

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 6

values using any value from these types. The use of this
information in the instances is explained in Section 3.2.

Next we present a set of rules that are used to map
each element of the ClassSheet language to our embed-
ding.

b ∈ Block

ϕ

a = f

b | b

b ˆ b

c ∈ Class

l : b

l : b↓

c ˆ c

s ∈ Sheet

s | s

c→

The elements ϕ and a = f are simply placed in a
colored cell.

A horizontal composition of blocks (b | b) is embedded

placing the first block (here represented by b1 labeled
cells) in the corresponding cells, which are colored from
the previous step. For the second block (b2) the same
happens, although with a different color to distinguish
them. As the blocks form a horizontal composition they
are placed side by side in the embedded model.

A very analogous situation occurs for the vertically
aligned blocks (b ˆ b), but instead of being placed side
by side, they are on top of each other.

The next case is the labeled class (l : b). In this case,
the label is not visible in the embedding; only the block
is created using the previously presented rules.

A similar situation occurs for the labeled horizontally
expandable class l : b↓. The block is created using the
previous rule. After that, it is necessary to add another
row immediately after the block, with gray background,
and labeled with ellipsis. Finally, in the first row of the
block it is added a black horizontal line which expresses
the limit of the expansion block.

The vertical composition of classes (c ˆ c) is analogous
to the vertical composition of blocks.

The horizontal composition of sheets (s | s) is analo-
gous to the horizontal composition of blocks.

Finally, the horizontally expandable classes (c→) are
embedded starting with the normal embedding of the
class. The next step is to add an extra column imme-
diately after the last column of the class, with gray
background, and labeled with ellipsis. This expresses the
expandability. The last step is to add a black vertical line
which delimits the expansion.

Note the label constructors (Lab, Hor, and V er) are not
part of the embedding process, as they do not impact
the visual model. Nevertheless, they are used by our
algorithm to decide when two blocks are part of a greater
one. This is also used to decide when blocks have the
same color.

Given the embedding of the spreadsheet model in one
worksheet, it is now possible to have one of its instances
in a second worksheet, as we will discuss in the next
sections. As we will also see, this setting has a couple of
advantages: firstly, users may evolve the model having
the data automatically coevolved. Secondly, having the
model near the data helps to document the latter, since
users can clearly identify the structure of the logic be-
hind the spreadsheet. Figure 5a illustrates the complete
embedding for the ClassSheet model of the running
example, whilst Figure 5b shows one of its possible
instances.

3.1 Model Creation
To create a model, several operations are available such
as addition and deletion of columns and rows, cell
editing, and addition and deletion of classes. To create,
for example, the flights’ part of the spreadsheet used so
far, one can:

1) add a class for the flights, selecting the range
A1:G6 and choosing the green color for its back-
ground;

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 7

2) add a class for the planes, selecting the range
B1:F6, choosing the cyan color for its background,
and setting the class to expand horizontally;

3) add a class for the pilots, selecting the range
A3:G5, choosing the yellow color for its back-
ground, and setting the class to expand vertically;
and,

4) set the labels and formulas for the cells.

The addition of the relation class (range B3:E4) is not
needed since it is automatically added when the envi-
ronment detects superposing classes at the same level
(PlanesKey and PilotsKey are within Flights, which
leads to the automatic insertion of the relation class).

3.2 Instance Generation

From the flights’ model described above, an empty
spreadsheet instance can be generated. This is performed
by copying the structure of the model to another work-
sheet. In this process labels are simply copied, and
attributes are replaced in one of two ways:

1) If the attribute is simple (i.e., it is like a = ϕ), it is
replaced by its default value. This default value is
also used to set the instance cell type. After parsing
and determining the type of the default value, the
corresponding instance cells are set to the correct
type. For this we use the spreadsheet system built-
in type mechanism. Since this mechanism is quite
flexible, it may happen that the instance has values
of different types than the ones defined in the
model. Nevertheless, our tool could be extended
to guarantee such restrictions are enforced as we
have done with other restrictions [19], [20].

2) If the attribute is a formula, it is replaced by an
instance of the formula. An instance of a formula is
similar to the original one defined in the model, but
the attribute references are replaced by references
to cells where those attributes are instantiated.

Columns and rows with ellipses have no content, hav-
ing instead buttons to perform operations of adding new
instances of their respective classes. When pressed, new
cells are created with the corresponding default values,
and all the formulas are updated to accommodate the
changes.

From the flights’ model, we would obtain an initial
instance that has the exact same structure as the spread-
sheet shown in Figure 5b: the same labels and the same
four buttons that are available to add new instances of
the expandable classes. Compared to that spreadsheet,
however, its initial version would hold no values except
those from the default values defined in the model.
Considering, for example, the Pilots table, this means
that a single line would be present below the column
headers, and that this line would have its ID and Name
values set to the empty string and its Phone number set
to 0.

3.3 Data Editing

The editing of the data is performed like with plain
spreadsheets, i.e., the user just edits the cell content. The
insertion of new data is different since editing assistance
must be used through the buttons available.

For example, to insert a new flight for pilot pl1 in the
Flights table, without models one would need to:

1) insert four new columns;
2) copy all the labels;
3) update all the necessary formulas in the last col-

umn; and,
4) insert the values for the new flight.

With a large spreadsheet, the step to update the formulas
can be very error prone, and users may forget to update
all of them. Using models, this process consists of only
two steps:

1) press the button with label “· · · ” (in column J,
Figure 5b); and,

2) insert the values for the new flight.
The model-driven environment automatically inserts
four new columns, the labels for those columns, updates
the formulas, and inserts default values in all the new
input cells.

Note that, to keep the consistency between instance
and model, all the cells in the instance that are not data
entry cells are non-editable, that is, all the labels and
formulas cannot be edited in the instance, only in the
model. In Section 4 we will detail how to handle model
evolutions.

4 MODEL-DRIVEN SPREADSHEET EVOLU-
TION

The example we have been using manages pilots, planes
and flights, but it misses a critical piece of information
about flights: the number of passengers. In this case,
additional columns need to be inserted in the block
of each flight. Figure 6 shows an evolved spreadsheet
with new columns (F and K) to store the number of
passengers (Figure 6b), as well as the new model that it
instantiates (Figure 6a). Note that a modification of the
block that relates pilots and planes in the model (in this
case, inserting a new column) captures modifications to
all repetitions of the block throughout the instance.

In this section, we will demonstrate that modifica-
tions to spreadsheet models can be supported by an
appropriate combinator language, and that these model
modifications can be propagated automatically to the
spreadsheets that instantiate the models. In the case of
the flights example, the model modification is captured
by the following expression:

addPassengers =
once (inside "PilotsKey_PlanesKey"

(after "Hours" (insertCol "Passengers")))

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 8

(a) Evolved flights’ model.

(b) Evolved flights’ instance.

Fig. 6: Evolved spreadsheet and the model that it instantiates.

The actual column insertion is done by the innermost
insertCol step. The after and inside combinators specify
the location constraints of applying this step. The once
combinator traverses the spreadsheet model to search for
a single location where these constraints are satisfied and
the insertion can be performed.

The application of addPassengers to the initial model
(Figure 5a) will yield:

1) the modified model (Figure 6a),
2) a spreadsheet migration function that can be ap-

plied to instances of the initial model (e.g. Fig-
ure 5b) to produce instances of the modified model
(e.g. Figure 6b), and

3) an inverse spreadsheet migration function to back-
port instances of the modified model to instances
of the initial model.

In the remainder of this section we will explain the
machinery required for this type of coupled transforma-
tion of spreadsheet instances and models.

4.1 A Framework for Evolution of Spreadsheets in
HASKELL

Data refinement theory provides an algebraic framework
for calculating with data types and corresponding val-
ues [22]–[25]. In our approach we use the work proposed
in [25] because it as an implementation available which
we can use by extending it, and also because is uses

a point-free calculational approach, which allow us to
express our evolution steps in a simple way. It consists
of type-level coupled with value-level transformations.
The type-level transformations deal with the evolution
of the model and the value-level transformations deal
with the instances of the model (e.g. values). Figure 7
depicts the general scenario of a transformation in this
framework.

A

to
&&

6 A′

from

ff

A, A′ data type and transformed data type
to witness function of type A→ A′ (injective)
from witness function of type A′ → A (surjective)

Fig. 7: Coupled transformation of data type A into data
type A′.

Each transformation is coupled with witness functions
to and from, which are responsible for converting values
of type A into type A′ and back.

2LT is a framework written in HASKELL implementing
this theory [26]–[29]. It provides the basic combinators to
define and compose transformations for data types and
witness functions. Since 2LT is statically typed, transfor-
mations are guaranteed to be type-safe ensuring consis-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 9

tency of data types and data instances. To represent the
witness functions from and to 2LT relies on the definition
of a Generalized Algebraic Data Type4 (GADT) [30], [31].
Each from and to function is represented by a value of
the polymorphic type PF a , which can be defined using
the following constructors:5

PF a ::=
| id : PF (a → a) -- identity function
| π1 : PF ((a, b)→ a) -- left projection of a pair
| π2 : PF ((a, b)→ b) -- right projection of a pair
| pnt : a → PF (One → a) -- constant

-- split of functions
| ·4 · :PF (a → b)→ PF (a → c)→ PF (a → (b, c))

-- product of functions
| · × · :

PF (a → b)→ PF (c → d)→ PF ((a, c)→ (b, d))

-- composing of functions
| · ◦ · :

Type b → PF (b → c)→ PF (a → b)→ PF (a → c)

| ·? : PF (a → b)→ PF ([a]→ [b]) -- map of func.
| head : PF ([a]→ a) -- head of a list
| tail : PF ([a]→ [a]) -- tail of a list

-- head of the arguments of a formula
| fhead : PF (VFormula → RefCell)

-- tail of the arguments of a formula
| ftail : PF (VFormula → FormulaV)

This GADT represents the types of the functions used
in the transformations. Each constructor has a name and
its type. For instance, the pnt constructor receives a value
of type a and returns a value of type PF (One → a),
meaning it returns a representation of a function that has
as argument a value of the singleton type and returns a
value of type a , that is, it transforms a constant into a
function which will always return that constant. Another
example is π1, which represents the type of the function
that projects the first part of a pair. The comments should
clarify which function each constructor represents.

Given these representations of types and functions, we
can turn to the encoding of refinements. Each refinement
is encoded as a two-level rewriting rule:

Rule = ∀ a . Type a → Maybe (View (Type a))

Although the refinement is from a type a to a type
b, this cannot be directly encoded since the type b is
only known when the transformation completes, so the
type b is represented as a view of the type a . Since the
the transformation may fail, it is wrapped in the Maybe

4. “It allows to assign more precise types to data constructors by
restricting the variables of the datatype in the constructors’ result
types.”

5. Although we use a notation similar to HASKELL, we try to keep
it more abstract so it can more easily be used in other contexts.

type. Maybe encapsulates an optional value: a value of
type Maybe a either contains a value of type a (Just a),
or it is empty (Nothing).

View a ::=
View : Rep a b → Type b → View (Type a)

A view expresses that a type a can be represented
as a type b, denoted as Rep a b, if there are function
representations to : a → b and from : b → a that allow
data conversion between one and the other.

Rep a b ::=
Rep {to = PF (a → b),
{from = PF (b → a)}

To better explain this system we will show a small
example. The following code implements a rule, listmap,
to transform a list into a map (represented by ·⇀ ·):

listmap : Rule
listmap ([a]) =
Just (

View (Rep {to = seq2index , from = tolist })
(Int ⇀ a)

)
listmap = mzero

The witness functions have the following signature
(for this example their code is not important):

tolist : (Int ⇀ a)→ [a]
seq2index : [a]→ (Int ⇀ a)

This rule receives the type of a list of a , [a], and
returns a (maybe) view over the type map of integers
to a , Int ⇀ a . The witness functions are returned in the
representation Rep. If some other argument than a list
is received, then the rule fails returning mzero. All the
rules contemplate this last case and so we will not show
it in the definition of other rules.

Given this encoding of individual rewrite rules, a com-
plete rewrite system can be constructed via the following
constructors:

nop : Rule -- identity
. :Rule → Rule → Rule -- sequential composition
� :Rule → Rule → Rule -- left-biased choice
many : Rule → Rule -- repetition
once : Rule → Rule -- arbitrary depth rule apply

Details on the implementation of these combinators
can be found elsewhere [26].

4.1.1 ClassSheets and Spreadsheets in HASKELL

The 2LT was originally designed to work with alge-
braic data types. However, this representation is not

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 10

expressive enough to represent ClassSheet specifications
or their spreadsheet instances. To overcome this issue,
we extended the 2LT representation so it could support
ClassSheet models, by introducing the following GADT:

Type a ::=
-- previous shown constructors

...

-- plain spreadsheet value
| V alue : V alue→ Type V alue

-- references
| Ref : Type b → PF (a → RefCell)
→ PF (a → b)→ Type a → Type a

-- reference cell
| RefCell : Type RefCell

-- formulas
| Formula :VFormula → Type VFormula

-- block label
| LabelB : String → Type LabelB

-- attributes
| · = · : Type a → Type b → Type (a, b)

-- block horizontal composition
| · p · : Type a → Type b → Type (a, b)

-- block vertical composition
| ·ˆ · :Type a → Type b → Type (a, b)

-- empty block
| EmptyB : Type EmptyB

-- horizontal class label
| · : String → Type HorH

-- vertical class label
|| · : String → Type V erV

-- square class label
|| · : String → Type Square

-- relation class
| LabRel : String → Type LabS

-- labeled class
| · : · : Type a → Type b → Type (a, b)

-- labeled expandable class
| · : (·)↓ : Type a → Type b → Type (a, [b])

-- class vertical composition
| ·ˆ · :Type a → Type b → Type (a, b)

-- sheet class
| SheetC : Type a → Type (SheetC a)

-- sheet expandable class
| ·→ : Type a → Type [a]

-- sheet horizontal composition
| · p · : Type a → Type b → Type (a, b)

-- empty sheet
| EmptyS : Type EmptyS

The constructors of this data type represent each of the
elements of the textual syntax of ClassSheets presented

in Figure 1. Indeed we try to use the same notation to
keep our representation as similar to the original lan-
guage as possible. The comments should help match the
ClassSheet language and the constructors. The values of
type Type a are representations of type a . For example, if
t is of type Type V alue, then t represents the type V alue.
The following types are needed to construct values of
type Type a :

EmptyBlock -- empty block
EmptySheet -- empty sheet
LabelB = String -- label
RefCell = RefCell1 -- referenced cell
LabS = String -- square label
HorH = String -- horizontal label
V erV = String -- vertical label
SheetC a ::= -- sheet class

SheetCC a

SheetCE a ::= -- expandable sheet class
SheetCEC a

V alue ::= -- value
V Int Int
| V String String
| V Bool Bool
| V Double Double

VFormula ::= -- formula
FValue V alue
| FRef
| FFormula String [VFormula]

Once more, the comments should clarify what each
type represents. To explain this representation we will
use as an example a small table representing the costs
of maintenance of planes. We do not use the running
example as it would be very complex to explain and
understand. For this reduced model only four columns
were defined: plane model, quantity, cost per unit and total
cost (product of quantity by cost per unit). The HASKELL
representation of such a model is presented in the next
code listing.

costs =
| Cost : Model p Quantity p Price p Totalˆ
| Cost : (model = "" p quantity = 0 p price = 0 p total =
FFormula "×" [FRef ,FRef])↓

This ClassSheet specifies a class called Cost composed
by two parts vertically composed as indicated by the ˆ
operator. The first part is specified in the first row and
defines the labels for four columns: Model , Quantity ,
Price and Total . The second row models the rest of the
class containing the definition of the four columns. The
first column has default value the empty string (""), the
two following columns have as default value 0, and the
last one is defined by a formula (explained latter on).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 11

Note that this part is vertically expandable. Figure 8
represents a spreadsheet instance of this model.

Fig. 8: Spreadsheet instance of the maintenance costs
ClassSheet.

Note that in the definition of Type a the constructors
combining parts of the spreadsheet (e.g. sheets) return
a pair. Thus, a spreadsheet instance is written as nested
pairs of values. The spreadsheet illustrated in Figure 8
is encoded in HASKELL as follows:

((Model , (Quantity , (Price,Total))),
[("B747", (2, (1500,FFormula "×" [FRef ,FRef]))),
("B777", (5, (2000,FFormula "×" [FRef ,FRef])))])

The HASKELL type checker statically ensures that the
pairs are well formed and are constructed in the correct
order.

4.1.2 Specifying References
Having defined a GADT to represent ClassSheet mod-
els, we now need a mechanism to define spreadsheet
references. The safest way to accomplish this is making
references strongly typed. Figure 9 depicts the scenario
of a transformation with references. A reference from a
cell s to a cell t is defined using a pair of projections,
source and target. These projections are statically-typed
functions traversing the data type A to identify the
cell defining the reference (s), and the cell to which
the reference is pointing to (t). In this approach, not
only the references are statically typed, but also always
guaranteed to exist, that is, it is not possible to create a
reference from/to a cell that does not exist.

s

A

to
&&

target ..

source
00

T +3 A′

from

ff

source′
nn

target′ppt

source Projection over type A identifying the reference
target Projection over type A identifying the referenced cell

source′ = source ◦ from
target′ = target ◦ from

Fig. 9: Coupled transformation of data type A into data
type A′ with references.

The projections defining the reference and the refer-
enced type, in the transformed type A′, are obtained by
post-composing the projections with the witness func-
tion from . When source′ and target′ are normalized they

work on A′ directly rather than via A. The formula
specification, as previously shown, is specified directly
in the GADT. However, the references are defined sep-
arately by defining projections over the data type. This
is required to allow any reference to access any part of
the GADT.

Using the spreadsheet illustrated in Figure 8, an in-
stance of a reference from the formula total to price is
defined as follows (remember that the second argument
of Ref is the source (reference cell) and that the third is
the target (referenced cell)):

costWithReferences =
Ref Int (fhead ◦ head ◦ (π2 ◦ π2 ◦ π2)? ◦ π2)
(head ◦ (π1 ◦ π2 ◦ π2)? ◦ π2) cost

The source function refers to the first FRef in the
HASKELL encoding shown after Figure 8. The target
projection defines the cell it is pointing to, that is, it
defines a reference to the the value 1500 in column Price.

To help understand this example, we explain how
source is constructed. Since the use of GADTs requires
the definition of models combining elements in a pair-
wise fashion, π2 is used to get the second element of
the model (a pair), that is, the list of planes and their
cost maintenance. Then, we apply (π2 ◦ π2 ◦ π2)? which
will return a list with all the formulas. Finally head will
return the first formula (the one in cell D2) from which
fhead gets the first reference in a list of references, that
is, the reference B2 that appears in cell D2.

Note that our reference type has enough information
about the cells and thus we do not need value-level func-
tions, that is, we do not need to specify the projection
functions themselves, just their types. In the cases we
reference a list of values, for example, constructed by
the class expandable operator, we need to be specific
about the element within the list we are referencing. For
these cases, we use the type-level constructors head (first
element of a list) and tail (all but first) to get the intended
value in the list.

4.2 Evolution of Spreadsheets

The 2LT platform we use to encode the evolution mech-
anism is based on a set of rules that determine each
evolution step. In this section we define rules to perform
spreadsheet evolution. These rules can be divided in
three main categories: Combinators, used as helper rules,
Semantic rules, intended to change the model itself (e.g.
add a new column), and Layout rules, designed to change
the visual arrangement of the spreadsheet (e.g. swap two
columns).

4.2.1 Combinators

The semantic and the layout rules are defined to work
on a specific part of the model. The combinators defined
next are then used to apply those rules in the desired

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 12

places.

Pull up all references: To avoid having references in
different levels of the models, all the rules pull all
references to the topmost level of the model. This allows
to create simpler rules since the positions of all references
are known and do not need to be changed when the
model is altered. To pull a reference in a particular place
we use the following rule (we just show its first case):

pullUpRef : Rule
pullUpRef ((Ref tb fRef tRef ta) p b2) = return
View idrep (Ref tb (fRef ◦ π1) (tRef ◦ π1) (ta p b2))

The representation idrep has the id function in both
directions. If part of the model (in this case the left
part of a horizontal composition) of a given type has
a reference, it is pulled to the top level. This is achieved
by composing the existing projections with the necessary
functions, in this case π1. This rule has two cases (left
and right hand side) for each binary constructor (e.g.
horizontal/vertical composition).

To pull up all the references in all levels of a model
we use the rule

pullUpAllRefs = many (once pullUpRef)

The once operator applies the pullUpRef rule somewhere
in the type and the many ensures that this is applied
everywhere in the whole model.

Apply after and similars: The combinator after finds
the correct place to apply the argument rule (second ar-
gument) by comparing the given string (first argument)
with the existing labels in the model. When it finds
the intended place, it applies the rule to it. This works
because our rules always do their task on the right-hand
side of a type.

after : String → Rule → Rule
after label rule (label ′ p b) =

if label ≡ label ′

View s l ′ ← rule label ′

return View (Rep {to = (to s)× id,
from = (from s)× id})

(l ′ p b))

After comparing the argument label (label) with the
label from the model (label ′), if they are equal, it applies
the rule and then returns the updated model type.
Note that this code represents only part of the complete
definition of the function. The remaining cases, e.g. ·ˆ ·,
are not shown since they are quite similar to the one
presented.

Other combinators were also developed, namely,
before, below , above , inside and at . Their implementa-
tions are not shown since they are similar to the after
combinator.

4.2.2 Semantic Rules

Given the support to apply rules in any place of the
model given by the previous definitions, we now
present rules that change the semantics of the model,
that is, that change the meaning and the model itself,
e.g., adding columns.

Insert a block: The first rule we present is one of the
most fundamental: the insertion of a new block into a
spreadsheet. It is formally defined as follows:

Block

id4(pnt a)

++
6 Block p Block
π1

jj

This diagram means that a horizontal composition of
two blocks refines a block when witnessed by two
functions, to and from . The to function, id4(pnt a), is a
split: it injects the existing block in the first part of the
result without modifications (id) and injects the given
block instance a into the second part of the result. The
from function is π1 since it is the one that allows the
recovery of the existent block. The HASKELL version of
the rule is presented next.

insertBlock : Type a → a → Rule
insertBlock ta a t =

if (isBlock ta) ∧ (isBlock t)
rep ← Rep {to = id4(pnt a), from = π1}
View s t ′ ← pullUpAllRefs (t p ta)
return View (comprep rep s) t ′

The function comprep composes two representations.
This rule receives the type of the new block ta , its default
instance a , and returns a Rule . The returned rule is
itself a function that receives the block to modify t , and
returns a view of the new type. The first step is to verify
if the given types are blocks using the function isBlock .
The second step is to create the representation rep with
the witness functions given in the above diagram. Then
the references are pulled up in result type t p ta . This
returns a new representation s and a new type t ′ (in
fact, the type is the same t ′ = t p ta). The result view has
as representation the composition of the two previous
representations, rep and s , and the corresponding type
t ′.

Rules to insert classes and sheets were also defined,
but since these rules are similar to the rule to insert
blocks, we omit them.

Insert a column: To insert a column in a spreadsheet,
that is, a cell with a label labl and the cell below with
a default value form and vertically expandable, we first
need to create a new class representing it:

| labl : lablˆ((labl = form)↓)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 13

The label is used to create the default value (labl , []).
Note that since we want to create an expandable class,
the second part of the pair must be a list. The final step
is to apply insertSheet :

insertCol : String → VFormula → Rule
insertCol labl form sh =

if isSheet sh
clas ← (| labl : lablˆ((labl = form)↓))
return
((insertSheet clas (labl , [])) B pullUpAllRefs) sh

Note the use of the rule pullUpAllRefs as explained
before. The case shown in the above definition is for a
formula as default value and it is similar to the value
case. The case with a reference is more interesting and
is shown next:

insertCol labl FRef sh = if isSheet sh
clas ← (| labl : Ref ⊥ ⊥ ⊥ (lablˆ((labl = RefCell)↓)))
return
((insertSheet clas (labl , [])) B pullUpAllRefs) sh

Recall that our references are always local, that is, they
can only exist with the type they are associated with.
So, it is not possible to insert a column that references
a part of the existing spreadsheet. To overcome this,
we first create the reference with undefined functions
and auxiliary type (⊥). We then set these values to the
intended ones.

setFormula :
Type b → PF (a → RefCell)→ PF (a → b)→ Rule

setFormula tb fRef tRef (Ref t) =
return View idrep (Ref tb fRef tRef t)

This rule receives the auxiliary type (Type b), the two
functions representing the reference projections and adds
them to the type. A complete rule to insert a column with
a reference is defined as follows:

insertFormula =
(once (insertCol label FRef)) B
(setFormula auxType fromRef toRef)

Following the original idea described previously in
this section, we want to introduce a new column with
the number of passengers in a flight. In this case, we
want to insert a column in an existing block and thus
our previous rule will not work. For these cases we write
a new rule:

insertColIn : String → VFormula → Rule
insertColIn labl (FValue v) b =

if isBlock b
block ← labl ˆ(labl = v)
return
((insertBlock block (labl , v)) B pullUpAllRefs) b

This rule is similar to the previous one but it creates
a block (not a class) and also inserts it after a block. The
reasoning is analogous to the one in insertCol .

To add the column "Passengers" we can use the
rule insertColIn , but applying it directly to our running
example will fail since it expects a block and we have a
spreadsheet. We can use the combinator once to achieve
the desired result. This combinator tries to apply a given
rule somewhere in a type, stopping after it succeeds
once. Although this combinator already existed in the
2LT framework, we extended it to work for spreadsheet
models/types.

Make it expandable: It is possible to turn a regular
block within a class into an expandable block. For this,
we created the rule expandBlock :

expandBlock : String → Rule
expandBlock lb (label : clas) =

if lb ≡ label
rep ← Rep {to = id× tolist, from = id× head}
return View rep (label : (clas)↓)

It receives the label of the class to make expandable
and updates the class to allow repetition. The result type
constructor is · : (·)↓; the to function wraps the existing
block into a list, tolist ; and the from function takes the
head of it, head. We developed a similar rule to make a
class expandable. This corresponds to a promotion of a
class c to c→. We do not show its implementation here
since it is quite similar to the one just shown.

Split: It is quite common to move a column in a
spreadsheet from one place to another. The rule split
copies a column to another place and substitutes the
original column values by references to the new column
(similar to creating a pointer). The rule to move part of
the spreadsheet is presented in Section 4.2.3. The first
step of split is to get the column that we want to copy:

getColumn : String → Rule
getColumn lb (label ˆb) =

if lb ≡ label
return View idrep (label ˆb)

If the corresponding label is found, the vertical com-
position is returned. Note that as in other rules, this one
is intended to be applied using the combinator once . As
we said, we aim to write local rules that can be used at
any level using the developed combinators.

In a second step the rule creates a new a class (nclass)
containing the retrieved block:

View rep c′ ← getColumn lb c
nclass ← (| lb : (c′)↓)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 14

The last step is to transform the original column that
was copied into references to the new column. The rule
makeReferences : String → Rule receives the label of the
column that was copied (the same as the new column)
and creates the references. We do not show the rest of
the implementation because it is quite complex and will
not help in the understanding of the paper.

4.2.3 Layout Rules
We will now describe rules focused on the layout of
spreadsheets, that is, rules that do not add/remove
information to/from the model, but only rearrange it.

Change orientation The rule toVertical changes the
orientation of a block from horizontal to vertical.

toVertical : Rule
toVertical (a p b) = return View idrep (a ˆb)

Note that since our value-level representation of these
compositions are pairs, the to and the from functions are
simply the identity function. The needed information is
kept in the type-level with the different constructors. A
rule to do the inverse was also designed but since it is
quite similar to this one, we do not show it here.

Normalize blocks When applying some transforma-
tions, the resulting types may not have the correct shape.
A common example is to have as result the following
type:

A p B ˆC p Dˆ
E p F

However, given the rules in [7] to ensure the correct-
ness of ClassSheets, the correct result is the following:

A p B p Dˆ
E p C p F

The rule normalize tries to match these cases and
correct them. The types are the ones presented above
and the witness functions are combinations of π1 and
π2.

normalize : Rule
normalize (a p b ˆc p d ˆe p f) =

to← id× π1 × id ◦ π14π1 ◦ π24π2 ◦ π1 ◦ π2 × π2
from←
π1 ◦ π14π1 ◦ π2 × π1 ◦ π24π2 ◦ π2 ◦ π14id× π2 ◦ π2
return

View (Rep {to = to, from = from}) (a p b p d ˆe p c p f)

Although the migration functions seem complex, they
just rearrange the order of the pairs so they have the
correct arrangement.

Shift: It is quite common to move parts of the spread-
sheet across it. We designed a rule to shift parts of the

spreadsheet in the four possible directions. We show here
part of the shiftRight rule, which, as suggested by its
name, shifts a piece of the spreadsheet to the right. In
this case, a block is moved and an empty block is left in
its place.

shiftRight : Type a → Rule
shiftRight ta b =

if isBlock b
Eq ← teq ta b
rep ← Rep {to = pnt (⊥ :: EmptyBlock)4id,

from = π2}
return View rep (EmptyBlock p b)

The function teq verifies if two types are equal. This
rule receives a type and a block, but we can easily write
a wrapper function to receive a label in the same style
of insertCol .

Another interesting case of this rule occurs when
the user tries to move a block (or a sheet) that has a
reference.

shiftRight ta (Ref tb frRf toRf b) =
if isBlock b
Eq ← teq ta b1
r ← Rep {to = pnt (⊥ :: EmptyBlock)4id,

from = π2}
return

View r (Ref tb (frRf ◦ π2) (toRf ◦ π2) (EmptyBlock p b)

As we can see in the above code, the existing reference
projections must be composed with the selector π2 to
allow to retrieve the existing block b1 . Only after this
it is possible to apply the defined selection reference
functions.

Move blocks: A more complex task is to move a part
of the spreadsheet to another place. We present next a
rule to move a block.

moveBlock : String → Rule
moveBlock str c =

View s c′ ← getBlock str c
nsh ← (| str : c′)
View r sh ← once (removeRedundant str) (c p nsh)
return View (comprep s r) sh

After getting the intended block and creating a new
class with it, we need to remove the old block using
removeRedundant .

removeRedundant : String → Rule
removeRedundant s (s ′)

if s ≡ s ′

rep ← Rep {to = pnt (⊥ :: EmptyBlock),
from = pnt s ′}

return View rep EmptyBlock

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 15

This rule will remove the block with the given label
leaving an empty block in its place.

In the next section, we introduce the framework that
was developed to incorporate all the techniques de-
scribed so far in this paper.

5 THE MDSHEET FRAMEWORK

The embedding and evolution techniques previously
presented have been implemented as an add-on
to a widely used spreadsheet system, the OpenOf-
fice/LibreOffice system. The add-on provides a model-
driven spreadsheet development environment, named
MDSheet, where a (model-driven) spreadsheet consists
of two types of worksheets: Sheet 0, containing the
embedded ClassSheet model, and Sheet 1, containing
the spreadsheet data that conforms to the model. Users
can interact with both the ClassSheet model and the
spreadsheet data. Our techniques guarantee the synchro-
nization of the two representations.

In such a model-driven environment, users can evolve
the model by using standard editing/updating tech-
niques as provided by spreadsheets systems. Our add-
on/environment also provides predefined buttons that
implement the usual ClassSheets evolution steps. Each
button implements an evolution rule, as described in
Section 4. For each button, we defined a BASIC script
that interprets the desired functionality, and sends the
contents of the spreadsheet (both the model and the
data) to our HASKELL-based co-evolution framework.
This HASKELL framework implements the co-evolution
of the spreadsheet models and data presented in Sec-
tion 4.

MDSheet also allows the development of ClassSheet
models from scratch by using the provided buttons
or by traditional editing. In this case, a first in-
stance/spreadsheet is generated from the model which
includes some business logic rules that assist users in
the safe and correct introduction/editing of data. For
example, in the spreadsheet presented in Figure 5b, if the
user presses the button in column J, four new columns
will automatically be inserted so the user can add more
flights. This system will also automatically update all
formulas in the spreadsheet.

The add-on is divided in three main parts: the user
interface, the backend, and the communication layer.

For the user interface, OpenOffice Basic code is used,
since it provides an easier way to communicate with
OpenOffice/LibreOffice. Indeed it is the programming
language that more naturally communicates with the
spreadsheet interface.

The backend is the HASKELL code that implements the
techniques previously presented in Section 4. It is consti-
tuted by a set of libraries that can be used independently,
that is, without the need of OpenOffice/LibreOffice. We
use HASKELL to implement the backend for several rea-
sons. First, because there was available in this language

a transformation tool, the 2LT, that we could easily
extend to implement our techniques. Second, because
we could make the libraries available independently,
but still use them within OpenOffice/LibreOffice. Third,
because we could quickly prototype our tool, with the
guarantees given by the HASKELL static type system.
Indeed the strong type system HASKELL offers allowed
us to implement the evolution steps in a simple fashion.
As we encoded the spreadsheet data as lists of nested
pairs, where each list element represents a spreadsheet
row, and each element of the pair as a cell, most of
the evolution steps were implemented just by changing
the type of the values, or simply by rearranging the
pairs. This allowed us to find common and easy ways of
implementing the rules, thus making the implementation
run quickly.

Finally, the communication code consists of C/C++
code that connects the backend and the user interface.
This is the most challenging layer because it needs
to handle data types and corresponding values from
different programming languages. We use the HASKELL
Foreign Function Interface (FFI) to do the marshaling
of data between OpenOffice/LibreOffice and HASKELL,
and vice versa.

Moreover, the use of all these programming languages,
environments, and paradigms, brings technical difficul-
ties to the compilation.

The global architecture of the model-driven spread-
sheet development we constructed is presented in Fig-
ure 10.

Tool and demonstration video availability: The MD-
Sheet tool and a video with a demonstration of its
capabilities are available at

http://ssaapp.di.uminho.pt.

In the next section we present in detail the empiri-
cal study we have organized and conducted to assess
model-driven spreadsheets running through MDSheet.

6 EMPIRICAL EVALUATION

In the context of software engineering research, empirical
validation is widely recognized as essential in order
to assess the validity of newly proposed techniques
or methodologies [32]. While our previous work on
the construction of a model-driven spreadsheet devel-
opment environment has received good feedback from
the research community, the fact is that its assessment
in a realistic and practical context was still lacking. In
this line, we have designed an empirical study that
we describe in this section and whose results we also
analyze in detail here.

The experiment that we envisioned is motivated by
the need to understand the differences in individual
performance that users achieve under MDSheet (using
what we call model-driven spreadsheets) against tradi-
tional spreadsheet systems (from now on termed plain).
The perspective of the experiment is from the point of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 16

Sync

Sync

Button pressed

Sheet 0Sheet 1

Sheet 0Sheet 1

From the model MDSheet generates a template

Haskell ClassSheet data
type

Application of evolution rule
chosen by the user

New Haskell
ClassSheet data type

Forward and backward
transformations

New Haskell spreadsheet
representation

BASIC sends sheet 1 (data) to
MDSheet the back-end

Haskell spreadsheet
representation

Application of the forward/
backward tansformation

BASIC sends sheet 0 (model) to the
MDSheet back-end

Fig. 10: Model-driven spreadsheet development environ-
ment.

view of a researcher who would like to know whether
there is a systematic difference in the users’ performance.

In this section we detail the different stages that we
underwent in preparing and designing our study (Sec-
tion 6.1), in running it (Section 6.2), and in analyzing
(Section 6.3) and interpreting (Section 6.4) the results,
which are discussed afterwards (Section 6.5). Finally, we
can summarize the scope of this study as suggested
in [32] as follows:

Analyze the spreadsheet development process
for the purpose of evaluation
with respect to its effectiveness and efficiency
from the point of view of the researcher
in the context of the usage of two different spread-
sheets by Master students.

6.1 Design
The goal of our study is to analyze several aspects of
spreadsheet development, and to evaluate the implica-
tions of using a model-driven approach against the more
commonly used approach of designing and introducing
spreadsheet data from scratch and immediately within
spreadsheets themselves.

In particular, we want to evaluate the effectiveness and
efficiency of using MDSheet. As we described earlier,

it is quite common to find errors in spreadsheets. As
one of the objectives of our approach is to improve
this scenario, to evaluate its effectiveness was important.
However, it could be the case that users would make
less mistakes, but were (much more) slower. This would
decrease the practical interest of our approach. Thus, we
also want to evaluate its efficiency.

The study that we conducted was designed for a
controlled environment mostly because our tool was
never tested in production. In order to achieve this con-
trolled environment, we decided to perform the study
in an off-line setting (in an academic environment and
not in industry), and with university students attending
a Master’s program. Furthermore, our study analyzes
the specific use of ClassSheet-based models, and does
not consider generic model-driven spreadsheet develop-
ment. Finally, in our study, participants were asked to
solve realistic problems, in situations that were closely
adapted from real-world situations.

6.1.1 Hypotheses

MDSheet uses ClassSheet-based models to specify
spreadsheets, hence it benefits from ClassSheet advan-
tages such as: (i) users are freed from the risks associated
with editing formulas directly, and (ii) users do not have
to manually identify parts of the spreadsheet that are
repeatable (class expansions). In theory, (i) reduces the
number of errors and (ii) improves spreadsheet devel-
opment performance. However, this needs to be tested.
Thus, we can informally state two hypotheses:

1) In order to perform a given set of tasks, users spend
less time when using model-driven spreadsheets
instead of plain ones.

2) Spreadsheets developed in the model-driven envi-
ronment contain less errors than plain ones.

Formally, two hypotheses are being tested: HT for the
time that is needed to perform a given set of tasks, and
HE for the error rate found in different types of spread-
sheets. They are respectively formulated as follows:

1) Null hypothesis, HT0
: The time to perform a given

set of tasks using MDSheet is not less than that
taken with plain spreadsheets. HT0 : µd 6 0, where
µd is the expected mean of the time differences.
Alternative hypothesis, HT1

: µd > 0, i.e., the time to
perform a given set of tasks using MDSheet is less
than with plain spreadsheets.
Measures needed: time taken to perform the tasks.

2) Null hypothesis, HE0 : The error rate in spreadsheets
when using MDSheet is not smaller than with
plain spreadsheets. HE0

: µd 6 0, where µd is the
expected mean of the differences of the error rates.
Alternative hypothesis, HE1

: µd > 0, i.e., the error
rate when using MDSheet is smaller than with
plain spreadsheets.
Measures needed: error rate for each spreadsheet.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 17

6.1.2 Variables
The independent variables are: for HT the time to perform
the tasks, and for HE the error rate.

6.1.3 Subjects and Objects
The subjects for this study were first year Master stu-
dents undergoing a course at Universidade do Minho.
Out of a total number of thirty-five students that were
invited, twenty-five actually accepted the invitation and
participated in our study. More details about the subjects
participating in the study are presented in Section 6.3.

The objects for the study consisted in three different
kinds of spreadsheets that are described later in this
paper, in Section 6.1.5. One spreadsheet was used to
support an in-study tutorial that was given to par-
ticipants before they were actually asked to perform
a series of tasks on the model-driven versions of the
remaining two spreadsheets. This design choice attempts
to minimize the threats to construct validity, namely the
mono-operation bias (please refer to Section 6.4.1 for
more details on threats to validity).

6.1.4 Design
In our study, we followed a standard design with one
factor and two treatments, as presented in [32]. The
factor is the development method, that is, spreadsheet
development without using MDSheet. The treatments
are plain and model-driven. The dependent variables are
measurable in a ratio scale, and hence a parametric test
is suitable.

Moreover, blocking is provided in the sense that each
hypothesis is tested independently for each object. This
reduces the impact of the differences between the two
spreadsheets.

6.1.5 Instrumentation
As we have been describing, our study was supported by
three distinct kinds of spreadsheets. For the spreadsheet
that was used in the tutorial, we have only constructed
its model-driven version, but for the two remaining
spreadsheets we have used both their model-driven and
plain versions.

The spreadsheet that was used in the tutorial was
designed to record (simplified) information on the flights
of an airline company, namely its planes, their crew
and the meals available on-board. As for the two re-
maining kinds of spreadsheets, they were selected based
on their practical interest: one of them, from now on
termed budget, is an adapted version of the Personal
budget worksheet that is available from Microsoft Office’s
webpage6 (this spreadsheet has been downloaded over 4
million times); the other, payments is an adapted version
of a spreadsheet that is being used to register the entire
information regarding the payments that occur in the

6. http://office.microsoft.com/en-us/templates/personal-budget-
worksheet-TC006206279.aspx

municipal company Agere7 that is responsible for the
water supply in the city of Braga, Portugal. In order to be
usable, we have reduced the size of both spreadsheets,
without changing their complexity.

The given budget spreadsheet had 66 rows and 80 col-
umns with 3306 filled cells. It contained the information
for 12 months of 6 consecutive years, organized in 11
different categories of income/expenses subdivided in
income/expense items. Each year and category had a
subtotal, and there was a grand total for the years and
another for the categories, all of them being formulas.

The given payments spreadsheet had 33 rows and 55
columns with 1645 filled cells. It contained the informa-
tion for 3 years, subdivided in 9 payment forms with 6
kinds of totals, and 1 month (January) with 31 days. At
the end of each month/year there was also a grand total.

Guidelines were also provided to participants: they
consisted of the list of tasks to be performed. For both
spreadsheets, three tasks were given (non-essential data
is omitted, being replaced by “[...]”):

Budget
i) “Add to the budget two new categories of

expenses, [...], with the following expenses
[...].”

ii) “Add a new year, [...], to the budget keep-
ing the structure of the spreadsheet, and
insert the following data: [...].”

iii) “Delete the information from categories
[...].”

Payments
i) “Add a new month, [...], maintaining the

structure of the spreadsheet and add the
following data: [...].”

ii) “Add a new year, [...], keeping the structure
of the spreadsheet and insert the following
data: [...].”

iii) “Change the spreadsheet in order to re-
move the information related to kind of
payment [...], removing the corresponding
column.”

Several versions of the lists of tasks were prepared,
where each version had a specific task order, thus each
participant performed the tasks sequentially in a random
order. This was done to avoid learning effects on the
tasks, as also done in other studies (for instance in [33]).
The data to be inserted did not contain more than six
values per task. The participants had to update the
formulas to include new references to cells when needed.
The full description of the six tasks, that include the data
to be added to the spreadsheets, is available at the tool
webpage presented earlier.

To evaluate the participants’ work, each task was sub-
divided in small parts equivalent to each “atomic” oper-
ation that they should perform. This division into several
operations allows to create a better profile of spreadsheet

7. http://www.agere.pt/

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 18

errors, enabling us to see where users make mistakes:
insertion of cell for the new data, input of data, update of
formulas. They are precise enough but without introduc-
ing unnecessary complexity to the analysis of the results.
With this division we intend to analyze common errors
that users make, e.g., input of wrong values, oblivion to
update formulas, and (implicit) layout changes.

For the budget spreadsheet, we have the following
sub-division, with a total of twenty-three items:
• ten items for i), corresponding to inserting the lines

for the data, inserting the values, and updating the
formulas;

• nine items for ii), corresponding to inserting the
new cells, inserting the data, inserting the formulas,
and updating the formulas for the totals;

• four items for iii), corresponding to removing the
categories, and updating the formulas.

For the payments spreadsheet, we have the following
sub-division, with a total of ten items:
• four items for i), corresponding to inserting new

cells for the data, inserting the data, and updating
the formulas;

• four items for ii), corresponding to inserting new
cells for the data, inserting the data, and updating
the formulas;

• two items for iii), corresponding to deleting the
columns and updating the formulas.

In order to understand the background of the subjects
and the difficulties they experienced when participating
in the study, two questionnaires were prepared: one
answered before the study itself (pre-questionnaire) and
another after (post-questionnaire).

The data collected consists of the modified spread-
sheets by the participants, and some information about
the performance of our model-driven environment. For
that, the MDSheet add-on was modified in order to
provide a log of the user actions when working with the
model-driven spreadsheet. This log contains the action
performed (e.g., “add instance” and “remove class”), and
how much time the system took for each action.

6.1.6 Data Collection Procedure
Several steps were planned to run the study, with two
distinct options in the order they should be performed.
One of them is:

1) Filling the pre-questionnaire.
2) Performing the sets of tasks on the two plain

spreadsheets, with a time limit of fifteen minutes.
3) Attending the tutorial on MDSheet.
4) Performing the sets of tasks on the two model-

driven spreadsheets, with a time limit of fifteen
minutes.

5) Filling the post-questionnaire.
6) Collecting all spreadsheets, questionnaires and

logs.
The other option is: (1), (3), (4), (2), (5), and (6). This

option consists of first performing the operations with

the model-driven environment and then the operations
on plain spreadsheets, as opposed to the first option in
which the operations on plain spreadsheets is first. This
design choice attempts to minimize the learning effects
between treatments and so the validity threats. This is
a common technique used in other studies, for instance
in [33].

In steps (3) and (6), our team was expected to have
a direct participation, giving the tutorial in step (3) and
retrieving, in step (6), all the artifacts used or created by
the subjects.

All the subjects of our study were expected to perform
the two sets of tasks on the respective spreadsheets. The
goal of the study is not to compare one spreadsheet
against another, but instead to compare two methods to
develop spreadsheets. Furthermore, using two spread-
sheets permits to reduce the mono-operation bias (see
Section 6.4.1).

6.1.7 Analysis Procedure and Evaluation of Validity

The analysis of the collected data is achieved performing
paired tests where the performance of each subject on
the plain version of the spreadsheet is tested against the
model-driven version. For this, the following tests are
available: paired t-test, Wilcoxon sign rank test, and the
dependent-samples sign-test.

Since the study is composed of several tasks, and each
participant may not complete all of them, participants
that do not complete all the tasks for both treatments of
a spreadsheet will be discarded from the global analysis
of that spreadsheet. This will allow us to compare the
results of the remaining participants against each other,
and not doing so could lead to incorrect illations given
that a concrete task may be more error-prone than the
others.

To ensure the validity of the data collected, several
kinds of support were planned: constant availability to
clarify any doubt, tutorial to teach the model-driven
development process, and slightly supervise the work
done by the subjects in a way that do not interfere
with their work. This last point consists of navigating
through the room and see which subjects look like they
are having problems and try to help them if it is about
something that does not influence the results of the
study.

6.2 Execution

The study was performed in two classrooms with
twenty-five university students, eleven in one room and
fourteen in the other one. The participants were ran-
domly assigned to each room. All performed the study
at the same time, but with different execution orders
depending on the room that they were in.

The participants first started filling the pre-
questionnaire, with generic information about
themselves (gender, age range, and undergraduate

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 19

major). They also answered some questions so we could
assess their previous experience with spreadsheets.

While they filled the questionnaire, we checked if
their environment was correctly set. This environment
consisted in a virtual machine with Lubuntu 11.10 as
the installed operating system, where we pre-installed
LibreOffice Calc, and our add-on – MDSheet.

The list of tasks to be performed was then distributed
amongst the participants, and they had fifteen minutes
to perform all the tasks on the spreadsheets, but without
the assistance of our framework.

Before telling the participants to perform the tasks
on the spreadsheets with the models, they attended the
tutorial that we prepared on how to use the MDSheet
framework. During the tutorial, we answered all the
questions that the participants had, making sure that
they could use the framework.

The subjects in one room first performed the tasks with
plain spreadsheets, then attended the tutorial and then
performed the tasks on model-driven spreadsheets. The
subjects in the other room first attended the tutorial, then
performed the tasks on model-driven spreadsheets, and
finally performed the tasks on plain spreadsheets.

At the end, we gave the post-questionnaire to the
participants to evaluate the confidence that they had on
their performance during the study. Finally, we collected
the modified spreadsheet files, so that we could analyze
them later on.

6.3 Analysis
The global quantitative analyses were performed with
results of the subjects that completed all the tasks for any
of the given spreadsheets as described in Section 6.1.7.
This results in 15 subjects for the budget spreadsheet,
and 12/11 for the payments one (for time/error analysis,
respectively, as participant 3 only submitted the times
taken in each task, but not the resulting spreadsheets
themselves).

6.3.1 Descriptive Statistics
Subjects: Basic information about the subjects was gath-
ered, namely their gender, age, studies’ background,
and familiarity with spreadsheets. From the twenty-five
subjects, twenty-one are male and four are female. Most
of them are aged between twenty and twenty-eight, with
two subject being over thirty-one. The subjects come
from different areas, most of them having a background
in informatics engineering or computer science, but others
come from information technology and communication, IT
for health, or IT management. Two of the subjects never
worked with spreadsheets previously and the levels of
experience vary from having used at least once to an
heavy usage.

Time spent: As expected, differences were found in
the time that subjects used to perform the tasks. The
minimum times recorded on each spreadsheet were
by participants using the model-driven environment,

with average times being lesser for the model-driven
approach.

Figure 11 shows the time each participant took to
achieve the given tasks, both with and without the
model-driven environment, for the budget spreadsheet.
Only the results for the subjects that performed all the
tasks are displayed to allow for an easier comparison.

1 2 4 6 7 8 9 11 13 15 16 17 21 24 25
00:00

05:00

10:00

15:00

Model-Driven

Plain

Subject

T
im

e
 (

m
m

:s
s

)
1 2 3 5 7 8 11 13 15 18 21 22

00:00

05:00

10:00

15:00

Model-Driven

Plain

Subject

T
im

e
 (

m
m

:s
s

)

Fig. 11: Time used to perform the tasks on the budget
spreadsheet.

Similar results were obtained for the payments spread-
sheet, as shown in Figure 12.

1 2 4 6 7 8 9 11 13 15 16 17 21 24 25
00:00

05:00

10:00

15:00

Model-Driven

Plain

Subject

T
im

e
 (

m
m

:s
s

)

1 2 3 5 7 8 11 13 15 18 21 22
00:00

05:00

10:00

15:00

Model-Driven

Plain

Subject

T
im

e
 (

m
m

:s
s

)

Fig. 12: Time used to perform the tasks on the payments
spreadsheet.

Error rates: To evaluate the correctness of the spread-
sheets produced during the study, error rates are used.
Each of the six tasks requires a set of spreadsheet
operations to be correctly performed. Such operations
included: adding a new row, adding a new column,
changing the value of a cell, or changing the value of
a formula. One error occurs when the participant does
not perform one of those operations (e.g., the formula
was not updated after inserting a new record), or the
operation was performed incorrectly (e.g., the wrong
value was introduced in the cell). The errors obtained
correspond to the percentage of (sub)tasks that were not
performed correctly.

Error rates for the plain budget spreadsheet are around
50%, most of the errors being related to wrong formulas.
Some errors are also present in the model-driven version
of this spreadsheet, but they are in much lesser quantity
since the environment deals automatically with the for-
mulas. The errors present in the model-driven version
(and also present in the plain one) result from the input
of wrong values, or their input in the wrong places. This
information is graphically shown in Fig. 13.

Similar results were obtained for the payments spread-
sheet (see Fig. 14), with a slightly higher error rate for
the plain version of the spreadsheet (around 60%).

This analysis was also performed at the task level,
yielding similar results. They are not shown here since

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26

-864

-691

-518

-346

-173

00

173

346

Pagamentos

T1

T2

T3

Ti
m

e
D

iff
er

en
c e

 (
s)

1 2 4 6 7 8 9 11 13 15 16 17 21 24 25
0%

20%

40%

60%

80%

100%

Model-Driven

Plain

Subject

E
rr

o
r

R
a

te
 (

%
)

1 2 5 7 8 11 13 15 18 21 22
0%

20%

40%

60%

80%

100%

Model-Driven

Plain

Subject

E
rr

o
 R

a
te

 (
%

)

Fig. 13: Error rate in the budget spreadsheet.1 2 4 6 7 8 9 11 13 15 16 17 21 24 25
0%

20%

40%

60%

80%

100%

Model-Driven

Plain

Subject

E
rr

o
r

R
a

te
 (

%
)

1 2 5 7 8 11 13 15 18 21 22
0%

20%

40%

60%

80%

100%

Model-Driven

Plain

Subject

E
rr

o
 R

a
te

 (
%

)

Fig. 14: Error rate in the payments spreadsheet.

they do not bring any relevant information than what is
already presented.

Subjects made mistakes in both plain and model-
driven spreadsheets. Typical errors made in plain
spreadsheets are the wrong or misplaced values, a wrong
formula, and the lost of the spreadsheet structure. In
the model-driven version the only type of errors are the
wrong and misplaced values.

6.3.2 Hypothesis Testing

The significance level used throughout the evaluation
of all the tests is 0.05. The evaluation of the tests was
performed using the R environment for statistical com-
puting [34].

Comparison of times: The difference of times between
the execution of tasks in plain spreadsheets and model-
driven ones do not follow a normal distribution. Thus,
we used the Wilcoxon test, which is the best fit for these
cases [32].

The results obtained from the tests show that for
model-driven spreadsheet development, in the particular
case when our tool is used, the time taken to perform
the tasks is statistically less than when using a plain
spreadsheet (with p-value of 0.007882 for the budget
spreadsheet and 0.0002441 for the payments one).

Comparison of error rates: The differences of error
rates between plain spreadsheets and model-driven ones
do not follow a normal distribution. Thus, we used
a Wilcoxon test to test the null hypotheses for both
spreadsheets, in order to be able to compare the results.

The results obtained from the tests show that for
model-driven spreadsheet development, in the particular
case when our tool is used, the number of errors are
statistically less than when using a plain spreadsheet
(with p-value of 0.0003579 for the budget spreadsheet
and 0.001911 for the payments one).

6.4 Interpretation

The results from the analysis suggest that a model-
driven approach to spreadsheet development can im-
prove users’ performance, while reducing the error rate.
Moreover, from the questionnaires we can conclude that
subjects felt more confident in the results of the model-
driven approach compared to the the plain one. This
indicates that some restrictions on the development pro-
cess are welcome by the user since they understand this
will make them perform better on their tasks.

6.4.1 Threats to validity

The goal of the study is to demonstrate a causal relation-
ship between the use of a model-driven approach and
improvements in the spreadsheet development process.
Moreover, this study is defined to ensure that the actual
setting used represents the theory we developed.

Next, validity threats for this study are analyzed,
divided in four categories as defined in [35], namely:
conclusion validity, internal validity, construct validity,
and external validity.

Conclusion validity: The main concern is the low
statistical power due to the low number of participants.
To overcome this issue more powerful statistical tests
were performed where possible, taking always into ac-
count the necessary assumptions.

Problems related to measures can also arise, e.g.,
the times that the subjects took to perform the tasks.
Nevertheless no significant differences to the real values
are expected. Moreover, subjects performed the same
tasks and in an environment that they are used to. Also,
subjects have a similar background, which minimizes
the risk of the variation being due to individual
differences instead of the use of different treatments,
but introduces problems when generalizing (see further
on).

Internal validity: In order to minimize the effects
on the independent variables that would reflect on
the causality, several actions were taken. First, this
study, with these subjects, is executed only once, some
starting with plain spreadsheets and subsequently with
the model-driven environment, while others starting
with the model-driven environment and then working
with the plain spreadsheets, with the goal to reduce
learning effects. Second, the time to perform the study
was reduced as much as possible so that the subjects
could remain focused during all the study. Third, the
instruments used (e.g., spreadsheets and questionnaires)
were defined so that we could collect just what was
needed. Fourth, all the subjects performed the same
tasks, so issues from having different groups with
distinct treatments do not arise. However, the tasks
were performed in a random order to avoid learning
effects. Specifying as much as possible the study, we
obtained more control and reduced possible internal

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 21

validity threats.

Construct validity: For this validity, several hy-
potheses to cover the aspects to analyze were defined
with much detail, and mono-operation bias was reduced
using two spreadsheets to collect data. Furthermore, the
subjects were guaranteed to not be affected by this study,
since they were not under evaluation (this was said to
them several times during the study execution), and they
were put at ease so that they would perform as much
like in a real-world setting.

The tasks we asked users to perform are common
in spreadsheets. Some of them, e.g., updating a formu-
las after adding/removing data, are automated by our
setting exploiting information that is inferred from the
underlying model. While this may suggest that MDSheet
is being favored by our study, the fact is that such
framework incorporates multiple automation opportuni-
ties while also adding ways to interact with spreadsheets
that users are not accustomed to. So, our framework
and its usage could actually suffer from participants:
a) exploiting one automation opportunity when asked
to explore another, e.g., due to misuse of MDSheet’s
features; and b) participants ending up constructing
spreadsheets with an incorrect structure, e.g., due to
misuse of instance evolution steps. Moreover, it would
not be possible to compare both treatments equally if
part of the operations were not considered.

Thus, we believe the study construction permits to
evaluate the use MDSheet in a real scenario of usage.

External validity: This validity is related to the abil-
ity to generalize the results of the experiment to indus-
trial practice. For that, the spreadsheets used to collect
the data were based on real-world ones. However, since
this study was performed with a small homogeneous
group, the results from this study cannot be generalized
without analyzing the domain where to apply.

6.4.2 Inferences
Since this study was performed in a very specific setting,
we cannot generalize to every case. Nevertheless, our
setting was the most similar possible to a real one,
where spreadsheets were based on real ones and Master
students studies can come close to ones with profession-
als [36], so the results could be as if it was performed in
a industry setting with professionals. This can bring the
possibility that model-driven spreadsheet development
can be useful, and studies in the industry can be used
to assess the methodology in specific cases.

6.5 Discussion
The empirical study we conducted reveals very promis-
ing results for model-driven spreadsheets. Although par-
ticipants had little time to learn model-driven spread-
sheets, they completed their tasks faster and with less
errors using such spreadsheets compared to the ones

without models. This suggests that with little training
users can greatly benefit from the use of models guiding
them. Moreover, as we theorized, it was apparently easy
to use the model-driven setting in an environment users
are used to, that is, a spreadsheet system.

Nevertheless, from the study results we can also see
how to improve our framework. The errors committed
by participants in the model-driven environment were
similar to the ones found in the plain spreadsheets. Two
kinds of errors were found: both correct and incorrect
values inputted in the wrong cell and incorrect values
inputted in the correct cell.

Although our observations seem to indicate that we
are in the right research direction, they also indicate that
more techniques and tools are necessary to aid users
with always inputting the correct values in the correct
places.

To improve on the first scenario, where values are
inserted in wrong places, we believe the following so-
lutions could help:

• Labels’ context: as often happens, the spreadsheets
we gave to participants had blocks of cells repeated
over columns/rows (e.g. payments over months,
budgets over years). Given this scenario, it is quite
easy to scroll over the spreadsheet and lose visual
contact with labels, mainly in large spreadsheets.
We believe that keeping labels always visible would
help users to input the values in the correct cells.
Thus, we plan to make labels as visible as possible.
This can be achieve in two ways: first, one could
use the spreadsheet mechanism that allows to keep
some columns/rows visible always; second, given
that our spreadsheets have a corresponding model
where labels are known, MDSheet could repeat label
cells every number of columns/rows it would see
appropriate, or it could also suggest the person
creating the model to repeat such labels when again
it would see fit.

• Complete row/column context: we believe the pre-
vious solution can still be improved. Even with
labels visible, inputting values “far” from labels can
be error-prone. A possible helper mechanism would
be to highlight the column/row corresponding to
the cell the user is currently selecting. This would
give extra context to the users’ actions and would
possibly minimize inputting values in the wrong
cells.

To help in the second scenario, that considers wrong
values inserted in the right places, we believe to have
already created improvement mechanisms in the past:

• The first one is the possibility of restricting the range
and kind of values users can insert in the cells [20].
For instance, when creating the model, it is possible
to specify that a range of cells can only have values
between a range of integers (for instance, between 0
and 10, for an exam marking spreadsheet). This will
probably not avoid all input errors, but will avoid

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 22

some. It can also be seen as documentation, as the
error messages the users get explain them which
range/kind of values are expected [19].

• A second mechanism is the set of tools we have
created to find bad smells and faults in spreadsheets.
A bad smell may not be an error, but may lead to
one. By pin pointing the bad smells in a spreadsheet
may help the user to find the errors contained in
it [37], [38]. These smells can further be analyzed
by a fault-localization algorithm which will point
more precisely to the faults contained in a spread-
sheet [39], [40].

All these potential solutions need, of course, to be em-
pirically validated. We plan to include them in MDSheet
and pursue further validation both individually and in
combination.

To improve the second problem, the wrong values,
we propose the integration of known techniques such
as testing [41]–[47] and smell finders [37], [48]–[50]. It is
quite difficult to know if an inputted value is correct or
not, but testing techniques could aid the user to know
better. Moreover, smells can help users to search for
places that can be potentially dangerous in the sense that
errors can arise from those spreadsheet locations.

7 RELATED WORK

In spite of its numerous benefits, model-driven engi-
neering is sometimes difficult to realize in practice. In
the context of spreadsheets, the use of model-driven
software development requires that the developer is
familiar both with the spreadsheet domain and with
model-driven engineering. ViTSL [11] and Gencel [12]
represent the first approach to deliver model-driven
engineering to spreadsheet users. Using these tools, it
is possible to create a model and to generate a new
spreadsheet respecting it. This approach, however, has
an important drawback: there is no connection between
the stand alone model development environment and
the spreadsheet system. As a result, it is not possible to
(automatically) synchronize the model and the spread-
sheet data, that is, the automatic co-evolution of the
model (instance) and its instance (model) is not possible.
In our work we present a solution for these problems
by embedding spreadsheet models under a spreadsheet
system.

Hermans et al. [8] describe a technique to auto-
matically infer class diagrams for existing spreadsheets
matching them to a set of pre-defined patterns. The class
diagram inferred can then be used to further understand,
improved, or re-implement the underlying spreadsheet.
However, the relationship between the original spread-
sheet and the inferred class diagram is then lost and
no further connection exits between them. In our set-
ting both model and spreadsheet are kept synchronized
which allows the evolution of both artifacts.

Ko et al. [51] summarize and classify the research
challenges of the end-user software engineering area.

These include requirements gathering, design, specifica-
tion, reuse, testing and debugging. However, besides the
importance of Lehman’s laws of software evolution [52],
very little is stated with respect to spreadsheet evolu-
tion. Spreadsheet evolution poses challenges not only
in the evolution of the underlying model, but also in
the migration of the spreadsheet values and the used
formulas. Nevertheless, many of the transformations
applied within spreadsheets originate in works aiming
at spreadsheet generation.

Engels et al. propose a first attempt to solve the prob-
lem of spreadsheet evolution [53]. ClassSheets are used
to specify the spreadsheet model and transformation
rules are defined to enable model evolution. These model
transformations are propagated to the model instances
(spreadsheets) through a second set of rules which up-
date the spreadsheet values. The authors present a set
of rules and a prototype tool to support these changes.
In this paper we present a more advanced technique to
evolve spreadsheet models and instances in a different
way: first, we use strategic programming [54] with two-
level coupled transformation [55]. This enables type-
safe transformations, offering guarantee that in any step
semantics is preserved. Also, the use of 2LT not only
gives us the data migration for free but it also allows
back portability, that is, it allows the migration of data
from the new model back to the old one. Moreover, we
reuse the spreadsheet environment so the user does not
need to learn a new tool/environment.

Vermolen and Visser [56] proposed a different ap-
proach for coupled evolution of data model and data.
From a data model definition, they generate a domain
specific language (DSL) which supports the basic trans-
formations and allows data model and data evolution.
The interpreter for the DSL is automatically generated
making this approach operational. In principle, this
method could also be used for spreadsheet evolution.
However, while their approach is tailored for forward
evolution, our own supports reverse engineering, that is,
it supports automatic transformation and migration from
a newer model to an older one. Rose et al. [57] compare
different approaches to evolve instances after the corre-
sponding models have changed. Garcés et al. present an
automatic mechanism to solve this problem [58]. In our
evolution setting, this is also automatic and it is achieved
by applying the function that is calculated when the
model evolution occurs. A more comprehensive analysis
of existing coupled evolution techniques and tools can
be found at [59].

In this paper, we have studied the evolution of spread-
sheet models and the co-evolution of the correspond-
ing instances. While the evolution of instances and co-
evolution of models has also already been realized at the
theoretical level [60], the fact is that the proposed bidi-
rectional engine is still under integration. So, for now,
we focus on empirically evaluating the former setting,
also for practical reasons: we believe that constructing an
empirical validation scenario for the latter, more general,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 23

context would be unfeasible and potentially lead to
undecipherable results.

The empirical study presented in this paper is partly
based on the one from [61]. In their study, Carver et al.
evaluate a methodology for spreadsheet testing and
debugging, comparing it against the use of plain spread-
sheets. Their study is mainly based on opinion gathering
from the subjects, but they also evaluate two metrics:
correctness and time. They conclude that the use of their
methodology did not affect the correctness of spread-
sheets created by users, but it did reduce the effort
required to create them. A set of advices on how to cor-
rectly evaluate spreadsheet methodologies is presented
in [62].

In fact, another study featuring spreadsheets based on
models have been ran by the authors in the past [15],
[16]. However such study considered a completely dif-
ferent setting of the one we now present. The models
studied in the previous study are based on relational
databases and not on ClassSheets. Thus, the spreadsheets
created are not comparable to the ones studied in this
new work. Indeed the results from the previous study
show that relational models for spreadsheets have sev-
eral limitations while the new ClassSheet models have
delivered much better results, as shown in Section 6.
Moreover, the previous study does not consider the
evolution of model-driven spreadsheets as it happens in
the new study. Finally, the tools evaluated in the two
studies are indeed different.

One of the main goals of our work is to avoid errors.
Unfortunately, this is not always possible. For these
cases, there are several approaches that try to find faults
or errors in spreadsheets. Jannach et al. presented a
survey covering the current techniques in this field [63].
They present an overview of their own method in [64],
where they use an interactive approach to help the
user to find the faults. Abreu et al. also proposed the
adaptation of debugging techniques for general purpose
programming languages to spreadsheets [65], [66]. A
related line of research tries to find bad smells in spread-
sheets. These bad smells refer to parts of the spreadsheet
that, although may not be an error, may lead to one in the
future. Hermans et al. proposed to detect such anomalies
in formulas [49], but also in the relationships existing
between the different worksheets [48]. In fact, we have
also proposed techniques [37] and tools [38] to find
such spreadsheet problems. Moreover, we have devised
a technique where the result of bad smell detection,
that is, the set of cells identified as smelly, is used by
a spectrum-based fault localization algorithm to better
pinpoint the anomalous cells in a spreadsheet [39], [40].

8 CONCLUSION

In this paper, we have presented techniques for provid-
ing a model-driven engineering software development
for spreadsheet programming. We have presented the
embedding of a domain specific model representation

in a widely used spreadsheet system. We have also
presented techniques to perform co-evolution of the
ClassSheet model and spreadsheet data. We have devel-
oped an extension for a widely used spreadsheet system
where such embedding and co-evolution rules are avail-
able. Finally we assess the impact of this approach on
users’ productivity by performing an empirical study.
The results obtained clearly show that spreadsheets un-
der the model-driven setting are more reliable and faster
to use than regular ones.

Given the promising results that we have observed, we
plan to push model-driven spreadsheets further. Indeed,
we now already have a complete bidirectional model-
driven environment where users can evolve both the
model and the data and having the corresponding arti-
fact co-evolved [60]. In the future, we plan to empirically
validate the usability and usefulness of evolving spread-
sheet instances and having the corresponding model
co-evolved. As we stated before these techniques must
also be validated in an industrial environment. Thus, in
collaboration with Agere, the municipal company that
is responsible for supplying water to the city of Braga
(which already supplied us one of the spreadsheets used
in this study), we plan to run similar studies but now in
a production environment.

ACKNOWLEDGMENTS
The authors of this paper would like to express their
gratitude to Dr. Nuno Alpoim, CEO of Agere, for provid-
ing us and our study with a spreadsheet under usage in
industry.

This work is funded by ERDF - European Re-
gional Development Fund through the COMPETE Pro-
gramme (operational programme for competitiveness)
and by National Funds through the FCT - Fundação
para a Ciência e a Tecnologia (Portuguese Foun-
dation for Science and Technology) within project
FCOMP-01-0124-FEDER-010048. This work was also
supported by Fundação para a Ciência e a Tecnologia
with grants SFRH/BPD/73358/2010 and SFRH/BPD/
46987/2008.

REFERENCES
[1] F. Hermans, M. Pinzger, and A. van Deursen, “Supporting

professional spreadsheet users by generating leveled dataflow
diagrams,” in Proceedings of the 33rd International Conference on
Software Engineering, ser. ICSE ’11. New York, NY, USA: ACM,
2011, pp. 451–460.

[2] B. A. Nardi, A Small Matter of Programming: Perspectives on End
User Computing, 1st ed. Cambridge, MA, USA: MIT Press, 1993.

[3] R. R. Panko and N. Ordway, “Sarbanes-oxley: What about all the
spreadsheets?” CoRR, vol. abs/0804.0797, 2008.

[4] R. Panko, “Spreadsheet errors: What we know. what we think we
can do.” EuSpRIG, 2000.

[5] ——, “Facing the problem of spreadsheet errors,” Decision Line,
37(5), 2006.

[6] R. Abraham, M. Erwig, S. Kollmansberger, and E. Seifert, “Visual
specifications of correct spreadsheets,” in VL/HCC. IEEE Com-
puter Society, 2005, pp. 189–196.

[7] G. Engels and M. Erwig, “ClassSheets: automatic generation of
spreadsheet applications from object-oriented specifications,” in
ASE. ACM, 2005, pp. 124–133.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 24

[8] F. Hermans, M. Pinzger, and A. van Deursen, “Automatically
extracting class diagrams from spreadsheets,” in ECOOP ’10:
Proceedings of the 24th European Conference on Object-Oriented Pro-
gramming. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 52–75.

[9] P. Baker, S. Loh, and F. Weil, “Model-driven engineering in a large
industrial context - motorola case study,” in MoDELS, ser. Lecture
Notes in Computer Science, L. C. Briand and C. Williams, Eds.,
vol. 3713. Springer, 2005, pp. 476–491.

[10] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of
practice in model-driven engineering,” IEEE Software, vol. 31,
no. 3, pp. 79–85, 2014.

[11] M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmansberger,
“Automatic generation and maintenance of correct spreadsheets,”
in ICSE. ACM, 2005, pp. 136–145.

[12] M. Erwig, R. Abraham, S. Kollmansberger, and I. Cooperstein,
“Gencel: a program generator for correct spreadsheets,” J. Funct.
Program, vol. 16, no. 3, pp. 293–325, 2006.

[13] J. Cunha, J. Mendes, J. P. Fernandes, and J. Saraiva, “Embedding
and evolution of spreadsheet models in spreadsheet systems,” in
VL/HCC ’11. IEEE, 2011, pp. 179–186.

[14] J. Cunha, J. Visser, T. Alves, and J. Saraiva, “Type-safe evolution
of spreadsheets,” in FASE. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 186–201.

[15] L. Beckwith, J. Cunha, J. P. Fernandes, and J. Saraiva, “End-users
productivity in model-based spreadsheets: An empirical study,”
in IS-EUD, 2011, pp. 282–288.

[16] ——, “An empirical study on end-users productivity using
model-based spreadsheets,” in Proceedings of the European Spread-
sheet Risks Interest Group, ser. EuSpRIG ’11, S. Thorne and G. Croll,
Eds., July 2011, pp. 87–100.

[17] P. Stevens, J. Whittle, and G. Booch, Eds., UML 2003 - The
Unified Modeling Language, Modeling Languages and Applications,
6th International Conference, San Francisco, CA, USA, October 20-
24, 2003, Proceedings, ser. Lecture Notes in Computer Science, vol.
2863. Springer, 2003.

[18] D. Maier, The Theory of Relational Databases. Computer Science
Press, 1983.

[19] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “Extension
and implementation of classsheet models,” in Proceedings of the
2012 IEEE Symposium on Visual Languages and Human-Centric Com-
puting, ser. VLHCC ’12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 19–22.

[20] J. Cunha, J. P. Fernandes, and J. Saraiva, “From Relational Class-
Sheets to UML+OCL,” in the Software Engineering Track at the 27th
Annual ACM Symposium On Applied Computing (SAC 2012), Riva
del Garda (Trento), Italy. ACM, March 2012, pp. 1151–1158.

[21] S. D. Swierstra, P. R. Henriques, and J. N. Oliveira, Eds., Advanced
Functional Programming, Third International School, Braga, Portugal,
September 12-19, 1998, Revised Lectures, ser. Lecture Notes in Com-
puter Science, vol. 1608. Springer, 1999.

[22] C. Morgan and P. Gardiner, “Data refinement by calculation,” Acta
Informatica, vol. 27, pp. 481–503, 1990.

[23] J. Oliveira, “A reification calculus for model-oriented software
specification,” Formal Asp. Comput., vol. 2, no. 1, pp. 1–23, 1990.

[24] W. P. de Roever and K. Engelhardt, Data Refinement: Model-
oriented Proof Theories and their Comparison, ser. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press,
1998, vol. 46.

[25] J. N. Oliveira, “Transforming data by calculation,” in GTTSE, ser.
Lecture Notes in Computer Science, R. Lämmel, J. Visser, and
J. Saraiva, Eds., vol. 5235. Springer, 2007, pp. 134–195.

[26] A. Cunha, J. Oliveira, and J. Visser, “Type-safe two-level data
transformation,” in Proc. Formal Methods, 14th Int. Symp. Formal
Methods Europe, ser. LNCS, J. Misra et al., Eds., vol. 4085. Springer,
2006, pp. 284–299.

[27] A. Cunha and J. Visser, “Strongly typed rewriting for coupled
software transformation,” ENTCS, vol. 174, no. 1, pp. 17–34, 2007,
7th Workshop on Rule-Based Programming.

[28] ——, “Transformation of structure-shy programs: applied to
XPath queries and strategic functions,” in Proceedings of the 2007
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
based Program Manipulation, 2007, Nice, France, January 15-16, 2007,
G. Ramalingam and E. Visser, Eds. ACM, 2007, pp. 11–20.

[29] T. Alves, P. Silva, and J. Visser, “Constraint-aware Schema Trans-
formation,” in The Ninth International Workshop on Rule-Based
Programming, 2008.

[30] S. Peyton Jones, G. Washburn, and S. Weirich, “Wobbly types:
type inference for generalised algebraic data types,” Univ. of
Pennsylvania, Tech. Rep. MS-CIS-05-26, Jul. 2004.

[31] R. Hinze, A. Löh, and B. Oliveira, “”Scrap your boilerplate”
reloaded,” in Proc. 8th Int. Symposium on Functional and Logic
Programming, 2006, to appear.

[32] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering, ser. Computer
Science. Springer, 2012.

[33] A. Z. Henley and S. D. Fleming, “The patchworks code editor:
toward faster navigation with less code arranging and fewer nav-
igation mistakes,” in CHI, M. Jones, P. A. Palanque, A. Schmidt,
and T. Grossman, Eds. ACM, 2014, pp. 2511–2520.

[34] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2013. [Online]. Available: http://www.R-project.org

[35] T. D. Cook and D. T. Campbell, Quasi-experimentation: design &
analysis issues for field settings. Houghton Mifflin, 1979.

[36] M. Höst, B. Regnell, and C. Wohlin, “Using students as subjects
– a comparative study of students and professionals in lead-time
impact assessment,” Empirical Software Engineering, vol. 5, no. 3,
pp. 201–214, Nov. 2000.

[37] J. Cunha, J. P. Fernandes, H. Ribeiro, and J. Saraiva, “Towards
a catalog of spreadsheet smells,” in Proceedings of the 12th
International Conference on Computational Science and Its Applications
- Volume Part IV, ser. ICCSA’12. Berlin, Heidelberg: Springer-
Verlag, 2012, pp. 202–216. [Online]. Available: http://dx.doi.org/
10.1007/978-3-642-31128-4 15

[38] J. Cunha, J. P. Fernandes, J. Mendes, P. Martins, and J. Saraiva,
“SmellSheet Detective: A Tool for Detecting Bad Smells in Spread-
sheets,” in Proceedings of the 2012 IEEE Symposium on Visual
Languages and Human-Centric Computing, ser. VLHCC ’12. Wash-
ington, DC, USA: IEEE Computer Society, 2012, pp. 243–244.

[39] R. Abreu, J. Cunha, J. P. Fernandes, P. Martins, A. Perez, and
J. Saraiva, “Smelling faults in spreadsheets,” in Proceedings of
the 30th IEEE International Conference on Software Maintenance and
Evolution, ser. ICSME ’14. Washington, DC, USA: IEEE Computer
Society, 2014, to appear.

[40] ——, “Faultysheet detective: When smells meet fault localiza-
tion,” in Proceedings of the 30th IEEE International Conference on
Software Maintenance and Evolution, ser. ICSME ’14. Washington,
DC, USA: IEEE Computer Society, 2014, to appear.

[41] G. Rothermel, M. Burnett, L. Li, and A. Sheretov, “A methodology
for testing spreadsheets,” ACM Transactions on Software Engineer-
ing and Methodology, vol. 10, pp. 110–147, 2001.

[42] M. Fisher II, M. Cao, G. Rothermel, C. Cook, and M. Burnett,
“Automated test case generation for spreadsheets,” in Proceedings
of the 24th International Conference on Software Engineering (ICSE-
02). New York: ACM Press, May 19–25 2002, pp. 141–154.

[43] R. Abraham and M. Erwig, “Autotest: A tool for automatic test
case generation in spreadsheets,” in VL/HCC. IEEE Computer
Society, 2006, pp. 43–50.

[44] M. Fisher II, G. Rothermel, D. Brown, M. Cao, C. Cook, and
M. Burnett, “Integrating automated test generation into the WYSI-
WYT spreadsheet testing methdology,” ACM Transactions on Soft-
ware Engineering and Methodology, vol. 15, no. 2, pp. 150–194, April
2006.

[45] R. Abraham and M. Erwig, “Goaldebug: A spreadsheet debugger
for end users,” in ICSE ’07: Proceedings of the 29th international
conference on Software Engineering. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 251–260.

[46] ——, “UCheck: A spreadsheet type checker for end users.” J. Vis.
Lang. Comput., vol. 18, no. 1, pp. 71–95, 2007.

[47] ——, “Mutation operators for spreadsheets,” IEEE Trans. Software
Eng, vol. 35, no. 1, pp. 94–108, 2009.

[48] F. Hermans, M. Pinzger, and A. v. Deursen, “Detecting and
visualizing inter-worksheet smells in spreadsheets,” in Proceedings
of the 2012 International Conference on Software Engineering, ser.
ICSE 2012. Piscataway, NJ, USA: IEEE Press, 2012, pp. 441–451.

[49] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting code
smells in spreadsheet formulas,” in ICSM, 2012, to appear.

[50] A. Asavametha, “Detecting bad smells in spreadsheets,” Master’s
thesis, Oregon State University, 2012.

[51] A. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Er-
wig, C. Scaffidi, J. Lawrence, H. Lieberman, B. Myers, M. Rosson,
G. Rothermel, M. Shaw, and S. Wiedenbeck, “The state of the art in

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 25

end-user software engineering,” Journal ACM Computing Surveys,
2009.

[52] M. M. Lehman, “Laws of software evolution revisited,” in EWSPT
’96: Proceedings of the 5th European Workshop on Software Process
Technology. London, UK: Springer-Verlag, 1996, pp. 108–124.

[53] M. Luckey, M. Erwig, and G. Engels, “Systematic evolution of
typed (model-based) spreadsheet applications,” submitted for
publication.

[54] R. Lämmel and J. Visser, “Typed Combinators for Generic Traver-
sal,” in Proc. Practical Aspects of Declarative Programming PADL
2002, ser. LNCS, vol. 2257. Springer, Jan. 2002, pp. 137–154.

[55] R. Lämmel, “Coupled Software Transformations (Extended Ab-
stract),” in First International Workshop on Software Evolution Trans-
formations, Nov. 2004.

[56] S. D. Vermolen and E. Visser, “Heterogeneous coupled evolution
of software languages,” in Proceedings of the 11th International
Conference on Model Driven Engineering Languages and Systems
(MODELS 2008), ser. Lecture Notes in Computer Science, K. Czar-
necki, I. Ober, J.-M. Bruel, A. Uhl, and M. Völter, Eds., vol. 5301.
Heidelberg: Springer, September 2008, pp. 630–644.

[57] M. Rose, Louis, A. Etien, D. Mendez, S. Kolovos, Dimitrios,
A. Polack, Fiona, and R. F. Paige, “Comparing Model-Metamodel
and Transformation-Metamodel Co-evolution,” in Model and
Evolution Workshop, Olso, Norway, Oct. 2010. [Online]. Available:
http://hal.inria.fr/inria-00524314

[58] K. Garcés, F. Jouault, P. Cointe, and J. Bézivin, “Managing
model adaptation by precise detection of metamodel changes.”
in Model Driven Architecture - Foundations and Applications, 5th
European Conference, ECMDA-FA 2009, Enschede, The Netherlands,
June 23-26, 2009. Proceedings, ser. Lecture Notes in Computer
Science, R. F. Paige, A. Hartman, and A. Rensink, Eds.,
vol. 5562. Springer, 2009, pp. 34–49. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-02674-4 4

[59] D. D. Ruscio, L. Iovino, and A. Pierantonio, “Coupled evolution
in model-driven engineering.” IEEE Software, vol. 29, no. 6, pp.
78–84, 2012. [Online]. Available: http://doi.ieeecomputersociety.
org/10.1109/MS.2012.153

[60] J. Cunha, J. P. Fernandes, J. Mendes, H. Pacheco, and J. Saraiva,
“Bidirectional Transformation of Model-Driven Spreadsheets,” in
Theory and Practice of Model Transformations – ICMT 2012, ser.
Lecture Notes in Computer Science, Z. Hu and J. de Lara, Eds.
Springer-Verlag, 2012, vol. 7307, pp. 105–120.

[61] J. Carver, M. Fisher, II, and G. Rothermel, “An empirical evalua-
tion of a testing and debugging methodology for excel,” in Pro-
ceedings of the 2006 ACM/IEEE international symposium on Empirical
software engineering, ser. ISESE ’06. New York, NY, USA: ACM,
2006, pp. 278–287.

[62] R. R. Panko, “Improving methodology in spreadsheet error re-
search,” in Proceedings of the 1st Workshop on Software Engineering
methods in Spreadsheets, ser. SEMS ’14, F. Hermans, R. F. Paige, and
P. Sestof, Eds., vol. 1209. CEUR, 2014, pp. 7–8.

[63] D. Jannach, T. Schmitz, B. Hofer, and F. Wotawa, “Avoiding,
finding and fixing spreadsheet errors - A survey of automated
approaches for spreadsheet QA.” Journal of Systems and Software,
vol. 94, pp. 129–150, 2014. [Online]. Available: http://dx.doi.
org/10.1016/j.jss.2014.03.058

[64] D. Jannach, T. Schmitz, and K. Shchekotykhin, “Toward interac-
tive spreadsheet debugging,” in Proceedings of the 1st Workshop
on Software Engineering methods in Spreadsheets, ser. SEMS ’14,
F. Hermans, R. F. Paige, and P. Sestof, Eds., vol. 1209. CEUR,
2014, pp. 3–6.

[65] R. Abreu, A. Riboira, and F. Wotawa, “Constraint-based
debugging of spreadsheets.” in Proceedings of the XV Iberoamerican
Conference on Software Engineering, Buenos Aires, Argentina, April
24-27, 2012, R. S. S. Guizzardi, C. Pons, and A. Oliveros, Eds.,
2012, pp. 1–14. [Online]. Available: http://cibse.inf.puc-rio.br/
CIBSEPapers/artigos/artigos CIBSE12/paper 46.pdf

[66] ——, “Debugging spreadsheets: A csp-based approach.” in 23rd
IEEE International Symposium on Software Reliability Engineering
Workshops, ISSRE Workshops, Dallas, TX, USA, November 27-
30, 2012. IEEE, 2012, pp. 159–164. [Online]. Available: http:
//dx.doi.org/10.1109/ISSREW.2012.31

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2014.2361141

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

