURAL				INFO	2	DCULTAR /	MOSTRAR
•	MC MC	όρυιο	ROBO	T STRU	ICTURA		LYSIS	RECEBE	R VALORI	S DIRETA	MENTE D	DE UM FIC	HEIRO DO	AUTODE	SK ROBOT	STRUCT	URAL AN	ALYSIS AB	ERTO NE	STE COM	PUTADOR							INFO	2	CULTAR /	MOSTRAR
IDENTI	FICAÇÃO	DA SE	CÇÃO A	VERIFIC	AR	BARR	A NO.	15		CASO CA	RGA NO.	10		CON	/IB 2			POSIÇÃO	SECÇÃO	1,0	xL =	1,65	m	NOME	SECÇÃO	IPE	330	L [EL	BARRA]	1,6	i <b>5</b> m
SOLICI	I OĂÇAI	IA SECÇ	ÃO CON	DICION	ANTE	N _{Ed}	69	,92	kN	M _{Ed.y}	-11	5,06	kN.m	V _{Ed.z}	-44,	10	kN	M _{Ed.z}	0,	05	kN.m	V _{Ed.y}	0,	01	kN.m		FL	EXÃO COI	MPOSTA	DESVIADA	
PARÂN	IETROS	GEOMÉ	TRICOS	DO ELEM	IENTO	COMPR	IMENTO	L	10,00	m	COMPR	IMENTOS	DE ENCUR	VADURA	L cr.y	15,00	m	L cr.z	1,65	m	COMPR	IMENTOS	ENTRE SI	ECÇÕES CO	NTRAVEN	ITADAS	l _{sup}	1,65	m	l inf	1,65 m
0	i Mo	ÓDULO	AUTO	MÁTIC	0 ма	DDELAÇÃO	DAS CO	NDIÇÕES	DE APOI	O E SOLICI	TAÇÃO E	DO ELEME	NTO ESTR	UTURAL F	PARA CÁLO	ULO AU	ΤΟΜΆΤΙΟ	O DOS P/	ARÂMETR	tos corr	ESPONDE	NTES PEL	A FERRAI	MENTA				INFO	2	DCULTAR /	MOSTRAR
																								J Prof. Eng	oão M. M. Eira Isabel Valente * Miguel Pires	*	$\bigcirc$	Universida Escola de E	de do Min Ingenharia	ho 🤜	

Figura F.2 – Interface II. Condições de apoio, travamento e solicitação do elemento estrutural: Viga B₂ do Pórtico 4.



Figura F.3 – Interface III. Resistência da secção transversal (ELU): Viga B2 do Pórtico 4.



Figura F.4 – Interface IV. Fenómenos de Encurvadura: Viga B₂ do Pórtico 4.

	JM 53-1-1	NTE	RFACE	V. 4	ANÁLI	SE D	A ES	TABI	LIDA	DE GI	OBAL	DE EL	EMEN	TOS EI	VI FLE	XÃO C	омро	OSTA C	сом с	OMP	RESSÃ	0											
DESIGNA	ÇÃO	C.	DIMENSÕE	S PRII	NCIPAIS	DA SE	cção	TRANS	SVERSA	AL.	A	(	G	DIMENS	ÕES CO	MPLEME	NTARES	:	EIXO P	RINCIPA	AL DE INI	ÉRCIA Y			EIXO I	EIXO PRINCIPAL DE INÉRCIA Z							Π
IPE 3	30	h	bs	bi	tv	ts		ti	<b>F</b> s	n	A	ZCG	уса	hi	d	CSs	CSi	وا	Wy.sup	Wyjré	Wptg	i,	Ave	h	Wz.sup	Wz.inf	Wplz	İz	Avy	IT	lv x 10 ⁻⁵	ε	
fu (MPs)	75	mm 330	mm 160	mm 160	mm 7.5	mm 11.5	יי 51	nm 1.5	mm 18	mm 18	cm* 62.61	 165	mm 80	mm 307	mm 271	mm O	mm O	cm* 11767	cm ² 713.1	cm ² 713.1	cm ² 804.3	cm 13.71	cm* 30.81	cm" 788	cm ² 98.51	cm ² 98.51	cm ² 153.7	cm 3.548	cm* 39.58	cm* 28.15	cm [°] 199.1	0.92	,
, (					.,.			.,.			01/01	100				-	-		,.		00.00		00,01		50,01		200).	0,010		20,20			ш Э
SOLICITA	ção n	A SECÇ	ÃO COND		IANTE	N _{Ed}	1	69,	92	kN	V _{Ed,z}	-44	,10	kN	M _{Ed,y}	-113	5,06	kN.m	$V_{\text{Ed},\gamma}$	0,	,01	kN	M _{Ed,z}	0,	05	kN.m					CL	ASSE 1	
ENCUR	/ADU	RA TE	NDO EM	CON	NTA A I	NTER	AÇÃ	O EN	TRE C	OMPR	ESSÃO	E FLEX	áo mé	TODO A	TERNA	TIVO 1 -	NP EN 1	1993-1-1	ANEXO	A											NP EN 199	3-1-1. Anexo /	1
PARÂME	TROS I		ADURA		L _{er,y}	15,0	10	-cr,z	1,65	L	10,00		λγ	1,26	λ	0,54	$\lambda_{LT}$	0,748		Χy	0,49	Χz	0,87	XLT	0,76								Ī
ESFORÇO	S NOF	RMAIS (	CRÍTICOS		N _{cr,y}	108	4 kN		N _{cr,z}	5999	kN	N _{cr,T}	8692	kN			FAT	ORES	uy	0,97	uz	1,00	wγ	1,13	wz	1,50	n _{pl}	0,04	λ _{max}	1,26			ī
COEFICI C	ENTES CÁLC CÁLC	DE MC	DMENTO U TOMÁTICO ANUAL DO	DOS VAL	VALORE	Cmy,0 e	LENTE	Cmz.0	MANUAL	M ^E _{CR}	1023	kN.m	C1	1,29	λο	0,47	> 0,2	$2\sqrt{C_14}$	$\left(1-\frac{N_{\rm H}}{N_{\rm c}}\right)$	$\frac{Ed}{r,z} \left(1 - \frac{1}{r}\right)$	$\frac{N_{Ed}}{N_{cr,TI}}$	$\overline{\overline{f}} \Rightarrow$	C _{my} C _{mz} C _{mLT}	1,00 1,00 1,01	←	C _{my,0} C _{mz,0}	1,00 1,00	]					
FATORE	s	a _{LT}	1,00	b _{LT}	0,00	CLT	0	,29	$\mathbf{d}_{\mathrm{LT}}$	0,00	e _{LT}	2,98					FAT	ORES	C _{vv}	0,99	C _{yz}	0,84	Czy	0,95	Czz	0,92							
FATORE	S DE II	VTERAÇ	ÃO	k _{γy}	1,05	k _{γz}	0	,81	k _{zy}	0,59	k _{zz}	1,10	]																				
CONDIÇA NP EN 199 CONDIÇA NP EN 199	ÃO AS: 13-1-1 6 ÃO AS: 13-1-1 6	SOCIAD .3.3(4) E SOCIAD .3.3(4) E	0A À ENCU XP 6.61 0A À ENCU XP 6.62	RVAD RVAD	DURA EN	I TORI		EY EZ	$\frac{1}{\chi}$	N _{Ed} y N _{Rk} /? N _{Ed}	$\frac{1}{m}$ + k _z	$\frac{M_{y,Ed}}{\chi_{LT}N}$	$+\Delta M_y$ $f_{y,Rk}/\gamma$ $+\Delta M_y$ $f_{y,Rk}/\gamma$	$\frac{k_{\text{Ed}}}{k_{\text{MI}}} + k_{yz}$	$\frac{M_{z,Ed}}{M_{z,}}$ $\frac{M_{z,Ed}}{M_{z,Ed}}$	$+\Delta M_{z,1}$ $R_k/\gamma_{M1}$ $+\Delta M_{z,I}$ $R_k/\gamma_{M1}$	Ed Ed:	=	0,81 0,45	<	1,0	ОК	81% 45%										
				_			_			,,										1					Prot	João M. M. Eira I Isabel Valente g.º Miguel Pires	*	$\bigcirc$	<b>Universid</b> a Escola de E	de do Minl Ingenharia	10		5

Figura F.5 – Interface V. Análise de estabilidade global de elementos em flexão composta com compressão: Viga  $B_2$  do Pórtico 4.

## Anexo F

## Verificação aos ELU da Viga B2

Verificação aos ELU da viga  $B_2$  do Pórtico 4, de acordo com a secção 5.7 deste documento.

## Anexo F.2

Relatório de cálculo exportado a partir da ferramenta *AciariUM* relativo à verificação aos ELU da viga B₂ do Pórtico 4.



João M. M. Eira

Prof. Isabel Valente

Eng.º Miguel Pires

Universidade do Minho

Escola de Engenharia

CASAIS

VERIFICAÇÃO À ENCURVADURA EM TORNO DO EIXO Z [VAREJAMENTO]

AciariUM

**INTERFACE VI. RELATÓRIO FINAL DE SEGURANÇA** 

NP EN 1993-1-1. 6.3.1.1(3) Pagina 233



## ANEXO I. NOTAÇÃO:

A	área da secção transversal (cm ² )
Z _{cg}	coordenada em z da posição do centro de gravidade da secção transversal (mm)
<b>y</b> _{cg}	coordenada em y da posição do centro de gravidade da secção transversal (mm)
l _(i)	momento de inércia da secção transersal em relação ao eixo (i) (cm 4 )
$W_{y.sup}$	módulo de flexão elástico em relação ao eixo y, relativo à fibra superior da secção transversal (cm ³ )
W _{y.inf}	módulo de flexão elástico em relação ao eixo y, relativo à fibra inferior da secção transversal (cm ³ )
W _{z.sup}	módulo de flexão elástico em relação ao eixo z, relativo à fibra extrema esquerda ou direita do banzo superior (cm ³ )
W _{z.inf}	módulo de flexão elástico em relação ao eixo z, relativo à fibra extrema esquerda ou direita do banzo inferior (cm ³ )
W _{pl.y}	módulo de flexão plástico da secção transversal (cm ³ )
i _(i)	raio de giração da secção transversal relativo ao eixo (i) (cm)
A _{v.(i)}	área resistente aos esforço transverso V _(i) (cm ² )
I _T	constante de torção de St. Venant (cm ⁴ )
l _w	constante de empenamento (cm ⁶ )
E	módulo de elasticidade (GPa)
v	coeficiente de Poisson em regime elástico
η	coeficiente para calcular a área de corte
fy	tensão de cedência (MPa)
f _u	tensão última (MPa)
Y _{M(i)}	coeficientes parcias de segurança $\gamma_{M0'}$ , $\gamma_{M1'}$ , $\gamma_{M2}$
Págir	Norder 2554epende de fy
N _{Ed}	valor de cálculo do esforço normal atuante (kN)

M _{(i).Ed}	valor de cálculo do momento fletor atuante, em relação ao eixo (i) (kN.m)
V _{(i),Ed}	valor de cálculo do esforço transverso atuante na direção (i) (kN)
N _{t Rd}	valor de cálculo do esforco normal resistente de tração (kN)
Nerd	valor de cálculo do esforco normal resistente de compressão (kN)
Mana	valor de cálculo do momento fletor resistente em relação ao eivo (i) (kN m)
V	valor de cálculo do enforme tradivieros protectedas na directo (1) (MAN)
• (i).Rd	Valor de calcular de estorço transversor lessence na úneção (n) (kiv)
A _{v.z}	area resistente ao estorço transverso v ₂ (cm )
A _{r.z}	area restante relativamente a area A _{vz} (A-A _{vz} ) (cm)
A _{v.y}	área resistente ao esforço transverso V _y (cm ⁻ )
A _{r.y}	área restante relativamente à área A _{vy} (A-A _{vy} ) (cm ⁻ )
ρ	coeficiente de redução para determinar os valores de cálculo dos momentos fletores resistentes, tendo em conta a interação com os esforços transversos
f' (A)	tensão de cedência reduzida adotada na área resistente ao esforço transverso A _{vz} para tomar em consideração os efeitos da presença do esforço transverso V _z no cálculo
· y(· · v.2/	momento fletor resistente M _{v.y.Rd} - Abrevia-se em f' _{y.z} (MPa)
f'(A)	tensão de cedência reduzida adotada na área resistente ao esforço transverso A _{vy} para tomar em consideração os efeitos da presença do esforço transverso V _y no cálculo do
y v.y/	resistente M _{V.2.Rd} - Abrevia-se em f ['] _{V.Y} (MPa)
W ^{sup} el.y.A(i)	módulo de flexão elástico da área A(i) em relação ao eixo y, relativo à fibra superior da secção transversal
W inf el.y.A(i)	módulo de flexão elástico da área A(i) em relação ao eixo y, relativo à fibra inferior da secção transversal
W sup el.z.A(i)	módulo de flexão elástico da área A(i) em relação ao eixo z, relativo à fibra extrema esquerda ou extrema direita do banzo superior da secção transversal
W inf el.z.A(i)	módulo de flexão elástico da área A(i) em relação ao eixo z, relativo à fibra extrema esquerda ou extrema direita do banzo inferior da secção transversal
W sup eff.y.A(i)	módulo de flexão efetivo da área A(i) em relação ao eixo y, relativo à fibra superior da secção transversal
W inf Weff v. A(i)	módulo de flexão efetivo da área A(i) em relação ao eixo y, relativo à fibra inferior da secção transversal
W sup	módulo de flexão efetivo da área A(i) em relação ao eixo z. relativo à fibra extrema esquerda ou extrema direita (caso mais desfavorável) do banzo superior da secção transversal
W inf	módulo de flevão efetivo da área 4(i) em relação ao eixo z relativo à fibra extrema esquerda ou extrema direita (caso mais desfavorável) do banzo inferior da serção transversal
M	modele de relación de la contra resistante de la contra contra contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra
V.y.Rd	valor de cálculo do mononto fictor resistence m _{y Ma} reducido pola interação com o asforeo transversa (y, com relação à libra superiori da secução transversa) (y, tar)
IVIV.y.Rd inf	valor de calculo do momento necor resistente $M_{y,Rd}$ reduzido pela interação com o estorço transverso $v_z$ com relação à fibra interior da secção transversal (KN.M)
M _{V.z.Rd sup}	valor de calculo do momento nector resistente ivi _{z.Rd} reduzido pela interação com o estorço transverso v _y com relação à fibra esquerda ou direita da secção transversal (a
	mais destavoraveij do banzo superior (kn.m)
M _{V.z.Rd inf}	valor de calculo do momento fetor resistente $M_{z,R}$ d reduzido pela interação com o estorço transverso $V_y$ , com relação a fibra esquerda ou direita da secção transversal (a
	mais destavoravel) do banzo interior (kN.m)
IVI _{NV.y.Rd}	valor de calculo do momento fletor resistente plastico $M_{pl,Rd}$ reduzido pelos estorços normal $N_{Ed}$ e transverso $V_{z,Ed}$ (KN.m)
M _{NV.z.Rd}	valor de cálculo do momento fletor resistente plástico $M_{pLRd}$ reduzido pelos esforços normal $N_{Ed}$ e transverso $V_{y,Ed}$ (kN.m)
N _{b.(i).Rd}	valor de cálculo do esforço normal resistente à encurvadura em relação ao eixo (i) de um elemento comprimido (kN)
L _{cr.(i)}	comprimento de encurvadura em relação ao eixo (i) (kN)
λ _(i)	esbleteza normalizada associada à encurvadura em relação ao eixo (i)
α(i)	fator de imperfeição para a encurvadura de elementos comprimidos associado à encurvadura em relação ao eixo (i)
φ _(i)	valor para determinar o coeficiente de redução $\chi_{(i)}$
X(i)	coeficiente de redução para o modo de encurvadura em relação ao eixo (i)
Mer	momento crítico de encurvadura lateral (kN.m)
Marr	momento crítico elástico de encurvadura lateral (kN m)
Co	nominate entre contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra contra c
1	consciences ej, ej especialemente al nomen de displante el momento incertes e des condições de apoio has extremadades do traino de comprimento i a división comprimento ante astronomento en a contravanta de displante en considerado (m)
	Complimento entre secues lateramente concaventadas no banzo considerado (m)
K _Z	rator de comprimento eretivo referente as restrições a rotação em torno do eixo 2 das secções de extremidade do tramo de comprimento <i>i</i>
Kw	rator de comprimento efetivo referente as restrições ao empenamento das secções de extremidade do tramo de comprimento l
Zg	coordenada em z do ponto de aplicação da carga em relação ao centro de corte da secção transversal (m)
zj	parâmetro que traduz o grau de assimetria da secção transversal em relação ao eixo y (m)
M _{b.Rd}	valor de cálculo do momento fletor resistente à encurvadura lateral (kN.m)
$\lambda_{LT}$	esbelteza normalizada para a encurvadura lateral
$\alpha_{\text{LT}}$	fator de imperfeição para a encurvadura lateral
φ _{LT}	valor para determinar o coeficiente de redução $\chi_{LT}$
XIT	coeficiente de redução para a encurvadura lateral
aw	distância entre reforcos transversais da alma (m)
Vh.u.P	valor de cálculo da contribuição da alma para a resistência à encurvadura por esforco transverso (kN)
V	valor de calculo de contribuição de anne para a resistência à encurvadura por calorgo transverso (kN)
v b.f.Rd	
Aw N4	uconcience de redução para a encurvadura por estoriço transverso
IVI _{f.Rd}	valor de calculo do momento netor resistence da secção transversal construinda apenas pelas areas efetivas dos banzos (kN.m)
M _{N.f.Rd}	valor de calculo do momento fletor resistente da secção transversal constituida apenas pelas áreas efetivas dos banzos, reduzido pela presença de um esforço normal N _{Ed} (KN.m)
V _{b.Rd}	valor de calculo da resistencia à encurvadura por esforço transverso
N _{cr.y}	valor crítico do esforço normal associado à encurvadura elástica por flexão em torno do eixo y (kN)
N _{cr.z}	valor crítico do esforço normal associado à encurvadura elástica por flexão em torno do eixo z (kN)
N _{cr.T}	valor crítico do esforço normal associado à encurvadura elástica por torção (kN)
C _{my}	coeficiente de momento uniforme equivalente
C _{mz}	coeficiente de momento uniforme equivalente
C _{mLT}	coeficiente de momento uniforme equivalente
A _{eff}	área efetiva de uma secção transversal (cm ² )
W _{v off c}	módulo de flexão efetivo em relação ao eixo v. relativo à fibra superior da secção transversal (cm ³ )
W#	módulo de flexão efetivo em relação ao eixo y relativo à fibra inferior da secção transversal (em ³ )
W	mousino de nexao eleuvo em relação ao eixo y, relativo à fibra avtroma esquerda da sossão transversal $(cm^3)$
v z.eff.DIR	nitotalo de nexao ereuvo em relação do eixo 2, relativo a fibria extrema devidenta da sectao tratisversal (CIII.)
vv _{z.eff.ESQ}	modulo de nexao eretivo em relação ão eixo z, relativo a fubra extrema direita da secção transversal (cm ⁻ )
e _{Nz}	arastanieniu einite us tenitis de gravitade das artes das sectoes eleura ( $A_{eff}$ ) e bruta (A), segundo o eixo z (mm)
Δ _{My}	valor de calculo do momento adicional atuante devido ao arastamento enz. (k.).mi
e _{Ny}	arastamento entre os centros de gravidade das areas das secçoes efetiva (A _{eff} ) e bruta (A), segundo o eixo y (mm)
Δ	valor de calculo do momento adicional atuante devido ao atastamento $e_{Nv}$ (kN.m)
## Anexo F

## Verificação aos ELU da Viga B2

Verificação aos ELU da viga  $B_2$  do Pórtico 4, de acordo com a secção 5.7 deste documento.

## Anexo F.3

Relatório de cálculo exportado a partir do programa *Robot Structural Analysis* relativo à verificação aos ELU da viga B₂ do Pórtico 4.

Autodesk Robot Structural Analysis Professional 2016 Author: Address:

File: **Caso de Estudo.rtd** Project: Caso de Estudo

	values	5	
	W	EMBER:	<pre>15 ; COORDINATE: x = 1.00 L = 1.669 m</pre>
		Ū	oss-section properties: IPE 330
×	62.606	cm2	Cross-section area
1	42.281	cm2	Shear area - y-axis
2	30.809	cm2	Shear area - z-axis
	25.700	cm4	Torsional constant
	11766.900	cm4	Moment of inertia of a section about the <u>y-axis</u>
	788.143	cm4	Moment of inertia of a section about the zaxis
'ply	804.399	cm3	Plastic section modulus about the y (major) axis
plz	153.683	cm3	Plastic section modulus about the Ztminor) axis
	33.000	cm	Height of cross-section
	16.000	cm	Width of cross-section
	1 150	cu	Flange thickness
	0.750	сШ	Web thickness
	13 710	cm	Radius of ovration - v-axis
	3.548	сш	Radius of ovration - z avia
4	00 1		Not area to proce area Eatio
2 ,	1.00		Inel alea to gross aleatallo Ecotor for Au colonion
J	1.20		
			Material
ame			S 775 ( S-3745)
	275 0000	MPa	Design weat Strength of material
	430 0000	MPa	limit terreite stress - characteristic value
UV	100	5	Dartial Sofety factor
11	00.1		r algaesarety factor Pártiat safety factor
	1 25		Parial safety factor
-	07:1		
		۳ <b>۵</b>	signations of additional codes:
V112		1	EN 1991-1-2:2003 - Fire loads on a structure
V312		h	EN 1993-1-2·2005 - Steel structures - fire design
V313		-di) Jili-	EN 1002 1 2:2005 - Stock structures from cold formed co
1215	"	պի	EN 1993-1-3.2003 - Steel Structures Iron cold-formed se
010		din	EN 1993-1-5:2005 - Steel structures - plated elements
111	, (		ECCS No111:2001 - Guidebook with recommendations f
VV311			ENV 1993-1-1:1992 - Steel structures - general code
			Class of section
			floored windth
	GZ8.C≡	cm	nange widtn
	<u> </u>	сш	flange thickness
/tf	<u>5.07</u>		Flange slenderness
	<u>ا</u>		Flange class
	27 100	cm	Web height
	0.750	E E	Weh thickness
dhur	001.00	5	
	0.10		Polotico octant of the commenced alloctic come
. 0.	0C.N		Relative extert of the compressed plastic zone
	-0.92		Stress or strain ratio
10/10/14			Dare - 1

Autodesk Robot Structural Analysis Professional 2016 Author: Address:

File: **Caso de Estudo.rtd** Project: Caso de Estudo

Parameters	Web class limit slenderness of a web for shear web slenderness for shear Web class (shear) Section type rameters of buckling analysis: rameters of buckling analysis: rameters of buckling length Effective buckling length Effective buckling length Stenderness ratio Non-dimensional slend. ratio for buckling Imperfection factor Coefficient for calculation of X Reduction factor for buckling Pesign buckling ength Buckling curve Effective buckling enderness ratio Design buckling ength Stenderness ratio Design buckling ength Stenderness ratio Reduction factor for buckling Inperfection factor for buckling Inperfection factor for buckling Inperfection factor for buckling imperfection factor for buckling Inperfection factor for buckling Interfection factor for buckling Interfection factor for buckling Interfection factor for buckling Interfection factor for buckling Interfection factor for buckling Interfection factor for buckling
Parameters	limit slenderness of a web for shear web slenderness for shear Web class (shear) Section type rameters of buckling analysis: rameters of buckling analysis: rameters of buckling length Effective buckling length Slenderness ratio Non-dimensional slend. ratio for buckting imperfection factor Coefficient for calculation of X Pesign buckling resistance of comp. member Buckling curve Effective buckling Pesign buckling ength Slenderness ratio Design buckling ength Slenderness ratio Non-dimensional stator Coefficient for calculation of X Reduction factor for buckling Inperfective buckling imperfective buckling
B33         B33           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1 <td>web stenderness for shear Web class (shear) Section type rameters of buckling analysis: Effective buckling length Effective buckling length Stenderness ratio Non-dimensional stend. ratio for bu<del>cklin</del>g imperfection factor Coefficient for calculation of X Reduction factor Design buckling resistance of comp. member Buckling curve Effective buckling fength Stenderness ratio Stenderness ratio Stenderness ratio Coefficient for calculation of X Reduction factor Design buckling resistance of comp. member</td>	web stenderness for shear Web class (shear) Section type rameters of buckling analysis: Effective buckling length Effective buckling length Stenderness ratio Non-dimensional stend. ratio for bu <del>cklin</del> g imperfection factor Coefficient for calculation of X Reduction factor Design buckling resistance of comp. member Buckling curve Effective buckling fength Stenderness ratio Stenderness ratio Stenderness ratio Coefficient for calculation of X Reduction factor Design buckling resistance of comp. member
Ba         Ba         Ba           1         1         1           2         1         1           3         7         0           55         kN         m           Parameters         Parameters	Web class (shear) Section type rameters of buckling analysis: Effective buckling length Slenderness ratio Non-dimensional slend. ratio for bu <del>ckling</del> imperfection factor for buckling Reduction factor for buckling resign buckling resistance of comp. member Buckling curve Effective buckling length Slenderness ratio Slenderness ratio Non-dimension Reduction factor for buckling Inperfective buckling length Slenderness ratio Reduction factor for buckling Design buckling resistance of comp. member
1         1           a         a           a         a           b         b           ction         kN           b         b           ction         k           b         b           ction         k           b         b           ction         k	Section type rameters of buckling analysis: Buckling curve Effective buckling length Slenderness ratio Non-dimensional slend. ratio for bu <del>ckling</del> imperfection factor Coefficient for calculation of X Heduction factor Design buckling resistance Design buckling resistance Effective buckling Buckling curve Effective buckling Slenderness ratio Slenderness ratio Slenderness ratio Slenderness ratio Reduction factor Coefficient for calculation of X Slenderness ratio Reduction factor Coefficient for buckling Inserter for calculation of X Reduction factor for buckling Inserter for buckling
Pa ection m m m m m m m m m m m m m m m m m m m	rameters of buckling analysis:
ection = = = = = = = = = = = = = = = = = = =	Buckling curve Effective buckling length Slenderness ratio Non-dimensional slend. ratio for buckling imperfection factor Coefficient for calculation of X Reduction factor for buckling Buckling curve Effective buckling ength Slenderness ratio Non-dimensional send. ratio for buckling imperfection factor Coefficient for calculation of X
a         a           20         0           20         0           21         11           22         11           23         50           25         M           70         M           70         50           70         M           71         11           72         11           73         7           70         11           70         11           70         11           70         11           70         11           70         11           70         11           70         11           70         11           70         11           70         11           70         11           70         11           70         11           70         11           70         11           70         11           70         11           70         11           70         11           70         11           70         11 <td>Buckling curve Effective buckling length Senderness ratio Senderness ratio Non-dimensional slend. ratio for buckling imperfection factor Coefficient for calculation of X Reduction factor for buckling Buckling curve Effective buckling Buckling curve Effective buckling Non-dimensional Senderness ratio Non-dimensional Senderness ratio Coefficient for calculation of X</td>	Buckling curve Effective buckling length Senderness ratio Senderness ratio Non-dimensional slend. ratio for buckling imperfection factor Coefficient for calculation of X Reduction factor for buckling Buckling curve Effective buckling Buckling curve Effective buckling Non-dimensional Senderness ratio Non-dimensional Senderness ratio Coefficient for calculation of X
00 m 111 1221 1411 1411 1411 1411 1411 1411	Effective buckling length
41 23 46 49 40 84 84 84 84 84 84 84 84 84 84	Stenderness ratio Non-dimensional stend. ratio for building imperfection factor Coefficient for calculation of X Reduction factor for buckling esign buckling resistance of comp. member Buckling curve Effective buckling Buckling curve Effective buckling Buckling curve Coefficient factor factor Coefficient factor for buckling imperfection factor Coefficient factor for buckling Coefficient factor for buckling Coefficient factor for buckling Coefficient factor for buckling
26 21 21 21 21 25 25 24 84 84 84 84 84 84 84 84 84 84 84 84 84	Non-dimensional slend. ratio for buckting imperfection factor Coefficient for calculation of X Reduction factor for buckling Design buckling resistance of comp. member Effective buckling length Effective buckling length Slendemess ratio Slendemess ratio Slendemess ratio Coefficientification factor Non-dimensional state of the buckling imperfection factor Coefficientification for buckling Insert factor for buckling
21 11 11 11 11 11 11 11 11 11 11 11 11 1	imperfection factor Coefficient for calculation of X Reduction factor for buckling Design buckling resistance of comp. member Buckling curve Effective buckling Imath Slendemess ratio Slendemess ratio Slendemess ratio Coefficient factor factor buckling Imperfection factor Coefficient factor for buckling Inserted factor for buckling Inserted factor for buckling
11 14 14 14 14 14 14 14 14 14	Coefficient for calculation of X දී Reduction factor for buckling Design buckling resistance of comp. member Buckling curve දි Buckling curve දි Buckling curve දි Buckling length Stendemess ratio Stendemess ratio Coefficient action of X Reduction factor Inverted factor for buckling Inverted factor for buckling
10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10	Reduction factor for buckling Design buckling resistance of comp. member Buckling curve Effective buckling length Slendemess ratio Non-dimensionalistic imperfection factor imperfection factor Coefficient factor Reduction factor Desire factor for buckling Inverted factor for buckling
O         kN           ection         b           50         b           53         50           53         50           70         50           70         50           70         50           70         50           70         7           70         7           7         7           7         7           7         7           7         7           7         7           7         7           7         7           8         8           8         8           8         8           8         8           8         8           8         8           8         8           8         8           8         8           8         8           8         8           8         8           8         8           8         8           8         8           8         8           8         8           8	Design buckling resistan <u>ce or comp. member</u> Buckling curve <u>Effective</u> Effective buckling lenderness ratio Slenderness ratio Non-dimensionatistend. ratio for buckling imperfection factor imperfection factor Reduction factor Inescretarificking factor for buckling Inescretarificking factor for buckling
ection b 334 334 KN F Parameters	Buckling curve Effective buckling length Stenderness ratio Non-dimensionatistend. ratio for buckling imperfection factor coefficienting factor for buckling Reduction for buckling
b m m m m m m m m m m m m m m m m m m m	Buckling curve Effective buckling length Slenderness ratio Non-dimensionatistend, ratio for buckling imperfection factor coefficienting curves Reduction factor Drevicertuing factor for buckling
50 m 54 k 70 k Parameters	Effective buckling length Slenderness ratio Non-dimensionatished. ratio for buckling imperfection tactor Coefficient actualation of X Reduction factor for buckling In-event arritikling resistance of como. member
255 kN Parameters	Slenderness ratio
Parameters	Non-dimension <del>al se</del> nd. ratio for buckling imperfection <u>factor</u> Coefficient <u>fac</u> calculation of X Reduction factor for buckling Inscient mitkling resistance of como. member
84 70 55 kN Parameters	imperfection <u>factor</u> Coefficient <u>fac</u> tor Reduction factor for buckling Inscient antikling resistance of como, member
70 337 55 kN Parameters	Coefficient Terration of X Reduction fraction for buckling Inscient mit kinnor resistance of como. member
87 55 kN Parameters	Reduction factor for buckling Designer to the statement of comp. member
55 kN Parameters	Deside the Include resistance of comp. member
Parameters	
	o of atteral-torsional buckling analysis:
	100 000 100 000
20 m	Lateral buckling length of upper flange
20 m	Lateral buckling length of lower flange
80	Factor for Mcr calculations
20	Factor for Mcr calculations
75	Factor for Mcr calculations
38 <u></u> cm6	Warping constant
00 두 cm	Distance from the point where the load is applied to the
<u>87</u> kN*m	Critical moment for lateral-torsional buckling
75	Non-dimens. slend. ratio for lat -tors. buckling
q	Lateral buckling curve
34	Imperfection factor for lateral buckling curves
38	Coefficient for calculation of XLT
75	Reduction factor for lateral-torsional buckling
Parameters	s of global stability analysis of member
meter calculati	ons - Annex A
34 kN	Euler buckling load in y direction
30 kN	Euler buckling load in z direction
09 kN	Critical force (lateral-torsional buckling)
-	
	9 0 4 4 b Parameters KN KN KN

Vutures         Unit         Symbol obscription           0.91         Coefficient for calculation of interaction coefficients kip         W.G. RM           1.93         Coefficient for calculation of interaction coefficients kip         W.G. RM           0.94         Coefficient for calculation of interaction coefficients kip         W.G. RM           0.94         Coefficient for calculation of interaction coefficients kip         W.G. RM           0.94         Coefficient related to bending moreau distribution         W.G. RM           0.94         Parameter related to bending moreau distribution         W.G. RM           0.93         Coefficient for calculation of interaction coefficients kip         W.G. RM           0.93         Coefficient for calculation of interaction coefficients kip         W.G. RM           0.93         Coefficient for calculation of interaction coefficients kip         W.G. RM           0.93         Coefficient for calculation of interaction coefficients kip         W.C. RM           0.93         Coefficient for calculation of interaction coefficients kip         W.C. RM           0.93         Coefficient for calculation of interaction coefficients kip         W.C. RM           0.93         Coefficient for calculation of interaction coefficients kip         W.C. RM           0.93         Coefficient for calculation of interaction coefficients kip<	Vuture         Optimization         Sumption         Sumption         Sumption         Sumption         Sumption         Sumption         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture         Vuture	United         United         Operation of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coefficients of the methon coeffic	Values 11nit
Internet         Symbol description           Internet         Symbol description           Coefficient reteat to ratio of section properties         MAy File           Coefficient reteat to ratio of section properties         MAy File           Coefficient reteat to ratio of section properties         MAy File           Coefficient reteat to ratio of section properties         MAy File           Coefficient reteat to bending moment distribution         Perameter reteat to bending moment distribution           Parameter reteat to bending moment distribution         Perameter reteat to bending moment distribution           Parameter reteat to bending moment distribution         Description           Coefficient for calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of integrability of the calculation of inteacalculating interaction coefficients kij	Image: control of free control         Image: control of free control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image: control         Image:	Image: constraint of interaction confictents bij Confident for calculation of interaction confidents bij Confident for calculation of interaction confidents bij Confident interaction confidents bij Confident interaction confidents bij Confident interaction confidents bij Confident interaction confidents bij Parameter related to bending moment dight bibliotion Parameter for calculation to Confident biol Confident for calculation to Confident biol Confident for calculation of Confident biol Confident for calculation of Confident biol Confident for calculation of Confident biol Confident for calculation of Confident biol Confident for calculation of Confident biol Confident for calculation of Confident biol Confident for calculation of Confident biol Confident for calculation of Confident biol Confident for calculation of Confident biol Confident for calculation of Confident biol Confident for calculation of Confident biol Confident for calculation of Confident biol Confident for calculation of Confident biol Confident for calculation of Confident biol Confident for calculation of constant biol Confident for calculation of Constant biol Confident for calculation of constant biol Confident for calculation of Constant biol Confident for calculation of Constant biol Confident for calculation of constant biol Confident for calculation of constant biol Confident for calculation of constant biol Confident for calculation of C	∣⊧
Symbol MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN, Rd MN	Symbol     Values       Myc.Rd     221 2097       Myc.Rd     221 2097       Vyr.Rd     671 3092       Vyr.Rd     671 3092       Vyr.Rd     671 3092       Vyr.Rd     671 3092       Mz.c.Rd     423 2628       Mz.c.Rd     423 2628       Mz.c.Rd     423 2628       Mz.c.Rd     423 2628       Mz.c.Rd     423 2628       Vyr.T.Rd     489 1188       Vz.T.Rd     489 1188       Vz.T.Rd     489 1188       Vz.T.Rd     0.00       UFSIN91     0.00       UFSIN91     0.00       UFSIN91     0.00       UFSIN91     0.00       UFSIN91     0.00       UFSIN91     0.00       UFSIN91     0.00       UFSIN91     0.00       UFSIN91     0.00       UFSIN91     0.00       UFSIN91     0.00       UFSIN91     0.00       UFSIN91     0.00       UFSIN91     0.00       UFSIN91     0.00       UFSIN91     0.00       UFSIN91     0.00       UFSIN91     0.00       UFSIN91     0.00       UFSIN91     0.00       UFSIN91     0.00	Synchol     Values     Unit       Mys.Rd     2212097     kN'm       Mys.Rd     2212097     kN'm       Vy.T.Rd     2212097     kN'm       Mz.pl.Rd     671.3042     kN'm       Mz.pl.Rd     671.3042     kN'm       Mz.pl.Rd     671.3042     kN'm       Mz.pl.Rd     671.3042     kN'm       Mz.pl.Rd     27.0024     kN'm       Mz.pl.Rd     000     000       UFSNM     0.20     000       UFSNM     0.21     0.20       UFSNM     0.20     0.20       UFSNM     0.21     0.20       UFSNM     0.26     0.21       UFSNM     0.26     0.21       UFSNM     0.26     0.21       UFSNM     0.26     0.21       UFSNM     0.26     0.21       UFSNM     0.26     0.26       UFSNM     0.26     0.26       UFSNM     0.26     0.26       UFSNM     0.26     0.27       UFSNM     0.26     0.27       UFSNM     0.26     0.26       UFSNM     0.26     0.26       UFSNM     0.26     0.26       UFSNM     0.26     0.26       UFSNM <td< td=""><td>Symbol description</td></td<>	Symbol description
	Values     Values       221.2097     221.2097       221.2097     221.2097       221.2097     671.3042       671.3042     671.3042       671.3042     671.2005       671.2005     22.0228       12.2028     42.2628       12.12097     13.4       12.12097     13.4       12.12092     13.8       12.12092     13.8       12.12092     13.8       12.12092     13.8       12.12092     0.00       12.12092     0.00       12.12092     0.00       12.12092     0.00       12.12092     0.00       12.12092     0.00       12.12092     0.00       12.12092     0.00       12.12092     0.00       12.12092     0.00       13.11     0.00       14.12     0.00       15.12     0.45       15.12     0.45       15.12     0.45       16.11     0.00       17.12     0.145       18.11     0.145       19.11     0.145       19.11     0.145       19.11     0.145       19.11     0.145       19.11     0.145       1	Values     Unit       221.2097     kN*m       221.2097     kN*m       221.2097     kN*m       671.3042     kN <m< td="">       671.3042     kN*m       671.3042     kN*m       671.3042     kN*m       671.3042     kN*m       671.3042     kN*m       671.305     kN*m       671.305     kN*m       671.305     kN*m       671.305     kN*m       671.305     kN*m       671.305     kN*m       671.305     kN*m       671.305     kN*m       671.305     kN*m       72.0528     kN*m       42.2528     kN*m       439.1188     kN       15     0.00       16     0.00       0.55     0.45       0.66     0.00       17     0.55       18     0.56       0.180     0.55       0.180     0.55       0.180     0.55       0.191     0.55       0.125     0.45       17     0.45       18     0.56       0.180     0.55       0.145     0.45       17     0.55       18     0.56</m<>	

Página | 260

## Anexo F

## Verificação aos ELU da Viga B2

Verificação aos ELU da viga  $B_2$  do Pórtico 4, de acordo com a secção 5.7 deste documento.

## Anexo F.4

Relatório de cálculo exportado a partir do programa *CYPE 3D* relativo à verificação aos ELU da viga  $B_2$  do Pórtico 4.

## N68/N231 (x: 0 m)

Section: IPE 330 Material: Steel (S275 (EN	1993-1-1	()					
	Noc	les	44000		Mechanical ch	aracteristics	
Ν	Initial	Final	(m)	Area (cm²)	$I_{\rm y}^{(1)}$ (cm4)	$I_z^{(1)}$ (cm4)	$I_t^{(2)}$ (cm4)
	N68	N231	1.650	62.60	11770.00	788.00	28.20
	Notes: ⁽¹⁾ Inerti ⁽²⁾ Unifor	a with respec	t to the indicanom to the tradicanom	ated axis ertia			
			Buckli	Бu	La	ateral buckli	ing
		XY pl	ane	XZ plane	Top f		3ot. fl.
	đ	1.0	00	60'6	1.00		1.00
	ť	1.6	50	15.000	1.65		1.650
	ů	1.0	00	1.000	1.00	0	1.000
	ບັ		1			1.290	
	Notation: B: Bucki L _x : Bucki C _m : Mon C.: Criti	ling coefficier ding length (i nent coefficie cal moment i	nt m) nt modification fe	actor			

# Crushing of the web induced by the compressed flange (Eurocode 3 EN 1993-1-5: 2006, Article 8)

the following criteria must be satisfied:	
$\frac{h_w}{t_w} \leq k \frac{E}{f_{sf}} \sqrt{\frac{A_w}{A_{fc,ef}}}$	40.93 ≤ 256.27 <b>√</b>
Where:	
<b>h</b> w: Height of the web.	<b>h</b> w : <i>307.00</i> mm
t: Web thickness.	<b>t</b> : 7.50 mm
A: Area of the web.	<b>A</b> _w : 23.03 cm ³
Arcet: Reduced area of the compressed flange.	A _{fc,ef} : 18.40 cm
k: Coefficient which depends on the class of the section.	<b>k</b> : 0.30
E: Modulus of Elasticity.	E : 210000 MP
$\mathbf{f}_{\mu}$ : Steel elastic limit of the compressed flange.	<b>f</b> _v : 275.00 MP
Where:	
$f_{yf} = f_y$	

## Resistance to axial tension (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.3)

The following criteria must be satisfied:

× .	
- <b>*</b>	
0.026	
'	
۴	
_	
VI VI	
t,Ed t,Rd	
ziz	
Ë	

The worst case design force occurs for load combination SW+1.5-Direcção90grausposiçãoextremo.			
$N_{\text{ted}}$ . Worst case design axial tensile force.	<b>N</b> _{t,Ed} :	45.06	х Х
The design tensile resistance $N_{t, Rd}$ is given by:			
$N_{t,Rd} = A \cdot f_{yd}$	N _{t,Rd} :	1721.50	× N

<b>N</b> _{t,Rd} :	1721.50	Z Z
A	62.60	cm ²
<b>f</b> _{vd} :	275.00	МРа
ح	275.00	MPa
; омд	1.00	
	N. ^{Red} :: <b>f</b> _{yd} :: ^{Ymo} ::	

A 2010, Article 6.2.4)			դ ։ <b>0.042 /</b>		n : 0.083 🗸
an educational version resistance (Eurocode 3 NP EN 1993-1-1:/N $\eta = \frac{N_{c,Ed}}{N_{c,Rd}} \leq 1$ $\eta = \frac{N_{c,Ed}}{N_{c,Rd}} \leq 1$	Compression resistance (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.4)	or the following criteria must be satisfied:	$\eta = \frac{N_{c,Ed}}{N_{c,Rd}} \le 1$	ucati	an $\mathbf{n} = \frac{N_{c,\text{Eff}}}{N_{b,\text{Rd}}} \le 1$

>	
0.083	
 ב	
	u
	u T
	- 111.0
	101
	acito.
	rider
	2000
	for lo
	0,00
	to to
-	doci
P,Rd	
<b>~</b>     -	1010

SOBRE	N _{5,Ed} : <u>69.90</u> kN		
by the worst case design force occurs for load combination 1.35.SW+1.5.	N _{c.ed} : Worst case design compressive axial force.	the normal design compression force <b>N</b> _{cM} should be taken as:	

$N_{c,Rd} = A_{ef} \cdot f_{yd}$	<b>N</b> _{с,Rd} :	<i>1671.32</i> kN
Where:		
Class: Section class, depending on its deformation capacity and	Class :	7

ass: Section class, depending on its deformation capacity and velopment of plastic resistance of the compressed elements of a ction.	Class	4 02	cm 2
ve di uss sectuariar area rur diass 4 sectuaris. Acian atronath	 Č 4	00./8	
	· p/	00.672	
tν/Υmo			
e:			
r,: Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table 3.1)	ۍ . ۲	275.00	МРа
•••: Partial safety factor of the material.	; омд	1.00	
e: (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.3.1)			
resistance $N_{b,Md}$ of a compressed bar is given by:			
٨d	<b>N</b> _{b,Rd} :	842.91	kN

 $\begin{array}{c|c} \textbf{A}_{\text{ef}} : & \underline{60.78} & \text{cm}^2 \\ \textbf{f}_{\text{vd}} : & \underline{275.00} & \text{MPa} \end{array}$ 

 $\bm{A}_{et}$ : Effective cross sectional area for class 4 sections.  $f_{\mu s}$  : Steel design strength.

$\begin{aligned} f_{i}^{(1)} & \text{Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010,} \\ & \text{Table 3.1)} \\ & \gamma_{\text{M}i} : \text{Partial safety factor of the material.} \\ & \chi_{\text{R}} = \frac{1}{\Phi + \sqrt{\Phi^2 - \left(\bar{\chi}\right)^2}} \leq 1 \\ & \text{Where:} \\ & \text{Where:} \\ & \Phi = 0.5 \cdot \left[1 + \alpha \cdot \left(\bar{\chi} - 0.2\right) + \left(\bar{\chi}\right)^2\right] \\ & \alpha : \text{Elastic imperfection coefficient.} \end{aligned}$	fy : <u>275.00</u> МРа 7м1 : <u>1.00</u>	
$\gamma_{\text{M}1}$ : Partial safety factor of the material. $\chi$ : Reduction coefficient due to buckling. $\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - (\tilde{\lambda})^2}} \leq 1$ Where: $\Phi = 0.5 \cdot \left[ 1 + \alpha \cdot (\tilde{\lambda} - 0.2) + (\tilde{\lambda})^2 \right]$ $\alpha$ : Elastic imperfection coefficient.	Υм1 : <u>1.00</u>	The design bending moment
$\begin{split} \chi &= \frac{1}{\Phi + \sqrt{\Phi^2 - (\bar{\lambda})^2}} \leq 1 \\ \text{Where:} \\ \Phi &= 0.5 \cdot \left[ 1 + \alpha \cdot (\bar{\lambda} - 0.2) + (\bar{\lambda})^2 \right] \\ \alpha &: \text{ Elastic imperfection coefficient.} \end{split}$		$\mathbf{M}_{\mathbf{b},\mathbf{Rd}} = \chi_{\mathrm{LT}} \cdot \mathbf{W}_{\mathrm{ply}} \cdot \mathbf{f}_{\mathrm{yd}}$
$\begin{split} \Phi + \sqrt{\Phi^2 - \left(\bar{\lambda}\right)^2} \\ \text{Where:} \\ \Phi &= 0.5 \cdot \left[ 1 + \alpha \cdot \left(\bar{\lambda} - 0.2\right) + \left(\bar{\lambda}\right)^2 \right] \\ \alpha &: \text{ Elastic imperfection coefficient.} \end{split}$	Xv : 0.50	Welv: Plastic streng
Where: $\begin{split} \Phi &= 0.5 \cdot \left[ 1 + \alpha \cdot (\overline{\lambda} - 0.2) + (\overline{\lambda})^2 \right] \\ \alpha &: \text{ Elastic imperfection coefficient.} \end{split}$	$\chi_{x}$ : 0.87 $\chi_{T}$ : 0.91	tension, for class 1 f.«: Steel design str
$\Phi = 0.5 \cdot \left[ 1 + \alpha \cdot \left( \overline{\lambda} - 0.2 \right) + \left( \overline{\lambda} \right)^2 \right]$ $\alpha: Elastic imperfection coefficient.$		$\mathbf{f}_{\mathbf{yd}} = \mathbf{f}_{\mathbf{y}} / \gamma_{\mathrm{M1}}$
ر ۲۰۰۷ المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناط	$\phi_{V}: \frac{1.38}{0.5}$	Where: E: Vield s
$\alpha$ : Elastic imperfection coefficient.	φr: 0.64	3.1)
	α _v : 0.21	War Farus W: Reduction facto
	$\alpha_z$ : 0.34 $\alpha_T$ : 0.34	$\chi_{1\tau} = \frac{1}{2}$
$\overline{\lambda}$ : Reduced slenderness.		$\Phi_{LT} + \sqrt{\Phi}$
$\overline{\lambda} = \frac{\overline{\lambda}_{ef} \cdot \overline{\lambda}}{2}$	$\frac{\lambda_v}{\lambda_z}: \frac{1.24}{0.52}$	Where:
	$\frac{1}{\lambda_{T}}$ : 0.44	Φ _{LT} = U.5
$\mathcal{N}_{\alpha}$ : Critical elastic buckling axial force, obtained from the smallest of the following values:	NA IC POUL - Z	
New: Critical elastic buckling axial force with	TZ'+00T	$\frac{\gamma_{\text{LL}}}{\gamma} = \sqrt{\frac{1}{2}}$
respect to the Y axis.	N _{er,v} : <u>1084.21</u> kN	M.: Critic
Notice Structure Provided and Proce with	N1 00 0001 .	2 The critical elastic lateral buc
N; Critical elastic buckling axial force due to	NN 2220,20 .	$\mathbf{z} = \mathbf{c}  \pi^2 \cdot \mathbf{E} \cdot \mathbf{I}_2  \iint_{\mathbf{k}} \mathbf{k}_2$
torsion.	<b>N</b> _{сг,т} : <i>8690.58</i> kN	
лрэ иев		edu Where: <b>I</b> _: Moment of inert
Y - Axis bending resistance (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article	6.2.5)	by It: Uniform torsiona
d c c c c c c c c c c c c c c c c c c c		E: Modulus of Elasti
$\eta = \frac{M_{\text{fed}}}{M_{\text{res}}} \le 1$	n : 0.503	G: Elastic modulus
ž.		Let Effective buckling
$\eta = \frac{M_{Ed}}{m} \leq 1$	n: 0.545 🗸	C ₁ : Factor which de envelope of the bar
¹⁰ bkd		C ₂ : Factor which de
For positive bending: The worst case design force occurs for load combination SW+1.5 Direcção0graus.		C3: Factor which de
Met*: Worst case design bending moment.	M _{Ed} ⁺ : <u>87.98</u> kN·m	envelope of the bar <b>k</b> · Effective length
For negative benaing: The worst case design force occurs for load combination 1,35.5W+1,5.SOBRE.		the ends of the bar
Meet: Worst case design bending moment. The design heading moment resistance M is given by:	M₅a : <u>111.21    </u> kN·m	<b>k</b> _w : Effective length the ends of the bar
$M_{c,Rd} = W_{p,V}^{c,r}$	<b>М</b> _{с,Rd} : <u>221.10</u> kN·m	<b>z</b> ₉ : Distance betwee with respect to the
Where: Class: Sertion class, denending on its deformation renacity and	1	$\mathbf{Z}_{\mathbf{g}} = \mathbf{Z}_{\mathbf{a}} - \mathbf{Z}_{\mathbf{s}}$
dependence of plastic resistance of the flat elements of a section submitted	Class : <u>1</u>	Where:
to simple behavior. $W_{\mu\nu}$ : Plastic strength modulus corresponding to the fibre with greatest tension for these 1 and 2 corrinos	W _{Pky} : <u>804.00</u> cm³	z_s: Distar applicatio
fuel Street design strength.	E. : 275 00 MPa	z.: Distar
$\mathbf{f}_{vd} = \mathbf{f}_v / \gamma_{h0}$		zı: Asymmetric para
Where:		$\mathbf{z}_{j} = \mathbf{z}_{s} - 0.5 \cdot \mathbf{j}$

Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table L) : Partial safety factor of the material. (stance: (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.3.2) stancet resistance M _{bat} is given by:	fy :: 2	<u>75.00</u> MPa 1.00
_	A _{b,Rd} : <u>2(</u>	<i>03.93</i> kN·m
lus corresponding to the fibre with greatest ections.	<b>V</b> _{Piv} : <u>8(</u> <b>f</b> _{vd} : <u>2</u> )	:04. <i>00</i> cm³ :75.00 MPa
(Eurocode 3 NP EN 1993-1-1:/NA 2010, Table factor of the material.	fv : Үмі :	<u>75.00</u> MPa <u>1.00</u>
lateral buckling. 1	איי :	0.92
$(\overline{\lambda}_{LT} - 0.2) + \overline{\lambda}_{LT}^2$	φ ^{r±} : (	0.62
ction coefficient.	$\frac{\alpha_{\rm tr}}{\overline{\lambda}_{\rm tr}}$ : (	0.34 0.41
atterial buckling moment. ent 'N _a ' is established in the following way: $ \frac{\mathbf{G} \cdot \mathbf{I}_{t}}{\cdot \mathbf{I}_{s}} + (C_{2} \cdot z_{u} - C_{3} \cdot z_{1})^{2} \Big]^{-0.5} - (C_{2} \cdot z_{u} - C_{3} \cdot z_{1}) \Big\}$	Mar :	<u>319.25</u> kN·п
oss section, with respect to the Z-axis. of inertia. If the top flange. F the bottom flange. ne support conditions and bending moment	Ω°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	88.00 cm 28.20 cm 9000.00 cm 10000 MP 1.650 m 1.29 m
he support conditions and bending moment	 C	1.00
the support conditions and bending moment which depends on the cotation restrictions at	۔	1.00
t, which depends on the warping restrictions at t, which depends on the warping restrictions at	 ¥ ¥	1.00
ilication point of the load and the shear centre,	. sz	0.00 mm
direction of the Z axis between the load and the geometric centre.	z, : (	0.00 mm
direction of the Z-axis between the shear ometric centre.	)  N	0.00 mm
the section, with respect to the Y-axis. $\left(z/I_{v}\right)\cdot\text{dA}$	)  Ñ	0.00 mm

## Z - Axis bending resistance (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.5)

The following criteria must be satisfied:

$\eta = \frac{M_{Ed}}{M_{cRd}} \leq 1$	 L	0.014	>
For positive bending:			
The worst case design force occurs for load combination 1.35 SW+1.5 SOBRE.			
$M_{Ed}^{+}$ : Worst case design bending moment.	 † • •	0.59	kN N
For negative bending:			
The worst case design force occurs for load combination SW+1.5-Direcção0graus			
M _{Ed} : Worst case design bending moment.		0.56	kN·m
The design bending moment resistance $M_{c,\kappa d}$ is given by:			
$\mathbf{M}_{c,\mathbf{Rd}} = \mathbf{W}_{\mathbf{p} z} \cdot \mathbf{f}_{\mathbf{yd}}$	M _{c,Rd} :	42.35	kN-m

**A**_v : 24.75 cm²

V_{с,Rd} : 392.96 kN

1 : 0.111 V

Resistance to shear in the Z direction (Eurocode 3 NP EN 1993-1-1://NA 2010, Article 6.2.6)

The following criteria must be satisfied:

 $\eta = \frac{V_{ed}}{V_{c,Rd}} \leq 1$ 

Z Y

Ved : 43.75

The worst case design force occurs for load combination 1.35 SW+1.5 SOBRE.

V_{Ed}: Worst case design shear force.

The shear resistance  $\boldsymbol{V}_{c,Rd}$  is given by:

 $V_{c, Rd} = A_{v} \cdot \frac{f_{yd}}{\sqrt{3}}$ 

Where:

**t**_w : 7.50 mm **f**_{vd} : 275.00 MPa

**h** : 330.00 mm

h: Depth of the section.

Av: Transverse shear area

 $\bm{A_v}=\bm{h}\cdot t_w$ Where: t.»: Web thickness.

f_{vd}: Steel design strength.

 $\boldsymbol{f_{yd}}=\boldsymbol{f_y}/\gamma_{M0}$ 

## W_{plz} : 154.00 cm³ **f**_{vd} : 275.00 MPa Class : 1 $f_{\rm c}$ : Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table 3.1) **Class**: Section class, depending on its deformation capacity and development of plastic resistance of the flat elements of a section submitted to simple bending. $W_{\rm Mz}$ : Plastic strength modulus corresponding to the fibre with greatest tension, for class 1 and 2 sections. f_{vd}: Steel design strength. $\mathbf{f_{yd}} = \mathbf{f_y}/\gamma_{M0}$ Where: Where:

## Produced by an educational version of CYPE

γ...: Partial safety factor of the material.

**f**_v : 275.00 MPa Yм₀ : <u>1.00</u>

<b>f</b> _v : <u>275,00</u> safety factor of the material	afety factor of the material. $\gamma_{wo}$ : $\frac{2.75.00}{1.00}$ Safety factor of the material. $\gamma_{wo}$ : $\frac{1.00}{1.00}$ Eurocode 3 EN 1993-1-5: 2006, Article 5)       ars have not been provided, it is not necessary to f the web, as the following is verified:         An the following is verified:       40.93         e web. $\lambda_{with}$ : $\frac{40.93}{1.00}$ erness. $\lambda_{max}$ : $\frac{55.46}{1.00}$
	tie (Eurocode 3 EN 1993-1-5: 2006, Article 5) eners have not been provided, it is not necessary to e of the web, as the following is verified: the web. $\lambda_{max}$ : $\frac{40}{25}$ c 55. $\lambda_{max}$ : $\frac{40}{55}$ nderness.
	the web. $\lambda_{w}$ : $40.93$ derness. $\lambda_{max}$ : $55.46$
40.93 < 55.40	nderness. $\lambda_{max}$ : 55.46
<b>40.93</b> < <b>55.4</b> 6 the web. λ _w : <u>40.9</u> 3	

## λ_{max}: Maximum slenderness η: Coefficient which allows $\lambda_{\text{max}} = \frac{72}{\eta} \cdot \epsilon$

plastic regime because of hardening due to deformed material.	 ד	1.20	
e: Reduction factor.	 ω	0.92	
$c = \frac{1}{c}$			

$$\mathbf{c} = \sqrt{\frac{\mathbf{r}_{ref}}{f_{y}}}$$
  
Where:

Resistance to shear in the Y direction (Eurocode 3 NP EN 1993-1-1://NA 2010, The following criteria must be satisfied:	Article 6.2.6)
$\eta = \frac{V_{\rm Ed}}{V_{rot}} \le 1$	1 < 0.001
The worst case design force occurs for load combination 1.35-SW+1.5-SUBRE Ver: Worst case design shear force.	<b>V</b> ^{ed} : 0.06 kN
The shear resistance $V_{c,ad}$ is given by:	
$\mathbf{V}_{c,\text{Rd}} = A_V \cdot \frac{f_{yd}}{\sqrt{3}}$	Vс, ка : 628.34 kN
Where:	
A. It allsvelse shear area. A. $= A - d \cdot t_w$	- 1112 - 39.58 CIII-
Where:	
A: Area of the gross section.	<b>A</b> : 62.60 cm ²
<b>d</b> : Height of the web. <b>t</b> _w : Web thickness.	<b>d</b> : <u>307.00</u> mm <b>t</b> _w : 7.50 mm
fue: Steel design strength.	<b>f</b> _{vd} : 275.00 MPa
$\mathbf{f}_{yd} = \mathbf{f}_{y}/\gamma_{h0}$	
Where:	
6 Table 3.1) Table 3.1)	<b>f</b> , : <i>275.00</i> MPa
۲۰۰۰ Partial safety factor of the material.	ΥM0 : 1.00
snoite	
Combined bending moment Y and shear force Z resistance (Eurocode 3 NP E Article 6.2.8)	:N 1993-1-1:/NA 2010,
It is not necessary to reduce the design bending resistance, as the worst case shear force $V_{e4}$ is not greater than 50% of the design shear gresistance $V_{c4e4}$ .	
$V_{ed} \leq \frac{V_{effet}}{2}$ 43.75	kN ≤ 196.48 kN
The worst case design forces occur for load combination 1.35-SW+1.5:SOBRE.	
Ves: Worst case design shear force.	V _{Ed} : 43.75 kN
$V_{cMd}$ : Design resistant shear force.	V _{¢,Rd} : 392.96 kN
Combined bending moment Z and shear force Y resistance (Eurocode 3 NP E Article 6.2.8)	:N 1993-1-1:/NA 2010,
It is not necessary to reduce the design bending resistance, as the worst case shear force $V_{e4}$ is not greater than 50% of the design shear resistance $V_{e44}$ .	
$V_{ed} \le \frac{V_{e,Red}}{2} $ 0.06	kN ≤ 314.17 kN 🗸
The worst case design forces occur for load combination 1 35.5W+1 5.5OBRE	

Combined bending and axial resistance (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.9)

The following criteria must be satisfied:

$$\eta = \left[\frac{M_{y,\text{Rel}}}{M_{h,\text{Rel}y}}\right]^{\alpha} + \left[\frac{M_{y,\text{Rel}}}{M_{h,\text{Rel}y}}\right]^{\beta} \le 1$$

$$\eta : 0.267 \checkmark$$

$$\eta = \frac{N_{c,Ed}}{\chi_{y} \cdot A \cdot f_{yd}} + k_{yy} \cdot \frac{M_{y,Ed}}{\chi_{tT} \cdot W_{p_{tY}} \cdot f_{yd}} + k_{yz} \cdot \frac{M_{z,Ed}}{W_{p_{tz}} \cdot f_{yd}} \le 1$$

$$\eta : 0.667 \checkmark$$

$$\eta = \frac{N_{c,Ef}}{\chi_{z} \cdot A \cdot f_{rd}} + k_{zy} \cdot \frac{M_{y,Ef}}{\chi_{c1} \cdot W_{p_{cy}} \cdot f_{rd}} + k_{zz} \cdot \frac{M_{z,Ef}}{W_{p_{cz}} \cdot f_{rd}} \leq 1$$

$$\eta : \underline{0.386}$$

The worst case design forces occur for load combination 1.35 SW+1.5 SOBRE. Where:

8	here:			
	$N_{c,ed}$ : Compressive axial force to be withstood from the analysis.	N _{c,Ed}	: 69.90	kN 
	M _{vieu} , M _{vieu} , Worst case bending moments, in accordance with the Y and Z axes, respectively.	Δ γ ^{, Ed}	: 111.21 : 0.59	
	<b>Class</b> : Section class, according to its deformation capacity and plastic resistance development of its flat elements, for axial load and simple bending.	Class	: 1	
Ξ	$M_{\rm wav,v}$ $M_{\rm wav,s}$ Reduced design plastic resistant bending moments, about the Y and Z axes, respectively.	M _{N,Rd,Y} M _{N,Rd,z}	: 221.10 : 42.35	kN m kN m
СЛЫ	$M_{N,Rd,\gamma} = M_{\beta_1Rd\gamma} \cdot (1-n)/(1-0.5\cdot a) \leq M_{\beta_1Rd,\gamma}$			1
<u> jo u</u>	$n \leq a \rightarrow M_{N_{i}Rd,z} = M_{p_{i},Rd,z}$			
srsio	$\alpha = 2 \ ; \ \beta = 5 \cdot n \ge 1$	80	2.000	I
<u>əv l</u> a	Where:	d	. 1.000	1
tion	$\mathbf{n} = N_{c,\text{Ed}}/N_{p,\text{Rd}}$	5	: 0.041	
eonpə ı	N _{MAM} : Compressive resistance of the gross section. M _{MAM} , M _{MAM} : Bending resistance of the gross section in plastic conditions with research to the X and Z avec researched	M _{pl,Rd,Y}	: 1721.50 : 221.10	u N N N N N N N N N N N N N N N N N N N
p X q	$\mathbf{a} = (\mathbf{A} - 2 \cdot \mathbf{b} \cdot \mathbf{t}_1)/\mathbf{A} \le 0.5$	a a	. 0.41	
pə	A: Area of the aross section.	٩	62 60	cm ²
onp	b: Flange width.	<b>م</b> :	: 16.00	5 5
Proc	$\mathbf{t}_i$ : Thickness of the flange.	ţ	: 11.50	u u
ā	uckling resistance: (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.3.3)			
	A: Area of the gross section.	۷	: 62.60	cm ²
	$W_{M,V}$ , $W_{M,z}$ : Plastic resistance moduli corresponding to the fibre with greatest stress about the Y and Z axes, respectively.	×., 8	: 804.00 . 154.00	cm ³
	$\mathbf{f}_{\mathbf{s}}$ : Steel design strength.	f _{yd}	: 275.00	MPa
	$\mathbf{f}_{yd} = \mathbf{f}_y / \gamma_{H1}$			
	Where:			
	<b>f</b> ₂ : Yield strength. (Eurocode 3 NP EN 1993-1-1://NA 2010, Table 3.1)	ني.	: 275.00	МРа
	γ _M : Partial safety factor of the material.	YMI	: 1.00	
	$K_{yy}$ , $K_{yz}$ , $K_{zy}$ , $K_{zz}$ : Interaction coefficients.			
	$\boldsymbol{K}_{\boldsymbol{y}\boldsymbol{y}}=C_{m,\boldsymbol{y}}\cdotC_{m,\boldsymbol{L}}\cdot\frac{\mu_{\boldsymbol{y}}}{1-\frac{N_{\boldsymbol{y}}{N_{\boldsymbol{e}}}}{C_{\boldsymbol{y}\boldsymbol{y}}}}\cdot\frac{1}{C_{\boldsymbol{y}\boldsymbol{y}}}$	K	: 1.05	I
	$\boldsymbol{k_{yz}} = C_{m_z} \cdot \frac{\mu_y}{1 - \frac{N_{ex}}{N_{ex,z}}} \cdot \frac{1}{C_{yz}} \cdot 0.6 \cdot \frac{W_{w_z}}{W_y}$	κ, κ	: 0.78	I

V_{Ed} : 0.06 kN V_{сяd} : 628.34 kN

 $V_{\text{Ed}}$ : Worst case design shear force.  $V_{c,Rd}$ : Design resistant shear force.

$\frac{a_{\mathrm{tr}}}{\sqrt{\left(1-\frac{N_{\mathrm{fd}}}{N_{\mathrm{o},\mathrm{T}}}\right)}\left(1-\frac{N_{\mathrm{fd}}}{N_{\mathrm{o},\mathrm{T}}}\right)} \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_{\mathrm{m,tr}} : \mathbf{C}_$	$\frac{A}{\epsilon_{v}}$ $\varepsilon_{v}$ : <u>12.39</u> t - <u>1.00</u> t - uniform bending moment factors. $C_{myo}$ : <u>1.00</u>	$C_{m,z,0}$ : <u>1.00</u> and son the support conditions and bending moment $C_1$ : <u>1.29</u> for coefficients about the V and 7 axes respectively $\sim$ 0.00	In contraction, about the 1 and 2 axes, respectively. $\chi_s : -0.49$ $\chi_s : -0.87$ $\chi_s : -0.87$ cutation coefficient. $\chi_{sr} : -0.92$ erress between $\tilde{\lambda}_s$ and $\tilde{\lambda}_s$ . $\tilde{\lambda}_{max} : -1.26$ derresses with respect to the Y and Z axes, $\tilde{\lambda}_s : -5.6$	ress. $\overline{\lambda}_{\rm tar}$ : 0.41 ess, with respect to lateral buckling, for a uniform $\overline{\lambda}_{\rm o}$ : 0.46	stant modules corresponding to the compressed fibre, $W_{\alpha,\gamma}$ : $713.33$ cm ³ s, respectively. $W_{\alpha,\gamma}$ : $98.50$ cm ³ ckling axial force with respect to the Y axis. $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha,\gamma}$ : $1084.21$ kN $N_{\alpha$	Locating axial lotted due to torston. $N_{ext}$ : 2690.39 kW of the gross section, with respect to the Y-axis. $I_y$ : 11770.00 cm4 roment of inertia. $I_t$ : 28.20 cm4	<b>ial and shear resistance</b> (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article	uce the design bending and axial force g effect can be ignored due to shear. se design shear force V _{ed} is less than or equal to	resistance V _{eted} . ces occur for load combination is.	36.50 kN ≤ 196.45 kN ✓	e design shear force. Vea.z : $36.50$ kN sistant shear force. Vea.z : $392.91$ kN					
$\mathbf{K}_{xy}$ : 0.59 $\mathbf{K}_{xy}$ :	$\mathbf{K}_{zz} : \underline{1.09} \qquad \mathbf{c}_{m,yo} \cdot \mathbf{c}_{m,zo} : \text{Equivalent}$	C: Factor which deper envelope of the bar.	$\mu_{*}: \frac{0.97}{\lambda_{max}}$ Bucking revuel $\chi_{**}: Lateral buckling re\tilde{\lambda}_{max}: Maximum slende\mu_{*}: \frac{1.00}{\tilde{\lambda}_{*}}. Reduced slenderespectively.$	$ \begin{array}{c} \overline{\lambda}_{u}: \mbox{ Reduced slenderr} \\ \overline{\lambda}_{o}: \mbox{ Reduced slendern} \\ \hline \overline{\lambda}_{o}: \mbox{ Reduced slendern} \\ \mbox{ bending moment.} \end{array} $	$C_{x}$ : 0.87 $W_{a,y}$ ; U ₄ : Elastic residuates about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y and 2 axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about the Y axes about t	$C_{xy}$ : 0.94 0 0 $N_{xyz}$ Crucial elastic out $T_{zy}$ Moment of inertia of $T_{zz}$ : 0.93 $U_{zz}$ C $U_{zz}$	ar : 1.00 combined bending, ax	$\mathbf{b}_{\mathrm{tr}}$ : 0.00 $\mathbf{b}_{\mathrm{tr}}$ is not necessary to reduce the bucklin desistance, as the bucklin point of the worst called the point of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the bucklin statement of the	Gr :     0.23     0.23       Of the worst case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design for event case design	$\mathbf{e}_{tr}: \qquad 2.36 \qquad \qquad \mathbf{V}_{etr,z} \leq \frac{V_{e,rd,z}}{2}$	V دومید: Worst cas V دومید: Wv : <u>1.13</u> V دومید: Vesign re	W _s : <u>1.50</u>	n _a : 0.04	).46 > 0.23	<b>C</b> _{my} : 1.00	<b>C</b> _{mz} : <u>1.00</u>
$\boldsymbol{k_{zy}} = C_{m,y} \cdot C_{m,tT} \cdot \frac{\mu_z}{1 - \frac{N_{zz}}{N_{zzy}}} \cdot \frac{1}{C_{zy}} \cdot 0.6 \cdot \sqrt{\frac{W_y}{w_z}}$	$\mathbf{K_{zz}} = C_{m,z} \cdot \frac{\mu_z}{1 - \frac{N_{eff}}{N_{eff}}} \cdot \frac{1}{C_z}$	Auxiliary terms: $\mu_{v} = \frac{1 - \frac{N_{\text{Ed}}}{N_{cr,v}}}{\mu_{v}}$	$\begin{aligned} \mathbf{H}_{\mathbf{z}} &= \frac{1-\chi_{c}\cdot\frac{\mathbf{V}_{\mathbf{z}c}}{\mathbf{V}_{\mathbf{z},\gamma}}}{1-\chi_{c}^{\mathbf{Z}_{\mathbf{z}}}}\\ \mathbf{H}_{\mathbf{z}} &= \frac{1-\frac{\mathbf{N}_{\mathbf{z}c}}{\mathbf{N}_{c,z}}}{1-\chi_{c}^{\mathbf{Z}_{\mathbf{z}}}} \end{aligned}$	$\boldsymbol{C_{\boldsymbol{w}}}=1+\left(\boldsymbol{w}_{\boldsymbol{v}}-1\right)\cdot\left[\left(2-\frac{1.6}{w_{\boldsymbol{v}}}\cdot\boldsymbol{C}_{\boldsymbol{z}}^{2}\cdot\boldsymbol{\lambda}_{max}-\frac{1.6}{w_{\boldsymbol{v}}}\cdot\boldsymbol{C}_{m}^{2}\cdot\boldsymbol{\lambda}_{max}^{-2}\right)\cdot\boldsymbol{h}_{\boldsymbol{p}}-\boldsymbol{h}_{\boldsymbol{r}}\right]\geq\frac{W_{\boldsymbol{u},\boldsymbol{v}}}{W_{\boldsymbol{n},\boldsymbol{v}}}$	$\mathbf{C}_{\mathbf{v}z} = 1 + (w_z - 1) \cdot \left[ \left[ 2 - 14 \cdot \frac{C_{\mathbf{v}z}^2}{w_z^2} \cdot \frac{\lambda^2 a_z}{2} \right] \cdot n_{p_1} - c_{\mathbf{r}z} \right] \ge 0.6 \cdot \left\{ \frac{w_z}{w_y} \cdot \frac{W_{elz}}{W_{plz}} \right\}$	$\mathbf{C}_{\mathbf{z}\mathbf{z}} = 1 + (\mathbf{W}_z - 1) \cdot \left[ \left[ 2 - \frac{1.6}{\mathbf{W}_z} \cdot \widehat{\mathbf{C}}_{\mathrm{max}}^{\mathrm{c}} - \frac{1.6}{\mathbf{W}_z} \cdot \widehat{\mathbf{C}}_{\mathrm{max}}^{\mathrm{c}} - \frac{1.6}{\mathbf{W}_z} \cdot \widehat{\mathbf{C}}_{\mathrm{max}}^{\mathrm{c}} - \frac{1.6}{\mathbf{W}_{\mathrm{p},\mathrm{v}}} \right] = \mathbf{V}_{\mathrm{p},\mathrm{v}} \cdot \mathbf{W}_{\mathrm{p},\mathrm{v}}$	$\mathbf{a}_{\mathbf{IT}} = 1 - \frac{T_{\mathbf{I}}}{\Gamma_{\mathbf{V}}} \ge 0$	$\mathbf{b}_{LT} = 0.5 \cdot \mathbf{a}_{LT} \cdot \hat{\lambda}_{0}^{2} \cdot \frac{\mathbf{M}_{yeld}}{\hat{\boldsymbol{\chi}}_{LT} \cdot \mathbf{M}_{yeld}} \cdot \frac{\mathbf{M}_{yeld}}{\mathbf{M}_{yeld,x}} \cdot \frac{\mathbf{M}_{zeld}}{\mathbf{M}_{yeld,x}}$	$\mathbf{c}_{\mathbf{tr}} = 10 \cdot a_{\mathbf{tr}} \cdot \frac{\lambda_0}{5 + \lambda_c^4} \cdot \frac{W_{p,Ed}}{C_{m,y} \cdot \chi_{tr} \cdot M_{p,Red}}$ $\mathbf{d}_{\mathbf{tr}} = 2 \cdot a_{\mathbf{tr}} \cdot \frac{\lambda_0}{\lambda_0} \cdot \frac{M_{y,Ed}}{M_{y,Ed}} \cdot \frac{M_{y,Ed}}{M_{y,Ed}} \cdot \frac{M_{y,Ed}}{M_{y,Ed}}$	$\mathbf{e}_{\mathbf{L}^{*}} = 1.7 \cdot \mathbf{a}_{\mathbf{L}^{*}} \cdot \frac{\overline{\lambda}_{\mathbf{L}^{*}}}{0.1 + \overline{\lambda}_{\mathbf{Z}}^{*}} \cdot \frac{\nabla_{\mathbf{m}_{\mathbf{Y}}} \cdot \lambda_{\mathbf{L}^{*}} \cdot 1_{\mathbf{P}_{\mathbf{R}}}}{\mathbf{M}_{\mathbf{N},\mathbf{Ed}}}$	$\mathbf{w_{y}} = rac{W_{h,y}}{W_{e,y}} \le 1.5$	$w_z = \frac{W_{pl,z}}{W_{el,z}} \le 1.5$	$n_{p_1} = \frac{N_{ed}}{N_{p_1,ed}}$ Given that:	$\widetilde{\lambda}_0 > 0.2 \cdot \sqrt{C_1} \cdot \sqrt[4]{\left(1 - \frac{N_{ed}}{N_{o,T}}\right) \cdot \left(1 - \frac{N_{ed}}{N_{o,T}}\right)}$	$\boldsymbol{C}_{m, \mathbf{y}} = C_{m, \mathbf{y}, 0} + \left(1 - C_{m, \mathbf{y}, 0}\right) \cdot \frac{\sqrt{\mathbf{s}_{\mathbf{y}}} \cdot \mathbf{a}_{\mathrm{lT}}}{1 + \sqrt{\mathbf{s}_{\mathbf{y}}} \cdot \mathbf{a}_{\mathrm{lT}}}$	$C_{m,z} = C_{m,z,0}$

Página | 267

Touristic Antiput (Europoide 2 ND EN 1002 1 1./MA 2010 Article 6 2 7)	
Lorsional resistance (Eurocode 3 NP EN 1993-1-1://NA 2010, Article 6.2./) The following criteria must be satisfied:	
$\eta = \frac{M_{T,red}}{M_{T,Rd}} \leq 1$	1 : 0.001
The worst case design force occurs for load combination SW+1.5-Direccäo180graus.	
Mr _{ted} : Worst case design torsional moment.	<b>М</b> т, _{Еd} : <i>0.00</i> kN·m
The design torsional moment resistance $M_{T^{Rd}}$ is given by:	
$M_{T,Rd} = rac{1}{\sqrt{3}} \cdot W_T \cdot f_{yd}$	<b>М</b> т, _{Rd} : <u>3.89</u> kN·m
Where:	
W ₁ : Torsion resistance module. E.:: Steel design strength.	$W_{T}$ : 24.52 cm ³ f_{-1} : 275 nn MPa
$\mathbf{f}_{qd} = \mathbf{f}_{q} / \gamma_{00}$	
Where:	
f.: Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Tahle 3 1)	f MPa
W retrained to the material.	YM0 : 1.00
01 CYI	
Combined Z shear and torsional resistance (Eurocode 3 NP EN 1993-1-1://	NA 2010, Article 6.2.7)
b the following criteria must be satisfied:	
ional $\eta = \frac{V_{Ed}}{M} \le 1$	1 : 0.052
V _{pl,T,Rd}	1000
句 he worst case design forces occur for load combination 없1.35-SW+1.5-SOBRE.+0.9-Direcção90grausposiçãoextremo.	
V _{Ed} : Worst case design shear force.	V _{Ed} : 20.28 kN
M _{1,64} : Worst case design torsional moment.	М _{т,Еd} : <u>0.00</u> kN·m
$\mathbf{V}_{\mathbf{p}_{1},\mathbf{r},\mathbf{R}\mathbf{d}} = \sqrt{1 - \frac{\tau_{1}}{1.25} \cdot t_{yd}} \cdot V_{\mathbf{p}_{1},\mathbf{R}d}$	<b>V</b> ы.т. ^{кd} : <i>392.91</i> kN
Where:	
V _{plue} : Design resistant shear force.	V _{PI,Rd} : <u>392.96</u> kN
t _{ted} : I angenual stresses due to torsion. M	т _{т.еd} : <u>0.05</u> МРа
$\tau_{T,Ed} = \frac{V \tau_{T,Ed}}{W_t}$	
Where:	
W ₇ : Torsion resistance module.	W _r : 24.52 cm ³
$\mathbf{f}_{vel}$ : Steel design strength. $\mathbf{f}_{vel} = \mathbf{f}_{vel}$	<b>f</b> _{yd} : <u>275,00</u> MPa
VI here.	
f.: Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010,	
1 able 3.1) v: Partial safety factor of the material.	т, : <u>275.00</u> мна Ума : 1.00
	2217

# Combined Y shear and torsional resistance (Eurocode 3 NP EN 1993-1-1:/NA 2010, Article 6.2.7) The following criteria must be satisfied:

$\eta = \frac{V_{\text{Ed}}}{V_{\text{pl}, T, \text{Rd}}} \leq 1$	۷ ۲	0.001	
re worst case design forces occur for load combination 35.SW+1.5·SOBRE.+0.9·Direcção90grausposiçãoextremo.			
$V_{ed}$ : Worst case design shear force.	<	<i>0.03</i> kN	
$M_{r,tat}$ : Worst case design torsional moment. he reduced design resistant shear force $V_{a,r,r,at}$ is given by:	<b>М</b> _{т, Ed} :	0.00 kN	E
$\boldsymbol{V}_{\boldsymbol{p}_l,\boldsymbol{\tau},\boldsymbol{R}d} = \sqrt{1-\frac{\tau_{\boldsymbol{\tau},\boldsymbol{E}d}}{1.25\cdot f_{\boldsymbol{p}d}^{1}\sqrt{3}}}\cdot \boldsymbol{V}_{\boldsymbol{p}_l,\boldsymbol{R}d}$	V _{pl,T,Rd} :	628.26 kN	
Where: V _{ala} : Design resistant shear force. تحمد: Tanoential stresses due to torsion.	V _{pl,Rd} :	628.34 kN	
$\tau_{T,Ed} = \frac{M_{T,Ed}}{W_{c}}$			
Where: W • Trreion resistance module			m
$\mathbf{f}_{ya}$ : Steel design strength. $\mathbf{f}_{ya} = \mathbf{f}_{y}/\gamma_{no}$	fyd :	275.00 MPa	n n
Where: ft: Yield strength. (Eurocode 3 NP EN 1993-1-1:/NA 2010, Table 3.1) yw: Partial safety factor of the material.	<b>f</b> _v : Үмо :	<u>275.00</u> MPa 1.00	m

Produced by an educational version of CYPE