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Everything should be made as simple as possible, but not simpler.

— Albert Einstein
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R E S U M O

A localização é normalmente obtida utilizando um sistema de navegação baseado num

ambiente estruturado. No entanto, estes sistemas não funcionam ou são difíceis de

serem implantados em ambientes densos. Assim, considerando que as pessoas se deslo-

cam geralmente a pé, neste trabalho é proposto um Sistema de Navigação Inercial para

Pedestres (PINS).

Nesta tese são identificadas as principais vantagens e desvantagens dos PINS, bem

como, os algoritmos que estão na base destes sistemas. O objetivo é fornecer uma

perspectiva abrangente sobre o que é necessário para desenvolver um PINS e quais

os problemas encontrados mais frequentemente durante o seu desenvolvimento. São

também identificados e comparados os sistemas e tecnologias mais importantes da

literatura.

Duas unidades de medição inercial foram desenvolvidas, sendo que os sensores iner-

ciais foram combinados com sensores de força para melhorar a detecção das diferentes

fases (fase de apoio e fase de balanço) da marcha humana, assim como, para ter uma

informação mais precisa sobre a força de contacto. É muito importante que a fase de

apoio seja devidamente detectada. Assim três diferentes algoritmos, utilizando difer-

entes sensores e métodos de fusão sensorial, são explicados e avaliados.

A marcha humana representa um padrão que é repetido ao longo do tempo, o qual

é aprendido utilizando algoritmos de aprendizagem com base nos dados obtidos pelas

diferentes fontes de informação para realizar uma caracterização do passo. Esta carac-

terização leva a uma melhoria no desempenho do sistema, uma vez que os erros sis-

temáticos podem ser aprendidos, para depois serem corrigidos em tempo real. Como

neste sistema existe mais do que uma fonte de informação, além das técnicas de fusão

sensorial, são também aplicadas técnicas de fusão de informação.

Depois dos dados serem obtidos com o equipamento desenvolvido, e do passo ser

caracterizado com os dados aprendidos, são aplicados os algoritmos que fazem a es-

timativa do deslocamento. A arquitetura proposta é avaliada em quatro cenários de

utilização real, dentro de um edifício, envolvendo diferentes tipos de caminhadas. Esta

arquitectura levou a uma melhoria significativa da precisão da estimativa do desloca-

mento.
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A B S T R A C T

Nowadays location information is typically obtained using a navigation system based

on a structured environment. However, these systems do not work or are very difficult

to be deployed in dense environments. Thus, considering that persons are usually on

foot, in this work is proposed a Pedestrian Inertial Navigation System (PINS).

In this thesis are identified the main advantages/disadvantages about PINS, as well

as, the algorithms that are the base of this type of systems. It is provided a good insight

about what is necessary to create a PINS and the problems that are encountered during

its development. To complement these insights the fundamentals about Human Gait

are presented, along with the main sensor and information fusion strategies used in

this type of system. Also, the most important systems and technologies are identified

and compared.

Two inertial measurement units were developed, where the inertial sensors were

combined with force sensors to improve the detection of different phases (stance and

swing phase) of the human gait, as well as, to have proper information about the con-

tact force. The stance phase is very important to be properly detected, therefore, three

different algorithms using different sensors and sensor fusion methods are explained

and evaluated.

The human gait cycle represents a pattern that is a repeatable over time. Thus, this

pattern is learned using machine learning algorithms, which are applied to the data

obtained from the different data sources to perform a step characterization. This charac-

terization leads to an improvement on the system’s performance, since the systematic

errors can be learned to then be corrected in real-time. Since there is more than one

source of information, besides sensor fusion techniques, it was also implemented an

information fusion strategy.

After collecting the data with the developed hardware and characterize the step ac-

cording to the learned data, it is demonstrated the developed displacement estimation

architecture. The proposed architecture and algorithms are evaluated through four real

use case scenarios in a typical indoor environment involving different types of walking

paths. This architecture led to a significant improvement on the displacement estima-

tion accuracy.
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1
I N T R O D U C T I O N

Location information is an important source of context for ubiquitous systems. Using

this information, applications can provide richer, more productive and more rewarding

user experiences [98]. For example, the ability to locate an individual or an object can

be exploited, among others, to help or to assist in decision-making [94].

This means that there are some applications where a system that provides location

everywhere is essential:

• Emergency teams - most of these teams are controlled by a commander and it is

very important for him to know the position of each one of his team members, in

order to send them to where they are needed. Some examples are: fire fighters,

military forces [35] and medics [84];

• Tourism - tourism recommendation systems [71] [10] [74] can give better recom-

mendations and more efficient tour plans if tourists’ indoor location is known;

• Patient monitoring - there is an increasing need for localization systems to track

people with special needs (e.g. the elderly [97] [49] [37] [88]);

• Children - nowadays people are always running from one side to another, and

sometimes they lost their sons from their point of view (e.g. in shopping malls

[5], carnivals). With a localization (tracking) system, parents can easily find their

sons;

• Factories - when an accident occurs in a factory or in a building and the first

safety teams arrive to the site, an indoor localization system can be used to mon-

itor the persons which are trapped inside [82].

The major limitation of these systems is related to retrieving individual’s location,

which nowadays is only based on a Global Navigation Satellite System (GNSS), restrict-

ing the use of these systems to environments where GNSS signals are available [3].

However, GNSS signal is not available inside buildings, in urban canyons, in the under-

ground, underwater and in dense forests. Consequently location-aware applications

sometimes cannot know the user location. Therefore, developing complementary local-
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ization technologies for these environments would unleash the use of many applica-

tions as presented above.

To suppress this limitation, there are already some proposed systems that retrieve

indoor location with good accuracy. One of the first indoor localization systems was

based on electromagnetic sensing [96]. After this one, many other approaches have

been developed based on smart floor [90], infra-red [117], Wi-Fi [27], ultrasound [15]

and many other technologies [51]. Also, important technology companies, like Google

[78] and Microsoft [29], are doing research on indoor localization systems.

However, most of these solutions force the existence of a structured environment

which make them difficult to be deployed over large buildings (with very expensive

implementation costs), because it needs a location-fingerprint approach that is labor-

intensive and vulnerable to environmental changes. These can be possible solutions to

use when GNSS signals are not available, but only indoors, since in a dense forest this

kind of systems does not exist or work.

To suppress structured environment limitations, Pedestrian Inertial Navigation Sys-

tem (PINS) are being studied, which will be discussed in Section 3. Typically, an Inertial

Navigation System (INS) uses a computer, motion sensors (accelerometers), rotation

sensors (gyroscopes), among other sensors, to continuously calculate via Dead Reck-

oning (DR) the position and orientation of a moving object.

DR has been important throughout history. Sailors were one of the first to use this

technique. It involved combining compass heading with knowledge of sea currents

and the speed of the vessel measured by the time taken by an object thrown overboard

to travel a fixed length along the side of the ship. This was the technique used by

Columbus in his voyages to discover the “New World” [99].

The advantage of an INS is that it does not require, once initialized, external ref-

erences in order to determine position, orientation and velocity. It is used on vehi-

cles/objects such as ships, aircraft, submarines, guided missiles and spacecraft. Recent

advances in the construction of Microelectromechanical systems (MEMS) have made

possible to manufacture smaller and lighter INSs. These advances have widened the

range of possible applications to include areas such as human and animal position

tracking.

However, DR approaches rely on the knowledge of an initial location and suffer from

error accumulation, as will be presented on Chapter 2.

With a PINS, individual movements information can be obtained independently of

the building infrastructure. Some authors [124] [101] [62] propose PINSs assisted by



1.1 problem statement and motivations 3

Wi-Fi, Radio-frequency identification (RFID), among others. to improve the accuracy of

this type of systems.

Other authors propose PINSs assisted by a particle filter [14], which is a probabilisti-

cally algorithm that describes, in a recursive way, the evolution of a state variable over

time. However, these implementations need to have a map of the building where they

are being used.

The main problem of these hybrid approaches is that they still need an implemented

infrastructure to work, and do not work on dense environments.

1.1 problem statement and motivations

As persons usually are on foot, an INS system based on Pedestrian Dead Reckoning

(PDR) technique is an appropriate solution to be used. These systems can be called as

PINS, which are typically composed by accelerometers, gyroscopes and other type of

sensors placed in human body to detect the body movements. The accelerometer and

the gyroscope data are mathematically integrated to provide changes in distance and

orientation. Given an initial location, this change in distance and orientation is used

to compute the pedestrian’s current location. Typically the acceleration data sensed by

the accelerometers and the angular orientation sensed by the gyroscopes are collected

at a high rate to include the signal frequencies induced by a walking of a pedestrian.

However, errors in inertial sensors measurements can produce huge navigation er-

rors. To avoid or to limit these errors, some approaches use fixed measurements. One

example is the limitation of the maximum velocity that a person can perform, thus

limiting the velocity error growth and slowing the rate of position error grow. Typ-

ically to limit these errors, huge and power-hungry high-quality accelerometers and

gyroscopes, like the ones used in ships or in airplanes, are used, but they are infeasible

to a person use/wear in a normal walk.

One way to make a PINS less intrusive is by using MEMS. However, while MEMS offer

significant advantages over traditional units in terms of cost, size, weight and power

consumption, at present they still present to many errors on the measurements [39].

Due to these errors PINS are not much used, since nowadays there is not a viable

solution to retrieve location using MEMS inertial sensors.

This research wants to prove if by complementing inertial sensors with other types

of sensors and techniques, namely force sensors on the feet and several sensors spread

in the pedestrian’s body combined with learning algorithms, that learn the walking
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characteristics and respective errors, the PINS accuracy can be improved, in order to

make it more viable to use by pedestrians. Creating a localization system capable of

provide location everywhere, independently of the environment and based only in

sensors that are placed in the human body.

The motivation for this project comes from the Personalized Sightseeing Tours Rec-

ommendation System (PSiS) [73] project, developed in GECAD (Knowledge Engineer-

ing and Decision Support Group) and in ISLAB (Intelligent Systems Lab).

PSiS [71] is a tour planning support system, that aims to define and adapt a visit plan

combining, in a tour, the most adequate tourism products, namely interesting places to

visit, attractions, restaurants and accommodations, according to tourist’s specific pro-

file, which includes interests, personal values, wishes, constraints and disabilities, and

available transportation modes between the selected products [72]. Points of interest

and transportation schedules are considered to generate a tour plan when a tourist

wants to visit a region.

PSiS Mobile [10], which is integrated into PSiS project, consists on a mobile tool to

assist a tourist on the “field”. The main objective of PSiS Mobile is to help a tourist

after he plan a trip for his vacations on PSiS web application. It presents a list of rec-

ommended points of interest to see on a specific location. It is also possible to do a

rescheduling of the original planning, according to user’s and point of interest context

(time, location and weather), but to do this user’s current location must be known. If

user’s indoor and outdoor location can be known the system can track the user more

accurately and improve the PSiS capabilities.

Resuming, there is the need to integrate PSiS Mobile with a system that can provide

indoor location, since it already can retrieve the outdoor location. With indoor location,

it will be also possible to recommend artwork inside a gallery according to tourist’s

profile.

1.2 hypothesis and objectives

This project, aims to study and create a PINS that combined with Global Positioning

System (GPS) provides location everywhere, including on dense and indoor environ-

ments. However, as stated earlier, there are several research issues on developing a

PINS, especially on the ones based on low-cost MEMS sensors because of sensor errors.
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This is the main problem/challenge of the whole project, how to reduce the impact

of the sensors errors on location estimation. It raises several research questions and

establishes multiple requirements.

Thus, the overarching goal of this thesis is to investigate if:

The information obtained from inertial sensors, and additional sensors spread along the hu-

man body, can be fused and combined with learning algorithms to learn the human gait charac-

teristics, to improve the pedestrian walking path estimation.

research question no.1 : Can the inclusion of new type of sensors and techniques

improve the step detection accuracy?

Typically a step is detected using an accelerometer placed in the person’s foot. How-

ever, accelerometers are subject to various sources of errors and, therefore, the step

detection results sometimes are not accurate enough. The step detection needs to be

very accurate, because to estimate the pedestrian displacement, with the minimum er-

ror, the integration of the acceleration values most be only performed during the swing

of legs. Meaning that the velocity errors can be reset at each step since true velocity

must be zero if the pedestrian foot is stationary.

In this research work force sensors and other techniques will be added/implemented

to improve step detection, since the force sensors provide accurate information to de-

termine when the user puts his feet on the ground, as well as, the respective contact

force. The contact force is important to classify the type of walking (e.g. running, nor-

mal walking, slow walking) that the pedestrian is performing. Thus, combining force

sensors with the accelerometer data (to get the step acceleration) a more exact detection

of the step can be achieved.

After developing different algorithms, that perform the step detection, they will be

compared to the typical PINS approach that uses only an accelerometer to detect steps.

research question no.2 : Can learning algorithms be used to learn pedestrian step

patterns and its errors in order to correct, in real-time, the inertial sensors estimations?

In order to reduce errors provided by MEMS, learning algorithms will be developed.

These algorithms will learn the walking/motion characteristics to correct, in real-time,

the data gathered by the sensors. It is intended that the data aggregation from all the
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sensors for a specific period of time will be done at the Body Central Unit (BCU)1, and

the data correction and the presentation of the user current location will be done on a

mobile device.

The learning algorithms should be trained based on a set of exercises or by using

GPS data. In the exercises environment or when the user is in environments where the

GPS signal is very good, the system self-learns how the user steps are performed and

the gaps (errors) that exist on the estimated step. So, when the pedestrian is indoors

or in a dense environment, the learned data will be used to, in real-time, improve the

PINS accuracy.

research question no.3 : Can a low-cost PINS provide good accuracy when used by

a pedestrian?

To make this system really low-cost, the sensor modules will be developed using

inertial sensors with a price tag around e 10 each. The main objective is that the system

will cost less than e 100, turning it really low-cost compared to other so-called “low-

cost” systems that cost more than a thousand euros.

Two BSU2 should be developed to be distributed in the lower limbs, legs and hip

area, to collect data. The sensors will be developed based on smart sensors philosophy,

connected to an integrated circuitry module to pre-process and codify the collected

signal to send it to a BCU. The BCU must be capable to interact with all sensors around

the body, to handle the calculations to determine, in real-time, the user location and to

exchange data with a mobile device.

An important consideration that must be introduced is a noise reduction algorithm.

This process will be useful to remove noise from a signal that is given by a sensor.

In this case, noise is something that is captured from the sensor, which can influence,

negatively, the walking estimation. This algorithm must decompose the signal and

extract only the frequencies bands that are important to the PINS, in order to lighten

the data processing, thus reducing the necessity for high computational power.

1 BCU is a sensor module that aggregates the data received from several Body Sensor Unit (BSU). Normally
it stores and/or forwards this information. It can also act as a BSU.

2 A BSU is able to sample the human body movements through the sensors incorporated on it, and convert
it into digital data and transmit it to a central node.
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The interconnection of the modules will be done through a Body Sensor Network

(BSN)3, implemented with a ZigBee4 or a Bluetooth5 based protocol.

The inclusion of more than one BSU on human body will permit the usage of different

algorithms (techniques) in each module to detect the step, and then, combine this

information to have a better perception about the type of step that was taken by the

user.

However, an optimal BSU position on the person’s body must be found in order to

obtain more accurate data to properly recognize the actual person’s activity. Also, be-

cause of people different sizes, the ideal sensors position to one person can be different

to another.

A problem that can occur in this project is the delay between the real location and

the processed one (that appears to the user on the mobile device). As represented in

Figure 1 the process is complex: it starts on the sensors that produce the measurements,

which are afterwards sent to the BCU. This process has already communication delays.

When the BCU has the sensors values, it must combine them according to the data

timestamps to process the sensor and information fusion and, therefore, estimate the

walking path, which takes some processing time. Afterwards, the learning algorithms

are executed to correct the estimated walking path. All of these algorithms can run

for a large amount of time, thus they should be efficient to process the data in a short

period of time, in order to minimize this delay.

success criteria

The goal of this project is to demonstrate that it can improve the PINS accuracy, so the

implemented algorithms will be compared with the traditional PINS approach, which

uses a foot BSU composed by an accelerometer and a gyroscope, to detect the steps

and, therefore, estimate the pedestrian displacement. Unfortunately, does not exist a

standard to compare this type of systems. The scenarios provided by each researcher

are very specific and different from each other, thus it is impossible to directly compare

the implemented system with others.

There will be two quantifiable success criteria to define the project’s success degree.

The first criteria is regarding the estimated location accuracy that must be higher than

3 BSN is a wireless network used on wearable computing devices.
4 Zigbee is a specification for a high-level communication protocol used to create personal area networks

built from small and low-power digital sensors.
5 Bluetooth is a wireless technology standard used by two (or more) devices for communication over short

distances. The main advantages of Bluetooth are that it is inexpensive and easy to use.
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Figure 1: Location estimation process flow

90%6 or in other words, per each 100 meters walked the system must have an error

lower than 10 meters. Also, the accumulated error must be as low as possible.

The second criteria, is regarding the delay between the measurements and the pre-

sentation of the current user location, that must be less than 2 seconds7. More than that

period is not considered real-time, as this system aims to be.

If the project completes these two criteria with success and if it could be integrated

with some real ambient assisted applications (e.g. tourism, healthcare) it can be said

that the project objectives were achieved.

1.3 overview

The aim of this thesis is to develop a PINS based on MEMS and on learning algorithms,

which learn the human gait to perform real-time corrections on the estimated walking

path. This goal is addressed throughout the document, which is structured as follows:

• Chapter 2 gives an insight about INSs, identifying the most common techniques

and technologies, as well as, their strengths and weaknesses;

• Chapter 3 outlines the current state of the art, where it is presented an overview

over recent and important PINS available in the literature;

• Chapter 4 describes the architecture of the developed hardware. It presents the

Central Processing Unit (CPU), the sensors, the communication modules and the

software used to connect all these pieces;

6 As will be seen in the analysis of the state of the art this is the mean accuracy of this type of systems, thus
it is expected to have at least this amount of accuracy.

7 The GPS modules of mobile devices work at 1Hz, thus the proposed PINS should present a similar fre-
quency.
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• Chapter 5 introduces the step detection algorithms, where the first one is based

on the approach typically used by PINS, the second one is the proposed approach

that includes force sensors on the feet, and the third one is based on the data

given by the pelvic rotation. The implemented approaches are all evaluated in

order to verify which have the best results, and the correspondent magnitude of

improvement;

• Chapter 6 provides a description of the proposed learning approach. After a

step being detected, it is characterized according to the current person walking

characteristics. This characterization is done by retrieving some features from

the several sources of data, which are then feed into learning algorithms that

characterize the step. All the implemented approaches are evaluated, as well as,

some different learning algorithms, to verify which is more feasible to be used in

PINS;

• Chapter 7 presents the implemented orientation algorithm, as well as, the two

implemented displacement estimation algorithms. Then, the implemented ap-

proaches are compared and the results analysed;

• Chapter 8 concludes with a summary of the contributions, a discussion about the

obtained results and future work directions.





2
F U N D A M E N TA L S O F I N E RT I A L N AV I G AT I O N

In this chapter it will be presented the fundamentals about INSs. The main techniques

and algorithms used in this area of research will be introduced and discussed, as well

as, some insights about how the human gait works (Section 2.1). The techniques and

algorithms include how the distance (Section 2.2) and the orientation (Section 2.3) are

estimated, and what types of information fusion (Section 2.4) can be used.

A typical scenario of a DR application is a ship travelling at a constant speed in a

fixed direction. The ship’s current location is on a line starting at the known starting

point in the direction of travel, and the distance from the starting point is given by the

speed along the direction of travel multiplied by the time since the ship was at that

known point. As given by the equations of motion (Equation 1).

s = s0 + vt (1)

where s represents the position to be estimated, s0 the previous position, v the cur-

rent velocity and t the time interval.

If the ship changes the direction or the speed of travel, the navigator must note

the current location estimation and start the process again using this new location

as the starting point. Over time, these estimations become less accurate, because they

rely on previous estimates, which are imperfect due to errors in speed and heading

measurements.

A PINS uses the PDR technique [19] to estimate step length and, therefore, the walking

distance, using inertial, or other type, of sensors. Unfortunately, a module working

only with PDR is not able to ensure that the geographical location is accurate within

a few meters. As result, location and orientation errors tend to grow unbounded. In

fact, although these deviations may be small for every millisecond, the location error

caused by a sustainable use of the system can exceed one meter in 10 seconds [118].

These estimation errors often occur during starts, stops, sharp curves and walking on

inclines.

11
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PDR positioning accuracy normally ranges from 0.5% to 10% of the total walking

distance, but these numbers strongly depend on the algorithm implemented, on the

inertial sensor technology and on the evaluation environment.

PINS can provide both two-dimension and three-dimension localization. However, er-

rors in Z-direction (altitude) are usually higher. Actually the location errors are strongly

coupled with the heading errors via the true (relative) location. A heading error of 0.5◦

gives a relative position error of 1% of the walked distance. However, if the user walks

back the same distance, the location errors are cancelled out.

An INS is composed by one or more Inertial Measurement Unit (IMU). Typically an

IMU contains a three axis gyroscope’s and accelerometer’s, which report angular ve-

locity and acceleration respectively. For portable applications, like the ones already

presented on Chapter 1, IMUs with small dimensions are essential. High-performance

devices, such as the NG LITEF [46] IMU which is designed for civil and military avia-

tion, are equipped with hermetically sealed cases and fiber-optic gyroscopes that pro-

vide low-noise, high-stability and a low-drift factor. However, due to their price, size,

weight or power consumption, this type of IMUs are not suitable to be used by mobile

applications in small vehicles, clothes or shoes.

MEMS are composed by mechanical devices with related electronics and sometimes

with optical and fluid elements. Since they are inexpensive, small and lightweight, they

can be easily engineered to fit into existing clothes and shoes. However, they are not

yet able to provide an accuracy like the bigger and expensive sensors, since they suffer

from significant bias and noise [97].

Besides the high-performance devices mentioned above, smaller IMUs, such as Xsens

MTi [125], Sparkfun Electronics Razor IMU [110] and X-IMU [113], are commercially

available. However, the smaller size comes with reduced sensor data performance and

accuracy. Whereas the Xsens MTi provides orientation estimates from onboard sensor

data fusion and compensated raw sensor data, most small-sized IMUs provide only

uncompensated raw sensor data. Therefore, the Xsens MTi is the most used, small-

sized inertial sensor, in research works [52].

Sensors based on MEMS technology can be accelerometers, magnetometers, gyro-

scopes or barometers. Accelerometers measure the linear acceleration of the system in

the inertial reference frame, meaning that measurements are relative to the moving sys-

tem. As the accelerometers are usually fixed to the system and rotate with the system,

they are not aware of their own orientation [91].
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Gyroscopes measure the angular velocity of the system in the inertial reference frame.

The system’s current orientation is known at all times by using the original orientation

of the system in the inertial reference frame as the initial condition and integrating the

angular velocity to obtain the follow orientations [91].

Speed and direction of a person can be calculated by complementing the accelerom-

eter and gyroscope data. However, for accurate results the sensors output must have

a minimum drift. Especially, the drift of the gyroscope is crucial since it cannot be

reset during the measurement phase. Also, errors in the accelerometer and gyroscope

measurements are mathematically integrated in the navigation algorithm and produce

increasing navigation errors. To avoid or to limit these errors, some approaches use

fixed measurements to calibrate/limit the system.

A barometer is typically used to obtain altitude information. It measures atmo-

spheric pressure and the altitude is determined according to the sea level atmospheric

pressure. This pressure decreases at altitudes above sea level and increases below sea

level.

Magnetometers (magnetic compasses) are used to obtain the north direction and

then estimate the moving direction. However, they are not the best choice for urban

navigation because they are subject to strong magnetic disturbance such as power lines,

computers, and various metal/steel objects and structures. Those disturbances, being

of sporadic time/space nature, are hard to detect and are even harder to correct with-

out using external systems. When a magnetic compass is coupled with a gyroscope,

the magnetic disturbances can potentially be detected and corrected, but the tuning of

such a filter is extremely difficult.

While the quality of inertial sensors is a key factor for the performance of an INS, its

placement on the user’s body is also a very important factor. Different placement of

the sensors, such as on user’s waist [26], trunk [64], leg [100], foot [42] [38] or even the

head [18] enables different complementary navigation algorithms that reduce system

sensitivity to sensor errors, thereby enhancing its navigation capability.

The waist or trunk locations are probably the less intrusive IMU placements and also

the most reliable to estimate heading using gyroscopes or magnetometers since it is

near the user’s center of gravity [56]. However, for the distance estimation the sensors

placed on or inside the user’s foot usually have the best results since it has some

advantages, as the application of Zero Velocity Update (ZUPT) strategy (Section 2.2.3)

which reduce drifts after integrating accelerations [42] [44].
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An INS usually uses two approaches to estimate the person location. One uses a set

of mechanization equations, based on the human gait cycle (Section 2.1), to convert the

IMU measurements into useful position, velocity and heading information. The other

uses a magnetometer, a gyroscope and an accelerometer to estimate heading and a

pedometer to count the number of steps.

The first approach is based on an algorithm that involves three phases [81]:

• Detect a step - once a step is detected, the algorithm defines the type of step, i.e.

forward or backward;

• Estimate the step length - the accelerometer and the gyroscope data are mathe-

matically integrated to provide changes, given an initial location, in velocity and

orientation (Section 2.2);

• Estimate heading - the data from a magnetometer, a gyroscope and an accelerom-

eter are fused to estimate heading (Section 2.3).

This algorithm is susceptible to several sources of error, including the sensors bias

offset, drift, calibration errors and the random walk errors associated with noise inte-

gration.

The second approach uses a pedometer which is a device that counts steps by detect-

ing the pedestrian’s motion. Typically, it is composed by an accelerometer and the best

pedometers are accurate to within 5% error. However, the position where the sensor is

placed has very importance to the accuracy of the system.

In this type of systems an average step length is predefined according to the per-

son’s height relationship. It is assumed that the pedestrian walking steps have con-

stant length. Since persons can assume several types of walking along the time, this

approach introduce large errors depending on the environment where the system is

used.

2.1 human gait

Since a PINS attempts to estimate the step length, in this section is presented a theo-

retical explanation about human gait. Human gait represents a movement pattern that

repeats itself indefinitely at each step and enables the human body transportation from

one location to another [106].
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The goal of human gait is moving the body through bipedalism. This motion occurs

via a series of events that are repeated after each new contact of the heel with the

ground (initial contact). These cyclical events allow the shift of the body support from

one member to the other. Thus, as the body moves, a member serves as a source of

support and the other to advance the body until it contacts the ground [121]. This

sequence of events is named as gait cycle and is represented in Figure 2.

The human gait cycle is divided into two phases: stance phase and swing phase.

During the stance phase, the foot is in contact with the ground, whereas in the swing

phase the foot is not in contact with the ground and the leg is moving until the foot

enters, again, in contact with the ground. In a normal gait cycle the stance phase

represents 60% of the time and swing phase represents 40% of the time.

The stance phase is divided into three separate phases: first double support, in which

both feet are in contact with the ground; single limb stance, when one foot is swinging

and the other is in contact with the ground; second double support, when both feet

are again in contact with the ground.

Whenever there is a double support the body weight is transferred from one member

to the other. The two moments of double support, in a gait cycle, coincide with the

time where a member is starting and the other is ending the stance phase. It should be

noted that, the less time spent in the double support, the higher is the walking speed

[121] [67]. When a person increases the step rate, the duration of the double support

decreases and it is null if the person is running [102].

Figure 2: Gait cycle represented for the right foot (adapted from [121])
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Analyzing the nomenclature represented in Figure 2, it should be noted that it refers

to the right side of the body. The same terminology would be applied to the left side.

The loading response phase represents the interval at which the body weight is trans-

ferred to the member that will serve as support. In this interval the foot is completely

in contact with the ground. The mid-stance phase begins when the foot, which was pre-

viously serving as support, is no longer in contact with the ground and moves forward

(body support is only performed by one member). The terminal stance phase begins

when the heel is raised and ends when the opposite foot begins its contact with the

ground. During this phase the body weight moves to the foot in analysis (right foot).

The pre-swing phase is the terminal phase of the double support that begins when

the opposite leg (left in this example) comes in contact with the ground and ends

when the foot in question (right) is no longer in contact with the ground. During the

pre-swing the body weight is fully transferred to the foot that will serve as support

[16].

The initial swing phase starts when the foot is no longer in contact with the ground

and continues until the maximum flexion of the knee, i.e. it is the beginning of the

lifting motion of the leg. The mid-swing phase begins after the knee maximum flexion

and ends when the tibia is vertical. This phase is the end of the leg lifting motion. The

terminal swing phase is the preparation for the contact with the ground by the heel

[16].

The human stride is defined by the range from which an event occurs on a member

until this same event repeats in the same member. Typically, an event like the initial

contact of the foot with the ground defines the beginning of the stride. A stride can be

defined from the contact of the right leg heel until the same heel contacts, again, with

the ground.

A step is a portion of the stride and is defined since an event occurs on a member

until this same event occurs on the opposite member. A step can be defined from the

lift of the left heel from the ground until it touches again the ground. Thus, two steps

are equivalent to a stride, which corresponds to a gait cycle [48]. The step length and

the stride are represented in Figure 3.

2.1.1 Foot Acceleration

The foot acceleration represents the speed variations over time. This parameter is im-

portant because the foot acceleration follows a particular pattern over the gait cycle. It
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Figure 3: Step and stride length representation

is clear that the acceleration signal is different for each person, for example an elderly

walking pace is not like a teenager one [121].

It should be noted that there are some differences between the running and the walk-

ing gait cycles. In running it is necessary a better balance since it is characterized not

only by a substantial reduction of support but also by the absence of double support

and by suspension periods in which both feet are not in contact with the ground [67].

The study of the acceleration is important not only because of its pattern, but also

because it can be used to calculate the velocity and the corresponding walking distance.

Velocity corresponds to the integral of accelerations against time (Equation 2), and the

walking distance results from the integral of the velocity (Equation 3).

v =

t2∫
t1

a(t)dt (2)

d =

t2∫
t1

v(t)dt (3)

where v represents velocity, d is the distance, dt is the derivative of time.

The estimation of the walking distance is calculated based on the acceleration when

the foot is not in contact with the ground. When the sole of the foot is in contact

with the ground it should be considered that there is no acceleration, and therefore no

displacement, because the foot in question is not moving.
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2.1.2 Force Applied on Foot Plant

To distinguish more accurately each phase of the gait cycle it could be analyzed the

force that is applied to the foot plant. By knowing this force the step detection can

be significantly improved, as well as, the correspondent estimation of the walking

distance. Figure 4 presents the force sequence (the applied force is shown in grey) in

the foot plant during a normal gait cycle. It can be seen that the central region of the

foot has almost no participation in the step motion.

The initial phase (A), which represents the first contact of the foot with the ground,

and the final stage (D and E), which represents the last contact of the foot with the

ground, are the stages where the most significant force on the plantar surface is applied.

Specially on the heel and in the front area. This force is much more significant than in

the stance phase (B and C). Also, on stairs ascent and descent, the force is concentrated

mainly in the front area and in the heel the force is negligible [115].

Figure 4 is directly related to the sub-phases that occur during the stance phase,

wherein:

(A) Represents the initial contact of the foot with the ground;

(B) Represents the time at which the response to the load occurs;

(C) Represents the middle stance phase where support is being made solely by this

foot;

(D) Is the terminal stance phase;

(E) Represents the pre-swing.

After these phases the foot is no longer in contact with the ground, since it had

begun the swing phase.

Figure 4: Force applied on the foot plant during the stance phase
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2.2 distance estimation

Distance is, typically, estimated based on information about the step length. The step

length is defined as the distance between the point where the heel of one foot is in con-

tact with the ground and the point where it enters, again, in contact with the ground,

as represented in Figure 3. However, step length can change not only from individual

to individual, but also according to the slope and texture of the terrain.

Typically, several sensors are used to properly estimate the step length, so a sen-

sor fusion must be performed to integrate all the data. Usually the sensor fusion is

performed using a Kalman Filter (KF) (Section 2.2.5).

There are two ways to estimate the pedestrian walking distance based on inertial

sensors. The first one is by counting the number of steps and multiplying it by a

predefined estimation of the step length (Section 2.2.1). The second one estimates the

walking distance based on the double mathematical integration of the acceleration

values (Section 2.2.2).

2.2.1 Step Count

In a PINS, a pedometer can be used to count the number of steps, that combined with a

predefined estimated step length, is used to estimate the walking distance, as presented

in Equation 4.

d = step length×number of steps (4)

The number of steps is typically obtained by counting the number of acceleration

peaks that are detected in the gait cycle, as presented in Figure 5. To correspond to a

step, each acceleration negative peak must be followed by a positive acceleration peak.

In Figure 5 are represented five acceleration peaks, which represent five steps given

by the pedestrian during a walk. The distance per step depends on the user speed, as

well as, his height. For example, the step length may be larger if the user is tall and is

running.

Zhao [127] has made some experiments and formulated the data presented in Table

1, where the length of each step is a function of the number of steps performed at every

two seconds depending on the user’s height [127]. For example, the first line shows
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Figure 5: Combined acceleration data for a five step walk

that when a single step occurs in a two seconds period, this step has the length of the

user’s height divided by 5, and so on.

Table 1: Stride as function of speed (steps per 2 seconds) and pedestrian height [127]

Steps per 2 seconds Step length

0 ∼ 2 Height÷ 5

2 ∼ 3 Height÷ 4

3 ∼ 4 Height÷ 3

4 ∼ 5 Height÷ 2

5 ∼ 6 Height÷ 1.2

6 ∼ 8 Height

>= 8 Height× 1.2

However, the step length depends on several factors, as the velocity, the step fre-

quency or the current environment. For example, the user’s step length is shorter when

the user is walking in a crowded area. Hence, the predetermined step length cannot be

used effectively for distance estimation. An accuracy improvement that can be done is

adjusting the step length as the user changes his pace.
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2.2.2 Strapdown Inertial Navigation System

A strapdown INS estimates the current velocity and the walking distance using the

acceleration data. Acceleration, when mathematically integrated with time, provides a

change in velocity, and when doubly mathematically integrated with time, provides a

change in location. Thus, an INS, generically, provides the change in location and the

correspondent velocity. To avoid errors produced by the inertial sensors, acceleration

is only considered on the swing phase and usually the ZUPT technique (Section 2.2.3)

is applied to improve the accuracy of the INS.

In order to enhance the accuracy of the detected accelerations, the IMU is usually

placed on or inside the pedestrian footwear. These accelerations can be decomposed in

two types, vertical and forward. Figure 6 represents the correlation that exists between

the human gait cycle and the vertical and forward accelerations.

Analyzing Figure 6 it can be seen that between the pre-swing and mid-swing phases

the vertical acceleration is increased, and decreases between mid-swing and terminal

swing phases. However, the forward acceleration is nearly the opposite. The only dif-

ference is that it happens a little bit after the first one. This means that it decreases

between initial swing and after mid-swing, and increases, a lot, from that point until

the terminal swing.

Before acceleration can be double integrated, it needs to be projected to the nav-

igation coordinate system using gyroscope data. This happens because sensors are

Figure 6: Foot vertical and horizontal accelerations according to the gait cycle
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attached to the body that is moving. So, there are two different coordinate systems

(frames) to be considered. The sensors coordinate system will be referred to as sensor

frame and the navigation coordinate system referred to as navigation frame. The sen-

sor frame is defined by the IMU sensor, that is, the coordinate system attached to the

system. The sensor frame rotates relatively to the navigation coordinates by the Roll,

Pitch and Yaw angles. Since accelerometers measure accelerations on the sensor (fs)

frame, to obtain the accelerations in the navigation frame (fn), the vector fs must be

multiplied with the rotation matrix as shown in Equation 5.

fn = Rns × fs (5)

where Rns is a 3x3 matrix that defines the attitude of the sensor frame relatively to

the navigation frame.

The transformation from one frame to the other can be achieved by three successive

rotations, which are expressed as follows:

• Rotate through angle ϕ over the x-axis (Matrix 6)

• Rotate through angle θ over the y-axis (Matrix 7)

• Rotate through angle ψ over the z-axis (Matrix 8)

Rx(ϕ) =


1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ

 (6)

Ry(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (7)

Rz(ψ) =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (8)

Rns = Rz(ψ)× Ry(θ)× Rx(ϕ) (9)
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(a) (b) (c)

Figure 7: Rotations through angles: (a) rotation through angle ϕ over the x-axis; (b) rotation
through angle θ over the y-axis; (c) rotation through angle ψ over the z-axis

These three rotations (Figure 7) can be expressed as three separate matrices as shown

in 6, 7 and 8, where ψ, θ and ϕ are referred as the Euler angles. Thus, the process of

transform the acceleration data to the navigation frame can be presented as the product

of those matrices, as presented in Equation 9 [120] [93].

After this projection, the effect of gravity is perpendicular to gravity in the navigation

frame axis. Then, after correcting the effect of gravity, the position and speed changes

can be directly estimated by successive mathematical integrations of the acceleration

obtained from the system over time.

An overview of this process is presented in Figure 8. Where the gyroscope data

is integrated, in relation with time, to estimate orientation, as well as, to be used to

project the acceleration data into the navigation frame. Then the gravity component

is removed from the projected acceleration data. This acceleration is integrated, with

time and according to an initial velocity, to give the current velocity. Finally, this data

is, one more time, integrated with time and according to an initial position, to give the

actual pedestrian position.
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Figure 8: Strapdown INS algorithm
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2.2.3 Zero Velocity Update

Accelerometers drift can cause huge location errors for walks longer than a few sec-

onds. However, the use of a technique known as ZUPT [44] can reduce these errors.

ZUPT is commonly used in underwater navigation [53] and in oil drilling [65].

In 1996, Larry Sher [108] within a Darpa project seems to be the first researcher that

have noted that stance phase provides an opportunity to use ZUPT. However, the first

published work, in 1999, is from John Elwell [35].

Zero-velocity detection is an essential part of an INS. Without this information, the

velocity error would increase linearly with time. Typically, zero-velocity is detected

on the foot by using accelerometer data. This has made foot-mounted IMUs a popular

choice for PINS, since it is the most accurate body part to detect zero-velocity. The

use of ZUPT allows the drift containing, at least for a while, until a new step is made.

This algorithm reduces significantly the location errors, thus ensuring more accurate

location estimations. However, this accuracy strongly depends on the time intervals

between zero-velocity points. In a PINS this update point usually occurs during the

stance phase.

During stance phase and unless the sole slides (does not move relative to the ground),

it is expected that the accelerometers show measurements of zero. Most stance-based

schemes in the literature equate zero-velocity detection to the impact of the heel when

it hits the ground. The problem is that the impact shock event only signals the begin-

ning of the stance phase. However, not all the stance sub-phases have zero-velocity.

Also, such methods can incorrectly detect zero-velocity if the sensor moves at a con-

stant speed and they might fail to detect a stance phase if the sensors are very noisy.

Zero-velocity only occurs at some point around the mid-stance phase, after a com-

plete contact of the foot with the ground has been reached. This pattern can be seen

by analyzing the acceleration data presented in Figure 9, where during the loading

response phase, and during the mid-stance phase, the acceleration is not constant. So,

if the zero-velocity point is not accurately determined, the resulting ZUPT scheme will

have an intrinsic zero-velocity bias that will reduce its effectiveness.

If the pedestrian’s foot actually slipped during one step, then the resulting error in

velocity is only considered for that step. Subsequent steps are again error-free. The

resulting error is just a few centimeters and it remains constant for the rest of the walk,

unless new errors occur.
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Figure 9: Combined accelerometer measurements in correspondence with gait cycle phases

2.2.4 Zero Angular Rate Update

Zero Angular Rate Update (ZARU) uses similar principles as the ZUPT technique, which

typically resets the velocity and therefore the estimated displacement. ZARU consists

on resetting the angular velocity when the foot is stationary, and it can be also used to

reset the angle of the IMU [21].

This technique can be applied in orientation and distance estimation, allowing the

estimation of the gyroscope bias and the estimation of the attitude angles. In the case

of the orientation, a constant attitude, when the pedestrian is stationary, can be used.

For distance estimation a predefined initial angle, at each step, can be used to apply

the rotation matrix to the accelerometer data. For example, since the IMU may have a

slope different of zero due to the pedestrian’s posture or due to the location of the IMU,

this algorithm sets the initial angle, which is the initial condition of the integration

process, that can be equal to the one obtained using the acquired accelerometer data

during the system setup process.

In order to formalize this algorithm, the attitude’s (xθ) pseudo-measurement model,

during a stationary phase, may be written as Equation 10 [26] [21].
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xθ = θ+nθ (10)

θ =
[
φ θ ψ

]T
(11)

nθ ∼ N(0,Qθ) (12)

where θ is a vector (Equation 11) containing the true IMU’s roll φ, pitch θ and

yaw ψ angles, and nθ (Equation 12) is a white Gaussian noise with covariance Qθ =

diag(σ2φ,σ2θ,σ2ψ) [26].

2.2.5 Kalman Filter

In the 60’s, Rudolf Kalman published a famous article describing a recursive algorithm

to discrete-data linear filtering problem, the Kalman filter [60]. Since that time, due to

advances in digital computing, this filter has become an essential part of the space and

military technology development, but it can also be found in more common applica-

tions such as GPS, earthquake prediction, communications, risk assessment, biomedical

research, among others.

The Kalman filter is a set of mathematical equations that provides an efficient com-

putational (recursive) means to estimate the state of a process, in a way that minimizes

the mean of the squared error [57]. A Kalman filter performs conditional probability

density propagation for problems in which the system can be described through a

linear model.

Conceptually, the filter tries to obtain an optimal estimate from data provided by a

noisy environment. For example, a GPS can infer the speed of a car. However, this infer-

ence has some uncertainty. Since, measurements usually have some noise, the Kalman

filter tries to extract valuable information from that noisy signal. A Kalman filter com-

bines all available data (more that one data source), plus prior knowledge about the

system and measuring devices, to produce an estimate of the desired variables in such

a manner that the error is statistically minimized [58]. A simple scheme of Kalman

filter can be seen in Figure 10.
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Figure 10: A Kalman filter representation

One aspect of this optimization is that Kalman filter uses all information that can

be provided. It processes all available measurements, regardless of their precision, to

estimate the current value of the variables of interest, using:

• Knowledge of the system and measurement device dynamics;

• Statistical description of the system noises, measurement errors, and uncertainty

in the dynamics models;

• Any available information about initial conditions of the variables of interest.

The Kalman filter predicts a system’s state using a measurements weighted average.

The purpose of the weights is that values with lower uncertainty are more trusted.

The weights are calculated from the covariance, which is a measure of the uncertainty

of the prediction for a system’s state. The result of the weighted average is a new

state estimated that lies in between the predicted and the measured state, and has

a better estimated uncertainty than either alone. This process is repeated every time,

with the new estimate and its covariance informing the prediction to be used in the

next iterations [69].

Passing this to the mathematical model, the estimation of the state x of a process at

instant k, is a discrete-time controlled process that is given by Equation 13. This model

assumes that the true state at time k is evolved from the previous filtered state xk−1.

xk = Axk−1 +Buk +wk−1 (13)

where A represents the state transition matrix, which is an n×n matrix that relates

the state at the previous measurement (xk−1) to the state at the current measurement,

B is the control-input matrix, which is an n×m matrix, that relates the control-input

u to the state x, and w is the process noise. The state transition matrix A and the

control-input matrix B are considered to be constant.
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The state observations are performed through a measurement system that can be

represented by Equation 14.

zk = Hxk + vk (14)

where zk is the observation made at instant k, H is the observation matrix, which is

an n×m matrix that relates the state x to the measured value z, and v represents the

observation noise. The observation matrix H is considered to be constant.

The random variables w and v that represent the process and observation noise

are defined by Equations 15 and 16, respectively. They are assumed as white noise,

independent (of each other), and described as normal probability distributions.

p(w) ∼ N(0,Q) (15)

p(v) ∼ N(0,R) (16)

where Q is the process noise covariance matrix and R is the measurement noise

covariance matrix. These matrices might change with each time step or measurement.

However, it is assumed that these two matrices are constant.

The Kalman filter estimates a process by using a form of feedback: the filter es-

timates the process state at a given time and then obtains feedback in the form of

measurements (with noise). Thus, the Kalman filter equations can be decomposed in

two distinct groups: Time Update (prediction), composed by Equations 17 and 18, and

Measurement Update (correction), composed by Equations 19, 20 and 21. Both set of

equations are applied at each kth state [123].

The Time Update equations are responsible for projecting forward (in time) the cur-

rent state (xk) and an estimated error covariance (Pk). These estimates are also known

as prior estimates. Pk is the estimation of the uncertainty associated with the estimate

of the current state (xk). The Measurement Update equations use the new prior esti-

mated measurement, in order to obtain a best posterior estimate. This is a recursive

process [123], and is described in Figure 11 with the equations that will be then ex-

plained.

Resuming, the Time Update projects the state ahead in time and the Measurement

Update adjusts the projected state estimation. The state ahead is projected using Equa-

tion 17. Then the error covariance is projected ahead using Equation 18. The state ahead
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Figure 11: Kalman filter recursiveness with the Time Update and Measurement Update equa-
tions

is represented as x̂-
k and typically referred as the prior estimate, which is the estimate

before the measurement update correction. The result of Equation 18 is the P-
k, which

is also referred as the prior error covariance.

x̂-
k = Ax̂k−1 +Buk−1 (17)

P-
k = APk−1 +A

T +Q (18)

The Kalman gain K is calculated using Equation 19, which is estimated based on the

covariances (degree of trust). This gain minimizes the posterior error covariance Pk.

The measurement covariance R, exists because the sensors do not always give correct

data. The parametrization of this variable is much dependent on intuition. When R

goes to zero, the gain Kk gives a higher weight to the residue. On the other hand,

when P-
k tends to zero, the gain Kk gives less weight to the residue.

Resuming the Kalman gain, when the measurement noise error covariance R tends to

zero, the measurement zk is more trusted, while the predicted state Hx̂-
k is less trusted.

On the other hand, when the prior error covariance P-
k tends to zero the current zk

measurement is less trusted, while the measurement forecast Hx̂-
k is becoming more

trusted. This relation is obtained using Equations 19 and 20.

Kk = P-
kH
T (HP-

kH
T + R)−1 (19)
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Equation 20 is the correction performed to the state variable x̂k from the predicted

state variable (x̂-
k) by adding the product of the Kalman gain with the residual from

the measured data zk and the predicted data. The predicted data is composed by

the H output equation and the predicted state variable x̂-
k. The difference between the

measured data and the predicted data is called the measurement innovation or residue.

If the resulting value is zero means that the prediction is similar as the actual measured

value.

x̂k = x̂-
k +Kk(zk −Hx̂

-
k) (20)

Equation 21 is responsible to update the posterior error covariance, where I is an

identity matrix.

Pk = (I−KkH)P
-
k (21)

Analysing all the equations that composes the recursive cycle of the Kalman filter, it

can be concluded that, Time Update equations project the state (Equation 17) and the

error covariance (Equation 18) ahead in time from k− 1 to k. Regarding the Measure-

ment Update, the first task is to calculate the Kalman filter gain, Kk (Equation 19). The

next step is to obtain the posterior state based on the zk measurement (Equation 20).

Finally, is obtained the posterior error covariance (Equation 21).

Unlike certain data processing concepts, the Kalman filter does not process all the

previous data every time a new measurement is taken, requiring only the last data.

This filter is very useful to perform drift corrections on an INS. Since, it can be used to

correct the error states from combining the acceleration, gyroscope and other sensors

uncertainties.

Several variants of this filter appeared over time. In PINS the most common are:

Extended Kalman Filter (EKF), which is the non-linear version of the Kalman filter

[58] [42] [103] [57] [20] [69] [54]; Interval Kalman Filter (IKF), which includes bounded

uncertainty into the model [26]; and Unscented Kalman Filter (UKF) that uses statistical

linearization techniques [77].

2.3 orientation estimation

The heading information is normally acquired in the user’s waist. However, several

systems place only one IMU in the person’s body, which typically is on the foot in order

to estimate both distance and orientation. To determinate the heading a gyroscope [89]
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[69] or a magnetometer [42] [38] are used. However, it is difficult to estimate an accurate

heading, due to the drift of low-cost MEMS gyroscopes and unpredictable magnetic

disturbances.

The most common approach is the use of a magnetometer, which measures the

strength of a magnetic field. Typically it is used to sense the earth’s magnetic field

in order to indicate where the north is. This geomagnetic field strength varies over

the earth’s surface from a minimum of 22 µT over South America to a maximum of

67 µT in south of Australia [40]. Magnetometers are constantly sensing the magnetic

field and the precision tends to be relatively low, because the earth’s magnetic field is

far from constant and therefore the reliability is reduced. Also, since these sensors are

very sensitive and responsive to all other magnetic fields, they are affected by magnetic

disturbances caused by power lines, computers, among others.

The combination of a gyroscope with a magnetometer takes the advantage that gy-

roscopes can offer relatively accurate heading rate during short periods of time and

magnetometer provides absolute heading with respect to the magnetic north in an en-

vironment without magnetic distortions [28]. The combination of these sensors data

can be achieved, for example, by a complementary filter. However, the filter thresh-

olds can be very difficult to define [59]. When these thresholds are too low, gyroscope

noise may erroneously lead to identify movements when they do not exist. When these

thresholds are too high, either the start of a movement is delayed or its end is antici-

pated.

Another sensor that is typically combined with the magnetometer is the accelerom-

eter. The accelerometer measures the components of the earth’s gravity and the mag-

netometer measures the components of earth’s magnetic field. Thus, heading can be

computed from the arctangent of the ratio of the two horizontal magnetic field compo-

nents. The accelerometers will correct the sensors tilt (roll and pitch) and magnetome-

ter corrects heading (yaw). However, to have acceptable results it is crucial that the

accelerometer and magnetometer outputs are aligned with the coordinate system.

Since the orientation estimated from the mathematical integration of the gyroscope

data accumulates errors from gyroscope’s noise, and the accelerometer and magne-

tometer are affected by the sensor’s bias and magnetic interference, respectively. The

three sensors can be combined to improve the estimation of the orientation.

Concluding, gyroscope is more accurate and with short response times (compared

to the other sensors). Although the magnetometer and accelerometer have as main

disadvantage the noise, the downside of gyroscope is the drift. To avoid both the gyro-
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scope drift and the noise of magnetometer and accelerometer, the gyroscope output is

applied in a short time basis, while the data from the accelerometer and magnetometer

are applied at long intervals of time. This process is equivalent to filtering the data from

accelerometer and magnetometer with a low-pass filter, and filtering the data from the

gyroscope with a high pass filter, as represented on Figure 12. Therefore, the use of the

three sensors becomes essential to suppress each other errors and limitations.

The complementary filter can be described as in Equation 22. Having x and y rep-

resented as two signals with noise and assuming that the y noise is mostly of high

frequency, and the noise of x is mostly low frequency. Then the function G(s) can stand

out as a low-pass filter in order to filter the high frequency noise of y and [1−G(s)] can

stand out as the complement, i.e. a high-pass filter that filters the low noise x frequency.

This results in an estimative ẑ produced by the filter. If the observations had any noise

or no error the result of Equation 22 would be a perfect estimate.

ẑ = z[1−G(s)] + zG(s) (22)

A recent, and popular, information filter for orientation estimation is the one pro-

posed by Madgwick [76]. It uses a quaternion approach to represent the attitude, based

on the information obtained from a gyroscope, an accelerometer and a magnetometer.

It uses a quaternion representation, which allows the accelerometer and magnetometer

data to be used in an analytically derived and optimized gradient-descent algorithm

to compute the direction of the gyroscope measurement error as a quaternion deriva-

tive and is not subject to the problematic singularities associated with an Euler angle

representation.

This filter is computationally inexpensive, meaning that it requires low scalar arith-

metic operations per each filter update. Since it operates at low sampling rates (e.g.

10Hz), it means that the necessary hardware and power for wearable inertial move-

Accelerometer

Magnetometer

Gyroscope

Orientation
Accelerometer + Magnetometer

Orientation 
Gyroscope

Fused 
Orientation

t

t0

dt

Figure 12: Complementary filter to obtain orientation using an accelerometer, a magnetometer
and a gyroscope
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ment tracking can be reduced, which enables the creation of lightweight and inexpen-

sive systems, capable of functioning in real-time and for extended periods of time.

This implementation was compared against a Kalman-based algorithm and the re-

sults have pointed out that Madgwick filter achieves best accuracy than a Kalman-

based algorithm. Also, unlike Kalman-based algorithms it has only one or two filter

gains to be defined, which simplifies the filter usage and tuning [76].

2.4 information fusion

Information fusion is a multi-disciplinary research field with a wide range of potential

applications in areas such as defense, robotics, automation and pattern recognition. It is

so important that during the past two decades, extensive research and development on

multiple sensor/information fusion has been performed for the Department of Defense

of the United States of America [70]. This subject has been and will continue to be an

ever-increasing interest field in research community, where it is intended to develop

more advanced information fusion methodologies and architectures.

Information fusion is the process of combing information from a number of different

sources to provide a robust and complete description of an environment or process of

interest. It has special significance in any application where large amounts of data

must be combined, fused and distilled to provide information of appropriate quality

and integrity on which decisions can be made. The exploration of huge volume of

data requires reliable methods of data reduction to support the understanding and

extraction of useful rules, decisions or information from the data.

In the case of PINS, the MEMS sensors presents some limitations and have low accu-

racy, which does not happen on more expensive sensors like the ones used on aviation

and on military applications. To reduce the sensors complexity and thereby its cost,

the information from a set of simple and low-cost sensors can be combined to provide

a less expensive system, with accurate and reliable information about the pedestrian

movements. Moreover, this fusion makes the system more fault tolerant.

Almost all information fusion architectures involve the following process: a set of

features are extracted from the sensors/sources that compose the system, then the

information is fused and classified, and finally a reasoning about the data is performed.

However, decision-making with multiple sources of information is complex. The

essential reason, to be complex, is that it is difficult to provide a consistent measure

of utility or loss for each decision maker. In particular, two basic problems exist. First,
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how can the utilities of two different decision makers be compared unless there is

a common measurement type. Second, should decision makers aim to maximize an

utility which expresses only local preferences, or should each decision maker evaluate

its actions with respect to some common or group utility function.

Usually, in INSs, sensor fusion is performed using a Kalman filter. However, a new

trend is to use a Kalman filter combined with Artificial Intelligence (AI) techniques or

only AI techniques.

AI techniques are being used in different INS fields to assist in displacement estima-

tion. In robotics, Faceli et al. [36] use these techniques to improve the accuracy and

reliability, in the order of 7%, of distance measurements between a robot and the ob-

jects present in the environment.

These techniques are also being used in autonomous driving vehicles. Stanley [119]

software relied on machine learning and probabilistic reasoning techniques. Its IMU

combined with AI techniques were able to maintain accurate pose of the vehicle during

GPS outages of up to 2 minutes. Authors believe that those techniques contributed

significantly to Stanley’s success in the race.

For land vehicle applications [41], Caron et al. [25] and Noureldin et al. [86] propose

machine learning techniques like neural networks, which introduce context variables

and errors modelling for each sensor. Authors conclude that with an adequate mod-

elling an accuracy improvement of 20% can be achieved. Recently, Noureldin et al. [87]

also consider past samples of INS position and velocity errors, which have improved

the previous results. Bhatt et al. [22] propose a hybrid data fusion methodology us-

ing Dempster-Shafer theory augmented by a trained Support Vector Machine (SVM),

which corrects the INS errors. The proposed methodology has shown an accuracy im-

provement of 20%.

Since these experiences presented results in each area, in this project similar tech-

niques will be applied to a PINS. With the fusion of the information obtained from

several IMU spread in the person’s body, and the application of learning algorithms.

In this section some of the most used machine learning techniques will be presented,

the Neural Networks (Section 2.4.2.1) and the SVM (Section 2.4.2.2). Also, it will be

presented, in Section 2.4.1, the Dynamic Time Warping (DTW) algorithm that measures

the similarity between two temporal sequences, which may vary in time or speed.

Based on this exposition, it is clear that research on information fusion systems is be-

coming more and more common-place. There are a number of areas in the information

fusion community that will be highly active in the near future [61]. For instance, the
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ever-increasing demand for information fusion on extremely large scales, such as sen-

sor networks and the Web, will drive intense research on highly scalable information

fusion algorithms based on distributed architectures [61].

2.4.1 Dynamic Time Warping

DTW is a time series alignment algorithm [63] that was largely employed in the early

speech recognizers. This technique was used to accommodate differences in timing be-

tween sample words and templates. Nowadays it is applied to many other fields like

bioinformatics, econometrics, robotics, manufacturing, handwriting recognition, data

mining, information retrieval, among others to automatically cope with time deforma-

tions and different speeds associated with time-dependent data.

For instance, similarities in walking patterns could be detected using DTW, even if

one person walks faster than the other, or if there were accelerations and decelerations

during the course of an observation.

This algorithm aims to find the optimal alignment between two sequences of data

(e.g. time series). After this alignment it calculates the similarity independently of non-

linear variations that can exist in the time dimension. It gives intuitive distance mea-

surements between time series by ignoring both global and local shifts in the time

dimension, which enables the determination of a degree of similarity between time

series.

The algorithm starts by constructing a warp path of the given two series. An example

of how two time series are “warped” is shown in Figure 13. Each vertical line connects

a point in one time series to its corresponding similar point in the other time series.

If both time series were identical, all the lines would be straight verticals because no

warping would be necessary to line up the two time series. The warp path must start

at the beginning of each time series and finish at the end of both time series.

Figure 13: DTW warp path of two time series
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The optimal warp path is the one that has the minimum distance. The warp path

distance is a measure of the difference between the two time series after they have

been warped together. It is measured by the sum of the distances between each pair of

points connected by the vertical lines. A lower DTW distance denotes a higher similarity.

Thus, two time series that are identical, except for localized stretching of the time axis,

will have a warp path distance of zero.

To find the minimum warp path distance a dynamic programming approach is used.

A matrix is generated where each cell(i, j) represents the distance between the ith ele-

ment of the first sequence and the jth element of the second sequence. A representation

of this matrix can be seen in Figure 14.

Then for each cell, starting at the bottom left cell, which corresponds to the beginning

of both signals, and ending at the top right cell, which corresponds to the end of both

signals, the cumulative distance is calculated by picking the neighbouring cell in the

matrix to the left or beneath with the lowest cumulative distance.

Figure 14: DTW matrix warp for two time series
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This results in the shortest path to go from the bottom left cell to the top right cell

of the matrix. The length of a path is simply the sum of all the cells that were visited

along that path. The further away the optimal path wanders from the diagonal, the

more the two sequences need to be warped to match together, and the lower is the

similarity between the two paths.

Despite the effectiveness of the DTW algorithm, its main problem is that it has a

quadratic time and space complexity, O(n2), that limits its use to small time series

datasets. A faster approach, entitled FastDTW, was proposed by Salvador and Chan

[104] which is an approximation of DTW, but with a linear time and space complexity,

O(n). The main limitation of the FastDTW algorithm is that it does not guarantee to

find the optimal solution. Meaning that the error, compared to the DTW approach is

typically higher.

2.4.2 Machine Learning

Machine learning is a scientific discipline that explores the construction and study of

algorithms that can learn from data without assuming a predetermined equation as

a model. The model is created based on a set of examples, that will be used to pro-

duce predictions or decisions for a given input, without using strictly static program

instructions [75].

The base for machine learning is the data, so with good data the algorithm will

perform very well. Also, the performance is better as it is increased the number of

samples available for learning.

Machine learning algorithms are typically used in two situations: (i) when it is too

complicated to develop a program to find something in a large amount of data, (ii) or

to calculate the probabilities of something to happen based on some rules [83]. It can

be applied to several areas and can be used to:

• Find patterns - objects in an image, facial expressions, words;

• Find anomalies - anomalous bank transactions, bad sensor measurements;

• Predictions - stock prices, recommendation systems, energy price and load fore-

casting, Electrocardiography (ECG) signal prediction [80].

The learning can be divided into three categories: supervised, unsupervised and

reinforcement learning [83]. In supervised learning, the output predictions are learned

based in a given input, meaning that these algorithms learn from experiences. The goal
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is to learn a general rule that associates inputs to outputs and it is intended to minimize

misclassification. A flowchart for this type of learning can be seen in Figure 15, where

the data is first treated, then a model is evaluated based on a set of known inputs and

outputs. After the selection of the best model, it is used to predict the outputs for a

new dataset of inputs.

Unsupervised learning, tries to discover a representation about the input, meaning

that no labels feed into the learning algorithm, leaving it on its own to find a structure

in the input.

Reinforcement learning, selects a set or a sequence of actions to predict the output.

It can be used in a dynamic environment in which it must perform a certain goal, such

as driving a vehicle.

Regarding the algorithms output, it is divided into three different categories [83]:

classification, regression and clustering. Classification builds a model to classify the

inputs into a class label, which can be two or more. Typically it is used in supervised

learning. An example can be an email spam filter, that classifies an email as “spam”

or “not spam”. Some examples of algorithms that use this type of output are: SVM,

k-Nearest Neighbour, Naïve Bayes, Neural Networks, among others.

Regression builds a model to predict continuous data rather than discrete, meaning

that it can be a real value or a vector of numbers and is used for weather forecasting or

stock prediction. Some examples of algorithms that use this type of output are: Linear

Model, Neural Networks, Adaptive Neuro-fuzzy learning, among others.

In clustering, the algorithm tries to find natural groups and patterns in the inputs.

Unlike in classification, the groups are previously unknown, making this typically an
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Figure 15: Supervised learning flowchart
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unsupervised task. Some examples of algorithms that use this type of output are: k-

Means, Hidden Markov Models, Gaussian Mixture Models, among others.

In order to validate a learning model, a dataset must be divided into three sub-sets:

(i) training; (ii) validation; (iii) test. It is also important to use a cross validation using

these datasets.

The main problem of machine learning algorithms is that they can overfit or underfit.

Overfit occurs when the dataset is too large to be properly modelled. Underfit occurs

when the dataset is very limited in terms of different case scenarios.

Another problem can be the number of dimensions, which can lead to high variance,

meaning that the algorithm does not generalize well. Also, by having too many dimen-

sions (d) the algorithm becomes computationally heavy and slow to answer, because it

has a complexity of O(2d).

2.4.2.1 Neural Network

A neural network is a learning algorithm that is inspired by the structure and func-

tional aspects of biological neural networks. A neural network is composed by simple

neurons that operate in parallel. As in nature, the network function is largely deter-

mined by the connections between the neurons. The network can be trained to perform

a particular function by adjusting the weights (values of the connections) between the

neurons.

These networks are normally trained to solve complex problems that are difficult for

conventional computers or humans. They can be applied in several fields of application,

including pattern recognition, identification, classification, speech, vision and control

systems.

Commonly, neural networks are adjusted, or trained, so that a particular input leads

to a specific target output. They find patterns in data or capture the statistical structure

in an unknown joint probability distribution between observed variables. This process

is demonstrated in Figure 16, where the network is adjusted, based on a comparison

between the neural network output and the known target, until they match each other.

These matches are found by adjusting the weights between the connections of the

neurons.

A simple linear neuron model is represented in Equation 23.
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Figure 16: Neural networks architecture

y = b+
∑
i

xiwi (23)

where each ith input x is multiplied by a corresponding weight w and these values

are summed together. Then the result is summed to a bias b to achieve the output y.

The main idea of a neural network is that weight and bias parameters can be adjusted

so that the network exhibits some desired or interesting behaviour. Thus, a network can

be trained to do a particular job by adjusting the weight or bias parameters, or perhaps

the network itself will adjust these parameters to achieve some desired end.

The amount of change performed to the weight and bias values, during the training,

is controlled using the learning rate parameter. It must be reduced when the predic-

tions error is getting worse or if it is oscillating too much. However, if the error is

slowly decreasing the learning rate should be increased. At the end of the learning

phase the learning rate must be lowered, but the amount of decrease must be done

with careful. If it is done too soon a quick win can be achieved or a slower learning

can be obtained.

The output is then passed through a transfer function. There are three types of

transfer functions: (i) hard-limit; (ii) linear; (iii) log-sigmoid. The hard-limit transfer

function, illustrated in Figure 17a, limits the output of the neuron to 0, if the y is less

than 0, or 1, if y is greater than or equal to 0. The Linear transfer function, illustrated in

Figure 17b, takes the input, which may have any value between plus and minus infinity,

and squashes the output into a range between 0 and 1. The Log-Sigmoid transfer

function, illustrated in Figure 17c, is commonly used in backpropagation networks,

because it is differentiable.

Figure 18 represents an example of a Neural Network notation that will be used

throughout this document. The input vector p is a vector of n input elements. These

inputs are multiplied by a weight w. The result is then summed with a scalar bias b.
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Figure 17: Neural network transfer functions: a) Hard-limit function; b) Linear function; c) Log-
sigmoid function

The input of the network to the transfer function f is y. From the transfer function is

given the neuron’s output a. If the represented notation had more than one neuron,

the network output would be a vector.

Typically, to improve the networks performance when presented with new inputs,

it is used the backpropagation. It is called backpropagation since it is a gradient de-

scent algorithm in which the network weights are adjusted backward, starting from

the output layer and going to the input layer. The term backpropagation refers to the

manner in which the gradient is computed for non-linear multilayer networks. Input

vectors and the corresponding target vectors are used to train a network until it can

approximate a function, associate input vectors with specific output vectors, or classify

input vectors in an appropriate way.

Recently, algorithms based on neural networks have been suggested and applied to

different types of INS [86]. For example, it was shown that a neural network could

process the INS azimuth and velocity to provide the localization with an accuracy im-

provement of 20% [34].

In PINS, an accelerometer provides signals with which a neural network can be

trained in order to predict step length or to create a step model for a person. With

this model the PINS errors can be mitigated, since the system will be adapted to the
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Figure 18: Neural network notation that will be used throughout this document
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pedestrian characteristics. However, the inconvenient of this approach is that the de-

vice must be worn by the same user, since the step model is trained with the particular

individual’s walking patterns.

2.4.2.2 Support Vector Machine

SVM is a supervised learning algorithm used for classification and regression [30]. This

algorithm builds a model that classifies the data into one of two classes, making it a

non-probabilistic binary linear classifier. Typically this algorithm does not work well

with large datasets or with too noisy data.

The model, created by a SVM, classifies the data by finding the best hyperplane that

separates all the data points from one class to the other. The best hyperplane is the

one that has the largest margin between the two classes. Margin means, the maximum

width of a parallel to the hyperplane that has no interior data points. As the margin

is greater, the best is the model. New data is then mapped into the same space and its

class is predicted based on which side of the hyperplane it falls on.

Figure 19a illustrates these margins in a linear separable problem. The “×” represent

the points of type 1, and the circles represent the data points of type −1. As in the

Neural Networks, the w represents the weight vector given to the input x and b is the

bias. The result of the product between the weights and inputs with the sum of the

bias indicates the category where the point belongs, 1 or −1.

Figure 19: SVM hyperplane separation between two classes: a) Linear separation; b) Non-linear
separation
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Besides linear classification, like the one presented in Figure 19a where the data is

linearly separable by a hyperplane, SVMs can also perform non-linear classifications

as illustrated in Figure 19b. To perform the non-linear separation, the so called ker-

nel trick must be used. With the kernel a linear separation can be transformed into

other dimensions or plans. Thus, the kernel can be linear, poly or rbf. The linear kernel

performs a linear separation of the data using a hyperplane. The rbf kernel uses a

Gaussian radial basis function to separate the data. The poly kernel uses a polynomial

space to separate the data.

When using the SVM algorithm, it is very important to choose the appropriate kernel

to successfully train the SVM classifier. Besides the appropriate selection of the kernel, it

is also important to properly select the kernel parameters, namely the C and gamma (γ)

parameters. Typically, each combination of parameter choices is checked using cross

validation, and the parameters with best cross validation accuracy are chosen.

The C parameter is used during the training phase and indicates how much outliers

will be considered when creating the SVM model. Meaning that it trades off misclassifi-

cation of training examples against a more simple decision surface [2]. If this parameter

is configured with a high value, the SVM will classify all the training examples correctly.

However, too many support vectors will be created and it will overfit. If the C param-

eter is configured with a low-value, the decision surface will be smoother. However, it

will cause the optimizer to look for a larger margin hyperplane, even if that hyperplane

incorrectly classifies more points, leading to underfit.

The rbf kernel has one more parameter than the others, that is the gamma, which

represents the radius of the rbf. It defines how far the influence of the single training

example reaches. A small gamma gives a pointed bump in the higher dimensions, and

a large gamma gives a softer broader bump. So, a small gamma will give a low-bias and

high-variance while a large gamma will give a higher bias and low-variance.

Using SVM for multi-class classification can be possible through the use of several

binary classifiers which will distinguish between, one of the labels and the rest, or

between every pair of classes. The first approach classifies the new data by a winner-

takes-all strategy, in which the classifier with the highest output function assigns the

class. The second approach classifies the new data by a voting strategy, in which every

classifier assigns the instance to one of the two classes, then the vote for the assigned

class is increased by one vote, and finally, the class with the most votes determines the

instance classification.
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2.5 summary

In this chapter was firstly introduced how the human gait works. It is essential to

understand how it works, as it is a cyclical event, because it is through the motions

of the human body that the distance and orientation are estimated. Human gait is

composed by two phases, stance and swing. It is very important to properly distinct

these two phases, since the displacement of a human must only be estimated during

the swing phase. When a pedestrian is in the stance phase, it is not moving, thus any

displacement must be considered.

When in the swing phase, the distance and orientation could be estimated through

the presented algorithms. The most used and reliable technique is the Strapdown Inertial

Navigation System, which estimates the travelled distance based on the acceleration data

obtained during each step, and not only based on the number of steps.

Stance phase is also useful to apply some techniques, e.g. ZUPT and ZARU, to reduce

the algorithms errors and estimate the new state of the variables.

The fusion between sensors can be performed using a Kalman filter. However, a new

trend is to use machine learning algorithms applied to the data obtained from the

sensors, to learn some patterns of the system to then correct some deviations that can

occur due to the MEMS sensors low accuracy.

Concluding, in this chapter it was presented the fundamentals about INSs, which are,

or can be, used when creating a system of this type.
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P E D E S T R I A N I N E RT I A L N AV I G AT I O N S Y S T E M S

In this chapter some unassisted PINS will be presented. Unassisted PINS are systems that

do not rely on any external source, or in a map, to correct the location estimation. Also,

they were chosen based on their importance and new ideas that they have introduced

on this research area.

The analyzes of the PINS are organized based on the algorithms used for sensor fu-

sion. In section 3.1 are presented the systems based on a Kalman filter and its variants.

In section 3.2 are presented the systems that do not rely on a Kalman filter to fuse data,

but in other techniques.

Figure 20 provides a graphical overview about all the PINS that are discussed in this

section. This graphical representation shows where the sensors are mounted, on waist

or on foot, the used sensors and the applied fusion techniques. The sensors aggregation

is represented by the circle symbol with a plus sign and the ellipse represents an

aggregation of some systems. For each flow of data there is a number that indicates a

reference to a set of literature works that uses that specific sensor or technique.

3.1 kalman filter based approaches

Most PINS use a Kalman based filter to fuse the sensors data from sensors and thereby

to estimate pedestrian location. From the studied systems it was identified that EKF is

the most used Kalman variant. This section is divided in the following sub-sections: in

Section 3.1.1 are presented the systems that are based on a Kalman filter; in Section

3.1.2 are presented the systems which are based on an EKF; and in Section 3.1.3 are

presented the systems based on an IKF or on an UKF.

3.1.1 Kalman Filter

Ladetto et al. [64] developed two IMU prototypes to identify the differences between

using a gyroscope or a magnetometer to estimate orientation. Both prototypes have

45
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Figure 20: Configuration of the studied PINS

their strengths and weaknesses, but, as stated earlier, these sensors can complement

each other. Besides these sensors, both prototypes have an accelerometer, a barometer

and a GPS receiver. The IMUs were placed, on the person, at the lower back, which the

authors considered to be a relatively stable position while walking.
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The walking distance and the orientation, sensed by inertial sensors, are combined

with GPS observations through a Kalman filter. When GPS is available, the models for

the step length are calibrated, as well as, the magnetometer and gyroscope outputs. The

filter is used for both the initialization and the on-line calibration of those parameters.

In the gyroscope prototype the raw signal is firstly processed with a low-pass fil-

ter to eliminate random errors. This technique allows the identification of different

circumstances during a path (e.g. short curve, long curve, straight line, change in ve-

locity). The goal is to eliminate the noise and the periodic changes while keeping the

significant changes of the walking line.

Authors conducted several tests with both prototypes. These tests have shown that

the weaknesses of one system are the advantages of the other, since gyroscope can

provide useful information to identify magnetic disturbances, while the magnetometer

is useful to determine the bias of the gyroscope and the initial heading, even when

no GPS signal is available. According to this remark, a more reliable system will be

obtained by coupling the gyroscope with the magnetometer.

In the evaluation test, which involved a walking path with a distance of 3000 meters,

authors claim an error of 5.2 meters for the magnetometer prototype and 25 meters for

the gyroscope prototype.

Hamaguchi et al. [47], in 2006, described a localization method that uses wearable

electromagnetic sensors (Figure 21). The proposed method estimates orientation us-

ing a magnetometer on the waist, and the geometrical relationship between user’s

heel through an electromagnetic tracker attached to user’s body. When both feet come

in contact with the ground, user’s position is updated by adding the estimated step

length.

The pedestrian is equipped with electromagnetic sensors in the leg, an IMU (com-

posed by an accelerometer, a gyroscope and a magnetometer) at the waist, and push

button switches attached to heels. Using these sensors the relative position of the left

and right legs, and absolute orientation of user’s hip, are estimated continuously. The

electromagnetic tracker measures the relationship between right and left foot. However,

the authors claim that when the user is running the system does not work properly.

The proposed localization method has been evaluated in a walking path with 200

meters (in a square path) and presented an error of 5.2%.

Feliz et al. [38] developed a method to avoid PINS accumulated errors or at least to

reduce them. The IMU was attached to the user foot, and the detection of the swing

and stance phases is performed using the values of angular velocity provided by the
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Figure 21: Sensors and their placement in the system proposed by Hamaguchi et al. [47]

gyroscope. This filter takes in consideration the values of the previous and subsequent

measurements.

Once a signal is obtained the integration and correction of acceleration measure-

ments is performed. This filter is able to identify the start and the end of the stance

phase and consequently the acceleration corrections are performed in the whole pe-

riod. The proposed method estimates errors at each step ensuring that the estimated

distance will be very close to the actual walking distance, producing smaller errors.

This means that it will not influence the speed and position estimation for the next

step. So, the inertial system’s inherent accumulated error is corrected.

Authors tested the system in a straight corridor without any metallic objects around,

which involved a curve of π rad and the return to the starting point. The system gave

an estimation error of 9% in a walking with a distance of 30 meters.

Gadeke et al. [43] studied a concept to integrate a foot-mounted low-cost IMU, via

Bluetooth, with an Android smartphone. Unlike, previous works the authors set high

importance on the actual system integration and implementation issues without being

limited to a Personal Computer (PC) based concept. The proposed IMU is composed

by an accelerometer, a magnetometer, a gyroscope and a barometer. A stochastic filter

was used to correct drift based on an underlying system model. Additionally, ZUPT

and ZARU mechanisms were introduced to correct the velocity and angular rates in the

system model.

Obtaining altitude from atmospheric pressure measurements is a fairly complex pro-

cedure as it depends on various unknown parameters in the atmosphere. Meaning that

the pressure greatly varies with weather conditions. Obtaining an absolute altitude

over sea level is not accurate enough under these circumstances. However, differential
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pressure changes are very accurate, so the authors used these variations to estimate

the user elevation on the building.

With today’s smartphones high processing power and memory capabilities, data col-

lection using mobile devices can be a very handy method. Walking with a smartphone

for data collection also allows a more accurate walking pattern since there is not other

equipment carried by the person, that can influence the walking characteristics.

An experimental study was performed to compare the accuracy of the proposed

IMU with a commercially available IMU (Xsens MTI-G). The evaluation to both IMU

was performed inside a typical office building and both IMUs were fixed on the same

pedestrian’s foot. The trajectory started on a second floor and involved a downstairs

to the first floor, a walk around and an upstairs to the starting point. With a walking

distance of 82 meters the error was of 2.2 meters for the low-cost IMU and 1.8 meters

for the MTi-G.

Nilsson et al. [85] have created an open-source, real-time, embedded implementation

of a foot-mounted PINS. The implementation includes software and hardware designs.

The IMU is composed by off-the-shelf components, including an accelerometer and a

gyroscope, and the respective assembly methods. A Kalman filter, assisted with a ZUPT

algorithm, is used to estimate the walking distance.

The system is small enough to be integrated in the sole of a shoe, to get as close as

possible to the contact surface between the user and the ground in order to achieve the

best performance.

An evaluation was conducted, namely a 100 meters straight-line walk and a 100

meters figure eight walk. These trajectories were taken on a normal walking pace on a

solid floor. The error claimed for this system was 1 meter, which corresponds to 1% of

the straight-line distance. The figure-of-eight trajectory presented an error of around

0.15 meters.

Hoflinger et al. [52], in 2013, developed a wireless IMU, which eliminates the need

for wired data communication. It can send the collected data to a base station with a

maximum of 640 samples per second that post-process the acquired data.

This IMU is composed by an accelerometer, a gyroscope and a magnetometer that

features automatic temperature compensation technology. It is placed on the pedes-

trian’s shoe and the sensor fusion is based on a modified Kalman filter combined with

ZUPT. This modified Kalman filter models the system state, the orientation error and

the angular rate error. In the orientation estimation, the gyroscope angular rate data is

corrected by subtracting the bias error estimated by the Kalman filter. Then, the mag-
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netometer and accelerometer data are fused with the previous one. By processing the

magnetic field and acceleration measurement data, authors detect and minimize the

magnetic field disturbances in the implemented filter.

The proposed IMU was compared with Xsens MTi. The data from both IMUs was

collected over a period of 4 hours. After evaluation, it was observed that noise and drift

values of the accelerometers are in the same range, except for the z-axis in which the

Xsens MTi performs better. The overall performance of the proposed IMU has shown

to be comparable to the Xsens MTi. However, to estimate the walking path it relies on

heavy post-processed algorithms [52].

To evaluate the performance of both IMUs a pedestrian walked three times on a round

trip inside an office building, walking a distance of about 60 meters. The proposed

system presented an average error of 1%. The trajectory estimated by the authors IMU

was closer to the reference trajectory, than the trajectory estimated by the Xsens MTi

IMU.

Prateek et al. [92] used two foot-mounted IMUs, one on each foot, aided with ZUPT.

The proposed algorithm is based on the idea that the separation between the two feet

at any given instance must always lie within a sphere of radius equal to the maximum

possible spatial separation between the two feet (see Figure 22). A Kalman filter is used,

which receives one measurement update and two observation updates.

Authors use two OpenShoe [85] units integrated in the sole of each shoe, and an

algorithm to unify the trajectories obtained from both foot-mounted IMUs aligned in

the same direction using an upper bound in the spatial region. Even though both IMUs

were aligned in the same direction, but on different feet, the two trajectories take two

Figure 22: Spatial separation between the two feet algorithm proposed by Prateek et al. [92]
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different paths. Also, when studying the motion of the feet on walking or running,

authors have notice that the separation between the two feet does not exceed a certain

threshold value.

Experiments were conducted in several different paths, such as a ‘U’ and an ‘L’

shaped path with sharp π
2 rad curves. Authors observed that the proposed algorithm

with initial heading estimation gives the best trajectory information which is closely

similar, in shape, to the actual trajectory.

The proposed system was also compared with the one proposed by Nilsson et al. [85].

This evaluation involved a walk of 110 meters on level ground along a straight line at

a normal walking speed. Authors claim that the mean and covariance of final position

estimates are significantly reduced by applying the range constraint. The estimation

error was 1% of the walking path.

Ibarra-Bonilla et al. [54] presents a PDR algorithm that uses a fuzzy logic Kalman

filter for attitude estimation and a fuzzy inference system for step length estimation,

which characterizes frequency and step length. Kalman filter carries out a measure-

ment fusion of accelerometer, gyroscope and magnetometer with a fuzzy adaptive

tuning.

The general idea behind this technique is that the actual value of the covariance of

the residuals matches its theoretical value. When statistical values of the innovation

sequence shows discrepancies between theoretical and actual covariance, then a fuzzy

inference system adjusts a tuning factor applied on the matrices causing a reduction

in the discrepancy. The adaptation process is carried out through the adjustment of

the measurement noise covariance matrix. Assuming that the noise covariance matrix

is known, an algorithm employing the principles of fuzzy logic is used to adaptively

adjust the result matrix.

The results obtained from the comparison between the fuzzy adaptation and the

traditional Kalman filter have shown an improvement in the adaptation of the mea-

surement noise covariance matrix. Final results from the fuzzy logic-based PDR system

with the described attitude estimation algorithm have presented an error of 6.4% in a

walking path with a distance of 100 meters.

3.1.2 Extended Kalman Filter

Jirawimut et al. [58], in 2000, presented a system that combines a pedometer to measure

the relative distance, and a magnetometer to estimate heading. When GPS signal is
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available it provides the position and velocity of the pedestrian, but this measurements

are also used to calibrate the DR parameters: step size and magnetometer bias error. It

uses an EKF which returns the position and velocity, together with the step size and

the magnetometer bias error at each GPS update. When a GPS signal outage occurs, the

DR algorithm uses the calibrated parameters to provide relative positions in relation to

the last known location. The system has a latency of about 10 seconds, the time period

since a step is detected until the estimations are presented to the user.

An evaluation test involving a path with 591 steps was performed but no accuracy

values were presented by the authors. Authors claim that the use of an EKF increased

the positioning accuracy when all measurements were available. However, when the

DR was used solely, the accuracy was decreasing with time. Heading was estimated

effectively, but the step size was estimated efficiently only when the GPS signal was

available.

Foxlin [42], in 2005, presented NavShoe, which is an IMU placed on the foot that

applies the ZUPT technique at each time the foot is stationary. This IMU is composed by

an accelerometer, a gyroscope and a magnetometer. Each sensor threshold was tuned

to ensure that the immobilization time is never higher than 0.1 seconds during the

swing phase, but lasts almost 0.3 seconds during the stance phase. ZUPT is applied as

soon as the immobilization time exceeds 0.15 seconds and continues as long as the

foot remains stationary. However, the author claimed that the system needs another

approach for running motions.

An EKF, with 13 calibration parameters, is used to correct the velocity error after

each stride, breaking the error growth, meaning that the error accumulation is linear

with the number of steps. ZUPT measurements let the EKF correct position, velocity,

accelerometer bias and gyroscope bias.

Before a user starts using the system it needs a calibration procedure of about 30

seconds, where the user must rotate in some orientations while translating as little as

possible to maintain the sensor in a constant external magnetic field. Authors have

performed an indoor and outdoor experiment where a user walked through a typical

wood house during 322 seconds, covering a total distance of 118.5 meters, with an

error of 1%. However, this test was performed in an ambient without any magnetic

disturbance.

Sabatini [103] presents a shoe-mounted IMU to estimate the walking path in three-

dimensions, using ZUPT and a quaternion-based adaptive EKF. The DR algorithm allo-

cates different roles to the IMU sensors. The gyroscope has the task of provide short-
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term accurate estimates of the state vector. During each EKF run, the acceleration mea-

surements, taken from a swinging leg, are in fact prevented from influencing the filter

behaviour by properly applying a measurement validation test. However, this measure-

ment validation test tends to increase the measurement noise variance of the magnetic

sensor when it is exposed to external magnetic disturbances.

In order to make the filtering process robust against these disturbances, which may

affect the IMU sensors, several tricks were considered. It adapts the measurement noise

co-variance matrix during EKF runs and implements an adaptive alternation between

initialization and run of the EKF, which is based on stance/swing phase detection

driven by gyroscopic data, and acceleration/magnetic measurement validation. A bias-

correction to the magnetic sensor measurements is performed before each EKF run.

Finally, an integration of gravity-compensated acceleration components is performed

once every step is detected.

The system evaluation consisted in a walking along an outdoor path with a distance

of 680 meters, with overall changes in altitude of 40 meters. The system has presented

an error of 0.6%. The walk was in a stop-and-go fashion: walk ten consecutive strides

before taking a brief rest and then walk another ten consecutive strides, and so on.

In conclusion, the author says that it is the foot yaw angle estimation that is critical,

which may lead to weird results especially when the gyroscope integration is left free

running.

Jimenez el al. [57] proposes a low-cost IMU that integrates a Heuristic Heading Re-

duction (HDR) algorithm into an EKF, which can represent a valid methodology for

operate in spaces with magnetic disturbances. The IMU is placed on the foot and is

composed by an accelerometer, a gyroscope and a magnetometer. It uses an EKF to

estimate the PINS errors, which is updated with velocity measurements every time the

foot is on the floor. Also, it includes a stance phase detection algorithm, ZARU and a

HDR. The system architecture can be seen in Figure 23.

The three conditions to declare a foot as stationary (stance phase) are: magnitude

of the acceleration must be between two thresholds; the local acceleration variance,

which highlights the foot activity, must be above a given threshold; and the magnitude

of the gyroscope must be below a given threshold. These three logical conditions must

be satisfied simultaneously and the result is filtered out using a median filter with a

neighbor window of 11 samples.

HDR makes use of the fact that many paths are straight and the idea of HDR is to

detect when a person is walking straight and, in that case, to apply a correction to the



54 pedestrian inertial navigation systems

Accelerometer 
and

Gyroscope

Stance phase detection

ZUPT

Position

EKF for error 
estimation

INS for Position and Attitude estimation

Velocity

Attitude

Error state 
vector Estimated

velocity

Attitude

Event 
detection

Measurement

Figure 23: System architecture proposed by Jimenez el al. [57]

gyroscope biases, in order to reduce the heading error. The system was tested in an

indoor environment which include counter-clock-wise and clock-wise directions. The

path was 125 meters long and authors concluded that the uncorrected heading drift is

proportional to the walking distance but not to the elapsed time. The positioning error

was 1.5% of the total walking distance.

Bebek et al. [20] added a high-resolution thin flexible tactile sensor to an IMU (com-

posed by an accelerometer, a gyroscope, a magnetometer and an EKF algorithm), which

measures zero-velocity to reset the accumulated integration errors from accelerometers

and gyroscopes. The tactile sensor data can be used to accurately detect periods of zero-

velocity to increase the efficiency of the location resolution.

Compared to the other proposed approaches that detect the step impact with ac-

celerometers, this one uses a more reliable sensor to perform the step detection. The

sensors are placed within the heel and the sole of a pedestrian’s boot and are wire-

lessly connected to a handheld unit, that processes the data off-line. The tactile sensor

is placed very close to the point of the heel-to-ground contact to provide detailed con-

tact information to the IMU.

The proposed system works in the following way (Figure 24): first, acceleration and

orientation information are retrieved from the IMU; next, an EKF is employed to detect

the acceleration biases. The bias-compensated acceleration, from the IMU, and zero-

velocity points, from the tactile sensor array, are used in the integration via ZUPT to

estimate the position of the user; finally, a calibration is applied to correct the drifts in

this estimated location.

To evaluate the system a close-loop walk with a total distance of 1215 meters was

performed. First, a 5 minutes walk was performed to calibrate the system. Next, the
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walk test was performed in a sports field with a flat surface, which resulted in an error

of 0.4%. Authors concluded that the inclusion of a tactile sensor improves the step

detection.

Li and Wang [69], in 2012, studied the PINS behaviour when the pedestrian is running.

The running gait cycle is shorter than the walking gait cycle, and the stance phase is

less qualified as zero-velocity. In the walking gait, the pre-swing and swing phases are

mirrored by the initial contact and stance phases. While one leg is in the pre-swing

phase, the other is in the initial contact phase, and while one is in swing phase, the

other is in stance phase. This symmetry in the walking gait shows the rhythmical

transfer of weight between the two limbs. During the running gait cycle this symmetry

does not exist. Instead, both legs can be in the swing phase at the same time and heel

strike occurs while the other leg is still in the air.

Two Zero Velocity Detector (ZVD), ZVD1 and ZVD2, were proposed. The ZVD1 de-

tects zero-velocity while walking by analyzing, in real-time, four conditions on both

the accelerometer and gyroscope measurements: the magnitude of the total accelera-

tion and the acceleration on the z-axis; the magnitude of the gyroscope data and the

gyroscope’s y-axis. When zero-velocity is detected, velocity, position and attitude errors

are reset to zero. The accelerometer and gyroscope errors and gravity uncertainty are

calculated and feedback into the EKF which corrects the navigation error afterwards.

The ZVD2 is designed for the running cycle where only gyroscope measurements are

used. The zero-velocity is determined once the norm of gyroscope is less than a prede-

fined threshold. Once a footstep is detected both ZVD1 and ZVD2 are applied in the

first half step, while in the last half step the ZVD1 is used to prevent some mistakenly

detected zero-crossings in the swing phase.

Combining the detectors this proposal improved the stance phase detection for both

walking and running gait cycles. Tests were conducted in a close loop of 171 meters.

This experiment was performed with different human gait cycles which includes walk-

ing, running and walking alternating with running. Before walking the subject stands
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still at the start point for about 4 seconds, in which the ZUPT algorithm sets the param-

eters and the initial conditions. The system presented an error, for the total walking

distance, of 1.22%. Authors concluded that the navigation accuracy of the proposed

algorithm for running cases is comparable to the walking only cases.

Yuan et al. [126] carried a set of experiments to test the differences by having an IMU

mounted on the person’s waist or on the shoe. Also, another set of experiments was

performed to analyze the heading estimation by using only a magnetometer, only a

gyroscope, and a quaternion-based EKF with a gyroscope and a magnetometer.

An IMU, composed by a accelerometer, a gyroscope and a magnetometer, was fixed

through a belt in the waist and another, equal to the first, on the shoe. Authors have

concluded that the IMU on the shoe has higher acceleration peaks than the IMU on the

waist. Therefore, the step count and step length can be estimated more precisely on the

IMU placed on the shoe than on the waist. Also, zero-velocity can be better detected on

the foot.

Due to magnetic disturbances and gyroscope drift, authors proposed a quaternion-

based EKF for heading estimation by combining the magnetometer and gyroscope data.

Because of their complementary characteristics, a better accuracy in the heading solu-

tion was obtained. However, authors have not presented any performance metrics in

order to compare their proposal with other systems.

3.1.3 Other Kalman Approaches

Mathiassen et al. [77], in 2010, focused on the possible gain that a barometer, in addition

to the inertial sensors, can have a three-dimensional localization estimation. Authors

developed a low-cost IMU that is constituted by a GPS, an accelerometer, a gyroscope, a

magnetometer and a barometer. When GPS loses signal, the other sensors are used to

keep track of the position and an UKF was used to integrate data.

To remove some of the flicker noise from the gyroscope measurements the authors

used a 10th order high pass Infinite Impulse Response Butterworth filter [107]. The

magnetometer measurement integrated with the gyroscope data approach uses the fact

that rotating the magnetic field vector in the body frame to the navigation frame with

quaternions should be equal to the magnetic field vector obtained by the International

Geomagnetic Reference Field model (which is a model of the earth magnetic field).
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Combining inertial sensors with a barometer the system presented an error of ap-

proximately 13 meters after 60 seconds of walking, compared to an error of 58 meters

without the use of a barometer.

Castaneda and Lamy-Perbal [26] proposes a shoe-mounted IMU with a fuzzy logic

based algorithm to improve stance phase detection. Also, they propose a ZARU algo-

rithm and the associated measurement model to correct drift errors via an IKF. The

fuzzy-logic algorithm detects the stance phase based on gyroscope and acceleration

measurements. In practice, in order to avoid false step detections, the authors decide

that a step is only detected if the proposed algorithm detects no movement for a pre-

defined time period.

Inspired in the ZUPT algorithm, authors propose a ZARU algorithm based on the fact

that at the stance phases the IMU’s attitude may be partially estimated through coarse

alignment methods using acceleration measurements. Furthermore, it is possible to

estimate the attitude pseudo-measurement, in a stance phase position, only during

the system initialization procedure. The estimation is then used, each time a step is

detected, as a reference attitude to feed the IKF, that will correct drift errors.

The system was tested in three walking scenarios. The first one had a forward walk

then a left curve and a downstairs, with a total walking distance of 40 meters and

presented an error of 30 centimeters. The second experiment was a walk along a square

of 6 by 6 meters, with a total walking distance of 24 meters and presented an error of

15 centimeters. The third experiment involved a forward walk with a curve to the left

then a curve to the right, giving a total walking distance of 84 meters and presented

an error of 27 centimeters.

Diaz et al. [33] propose a PINS based on an IMU located in the trousers’ pocket of a

person. Authors say that this location was chosen because, for the mass market it is

more convenient to integrate a navigation system in a mobile phone. This location is

more practical and less obstructive than attaching an extra device to the shoe.

For the orientation estimation an attitude estimator based on an UKF was developed.

This estimator receives the data from the accelerometer, gyroscope and the magnetome-

ter. A zero acceleration detector was implemented, since there is not a foot mounted

IMU, therefore it is difficult to detect zero-velocity. So, this detector finds locally the

periods of zero or close to zero acceleration.

The position estimator is based on an UKF and it is composed by a step detector

and a step length estimator. The step detector is based on the detection of consecutive

minimum-maximum of the low-pass filtered norm of the acceleration. For the step
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length, authors have decided to use the empirical relationship between the maximum

and minimum of the acceleration for each step.

The navigation system has been tested by different users with different type of

trousers and without any restriction about the tightness of the trousers. The attitude

estimator presented a drift of π rad in a walk of approximately 200 seconds, and the

navigation system presented an error of about 4meters in a walking path of 200meters.

3.2 other fusion approaches

Lee and Mase [66], in 2002, proposed a system that uses acceleration and angular ve-

locity data to determine user’s location, and to recognize and classify sitting, standing

and walking behaviours. The proposed recognition method consists in two phases,

training and recognition. In the training phase, the system requires a set of data to de-

termine the motion parameters for the three behaviours. The system records motions

and heading measurements while the user walks from one location to another, build-

ing a location transition table. In the recognition phase, the system continuously tries

to find motions and recognize a location transition from a known starting location.

The system is composed by two IMU, one in the leg and another in the waist. The

leg module is located in the user’s right or left trouser pocket and measures the accel-

eration and angle of the user’s thigh. The other module is attached to the middle of

the user’s waist and estimates orientation. After some experiments, authors concluded

that these are the best positions for activity and location recognition.

The leg module is composed by an accelerometer, to measure the forward and up-

ward accelerations of the user’s thigh, and a gyroscope, to measure the angle of the

user’s thigh movement. The waist module is only composed by a magnetometer.

The proposed recognition algorithm is composed by three modules: a sensing mod-

ule, a motion recognizer and a location recognizer. The sensing module reads the data

from the sensors and executes a set of preprocessing tasks, including filtering and com-

puting statistical properties. The motion recognizer identifies the predefined types of

motion. The location recognizer calculates the current displacement vector by dead

reckoning and tries to find this location in the location transition table. If it finds a

matched location, it changes the user’s current location. An evaluation to the system

was performed where a user performed 978 steps, and the system presented an error

of 3%.
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Ojeda and Borenstein [89] developed a small IMU capable of estimate location in the

three-dimensions. It was designed with military and emergency responders in mind.

The software is composed by three modules: a position estimation module, ZUPT and

a step detection module. The IMU is attached to the user’s boot and incorporates an

accelerometer and a gyroscope that are used to estimate, in real-time, the user location

relative to a starting point.

Since the IMU is attached directly to the boot, tilt angles of π2 rad or higher are likely

to happen. For this reason authors choose the Quaternion representation, which han-

dles tilt angles. In the experiment five different pedestrians walked along a rectangle-

shaped path with a total distance of 104 meters. For this path the proposed system

presented an estimation error of 0.7%. Authors concluded that a PDR system can be

based on a small-sized IMU, despite that IMU’s performance limitations.

Qian et al. [95] proposed a system based on smartphone’s inertial sensors and cam-

era. Camera, is a common sensor on most current smartphones, so it provides opportu-

nities to improve the inertial sensors errors by using an optical flow algorithm. Optical

flow is the pattern of apparent motion of objects, surfaces and edges in a visual scene

caused by the relative motion between an observer (an eye or a camera) and the scene.

Using sequences of ordered images recorded by the camera, the pedestrian motion can

be estimated. This optical flow algorithm was used to estimate step length.

However, the use of a camera brings some challenges, like the interferences arising

from hands shaking during walking. Also, by having a smartphone in a hand it is

impossible to have it parallel to the ground all the time. In this case, the displacement

calculated by optical flow algorithm depends on the angle between the smartphone

and the ground. Therefore, the smartphone’s attitude during walking is acquired to be

combined with the optical flow estimation to obtain more data.

Authors made five field tests, three outdoor and two indoor, with different types of

ground textures such as asphalt road and lawn. All the trajectories were straight lines.

Authors have not considered curves and stairs situations. The mean error for each step

was of 1.627 centimeters.

Shin et al. [109] suggested a three-dimension PINS using a smartphone, where the

motion of a pedestrian is firstly estimated by a hybrid model classifier. Then, the two-

dimension location of pedestrian is estimated by using a PDR algorithm and a barome-

ter is used to estimate the altitude (three-dimension location).

The motion of a pedestrian is detected when a peak exists in the norm value of

the accelerometer signal. It is then passed through a hybrid model classifier which
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classifies it as a true or a false step. According to the authors a single classifier could

not provide accurate recognition rate because the features extracted from sensor data

are different for each person. To overcome this limitation three different classifiers were

combined.

When a true step is detected a fixed step length is used to estimate the pedestrian

displacement. The double integration method was not applied because of the smart-

phone accelerometer low performance. Tests were performed in a building with four

floors and a rectangle shape. Three pedestrians have participated in the experiment

and the positioning error was less than 5%.

3.3 discussion and ongoing challenges

Table 2 presents an overview about the main characteristics of the studied systems

namely: the sensor fusion methods; the sensors used and where they are mounted; if

they use ZUPT technique; their distinctive features; the evaluation that each author has

performed to the system; and the respective positioning error.

PINS try to estimate the person location using the equations of motion through the

acceleration information. However, a PINS working by itself cannot keep a good loca-

tion accuracy over long periods of time. This happens because of the sensors drift and

people’s different ways of walking.

Therefore the studied approaches consisted on unassisted PINSs that have applied

several different techniques to reduce the PINSs typical errors. One approach, to com-

pensate PINS errors, suggested by Jirawimut [58] and, Lee and Mase [66], is to calibrate

the PDR parameters, the step size and magnetometer bias error, using the GPS signal

when the user is in outdoor environments.

The gyroscope bias causes the most orientation estimation errors so a good practice

is to calibrate the gyroscope before each experiment. These errors happen more fre-

quently when a low-cost IMU is used, which can produce results 3 times worse than a

high cost one. As concluded by some authors [26] [57] the uncorrected heading drift is

proportional to the walking distance but not to the time elapsed.

To mitigate some of the gyroscope errors Jimenez el al. [57] proposes a HDR algo-

rithm. However, one of the best approaches to reduce these errors was proposed by

Castaneda and Lamy-Perbal [26], which is a ZARU algorithm. Ladetto et al. [64] tested

two prototypes to estimate orientation, one is based on a gyroscope and the other on

a magnetometer. Authors concluded that the best approach to estimate orientation is
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to use a combination of those sensors, since each one have their strengths and weak-

nesses.

A PINS can be composed by several sensors, so it is very important to implement

sensor fusion techniques, like the described Kalman filter. Many of the studied works

refer the Kalman filter as an optimal estimator, in order to reduce the inertial sensors

errors. However, the Kalman filter requires a very good modelling of the system, which

can be a very complex task.

Another difficulty encountered when developing a PINS is the stance phase detection.

As stated by Beauregard [19], a dynamic threshold detection algorithm and possibly

additional sensors, such as a force or proximity switch, can improve PINS stance phase

detection. Hamaguchi [47] has introduced wearable electromagnetic sensors and push

button switches attached to user’s heels. The results demonstrated that this approach

can improve the stance detection, so other systems, like the one proposed by Bebek et

al. [20] also tended to use similar techniques.

Bebek et al. [20] have introduced a high-resolution thin flexible ground reaction sen-

sor to the IMU, which measures zero-velocity duration to reset the accumulated inte-

gration errors from accelerometers and gyroscopes in location estimation. This tactile

sensor can be used to accurately detect periods of zero-velocity to increase effective

positioning resolution. Compared to the other systems, it can be concluded that the

inclusion of a tactile sensor improves the step detection since it can detect, with more

accuracy, when the foot is on the ground or not.

Apart from distance and orientation, elevation estimation is also very important. The

main application for PINS is in indoor environments and, typically, in this type of lo-

cations there are several floors. Ojeda and Borenstein [89], and Sabatini [103] analyzed

the performance of a standard IMU, without using a barometer, in a three-dimensional

environment. Unlike Mathiassen et al. [77] which uses a barometer, in addition to the

normally used inertial sensors. Each one of these approaches has its strengths and

weaknesses. However, the barometer approach seems to have more accurate results.

One consideration that, typically, is not considered is the running gait cycle. How-

ever, Li and Wang propose a PINS that uses two zero-velocity detectors, one for each

type of gait cycle, walking and running. Authors concluded that the accuracy, of the

proposed algorithm, for running cases is comparable to walking ones.

Each one of the studied systems has their strengths and weaknesses, and their per-

formance cannot be directly compared since each evaluation scenario is different. In a

PINS evaluation several variables influence the final results, as is the case of the different
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pedestrians, the sensors quality, the total distance walked, the type of curves and the

environment where the test was performed, like the amount of magnetic disturbances,

type of floor (i.e. flat or wavy), among others. A variable that has a considerable influ-

ence in the PINS results is the step cadence, where the higher errors exist when the user

is moving slowly.

Errors in PINS are still considerable, despite all the techniques that are already being

implemented, it is believed that more techniques like information fusion and learning

algorithms should be applied to improve the systems estimations. For example, more

information sources collected from the human body can be used to improve the sys-

tem’s accuracy because one sensor advantage can suppress another sensor disadvan-

tage. Also, techniques that learn the human gait characteristics in several environments

can be used to correct, in real-time, the step distance estimation or the user orientation.

Another important feature that must be considered in the future is the system weara-

bility. Due to the current developments on the smartphones performance and character-

istics, it is likely that in a near future smartphones will handle strapdown calculations

in real-time. This is a good opportunity to make the PINS lighter and more integrated

with the human clothes. The developments in the wireless communications will also

be very useful to improve the development of lighter and more user-friendly PINS.

From each one of the presented works it can be retrieved the most important tech-

niques and features and combine them to create a precise, comfortable, easy to use

PINS capable to work, with good accuracy, in walking and running gait cycles, as well

as, in diverse types of environments.

Figure 25 presents an overview for an implementation of a PINS using the most re-

liable approaches and techniques learned from the previously presented systems. The

most common sensors to use are the accelerometer, gyroscope and magnetometer. For

each sensor it is removed the correspondent bias, estimated by a Kalman filter ap-

proach. The accelerometer data is then tested to verify if the pedestrian is stationary or

not, to apply the ZARU and ZUPT techniques, in order to update the Kalman filter data.

To have the best orientation estimation the data from these three sensors are combined.

Finally, after the projection of the acceleration data to the navigation frame, it is doubly

integrated in relation with time in order to obtain the distance. The estimated distance

and orientation are then used to estimate the displacement of the pedestrian.

Concluding, the implementation of a localization technology which is capable of

providing localization everywhere would unleash the use of many applications [10].



66 pedestrian inertial navigation systems

Output

Sensors

INS
Kalman 

Filter

Stationary

Subtract 
accelerometer 

bias

Subtract 
gyroscope bias

Yes

No

Orientation 
Gyroscope

Orientation

Subtract 
magnetometer 

bias

Orientation
Accelerometer 

+ 
Magnetometer

Distance

Initial 
Velocity

Initial 
Distance

Accelerometer Gyroscope Magnetometer

Magnetometer 
bias

Gyroscope bias

Accelerometer 
bias

Orientation 
error

Velocity error

Distance error

Fused 
Orientation

Project 
accelerations

ZUPT and 
ZARU

Correct 
Gravity

t

t0

dt

t

t0

dt

t

t0

dt
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T H E P R O P O S E D A R C H I T E C T U R E

The main claim of this thesis proposal is the capability to retrieve location everywhere,

independently of the environment and only based in sensors placed in the human

body. This chapter describes the developed prototype system focusing on the system

architecture and providing the characteristics of the used hardware.

It is also performed an analysis to the data acquired by the sensors, where their data

is evaluated.

4.1 architecture

The system is composed by several hardware and software modules, which are rep-

resented in Figure 26. The software is divided into four modules: (i) an INS Solution

(incorporated on each BSU); (ii) a Low Level Integration Software (LLIS) (incorporated

on the BCU); (iii) a Step Characterization algorithm (implemented on a mobile device);

(iv) and a High Level Integration Software (HLIS) (implemented on a mobile device)

[4].

Each BSU INS Solution module is composed by three algorithms:

• Data Pre-processing - a noise reduction algorithm used to remove noise from the

sensors signals. In this case, noise is something that is captured from the sensor,

and can influence, negatively, the walking estimation. This algorithm decomposes

the signal and extracts only the frequencies bands that are important to the PINS.

The implemented techniques, for each sensor, will be explained throughout this

chapter;

• Step Detection - a step detection algorithm, which is one of the most important

parts of PINS and of this work proposal. If a step is not properly detected, all

the displacement estimations will be faulty. Thus the step detection algorithm

must be the most reliable as possible. In this proposal force sensors were added

on the foot plant, to improve the step detection and therefore the displacement

estimation. The implemented algorithms are presented in Chapter 5;

67
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Figure 26: PLASYS architecture

• Navigation Algorithms - algorithm that estimates the distance or orientation of

the pedestrian in each corresponding BSU. The Foot INS Solution estimates the dis-

tance, and its algorithm will be explained in Section 7.2.1. The Waist INS Solution

estimates the orientation, and the algorithm is explained in Section 7.1.

After the acquisition of the data from the sensors and the estimation of both, distance

and orientation, these data is merged, in the LLIS, to estimate the displacement. The

displacement is estimated using an absolute position given by the GPS sensor. Then,

the estimated displacement will be passed to the HLIS and to the Step Characterization

(Learning Algorithms) modules.

The Step Characterization module is where the learning algorithms are applied. After

detecting a step a characterization to the step is performed, which is important to elim-

inate some of the erroneous measurements that are given by the inertial sensors when

integrated. With a proper model of a step a more accurate displacement estimation

can be achieved, since some errors can be suppressed using this model. This module

receives the data of each BSU (during the step), the displacement estimated by the LLIS
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and the absolute position given by the GPS sensor. Then, a characterization for a step

is made, which is passed to the HLIS module.

Walking is a cyclic activity, which represents a cyclic pattern of movement that is

repeated over and over, step after step [105] [121]. These walking patterns can be ex-

tracted in the learning phase and used as a reference model. These patterns are learned

during a controlled phase where from a set of exercises the gait analysis is obtained

or when GPS is available (with very good signal). Resuming, the system will be always

learning the step pattern and will be improving it over time.

This characterization includes: the type of terrain (i.e. normal, descending or ascend-

ing stairs) where the pedestrian is walking; the direction (i.e. forward or backward);

and the size (i.e. short, normal or long) of the step. Also, it is here that the two sources

(BSUs) of data are combined to improve the data accuracy. This algorithm will be pre-

sented in Chapter 6.

The HLIS module receives the data given by the two previously presented modules,

LLIS and Step Characterization, and the GPS data. This data is integrated in order to

estimate the pedestrian’s displacement. Based on the characterization made by the

Step Characterization module, different displacement estimation algorithms and rules

are used to correct the sensors deviations and the estimations given by the LLIS module.

This integration will be presented in Section 7.2.2.

As can be seen in Figure 27 the hardware is composed by two small BSUs distributed

in person lower limbs (foot and hip area) to collect information about body movements

and are connected through a Bluetooth wireless sensor network. These BSUs were devel-

oped based on smart sensors philosophy, connected to an integrated circuitry module

to pre-process and codify the collected signal. The waist BSU is capable to interact with

the sensory set around the body, and to exchange data between sensors and a mobile

device [7].

The first BSU module, waist BSU, is placed in the abdominal area and is represented

in Figure 28. It is composed by a gyroscope, an accelerometer, a magnetometer and a

barometer. The gyroscope, accelerometer and magnetometer are used to get the body

walking direction, since with their complementarity can be used to improve the orien-

tation estimation. The barometer can be used to obtain the user elevation, for example

to know in which floor the user is. It is here that part of the algorithms (e.g. the LLIS)

are implemented. Also, it is from this module that the information is sent to the mobile

device through a Bluetooth connection.
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Figure 27: Sensor distribution on the human body and wireless communication

The second BSU module, is placed on the foot and is represented in Figure 29. It is

composed by an accelerometer, a gyroscope and two force sensors. The accelerometer

is used to detect and quantify the foot movement, and the gyroscope is valuable to

transform this acceleration data from the sensor frame to the navigation frame.

Typically the drift is mitigated taking advantage of the ZUPT, meaning that the inte-

gration of inertial measurements is only performed during the swing of legs and the

velocity errors can be reset at each step, since when the pedestrian is stationary the

true velocity must be zero. This technique is used by several systems and typically an

accelerometer is used to detect if the pedestrian is stationary or not. However, All Over

Y

X

Z

Figure 28: Waist BSU with the corresponding axis
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Figure 29: Foot BSU with the corresponding axis

the Place Localization System (PLASYS) uses the force sensors to detect when the user

touches his feet on the ground, as well as, the respective contact force, which combined

with the accelerometer (used to obtain the step acceleration) provide a more exact step

detection. Also, this force information is useful to improve the detection of the activity

type that the pedestrian is performing (e.g. running, walking fast).

4.2 foot body sensor unit

The foot BSU hardware is composed by three modules: processing unit, sensors (ac-

celerometer, gyroscope and force) and communication module (Bluetooth). The pro-

totype was designed and developed in order to not only fulfil the objectives of the

project, but also to allow an easy replacement of modules in the case of a hardware

failure.

The force sensors are separated from the main board to easily adjust their placement,

for testing proposes, in different places on the foot plant. A photo with the details of

the foot BSU can be seen Figure 30, where each module is identified.

According to the objectives of this work the BSU hardware follows the following

requirements:

• Small size - smaller boards are more convenient to the person use during the

walking path;
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Inertial Sensors
Bluetooth 

Module

Figure 30: Foot BSU in detail

• Low-energy consumption - in order to have a longer battery life;

• Universal Synchronous Asynchronous Receiver Transmitter (USART)1 port - to

enable the exchange of information between the CPU and the communication

module;

• Inter-Integrated Circuit (I2C)2 - to enable the communication between the CPU

and the sensor’s module.

The choice of the processing unit fell into the dsPIC family, in particular the dsPIC33-

FJ128GP706A, from Microchip Technology Inc3. It was chosen because it has enough

processing capabilities to gather the sensor data and pre-process it.

4.2.1 Sensory Set

The sensors incorporated in the foot BSU are presented in this section. This BSU is

composed by an accelerometer (Section 4.2.1.1), a gyroscope (Section 4.2.1.2) and force

sensors (Section 4.2.1.3).

1 USART is an synchronous/asynchronous serial communication port usually included in microcontrollers
2 I2C is a multi-master, multi-slave, single-ended, serial computer bus which is often used to communicate

across circuit-board distances.
3 Microchip Technology Inc. is an American manufacturer of microcontroller, memory and analog semicon-

ductors.
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4.2.1.1 Accelerometer Sensor

The foot BSU is composed by a ADXL345 accelerometer from Analog Devices4. This

accelerometer was selected because it fulfils the project requirements, it has low-power

consumption, measures the three axis (x, y, z) and has a stable Output Data Rate (ODR)5

of at least 100 Hz, which is an acceptable rate for this project. Also, the measurement

range of ±16 g is convenient for a PINS, since sometimes a step can produce accelera-

tions of that magnitude. More information about the sensor characteristics can be seen

in Table 3 or in the accelerometer data sheet [32].

Table 3: ADXL345 accelerometer specifications [32]

Characteristic Value

Measurement Range ±2, ±4, ±8, ±16 g
Operating Temperature −40◦C to +85◦C
Axis x, y, z
Output data rate 0.1Hz to 3200Hz
Supply current 90µA at 50Hz | 3200µA at 100Hz

The accelerometer was configured to work with the maximum resolution (±16g,

representing 13 bits of information), with the First In First Out (FIFO) option activated

and the ODR to 100 Hz.

With this accelerometer and the specified settings, to obtain the acceleration in m/s2

it is necessary to apply the formula presented in Equation 24. Observing this formula

can be seen that, for the accelerometer, one g corresponds to the value of 256.

a =
accelerometer measurement

256
× 9.81 (24)

The sensors sometimes give incorrect values due to noise or degradation that occurs

over time. The most important source of error of an accelerometer is the bias. The bias

of an accelerometer is the offset of its output signal from the true value. A constant

bias, when double integrated, causes an error in position which grows quadratically

with time.

This type of error occurs when the accelerometer output is non-zero when the mea-

sured property is zero. To quantify this error the accelerometer must be placed on a flat

surface parallel to the ground. Thus it can be measured the average of the accelerations.

4 Analog Devices is an American multinational semiconductor company specialized in data conversion and
signal conditioning technology.

5 ODR defines the frequency at which the data is sampled.
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If the measurements are not zero in two of the axis and 9.80665 m/s2 in the other axis,

then the accelerometer has an offset. In some cases these deviations may be removed

or predicted using some calibration procedures.

To detect and quantify the offset of the used accelerometer, its measurements were

recorded during 12 seconds with the device stationary in a flat surface and with the

force of gravity applied on the y-axis. This period has chosen to have a good indication

about the offset over time.

In Figure 31 is shown the noise signal and in Table 4 are presented some statistics

about this noise. These statistics are the minimum, maximum and mean value for each

one of the accelerometer axis and for the combined acceleration. Also, it was calculated

the standard deviation for the measurements of each axis.

This test has shown that the mean of the total acceleration was 9.83m/s2, which is

close to the acceleration of gravity on Earth (9.80665m/s2). The standard deviation of

the total acceleration for all the records is approximately 0.019m/s2. It was also found

that the z-axis has the higher offset.

Figure 31: Foot BSU accelerometer output with the device stationary and the gravity force
applied on the y-axis
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Table 4: Foot BSU accelerometer output statistics, in m/s2, when the device is stationary and
the gravity force applied on the y-axis

Parameter Accx Accy Accz Total Acc

Minimum 0.0150 9.7734 0.3832 9.7810

Maximum 0.0916 9.8884 0.4982 9.9014

Mean 0.0414 9.8224 0.4475 9.8327

Deviation 0.0191 0.0193 0.0223 0.0193

4.2.1.2 Gyroscope Sensor

The gyroscope is a device that measures the speed of a rotation around an axis, i.e.,

measures how fast an object rotates relative to an inertial reference system, known

as angular velocity. This angular velocity may be integrated over time to obtain the

angular position.

The rotation is measured relatively to one of the three axis. The principle behind the

MEMS gyroscopes is that it contains vibrating elements to measure the Coriolis Effect.

This effect states that a mass m, moving with a linear speed v in a rotating frame

with an angular velocity ω suffers the effect of a force called the Coriolis force Fc and

the effect of Coriolis acceleration ac. The Coriolis force and acceleration are given by

Equations 25 and 26, respectively.

Fc = −2m(ω× v) (25)

ac = 2ω× v (26)

The gyroscope gives negative and positive measurements. The signal of the values

indicates the direction of the rotation, if the rotation is in a clockwise direction the

measurements are negative, if the rotation is in the opposite direction (anticlockwise)

the measurements are positive.

The foot BSU has a L3G4200D gyroscope from STMicroelectronics6. In Table 5 are

described some characteristics of this sensor retrieved from its data sheet [111].

This gyroscope was configured to work with the 2000dps scale, in FIFO and with

an ODR of 100Hz. The L3G4200D gyroscope has a set of internal filters disposed as

6 STMicroelectronics is a French-Italian multinational, and is Europe’s largest semiconductor chip maker,
specially in semiconductors for industrial applications, inkjet printheads, MEMS, smartcard chips, auto-
motive integrated circuits, computer peripherals, and chips for wireless and mobile applications.
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Table 5: L3G4200D gyroscope specifications [111]

Characteristic Value

Measurement Range ±250, ±500, ±2000 dps
Operating Temperature −40◦ to +85◦

Axis x,y,z (Yaw, Pitch, Roll)
Output data rate 100Hz, 200Hz, 400Hz, 800Hz
Supply current 6.1mA

Figure 32 shows. These filters were configured with HPEN to 0 and the Out_Sel to 10.

Thus the gyroscope data is obtained after passing through the low-pass filter 1 (LPF1)

and the low-pass filter 2 (LPF2) without going through the high-pass filter (HPF). The

high-pass filter is not being used because after some tests it was found that it removes

useful information from the signal.

The low-pass filter LPF1 does not allow the editing of the cut-off frequency, so the

default cut-off frequency was used, which is 32Hz to an ODR of 100Hz. The low-pass

filter LPF2 to an ODR of 100Hz only allows the configuration of a cut-off frequency of

12.5Hz or 25Hz. From the tests, the best results were achieved with the frequency set

at 12.5Hz. The measurements of the gyroscope are not obtained by using interruptions,

so the INT1_Sel parameter was not set.

When a gyroscope is immobilized on a flat surface it must give 0 in all the axis.

However, due to the noisy measurements and changes in the ambient temperature,

gyroscope measurements vary when the sensor is stationary. The constant bias error of

a rate gyroscope can be estimated by taking an average of the gyroscope output while

it is not performing any rotation.

Figure 32: L3G4200D gyroscope diagram with low-pass and high-pass filters (adapted from
[111])
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In Figure 33 and in Table 6 the gyroscope bias can be observed. As the gyroscope

does not show an absolute value, on each axis, of zero while stationary, it can produce

a significant error when integrated. Meaning that some drift, over time, will exist.

Table 6: Foot BSU gyroscope output statistics, in rad/s, with the device stationary

Parameter Gyrox Gyroy Gyroz

Minimum -0.0302 -0.0302 -0.0282

Maximum 0.0218 0.0208 0.0248

Mean 0.0018 -0.0024 -0.0071

Deviation 0.0100 0.0101 0.0107

Once the bias is known it is trivial to compensate it by simply subtracting the bias

from the output or to establish a threshold to set to zero the gyroscope measurements.

This will eliminate the noise in order to not accumulate angular displacement when

the gyroscope is stationary. The threshold value can be defined as three times the stan-

dard deviation of the gyroscope measurements, when any angular velocity is applied

to any of its axis [112]. The disadvantage of this procedure is that the gyroscope mea-

surements for very slow rotations, the ones that are lower than the threshold value,

will be ignored.

Figure 33: Foot BSU gyroscope output with the device stationary
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The gyroscope’s drift was also verified by performing one more test, which consists

in making a rotation of π2 rad in the anticlockwise direction, two rotations of π2 rad

in the clockwise direction, and finally another rotation of π2 rad in the anticlockwise

direction. All these rotations were performed over the z-axis. The obtained data can be

seen in Figure 34.

The drift error is very small, but as it accumulates due to the integration of the

angular speed, an adjustment to the gyroscope values needs to be done regularly.

4.2.1.3 Force Sensor

A force sensor converts mechanical force into an electrical signal. Most of the force

sensors operate on the principle that the electrical resistance will increase when a force

is applied. The resistance measurements change in proportion to the applied force. This

change in resistance results in a change of the corresponding output voltage. These

sensors have been selected mainly because they are soft and comfortable to be placed

on the person’s foot, as shown in Figure 35.

For this project, the chosen force sensor was the FlexiForcer A201 from Tekscan. It

is available in different force ranges and sizes. Its specifications can be seen in Table 7.

They are ultra-thin and flexible printed circuits, which can be integrated into multiple

force measurement applications, like [114]:

Figure 34: Foot BSU gyroscope output for four π2 rad rotations on z-axis
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Figure 35: FlexiForcer A201 from Tekscan

• Detect and measure a relative change in force or applied load;

• Detect and measure the rate of change in force;

• Identify force thresholds and trigger appropriate actions;

• Detect contact and/or touch.

Table 7: Tekscan A201 force sensor specifications [114]

Characteristic Value

Style Rounded with a sensing area of 9.53mm
Force Range 440 N
Operating Temperature −40◦C to +60◦C
Accuracy ±3%

To know the force applied on the sensor it is only needed to configure the sensor

gain, which was defined to 220kΩ. This value was chosen value since it has shown to

be sufficient to enable the detection of any variation on the measurements [114].

The force sensors are placed on the foot plant as shown in Figure 36. This force

sensors disposal detects if the foot is in contact with the ground, from the first contact

of the heel with the ground (where force sensor A is located) until the front of the

foot is no longer in contact with the ground (where force sensor B is located), in order

words, during the entire stance phase. Thus, force sensors give information about when

the user puts and raises his feet on the ground.

In order to verify the accuracy of the sensor it was performed a test with two different

weights, one with 3kg and other with 0.5kg. Both objects were placed in order to

concentrate all their mass on the center of the sensing area. It was wanted to verify

Figure 36: Force sensors location on the foot
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if the force sensor maintains the same value in different measurements of the same

weight.

Analysing Table 8 it can be seen that the standard deviation for the heaviest object

is smaller than to the lightest one. This means that this force sensor is more stable

with heavier items than with lighter ones. The higher the weight the lower will be the

sensors deviations since the sensors resistance will vary less.

Table 8: Force sensors output statistics, in MOhm, for weights of 3kg and 0.5kg concentrated
only on the sensor’s center

Weight (kg) Minimum Maximum Mean Deviation

3.0 0.93 1.04 0.97 0.03

0.5 7.20 9.70 8.63 0.87

In Figure 37 is presented the data collected from the two force sensors in an experi-

ment that consisted in a straight line ten step walk. It can be seen that the sensors data

are correlated. The dashed line represents the data from force sensor A and the dotted

line represents the data from force sensor B. As can be seen the values of force are zero,

or almost zero, when the foot is moving (when there is higher variation in acceleration

values), and when the foot is on the ground, sensor A goes first to a high value and

then sensor B goes to a high value, as expected. This high value occurs when the foot

touches the ground. With the fusion of the two force sensors data a more accurate step

detection can be achieved.

Figure 37: Force sensors data for a 10 step walking
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4.2.2 Communication Module

This module is based on the Bluetooth technology and was developed to allow the

communication between both BSUs.

As one of the project objectives is to transfer the sensor measurements to a mobile

device, a Bluetooth module was adopted because it is widely used in mobile devices.

The module that was chosen, shown in Figure 38, was the BlueCore4-ExtTM [31] from

CSR, that uses the BC417143 chipset and it is a class 2 Bluetooth. More characteristics

can be seen in Table 9.

A class 2 Bluetooth is the most common standard on handheld devices and can

manage up to 3 Mbps, with a maximum communication distance of up to 10 meters.

These specifications are compatible with this project requirements.

Table 9: Broadcom BCM4339 Bluetooth specifications [31]

Characteristic Value

Bluetooth version Bluetooth v2.0+Enhanced Data Rate (EDR)
Class Output power Class II (±2.5mW range ±10m)
Flash memory 8Mbit
Power supply 3.3v
Interfaces Universal Asynchronous Receiver Transmitter (UART) and I2C

This module was chosen due to its price and to be easy to interact. This last advan-

tage is related to the fact that it is not necessary to interpret the Bluetooth protocol

communication datagrams, because the information that the module exchanges with

the CPU is only the useful information sent by the other device (without the protocol

headers).

Figure 38: Bluetooth module BlueCore4-ExtTM from CSR
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This module was configured as slave, which means that it only accepts connection

requests. All the configurations that were used in this module are the following:

• Transmission rate of 115200bps;

• No parity;

• 8 data bits;

• 1 stop bit;

• Without flow control;

• Pairing password: 1234;

• Configured to work as slave.

4.2.3 Software

The software on the foot BSU has the data flow presented in Figure 39. It is divided

into one interrupt and a main program. The interrupt is used to define the sampling

period. This interrupt is defined with the highest priority, thus if new interrupts were

added the sampling period maintains the same.

The main program is divided into two parts, the initialization and the data process-

ing. In the initialization phase the sensors and the Bluetooth module are initialized

with the settings described in Section 4.2.2. The data processing is performed at each

sampling instant.

The sampling period is 50ms (20Hz). This process involves the reading of the sensors

measurements and some filtering techniques on those measurements. As seen in Sec-

Start Initializations
New 

sample
?

No

Read 
sensors

Yes Filter 
measurements

Start

Send data to 
Bluetooth

New sample End

Main Program

Interrupt

Figure 39: Foot BSU Main Program and Interrupt description
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tion 4.2.1.1 the accelerometer ODR was set to 100Hz. This means that for each sampling

period the accelerometer has 5 measurements stored in its FIFO. After reading this FIFO

an average, of the 5 measurements, is made to obtain a less noisy value. The ODR of the

gyroscope is also set to 100Hz, so the mean of the 5 last measurements was also used.

The measurements from each force sensor are obtained by reading the sensor ana-

logue value. For each force sensor, 64 measurements are read at each sampling period

and the final value is the average of those measurements.

After these steps all the data is sent to the Bluetooth module, to be sent to the

mobile device. This data, in order to the mobile device match a specific value with the

corresponding sensor, was formatted with the following protocol:

% $ sensor_type x y z

where % indicates the beginning of a new set of data (i.e. occurs at each sampling

period). Each set of data is composed by the measurements from the accelerometer,

the gyroscope and the two force sensors. The $ indicates the beginning of a sensor

measurement, then sensor_type defines the sensor for which the measurements belong

(Table 10 are presented the possible values), and x, y, z are the measurements for the

specified sensor. In the case of the force sensor only the x is sent, which corresponds

to the sensed force value.

Table 10: Sensor types encapsulation parity

Sensor Type Corresponds to

1 Accelerometer
2 Gyroscope
3 Force Sensor A
4 Force Sensor B

4.3 waist body sensor unit

After the development of the waist BSU, it was tested to verify its robustness and to val-

idate the platform. However, it has demonstrated some robustness problems regarding

the communication protocol, which turned impracticable to use it. This constrain was

related to the fact that the ZigBee network, which initially was proposed to be used,

carried some implementation problems and it was not so reliable as expected.
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Thus, to validate the system, the waist BSU was simulated using an Android smart-

phone, the Google Nexus 5, which has all the necessary sensory set to work as the

developed foot BSU, in the person’s waist.

All the sensory data was obtained in its raw form, without any interfering of the

mobile operating system sensor fusion or data pre-processing algorithms. To maintain

the data consistency between BSUs, the waist BSU ODR was also defined at 20Hz.

4.3.1 Sensory Set

As the foot BSU, the waist BSU is composed by an accelerometer (Section 4.3.1.1) and a

gyroscope (Section 4.3.1.2). However, it also includes a magnetometer (Section 4.3.1.3)

and a barometer (Section 4.3.1.4).

4.3.1.1 Accelerometer Sensor

The mobile device used to simulate the waist BSU incorporates an InvenSense7 Motion-

Tracking™ device (MPU-6515) specially created to be used on smartphones, tablets

and wearable sensors.

The MPU-6515 unit integrates a 3-axis gyroscope, a 3-axis accelerometer and a Dig-

ital Motion Processor™ to offload complex motion algorithms from the mobile device

processor. It has Motion Interrupt, Pedometer, Step Event and Event Batching func-

tions on-chip, only waking the mobile device processor when critical motion events

require attention from other parts of the system. Table 11 presents some characteristics

of the accelerometer embedded in this unit, which are very similar to the ADXL345

accelerometer used on the foot BSU.

Table 11: MPU-6515 accelerometer specifications [55]

Characteristic Value

Measurement Range ±2, ±4, ±8, ±16 g
Operating Temperature −40◦C to +85◦C
Axis x, y, z
Output data rate 0.24Hz to 4000Hz
Supply current 450µA

7 InvenSense Inc. is the leading provider of MotionTracking™ solutions for consumer electronic devices,
including smartphones, tablets, gaming devices, optical image stabilization and remote controls for Smart
TVs.
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To obtain the accelerometer data it was used the Android Application Programming

Interface (API) and the data comes in m/s2, not being necessary to make any conver-

sion. To quantify the offset, the accelerometer measurements were recorded during 12

seconds with the mobile device stationary on a flat surface and the force of gravity

applied on the x-axis.

Figure 40 shows the obtained signal and in Table 12 it is presented some statistics

about the obtained signal.

Table 12: Waist BSU accelerometer output statistics, inm/s2, with the device stationary and the
force of gravity applied on the y-axis

Parameter Accx Accy Accz Magnitude

Minimum -9.9409 0.1431 -0.2538 9.9451

Maximum -9.8361 0.2730 -0.0981 9.8407

Mean -9.8869 0.2201 -0.1675 9.8908

Deviation 0.0175 0.0209 0.0323 0.0175

This test has shown that the average total acceleration was 9.89m/s2, which is a little

bit higher than the Earth’s gravity (9.80665m/s2), and also has a higher error when

compared to the foot accelerometer. The standard deviation of the total acceleration

Figure 40: Waist BSU accelerometer output with the device stationary and the force of gravity
applied on the x-axis
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is approximately 0.0175m/s2, which is similar to the foot accelerometer. Like foot ac-

celerometer, this one has also a higher offset on the z-axis.

According to these tests it can be concluded that the values given by the accelerom-

eter always follow the same pattern and thereby the same errors. Also, it can be con-

cluded that the accelerometer produces good values and the errors can be surpassed

using some algorithms to correct the produced data. According to this results it is

suitable to be used in this PINS proposal.

4.3.1.2 Gyroscope Sensor

The waist gyroscope is embedded in the MPU-6515 unit presented in Section 4.3.1.1.

In Table 13 are described some characteristics of this gyroscope, which are identical to

the L3G4200D gyroscope already presented.

Table 13: MPU-6515 gyroscope specifications [55]

Characteristic Value

Measurement Range ±250, ±500, ±1000, ±2000 dps
Operating Temperature −40◦C to +85◦C
Axis Yaw, Pitch, Roll
Output data rate 4Hz to 800Hz
Supply current 3.2mA

In Figure 41 and in Table 14 can be observed the bias of this gyroscope. Comparing it

with the foot gyroscope, this MPU-6515 unit has better results. This happen since this

unit is equipped with MotionFusion algorithms, implemented by InvenSense, which

filters the signal and makes some corrections to the gyroscope noise using sensor fu-

sion algorithms [55].

Table 14: Waist BSU gyroscope output statistics, in rad/s, with the device stationary

Parameter Gyrox Gyroy Gyroz

Minimum -0.0044 -0.0042 -0.0024

Maximum 0.0020 0.0022 0.0019

Mean -0.0014 -0.0005 -0.0004

Deviation 0.0011 0.0009 0.0008

Besides the bias test, another test was performed in order to verify the gyroscope’s

drift. In Figure 42 can be seen the data obtained from the gyroscope after having a

rotation of π2 rad in the anticlockwise direction, two rotations of π2 rad in the clockwise
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direction, and finally another rotation of π2 rad in the anticlockwise direction. All these

rotations were performed over the z-axis.

Figure 41: Waist BSU gyroscope output with the device stationary

Figure 42: Waist BSU gyroscope output for four π2 rad rotations on z-axis
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Compared to the foot BSU gyroscope unit the drift error is smaller in this MPU-

6515 unit. These results can be influenced by the embedded sensor fusion algorithms.

However, small adjustments need to be done regularly since the drift accumulates due

to the integration of the angular speed.

4.3.1.3 Magnetometer Sensor

A magnetometer is used to determine the direction that a device is taken relatively

to the Earth’s magnetic poles. However, its accuracy is heavily affected by magnetic

interferences caused by the approach to other magnetic fields or ferrous materials.

Besides this drawback, the magnetometer needs some time, after a sudden movement,

to stabilize the measurements again.

Magnetometers can be divided into two basic types: scalar magnetometers that mea-

sure the total strength of the magnetic field to which they are subjected, and vector

magnetometers (the type of the one used in this project), which have the capability to

measure the component of the magnetic field in a particular direction, relative to the

spatial orientation of the device.

The sensor used to obtain the magnetic fields was the AK8963 from AKM8, and its

characteristics are presented in Table 15.

Table 15: AKM AK8963 magnetometer specifications [1]

Characteristic Value

Measurement Range ±4900µT
Operating Temperature −30◦C to +85◦C
Axis x, y, z
Sensitivity 0.15µT
Supply current 280µA

This sensor measures the strength of the magnetic field in the environment in µT

(microTesla). The measurements range between 30 µT and 60 µT near the north and

south poles, respectively.

The magnetometer behaviour can be analysed in Figure 43. This sample was ob-

tained at a frequency of 50Hz during 12 seconds with the device stationary on a flat

surface and pointing north. Table 16 helps on having a better understanding about the

deviations of this sensor.

8 Asahi Kasei Microdevices Corporation is the world leader in electronic compass sensors
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Figure 43: Waist BSU magnetometer output with the device stationary and pointing north

Table 16: Waist BSU magnetometer output statistics, in µT , with the device stationary and point-
ing north

Parameter Magx Magy Magz

Minimum -2.4621 47.6118 -52.0200

Maximum 2.2300 51.8018 -47.9184

Mean 0.00002 50.0000 -50.0000

Deviation 0.6835 0.7389 0.7351

One interesting observation is about the sensitivity of the sensor, which results in

a rather high standard deviation of approximately 0.70µT for each axis. This sample

was obtained with the minimum, as much as possible, magnetic interferences. This

deviation can potentially produce significant errors on location estimation. However,

the mean value is very close to the real measurements.
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4.3.1.4 Barometer Sensor

A barometer sensor measures the current raw barometric pressure, which is typically

used to correspond it to an altitude. The sensor used was the BMP280 from Bosch9 and

its main operating characteristics are given in Table 17.

Table 17: Bosch BMP280 barometer specifications [23]

Characteristic Value

Pressure Range 300 to 1100 hPa
Operating Temperature 0C to +65◦C
Resolution of data 0.18 Pa
Supply current 2.74µA

There are two factors that affect barometer’s performance: supply voltage instability

and temperature drift. These issues are somehow similar as the MEMS inertial sensors.

Assuming normal values for pressure, supply voltage and temperature errors, the pres-

sure sensor error does not usually exceed 1 to 2 kPa [122].

Typically, this sensor is used to estimate user elevation. However, it does not give alti-

tude value but the amount of atmospheric pressure. Thus, it must be used an empirical

model to convert the pressure to an altitude assuming certain initial parameters, such

as pressure at sea level and the certain distribution of pressure with altitude. Another

approach that can be implemented, is to use the GPS data, when user is outside, to

calibrate the system based on the user elevation and the corresponding pressure value.

Then when indoors the differences between pressure values can be used to estimate

the floor where the user is inside the building.

In regions near sea level the atmosphere is dense, i.e. with a high concentration of

molecules, which means that the pressure is higher. In higher altitudes, the atmosphere

is thinner, that is, the molecules are more distant from each other. So, the pressure is

lower than the regions near the sea level. The value Zero represents the total vacuum.

Figure 44 presents the barometer data in a real usage scenario. This test was per-

formed in a four floor building, which is located at 75 meters above sea level. The first

measurement is in the first floor, then the pedestrian went, through the stairs to the

second floor and so on. In each floor the pedestrian remained stationary for about 10

seconds, and half way between floors he remained stationary for about 5 seconds. In

the figure it is presented the obtained average pressure value at each floor and half-

9 Robert Bosch GmbH, or Bosch, is a German multinational engineering and electronics company, and it is
the world’s largest supplier of automotive components.
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Figure 44: Barometer data in a real usage scenario in a building with four floors

floor. When the pedestrian achieved the last floor he went down to the first floor again.

The height difference between floors is 2.5 meters.

From the obtained data it can be concluded that the resolution of the pressure pro-

vided by the sensor is quite good, since it varies approximately 32kPa per floor and

16kPa per half floor. Therefore, such sensor can be successfully used in differential

mode. Once an altitude becomes known (either through GPS or other aiding means), a

differential correction with respect to the initial height can be applied.

To measure the sensor uncertainty a test was performed during a 30-day period,

during the entire month of November, 2014, where it involved different climate condi-

tions. At 12:00am for each day of this period the pressure was measured in the same

conditions and in the same place for a period of 60 seconds. The results for these tests

are presented in Figure 45, which presents a graph with the average pressure value for

each day of the 30-day period.

In Table 18 it is shown the minimum, maximum, mean and the standard deviation

for all the data from this test. From this data it can be concluded that the values varies

too much during a long period. The amount of this variations can assume values that

are higher than the height of four floors. Meaning that, due to these variations, a

constant value cannot be used to always correlate it to a specific floor. Therefore the
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Figure 45: Waist BSU barometer output for a 30-day period

best approach, as already mentioned, is to use the differential of the pressure value

starting with a reference point.

Table 18: Waist BSU barometer output statistics, in hPa, for a 30-day period

Minimum Maximum Mean Deviation

996.5423 1028.9545 1015.4992 0.0157

4.3.2 Communication Module

The Bluetooth module used on the waist BSU was the BCM4339 from Broadcom Cor-

poration10.

This module is a single chip device with integrated IEEE 802.11a/b/g/n and single-

stream IEEE 802.11ac MAC/baseband/radio, Bluetooth 4.0+EDR, and FM radio re-

ceiver. Its characteristics are presented in Table 19. It was used the Bluetooth Android

API to send and receive the data from the foot BSU. It receives and delivers the data

without any type of encapsulation.

10 Broadcom Corporation is an American fabless semiconductor company in the wireless and broadband
communication business
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Table 19: Broadcom BCM4339 Bluetooth specifications [45]

Characteristic Value

Bluetooth version Bluetooth v4.0+EDR

Class Output power Class II (±2.5mW range ±10m)
Flash memory 8Mbit
Power supply 2.3v to 4.8v
Interfaces UART

4.3.3 Software

The software on the waist BSU is mainly composed by a Data Retrieval Process, as pre-

sented on Figure 46. After all the initializations taken place, it is created one thread

per each BSU that is connected to the mobile device and executes the Data Retrieval Pro-

cess. In this case there are two threads: (i) the “Internal Sensors Thread” that initializes

the Android sensor listeners to receive the data from the device’s hardware; (ii) and

the “External Sensors Thread” that communicates with the foot BSU to receive its data.

Another threads can be connected to execute the same process.

The Data Retrieval Process works in the following way, when a new sensor measure-

ment is received, it is recorded to the corresponding file and the data is shown on

Data Retrieval Process
Start Initializations

New 
sample?

No

Read sensor data

Yes

Save data to 
corresponding 

file

Internal Sensors 
Thread

External 
Sensors Thread

Show data on 
screen

...

Figure 46: Waist BSU software
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Figure 47: PLASYS Android mobile application

the mobile device’s screen, as demonstrated in Figure 47. As already presented on

previous sections the sampling periods for both BSUs are 50ms (20Hz).

The data from each sensor is recorded in the corresponding file in the mobile device

internal memory. This data is stored to be post processed to calculate the number of

steps taken by the user and the displacement.

The files that are created and stored, by this application, with the information from

each sensor are the following:

• fAccelerometer - accelerations sensed on the foot;

• fForceA - force sensed by force sensor A;

• fForceB - force sensed by force sensor B;

• fGyroscope - angular velocities sensed on the foot;

• wAccelerometer - accelerations sensed on the waist;

• wBarometer - pressure values sensed on the waist;

• wGyroscope - angular velocities sensed on the waist;

• wMagneticField - magnetic field perceived on the waist.

The foot BSU files are the ones that start with an “f”, and the waist BSU files are the

ones that start with an “w”. Per each 12 seconds are generated, by the two BSU sensors,

about 250kb of information. Each file is composed, for each reading, by the timestamp

of the measurement and the corresponding measurements for the x-axis, y-axis and

z-axis. These values are comma separated, with the following format:
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timestamp x_measurement y_measurement z_measurement

For the sensors that have only one measurement (force and barometer), only the

x_measurement is provided.

An important issue is the time synchronization between the data obtained by the

two BSU. The collected data must be synchronized with a sufficient accuracy for this

type of application.

If the data, of the two BSU, at a certain time (i.e. absolute time) have different time

stamps, the integration results will be useless. The accuracy requirement of the time

synchronization for a given application is essentially driven by the speed of the linear

and angular motions of the object on which the system is installed. The faster and

more manoeuvrable the object, the better must be the timing accuracy.

Therefore, there are different accuracy requirements for time synchronization for avi-

ation, vehicular or pedestrian navigation applications. For aviation GPS/INS integrated

systems, where the speeds are reaching a thousand kilometres per hour, a tenth of a

second error in timing between the two systems can cause tens of metres of relative

positioning errors between the systems. For the pedestrian navigation application with

speeds of 1-2 metres per second such a timing error will cause a centimeter level posi-

tioning error in the integrated solution. This magnitude of error is tolerable considering

the individual accuracy of a PDR [81].

Obviously, the better the time synchronization is, the better is the accuracy of the

integrated system. Unfortunately, a more accurate time synchronization requires more

hardware and software resources. When aiming for a low-cost solution, this is not

always possible.

4.4 summary

In this chapter was presented the system architecture, as well as, the developed hard-

ware and the components used to create it [4]. Also, it was provided an analysis to the

errors of each sensor implemented in the prototype. Due to some robustness problems

regarding the ZigBee communication protocol, the waist BSU was simulated using a val-

idated platform. Thus, the waist BSU was simulated using an Android mobile device,

the Google Nexus 5, which has similar characteristics as the developed BSU.

When referring to low-cost IMU it implies different things for researchers, since for

some a thousand euros IMU is considered low-cost. However, for PINS a low-cost IMU
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should cost no more than one hundred euros. This price restriction limits the use

of MEMS sensors that are truly low-cost, at a price rounding e 10 or less in current or

future mass production. The developed unit has been designed and assembled in order

to meet this requirement and has an estimated cost, for the hardware, of approximately

e 50.

The resulting BSU is light, with a weight of about 95 grams without the batteries.

The prototype uses 4 AA size batteries. However, in a final version more lightweight

and small batteries could be used. In terms of the form factor it has the following

dimensions 90mm x 65mm x 20mm for length, width and height, respectively. The

prototype unit with this dimensions and weight is easy to carry on a belt or on the

person’s leg. The hardware can achieve a maximum sampling data rate of 100 Hz, but

it was decreased to 20 Hz, which is sufficient to include the frequencies in the signals

induced by the user walk. Also, it is important to decrease the amount of data, and

therefore the necessary computing processing power to handle that data [8].

Since in this work, mobile devices are used to exchange information with other

sources [6] and to handle some calculations that can take some time to process, all the

algorithms need to be optimized to run in this type of devices [7]. That is why some

pre-processing to the data is done in the BSUs.

Every time the system is used the user must be standstill for five seconds, in order

to the algorithms calculate and correct the sensors offset and bias. Then, this offset is

removed from each new measurement obtained by the sensors.

In the future it is wanted to integrate these sensors into person’s clothes and shoes,

to make the system more imperceptible to the user.



5
S T E P D E T E C T I O N

As stated in Chapter 2 a PINS algorithm is divided in three phases, where the first one

is the step detection. This is the most important phase, because if the system is not able

to properly detect a step then all the displacement estimations will be faulty, since a

pedestrian moves through the swing of the legs.

In this chapter are presented three techniques to detect a step with the highest possi-

ble accuracy. The first is the typical algorithm that uses only the accelerometer data to

detect a step. The second uses the angular velocity given by the gyroscope to detect a

step. Finally, the third one is our proposal that combines an accelerometer with a force

sensor to detect more accurately a step.

5.1 accelerometer based algorithm

Step detection is the automatic determination of the moments in time at which foot-

steps occur. The most used technique, to detect these moments, is based on the foot

accelerometer measurements associated with one of the following algorithms: peak

detection, zero crossing detection and flat zone detection.

The peak detection is based on a threshold applied to the minimum and maximum

values of the acceleration magnitude, in order to identify a step. However, it has low

accuracy because sometimes the accelerometer gives erroneous measurements, there-

fore false steps are normally detected by this algorithm. Zero crossing detection suffers

from the same problems has the previous algorithm, since the accelerometer has a very

unstable signal and varies a lot between positive and negative measurements. Finally,

the detection of flat zones in the accelerometer signal has very low accuracy in a high

velocity walking, since in these conditions the flat zones are not noticeable.

Figure 48 presents the algorithm implemented to detect the steps given by a pedes-

trian, which is only based on the accelerometer data as a typical PINS.

For each new measurement given by the accelerometer, it is calculated the accelera-

tion magnitude, then 3th order low-pass filter is applied.

97
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Figure 48: Step count algorithm using only the accelerometer

The obtained acceleration is then compared to the previous higher acceleration value.

If the acceleration is higher than this value it will be verified if a step was previously

detected for this period, if not the “In Step” variable will be assigned as “true”.

If the detected acceleration is lower than the maximum value and if a possible step

is not being detected (“In a Step?” condition) the algorithm ends and waits for another

measurement. If the algorithm is detecting a possible step the maximum measurements

variable, that has as default value 20, which was the value defined as the period, in

average, in which a step takes to be made, is decremented. When this value assumes

a value of 0 the algorithm identifies that the step must be ended. During this period

the maximum and minimum acceleration values are stored to be used in the next

condition.

If the algorithm is detecting a possible step (“Possible Step” condition) it is verified

if the maximum acceleration value minus the current acceleration value is higher than

the threshold. If true, a new step is counted and the variables are initialized. If false,

the algorithm ends. The threshold was defined as 1,7 m/s2.
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This algorithm uses the maximum minus the current acceleration values because the

maximum peak of acceleration appears at the beginning of a step and the minimum

peak of acceleration appears at the end of the step.

Figure 49 shows the foot acceleration signal (dashed line) for a ten step walk, where

the acceleration values detected for each step, by the algorithm, are identified by a

solid line. In this figure can be verified that there are some accelerations peaks that

almost exceed the threshold value and can be detected as a false positive step. This

phenomenon can be observed, for example, between the fourth and fifth step, where

the difference between the minimum and maximum acceleration value is 1.5 m/s2,

which is very close to the defined threshold. Also, it can be visualized the flat spots

that occur at the end of each step. However, from the ninth to the tenth step this zone

is almost non-existent, making the step hard to identify when using the flat zones

detection technique.

The waist accelerometer was not used to detect a step since it provides to many

acceleration erroneous measurements. This mainly happens because of some strange

moves that the pedestrian’s waist can take. In Figure 50 can be seen the data sensed

by the accelerometer on the waist. In this representation four steps were taken by a

Figure 49: Foot accelerometer signal for a ten steps walking
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Figure 50: Waist accelerometer signal for a four steps walking

pedestrian. However, using a threshold algorithm more steps, than the four that were

really performed, could be detected.

For these reasons the usage of the waist accelerometer was left behind on the step

detection algorithm implementation.

5.2 accelerometer and force sensor based algorithm

To improve the step detection, force sensors were included in the pedestrian’s foot.

Using these sensors the step detection can be improved, since they provide accurate

information about the moments when the foot touches or leaves the ground and the

respective contact force. This information can be also useful to detect, more accurately,

the type of activity that the pedestrian is performing (e.g. running, walking fast).

If the user is in a stationary state, both force sensors must measure the weight that is

in contact with them, meaning that the force will be different of zero. The implemented

algorithm combines the information from the force sensors with the accelerometer

measurements to achieve more useful information about the step in order to eliminate

false detections of swing phases when the foot is stationary.

The positioning of the force sensors, shown in Figure 36, is important to provide

information about the beginning of a step until its end. The sensor A is placed in a
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position where the first contact with the ground occurs and the sensor B gives infor-

mation about the last contact of the foot with the ground and from this point the foot

is in the air until the force sensor A measures a force applied to it.

The aim of this algorithm is to have the smallest counting step error possible, using

low computational power as much as possible, since it must detect the steps in real-

time. This step count algorithm is presented in Figure 51.

For each iteration the acceleration is projected from the inertial frame to the naviga-

tion frame to obtain the acceleration sensed on the x-axis. Then it is filtered via a 3th

order low-pass filter, and the data from the two force sensors is merged. In this stage
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Figure 51: Step count algorithm using the accelerometer and force sensors
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the combined force will be different of zero when a force is applied to the heel until no

force is applied on the front of the foot (i.e. when any part of the foot is in contact with

the ground). When the combined force is different of zero the acceleration is defined

to a predefined value of 0, because in these periods the foot is on the floor and is not

moving, so there is no displacement to estimate.

If the combined force is zero, the current acceleration value will be compared to the

maximum acceleration sensed in this step. If it is higher, then the algorithm will mark

it as a possible step. If the acceleration is lower, it will be verified if it is lower than

the minimum acceleration sensed in this step. With this process the maximum and

minimum accelerations measurements sensed in a step will be saved. It is during this

phase that ZUPT and ZARU algorithms can be applied.

When the combined force is different of zero, meaning that the foot is in the stance

phase, it is verified, in the “Can be a Step?” condition, if a step was previously detected,

and it is also verified if the difference between the minimum and maximum accelera-

tions measurements sensed in the step are higher than a threshold. If both conditions

are true then the step counter is incremented.

If false the variables are initialized. The threshold value was defined as 1, which

is lower than in the previous algorithm. A lower value was chosen because the force

sensors were valuable to improve the step detection and the acceleration threshold is

only a second validation, to identify if it was a step and not only a lift of the foot, where

a forward (or backward) movement were not performed. Thus, the number of steps is

equal to the number of times that the combined force is zero and the acceleration is

above the threshold.

This sensor fusion enables the implementation of an algorithm that does not detect

false stance phases when the foot is already in the swing phase and permits a compu-

tationally lighter algorithm.

In Figure 52 is shown the accelerometer and force sensors data for the same test

presented in Section 5.1. This test involved a straight walking path with ten steps. The

solid line represents the acceleration sensed in the x-axis, only when the force sensors

measurements are equal to zero. As referred earlier when the force is different of zero

the accelerometer measurements were forced to assume the values of 0. The dotted line

represents the data from force sensor A and the dashed line represents the data from

force sensor B.

Through this analysis it is possible to notice that the pattern for each step is repeated

along the walk and the data from the force sensors take distinct values when the foot is
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Figure 52: Force sensors and accelerometer x-axis data for a ten steps walking path

stationary and when the foot is in motion. As can be seen the values of force are zero,

or almost zero, when the foot is moving (when there is higher variations in acceleration

values), and when the foot touches the ground, sensor A goes first to a high value and

then sensor B goes to a high value, as expected.

5.3 gyroscope based algorithm

Using the accelerometer on the waist to perform step detection is very complex and

has to many errors, as seen on Section 5.1. However, another sensor can be used to

detect a step using the waist BSU.

While a human is walking, the entire lower segment, consisting of the pelvis, femur,

tibia and fibula, performs a rotation through the transverse plane1. In this case it is

interesting to analyse the pelvic rotation. A representation of this rotation can be seen

in Figure 53.

1 Transverse plane, which can be also called the horizontal plane, is an imaginary plane that divides the
body into superior and inferior parts.
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Figure 53: Pelvic rotation: a) pelvic standstill; b) pelvic rotation during a left step; c) pelvic
rotation during a right step;

In a normal walking the pelvis rotates alternatively to right and to left in relation to

the line of progression in a transverse plane about the vertical axis. During a normal

walking path, on a flat surface, the average magnitude of this rotation is approximately

four degrees on either side of the central axis. Giving a total rotation of eight degrees.

The degree of rotation is higher as the step is longer [121].

This rotation can be measured using the gyroscope included in the waist BSU. Thus,

an algorithm to count the steps through the analysis of these rotations was developed.

Because of the waist BSU placement (recalling Figure 28) the algorithm input is the

gyroscope x-axis measurements. Also, according to this placement, a negative rotation

occurs when a right step is given and a positive rotation happens when a left step is

given.

As represented in Figure 54 for each gyroscope measurement the algorithm starts by

subtracting the gyroscope offset. Then a 3th order low-pass filter is applied. The next

step verifies if the measurement can indicate a possible step, referred in the figure as

“Possible Step”. This verification is performed by comparing the measurement with a

threshold. The threshold value was defined at 0.11 rad/s, since it is the average value

that the pelvic rotates during a walk [121].

If the algorithm detects a possible step, the peak value of the signal is obtained.

Typically, this peak value is an interval of 50 measurements after passing the threshold

value. Thus, when this value is obtained or until the gyroscope measurements changes

the signal value, from positive to negative or negative to positive according to the step

performed. When this step signal is obtained it is calculated the probability of it being

a true step or not.
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Figure 54: Step count algorithm using gyroscope data

The probability is calculated based on the following information (features) about the

signal wave: amplitude, length and two ∆t. These features are represented in Figure

55.

The minimum values that each parameter must have to achieve a 100% of probability

are: 0.20 rad/s for amplitude; 90 measurements for signal length; for the first delta

which is considered at 15 measurements after the peak value is 0.05 rad/s; and for the

second delta which is considered at 25 measurements after the peak value and must

have at least a difference of 0.10 rad/s. If one or all the parameters are below these

values a probability, based on Equation 27, is calculated based on these default values.

These deltas were chosen because it is on these moments that higher differences are

denoted, to distinguish between a step or an erroneous measurement.

P(S) = (P(A) ∗ 0.25) + (P(L) ∗ 0.10) + (P(D1) ∗ 0.40) + (P(D2) ∗ 0.25) (27)
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Figure 55: Parameters used to classify the gyroscope signal

where P(S) represents the probability of the signal to be a step based on the sum

between, the probability of the signal amplitude P(A) with a weight of 1/4, the proba-

bility of the signal length P(L) with a weight of 1/10, the probability of the first delta

P(D1) with a weight of 2/5 and the probability of the second delta P(D2) with a weight

of 1/4.

These weights were distributed according to the importance that each parameter

has in order to declared a signal as a true step. If this probability is higher than 75%

then the signal is considered as a step and the step count incremented. This value

was chosen since if the probability is lower than that value, it is most likely to be an

erroneous value and not a step. From all the collected datasets, a step, has in average,

a probability higher than 85%.

In Figure 56 is shown the gyroscope data for the same test presented in Section 5.1.

This test involved a straight walking path with ten steps. The solid line represents the

gyroscope x-axis signal. The dashed circles represent the detected right steps and the

solid line circles represents the detected left steps.

5.4 evaluation

To compare the three implemented algorithms, two different case study scenarios were

created, which are represented in Figure 57. The first one, represented as an “A” in the

figure, is a straight walk with a distance of 20 meters, which gives an average of 40
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Figure 56: Gyroscope’s x-axis data for a ten steps walking path

steps, in a normal walking pace. The second one, represented as a “B” in the figure,

is a walking path with two curves in the middle with a total walking distance of 25

meters, which gives an average of 50 steps, in a normal walking pace.

The two BSU where placed in the pedestrian’s body in all the tests. Thus, the same

data was used to test each algorithm.

B

B

A A

Figure 57: Evaluation Scenarios A and B: A) is a straight walking path; B) is a straight walking
with two curves in the middle of the path
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Each scenario was performed using three different types of walking: slow, normal

and fast. For each type of walking ten tests were performed, which gave a total of 1200

steps for the first scenario and 1400 steps for the second scenario.

The results presented in Table 20 and Table 21 were obtained for the two scenarios,

covered in the three types of walking and performed by two pedestrians. The data was

firstly collected in the real scenarios and then each algorithm was executed with the

same datasets. Both tables show the error percentage on step counting obtained for

each algorithm.

In Table 20 are presented the results for the first scenario. The Accelerometer and

Force sensor approach had the best results in all the walking paces. The results, for this

approach, were very similar for each type of walking. The walking pace that has more

errors is the fastest one, because it is the most stressful for the system. This type of

walking has the hardest step types to be detected by the force sensors, since the force

is mainly in the front of the foot and sometimes it is not directly made in the sensor

location, thus some steps are not detected accurately.

Table 20: Step count algorithms results for the first scenario (A)

Algorithm Slow Walking Normal Walking Fast Walking

Accelerometer 0.2% 0.1% 1.6%

Accelerometer and Force 0.0% 0.1% 0.4%

Gyroscope 1.4% 2.6% 4.0%

Comparing the Accelerometer and Force sensor approach with the Accelerometer ap-

proach the biggest different is obtained when walking fast. The Accelerometer approach,

in fast walking, presents too many false positive steps. The other types of walking

present minimal differences and these errors tend to be reduced over time, since the

hardest steps to detect are in starts/stops and sharp curves. However, the inclusion

of the force sensors enables the implementation of a more precise and a more stable

system in a long term use, where different types of walking can be achieved.

The Gyroscope approach is the one that presents a higher error percentage. For all

the walking paces the main problem is always the false positive steps that are detected.

This mainly happens because the waist sometimes has unpredicted movements which

are not reproduced on the foot movements. Specially in a fast walk the pelvis rotations

tend to be more expressive and random, meaning that too much noise exist in the

signal.
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Table 21 shows the results for the second scenario. Besides the two curves at the

middle of the walking path, the results follow the same pattern and are very similar

for the Accelerometer and the Accelerometer and Force sensor approaches. The Gyroscope

approach has increased the step count errors. The main problem of this approach is

that the curves are heavily sensed by the gyroscope, which can be detected as more

than one step, giving too much false positive steps.

Table 21: Step count algorithms results for the second scenario (B)

Algorithm Slow Walking Normal Walking Fast Walking

Accelerometer 0.2% 0.2% 1.8%

Accelerometer and Force 0.0% 0.2% 0.5%

Gyroscope 2.2% 3.5% 5.6%

Another problem of the Accelerometer approach, apart from the lower accuracy when

compared to the Accelerometer and Force sensor approach, is that it is computationally

heavier [115]. Which can result in a significant delay when compared to the second

approach. Resuming, the Accelerometer and Force sensor approach is computationally

lighter. Its disadvantage is that it depends on more sensors. However, this inconvenient

is surpassed by the superior accuracy and lower delays to computationally detect a

step.

A more evident advantage of the Accelerometer and Force sensor approach is in stress-

ful situations like in fast walking, which continues to have a good accuracy when

compared to the other approaches. Also, the results have shown that the Accelerometer

and Force sensor approach is equal or better in a long term use.

Concluding, the good results obtained in step detection can led to promising results

in the displacement estimation. Every time a step is detected, ZUPT and ZARU tech-

niques can be applied which helps mitigate the drift problem that normally exists on

PINS. Integration of the inertial measurements only during the swing of legs is impor-

tant to reduce the displacement errors [9].





6
S T E P C H A R A C T E R I Z AT I O N

In typical PINS implementations, after detecting a step, the displacement is estimated.

However, in PLASYS, after the step detection a step characterization or classification

is performed. This characterization is important to eliminate some of the erroneous

measurements given by the inertial sensors. This is a very important phase, because it

is here that the learning algorithms are applied to correct those errors.

Having a proper step model, it can be provided a more accurate displacement es-

timation, since some errors can be suppressed using this model. For example, the

accelerometer does not capture perfectly the accelerations, meaning that the integra-

tion of the acceleration produces several errors. However, it contains the information

needed to correctly classify a step by using its patterns.

This step characterization or classification includes: (i) the type of terrain (i.e. normal,

descending or ascending stairs) where the pedestrian is walking; (ii) the direction (i.e.

forward or backward); (iii) and the size (i.e. short, normal or long).

For each type of classification several algorithms/techniques were implemented and

evaluated in order to identify which one provides the most accurate results. The imple-

mented algorithms are based on some heuristics, DTW methods and machine learning

algorithms, as Neural Networks and SVM. The results are presented for each BSU with-

out fusing their information, and with their information fused, which are represented

with the name of the approach combined with the word “Fusion” (e.g. Heuristic Fu-

sion, Neural Network Fusion and SVM Fusion).

Combining the two sources of data, waist BSU and foot BSU, the quality of the data is

improved, since the probability that two sources of data give erroneous measurements

patterns at the same time is much reduced. The fusion between all the sensors infor-

mation improves the number of accurate classifications. Thus, this integration leads to

a better characterization of the step.

The implemented algorithms perform some treatment to the obtained signals, before

applying the machine learning techniques. Because, giving to a classifier a complete

signal can be very heavy and confusing to the machine learning algorithm identify the

patterns of the signal and therefore estimate the correct label for that pattern. Usually,

111
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features are extracted from the signal to increase the overall performance of the learn-

ing system. Meaning that it generally reduces the dimensionality of a problem domain

for the purposes of improving the performance of machine learning algorithms and to

decrease the computational load.

Thus, each learning algorithm will use the raw signals, which are first pre-processed

to remove some of the noise, to extract some features from the signals, then classify

it and finally will reasoning about the obtained data. This process comprises several

stages, data acquisition, signal pre-processing, feature extraction and selection, train-

ing and classification. The process is described in Figure 58 where the features Fi are

passed to a model with n parameters that estimates the characterization classes Yi with

a confidence Pi.

The learning algorithms were implemented based on supervised learning, which

learns to estimate an output based on a given input. This type of learning needs a lot

of experiments in order to have a proper understanding of the problem. The output of

these algorithms is a class label. The walking characteristics are learned from a set of

exercises previously elaborated by the pedestrian.

To identify the advantages of the learning approaches, other approaches were imple-

mented: (i) Heuristics and (ii) DTW.

The Heuristics approaches were implemented to simulate the typical PINS approaches

that retrieve some features from the sensors signals which are then compared with

some thresholds. After this comparison some rules are applied in order to perform the

distinction between each type of step. The thresholds were chosen based on the average

values, which were obtained from all the datasets collected during this research work.

The DTW approaches compares the signals obtained from the sensors with a dataset

of similar signals, which are labelled with the respective class. The class that has the

lowest distance to the obtained signal is the one that is selected by the algorithm.
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Figure 58: Learning algorithms process chain to classify a step according to the sensors data
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This approach is similar to learning algorithms, since it gives a result based on past

experiences. However, this approach is slower and does not generalizes as well as the

learning algorithms.

Finally, for each type of characterization an evaluation evolving all the implemented

algorithms is performed. To perform the evaluations the data was first collected and

then post processed using Matlab to obtain the results, meaning that the same dataset

was used to test each algorithm. These simulations were performed on a low perfor-

mance computer, in order to have similar results as nowadays high-end mobile device

[6], a Pentium 4 2.8Ghz with 1GB of RAM memory.

6.1 terrain type class

The first characterization that is performed, is about the type of terrain where a step

was given. There are three possibilities: (i) in a normal (flat) terrain; (ii) or in ascend-

ing; (iii) or descending stairs. The type of terrain was classified with the specified ap-

proaches, where the learning algorithms are presented in Section 6.1.1 and the Heuris-

tic, Heuristic Fusion and DTW approaches are presented in Section 6.1.2. The algorithms

evaluation is presented in Section 6.1.3.

For the type of terrain characterization it was used the data from three sensors: (i)

foot accelerometer (y-axis); (ii) foot gyroscope (z-axis); (iii) and waist accelerometer (x-

axis). In Figures 59, 60 and 61 are represented the signals obtained from these sensors

for each class.

Figure 59: Foot accelerometer (y-axis) data for each step terrain characterization: a) Acceleration
signal pattern in a flat surface; b) Acceleration signal pattern when ascending stairs;
c) Acceleration signal pattern when descending stairs
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Figure 60: Foot gyroscope (z-axis) data for each step terrain characterization: a) Gyroscope sig-
nal pattern in a flat surface; b) Gyroscope signal pattern when ascending stairs; c)
Gyroscope signal pattern when descending stairs

Figure 61: Waist accelerometer (x-axis) data for each step terrain characterization: a) Accelera-
tion signal pattern in a flat surface; b) Acceleration signal pattern when ascending
stairs; c) Acceleration signal pattern when descending stairs

The y-axis of the foot accelerometer gives a good indication about the foot elevation,

which is essential to distinguish between ascending or descending stairs, since the

forces are the opposite. However, from the several tests performed it was noticed that

the main distinction that can be made using this sensor data is between ascending stairs

and the other types of terrain. Visualizing Figure 59b it can be seen that on ascending

stairs terrain the acceleration achieves higher values than in the other two cases. This

happen because when ascending a stair the foot has to perform a higher elevation

than in the other cases. Regarding the other two types of terrain, descending stairs and

normal, the data obtained from this sensor is very similar, the main difference is at the

end of the step that, in the case of descending stairs, a higher acceleration is sensed

since the foot touches the ground with a higher force than in the normal terrain type.
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The z-axis of the foot gyroscope provides information about the foot rotation in each

type of terrain. Comparing the different signals presented in Figure 60, the foot rota-

tion is much more noticeable in the ascending and descending stairs terrains. When

ascending stairs it has an upward rotation peak and then a downward rotation peak,

and it is the opposite when descending stairs. The data from this sensor is very impor-

tant to make the distinction between these two terrains. Regarding the normal terrain,

the pattern is similar to the descending stairs. However, the sensed rotation is much

softer. Nonetheless this sensor provides a good accuracy on making the distinction

between the three types of terrain.

Finally, the x-axis of the waist accelerometer provides similar data as the foot ac-

celerometer. In ascending stairs a higher acceleration is sensed, in both positive and

negative scales. When descending stairs this acceleration is much lower than in the

other two types of terrain. The acceleration sensed in the normal terrain is within the

other two. It provides similar data to distinguish between a flat surface and descending

stairs. However, when ascending stairs it provides distinguishable data.

Considering the data provided from these signals it can be established that, combin-

ing their data, they are suitable to be used to differentiate each possible characterization

terrain. Since the strengths of each signal can be combined to achieve a final consensus.

6.1.1 Learning Algorithms

Each learning algorithm was tested with several different inputs. In this characteri-

zation each learning algorithm had the best results with two distinct inputs for each

other. The inputs used on each learning algorithm will be presented, separately, when

presenting it.

The learning algorithms were trained with a total of 970 samples, 358 samples of as-

cending stairs steps, 358 samples of descending stairs steps and 254 samples of normal

terrain steps. To validate the algorithms a total of 170 samples were used (62 ascending,

62 descending and 46 normal). To test the algorithms a total of 540 samples were used

(180 ascending, 260 descending and 100 normal), and a 10-fold cross-validation using

these datasets was also performed.
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6.1.1.1 SVM

The SVM algorithm has achieved the best results using as input a set of features re-

trieved from each sensor signal. From the foot accelerometer are used 6 features: (i)

minimum acceleration value; (ii) maximum acceleration value; (iii) difference between

the instant moments on which each of the acceleration, minimum and maximum, peak

values occur; (iv) difference between the maximum and minimum acceleration peak

values; (v) sum of all the negative acceleration measurements; (vi) and the sum of all

the positive acceleration measurements.

From the foot gyroscope are used 5 features: (i) minimum rotation value; (ii) max-

imum rotation value; (iii) difference between the instant moments on which each of

the gyroscope, minimum and maximum, peak values occur; (iv) sum of the positive

rotations; and (v) sum of the negative rotations.

From the waist accelerometer are used 6 features: (i) maximum acceleration value; (ii)

instant moment where the minimum acceleration measurement occurs; (iii) instant mo-

ment where the maximum acceleration measurement occurs; (iv) difference between

the instant moments on which each of the accelerometer, minimum and maximum,

peak values occur; (v) sum of all the negative acceleration measurements; (vi) and the

sum of all the positive acceleration measurements.

It gives a total of 17 features that are fed into the SVM algorithm. These features are

important since they provide a good indication about the signal pattern. The design of

the implemented SVM approach can be seen in Figure 62.

Since in this characterization there are three possible classes (i.e. normal, ascending

or descending stairs), and the SVM models can only classify two at each time, three

SVM models (SVM Model 1, SVM Model 2 and SVM Model 3) were created. From the

realized tests it was verified that the best results were achieved using on each model a

“polynomial” kernel, configured as a 3th order polynomial.

The models were trained with the same data, but with different class labels vectors.

In this case there are three vectors. The first vector, which is used by the SVM Model 1,

indicates that the ascending stairs steps belongs to the positive class and the others to

the negative. The second vector, which is used by the SVM Model 2, indicates that the

descending stairs steps are the positive entries and the other the negatives. The third

vector, which is used by the SVM Model 3, indicates that the normal terrain steps are

the positive classifications and the others the negative. Meaning that each classifier has

as positive class, ascending stairs, descending stairs and normal terrain, respectively.
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Figure 62: SVM architecture for step terrain characterization

The score of the new observations are then estimated using each classifier. This will

create a vector with three scores, one per each classifier. The index of the element with

the highest score is the index of the class to which the new observation most likely

belong. For example, if the first index has the highest value, then the step is classified

as ascending stairs. Thus each new observation is associated with the classifier that

gives to it the maximum score.

After the learning phase, a 10-fold cross validation to the model was performed. The

SVM Model 1 presented no error, the SVM Model 2 presented an error of 0.8% and the

SVM Model 3 presented an error of 2.6%.

6.1.1.2 Neural Network

For the neural network algorithm the best results were obtained using 72 inputs (24

inputs per each sensor). Each sensor signal is divided into 6 equal parts, and for each

one of these parts the maximum, minimum and mean values were obtained, as well as,

the slope. The slope was calculated based on the first and the last measurement of each

part. This data gives a total of 24 inputs per each sensor that are fed into the learning

algorithm.

The same features that were used as input of the SVM (Section 6.1.1.1) were tested as

input of the implemented neural network. However, from the several tests performed,
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these features (72 inputs) were the ones that gave the best results on classifying the

type of terrain were the step was given.

The division of the signal was made because giving to a classifier a complete signal

can be very heavy and confusing to the algorithm to identify the patterns of the signal

and therefore estimate the correct label for that pattern. Thus, it is reduced the dimen-

sionality of the problem domain for the purposes of improving the performance of the

algorithms and to decrease the computational load.

It was decided to divide the signal in 6 parts, because, during a step, each sensor

signal is typically composed by 30 measurements. Thus, in order to have an average

of 5 measurements per iteration the signal was divided into 6 equal parts. More parts

will divide the signal too much, and less parts will pass insufficient information to the

learning algorithm. Thus, the 6 was the number of parts that represented better each

one of the signals.

In Figure 63 is represented the design of the implemented neural network that clas-

sifies the type of terrain. The neural network receives as input (j) the 72 features pre-

viously presented. This input is passed to the Hidden Layer, which is composed by 144

neurons. Then, the Output Layer returns the final result about the type of terrain where

the step was given.

The neural network parameters namely, the number of neurons in the hidden layer,

the learning rate and the number of iterations, were tuned by trial and error. The

learning rate was defined as 0.01 and the number of iterations as 36.
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Figure 63: Neural Network architecture for step terrain characterization
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The mean squared error of the best validation performance was 7.97× 10−7 with a

gradient of 9.80× 10−7 at epoch 36.

The error histogram can be seen in Figure 64. From this figure it can be concluded

that the error given by the neural network is very low, where more than 98% of the re-

sults are very close to zero error. The highest error for an instance, during the network

training, was of 1.50× 10−5.

6.1.2 Other Approaches

After the implementation of the learning approaches, a Heuristic (Section 6.1.2.1) and

a DTW approach (Section 6.1.2.2) were implemented. Regarding the Heuristic it was

also implemented one that fuses the data from the two BSU, which will be referred as

Heuristic Fusion (Section 6.1.2.3).

6.1.2.1 Heuristic

The Heuristic algorithm starts by extracting some features from each one of the sensors

used to perform this characterization. Then the algorithm uses these features to classify

Figure 64: Neural Network training error histogram for step terrain characterization



120 step characterization

the step as a normal terrain or stairs (first part). If a step is classified as stairs the

algorithm then distinguishes it between being ascending or descending (second part).

The classification is made based on some rules that are applied to each one of the

extracted features. The result, which is also the class (C1 for normal terrain and C2

for stairs, and C3 for ascending stairs and C4 for descending stairs)), of each rule is

multiplied with a weight. These weights were given based on the importance that each

feature has to make the distinction between each class. The sum of all the results of

the features gives the class at which the step belongs. For example, 1 (C1) represents a

normal terrain and 2 (C2) a stairs terrain.

The features that were extracted from each sensor are presented in the form of a

table, composed by 6 columns:

• Number - identification number for the feature;

• Parameter - feature that was extracted from the sensor signal;

• Condition - condition that is applied to the feature. Different thresholds are ap-

plied in order to make the distinction between each class;

• Class - class that will be returned by the feature, based on the result of the condi-

tion;

• Weight - weight applied to the result of the feature;

• Note - some notes about what the feature represents and the influence that it has

to in making the distinction between each class;

The features extracted from the foot BSU Accelerometer are presented in Table 22,

from the foot BSU Gyroscope are presented in Table 23 and, finally, from the waist BSU

are presented in Table 24.

For the first part, which makes the distinction between normal and stairs terrain, are

used the first three features from the foot BSU accelerometer and gyroscope, and the

waist BSU accelerometer. Although features are presented sequentially, only the weights

of the foot BSU accelerometer and foot BSU gyroscope complement each other, in other

words, the sum of the weights of the features of these two sensors is normalized to give

the value of 1. The features extracted from both sensors, of the foot BSU, will represent

the final result for the foot BSU. The sum of the waist accelerometer weights is 1, since

from the waist BSU it is only used the data from one sensor. Remembering that this

algorithm does not perform any fusion of information between the two BSU.

For the second part of the Heuristic algorithm, that makes the distinction between

ascending or descending stairs, are used the 4th, 5th, 6th, 7th and 8th feature of the
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foot BSU accelerometer. From the foot BSU gyroscope it is used the 4th, 5th and 6th

feature, and from the waist BSU accelerometer it is used the 4th, 5th and 6th feature.

Table 22: Features extracted from the foot BSU accelerometer to perform the terrain characteri-
zation

# Parameter Condition Class Weight Note

1

Minimum
acceleration value

< −5 C1
0.20

Acceleration is lower
when descending stairs
and higher in the other
two cases

> −5 C2

2

Difference between
min and max peak
values

6 3 C1
0.20

In normal terrain the
positive and negative
peak values are more
similar than in stairs

> 3 C2

3

Difference between
min and max peak
values moments

6 10 C1
0.20

In ascending stairs and
normal terrain these
moments are closer, than
in descending stairs

> 10 C2

4

Maximum
acceleration value

> 7 C3
0.10

y-axis acceleration is
higher when ascending
stairs, since foot goes to a
upward location

6 7 C4

5

Difference between
min and max peak
values moments

6 9 C3
0.05

Points are closer when
ascending stairs

> 9 C4

6

Sum of all negative
acceleration
measurements

> 20 C3
0.20

Lower acceleration
(negative) is sensed when
ascending stairs.6 20 C4

7

Sum of all positive
acceleration
measurements

> 25 C3
0.25

Higher acceleration
(positive) is sensed when
ascending stairs.6 25 C4

8

Difference between
max and min
acceleration values

> 10 C3
0.05

The difference is higher
when ascending stairs

6 10 C4

After the extraction of the features, the rules of each feature were applied. The result,

which is also the class (C3 for ascending stairs and C4 for descending stairs) of each

rule is multiplied with the corresponded weight. The sum of all the values gives the

class at which the step belongs, where 3 represents ascending stairs and 4 descending

stairs. The same conditions about the sum of the weights are applied as in the first part

of the algorithm.

After extracting the features and applying the rules, a class is obtained from each

one of the rules. Each class represents a number, where C1 represents the number 1,
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Table 23: Features extracted from the foot BSU gyroscope to perform the terrain characteriza-
tion

# Parameter Condition Class Weight Note

1

Minimum rotation
value

< −10 C1
0.20

In normal terrain
negative rotation is
similar to the positive> −10 C2

2

Difference between
the min and max
peak values
moments

< 14 C1
0.10

When descending stairs
the difference between
both points is higher than
in the other two cases

> 14 C2

3

Comparison
between the sum of
the positive (pos),
and the sum of the
negative rotations
(neg)

pos > neg C1
0.10

In ascending stairs the
positive rotation is higher
than in the other two
cases, since the foot goes
to a higher surface than
the original.

pos < neg C2

4

Maximum rotation
value

> 6 C3
0.15

In ascending stairs
positive rotation is higher
than when descending
stairs, since the foot is
going upwards

6 6 C4

5

Comparison
between the min.
rotation value (min)
and the max
rotation (max) value

|max|
>|min|

C3
0.05

In ascending stairs the
positive rotation is higher
than the negative. In
descending stairs it is the
opposite.

|max| 6
|min|

C4

6

Sum of all positive
rotation
measurements

> 35 C3
0.15

The positive rotation is
higher when ascending
stairs6 35 C4

and so on. Then, for each BSU is made the sum of all the class values multiplied with

the respective weight, as represented in Equation 28.

R =

n∑
i=1

class×weight (28)

where R is result of the equation which will be the class, n is the number of features

extracted for the BSU, class is the “Resulting Class” value and weight is the weight of

each feature.

As example it can be considered the values presented in Table 25. For each extracted

feature it contains the value obtained in a step. Also, it presents the Resulting class
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Table 24: Features extracted from the waist BSU accelerometer to perform the terrain character-
ization

# Parameter Condition Class Weight Note

1

Difference between
the min and max
peak values instant
moments

> 20 C1
0.40

On stairs peaks are very
close to each other since
a higher force is applied
to move the body
upward or downward

6 20 C2

2

Minimum
acceleration instant
moment

6 15 C1
0.30

On stairs it occurs later
than in the normal
terrain>15 C2

3

Comparison
between the sum of
all positive (pos)
and the sum of all
negative
measurements (neg)

pos > neg C1
0.30

In descending stairs exist
more negative than
positive accelerations. In
ascending stairs it is the
opposite, and in normal
terrain they are similar

pos <neg C2

4

Maximum
acceleration
measurement
instant moment

> 20 C3
0.35

In ascending stairs the
negative acceleration
peak value comes first
than the positive, in
descending stairs it is the
opposite

<20 C4

5

Maximum
acceleration value

> 0.7 C3
0.30

A higher acceleration
value is obtained when
ascending stairs6 0.7 C4

6

Comparison
between the sum of
positive (pos) and
the sum of negative
measurements (neg)

pos >neg C3
0.35

In ascending stairs
positive acceleration is
higher than when
descending stairspos 6 neg C4

which is the result given by the rules of each feature. It is also presented the weight

that will be applied to each resulting class.

Applying Equation 28 to the data, of the foot BSU, presented in Table 25 it is obtained

the data presented in Equation 29.

R = (C1 ∗ 0.20) + (C1 ∗ 0.20) + (C1 ∗ 0.20) + (C2 ∗ 0.20) + (C1 ∗ 0.10) + (C1 ∗ 0.10)

= (1 ∗ 0.20) + (1 ∗ 0.20) + (1 ∗ 0.20) + (2 ∗ 0.20) + (1 ∗ 0.10) + (1 ∗ 0.10)

= 1.20

(29)
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Table 25: Example of obtained values, during a step, for each feature and the resulting class
after applying the specified rules

Sensor Feature Value Weight
Resulting

class

Foot accelerometer 1 -6 0.20 C1

2 3 0.20 C1

3 12 0.20 C1

Foot gyroscope 1 -10 0.20 C2

2 10 0.10 C1

3 15 > 14 0.10 C1

Waist accelerometer 1 20 0.40 C2

2 20 0.30 C2

3 20 > 15 0.30 C1

Rounding the result (R) as an integer it is obtained the value of 1. Thus, the data ob-

tained from the two sensors of the foot BSU is compatible with a step of “C1”, meaning

that it is a normal terrain.

Making the same reasoning to the waist BSU, it is obtained the data presented in

Equation 30. Since the result of this equation is rounded as a integer, it represents that

the resulting class is “C2”, meaning that the step was taken in a stairs terrain.

R = (C2 ∗ 0.40) + (C2 ∗ 0.30) + (C1 ∗ 0.30)

= (2 ∗ 0.40) + (2 ∗ 0.30) + (1 ∗ 0.30)

= 1.70

(30)

For this example each BSU gave a different result for the same step. One way to

improve this result is to fuse the data of the two BSUs, in order to achieve a consensus

about the step.

6.1.2.2 DTW

An implementation based on the DTW algorithm was used to classify the type of terrain.

This implementation works as follows, when a step is detected, the foot accelerome-

ter and gyroscope, and the waist accelerometer signals, are compared, using the DTW

algorithm, to a dataset of signals previously obtained for that person.
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The dataset, for each sensor, was composed by the data of 108 steps. The dataset can

be decomposed into three subsets (one per each terrain type), which were composed by

36 signals each. Since the sensors have an identical pattern through time, this amount

of data proved to be sufficient to achieve good results. From the realized tests, less data

gives worst results, and more data does not affect the accuracy of this algorithm.

When a step is detected it is calculated the distance between the signal of the de-

tected step with each signal of each subset of signals for a specific type of terrain. The

subset that has the lowest mean distance is the one that is closer to the detected step.

Thus, the class that the subset represents is returned.

6.1.2.3 Heuristic Fusion

The two BSUs placed in the person’s body enables the combination of the information

in order to minimize the complexity of the algorithms and maximize the accuracy and

robustness of the navigation solution.

Typically there are three types of fusion: data fusion, feature fusion and decision

fusion. The implemented algorithm uses a feature fusion, where each source of data

(waist BSU and foot BSU) was combined to achieve a final consensus about the step

terrain characterization. In this method the rules, presented in the Heuristic algorithm

and applied to both BSU, were combined. Thus, new weights were used since now it

will be used the data of both BSU. The new weights are presented in Table 26.

6.1.3 Evaluation

The implemented algorithms that characterize the type of terrain where a step was

given, were evaluated using a dataset of 800 steps performed by two pedestrians (400

steps for each pedestrian).

The test scenario is the “D” path represented in Figure 91, which involves a complex

path with a set of straight walks and a set of stairs. The set of stairs was ascended

two times and descend one time. Meaning that the pedestrian ascended the stairs,

then descend it and finally ascended it again. A total of 200 steps, each time, were

performed in this scenario which gives a total walking distance of 70 meters. Two runs

in this scenario, for each pedestrian, were performed.

The results obtained for this scenario can be seen in Table 27. This table presents

for each algorithm, the categorization accuracy (in percentage) and the execution time
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Table 26: Heuristic fusion weights applied to each feature retrieved from the foot accelerometer
and gyroscope, and waist accelerometer for step terrain characterization

Sensor Feature Weight

Foot accelerometer 1 0.125

2 0.15

3 0.125

4 0.05

5 0.05

6 0.15

7 0.20

8 0.05

Foot gyroscope 1 0.10

2 0.05

3 0.05

4 0.11

5 0.03

6 0.11

Waist accelerometer 1 0.15

2 0.125

3 0.125

4 0.09

5 0.07

6 0.09

(in milliseconds). For all the algorithms are presented the results obtained, in separate

for each BSU and for the combination of the data of both BSU. This permits to identify

which one of the BSU have better accuracy in each characterization type.

Considering the obtained results it can be concluded that the ascending stairs class

is the easiest to classify. All the algorithms, except the DTW approach, presented the

best results when classifying this class. The normal terrain class is sometimes confused

with the descending stairs class, so it is with this misclassification that most errors

occur.

Regarding the BSUs, the foot BSU gives more accurate data, since the foot is closer

to the ground. The waist BSU can give a good indication about the vertical movement

of the body. However, it obtains similar data when descending stairs and in normal

terrain. Thus, it presents worst results in these classifications.
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Table 27: Accuracy results for the developed algorithms that characterize the step terrain

Method
Ascending Descending Normal

Execution
timeWaist

BSU
Foot
BSU

Waist
BSU

Foot
BSU

Waist
BSU

Foot
BSU

Heuristic 98% 95% 97% 97% 87% 89% 3 ms

DTW 59% 93% 98% 100% 69% 87% 400 ms

SVM 97.5% 99.4% 94.2% 99.4% 85.1% 94.9% 1 ms

Neural
Network

98.3% 100% 94.1% 100% 87.2% 94.9% 1 ms

Heuristic
Fusion

99% 97% 91% 10 ms

SVM
Fusion

99.4% 99.5% 96.2% 2 ms

Neural
Network
Fusion

100% 100% 98.7% 2 ms

Interpreting the results obtained for each algorithm using each BSU in separate, the

Heuristic approach achieves similar results as the learning algorithms, which presented

the best results. The DTW approach revealed to have inferior results when compared to

the others. This happens because the signals are pretty much similar, varying only the

intensity of the peaks. Also, it is the one that takes longer to run.

Analysing the results obtained for each algorithm when considering the fusion of

both BSU, the learning algorithms presented the best results. The best of the two was

the Neural Network, achieving a mean accuracy of 99.4%, having 100% of accuracy on

predicting the ascending and descending stairs classes. The Heuristic Fusion approach

had better results than the single Heuristic approach, but it was worse than the learning

algorithms. Also, it highly depends on thresholds, which can be different for each

different pedestrian (i.e. the maximum acceleration threshold can be different for two

pedestrians with different physical characteristics).

Analysing the obtained results, it can be concluded that through the sensors com-

plementarity the type of terrain was categorized with higher accuracy. Also, it can be

concluded that the learning of the gait parameters enables a better characterization of

a step. From our tests it was identified that a learned dataset 5 times smaller, than

the used one, is sufficient to achieve similar results. Making the learning procedure

simpler and faster to a pedestrian perform before using PLASYS.
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Concluding, the evaluation results show that both BSU give similar results on detect-

ing each type of terrain, but with their integration better results can be achieved.

6.2 step direction class

The second characterization performed to a step is about the direction that it can take.

There are two possibilities, a forward step, which is the most natural to perform to a hu-

man, or a backward step. The learning algorithms that performs this characterization

are presented in Section 6.2.1 and the other implemented approaches are presented in

Section 6.2.2.

In Figure 65 is represented an acceleration signal obtained by the foot accelerome-

ter, for a forward (Figure 65a) and a backward (Figure 65b) step. For each direction

is represented a simulated acceleration signal, which is the acceleration expected to

happen when a forward or backward step is given. As can be seen the accelerometer

does not capture the accelerations in a perfect form, but it contains the information

needed (acceleration pattern) to be used to infer the step direction.

Although the pattern of the acceleration can be used to classify a step, sometimes

the accelerometer produce a signal that does not follow any pattern, which seems to

be useless to correctly classify a step. In Figure 66 is represented an acceleration signal,

Figure 65: Foot accelerometer (x-axis) data for each step direction characterization: a) Accelera-
tion signal pattern for a forward step; b) Acceleration signal pattern for a backward
step
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Figure 66: Erroneous accelerometer signal obtained during a forward step

for a forward step, that does not follow any pattern. This acceleration signal cannot be

used to correctly classify a step.

6.2.1 Learning Algorithms

During this research, by analysing the datasets collected from all the walks, it was

verified that step direction can be characterized by combining the data obtained from

two sensors placed in different BSU, the foot accelerometer and the waist gyroscope. In

the case of the accelerometer, the one placed in the pedestrian’s foot gives better results

than the one on the waist. However, in the case of the gyroscope, the best results can

be achieved with the one placed on the waist, since it give us the pelvic rotation, which

combined with the accelerometer data is important to determine the direction of a step.

To classify the step direction 25 features where extracted from the sensors measure-

ments, where 24 are obtained from the accelerometer data and 1 from the gyroscope

data. To extract the features from the accelerometer signal, it was divided into 6 equal

parts. For each one of these parts the maximum, minimum and mean values were ob-

tained, then it was calculated the slope. The slope was calculated based on the first

and last measurement of each part. This gives a total of 24 inputs that are fed into the

learning algorithm. The explanation for this division is the same as the one presented

in Section 6.1.1.2.
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The other input is obtained from the gyroscope signal, which represents the motion

of the waist. If the pelvic as a positive rotation, then the value 1 is assigned to the

input, if it is a negative rotation the value 0 is assigned to the input. For example, for a

forward left step the rotation will be positive and for a backward left step the rotation

will be negative, for the right foot it is the opposite.

To train the learning algorithms the following number of samples were used: 450

samples (190 forward and 260 backward) for training, 100 samples for validation (40

forward and 60 backward) and 100 samples (50 forward and 50 backward) for testing.

A 10-fold cross-validation using these datasets was also performed.

6.2.1.1 SVM

The design of the implemented SVM approach can be seen in Figure 67. It receives as

input the 25 features previously presented. This input is passed to the Hidden Nodes

that estimate the best separating hyperplane between the two classes, which maximizes

the margin between the two classes. This division is performed using a “linear” kernel.

Then, the Output Layer returns the final result about the step direction. A degree of con-

fidence for the two possible results is given by this algorithm, which will be important

to the next phase of the PINS.

The score of the algorithm during the cross-validation was 100% for both classes,

forward or backward.

6.2.1.2 Neural Network

The design of the implemented neural network can be seen in Figure 68. The neural

network receives as input (j) the 25 features previously presented. This input is passed
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Figure 67: SVM architecture for step direction characterization
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to the Hidden Layer, which is composed by 10 neurons. Then, the Output Layer returns

the final result about the step direction.

The neural network parameters namely the number of the neurons in the hidden

layer, the learning rate and the number of iterations, were tuned by trial and error. The

learning rate was defined as 0.01 and the number of iterations was defined as 31.

The mean squared error of the best validation performance is 2.08× 10−8 with a

gradient of 9.58 × 10−7 at epoch 35. The error histogram can be seen in Figure 69.

From this figure it can be seen that the error is very low when training the network,

but even lower when validating and testing the established neural network. Also, more

than 90% of the results are very close to zero error. The highest error for an instance,

during the network training, was of 0.15.

6.2.2 Other Approaches

As in the previous characterization (Section 6.1), to evaluate the performance of the

learning algorithm, it was implemented a Heuristic (Section 6.2.2.1), a DTW approach

(Section 6.2.2.2) and a Heuristic Fusion (Section 6.2.2.3) approach.

6.2.2.1 Heuristic

Typically a PINS detects a step by using the accelerometer data and by analysing the

forward and upward accelerations during the walking path. But, this sensor signal can

also be used to obtain some characteristics to characterize the walking.

To classify the direction of the step, in both BSU, Equation 31 is used.
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Figure 69: Neural Network training error histogram for step direction characterization

n
2∑
i=1

acci >

n∑
i=n

2

acci (31)

where n represents the number of acceleration measurements detected in a step, acc

is the acceleration values sensed on the x-axis, in the case of the foot accelerometer, and

on the z-axis, in the case of the waist accelerometer.

This formula sums the accelerations of the first half of the signal and compares it

with the sum of the accelerations of the second half. If the first is positive or higher

than the second it is a forward step, if not it is a backward step.

6.2.2.2 DTW

This implementation is similar to the DTW approach presented in Section 6.1.2.2. In

the tests a dataset, for each accelerometer, of 24 (12 forward and 12 backward) signals

previously stored and categorized was used. Since the acceleration has an identical

pattern through time, this amount of data proved to be sufficient to achieve good

results.

In Figure 70a are shown two signals for a forward step, one is one of the stored foot

acceleration signals and the other is an acceleration signal for a step that is not on the
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Figure 70: Acceleration signals comparison: a) original acceleration signals; b) warped acceler-
ation signals

stored dataset. In Figure 70b are shown the two signals warped, according to what

the DTW algorithm performs. This example gave a distance of 139 with a total of 25

samples. For example, if one of the signals was for a forward step and the other to a

backward step the distance will be more than 400 with a total of 40 samples.

6.2.2.3 Heuristic Fusion

This algorithm is based on decision fusion, where for each source of data, foot ac-

celerometer and waist accelerometer, it is calculated the probability of the predicted re-

sult. This probability (stepprobability) is calculated, according to Equation 32, which

is based on the fact that a positive acceleration (acc) must be followed by a negative

acceleration of the same magnitude (in a forward step), or vice-versa (in a backward

step). The value 100 represents the maximum probability, at which will be subtracted

the second part of the equation. The value 20 is a penalty factor that is applied to the

difference in the acceleration values. The higher this difference is, the worse will be the

probability. The stepprobability is then normalized in order to give a value between

0 and 1.

stepprobability = 100− (abs((max(acc) +min(acc)))× 20) (32)

If the acceleration signal does not follow this pattern then a low probability is given

to it. For the acceleration signal example shown in Figure 65, the probability that it is
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a characterizable step is 100% and for the example shown in Figure 66 the probability

is only 20%.

Since each source of data has its degree of accuracy, after calculating this probability

different weights are given to each source of data. The foot BSU has a weight of 0.6,

since it is the most reliable source of data, and the waist BSU has a weight of 0.4.

6.2.3 Evaluation

The step direction characterization algorithms were evaluated using a dataset of 240

steps performed by two pedestrians (120 steps for each pedestrian).

The test scenario is the “B” path represented in Figure 57, which involves a straight

walk with two curves, in the middle of the path, one to the left and the other to the

right. A total of 60 steps (40 forward and 20 backward), each time, were performed

in this scenario which gives a total walking distance of 30 meters. Two runs in this

scenario, for each pedestrian, were performed.

The results obtained for this scenario can be seen in Table 28. This table presents for

each algorithm, the categorization accuracy (in percentage) and the execution time (in

milliseconds). For all the algorithms are presented the results obtained, in separate for

each BSU and for the combination of the data of both BSU.

Table 28: Accuracy results for the developed algorithms that characterize the step direction

Method
Forward Backward Execution

timeWaist BSU Foot BSU Waist BSU Foot BSU

Heuristic 82.1% 97.4% 74.4% 94.9% 1 ms

DTW 84.6% 100% 79.5% 97.4% 100 ms

SVM 98.6% 100% 96.7% 100% 1 ms

Neural
Network

99.4% 100% 95.5% 100% 1 ms

Heuristic
Fusion

100% 98% 2 ms

SVM
Fusion

100% 100% 1 ms

Neural
Network
Fusion

100% 100% 1 ms
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From the obtained results, it can be concluded that the data obtained from the foot

BSU sensors is better, than the data obtained from the waist BSU sensors, to perform this

characterization. This mainly happens because when the user is moving the foot is a

more stable platform than the waist. A lot of unwanted accelerations are sensed by the

waist, which leads to a poor characterization of the step, but there are some features

that can be retrieved to help other sources to properly characterize the step.

Regarding the step direction characterization the backward one is more difficult to

classify than the forward one. Mainly because for a human a forward step is a more

natural movement to perform than a backward one.

Comparing DTW approach with all the other approaches, it can be seen that the DTW

has a low error rate, but it has a longer execution time. In order to maintain a lower

execution time and an accuracy similar to the DTW approach, the information of both

BSUs was fused. Through the sensors complementarity the step was categorized with

similar accuracy, but with an execution time 50 times smaller. This is an important help

in order to improve the pedestrian displacement estimation. Using BSUs in different

locations on pedestrian body, waist and foot, was also important to have these results.

The step direction is a simple characterization to be performed to a step, so the

results were the expected. The learning algorithms proved to have the best results with

an accuracy of 100%. After the learning phase, the execution time is very fast.

For this characterization it was not detected any difference in behaviour between the

two learning algorithms.

6.3 step length class

The third, and final, characterization performed to a step is about the length class.

There are three possibilities, a short, a normal or a long step. These intervals must be

defined from a set of exercises for a pedestrian in specific. Based on the collected data,

and on the average of the collected steps, it was considered that short steps are the

ones with a maximum distance of 30cm, the normal steps size ranges between 30cm

and 45cm, and the long steps have a size longer than 45cm.

As in the other classifications, the learning algorithms are presented in Section 6.3.1

and the other implemented approaches are presented in Section 6.3.2.

In Figures 71, 72 and 73 are represented the signals obtained from the sensors, for

each class, that will be used to perform this characterization. The sensors are: the
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foot accelerometer (Figure 71) and force sensors (Figure 72), and the waist gyroscope

(Figure 73).

The x-axis of the foot accelerometer measures the acceleration that is sensed in the

horizontal movement of the foot. The quantification of this acceleration is important,

because it is correlated with the displacement performed. As can be seen in Figure 71

as the duration and the peak of the acceleration is higher, the longer is the step.

The force sensor data gives a good indication about the amount of time that the foot

is not in contact with the ground and, about the force intensity that is made when

touching the ground, as well as, when lifting the foot from the ground. Analysing Fig-

ure 72 it can be seen that a higher force indicates that probably the step will be longer.

The amount of time that the foot is in the air, can be correlated with the acceleration. A

Figure 71: Foot accelerometer (x-axis) data for each step length characterization: a) Acceleration
signal pattern for a short step; b) Acceleration signal pattern for a normal step; c)
Acceleration signal pattern for a long step

Figure 72: Force sensor data for each step length characterization: a) Force signal pattern for
a short step; b) Force signal pattern for a normal step; c) Force signal pattern for a
long step
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Figure 73: Waist gyroscope data (x-axis) for each step length characterization: a) Gyroscope
signal pattern for a short step; b) Gyroscope signal pattern for a normal step; c)
Gyroscope signal pattern for a long step

high acceleration value combined with a long duration of the foot in the air, indicates

that a longer step was made.

The x-axis of the gyroscope data gives reliable information about the rotation that

was performed by the pelvic, where, as can be seen in Figure 73, a higher rotation

corresponds to a longer step. However, in corners this rotation can be higher for the

same type of step. Thus, the combination of this data with the data given by the foot

BSU sensors is important to achieve better results. Many errors can occur by using the

gyroscope data by itself.

After visualizing each signal it can be established that this data is suitable to be used

in order to differentiate each possible characterization class.

6.3.1 Learning Algorithms

The implemented learning algorithms have as input the foot force sensor and ac-

celerometer data, and the waist gyroscope data. A total of 29 features are fed into

the learning algorithms to classify the step length, where 24 are retrieved from the foot

accelerometer, 3 from the foot force sensor and 2 from the waist gyroscope.

The foot accelerometer signal was divided into 6 equal parts, as shown in the previ-

ous implemented neural networks. This gives a total of 24 inputs that are fed into the

learning algorithm. The explanation for this division is the same as the one presented

in Section 6.1.1.2.
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The next 3 features are obtained from the force sensor signal. The first one is the

number of measurements that exist until the maximum force value occur (foot touches

the ground). A stronger impact means that the step was longer. The other feature is

the force applied when the foot lifts up from the ground. This gives information about

the impulse that was performed in the leg in order to do some horizontal movement.

Typically, when the impulse is higher the step is longer. The last feature retrieved from

the force sensor is the number of measurements with value of zero, which corresponds

to the amount of time that the foot is in the air.

From the gyroscope signal two features are extracted. The first one is the amplitude

of the signal, which is correlated to the size of a step. Typically, a higher rotation means

that the step is longer. The second feature is the length of the signal, which correlated

with the amplitude, gives important information about the size of the step.

From the several tests performed, these features were the ones that had the best

results in classifying the possible length of a step.

The learning algorithms were trained with a total of 855 samples, 435 samples of a

short step, 225 samples of a normal step and 195 samples of a long step. To validate the

algorithms a total of 171 samples were used (87 short, 45 normal and 39 long). To test

the algorithms a total of 114 samples were used (58 short, 30 normal and 26 long). As

in the other characterizations a 10-fold cross-validation using these datasets was also

performed.

6.3.1.1 SVM

The design of the implemented SVM approach can be seen in Figure 74. This approach

receives as input the 29 features previously presented.

In this characterization three SVM models (SVM Model 1, SVM Model 2 and SVM Model

3) were created. After some testing, it was verified that the best results were achieved

with the following configuration for each model:

• SVM Model 1 was configured to classify the short steps using a “rbf” (radial

basis function or Gaussian) kernel configured with an automatic scale;

• SVM Model 2 was configured to classify the normal steps with a “polynomial”

kernel, configured as a 2nd order polynomial;

• SVM Model 3 was configured to classify the long steps using a “linear” kernel.

The models were trained with the same data, but with different class labels vectors.

In this case there are three vectors. The first vector, which is used by the SVM Model 1,
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Figure 74: SVM architecture for step length characterization

indicates that the short steps belongs to the positive class and the others to the negative.

The second vector, which is used by the SVM Model 2, indicates that the normal steps

are the positive entries and the others the negatives. The third vector, which is used by

the SVM Model 3, indicates that the long steps are the positive classifications and the

others the negatives. Meaning that each classifier has as positive class: short, normal

and long, respectively.

The score of the new observations are then estimated using each classifier. This will

create a vector with three scores, one per each classifier. The index of the element

with the highest score is the index of the class to which the new observation most

likely belong. For example, if the first index has the highest value, then the step is

characterized as short. Thus, each new observation is associated with the classifier that

gives to it the maximum score.

After the learning phase, a 10-fold cross validation to the model was performed. The

SVM Model 1 had no error, the SVM Model 2 presented an error of 7% and the SVM

Model 3 presented an error of 0.8%.

6.3.1.2 Neural Network

The implemented neural network to classify the step length is shown in Figure 75. The

neural network receives as input (j) the 29 features previously presented. This input is

passed to the Hidden Layer, which is composed by 60 neurons. Then, the Output Layer

returns the final result about the step length.
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As in the other characterizations the learning rate was defined as 0.01, and the num-

ber of iterations as 25.

The mean squared error of the best validation performance was 7.55× 10−5 with a

gradient of 4.59× 10−4 at epoch 25.

The error histogram can be seen in Figure 76. From this figure it can be concluded

that the error given by the neural network is low, where more than 95% of the results

are very close to zero error. The highest error for an instance, during the network

training, was of 0.20.

Figure 76: Neural Network training error histogram for step length characterization
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6.3.2 Other Approaches

For the last implemented characterization made to a step, the Heuristic approach is pre-

sented in Section 6.3.2.1 and the Heuristic Fusion in Section 6.3.2.3. The DTW approach

is presented in Section 6.3.2.2.

6.3.2.1 Heuristic

Unlike direction characterization, in the step length characterization more than one

sensor, in the foot BSU, are used to generate a consensus about the final result. In this

heuristic approach, for the foot BSU it was used the accelerometer and the force sensor

data, and for the waist BSU was only used the gyroscope data, which gives information

about the pelvic rotation. This rotation is important to estimate the step length, since a

longer step has a wider rotation.

To perform this characterization it were extracted four features from the foot force

sensor, three features from the foot accelerometer and three features from the waist

gyroscope, which are presented in Tables 29, 30 and 31 respectively.

Table 29: Features extracted from the foot BSU force sensor to perform the length characteriza-
tion

# Parameter Condition Class Weight Note

1

Number of
measurements
with value of zero
(number_of_zeros)

< 17 C1

0.10

Corresponds to the total
time that the foot is not
in contact with the
ground

> 17 & < 21 C2

> 21 C3

2

Number of
measurements
until max force
when foot touches
the ground

> 7 C1

0.07

Information about the
intensity of the force that
was applied when the
foot touches the ground

< 7 & > 4 C2

< 4 C3

3

Average force
values at 4th

measurement after
and before the max
value when the
foot touches the
ground

< 85 C1
0.10

It is used to verify if it is
a short, or a
normal/long step

> 85 C2.5

4

Force value at the
2nd measurement
after the last zero
force

< 90 C1
0.10

It is used to verify if it is
a short, or a
normal/long step> 90 C2.5
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Table 30: Features extracted from the foot BSU accelerometer to perform the length characteri-
zation

# Parameter Condition Class Weight Note

1

Difference between
the max and min
acceleration peak
values (acc_diff )

6 6.5 C1

0.05

As the difference is
higher, the longer is the
step

> 6.5 & 6 9 C2

> 9 C3

2

Difference between
the min and max
peak values
moments

6 9 C1

0.50

As the difference is
higher, the longer is the
step

> 9 & < 12 C2

> 12 C3

3

Metric which is the
result of the
multiplication of
the acc_diff with
the number_of_zeros

< 135 C1

0.08

As the metric is higher,
the longer is the step> 135 & < 190 C2

> 190 C3

After the extraction of these features the rules specified in each feature are applied.

The result, which is also the class (C1 for a short, C2 for a normal and C3 for a long),

of each rule is multiplied by the corresponding weight. The sum of all the results gives

the class at which the step belongs, where 1 represents a short, 2 a normal and 3 a long

step. The rules that have as result the value C2.5, means that there are not a pattern

that clearly distinguishes a step between normal and long classes, so an intermediate

value is returned.

Although features are presented sequentially only the weights of the force and ac-

celerometer complement each other, in other words, the sum of the weights of the

features of these two sensors is 1. This represents the final result for the foot BSU. The

sum of the gyroscope weights is also 1, because it represents the final result for the

waist BSU. Recalling that this algorithm does not perform any fusion of information

between the two BSU.

After extracting the features and applying the correspondent rules a class is obtained

for each feature. Then it is multiplied with the correspondent weight in order to give

the class in which the step belongs.

6.3.2.2 DTW

As in the other classifications, the DTW based algorithm uses a previously stored

dataset to characterize the step according to its length. In the tests, a dataset, for each

sensor, of 90 (30 for each characterization type) signals previously stored and catego-

rized was used.
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Table 31: Features extracted from the waist BSU gyroscope to perform the length characteriza-
tion

# Parameter Condition Class Weight Note

1 Signal amplitude
6 0.45 C1

0.40

Quantifies the pelvic
rotation, where a higher
rotation corresponds to a
longer step

> 0.45 & 6 0.6 C2

> 0.60 C3

2

Difference
between the
number of
measurements of
the left part (left)
and the right part
(right) of the
signal

left > right C1
0.30

The left part are the
measurements from the
beginning of the signal
until the max peak value.
The right part are the
measurements from the
max peak value until the
end of the signal

left 6 right C2.5

3

Number of
measurements
that exist in the
left part of the
signal

6 75 C1

0.30

The lower is this number
the shorter is the step, as
can be seen in Figure 73

> 75 & 6 110 C2

> 110 C3

When a step is detected it is calculated the distance between the signal of the de-

tected step with each signal of each subset of signals for a specific length class. The

subset that has the lowest mean distance is the one that is closer to the detected step.

Thus, this algorithms returns the class of that subset.

6.3.2.3 Heuristic Fusion

Similarly to the algorithm presented in Section 6.1.2.3, this algorithm uses a feature

fusion, where each source of data was combined to achieve a final consensus about

the step length characterization. In this method the rules, applied to both BSU and

presented in the previous method, were combined, and new weights were used. These

weights are presented in Table 32.

6.3.3 Evaluation

The step length characterization algorithms were evaluated using a dataset of 300 steps

performed by two pedestrians (150 steps for each pedestrian).
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Table 32: Heuristic fusion weights applied to each feature retrieved from the foot accelerometer
and force sensor, and waist gyroscope for step length characterization

Sensor Feature Weight

Force 1 0.03

2 0.02

3 0.03

4 0.03

Accelerometer 1 0.02

2 0.30

3 0.02

Gyroscope 1 0.25

2 0.15

3 0.15

The test scenario is the “B” path represented in Figure 57, which involves a straight

walk with two curves, in the middle of the path, one to the left and the other to the

right. A total of 40 steps, each time, were performed in this scenario which gives a

total walking distance of 25 meters. Four runs in this scenario, for each pedestrian,

were performed. The obtained results can be seen in Table 33.

Table 33: Accuracy results for the developed algorithms that characterize the step length

Method
Short Normal Long

Execution
timeWaist

BSU
Foot
BSU

Waist
BSU

Foot
BSU

Waist
BSU

Foot
BSU

Heuristic 94% 94% 63% 91% 87% 72% 5 ms

DTW 94% 100% 74% 50% 71% 97% 300 ms

SVM 98.4% 96.1% 80.3% 81.9% 92.6% 90.7% 3 ms

Neural
Network

100% 100% 86.7% 83.3% 96.2% 100% 2 ms

Heuristic
Fusion

96% 91% 90% 8 ms

SVM
Fusion

100% 86.0% 98.1% 3 ms

Neural
Network
Fusion

100% 90.0% 96.2% 3 ms
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Considering the obtained results, it can be concluded that for a short step both BSU

present similar results. For this classification the learning algorithms have the best

results, with an accuracy of 100%, but the difference is not hugely evident.

In the case of a long step, there is not an evident difference between BSUs, since in

some algorithms the waist BSU gives the best results and in the other it is the foot BSU

that has better results. Regarding the learning algorithms, when considering the data

from each BSU the Neural Network has the best results. However, when combining the

data from both BSU, the SVM has the best performance.

The normal step is the most difficult to classify. The main reason for this phe-

nomenon is because it sits between the other two classes. For this classification the

combination of both BSU gives better results than using the data from each BSU sepa-

rately. The Neural Network had the best results for the learning algorithms, but the

best result was obtained by the Heuristic Fusion. Nonetheless, none of the misclassi-

fications given by the algorithms was to the opposite class, meaning that a short step

was never classified as a long step and vice-versa.

Analysing the obtained results, it can be concluded that through the sensors com-

plementarity the step length was categorized with higher accuracy. Also, it can be

concluded that the learning of the gait parameters enables a better characterization of

a step. The Neural Network gave the best results, having a mean accuracy very close

to 96%.

From our tests it was identified that a learned dataset 10 times smaller is sufficient to

achieve similar results. Making the learning procedure simpler and faster to a pedes-

trian perform before using this system.

The tests and the evaluation results, show that both BSU give similar results on de-

tecting short steps, but in the case of normal steps the foot BSU has a higher accuracy.

However, the long steps are better detected by the waist BSU.

Combining the data from both BSU, the weaknesses of one are suppressed by the

advantages of the other, thus improving the overall results.

6.4 summary

From previous experiences step length estimation based only on an accelerometer has

low accuracy [116]. Thus, a characterization of each step was performed. With this

characterization the localization algorithm has more accurate knowledge about the
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type of step that was given, namely in which type of terrain, the direction and its

possible length. It is more accurate because it is based on the learned gait characteristics

and on the fusion of data, where the measurements of a group of sensors can surpass

some erroneous measurements of one sensor [11].

The type of terrain classification is essential to distinguish the terrain where the step

was performed. The types of terrain, normal and stairs, are the most common when

indoors [13]. After the type of terrain, the direction of the step is detected. Finally,

a range for the length of the step is obtained. The possible ranges are short, normal

and long steps. With this classification the displacement estimation can be limited

according to the bounds of each category. Thus, the localization algorithm can limit

the error growth of the PINS, since the errors for a type of step are different to the other,

meaning that different estimation algorithms can be used for each state. Making this

system suitable to be used by humans in their daily life [9].

Since the kinematics of a walking or a running human are usually described within

the context of a step. The human gait is highly repeatable and the step offers a discrete

segmentation of a human trajectory. In this chapter was clarified that learning algo-

rithms, based on a previous set of exercises made by a pedestrian, are suitable to be

used to perform step characterization with a better accuracy than heuristic and other

approaches.

The step characterization presented satisfactory results when using learning algo-

rithms, namely the Neural Network approach. Also, the combination of the informa-

tion gathered from the two BSU, which are distributed through the human body, was

important to achieve better results, since one BSU can complement the other in the

different activities that a pedestrian can perform. The implemented neural networks

presented better results than the implemented SVMs. Mainly because they tend to gen-

eralize more. Thus, smaller differences in the inputs, from what was learned in the

learning phase, are better classified by this algorithm.

For each characterization type were extracted, from a set of sensors, several features

instead of using all the sensors signal data. This task is important because the exploita-

tion of a huge volume of data requires reliable methods of data reduction to support

the understanding and the extraction of useful patterns to be used by the classification

algorithms that label the datasets. The sensors were chosen based on their importance

to made each characterization. For example, the x-axis of the waist accelerometer is not

important to detect the walking direction. However, it is very important to detect the

type of terrain, in order to quantify the vertical acceleration that is made on ascending

or descending stairs.



6.4 summary 147

Using only one feature per sensor demonstrated that too many erroneous charac-

terization errors occurred, thus more than one feature per sensor was retrieved. Then

these features were used to label the step according to the characterization classes.

The characterization that presented the best results was the direction of the step.

The step direction is the easiest to classify because the sensors data are very different

for each one of the possible classes [12]. The characterization that presented the worst

results was the length. For this characterization the bounds for each one of the classes

are very close, so misclassifications can easily occur [12].

The learning algorithms, when compared to the heuristic approaches, can maintain

a similar performance when used by different pedestrians [79]. Which is not possible

to be achieved by the Heuristic approach, since it is based on some thresholds. These

thresholds are typically correlated to one pedestrian, or group of pedestrians. If the

physical characteristics of the pedestrians are too different, new thresholds need to be

defined, which is not necessary in the case of the learning algorithms. It only needs to

learn the gait characteristics of each pedestrian.

Regarding the algorithms execution performance, the DTW approach is always the

one that takes longer to execute. As presented in Section 2.4.1 this algorithm has a

quadratic time and space complexity. However, the results are better than the Heuris-

tic approach, but worst than the information fusion algorithms. Despite its accuracy,

the execution time is too high to be used on mobile devices, since their performance

capabilities are still low [8].





7
L O C A L I Z AT I O N

In this chapter are described the algorithms developed to estimate the displacement of

a pedestrian. This chapter is divided into three parts. In the first part, Section 7.1, is

presented the algorithm that estimates the orientation of the pedestrian.

The second part, Section 7.2, describes the implemented algorithms that estimate

the displacement. To perform this estimation, the orientation algorithm needs to be

combined with an algorithm that estimates the distance walked by the pedestrian. The

distance estimation is performed by two algorithms, one estimates the walking distance

only based on the sensors of the foot BSU, and the other uses the combination of the

two BSU with the implemented learning algorithms.

Finally, an evaluation of the developed system is performed, where this PhD work

is compared with the traditional PINS approaches.

7.1 orientation estimation

The pedestrian orientation is estimated using the information about the sensed mag-

netic strength of the north pole. However, as seen from the state of the art (Chapter 2)

the magnetometer is too sensible to magnetic disturbances. These disturbances leads

to a poor direction estimation.

A combination of sensors is the best way to achieve an accurate orientation estima-

tion. Typically the accelerometer, magnetometer and gyroscope sensors are used to

perform this estimation. As previously stated, each sensor has its strengths and weak-

nesses, thus a best result is achieved by fusing their data.

The implemented orientation algorithm is represented in Figure 77. It starts by ob-

taining the orientation angles, which are extracted by combining the magnetometer

and accelerometer data. The accelerometer provides a three-dimensional vector con-

taining the acceleration for each axis. With the vector constantly pointing to the center

of the Earth gravity, the pitch and roll angles can be determined. To determine the yaw

angle, the magnetic component, provided by the magnetometer, is used.

149
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Figure 77: Orientation algorithm overview

Since both, accelerometer and magnetometer, are fixed on the BSU, their measure-

ments change according to the orientation of the BSU. Thus, as the sensors are aligned

with the inertial frame their data must be transformed into the navigation frame.

Equations 33 and 34 are used to transform the magnetometer measurements into the

navigation frame. The compass heading is then computed from the arctangent of the

ratio of the two horizontal magnetic field components, as presented in Equation 35.

Mx = mx cosβ+my sinβ sinα+mz sinβ cosα (33)

My = mycosα+mzsinα (34)
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γ = atan2(
Mx

My
) (35)

wheremx,my andmz correspond to the intensity of the magnetic field on the sensor

frame’s x-axis, y-axis and z-axis respectively, Mx and My correspond to the intensity of

the magnetic field on the x-axis and on the y-axis, but in the navigation frame, and α,

β and γ correspond to the roll, pitch and yaw angles respectively.

From the obtained results, which are presented in Section 7.3.1, the walking direction

is best estimated using the BSU placed on the waist rather than on the foot. Thus, the

implemented orientation algorithm runs on the waist BSU.

The walking direction, in this case the azimuth, is obtained from the yaw angle and

is defined in rad that ranges from 0 rad to 2π rad and is measured based on the

magnetic north. As can be seen in Figure 78 this is the angle that gives information

about the direction of the pedestrian.

Although the accelerometer and magnetometer sensors can provide orientation data

that does not derive (drift) over time, they contain too much noise. The gyroscopes

produce rotational speeds with low noise. However, small errors derived from the

integration of the data accumulated over time, can give inaccurate orientation data.

To estimate the walking direction using these three sensors one of the best ap-

proaches is to use a complementary filter. This type of filter allows the combination

of two sources of data with different frequency bands to form more accurate values

in the time domain. There are several advantages in using this method, as the low

implementation complexity and the quality of the obtained results.

Figure 78: Waist BSU with the corresponding roll, pitch and yaw angles
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This type of filter operates in the frequency domain and may be defined by using

two or more functions that complement each other. In this system, the accelerometer

combined with the magnetometer (θma) provide information of high frequency noise,

which is filtered through a low-pass filter. The result of the integration of gyroscope

data (θg) produces low-frequency noise, which is filtered through a high-pass filter.

Since these filters are mathematically complementary, then the result of the comple-

mentary filter (θ) is the complete reconstruction of each variable of interest without

the noise. The implemented filter is defined in Equation 36.

θ = (1−φ)θg + (φ)θma (36)

where φ is the filter coefficient applied to each part, where a higher coefficient gives

a higher importance to one of the parts. The coefficient must be higher than zero and

lower than 1 (0 < φ < 1). In this algorithm the coefficient (φ) was defined as 0.92.

Since the data sample was defined to 20Hz, then the sampling period (∆T ) is 0.05

seconds. So, the time constant of the complementary filter is 0.58 seconds, which is the

result of Equation 37.

t =
φ∆T

1−φ
(37)

where t is the relative duration of the signal on which the filter will operate.

The angle that is obtained from the orientation algorithm is then compared to a

threshold. If the resulting angle is inferior to the threshold any change on the orienta-

tion is considered. The threshold was defined as 0.035 rad. As referred in Section 5.3

during a normal walk, on a flat surface, the average magnitude of the pelvis rotation

is of 0.070 rad. Therefore the threshold was defined as half this value, thus the error

that the algorithm can produce is negligible. Also, the best results were achieved with

this threshold.

The complementary filter can be considered as a simple filter that attributes a weight

to the combination of the magnetometer and accelerometer data, and to the gyroscope

data. When the motion is faster than the 0.58 second time period, the gyroscope integra-

tion for angular displacement calculation (θg) is more weighted and the magnetometer

and accelerometer combination noise is filtered out. When the motion is slower than

the 0.58 second time period, the magnetometer and accelerometer tilt measurement

(θma) has a higher weight than the gyroscope (θg), to reduce the gyroscope drift im-

pact.
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By merging the data obtained from the magnetometer and accelerometer with the

data from the gyroscope, the filter produces a smoother and a more accurate orienta-

tion estimation, which is important to achieve the main objectives of this work. Also, it

is not sensitive to the linear horizontal acceleration and gyroscope drift.

To verify the responsiveness and performance of the algorithm two experiments

were conducted. The first one was performed to identify the algorithm offset when

the device is stationary. This test had a duration of 60 seconds and the obtained signal

can be seen in Figure 79. Some performance metrics can be visualized in Table 34.

It includes the minimum and maximum obtained values, and the mean and standard

deviation obtained during the test. The standard deviation of the algorithm is very low,

which indicates that it produces stable data. Also, the difference between minimum

and maximum values is way lower than the defined threshold.

Table 34: Orientation algorithm statistics, in rad, with the device stationary for 60 seconds

Parameter Orientation Algorithm

Minimum 0.9340

Maximum 0.9359

Mean 0.9350

Standard Deviation 0.00003

The second experiment involved four rotations of about π2 rad each. The obtained

data can be seen in Figure 80. For this test the algorithm gave, for each rotation, the

results presented in Table 35. The obtained results are very satisfactory, since the es-

timated rotations were similar to the ones made manually by hand. The sum of all

rotations gave a total of 6.28 rad (2π rad). Also, the values obtained at the start and at

the end of the test are very similar.

Figure 79: Orientation algorithm data with the device stationary for 60 seconds
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Figure 80: Orientation algorithm output for four π2 rad rotations

Table 35: Orientation algorithm results for four π2 rad rotations

Rotation Radians

1st 1.58
2nd 1.70
3th 1.63
4th 1.37

Total 6.28

This filter, when compared to a Kalman approach, is faster to process. This respon-

siveness is important when mobile devices are being used to handle these calculations.

7.2 displacement estimation

This section describes the algorithms developed to estimate the displacement taken by

a pedestrian through the usage of the developed BSUs. These approaches estimate the

distance based on an algorithm that is not dependent on a specific user. Meaning that

these approaches do not estimate displacement based on the step count and on a fixed

distance value for each performed step.

As seen in the state of the art (Chapter 3) PINS are typically based on DR algorithms

that estimates displacement based on walking distance and azimuth information. To

estimate distance, the most common approach is based on using a double mathematical



7.2 displacement estimation 155

integration of the accelerometer data. This integration is based on the equations of

motion. However, this approach, because of the walking dynamics and the sensors

configuration, has too many errors. This approach will be referred throughout the

document as M1 and it only relies on the data from two sensors, accelerometer and

gyroscope.

One of the objectives of this work was to improve the accuracy of the most common

PINS approaches by including new types of sensors, like force sensors. Thus, the first

implemented approach, to estimate the displacement, besides using the accelerometer

data it also uses the force sensors data to improve the displacement estimation accuracy.

Throughout the document this approach will be referred as Accelerometer and Force

Sensor (M2).

Using the same sensory set as M2, it is proposed the PLASYS (M3) approach, which

learns the human gait characteristics using the data of the two BSUs to then characterize

the step. Thus, the information from both BSUs are fused and used to apply the learning

algorithms. Then according to the characterized step, different algorithms and rules are

applied to estimate the displacement.

7.2.1 Accelerometer and Force Sensor

Displacement is typically calculated using two inertial sensors, an accelerometer and

a gyroscope. However, in this algorithm the force sensors were also included, which

were an important component to improve the step detection (Chapter 5). Thus, this

algorithm, to estimate the displacement, uses the data from three sensors. The imple-

mented algorithm is represented in Figure 81.

Before using this system, a setup procedure must be performed. This procedure

has the duration of two seconds, where the devices (BSUs) must be stationary. In this

procedure the accelerometer and gyroscope data samples are obtained to estimate their

offset. The estimated offset is then removed from each source of data.

Then, the step detection algorithm, presented in Section 5.2, which uses the ac-

celerometer and the force sensor data to verify if the pedestrian is stationary, is applied.

When the pedestrian is stationary, the speed is set to zero and any displacement

is estimated, in other words the ZUPT technique (Section 2.2.3) is applied. Besides the

speed, the angular displacement and the BSU angles are also set to zero, in other words

the ZARU technique (Section 2.2.4), is applied. This technique is important to be applied

since, as mentioned previously, the angular displacement, which is calculated by the
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Figure 81: Accelerometer and force sensor displacement estimation algorithm

integration of the gyroscope data, tends to diverge over time (drift). This drift has great

impact on the transformation of the acceleration data from the inertial to the navigation

frame, which by its turn has a significant impact when used to estimate the walking

distance.

Thus, when the pedestrian is stationary it is calculated the angle that the BSU is

in correspondence with the ground, which serves as the initial angle to be used by

the frame transformation algorithm when the foot is on movement. To calculate the

BSU position the information about the roll, pitch and yaw angles is necessary. These

angles are estimated based on the accelerometer data and are represented in Figure

82. This information is not obtained directly from the accelerometer data, instead it is

calculated using two trigonometric equations (Equations 38 and 39). However, with the
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Figure 82: Foot BSU with the corresponding roll, pitch and yaw angles

accelerometer data only the roll and pitch angles are possible to calculate. The third

angle (yaw) can not be obtained using the accelerometer data, since the angles only

can be obtained when a gravitational force exists on the correspondent accelerometer

axis.

The force of gravity always acts perpendicular to the earth’s surface. Thus, when the

BSU is tilted at an angle, part of that force acts along the x-axis of the BSU and the other

part acts along the y-axis. The pitch and roll angles are estimated using the Equation

38 and Equation 39, respectively.

pitch = arctan(
−x√
y2 + z2

) (38)

roll = arctan(
z√

x2 + y2
) (39)

Whenever a step is detected, the gyroscope drift is corrected, continuously during

a step, using a sensor fusion algorithm. This fusion is made by combining the gyro-

scope data with the accelerometer data. Through the complementary of the sensors is

intended to obtain a signal without drift, as the accelerometer signal, and without the

gyroscope data (after integration) noise.

To implement this fusion, two algorithms were tested, one based on a complemen-

tary filter and the other based on a Kalman filter. The implemented Kalman filter [50],

which will be described below, achieved the best results. The complementary filter was

composed by a low-pass filter applied to the accelerometer data and a high-pass filter

applied to the gyroscope data. This complementary filter was simple to implement and
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achieved satisfactory results. However, it is not a so good estimator as the Kalman filter,

because it does not consider any statistical description about the noise that affects the

sensor data [123].

The Kalman filter implementation attempts to estimate the state x of the discrete pro-

cess that is modelled based on Equation 13 and the state observations are made based

on Equation 14, presented in Section 2.2.5. The state transition matrix A, the control-

input matrix B and the observation matrix H are constant. The process noise covariance

matrix Q and the measurement noise covariance matrix R are also considered constant

[50].

The Kalman filter gain Kk is calculated at each iteration of the filter to keep the error

covariance matrix Pk as low as possible to maintain accurate state updates. The state

vector xk is equal to [θk bk]
T , where θk (in rad) is the angle and bk (in rad/s) is the

gyroscope deviation. The input of the system uk corresponds to the angular velocity

obtained by the gyroscope ωgk.

Based on these premisses the state equation (Equation 13) is represented as in Equa-

tion 40.

xk =

1 −∆T

0 1

 xk−1 +
∆T
0

uk−1 (40)

The measured value is the angle obtained by the accelerometer. Thus, the measure-

ment or observation equation zk is represented as in Equation 41.

zk =
[
1 0

]θacck
bk

 (41)

The process noise covariance matrix Q is given in Equation 42, and the measurement

noise covariance matrix R is given in Equation 43.

Q = E(xkx
T
k) =

E(θkθTk) 0

0 E(θkθ
T
k)

 ≈

σ(ωg)∆T 0

0 σ(b)

 (42)

R = E(zkz
T
k) = σ(θacc) (43)

As already mentioned the Q and R matrices are considered to be constant. Thus, the

measurements are obtained with the BSU stationary and the matrices are then defined.
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Figure 83: Angular rotation estimated by a Kalman filter, compared with the angular rotation
estimated by the accelerometer and the gyroscope separately

An example of the output of the implemented filter is shown in Figure 83. This

figure presents the angle calculated around the z-axis. The final result of the filter is a

gyroscope signal with reduced or without any drift.

When walking, as seen in the state of the art and from the conducted tests, despite

the foot normal behaviour that is to move in the horizontal plane, there is the possibility

of unintended rotations made by the foot. Which causes the gravity to influence more

than one axis, which results in too many errors. Thus, the accelerometer data needs to

be transformed from the inertial frame to the navigation frame. This transformation is

performed using a rotation matrix, which uses the data from the gyroscope, smoothed

with the Kalman filter previously presented, and the data from the accelerometer. The

initial state, at each step, is given by the angles calculated whenever the foot is station-

ary.

In Figure 84 is presented the accelerometer data for the x-axis, for a five step walk,

after the frame transformation and without any previous data preprocessing. In the

same figure it is presented the accelerometer data converted to the navigation frame,

where were previously applied the ZUPT and ZARU techniques, and the Kalman filter

that smooths the gyroscope data. In other words, with the algorithms explained in this

section. As can be seen, during the 5 steps the acceleration pattern is similar. However,
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Figure 84: Accelerometer data for the x-axis, corrected with the proposed algorithm (Corrected
accelerometer data) and without its correction (Uncorrected accelerometer data)

the acceleration values are very different. These differences leads to poor results when

using the acceleration data to estimate the walking distance. With the proposed ap-

proach there is a more stable acceleration pattern and the correspondent acceleration

values are very similar throughout the walking path.

Then, from the resulting acceleration data, it is removed the effect of gravity. The

resulting data is then used to estimate the walking distance. To perform this estimation

two algorithms were implemented. The first uses the equations of motion, where the

acceleration data is integrated twice in order to obtain the walking distance.

The second algorithm is based on a Kalman filter. More specifically this implemen-

tation is based on the Wiener-process acceleration model in the white-noise jerk version

[17]. The model is also referred as the nearly-constant-acceleration model or the constant-

acceleration model. This model assumes that acceleration can be described as a Wiener

process, which is a continuous-time process with random increments [68]. This model

is typically applied in kinematics to describe the motions of objects.

The implemented white-noise jerk version of this model, assumes that since the ac-

celeration is not exactly constant, its derivative ȧ (i.e. the “jerk”) can be modelled by

white noise w(t) (Equation 44).
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ȧ(t) = w(t) (44)

The representation of the state vector x is defined in Equation 45. This vector repre-

sents the states for the estimated distance (d), velocity (v) and acceleration (a).

x(t) =
[
d(t) v(t) a(t)

]
(45)

The continuous-time state equation represents a third-order model with three inte-

grations (Equation 46).

ẋ(t) = Ax(t) +Dw(t) (46)

where

A =


0 1 0

0 0 1

0 0 0

 (47) D =


0

0

1

 (48)

Its discrete equivalent is represented as in Equation 47.

xk+1 = Fxk +wk (49)

Since this model is supposed to estimate the acceleration (a), the velocity (v) and the

distance (d), the equations that estimate these variables need to be represented. These

equations are based on the Kinematic Equations, and are represented in Equations 50,

51 and 52. In this representation, T represents the sampling time, which is the period

between two samples.

ak = ak−1 (50)

vk = vk−1 + ak−1T (51)

dk = dk−1 + vk−1T +
1

2
ak−1T

2 (52)
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Then, the discrete Equation 49 can be transformed in Equation 53.

xk+1 =


1 T T2

2

0 1 T

0 0 1



dk

vk

ak

+wk (53)

The process noise covariance matrix Qk is defined in Equation 54 and the measure-

ment noise covariance matrix R is defined in Equation 55.

Qk = Sw


1
20T

5 1
8T
4 1

6T
3

1
8T
4 1

3T
3 1

2T
2

1
6T
3 1

2T
2 T

 (54)

R = [1]× 0.01 (55)

It should be noted that Sw corresponds to the power spectral density, not the vari-

ance, of the continuous-time white noise. Using the Sw allows the model to match the

actual movement of the object. An almost constant acceleration model can be obtained

by selecting a very small intensity value. After testing several constants, the best and

more reliable results were obtained using the Sw with the value of 1.8.

Having the two components, azimuth (given by the orientation algorithm) and the

distance of a step, the new location of the pedestrian can be estimated. This new loca-

tion is always estimated based on a previous location. The latitude of the new location

is estimated using Equation 56 and the longitude using Equation 57. It receives as in-

put the current azimuth, the estimated distance and returns the current location. The

initial latitude and longitude must be in radians. The distance must be in km and the

azimuth must be in radians.

ϕ2 = asin(sinϕ1 × cos δ+ cosϕ1 × sin δ× cos θ) (56)

λ2 = λ1 + atan2(sin θ× sin δ× cosϕ1, cos δ− sinϕ1 × sinϕ2) (57)

where ϕ is latitude, λ is longitude, θ is the azimuth, given in a clockwise order in

correspondence of the north pole, δ is the angular distance d
R , where d is the walking

distance and R is the earth’s radius (6371km).
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7.2.2 PLASYS

After improving the step detection with the inclusion of force sensors, and therefore

improving the displacement estimation, another approach was developed. In this ap-

proach the step was characterized, based on learning the human gait characteristics.

With the step characterization different algorithms and rules can be applied for each

characterization. Thus, emerged the algorithm presented in Figure 85.
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Figure 85: PLASYS displacement algorithm overview
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The implemented approach starts by obtaining the sensors data from the two BSUs,

foot and waist. These data will be used by each algorithm of this approach, which,

since it is based on the PDR technique, is decomposed into three parts: step detection,

step characterization and displacement estimation.

The first part (i.e. step detection) is performed using the algorithm presented in

Section 5.2, which uses the foot accelerometer and force sensor data to detect a step.

However, the algorithm presented in Section 5.3, which uses the gyroscope data to

detect a step, is also used to help on combining the data of the two BSUs.

Since two BSUs are used in this work, one important aspect to do is a correct merging

of the data. When the data from the foot BSU is received on the waist BSU it is given to

it a timestamp. Thus, it is known what is the moment in which the data corresponds.

However, due to communication delays, some discrepancies between the data from the

two BSU can occur. Therefore the step detection using the gyroscope is used to correct

some misalignments that can occur between the data.

When a step is detected by the foot BSU, it is verified for that period of time where

the same step was detected by the gyroscope algorithm, and then the step, for the

waist BSU data, is considered in a different (or not) period of time. For example, a step

was detected by the foot BSU between the time period 5 and 8, then it is verified using

the gyroscope algorithm, for this period, the correspondent step. If the time period

detected in the waist BSU is different (e.g. time period between 4 and 7, which is a

earlier time period when compared to the foot BSU), then it is considered that for the

waist BSU the step period is between 4 and 7 and for the foot BSU between 5 and 8.

This correction worked well on the tests, however a more complex approach (i.e. less

ad-hoc than this approach) must be encountered to be achieved more precise results.

After detecting a step and making the correction of the BSUs timestamps, the second

part (i.e. step characterization) of the algorithm is performed. This characterization

is performed to the data of the period in which a step is detected. The step is then

characterized according to the terrain, direction and length, using the corresponding

neural network that were presented in Chapter 6. As the step characterization needs a

dataset of steps to correctly classify the steps in real-time, a set of exercises needs to be

done prior to using the proposed system. Thus, it was established that the pedestrian

must perform, before using the system, 75 steps in the different types of terrain, 50

steps in both directions and 90 steps with the three possible lengths classes. Then, this

dataset will be used to train the network. Further developments must be performed to

make simpler the system usage.
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The third, and last, part of this algorithm gives as output the pedestrian new esti-

mated location. To estimate the displacement two informations are needed: orientation

and distance. Apart from estimating the displacement, the algorithm also estimates the

altitude. The orientation is estimated using the algorithm presented in Section 7.1.

The implemented distance estimation algorithm is similar to the one presented in

Section 7.2.1. Thus, when the foot is stationary ZUPT and ZARU techniques are applied,

where the velocity, angular velocity and angles are set to zero, and the foot BSU angle

is estimated. When the foot is not stationary the gyroscope data is mathematically

integrated and corrected, then it is used to perform the frame transformation. Only

then the step distance is estimated using one of two approaches.

These approaches are based on the same Kalman filter implemented in Section

7.2.1, which is an implementation based on the Wiener-process acceleration model

in the white-noise jerk version. After some testing on calculating the distance for all the

datasets that were collected during the development of this work, it was concluded

that, for each type of terrain, better results can be achieved using different parameters

on the Kalman filter.

Thus, two different approaches, using the same algorithm, were developed. The first

one is similar to the one presented in Section 7.2.1, where the Kalman filter estimates,

based on the x-axis data from the accelerometer, the states for the distance (d), velocity

(v) and acceleration (a), according to Equation 46. The second approach estimates the

same states, but for the data of each one of the 3-axis of the accelerometer. Thus, it

is applied three Kalman filters where each one estimates one of the following state

vectors: x, y and z, which can be represented as in Equation 58, Equation 59 and

Equation 60, respectively. After the estimation of the states, the distance is calculated

using the norm of the distance (dc) given by Equation 61.

x(t) =
[
dx(t) vx(t) ax(t)

]
(58)

y(t) =
[
dy(t) vy(t) ay(t)

]
(59)

z(t) =
[
dz(t) vz(t) az(t)

]
(60)

dc =
√
d2x + d

2
y + d

2
z (61)
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These two approaches are applied according to the type of terrain where the step

was given. The first approach is applied to ascending stairs and to normal terrain, and

the second approach is applied to descending stairs. This solution was selected based

on the results that were obtained for each approach applied to the datasets of each type

of terrain. In the case of ascending stairs the first approach achieved a result 33% better

than the second approach. For descending stairs the second approach had a result 20%

better than the first approach. Finally, for normal terrain the first approach had a result

12% better than the second approach.

Supposedly, since it is made the conversion from the inertial to the navigation frame,

it would only be necessary the data of the x-axis to estimate the walking distance. How-

ever, due to the inherent inertial sensors deviations the results when descending stairs

are better using the data of the three axis. With the distinction about the type of terrain,

through the step characterization, was important to establish different algorithms and

parameters on distance estimation, which lead to better results.

After estimating the walking distance, with the algorithm chosen according to the

type of terrain, it is corrected according to the direction and length characterizations

made for that step.

In the case of the direction a correction is made to the sign of the estimated value.

Therefore, it is verified if the estimated distance is in correspondence with the direction

class. In other words, if the distance is positive the direction class must be forward, and

when the distance is negative the direction class must be backward. If the distance and

the direction class are dissimilar, the sign of the estimated distance is inverted (i.e. if

the distance is positive and the direction class is backward, the distance is transformed

from positive to negative, and the opposite happens if the distance is negative and the

direction class is forward). Meaning that the direction class prevails over the estimated

distance.

In the case of the length correction, it is verified if the estimated distance is in cor-

respondence with the class obtained in the length characterization. If the estimated

distance is out the boundaries of that class the distance is corrected to the extremity

which is more closer to the estimated value. If it is inside the boundaries nothing is

done. For example, if the estimated distance is 60cm and the length class is Small then

the value is corrected to 30cm, which is the maximum value on which a Small step fits.

Another example, if the estimated distance is 40cm and the length class is Long, then

the value is corrected to the minimum value on which a Long step can fit, which is

46cm.
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Thus, the distance limits (i.e. minimum and maximum) are corrected with this al-

gorithm, making the step shorter or longer according to the classification done by the

step characterization algorithm. Therefore the estimation errors that can occur from

the inertial sensors inaccuracies are corrected and the walking distance is estimated

with better accuracy. This correction has a great impact when estimating the distance

on stairs terrain. In this type of terrain the distance is always over-estimated. With this

correction the estimated distance remains much more closer to the real distance.

Finally, the new location is estimated based on the obtained orientation, corrected

distance and the previous location. The latitude of the new location is estimated using

Equation 56 and the longitude using Equation 57, which were presented in Section

7.2.1.

Regarding the altitude estimation, it takes as an initial reference the data (i.e. esti-

mated altitude) given by the GPS. Then, based on the type of terrain some corrections

to the current altitude of the pedestrian are made. If the type of terrain is normal (flat),

any change to the altitude value is made. However, if the type of terrain is stairs (i.e.

ascending or descending) changes in the altitude value are made. The altitude is esti-

mated, using the initial reference, and the distance estimated using the same algorithm

(presented above) that estimates the horizontal distance made by a pedestrian, but it

only uses the data of one of the accelerometer axis (y-axis). When descending stairs the

altitude value is decreased, and when ascending stairs the altitude value is increased.

Although this is a valid approach, the errors given by the accelerometer data can

produce a large deviation on altitude estimation. From the datasets collected through-

out this research, when descending stairs this algorithm presented an average error of

18%, and when ascending stairs it presented an average error of 30%.

The barometer is not used to estimate the altitude, because as seen on Section 4.3.1.4,

it does not provide a constant reference point. It varies a lot along different days, and

also even during the same day. Thus, it does not provide the necessary accuracy.

As seen along this section, the type of terrain characterization is very important to

use different distance estimation algorithms according to the current context. Thus the

accuracy of this characterization is very important on the final result (i.e. displacement

estimation) of the proposed work. Since the altitude is also estimated, the system per-

forms a three-dimension localization.
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7.3 evaluation

In order to validate the system, and the described features, were performed a set of ex-

periments involving real case scenarios, which represent situations that are commonly

encountered when indoors. Also, to validate the proposed system it is compared with

the traditional approach, where only a foot IMU is used to estimate the displacement.

This section is divided into two sub-sections. In Section 7.3.1 are presented the results

obtained using the implemented orientation algorithm running on the waist and on

the foot. The results obtained in both places are compared to identify which is the best

place, i.e. the one with the best results, to run this algorithm.

In Section 7.3.2 are presented the results obtained on estimating the displacement

using three different methodologies: (i) the typically PINS approach, that detect steps

using the accelerometer and therefore estimates the displacement (M1); (ii) the algo-

rithm presented in Section 7.2.1 which adds force sensors and other techniques (M2);

(iii) and the proposed architecture that adds learning algorithms and information fu-

sion between the BSUs (M3).

In each section an overview of the execution environment is given along with a

detailed description of each use case scenario and the obtained results. These results

were collected from a series of experiments conducted in the first three months of

2015, inside a typical building with four floors. The different methodologies are always

compared based on the same dataset. The data was firstly obtained on the field then

the results were estimated off-line in order to be possible the comparison between the

different methodologies.

All the data was collected using the presented BSUs and using two different pedestri-

ans. One is a male with a height of 1.90meters and the other is a female with a height

of 1.65meters. The presented results are the average values obtained for ten runs for

each pedestrian.

7.3.1 Orientation

In this proposal two BSUs were spread along the human body to estimate the pedestrian

displacement. Thus, several tests were performed to identify the best spots to place

those BSUs, but also to test which algorithms work better in each spot. One of these

tests was to identify where the orientation algorithm presented the best performance

and results.
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Therefore, in this section the developed orientation algorithm, presented in Section

7.1, is tested running in each BSU, separately. In Section 7.3.1.1 are presented the use

case scenarios that were used to evaluate the best place to run the algorithm, and then,

in Section 7.3.1.2, are presented the results obtained on each BSU.

7.3.1.1 Use Case Scenarios

To evaluate the performance of the developed orientation algorithm running in the

different BSUs, four use case scenarios were created. These scenarios are presented in

Figure 86.

All scenarios involves a total walking distance of about 6 meters, which gives an

average of 8 steps, and are characterized as follow:

• Scenario A - the pedestrian starts in a room and exits that room entering into

another, this change on the room is performed by making a curve of about π rad.

It is represented as A in Figure 86;

• Scenario B - first is performed a moderate curve to the right, followed by another

moderate curve, but in this case to the left. This scenario is represented as B in

Figure 86;

• Scenario C - involves a sharp curve of π2 rad to the right and is represented as C

in Figure 86;

• Scenario D - is a square path made by three right curves of π2 rad, and is repre-

sented as D in Figure 86;

A

A

(a)

B

B

(b)

C

C

(c)

D D

(d)

Figure 86: Use case scenarios to evaluate the orientation algorithm running in the different BSU
locations: (a) Scenario A; (b) Scenario B; (c) Scenario C; (d) Scenario D
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7.3.1.2 Experiment Results

This section presents the results obtained on the comparison between running the

orientation algorithm in a BSU placed on the waist versus using the BSU placed on the

foot.

As presented in Chapter 5 the foot is a better place to detect the steps. Thus, with

these tests it is wanted to identify which spot is more accurate in order to estimate the

pedestrian orientation. From the state of the art (Chapter 3), most authors stated that

the waist is the best location to place an IMU to estimate the orientation. Thus, these

tests will serve to prove if the proposed system has the same behaviour.

For each scenario and BSU, it is presented a table with the mean orientation change,

the mean orientation error and the standard deviation. The mean orientation change

represents the difference in the rotation value between the beginning and the end of

the walking path. The error is calculated based on the difference between the esti-

mated orientation and the real orientation at the final of the path that the orientation

algorithm should present. The standard deviation is the deviation that existed over all

the performed tests.

Also, it is presented the data collected, in the form of a figure, in each one of the

scenarios (7.3.1.1), for each one of the two locations.

The same BSU was used in both locations, in order to the results do not be influenced

by the use of different sensors. For these tests was used the developed BSU (Section

4.2).

In Scenario A the pedestrian performs a change in direction of about π rad, thus it

is expected that such change must be captured by the algorithm. In Table 36 and in

Figure 87 are presented the results and the data, respectively, obtained for each BSU

location on this scenario.

Table 36: Results for the orientation algorithm for Scenario A

BSU location
Mean orientation

change (rad)
Standard deviation Mean error

Waist 3.19 0.06 1.73%

Foot 3.42 0.17 8.27%

For the obtained data (Figure 87) it can be seen that the BSU on the foot provides

higher inaccuracies. The mean error obtained with the BSU on the foot is 5 times higher

than the mean error obtained with the BSU on the waist. Also, since the foot has more
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Figure 87: Orientation data obtained in Scenario A: a) data collected on the waist; b) data
collected on the foot

directional movement than the waist, which can be seen in Figure 87, the standard de-

viation tends to be higher. It is higher because the initial and final orientations depends

too much on how the foot is placed on the floor, at the beginning/end and during the

walking path. This behaviour can be seen in Figure 87b where it is noticed the differ-

ent steps given through the walking. The signals produced on waist (Figure 87a) are

smoother.

In Scenario B the pedestrian starts and finishes the walking path at almost the same

heading. The results have shown that both BSU locations provide good data on estimat-

ing this heading, where the error was very low. In Table 37 is presented the obtained

results and in Figure 88 is presented the collected data.

Table 37: Results for the orientation algorithm for Scenario B

BSU location
Mean orientation

change (rad)
Standard deviation Mean error

Waist 0.02 0.02 0.65%

Foot 0.05 0.05 1.44%

The obtained results followed a similar pattern as the results obtained in Scenario A.

However, the error, in both sensors location, is lower. From all the collected data it was

noticed that as the walking path is smaller, the error tends to be higher than in longer

walking paths. Comparing the Figure 88a with Figure 88b, it can be seen that the path

is smoother in the first one and the second one presents too much orientation changes
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Figure 88: Orientation data obtained in Scenario B: a) data collected on the waist; b) data col-
lected on the foot

during the two curves that exist during the walking path. With the BSU on the waist,

exist two similar rotations, one to the left and another to the right.

Regarding the Scenario C, the obtained results are presented in Table 38 and in

Figure 89 is presented the collected data in each one of the sensors location. The results

are similar as in the last two scenarios.

As in the other scenarios it can be seen that the data obtained in the waist provides

a smoother signal throughout the walking path. The data obtained with the BSU on

the foot is more unstable. Analysing Figure 89 this phenomenon is clearly evident. At

Figure 89: Orientation data obtained in Scenario C: a) data collected on the waist; b) data col-
lected on the foot
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Table 38: Results for the orientation algorithm for Scenario C

BSU location
Mean orientation

change (rad)
Standard deviation Mean error

Waist 1.57 0.05 0.30%

Foot 1.66 0.07 5.46%

each step, the orientation algorithm, running on the foot, has an unexpected behaviour

because it depends on how the foot was placed on the floor when entering the stance

phase. Thus, through the analysis of the signal it can be seen the two steps performed

during the curve.

For the final scenario, Scenario D, the collected data is presented in Figure 90, and in

Table 39 are presented the results obtained on the two sensors locations. This scenario

has a longer walking path than the other two. The results are similar has the ones

provided in the other scenarios. However, since this scenario involves more curves

and a longer walking path the final error tends to be higher. The foot mounting point

provided, almost, twice the error when compared to the waist mounting point.

Table 39: Results for the orientation algorithm for Scenario D

BSU location
Mean orientation

change (rad)
Standard deviation Mean error

Waist 1.66 0.06 5.12%

Foot 1.74 0.16 9.52%

Figure 90: Orientation data obtained in Scenario D: a) data collected on the waist; b) data col-
lected on the foot
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Analysing the results obtained in all the scenarios in can be concluded that to es-

timate the orientation of a pedestrian the waist is a better mounting point than the

foot. It is better because of three reasons: (i) the mean error tends to be always lower;

(ii) the standard deviation is much better in the case of the waist, since it provides

more stable results and does not depends too much on how the foot was placed on

the ground when entering the stance phase; (iii) as can be observed from the figures,

the data obtained in the waist provides a much more smoother signal, which leads

to a better orientation estimation, since the signal is not floating too much during the

walking path.

Thus, as could be seen through the obtained results, the waist is a better mounting

point to run the orientation algorithm.

7.3.2 Displacement

In order to validate any new technology, architecture or methodology into a field of

study it must be first compared and contrasted to existing methodologies. Thus a

set of scenarios were created to validate and compare this thesis proposal with more

traditional approaches. These scenarios are presented in Section 7.3.2.1 and the results

obtained for each scenario are presented in Section 7.3.2.2.

The results of the different methodologies are compared where the accuracy is the

primary interest.

7.3.2.1 Use Case Scenarios

The displacement estimation methodologies were tested and compared in four differ-

ent use case scenarios, which can be visualized in Figure 57 and Figure 91. The building

where the tests were conducted has a length of 20 meters and a width of 12 meters.

The scenarios are the following:

• Scenario A - straight line path on a flat surface, represented as A in Figure 57. It

involves a distance of 20 meters, which gives an average of 35 steps in a normal

walking pace;

• Scenario B - a straight line path, of about 15 meters, followed by two curves of

about π2 rad each in opposite directions, that makes the pedestrian to be in the

same direction as in the start of the path, then it is performed another straight

line path, of about 6 meters. This involves a walking distance of 25 meters, which
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Figure 91: Evaluation Scenarios C and D: C) is a walking path around a building composed by
5 divisions; D) is composed by a straight walk followed by a stair climb and then the
same walking path as scenario C

gives an average of 40 steps in a normal walking pace. This walking path is

represented as B in Figure 57;

• Scenario C - this path is more complex than the previous two, and is represented

as C in Figure 91. It involves a straight line of 6 meters, then a curve to the left

which leads to another straight line of about 10 meters. Then a walk around the

room is performed which covers 14 meters including 5 curves. Another straight

line, with the length of 10 meters, is covered by the pedestrian and a left curve is

made, where the pedestrian enters into another room. In that room the pedestrian

walks around covering 22 meters, having 6 curves. Finally, the pedestrian enters

in another room where he walks around which covers about 14 meters. This gives

a total distance of 76 meters, which gives an average of 120 steps in a normal

walking pace;

• Scenario D - in this path, represented as D in Figure 91, the pedestrian starts by

performing a straight line of about 11 meters, then he climbs 21 stairs which has

3 sharp curves of about π2 rad each. Each stair has a size of about 30cm. This

upstairs represents an elevation of about 3.8 meters. Then he walks around the

floor similarly as scenario 3. This scenario represents a total walking distance of

about 90 meters, which gives an average of 160 steps in a normal walking pace.
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7.3.2.2 Experiment Results

This section presents the results of the comparison between the different methodolo-

gies.

The evaluation was performed using three different approaches:

• Accelerometer (M1) - uses the foot BSU and the traditional PINS algorithm, which

detects the steps only based on the accelerometer data and thereby estimates the

distance walked by the pedestrian;

• Accelerometer and Force (M2) - is the algorithm presented in Section 7.2.1 which

uses the accelerometer and the force sensors of the foot BSU to detect steps and

thereby estimates the displacement;

• PLASYS (M3) - is the algorithm presented in Section 7.2.2, which uses both BSUs

combined with the neural network that characterizes the step.

Having a side-by-side comparison of these three methodologies the goal is to vali-

date the measurements of the proposed methodology (M3) against the reliability of the

traditional methodology (M1) and point out any differences that may exist between the

modalities. The algorithms are analyzed and contrasted with respect the performance,

i.e. the achieved accuracy.

For each scenario and methodology it is presented the estimated walking path,

where the trajectory points are marked with respect the digital map discussed in Sec-

tion 7.3.2.1. Besides the map it is presented a table that gives information about the

mean distance, the mean error and the standard deviation obtained for each method-

ology. Also, for each methodology it is presented a chart that shows the accumulated

error through the walk way. The paths are represented with distinctive polygonal lines,

where the blue dashed line represents the path obtained using the (M1) approach. The

green dotted line represents the path obtained using the (M2) approach, and the red

solid line represents the path obtained using the (M3) approach.

The results obtained for Scenario A are presented in Table 40. From these results

it can be concluded that in a straight line the M3 approach achieves a good accuracy.

However, the standard deviation tends to be higher than the one obtained by the M2

approach. As expected the M1 approach has a higher error, which is almost twice the

error obtained with the M2 approach.

The accumulated error over the walked distance, for this scenario and for the three

methodologies, can be seen in Figure 92. As mentioned in the state of the art, at the

starts and stops during the walk is where the INS’s accuracy is lower. These inaccuracies
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Table 40: Results for the three different methodologies for Scenario A

Method Mean distance (m) Mean error
Standard
deviation

M1 - Accelerometer 22.329 11.65% 0.53

M2 - Accelerometer
and Force

21.312 6.56% 0.28

M3 - PLASYS 20.046 0.23% 0.42

Figure 92: Accumulated error during the walk on scenario A

can be seen in Figure 92 at the beginning of the walk where the algorithms under-

estimate the walked distance and the difference between the actual walking path and

the estimated one varies a lot. When the walk velocity stabilizes the accumulated error

growth rate is identical over time. The resulting walking path is demonstrated in Figure

93.

In Scenario B the three approaches achieved the results presented in Table 41. The

mean errors and standard deviations are identical to the ones obtained for Scenario A.

As the walking distance increases it is natural, in inertial navigation systems, that the

accumulated error also increases.

From Figure 94 it can be seen that for the M1 approach the distance error stabilizes

or diminishes during the two curves. This leads into one of two hypothesis: during

curves the walking path is better estimated by this approach, or it estimates incorrectly

the distance walked during those curves. After analysing the obtained data, it was

verified that M1 approach under-estimates the distance walked by the pedestrian, thus
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Figure 93: Estimated walking path for scenario A

Table 41: Results for the three different methodologies for Scenario B

Method Mean distance (m) Mean error
Standard
deviation

M1 - Accelerometer 27.984 11.94% 0.63

M2 - Accelerometer
and Force

26.501 6.00% 0.45

M3 - PLASYS 25.169 0.68% 0.32

Figure 94: Accumulated error during the walk on scenario B

the error diminishes during those periods. However, these estimations tend to be closer

to the real walked distance than when in a straight line.
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Figure 95: Estimated walking path for scenario B

For this scenario (B) the resulting estimated path is presented in Figure 95. As the

learning algorithms correct the estimated distance based on the step characterization,

the estimated path tends to be closer to the real one. Therefore the shape of the es-

timated path tends to be similar to the real one, although some deviations on the

distance occur.

The results obtained for Scenario C can be seen in Table 42. This scenario involves

a longer path and a lot of sharp curves. Thus, as expected, the mean error is higher

than in the other scenarios. Compared to the other scenarios, in this one the error

difference between the M1 and the M2 approaches is similar, i.e. the M1 approach

presents twice the error of the M2 approach. However, the difference between the M2

and the proposed one (M3) is lower than in the other scenarios. In the other scenarios

this difference was of about 5%, but in this one the difference is only of 2.7%.

Table 42: Results for the three different methodologies for Scenario C

Method Mean distance (m) Mean error
Standard
deviation

M1 - Accelerometer 87.122 14.63% 0.95

M2 - Accelerometer
and Force

82.049 7.96% 1.21

M3 - PLASYS 79.982 5.24% 1.18

After analysing the collected data it was possible to verify that the M3 approach,

during the straights, has more accuracy that when the pedestrian performs some

curves. This happens because the algorithm performs less corrections in curves than
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on straights. The reason for this is that the distance estimations are under-estimated,

thus the algorithm does not correct the data. To improve the results a new characteri-

zation to the step needs to be performed, in this case a curve must be detected to other

variables be considered when estimating the distance.

To corroborate what has been referred, it can be seen in Figure 96 the distance error

growth along the path. When sharp curves appear during the walk, the error tends to

grow more than in the other zones of the path.

In this scenario the location error is higher and the difficulties on estimate correctly

the walking path can be seen in Figure 97. Analysing the walking path obtained with

the M1 approach, it estimates poorly the pedestrian positioning, where the estimated

walking path passes the limits of the room where the pedestrian was, or even the limits

of the building. Regarding the orientation estimation, it presents fewer errors than the

distance estimation.

Within respect Scenario D, the results that were obtained during the tests are pre-

sented in Table 43. Unlike the last scenario the mean error difference between the M2

and M3 approaches, has increased significantly, from 2.72% to 4.09%. Comparing these

two approaches with M1 approach, the mean error differences were very similar for

all the scenarios, and this scenario was not an exception. However, compared to the

other scenarios the standard deviation, in this one, was pretty similar for all the three

approaches.

The main difference between Scenario C and Scenario D, is the presence of a set of

stairwells at almost the beginning of the path. As seen in previous table the best results

Figure 96: Accumulated error during the walk on scenario C
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Figure 97: Estimated walking path for scenario C

Table 43: Results for the three different methodologies for Scenario D

Method Mean distance (m) Mean error
Standard
deviation

M1 - Accelerometer 106.277 18.09% 1.02

M2 - Accelerometer
and Force

99.793 10.68% 1.32

M3 - PLASYS 95.931 6.59% 1.19

were achieved with the proposed system (M3). For this scenario the best improvement

that the M3 approach introduces when compared to the others is the ability to reduce

substantially the error growth during the upstairs.

From Figure 98, which presents the distance error growth during the walking path,

it can be seen that when the pedestrian is going upstairs the error growth is almost

imperceptible for the proposed system (M3). To contextualize, the stairs are in the

walking path between the 10 and 17 meters. With the step characterization the distance

estimations were very contained to the size of each stair that the pedestrian has climbed.

During the rest of the path the results are similar to the ones of Scenario C, since the

path is identical.

The resulting walking path is demonstrated in Figure 99. As the learning algorithms

correct the estimated distance based on the step characterization, the estimated path,
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Figure 98: Accumulated error during the walk on scenario D

during the stairs and straight walks tends to be closer to the real one. Therefore the

shape of the estimated path tends to be similar to the real one, although some devia-

tions on the distance still exist. The M1 and M2 approaches tend to deviate a lot from

the original path as the walked distance increases, specially regarding the distance es-

timation that typically is over-estimated rather than under-estimated. This leads to a

higher estimated distance than the covered one.
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Figure 99: Estimated walking path for scenario D
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Regarding the altitude estimation, since this test includes a set of stairwells that

corresponded to an altitude change of 3.8 meters. The average final altitude estimation

was of 4.719meters, considering that on the ground floor is 0meters. Thus, on elevation

estimation the system (M3) presented an average error of 24%.

7.4 summary

Considering the knowledge obtained during the development of the state of the art, the

orientation estimation is a research field very active which already has achieved good

accuracy results in estimating the direction of a pedestrian. Thus, this work focused

more on improving the displacement estimation.

To estimate the pedestrian orientation a complementary filter, which uses the infor-

mation from an accelerometer, a gyroscope and a magnetometer, was implemented.

The complementarity between these three sensors is important to have consistent and

reliable orientation estimation results. The most important sensor is the magnetometer,

since without it the orientation relative to an existent reference point does not exist.

With this sensor it is always known the heading in relation with the earth’s geomag-

netic field. The other sensors are used to mitigate the errors that the magnetometer

encounters when it is disturbed by other magnetic fields, which are normal to be en-

countered inside buildings, because of the existing power lines, computers, among

others. Thus, the resulting algorithm proved to be robust and to achieve good results.

Also, it tends to be easy to implement, and can run in mobile devices without great

need for computational power.

During the system development it was also necessary to establish which is the best

BSU to run the orientation algorithm: waist BSU or foot BSU. After some evaluations it

was decided, due to the more accurate and consistent results, that the waist provides a

better location to execute this algorithm. Thus the system is decomposed into two BSU

that complement each other. One is primarily responsible to estimate the direction and

the other to estimate the distance.

After estimating orientation, it is estimated the displacement of a pedestrian. This

estimation was implemented using two approaches. Both, as already mentioned, uses

the waist BSU data to estimate the orientation. The first approach, Accelerometer and

force, uses the data from the foot BSU to estimate the displacement. The main difference

between this methodology and the most commonly used is the inclusion of new sen-
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sors (i.e. force sensors), which are important to detect more accurately the human gait

phases.

Having a more accurate step detection leads to a more accurate step length estima-

tion. Since the distance must be only considered during the time periods in which the

foot is lifted from the ground. This phase is perfectly detected by the implemented

algorithm. However, the inertial sensors still present some errors when detecting the

acceleration that the foot performs during the step, which leads to some distance esti-

mation inaccuracies. When compared to the Accelerometer approach [116], the displace-

ment results were improved by 48% [11].

Although the results were improved with the addition of new sensors, they still lack

of some accuracy and were not inside the bounders defined as the quantifiable success

criteria for this project. Thus, it was performed the fusion between the two BSUs in

order to characterize the step using a neural network. The neural network characterizes

a step based on a previous set of steps performed by the pedestrian. Then, according

to the given characterization different distance estimation algorithms are used. Besides

using different algorithms to estimate the distance, this distance is corrected based on

the range of values defined for each characterization type.

The usage of a more adequate algorithm, combined with the definition of the length

intervals leads to a mean error of 0.23%, which is lower than the Accelerometer and force

approach which was of 6.56%. However, when the path includes some curves the mean

error of the PLASYS approach is 6.59% and the mean error of the Accelerometer and force

approach is 10.68%, which results on an improvement of 37%. This walking path also

involved different situations that are common inside a building. Thus, the obtained

error matches the project quantifiable success criteria.
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C O N C L U S I O N

Throughout this document some conclusions were already being presented, which sus-

tain the development options made in this thesis. Thus, this last chapter is a summary

of the key findings, implications and relevance of the work done and future develop-

ments.

This thesis presents a PINS approach to estimate the displacement of a pedestrian.

This approach combines the typical inertial sensors with force sensors, which were

valuable to obtain a more accurate information about the human gait cycle phases.

Also, the fusion of the information given by different BSU was important to implement

a neural network that predicts the step characteristics in order to apply the most ade-

quate displacement algorithms for each situation.

This approach, entitled PLASYS, is composed by four modules (see Chapter 4): (i) the

data acquisition units, (ii) step detection algorithms, (iii) step characterization through

machine learning and (iv) displacement estimation.

The first module (data acquisition units) is composed by two inertial units that are

spread along the human body to collect the pedestrian movements and sends them to

a mobile device through a wireless network (i.e. Bluetooth) (see Chapter 4).

The step detection module is tackled by combining the data given by different sen-

sors (sensor fusion). The accelerometers data are combined with force sensors to de-

tect (see Chapter 5) the different phases of the human gait cycle (see Section 2.1). The

distinction between the different phases is important to improve the estimation capa-

bilities of such a system.

Step characterization module introduces a characterization through machine learn-

ing algorithms and information fusion from different sources of data. The step is char-

acterized based on three attributes: terrain, direction and length. Each attribute is previ-

ously learned from a set of exercises that will serve to train a neural network about the

pedestrian walking characteristics when walking in different conditions. The learned

data is then used to characterize the step in real-time.

185
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The displacement estimation module, estimates the pedestrian displacement using

the inertial units (first module) to detect the steps (second module) and corrects its

estimations based on the step characterization (third module). A set of rules are ap-

plied to each type of conditions (characterizations) to then select the best estimation

algorithm. This characterization is important to improve the results that are obtained

with the displacement estimation algorithm.

Four different real use case scenarios were implemented to evaluate the PLASYS ap-

proach against the traditional methodologies, and to demonstrate the reliability and

the achieved improvements on the displacement estimation results.

In this chapter it will be discuss the results obtained for each research questions

presented in Chapter 1. Furthermore, an overview of the contributions (Section 8.1),

and its limitations (Section 8.2), is presented along with a discussion about the future

directions and work (Section 8.3).

8.1 analysis of accomplishments

The overarching goal of this thesis is to investigate if:

The information obtained from inertial sensors, and additional sensors spread along the hu-

man body, can be fused and combined with learning algorithms to learn the human gait charac-

teristics, to improve the pedestrian walking path estimation.

This goal raises several research questions and establishes multiple requirements.

research question no.1 : Can the inclusion of new type of sensors and techniques

improve the step detection accuracy?

To improve the step detection accuracy three sensors/techniques were implemented:

(i) an accelerometer based step detection algorithm; (ii) a step detection algorithm

based on fusing the data of accelerometer and force sensors; (iii) a step detection algo-

rithm based on the pelvic rotation was implemented in the waist BSU, which uses the

data provided by the gyroscope.

The step length estimation is highly correlated with the accurate detection of a step.

Thus, one of the most important phases, and also the first, of a PINS algorithm is the

step detection, which is then followed by stride determination and heading calculation.
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The detection of a step enables the distinction between the swing and stance phases of

the human gait. The relevance of this distinction is that the distance and the orientation

must be only estimated/considered during the stance phase. Meaning that the velocity

errors can be reset at each step, since the true velocity must be zero if the pedestrian is

stationary.

Typically, a step is detected using an accelerometer placed in the pedestrian’s foot.

However, this approach presents too many false positive steps. Therefore force sensors

where included in the BSU, which combined with the accelerometer data allowed to

reduce, significantly, the step detection error [115]. The mean accuracy, given by this

approach, was 3 times better than the accelerometer only approach. Besides improving

the results, this implementation reduces the computational complexity, thus this objec-

tive was successfully achieved [116]. The only disadvantage is that it depends on more

sensors.

The force sensors are also very important to perform the step characterization, since

they measure the contact force of the foot with the ground. Typically, this force is

correlated with the step length. Thus, the inclusion of force sensors enables a more

precise and stable step detection algorithm in a long term use where different types of

walking take place [11].

The inclusion of more than one BSU on human body enabled the implementation of

a step detection algorithm in the waist BSU. The implemented algorithm considers the

pelvic rotation in order to detect a step given by the pedestrian. The mean accuracy is

lower than the foot approach. However, this algorithm is important to, when estimating

the pedestrian location, merge with more precision the data from the two BSU.

The combination of the data from the two BSU is essential since each BSU as an

important task in the system. The foot BSU presents better results on estimating the

step length, and the waist BSU has better results on estimating the pedestrian heading.

These two locations, and BSUs, were very important to achieve the obtained results [9].

After detecting a step, an important task to perform is to reduce the noise of the

sensors. Thus, after the setup period, the offset calculated for each sensor is subtracted

and the data is passed through a low-pass filter in order to simplify the algorithms

that will process this data. Besides noise reduction, the improvements obtained on the

step detection are important to apply effectively the ZUPT and ZARU techniques.

research question no.2 : Can learning algorithms be used to learn pedestrian step

patterns and its errors in order to correct, in real-time, the inertial sensors estimations?
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The errors in PINS usually arise from three sources: (i) inertial sensors measurements,

(ii) limitations in the navigation equations and (iii) initialization errors. The initializa-

tion errors were mitigated as presented in Research Question no.1.

The main goal in Machine Learning is to generalize [79], thus the inertial sensors

measurements errors were mitigated using a step characterization through the use of

a neural network. This neural network learns the walking characteristics in different

types of terrain, different directions and different step lengths [13]. This characteriza-

tion is important in order to limit the sensors measurements errors. This method can

consider the non-linear characteristics and is not affected by the accelerometer bias and

the acceleration of gravity. From several evaluations performed to different algorithms

and approaches (i.e. Heuristics, DTW, SVM, Neural Network), the neural network based

algorithm was the one that presented the best results. Mainly because they tend to

generalize more. Thus, smaller differences in the inputs, from what was learned in the

learning phase, are better classified by this algorithm.

The inherent systematic errors of the low-cost inertial sensors quickly accumulate

and can lead to substantial position errors. The presented alternative is to use the sen-

sors signals pattern rather than its value to characterize the step. With this character-

ization it is possible to adapt the behaviour of the displacement estimation algorithm

according to the current context of the step. Thus, different parameters and algorithms

can be used according to each characterization, as well as, different range of values

that are used to limit the error growth given by the integration of the accelerometer

data. This implementation mitigates the navigation equations limitations.

The neural network must be trained specifically with the data for each pedestrian.

This data is collected from a set of exercises that the pedestrian must perform before

using the system. Then, the system is able to perform real-time corrections with the

learned data. The idea, in the beginning of this work, was to use the GPS data to create

the dataset to train the learning algorithms. However, it was verified that the GPS chips

included in the mobile devices are not accurate enough for this type of implementation.

The errors of this hardware, that can achieve 5 meters, are too high to be used to train

the algorithms, since a step length ranges between 25cm and 1 meter. Thus, a more

accurate auxiliary system is necessary.

To improve the step characterization results, the data from the two BSU are used as

input to the neural network. Thus, an information fusion architecture is implemented.

With the data from two different sources, the probability that an error occur on the two

units at the same time is very reduced, thus better results are achieved.
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research question no.3 : Can a low-cost PINS provide good accuracy when used by

a pedestrian?

To respond to this question an IMU was developed to have more control on the

sensors behaviours and to easily incorporate more sensors in the platform. Also, it

was defined an INS architecture that combines the data from two IMU with learning

algorithms to adapt the displacement algorithms according to the pedestrian walking

characteristics.

A low-cost IMU has different definitions for each researcher, for some a thousand

euros IMU is considered low-cost and for others a low-cost unit most cost a maximum

of e 500, it hugely depends on the economic situation of each person. In this work

it was developed an IMU that uses MEMS sensors that are truly low-cost, with a price

rounding e 10 or less. Thus, the developed unit has an estimated cost of approximately

e 50, for the hardware. As the price of the MEMS sensors is lower, they also tend to give

more inaccuracies than the more expensive sensors available in the market.

The development of a single unit can be very difficult, and since the system is not

running on a stable platform, it sometimes presents some errors that are derived from

it being an early stage prototype. Thus, only the foot BSU was produced. The waist BSU

was simulated using an Android mobile device.

Both BSUs are simple to attach to the pedestrian’s body and to carry around due to

the lightweight and the small form factor. The prototype unit is easy to carry on a belt

or in the person’s leg. The communication between them is easy to configure, since

this communication is based on the Bluetooth wireless network, which compared to

the Zigbee is largely available on mobile devices [4].

The sensors of each BSU can give data rates of more than 200Hz. However, the sam-

pling ODR was decreased to 20Hz because of two reasons: battery life and performance.

The first one is important, since if the system consumes too much energy, it will be only

usable for a couple of hours, which makes it impractical to be used by a pedestrian, for

example, in a museum visit. The second reason has a huge importance, since, if more

data is obtained more computational power is required to process it and therefore

more energy is needed [7]. In order to maintain the low-price, a smartphone is used to

handle the displacement estimations. If more computing power is required more diffi-

cult will be to the mobile device run the algorithms, due to its inherent characteristics,

being unable to provide a result in an acceptable execution time [8]. One advantage of

using this type of device is that it is normally used by the pedestrians, thus it is not

needed a new hardware.
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The developed BSU, which is a prototype and not a final version, is relatively light

and small to be used in the two places, foot and waist. Thus, during a normal walking

around a building it does not influences the walking behaviour of the pedestrian.

Every time the system is used, it is needed a calibration phase where the user must

be standstill for five seconds in order to calculate the sensors offset.

Displacement is estimated based on distance and orientation. Thus, an orientation

algorithm was implemented. This algorithm is based on a complementary filter that

fuses the data of an accelerometer, a gyroscope and a magnetometer. These sensors

complement each other in order to improve the quality of the data. This approach

proved to be robust and achieved good results. Also, it tends to be easy to implement

and run in mobile devices without high computational power requirements.

main contributions

This PhD work resulted in several contributions to the State of the Art in the field

of Pedestrian Inertial Navigation Systems. Several Artificial Intelligence methods were

used to mitigate the most significant errors of MEMS sensors. This, when combined

with multiple sources of information, results in a more accurate PINS. Thus, the main

contributions of this work can be compiled as follows:

• State of the art analysis, including the main techniques used in this type of sys-

tems (Chapter 2), as well as, the most prominent systems in this research field

(Chapter 3);

• Advantage of using force sensors combined with inertial sensors to detect, with

more precision, the steps given by a pedestrian (Chapter 5). To identify the advan-

tages of using different techniques and locations to run the algorithms, different

step detection algorithms were proposed and evaluated. Also, it was proven that

several sensors spread in the pedestrian’s body provide more reliable informa-

tion since the errors of one sensor can be mitigated with the data of other sensor

(Chapter 4);

• Applicability of machine learning in PINS. The step characterization using a neu-

ral network is important to identify the different walking patterns. Thus, different

INS techniques can be used according to the current gait behaviour, which leads

to a better displacement estimation (Chapter 6);

• A low-cost inertial navigation system prototype to be used by pedestrians, which

can be carried around to estimate with good accuracy the pedestrian displace-
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ment. It were also proposed and developed different distance estimation algo-

rithms to be used according to the walking behaviour. To complement the dis-

tance estimation, an orientation algorithm based on a complementary filter was

implemented (Chapter 7);

• Case studies, in contribution with other researchers, that demonstrate the capac-

ity of using such a system in several different ambient intelligence areas, such as

ambient assisted living [98] [97], recommendation systems [74], mobile tourism

applications [10], shopping [5], among others;

• Several evaluations were made to identify the best practices to be used on mobile

devices development [8], specially regarding their performance [7], which can be

very low [6].

success criteria

Regarding the results obtained from the implemented architecture, it must be said

that having a more accurate step detection leads to a more accurate step length esti-

mation, since the distance must be only considered during the time moments in which

the foot is lifted from the ground (swing phase). When compared to the typically used

PINS methodology [116], the displacement results were improved by about 48% [11],

without considering the step characterization.

With the step characterization, which enables the usage of different distance estima-

tion algorithms for each situation, the mean error on straights decreased from 6.56%,

for the Accelerometer and Force approach, to 0.23% for the PLASYS approach. When the

walking path includes some curves the error has decreased from 10.68%, for the Ac-

celerometer and Force approach, to 6.59% for the PLASYS approach, which results on an

improvement of 37%.

The mean error of 6.59% was achieved on the experiment with the longest path,

which also involved different situations that are commonly encountered inside a build-

ing [12]. Thus, with the obtained error, the proposed system has an accuracy of 93%,

which matches the project accuracy quantifiable success criteria that was defined as a

value higher than 90%.

During the evaluations it was found that the magnitude of the error is not dependent

on time since when the user is not moving, because of the step detection algorithm,

the distance remains constant, as expected.
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The results of the proposed thesis are not compared with other system presented in

the state of the art, because does not exist a standard test to be done to this type of sys-

tems. Thus, the comparison that was performed was to the typically used algorithms

that uses only a foot IMU and the accelerometer data to detect a step and, therefore,

to estimate the distance. A gyroscope is also needed in this approach to transform

the acceleration data from the inertial frame to the navigation frame. By conducting

this comparison it was insured that the same hardware and scenarios were used, and

therefore the results could be compared.

Regarding the delay between the real location and the processed one, the imple-

mented algorithms, besides their performance, were also chosen because of their light-

ness. Thus, after testing the implemented algorithms it was concluded that a high-end

mobile device takes about 2 seconds to handle the necessary estimations. This time pe-

riod is similar to the one obtained when using the GPS module incorporated on mobile

devices, which typically has a frequency of 1 second.

The implemented system also shows that it is a valid approach to be used in the

ambient assisted applications that were presented in Chapter 1, like tourism recom-

mendation applications [10], in shopping centers [5] or by the elderly [98].

The results of the proposed system are very encouraging for this line of research

and had shown the viability of this methodology by achieving, with success, the two

success criteria (i.e. location accuracy and location estimation delay) defined in the

beginning of this work [12].

8.2 research limitations

There are some limitations in the current PLASYS approach, which are mainly related

to the hardware, learning algorithms and displacement estimation.

Regarding the hardware there are two limitations: (i) the quality of the MEMS inertial

sensors used is, still, conspicuously low, (ii) and the battery used in the developed

prototype sometimes influences the data collected from the sensors.

With better sensors more promising results would be achieved. The sensors that had

presented the most problems are the accelerometer and the force sensors. The force

sensors that were used have a small sensing area, which makes their placement on the

pedestrian foot very tricky. Currently, this correct placement can take some time to be

found. Having a larger contact area with the foot would, also, provide more consistent

results on detecting the different gait cycle phases.
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The prototype battery, which weights too much, sometimes influences the data ob-

tained from the sensors, since it moves from its position and touches the BSU. By touch-

ing the BSU some accelerations are detected, which has some impact on the obtained

results.

Concerning the learning algorithms it were identified two limitations: (i) needs a

specific dataset for each pedestrian; (ii) some human movements are not considered

and need to be modelled.

Currently, the neural network needs a specific dataset for the pedestrian that will

use the system. The system only gives good results if the same user dataset is used. If

the dataset of another pedestrian is used the quality of the results decreases. Also, the

step length characterization classes are being defined manually, where each range is

being set specifically for each pedestrian.

There is the need to model some human movements that are not consider, like for-

ward/backward jumps, among other situations. The step characterization needs fur-

ther improvements in order to consider these not so natural movements when walking.

This work focused on the more typical movements that are performed during a walk.

With respect to the displacement estimation, there are two limitations: (i) the system

does not consider automatic transportation facilities; (ii) synchronization between the

BSUs lacks sometimes of some accuracy.

The system does not work in elevators, escalators and other automatic transportation

facilities. Thus, besides implementing the step characterization, another characteriza-

tion must be performed like an environment characterization which detects these types

of situations.

Synchronization between the BSUs needs to be further improved with more accurate

synchronization methods. Since, sometimes the data is not properly aligned, which

leads to poor results.

Analysing these limitations it can be concluded that the base for the proposed local-

ization system is made, but some refinements need to be done in the current working

prototype.

8.3 future work

Throughout this document, it has been shown that PINS provides a great advantage

for people navigating on foot. Thus, it was proposed an original approach that charac-
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terizes the step based on a neural network, which is then used to correct the inertial

sensors deviations. Besides the more accurate results obtained with this methodology,

deviations from the actual walking path still exist. Therefore some efforts need to be

done to improve the system results. This section is divided into two parts: (i) it will be

presented additional implementations that can be done to improve the current system,

(ii) and it will be suggested some new approaches that can be followed to improve the

PINS accuracy.

Additionally to the evolution of the proposed method, with the correction of the

presented Research Limitations, other methodologies could be implemented in order to

increase the system performance, such as:

• More characterizations about the pedestrian movements must be implemented.

From the collected data it was possible to identify that it is needed to charac-

terize the step when a curve exists during the path. Certainly this modulation

will improve the system’s accuracy as the other characterizations did. Thus, at

the moment the most important characterizations are: starts and stops, curves

and environment (e.g. elevator, escalator). However, there are other characteriza-

tions that are important to perform such as: terrain inclination, crowed area or

not, among others. Also, it will be interesting to divide the step length charac-

terization into more classes to verify if it improves the displacement estimation

accuracy;

• To discard the necessity of having a predefined set of exercises to learn the gait

characteristics, it could exist a set of predefined datasets to be used by each

pedestrian. Thus, the same dataset could be used by similar persons. The profile

could be based on the person’s characteristics (e.g. height, weight, gender, age) or

going even further by making a gait profile (i.e. with identical patterns), since two

similar, in age, height and weight, pedestrians could have different gait patterns.

Then the dataset that is closer to the current user would be selected;

• If a similar neural network to the one that corrects the data given by the dis-

tance algorithm, is applied to the data estimated by the orientation algorithm,

the estimated data could be more precise. Having better results on estimating the

orientation will lead to better results when estimating the displacement;

• Altitude estimation needs further research. Right now it is estimated but it lacks

some accuracy, which is also influenced by the non-existence of a map. A fusion

algorithm between the vertical acceleration movement made by the pedestrian

and the barometer data needs to be implemented.
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It was clear from the beginning of this PhD work that it would be a multidisciplinary

one, drawing mostly from Computer Science but also from Human Kinematics. From

the technological point of view, it also merged many different fields, including Data

Acquisition, Wireless Sensor Networks, Sensor Fusion, Learning Algorithms, Informa-

tion Fusion, among others. In that sense, it is only natural that at the closure of this

endeavour, a multitude of possible future paths exists, each one following a different

line of research under the different fields addressed. Several interesting research prob-

lems that could be followed after the conclusion of this thesis can be pointed out:

• The inclusion of a heart rate sensor in the chest area will help to known what is

the type of activity that the user is performing (e.g. walking, running). This could

be one more source of data to be used, in combination with the other sensors

data, to improve the step characterization. As seen during this work, having more

sources of information is important to achieve better results since the errors from

some sensors could be surpassed with the data from the other sensors. The heart

rate sensor can improve the system precision, since when a person is walking

faster the heartbeat is higher than when a person is only standing-up. Of course

that these conditions only work, or are trusted, if at least two sources of data give

the same information;

• Another approach that could be used to improve the step length estimation is

using a muscle sensor kit on the pedestrian legs to measure the muscle activity

by detecting its electric potential, referred to as ElectroMyoGraphy (EMG). These

sensors are small, however they are much more intrusive than inertial sensors.

The muscle activity could bring important information about the type of force

that will be applied on the leg to perform the movement, thus it could be another

important source of data to help on the estimation of the step length;

• The step characterization could be pushed even further by using a social archi-

tecture. This social architecture could associate a context to a map. The map, by

gathering the data from the several pedestrians that could pass on a specific re-

gion, can be contextualized (e.g. type of terrain, if it is a crowded area or not) with

the information obtained from the developed system. This social context map can

be elaborated with the data obtained from all users in the system, which can be

categorized based on their steps and on the similarities between them. With this

contextual map, the correct learning algorithm could be chosen by the system.

Thus, the system would only use small portions of the dataset, instead of using

the whole dataset, improving the system responsiveness and results.
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• In this research area, and also in other INS areas, emerges the necessity of the

existence of a standard to evaluate the systems. Having a standard is valuable to

compare the different methodologies proposed by the researchers. This could be

a difficult task to execute. However, it will be important to identify the real dif-

ferences between systems. Without a standard it is almost impossible to compare

the different systems since each case study scenario is different, and the results

could not be compared;

• To perform the step characterization other machine learning approaches can be

considered (e.g. a decision tree). A decision tree is a decision support tool that

uses a tree-like graph or model of decisions and their possible consequences, each

leaf node can “test” an attribute (e.g. if it is a forward step), and each branch

represents the outcome of the test which will lead to a class label (decision taken

after computing all attributes);

• Complement the system proposed by Carneiro et al. [24], that measure the levels

of acute stress in humans by analysing their behavioral patterns when interacting

with technological devices. With the proposed system more features (e.g. walk-

ing behaviour) can be used as input to the Carneiro system to determine which

behaviours show statistically significant differences, for each user, when under

stress or fatigue. Moreover, with the PLASYS system the process of estimating

stress is still taken in a non-intrusive way. The main objective is to overcome some

of the main drawbacks of communicating online, in dispute resolution, namely

the lack of contextual information such as body language or gestures.

Additional research lines could eventually be put forward. The ones listed here have

in common the fact that they are already known topics, although they are still open

research problems. This may make them valid approaches with potential for success.

Certainly, many other questions were raised and left open for further research. The

contribution of this thesis is a little bump in future directions that can be followed by

the Pedestrian Inertial Navigation Systems. It opens the door to the combination of

different sources of information using machine learning techniques that characterize

the type of environment to correct the errors given by each source of data which could

lead to further developments with high social and economical impact.
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