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Abstract 
 

Due to its sessile nature, plants must take up mineral nutrients and water from the 

soil, and fix carbon in leaves from atmospheric CO2. The resulting photoassimilates must 

be precisely delivered to each plant organ, including leaves, roots and fruits. The present 

dissertation explored key biochemical mechanisms involved in the transport and 

compartmentation of sugars and water in grapevine.  

The fixation of carbon in chloroplasts, the synthesis of sugars in leaves and their 

transport to sink tissues are the most important biochemical steps in plant productivity, and 

have been investigated for several decades. Nonetheless, this is still a very relevant research 

topic because our knowledge is fragmented and the ongoing climate changes became an 

additional threat that may potentially affect plant productivity, in particular in grapevine. 

Plastids, which are characteristic of the plant kingdom, have pivotal roles in several 

important physiological processes. In grapevine, they are responsible for the accumulation 

of starch in woody tissues, roots, flowers and berries, and they are involved in the synthesis 

of secondary compounds. The first part of the present work was dedicated to the 

characterization of plastidial metabolism in grapevine, and focused on two plastidial 

glucose-6-phosphate/phosphate translocators (GPT), VvGPT1 and VvGPT2. It was found 

that three different splicing variants identified for VvGPT2 (VvGPT2α, VvGPT2β and 

VvGPT2Ω) were more expressed in the leaves. Contrarily, VvGPT1 was more expressed in 

mature berries, canes and flowers. Confocal microscopy revealed that VvGPT1 and 

VvGPT2Ω are localized in the plastidial envelope, and the transformation of pgi1-1 

Arabidopsis mutant showed that these grapevine transporters mediate the uptake of 

glucose-6-phosphate into the plastid. In grape cell suspensions, ABA, light and galactinol, 

together with sucrose and fructose, increased the transcript abundance of VvGPT1. 

Furthermore, elicitation with MeJA dramatically increased the expression of VvGPT1 and 

VvPAL1, suggesting a role for GPTs in the production of secondary compounds in 

grapevine. Given its importance, this research line deserves further attention, particularly 

regarding the biochemical mechanisms underlying starch accumulation in grapevine 

amyloplasts during the winter, and its remobilization during spring to allow a fast 

vegetative growth. 

Besides sugar, water content is also an important parameter for berry quality, which 

is particularly intermingled with sugar status during berry development. Their content in 

the fruit is tightly regulated by the activity of sugar and water transporters (aquaporins – 
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AQPs) in response to the environment. Berry and wine quality are directly affected by the 

berry water content at harvest. The second part of the present dissertation was devoted to 

the characterization of two AQPs in grapevine, VvSIP1 (Small Basic Intrinsic Protein 1) 

and VvXIP1 (Uncharacterized –X- Intrinsic Protein 1). Results showed that VvSIP1 was 

expressed in leaves and berries from field-grown vines, and in leaves and stems from in 

vitro plantlets, but not in roots. When expressed in tobacco mesophyll cells and in the yeast 

Saccharomyces cerevisiae, fluorescent-tagged VvSIP1 was localized at the ER. Stopped-

flow spectroscopy showed that VvSIP1-enriched ER membrane vesicles from yeast 

exhibited higher water permeability and lower Ea for water transport than control vesicles, 

indicating the involvement of protein mediated water diffusion. This aquaporin was able to 

transport water but not glycerol, urea, sorbitol, glucose and inositol. VvSIP1-His-tag was 

solubilized and purified to homogeneity from yeast ER membranes and the reconstitution 

of the purified protein in phosphatidylethanolamine liposomes confirmed its water channel 

activity.  

 XIPs are a new group of MIP proteins recently identified, so their precise 

physiological role has remained elusive. In our study, VvXIP1-RFP protein co-localized 

with ZmTIP2;1-YFP in the tonoplast of transiently transformed Nicotiana bethamiana 

leaves. Sopped-flow spectrometry performed with microsomal vesicles from yeast 

expressing pVV214-VvXIP1 showed that VvXIP1 is unable to transport water but transports 

glycerol. Plate growth assays showed that this AQP is also able to transport copper, boron 

and H2O2. Transcriptional analysis showed a much higher steady-state expression of 

VvXIP1 in leaves than in berries, canes or flowers from field grown grapevine. 

Furthermore, VvXIP1 transcripts were downregulated in leaves from plants treated with the 

copper-based fungicide Bordeaux mixture, and in vines under severe water deficit. In 

agreement, VvXIP1 was downregulated by ABA and salt stress in in vitro cultured grape 

cells. Much work is still needed to fully elucidate the physiological role of SIPs and XIPs 

in grapevine in particular towards the confirmation of their involvement in intracellular 

compartmentation of specific solutes like heavy metals. Thus, this avenue of research is 

still wide open. 
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Resumo 
 

 Devido à sua natureza séssil, as plantas obtêm do solo os nutrientes minerais e a 

água e fixam o carbono nas folhas a partir do CO2 atmosférico. A água e os solutos 

orgânicos e inorgânicos são distribuídos com precisão pelos diferentes tecidos da planta, 

incluindo as folhas, as raízes e os frutos. O presente trabalho de doutoramento visou o 

estudo de mecanismos bioquímicos envolvidos no transporte e compartimentação de 

açúcares e de água nos tecidos/células de videira (Vitis vinifera L.) 

 A fixação de carbono, a síntese de açúcares nas folhas e o seu transporte para os 

tecidos heterotróficos constituem os passos bioquímicos mais relevantes envolvidos na 

produtividade das plantas. Embora estes aspetos fisiológicos tenham sido alvo de 

investigação ao longo das últimas décadas o nosso conhecimento é ainda fragmentado, e as 

modificações climatéricas em curso representam uma limitação adicional à produtividade 

das plantas, em particular da videira. Os plastídios, que são organelos característicos do 

reino vegetal, desempenham papéis fundamentais em diversos mecanismos fisiológicos. 

Na videira, os plastídios são responsáveis pela acumulação de amido nos tecidos lenhosos, 

raízes, flores e frutos, e estão ainda envolvidos na síntese de compostos secundários. 

 A primeira parte do presente trabalho foi dedicada à caracterização do metabolismo 

plastidial na videira, tendo-se focado em dois antiportadores plastidiais de glucose-6-

fosfato com fosfato (GPT), VvGPT1 e VvGPT2. Os resultados demonstraram que três 

variantes de splicing alternativo do gene VvGPT2 (VvGPT2α, VvGPT2β e VvGPT2Ω), são 

mais expressos nas folhas do que noutros órgãos. Pelo contrário, o gene VvGPT1 

demonstrou uma expressão mais elevada em bagos maduros, varas e flores do que nas 

folhas. Estudos de microscopia confocal demonstraram que as proteínas VvGPT1 e 

VvGPT2Ω localizam-se na membrana plastidial, e estudos de transformação estável do 

mutante de Arabidopsis pgi1-1 confirmaram o seu papel na incorporação de glucose-6-

fosfato. Estudos desenvolvidos com células em suspensão sugeriram que alguns fatores 

ambientais, como a luz e sinais hormonais ou endógenos, como o ABA ou os níveis de 

açúcar (incluindo o galactinol, a sacarose e a frutose), conduzem a um aumento do número 

de transcritos do VvGPT1. Adicionalmente, a eliciação com MeJA conduziu a um aumento 

acentuado da expressão dos genes VvGPT1 e VvPAL1, sugerindo que os GPTs 

desempenham um papel importante na produção de compostos secundários na videira. 

Dada a sua importância, esta linha de investigação merece estudos mais aprofundados no 

futuro, em particular no que diz respeito aos mecanismos bioquímicos de remobilização do 

amido armazenado durante o inverno nos amiloplastos, permitindo o rápido crescimento 

dos gomos caulinares na primavera. 

 A água constitui um parâmetro fundamental para a qualidade do bago de uva e os 

seus níveis encontram-se particularmente relacionados com a concentração dos açúcares 
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durante o desenvolvimento e amadurecimento do fruto. Tem sido demonstrado que a 

atividade de transportadores membranares de açúcares e de água (aquaporinas – AQPs) 

regula com precisão a concentração destes compostos em resposta às condições ambientais. 

Em bagos maduros, o conteúdo em água afeta diretamente a qualidade do fruto e do vinho. 

A segunda parte do presente trabalho de doutoramento foi dedicada à caracterização de 

duas AQPs de videira, VvSIP1 (Small Basic Intrinsic Protein 1) e VvXIP1 

(Uncharacterized – X - Intrinsic Protein 1). Os resultados demonstraram que o gene 

VvSIP1 foi expresso em folhas e bagos de videiras cultivadas em condições de campo, bem 

como em folhas e caules, mas não em raízes, de plântulas crescidas in vitro. Estudos de 

expressão transiente em células do mesófilo de tabaco e em Saccharomyces cerevisiae 

indicaram que a proteína de fusão VvSIP1-GFP localiza-se no retículo endoplasmático 

(RE). Ensaios de espectrometria de stopped-flow demonstraram que vesículas de 

membrana de RE purificadas de leveduras transformadas com a construção VvSIP1-GFP 

exibem uma maior taxa de permeabilidade à água e uma menor energia de ativação do que 

vesículas obtidas de leveduras controlo. Estes resultados sugeriram o envolvimento de um 

canal proteico no transporte de água. Ensaios de especificidade mostraram que a proteína 

VvSIP1 não transporta glicerol, ureia, sorbitol, inositol e glucose. A proteína quimérica 

VvSIP1-6his foi purificada a partir do RE de leveduras transformadas e a sua atividade 

transportadora reconstituída em lipossomas de fosfatidiletanolamina. Estes resultados 

permitiram demonstrar cabalmente que a proteína VvSIP1 é um canal transportador de 

água. 

 As aquaporinas XIP foram identificadas recentemente, pelo que o seu verdadeiro 

papel fisiológico é ainda pouco claro. Estudos de expressão transiente em folhas de tabaco 

mediada por Agrobacterium, demonstraram que a proteína de fusão VvXIP1-RFP 

colocaliza com a proteína ZmTIP2;1-YFP, sugerindo tratar-se de uma proteína da 

membrana vacuolar. Estudos de espectrometria de stopped-flow com vesículas de 

membrana de leveduras transformadas com o vector pVV214-VvXIP1 demonstraram que a 

VvXIP1 é impermeável à água mas transporta glicerol. Experiências de crescimento em 

meio sólido mostraram ainda que esta AQP medeia o transporte de cobre, boro e H2O2. Em 

videiras cultivadas em condições de campo, estudos de PCR quantitativo em tempo real 

demonstraram que os níveis de transcritos do VvXIP1 são mais abundantes em folhas do 

que nos frutos, varas e flores. Em folhas de videiras tratadas com o fungicida à base de 

cobre calda bordalesa, bem como de videiras submetidas a stresse hídrico severo, a 

expressão do VvXIP1 é inibida. Em linha com estes resultados, a expressão do VvXIP1 foi 

reprimida pelo ABA e por stresse salino em culturas celulares. A elucidação completa dos 

papéis fisiológicos das SIPs e das XIPs na videira requer ainda trabalho de investigação 

intenso, em particular com vista à confirmação do seu envolvimento na compartimentação 

intracelular de solutos específicos, como metais pesados, pelo que esta linha de 

investigação se mantém aberta.
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RFP – Red fluorescent protein; 

SA – Salicylic acid; 

SDI – Sustained deficit irrigation; 

SIP – Small basic intrinsic protein; 

SS – Starch synthase; 

TIP – Tonoplast intrinsic protein; 

TPT – Trioses-phosphate/phosphate translocator; 

UDP - Uridine diphosphate; 

XIP – Uncharacterized (X) intrinsic protein; 

XPT – Xylulose-5-phosphate/phosphate translocator. 
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1. General introduction 
  

Since pre-historic times humans have consumed plants, and the advent of 

agricultural communities is a hallmark of civilization. Agriculture led to the domestication 

of wild species and to the selection of the most valuable varieties for human consumption, 

which allowed early civilizations to thrive by obtaining greater amounts of sustenance and 

the establishment of the first socially organized societies (Maisels, 1993).  

 

Due to its sessile nature, plants must absorb mineral nutrients and water from the 

soil, and fix carbon in leaves from atmospheric CO2. Reduced carbon must then be 

distributed throughout the organism, from sources to sinks organs like roots and fruits. 

These processes are fundamental for plant development and productivity, but despite solute 

transport and compartmentation have been investigated in detail for several decades our 

knowledge is still limited. 

 

The present review focuses on the mechanisms involved in the transport of solutes, 

mainly photoassimilates and water, throughout the plant. The role of plastids in 

photosynthetic and heterotrophic tissues is also highlighted, and particular attention is 

given to the mechanisms involved in starch synthesis and degradation in sink tissues, and 

also to plastid transporters. In this regard, the role of glucose-6-phosphate (glucose-6-Pi) 

and glucose-6-Pi transporters (GPT) in sink plastids will be detailed. 

 

In plants, water is the source of reducing power in photosynthesis, thus playing a 

pivotal role in the life on earth. In grapevine, besides sugars, water content is an essential 

constituent of the ripe berry, and therefore of the wine. In this context, the biological role 

of aquaporins and their diversity in plants will be addressed in this review. 

 

The second part of the present review is dedicated to grapevine, the biological 

model used in the present dissertation. Grape berries are sophisticated biochemical factories 

with major economic importance that import and accumulate water and sugars, along with 

minerals, but synthesize amino acids, organic acids, as well as flavor and aroma 

compounds. Important biochemical mechanisms that define grape berry quality are related 

to sugar and water transport as well as to plastidial metabolism and will be addressed in the 

context of grapevine response to environmental stress.  
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Finally, at the end of this chapter the main objectives of the present dissertation are 

detailed. 

 

1.1 Long distance sugar transport and sugar loading and unloading 

 

Membrane proteins play pivotal roles in mediating solute transport with a major 

impact in plant development and productivity. Photosynthetically produced sugars (mainly 

sucrose) are transported from source leaves to supply energy and carbon to heterotrophic 

sink tissues (Kühn and Grof, 2010). To reach sink tissues, sucrose is transported through 

the phloem, and symplastic and apoplastic pathways are responsible for its loading into this 

vascular tissue. In symplastic loading, sucrose moves from mesophyll cells to the SE-CCC 

(sieve element-companion cell complex) through small pores between adjacent cells called 

plasmodesmata, with diffusion and possibly some bulk flow representing the main driving 

force of this mechanism (Fig. 1.1). Apoplastic loading requires the export of sucrose from 

the mesophyll cells to the apoplast (cell wall space) and its uptake into the SE-CCC by 

sucrose/H+ symporters. Up until recently, sugar efflux to the apoplast remained obscure 

until a new family of proteins named SWEET, with a role on sucrose efflux, was identified 

(Fig. 1.1; Chen et al., 2012). According to Munch’s mass flow hypothesis, sucrose, as the 

major osmotically active constituent in the phloem, provides the driving force for 

translocating all other compounds in the phloem sap from source to sink tissues (Lalonde 

et al., 2004).  

 

In sink organs, sucrose can be released apoplastically or symplastically, with the 

unloading pathway depending on the species, organ or tissue, and developmental stage 

(Turgeon and Wolf, 2009). In sinks connected through plasmodesmata, sucrose and other 

sap compounds may be directly incorporated into the cells, whereas in symplastically 

isolated organs sucrose is transported to the apoplast thanks to sucrose transporters (Chen 

et al., 2012). Sucrose can be transported directly from the apoplast through disaccharide 

transporters (sucrose/H+ symporters) or be hydrolyzed by cell wall-bound invertases, and 

the resulting glucose and fructose incorporated by monosaccharide transporters (Fig. 1.1).  
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1.1.1 Sucrose transporter family 

 

Plant sucrose transporters (SUT) are members of the glycoside-pentoside-

hexuronide (GPH):cation symporter family, which belongs to the major facilitator 

superfamily (MFS). These proteins have 12 transmembrane helices that form a single pore 

for sucrose, and both the N- and C-termini, as well as 5 loops, are localized in the cytosol 

(Lalonde et al., 2004). The first sucrose transporter characterized from plants was the 

SoSUT1 from spinach, which was successfully expressed in a yeast mutant lacking sugar 

transport (Riesmeier et al., 1992), So far, all plant sucrose transporters described are 

sucrose/H+ symporters, with the exception of the sucrose facilitators from Pisum sativum 

and Phaseolus vulgaris, which function as bi-directional sucrose carriers (Zhou et al., 2007; 

Kühn and Grof, 2010).  

 

1.1.2 Monosaccharide transporters family 

 

Monosaccharide transporters (MST), which are found in all domains of life, are part 

of the GPH:cation symporter family of the MFS. These highly conserved proteins have 12 

transmembrane-spanning helices separated by cytoplasmic and extracellular loops, and 

cytosolic N- and C-terminal domains (Lalonde et al., 2004).  

 

AtSTP1 (Arabidopsis thaliana Sugar Transporter Protein 1) was the first higher 

plant MST to be characterized when hexose transporters (hxt) null-mutant yeasts were 

functionally complemented (Sauer et al., 1990). Since then, MST from several plant species 

have been identified and all proteins characterized so far were shown to operate as energy-

dependent H+-symporters (Büttner and Sauer, 2000). 

 

1.1.3 The SWEET family 

 

Before the identification of the SWEET transporter family, the efflux of sugars from 

mesophyll cells into the apoplastic space remained one of the most puzzling mysteries in 

plant physiology (Chen et al., 2010). Studies of sugar transport in plants tissues with 

radioactive substrates typically show multi-phase kinetics and generally two components 

are identified: a linear low-affinity high-capacity component and a saturable high-affinity, 

low-capacity component (Delrot and Bonnemain, 1981; Maynard and Lucas, 1982; 
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Chaudhuri et al., 2008). Studies performed in our group (Conde et al., 2007a), showed that 

cultured cells from Olea europaea display a linear non-saturating glucose uptake system 

up to concentrations of 100 mM glucose that was inhibited by mercury, which is normally 

used to inhibit channels, and by cytosolic acidosis. Contrarily, the protein kinase inhibitor 

staurosporine stimulated this diffusional uptake. 
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Figure 1.1 Long distance transport of photoassimilates. During the day carbon fixed in the 

chloroplast is transported to the cytosol in the form of trioses-phosphate by the TPT  and during the 

night in the form of glucose and maltose by the pGT and MEX, respectivelly. In the cytosol, glucose 

is the precursor of sucrose synthesis that can be loaded into the phloem by symplastic or apoplastic 

pathways. In the apoplastic pathway, sucrose is transported into SE-CCC and loaded into the 

phloem by diffusion through plasmodesmata. In the apoplastic pathway, sucrose is transported into 

the extracellular space by a SWEET (SW) transporter, and loaded into the SE-CCC by the action 

of SUC transporters. In heterotrophic tissues, phloem unloading may occur through a symplastic, 

via plasmodesmata, and apoplastic pathways. The apoplastic unloading requires sucrose transport 

from the phloem into the apoplast, a process possibly mediated by SWEETs. In the apoplast, sucrose 

can be incorporated directly into sink cells by SUC transporters or by MST, following sucrose 

hydrolysis by cell wall bound invertases. In sugar accumulating fruits, large amounts of 

carbohydrates may be stored in the central vacuole by the action of SWEETS, SUC and MSTs.. 

Fruc, fructose; Fruc-6-P, fructose-6-phosphate; Gluc, glucose; Gluc, glucose; Gluc-6-P, glucose-6-

phosphate; Malt, maltose; MEX, maltose translocator; MST, monosaccharide transporter; pGT, 

plastidial glucose translocator; SE-CCC, sieve element-companion cell complex; SUC, sucrose/H+ 

symporter; SUC, sucrose; SW, SWEET transporter; TMT, tonoplast monosaccharide transporter; 

TPT, triose-phosphate/phosphate translocator; Triose-P, triose-phosphate. Adapted from Lalonde 

et al., 2004 and Chen et al., 2010. 

 

These evidences led to the conclusion that a channel-like structure whose transport capacity 

may be regulated by intracellular protonation and phosphorylation could account for the 

diffusional component of glucose uptake. Following these observations in cultured cells, 

the involvement of a channel-like protein was proposed for sugar uptake in Arabidopsis 

root tips, where glucose and sucrose accumulation was shown to be insensitive to 

extracellular pH and protonophores (Chaudhuri et al., 2008). More recently, the same group 

(Chen et al., 2010) used a new and elegant screening system, based on the simultaneous 

expression of a highly sensible glucose-sensor and uncharacterized Arabidopsis membrane 

proteins, to identify AtSWEET1 as the first plant sugar efflux carrier. This transporter 

belongs to the SWEET superfamily, which diverges substantially from the MFS, and 

includes members from a wide variety of organisms acting as low-affinity uniporters. 

SWEETs are small proteins, with less than 300 aa and 7 transmembrane helices, which 

form a pore that mediates both sugar influx and efflux in a pH-independent manner (Chen 

et al., 2010). These findings paved the way to another study by Chen and co-workers, in 

which they showed that AtSWEET11 and 12 are sucrose uniporters localized in the plasma 
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membrane of the phloem tubes (Fig 1.1; Chen et al., 2012). Also, mutant plants carrying 

insertions in AtSWEET11 and 12 showed alterations in phloem loading, which led to the 

conclusion that these proteins are essential for long distance sugar transport. 

 

More recently, it was shown that AtSWEET17 is a tonoplast sugar exporter 

fundamental for the control of fructose content in the leaves and roots of Arabidopsis 

(Chardon et al., 2013; Guo et al., 2013), and that AtSWEET9 has a central role in flowers, 

where it is involved in the efflux of sucrose required for nectary secretion (Lin et al., 2014). 

 

1.2. Plastidial metabolism 

 

Plastids are organelles found virtually in all plants with fundamental roles in the 

photosynthesis, in the assimilation of carbon, sulfur, and nitrogen. Furthermore, they are 

the place of lipid synthesis, starch, protein and oil storage, fruit and flower coloration, 

gravity sensing, stomatal function, and environmental perception. They can also be found 

in algae cells, several taxa of marine mollusks and in one phylum of parasitic protists (Wise, 

2007).  

 

Like mitochondria, plastids have an endosymbiotic origin that can be traced back to 

the engulfment of an ancestral cyanobacteria by a primitive protist around 1.5 million years 

ago (Flügge, 1999; Fischer, 2011). Higher plants have different types of plastids, 

comprising undifferentiated proplastids, colorless etioplasts, chloroplasts, chromoplasts, 

starch-storing amyloplasts, and lipid-storing elaioplasts (Fischer, 2011).  

 

1.2.1 Chloroplasts are the source of carbon assimilation 

 

In leaves, chloroplasts are the place of carbon assimilation, via the Calvin-Benson 

cycle, which is then used as the main precursor for all biosynthetic reactions in plants 

(Weber, 2007). Carbon assimilated during photosynthesis is used for the production of 

transient starch in the chloroplast, and for the export of trioses-phosphate to the cytosol, 

feeding the biosynthesis of sucrose. This transport is mediated by the TPT (Triose-

phosphate/phosphate translocator) that exchanges GAP (glyceraldehyde -3-phosphate) and 

DAP (dihydroxyacetone-phosphate) with inorganic phosphate, ensuring that the 

chloroplast is replenished with Pi used in ATP synthesis (Linka and Weber, 2010; Fig. 1.2). 
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Figure 1.2 Carbon fixation in autotrophic tissues. Plants obtain carbon from atmospheric CO2 that 

is introduced in the Calvin-Benson cycle by RuBisCo. Trioses-phosphate (GAP) produced in this 

cycle are used to synthesize transient starch in the chloroplast, and sucrose in the cytosol, after 

translocation through the TPT. 1,3-bPG, 1,3-bisphosphoglycerate; 3-PGA, 3-phosphoglyceric acid; 

F16bP, fructose 1,6-bisphosphate; F6P, fructose-6-phosphate; G1P, glucose-1-phosphate; G6P, 

glucose-6-phosphate; GAP, glyceraldehyde-3-phosphate; Pi, inorganic phosphate; Ru-1,5-bP, 

ribulose-1,5-bisphosphate; TPT, triose-phosphate/phosphate translocator; UDP-G, uridine-

diphosphate-glucose. 

 

During the dark period, transitory starch is mobilized to continuously supply sink 

organs with carbon, as well as to maintaining leaf metabolism. Due to its insoluble nature, 

starch must undergo a degradation step allowing the release of soluble carbohydrates. In 

the leaves, the hydrolytic pathway is thought to be the most relevant for the degradation of 

starch. This yields glucose and maltose that must be exported to the cytosol by specific 

transporters (Fig. 1.3; Weise et al., 2004). The cloning of putative plastidial glucose 

translocators (pGlcT) was reported in spinach, potato, tobacco, Arabidopsis and maize 

(Weber et al., 2000). The transport of maltose from the chloroplast to the cytosol was 

elucidated after the characterization of the MEX (Maltose Excess) protein as a maltose 

transporter (Niittylä et al., 2004). This protein, which is unrelated to other known sugar 
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transporters, is the main route of carbon export from the chloroplast during the night (Fig. 

1.3; Niittylä et al., 2004; Weber, 2004; Weise et al., 2004). Therefore, the generation of 

sucrose in the cytosol, which is used as the main carbohydrate for long distance transport, 

is intrinsically related with the activity of the TPT during the day and MEX during the 

night, and thus plastid transporters play a central role in the regulation of carbohydrate 

metabolism.  

 

1.2.2 Role of the plastids in sink tissues 

 

Although plastids play a fundamental role in source tissues, their importance in 

sinks should not be overlooked. The storage of starch in the amyloplasts of potato tissues 

or in the cereal endosperm, and the accumulation of carotenoids in the chromoplasts of 

flowers and fruits illustrates well the relevance of plastids in sink tissues. 

 

Non-green plastids of heterotrophic tissues are carbohydrate-importing organelles. 

Due to the absence of 1,6-bisphosphatase activity, they are unable to generate hexose 

phosphates from C3-compounds, and therefore must rely on the uptake from the cytosol of 

generated C6 compounds (Flügge, 1999; Niewiadomski et al., 2005). This step is mediated 

by a GPT that imports glucose-6-Pi in exchange with inorganic phosphate or C3-sugar 

phosphates (Hill and Smith, 1991; Neuhaus et al., 1993; Flügge and Weber, 1994; 

Schunemann and Borchert, 1994; Quick and Neuhaus, 1996; Niewiadomski et al., 2005). 

In the plastid, glucose-6-Pi may be used as a carbon source for starch synthesis, as a 

substrate for fatty acid and carotenoid biosynthesis, or as a starter molecule for the 

Oxidative Pentose Phosphate pathway and glycolysis (OPPP; Niewiadomski et al., 2005).  

 

1.2.3 The role of plastids in starch accumulating tissues 

 

Amyloplasts are the place of starch synthesis and storage in sink organs like the 

cereal grain, tubers, roots and trunk in woody perennials and green fruits. After its transport 

to the plastid stroma through GPT, glucose-6-Pi is converted into ADP-glucose, which is 

then incorporated into the starch grain by the action of starch synthases (Fig. 1.4). In the 

cereal endosperm, UDP-glucose synthesized in the cytosol is the main precursor of starch 

synthesis after its incorporation in the amyloplast through the brittle-1 translocator 

(Shannon et al., 1998). 
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Figure 1.3 Remobilization of leaf transient starch during the night sustains cellular metabolism and 

continuously feed sink tissues with sugars. The carbon accumulated in the chloroplast during the 

light period is remobilized following the action of the hydrolytic enzymes β-amylase and DBE that 

yields glucose and, mainly, maltose. These sugars are transported into the cytosol by the MEX and 

pGT transporters and used for sucrose synthesis. DBE, debranching enzyme; F6P, fructose-6-

phosphate; G1P, glucose-1-phosphate; G6P, glucose-6-phosphate; Gluc, glucose; Malt, maltose; 

MEX, maltose translocator; pGT, plastidial glucose translocator; UDP-G, uridine-diphosphate-

glucose. 

 

Also, green fruits contain photosynthetically active starch-containing chloroplasts, which 

are generally converted into non-photosynthetically plastids during the ripening phase 

(Bouvier and Camara, 2007). 

 

1.2.4. Plastids are involved in secondary metabolism 

 

The plastids found in fruits have central roles in isoprenoids biosynthesis, acyllipid 

metabolism, and shikimate pathway (Fig 1.5; Bouvier and Camara, 2007; Flügge et al., 

2011). In plants, all isoprenoid compounds are produced from two universal 5-carbon 

precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), by 

two distinct biosynthetic pathways. The first, the mevalonate pathway (MVA), takes place 
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in the cytosol where IPP and DMAPP are synthesized from mevalonic acid, and its final 

products are sesquiterpenes and polyterpenes (Lichtenthaler, 1999; Cordoba et al., 2009). 

The second one, known as the methyl-D-erythritol 4-phosphate (MEP) pathway, uses 

pyruvate and glyceraldehyde-3-phosphate for IPP and DMAPP synthesis and exclusively 

takes place within the plastids (Lichtenthaler, 1999).  

 

 

Figure 1.4 Starch synthesis in storage tissues. In heterotrophic tissues, sucrose imported from the 

phloem is hydrolyzed to glucose and fructose by invertases and phosphorylated by hexokinases. 

Glucose-6-Pi is transported into the amyloplast by GPT and used as a precursor for starch 

biosynthesis. G1P, glucose-1-phosphate; G6P, glucose-6-phosphate; GPT, glucose-6-

phosphate/phosphate translocator; Pi, inorganic phosphate; UDP-G, uridine-diphosphate-glucose. 

 

 Carotenoids synthesized in the plastids as C40 isoprenoid derivatives are responsible 

for the yellow, orange and red colors of many fruits. In addition to their role promoting 

seed dispersal by herbivores, carotenoids are a fundamental quality parameter in several 

crops used in human diet. Besides carotenoids, several other important compounds are 

derived from the MEP pathway, like plastoquinone, tocopherols, gibberellins, phytol-PP 

involved in chlorophyll biosynthesis, strigolactones, and the phytohormone abscisic acid 

(ABA; Fig 1.5; Cordoba et al., 2009). In this pathway, both pyruvate and GAP can be 

obtained from glycolysis within plastids but, since plastids from some heterotrophic tissues 
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are unable to form pyruvate from 3-phosphoglyceric acid, they must incorporate cytosolic 

PEP by the action of PPT (phosphoenolpyruvate/phosphate translocator) (Fischer et al., 

1997; Flügge et al., 2011). Interestingly, it was reported in Arabidopsis that a plastidial 

enolase is not expressed in photosynthetic tissues, but shows high transcript abundance in 

some heterotrophic organs, suggesting that these plastids have a complete glycolytic 

pathway capable of providing pyruvate and GAP (Prabhakar et al., 2009). 

 

1.2.5. Plastids are involved in lipid metabolism 

 

 The de novo biosynthesis of fatty acids occurs exclusively within plastids. Although 

most of the commercial oils are obtained from seeds, a significant part is derived from 

fruits, mainly from the pericarp of oil palm and olives (Bouvier and Camara, 2007). 

 

 

Figure 1.5 Simplified model of the potential role of plastids in the fruits. Plastids that have a 

complete glycolytic pathway may synthesize starch, carotenoids, aromatic amino acids, and lipid 

precursors. These processes are interconnected with the cytosolic metabolism by the action of 

several plastidial transporters. 1,3-2PGA, 1,3-bisphospho-D-glycerate; 2-PGA, 2-phosphoglyceric 

acid; 3-PGA, 3-phosphoglyceric acid; a-CoA, acetyl coenzyme A; DAP, dihydroxyacetone-3-
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phosphate; DXP, 1-deoxy-D-xylulose 5-phosphate; E4P, erythrose-4-phosphate; G6P, glucose-6-

phosphate; GAP, glyceraldehyde-3-phosphate; GPT, GPT, glucose-6-phosphate/phosphate 

translocator; OPPP, oxidative pentose-phosphate pathway; PEP, phosphoenolpyruvate; Pi, 

inorganic phosphate; PPT, phosphoenolpyruvate/phosphate translocator. 

 

In fruit plastids, the de novo synthesis of fatty acids occurs from acetyl-CoA before 

undergoing further modification in the endoplasmic reticulum where triacylglycerol may 

accumulate (Salas et al., 2000). Two major mechanisms for the synthesis of acetyl-CoA in 

the plastid are described, the first one involving the degradation of C6 sugars via glycolysis, 

which can yield acetyl-CoA by the action of a plastid-localized pyruvate dehydrogenase 

(Fig 1.5). In the second one, acetyl-CoA is produced in the mitochondria, by mitochondrial 

pyruvate dehydrogenase, and converted into acetic acid that is transported into the plastid 

and re-activated to acetyl-CoA (Salas et al., 2000; Conde et al., 2008). 

 

1.3. Water transport in plants and aquaporins 

 

Water is the most important resource for plant growth and metabolism, but also the 

most limiting factor in agriculture. The distribution of water throughout the plant is 

fundamental for several physiological processes (Chaumont and Tyerman, 2014). The most 

recognized event of water movement in plants is the evapotranspiration when water 

evaporates through the stomata. The gradient of water potential (ΔΨ) is the main driver of 

movement of water from the root xylem (high Ψ) to the leaf surface (low Ψ; Chaumont and 

Tyerman, 2014). This gradient creates a tension in the xylem vessels, thus drawing water 

from the soil to the root up to the leaves (Steudle, 2001). Three different known paths for 

water flow across plant roots to the central vessels are recognized: apoplastic, symplastic 

and transcellular (Fig. 1.6). In the apoplastic route water flows through the space between 

the cell walls; in the symplastic pathway, it moves from cell to cell through plasmodesmata; 

and in the transcellular pathway, it moves across plasma membranes through the action of 

aquaporins (AQP). It has been proposed that the transcellular pathways should be essential 

for the passage of water in selective cell layers such as the exodermis and endodermis, 

particularly in the latter due to the presence of apoplastic barriers like the Casparian strip 

and suberin lamellae (Steudle and Peterson, 1998; Chaumont and Tyerman, 2014), as 

observed in maize (Hachez et al., 2006), rice (Sakurai et al., 2008), and poplar (Laur and 

Hacke, 2013). 
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 AQPs are found in most living organisms, and are involved in many different 

physiological processes (Gomes et al., 2009). Seminal work postulated the involvement of 

water channels activity in biological membranes based on the observation that the rate of 

water diffusion across an artificial lipid bilayer is relatively low when compared to the 

water permeability of the membrane The first aquaporin (CHIP28 latter renamed AQP1) 

was discovered by Peter Agre and collaborators in 1992 (Preston et al., 1992), although in 

a parallel work protein mediated water transport in erythrocytes was shown (Benga et al., 

1986).  

 

 The first plant water channel was identified by Maurel et al. (1993) and named 

AtTIP1;1. Since then, several plant AQPs have been identified, cloned, and functionally 

characterized (Gomes et al., 2009). Today, it is widely accepted that AQP-mediated water 

transport in plants plays key physiological roles in cell elongation, seed germination, and 

osmoregulation (Maurel, 2007; Chaumont and Tyerman, 2014). Comparatively to other 

organisms, plants have a remarkable large number of aquaporins ubiquitously expressed, 

with more than 30 members in rice (Oryza sativa; Sakurai et al., 2005), maize (Zea mays; 

Chaumont et al., 2001), Arabidopsis (Johanson et al., 2001), tomato (Solanum 

lycopersicum; Reuscher et al., 2013), poplar (Populus trichocarpa; Gupta and 

Sankararamakrishnan, 2009), cotton (Gossypium hirsutum; Park et al., 2010), and soybean 

(Glycine max; Zhang et al., 2013).  

 

 Aquaporins belong to the MIP family (Major Intrinsic Protein) together with two 

other sub-families, the glycerol-facilitators and the aquaglyceroporins (Gomes et al., 2009). 

They are small membrane proteins (21 to 34 kD) consisting of six membrane-spanning α-

helices connected by five loops (A to E) and with N- and C-termini facing the cytosol. Two 

loops, B and E, are hydrophobic α-helices that dip halfway into the membrane from 

opposite sides. Together with the membrane-spanning helices, these loops form a pore with 

two filter regions responsible for the aquaporin specificity (Fig. 1.7A). The first filter region 

is formed by two NPA (Asp-Pro-Ala) motifs from loops B and E that meet at the center of 

the pore creating the first size exclusion zone. The second one, the ar/R filter 

(aromatic/arginine), is formed by four amino acids and is also a size exclusion barrier 

involved in substrate specificity (Hub and de Groot, 2008; Azad et al., 2012). A particularly 

interesting feature of AQPs is their capacity to assemble as homo- and/or hetero-tetramers 
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in the membrane, with each monomer acting as independent water channel (Fig. 1.7B; 

Murata et al., 2000; Fetter et al., 2004; Chaumont and Tyerman, 2014).  

 

 Considering their sequence homology and subcellular localization, AQPs have been 

grouped in five subfamilies: the plasma membrane intrinsic proteins (PIPs), the tonoplast 

intrinsic proteins (TIPs), the Nodulin26-like intrinsic proteins (NIPs), firstly found in the 

legume symbiosome, the small basic intrinsic proteins (SIPs), and the X (from 

“uncharacterized”) intrinsic proteins (XIPs) (Gomes et al., 2009; Chaumont and Tyerman, 

2014). This particularly high number of AQPs and their relative ubiquity and diversity in 

plant tissues may emerge from the continuous need of water absorption, flux and 

subsequent evaporation during plant growth and development, as well as from their 

involvement in the transport of several other solutes besides water (Bienert et al., 2007, 

2011; Gomes et al., 2009). Indeed, several plant AQPs have been shown to mediate the 

transport of small uncharged solutes, including glycerol, urea, ammonia, carbon dioxide, 

hydrogen peroxide, and the metalloids boric acid, silicic acid, and arsenite, which may 

account for an important role in plant metabolism, nutrition, and signaling processes 

(Chaumont and Tyerman, 2014). The movement of water and other solutes through AQPs 

or aquaglyceroporins is a passive mechanism driven by the concentration gradient of the 

transported molecule. 

 

 

Figure 1.6 Different pathways for water movement across plant tissues, excluding long-distance 

transport. In the apoplastic pathway (red), water moves through the apoplast (grey, cell walls). In 

the symplastic pathway (pink), water moves through plasmodesmata that bridge the cytoplasm 

(light brown) of adjacent cells. In the transcellular pathway (green), water moves across the plasma 

membranes of the adjacent cells through AQP (aquaporins, yellow). Adapted from Steudle and 

Peterson (1998). 
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1.4. Solute transporters in grapevine environment-interactions and 

berry quality 

 

Wine is an emblematic product of the Mediterranean culture. Grapevine (Vitis 

vinifera sp.) is native from the geographical region between the Black Sea and Persia, and 

might have been introduced in the Iberian Peninsula by the Phoenicians in the last 

millennium BC (Terral et al., 2010). Portugal has a long-standing tradition in grape-

growing, with a production of 828700 tons of grapes in 2013 (19th biggest world producer, 

FAO). Douro is the oldest controlled appellation (DOC) region in the world and is well-

known for its premium wines, including Port wine.  

 

 

Figure 1.7 3-D representation of AQP1 (De Groot et al., 2001) depicting the NPA filter (red), the 

Ar/R filter (blue) and the characteristic loops B and E that form α-helixes that dip into the membrane 

(pink). In (B) the tetrameric assembly of AQP5 (Horsefield et al., 2008) is shown. Protein 

simulation was downloaded from the Protein Data Bank (AQP1, 1H6I; AQP5, 3D9S) and 

visualized using the PyMOL software. 

 

The most important characteristic of grape berries, for both wine production and 

consumption as fresh fruit, is their ability to accumulate enormous amounts of sugars 

(Conde et al., 2007b). These sugars, mainly glucose and fructose, are produced in 

autotrophic tissues and translocated via the phloem in the form of sucrose, and are 

accumulated in the vacuole of grape berry tissues, mainly in the mesocarp (Agasse et al., 

2007; Fontes et al., 2011). In addition, a close relationship between sugar and anthocyanin 
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contents in berries has been reported, suggesting that sugar accumulation is central for the 

synthesis of secondary metabolites (Pirie and Mullins, 1977; Hunter et al., 1991; Larronde 

et al., 1998). Thus, unlocking the mechanisms and regulation of solute transporters is of 

the utmost scientific and agronomical importance, ultimately aiming at the improvement of 

berry quality through the optimization of agricultural practices. 

 

1.4.1 Grapevine sugar transporters  

 

Similarly to other dicots, the sucrose transporter family of grapevine is a small 

multigenic family of four members (Afoufa-Bastien et al., 2010; Lecourieux et al., 2014). 

Three sucrose transporter cDNAs were cloned from Shiraz and Cabernet Sauvignon berries 

(VvSUC11 or VvSUT1, VvSUC12; and VvSUC27) and characterized as H+-dependent 

sucrose transporters by heterologous expression in Saccharomyces cerevisiae (Ageorges et 

al., 2000; Manning et al., 2001; Lecourieux et al., 2014). As reported above, sucrose 

transporters are fundamental in phloem loading from the apoplast, and also in maintaining 

sucrose in the conducting bundle until it reaches the sites of unloading (Lecourieux et al., 

2014). This role was highlighted in maize, where the sut1 (Sucrose Transporter 1) null-

mutant showed leaves with reduced sucrose export leading to the accumulation of 

carbohydrates, chlorosis and early senescence, causing a reduced growth and delayed 

flowering (Slewinski et al., 2009). 

 

In grapevine, a shift from symplastic to apoplastic unloading of the phloem was 

reported at, or just prior to, the onset of ripening (Zhang et al., 2006). The blocking of the 

plasmodesmata correlated well with the increase in the expression and activity of cell wall 

invertases, which also coincided with a rise in apoplastic sugar concentration and osmotic 

pressure (Zhang et al., 2006). It was also observed that the expression of several grapevine 

MSTs increased after veraison (Afoufa-Bastien et al., 2010), hence pointing to a 

fundamental role of MSTs in the accumulation of the high amounts of sugars observed in 

the grape berry.  

 

A bioinformatics approach allowed the identification of 59 putative hexose 

transporter homologues in grapevine (Jaillon et al., 2007; Afoufa-Bastien et al., 2010; 

Lecourieux et al., 2014). Six full-length cDNAs encoding MSTs named VvHT1–VvHT6 

(Vitis vinifera hexose transporter) were cloned from several cultivars including Pinot noir, 
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Ugni blanc, Chardonnay, Cabernet Sauvignon, and Syrah (Fillion et al., 1999; Vignault et 

al., 2005; Hayes et al., 2007). Despite the high number of putative MSTs identified in 

grapevine, no other transporter, besides VvHT1-VvHT6 were cloned from berry tissues 

(Afoufa-Bastien et al., 2010; Lecourieux et al., 2014). The plasma membrane localization 

of VvHT1, VvHT4 and VvHT5 was demonstrated by immunofluorescence, 

immunolabeling, and GFP fusion proteins (Vignault et al., 2005; Hayes et al., 2007), but 

VvHT2 and VvHT6 (also known as VvTMT2, Vitis vinifera tonoplast monosaccharide 

transporter) seem to be localized at the tonoplast (Lecourieux et al., 2014). More recently, 

a polyol transporter termed VvPLT1 (Vitis vinifera polyol transporter 1) was cloned from 

mesocarp tissues, and the VvPLT1-GFP fusion protein is localized at the plasma membrane 

(Conde et al., 2015).  

 

To tackle the effects of biotic and abiotic stresses, plants have developed complex 

strategies involving a wide range of biochemical and physiological processes, which 

include the fine regulation of sugar transporters. Thus, it has been reported that powdery 

and downy mildew infections affect the expression of VvHT5 in grapevine leaves (Hayes 

et al., 2010). Also, infection with the Grapevine leaf-roll-associated virus-3 (GLRaV-3) 

decreases the accumulation of sugars and anthocyanins in berries paralleled with a 

decreased expression of VvHT1 and one of its transcription regulators, VvMSA (Cakir et 

al., 2003; Vega et al., 2011). Besides biotic stress, several other factors, like water deficit, 

alter the expression of MSTs in grapevine. This is the case for VvPLT1, whose expression 

is higher in mature berries subjected to water-deficit stress and correlates well with the 

observed increased amounts of polyols in pulp tissues (Conde et al., 2015). These results 

suggest that grapevine MSTs may be involved in the modification of the berry composition 

in response to environmental stress.  

 

Seventeen SWEETs were identified in grapevine and divided into five sub-classes 

(Chong et al., 2014). All genes were differently expressed in vegetative and reproductive 

organs, with VvSWEET3 and VvSWEET5a highly expressed in flowers, and VvSWEET4 

and VvSWEET15 in berries. The expression of the glucose uniporter VvSWEET4 was 

substantially increased after the inoculation of leaves with the necrophitic fungus Botrytis 

cinerea (Chong et al., 2014). In agreement, Arabidopsis null-mutants for the homolog 

AtSWEET4 and AtSWEET5 genes showed an increased resistance against Botrytis cinerea 
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infection, suggesting that plant SWEETs can be recruited by pathogens to their benefit 

(Chen et al., 2010). 

 

 1.4.2 Grapevine plastidial metabolism 

 

As stated above, a significant part of secondary metabolites or their intermediates 

are synthesized in plastids, but knowledge about their metabolism in grapevine is still very 

limited. Although anthocyanins are not synthesized in the plastid, the generation of 

aromatic amino acids in the shikimate pathway takes place exclusively within this 

organelle. Stress conditions stimulate the production of secondary metabolites in grapevine 

plastids (Chaves et al., 2010). In grape cell suspensions, the enzyme geranyl-diphosphate, 

that adds IPP to elongating chain during terpenoids biosynthesis is localized in the plastid 

(Soler et al., 1992) and IPP is compartmented into this organelle by a plastidial membrane 

protein (Soler et al., 1993). Furthermore, feeding experiments with detached leaves showed 

that monoterpenes are exclusively synthesized in the plastid via MEP pathway (Hampel et 

al., 2005), but sesquiterpenes may be generated in the plastid and cytosol (MVA pathway). 

A similar approach with detached berries confirmed that the exocarp is able to synthesize 

sesquiterpenes also via both pathways (May et al., 2013). 

 

As a woody perennial plant, grapevine relies in the accumulation of carbon reserves 

in the woody tissues and roots, to sustain its characteristic rapid seasonal growth. The starch 

accumulated in amyloplasts during the previous season, mainly in the roots, trunk and 

canes, is rapidly remobilized to allow the growth in the spring (Zapata et al., 2004). The 

molecular mechanism of starch accumulation in grapevine plastids is further explored in 

Chapter 2 in the context of the characterization of plastidial glucose-6-Pi translocators 

VvGPTs. 

 

1.4.3 Grapevine water relations and aquaporins 

 

Water transport in grapevine is an important research topic because water is the 

most important constituent of the fruit and, thereby, of the wine. Grape berries normally 

contain 75–85% water, which is the main solvent of sugars, acids and phenolic compounds 

(Conde et al., 2007b). Therefore, the quality, via the concentration of sugars and flavor 
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compounds, and yield of the vintage are directly affected by berry water content at harvest 

(Tyerman et al., 2012).  

 

Different resistances to soil water availability and leaf-to-air vapor pressure deficit 

are found among the numerous grapevine varieties (Costa et al., 2012). Grapevines are 

classified in two distinct groups regarding their control of stomatal opening/closure: 

isohydric (drought avoiders or “pessimistic”), and anisohydric (“optimistic”). So far, the 

contribution of aquaporins to the isohydric and anisohydric behaviours of the cultivars is 

still a matter of debate. Isohydric genotypes are characterized by a tight regulation of 

stomatal closure when exposed to water deficit. On the other hand, anisohydric cultivars 

typically show a less marked control of stomatal aperture under drought. Nevertheless, this 

classification cannot be strict because anisohydric cultivars may behave has isohydric, or 

vice-versa, depending on the experimental conditions (field vines vs. potted vines) and on 

the intensity of water deficit (Chaves et al., 2010). Thus, understanding the physiological 

and molecular bases of grapevine responses to water-deficit stress may allow the 

optimization of the irrigation protocols and the identification of water-stress resistant 

cultivars. 

 

Up to 30 AQPs have been found in grapevine genome and grouped in the five 

subfamilies described above (Fouquet et al., 2008; Shelden et al., 2009; Leitão et al., 2012; 

Sabir et al., 2014). Data from macroarrays showed that the expression levels of some PIPs 

and TIPs depend on the grape berry developmental stage, and a global decrease in AQP 

expression was observed during fruit maturation (Fouquet et al., 2008). The water transport 

activity of nine grapevine AQPs upon its expression in Xenopus laevis oocytes was reported 

by Shelden et al. (2009). Interestingly, only VvPIP2 (VvPIP2;1, VvPIP2;2, VvPIP2;3 and 

VvPIP2;4) and VvTIP (VvTIP1;1 and VvTIP2;1), but not VvPIP1 (VvPIP1;2 and 

VvPIP1;4), showed water transport activity. This agrees with previous reports made for 

maize, where PIP1 needs to be co-expressed with PIP2 members to effectively function as 

a water channel (Fetter et al., 2004). The activity of VvPIP2;1 (Shelden et al., 2009) and 

VvTIP2;1 (Leitão et al., 2012) were down-regulated by cytosolic acidosis, a mechanism of 

AQP regulation previously described (Tournaire-Roux et al., 2003). In VvTIP2;1 the 

histidine at position 131 in loop D is fundamental for the gating (Leitão et al., 2012).  
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More recently, the specificity of three VvPIPs and three VvTIPs was reported (Sabir 

et al., 2014). VvPIP1;4, VvPIP2;1, VvPIP2;3, VvTIP1;1, and VvTIP2;2 could mediate 

H2O2 transport and VvTIP1;1 and VvTIP2;2 transported H3BO3, which confirms the broad 

specificity of grapevine AQPs (Bienert et al., 2007, 2011; Gomes et al., 2009; Chaumont 

and Tyerman, 2014).  

 

It is generally assumed that aquaporins play a fundamental role in the maturation 

zone of the roots, where more suberization occurs and there is a blockage of the 

plasmodesmata. Interestingly, in fine roots of grapevine the highest AQP expression was 

observed in the root tip, dropping considerably in the maturation zone, which suggests that 

AQPs play a limited role in the control of water uptake in secondary growth zones 

(Gambetta et al., 2013).  

 

In Chapters 3 and 4 the diversity and role of grapevine aquaporins are further 

explored, and special emphasis will be given to intracellular aquaporins, in particular SIPs 

and XIPs.  

 

1.5 Research objectives 

 

Our group generally focus its research on the elucidation of the biochemical 

mechanisms and transport steps involved in the accumulation of sugars, organic acids, 

phenolics and water in the grape berry, and how these processes are coordinated during 

ripening and influenced by environmental stresses. In the present thesis, we aimed to 

characterize specific grapevine sugar and water transporters involved in intracellular 

metabolism, to investigate their role at tissue- and whole-plant levels and evaluate their 

impact in grape berry development and composition. Studies were performed with cultured 

cells and plant organs, including berries. In vitro plantlets, potted and field-grown plants 

under well-defined experimental conditions were the source of biological material. The 

work was developed in the context of national (FCT) and international (EU: Innovine) 

research projects in progress in our laboratory in cooperation with several national and 

international research groups. 

 

In Chapter 2, GPT members of grapevine were identified and two of them, VvGPT1 

and VvGPT2Ω, were cloned and characterized. Expression of 35S-VvGPT1-GFP and 35S-
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VvGPT2Ω-GFP in tobacco leaf epidermal cells showed that the fusion proteins localized 

at the plastidial envelope. These genes showed different expression levels and regulation 

in plant organs. VvGPT1 expression was higher in berries more exposed to the sun, thus 

subjected to higher temperatures. Results will be discussed in terms of the role of both 

glucose-6-Pi transporters in the accumulation of starch in storage tissues and in the 

secondary metabolism.  

 

In Chapter 3, the localization, expression and functional characterization of a SIP 

aquaporin from grapevine is described. VvSIP1 was expressed in leaves and berries from 

field-grown vines, and in leaves and stems from in vitro plantlets, but not in roots. When 

expressed in tobacco mesophyll cells and in Saccharomyces cerevisiae, fluorescent-tagged 

VvSIP1 was localized at the endoplasmic reticulum (ER). The capacity of VvSIP1 to 

transport water was accessed by stopped-flow spectroscopy in membrane vesicles from 

transformed yeasts. To provide further insights into gene function, the expression of 

VvSIP1 in mature grapes was also studied when vines were cultivated in different field 

conditions. Results will be discussed with reference to the potential role of an ER aquaporin 

in cell and plant physiology.  

 

Chapter 4 is devoted to the study of other atypical grapevine aquaporin, termed 

Uncharacterized Intrinsic Protein 1 (VvXIP1). VvXIP1 showed unusual substrate 

specificity. Stopped-flow spectrometry in microsomal vesicles from yeast transformed with 

pVV214-VvXIP1 revealed that VvXIP1 is unable to transport water but transports glycerol, 

copper, boron and H2O2. The response of VvXIP1 to environmental stresses and hormonal 

signals was also evaluated in grapevine tissues and cultured cells. Results will be discussed 

in terms of the physiological role of such atypical tonoplast aquaporin. The observed 

capacity of VvXIP1 to transport copper was particularly intriguing. 

 

Finally, in Chapter 5 the main conclusions of the present study are integrated with 

the state of the art, and results are discussed in terms of its implications for our 

understanding of grapevine - environment interactions at solute transport level. Moreover, 

the findings presented in the present thesis pave the way for future research avenues that 

are also discussed. 
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Abstract 

 

 In grapevine, starch accumulation in the trunk is important for winter storage of 

carbon and in the flower for reproductive development. Berries also accumulate starch in 

their plastids, which are also involved in the synthesis of aroma compounds important for 

fruit quality. The present work characterizes two glucose-phosphate translocators 

(VvGPT1 and VvGPT2) that control the accumulation of starch in grape amyloplasts. Three 

different splicing variants identified for VvGPT2 (VvGPT2α, VvGPT2β and VvGPT2Ω) 

were more expressed in the leaves than in other organs. In contrast, VvGPT1 transcripts 

were more abundant in mature berries, canes and flowers than in the leaves. Expression of 

35S-VvGPT1-GFP and 35S-VvGPT2Ω-GFP in tobacco leaf epidermal cells showed that 

the fusion proteins localized at the plastidial envelope. Complementation of the 

Arabidopsis pgi1-1 mutant impaired in leaf starch synthesis restored its ability to synthesize 

starch, demonstrating that VvGPT1 and VvGPT2Ω mediate the transport of glucose-6-Pi 

across the plastidial envelope. In grape cell suspensions, ABA, light and galactinol, 

together with sucrose and fructose, significantly increased the transcript abundance of 

VvGPT1, whereas VvGPT2Ω expression was affected only by sucrose. In addition, 

elicitation with MeJA strongly upregulated VvGPT1, VvGPT2Ω and VvPAL1, suggesting 

a role for GPTs in the production of secondary compounds in grapevine. Moreover, in 

grapevines cultivated in field conditions, VvGPT1 expression was higher in berries more 

exposed to the sun and subjected to higher temperatures. Although both VvGPT1 and 

VvGPT2 mediate the same function at the molecular level, they exhibit different expression 

levels and regulation in plant organs and in response to environmental and hormonal 

signals.  
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2.1 Introduction 

 

The berries of grapevine (Vitis vinifera L.) may be consumed as table fruits, dried 

raisins, and they are also used to prepare juices, wines and spirits. Grapevine is thus a fruit 

species with an utmost economic importance in many countries. The accumulation of 

glucose and fructose in the vacuoles of the mesocarp cells is one of the markers used to 

monitor berry ripening, and a determinant of berry quality. This accumulation, which starts 

at veraison, depends on several plasma membrane and tonoplast transporters whose 

identity, activity and regulation have been partially characterized (Conde et al., 2006; 

Chong et al., 2014; Lecourieux et al., 2014).  

 

In addition to soluble sugars, grape berries also accumulate starch (Fortes et al., 

2011). Starch is also present in grapevine flowers, where its abundance depends on the 

genotype and on the developmental stage (Lebon et al., 2005). However, accumulation of 

starch in the reproductive structures of grapevine is marginal and transitory when compared 

with trunk and root starch. As other perennial species, grapevine accumulates very large 

amounts of starch in the trunk at the end of summer and beginning of autumn. In spring, 

hydrolysis and remobilization of this storage carbon is important to ensure the early phases 

of vegetative development that occur prior to the emergence of photosynthetically active 

leaves (Zapata et al., 2004). The whole process of starch accumulation and remobilization 

heavily depends on the climatic conditions that control photosynthetic activity and phloem 

transport in autumn, and amylase activity and transport from the ray cells in the spring. The 

climate change that significantly affects the summer water regime and the temperatures all 

over the year may significantly impact these processes and alter the long-term vigor of 

grapevines. In spite of potential threats resulting from climate change on viticulture 

(Hannah et al., 2013; Van Leeuwen et al., 2013), relatively little has been done on the long 

term effects of climate change on vine physiology.  

 

Plastids from heterotrophic tissues are generally unable to generate hexoses-

phosphate from C3-compounds due to the lack of fructose 1,6-bisphosphatase activity 

(Entwistle and ap Rees, 1990), therefore they must import cytosolic hexoses-Pi through 

GPT (Weber and Linka, 2011). In the amyloplast, glucose-6-Pi is a precursor for starch and 

fatty acid synthesis and may be involved in the production of reducing equivalents 

(NADPH) via the oxidative pentose phosphate pathway (OPPP) (Fischer et al., 2011). The 
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first molecular identification of GPT was achieved from maize kernels (Kammerer et al., 

1998). Two GPT genes are present in Arabidopsis thaliana genome code for glucose-6-Pi 

antiporters displaying different expression patterns (Knappe et al., 2003; Niewiadomski et 

al., 2005). AtGPT1 is ubiquitously expressed whereas AtGPT2 is restricted to few tissues 

including senescent leaves and responds to the pathogen Pseudomonas syringae 

(Niewiadomski et al., 2005). Only the loss of AtGPT1 function causes a visible phenotype 

in t-DNA mutants of Arabidopsis, displaying an arrest of pollen and ovule development, 

probably due to an impairment of the plastidial OPPP that affects fatty acid metabolism 

(Niewiadomski et al., 2005).  

 

In the present study, GPT members of grapevine were identified and two, VvGPT1 

and VvGPT2Ω, were cloned and molecularly characterized. Functional complementation 

of Arabidopsis mutants showed that both proteins mediate the uptake of cytosolic glucose-

6-Pi into the plastid. VvGPTs showed different expression levels and regulation in plant 

organs and in response to environmental and hormonal signals. Elicitation of suspension-

cultured cells with methyl jasmonate (MeJA) increased the expression of VvGPT1, 

VvGPT2Ω and VvPAL1, suggesting that these plastidial phosphate translocators (pPT) may 

play an important role in the secondary metabolism pathways. In field conditions, VvGPT1 

transcripts were more abundant in berries sampled from the western side of the canopy 

(more exposed to the sun) than in berries from the eastern side.  

 

2.2 Results 

 

2.2.1 Identification of GPTs in grapevine and analyses of VvGPTs protein sequences 

 

A phylogenetic tree constructed with 13 pPTs from grapevine, Zea mays and 

Arabidopsis thaliana showed that this protein family clusters in 4 different groups (Fig. 

2.1). Two GPT genes were identified in V. vinifera, VvGPT1, localized in chr. 19, and 

VvGPT2, in chr. 10. VvGPT1 transcript shares the general GPT structure including 5 exons, 

and the last one was very small with only 12 bp (Fig. 2.2). Shortly after the cloning of 

VvGPT1 and VvGPT2, we were able to identify three different splicing variants for 

VvGPT2: VvGPT2α, VvGPT2β and VvGPT2Ω (Fig. 2.2). The cloned VvGPT2 was renamed 

VvGPT2Ω and VvGPT2β was also successfully cloned. To our knowledge, this is the first 

time that such splice variants for plastid phosphate translocators were identified. VvGPT1 
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and the two splicing variants of VvGPT2, VvGPT2β and VvGPT2Ω, were subsequently 

studied in more detail regarding their subcellular localization and function. VvGPT2α has 

a similar structure to VvGPT1 but VvGPT2β skips the 3rd exon, which results in a frame 

shift and the appearance of a stop codon at the beginning of exon 4. Also, VvGPT2β 

displays a splicing in the 3´UTR in the same location as VvGPT2α (Fig. 2.2). VvGPT2Ω 

retains the 4th intron which prolongs the 4th exon until the stop codon (Fig. 2.2). The 1000 

bp region upstream of the initial ATG codon of the ORF was used to study promoter cis-

acting regulatory elements. Several significant motifs associated with light regulation, 

pollen expression and plant specific transcription factors were identified (Table 2.1). 

 

 

 

 

Figure 2.1 Phylogenetic tree of pPT grapevine transporter family after aligning sequences from 

XPTs, GPTs, PPTs and TPTs from Vitis vinifera, maize (Zea mays), tomato (Solanum 

lycopersicum) and Arabidopsis.  
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Cis-acting element 

                                                    Number of copies 

                                VvGPT1                                    VvGPT2 

Light regulated motif 
44 

7 

20 

4 

Pollen expression 
20 

10 

21 

- 

ARR1 binding 21 20 

Pathogen response 17 - 

MYC motif - 12 

WRKY motif - 11 

Dof motif 36 30 

Table 2.1 Cis-acting elements identified by PlantPAN database in VvGPT1 and VvGPT2 promoter 

sequences. 

 

VvGPT1 (389 aa long), VvGPT2α (393 aa), VvGPT2β (252 aa) and VvGPT2Ω (456 

aa) proteins were aligned with GPTs from different species, without transit peptides (Fig. 

2.3 and 2.4) that were detected by online ChloroP 1.1 Server (Emanuelsson et al., 1999) 

and by alignment with the mature peptides of AtGPT1, AtGPT2, and ZmGPT1 (Kammerer 

et al., 1998). VvGPT1 and all VvGPT2 (-α, -β, and -Ω) proteins have transit peptides of 

approximately 69 aa (Fig. 2.3). The mature peptides of the analyzed GPT proteins are 

highly conserved, showing 47.10-96.91% similarity (Table 2.2) and 8 putative 

transmembrane domains (Fig. 2.3). Two conserved serines that may be targets for 

phosphorylation, the typical GPT domain TMKRISVIV (Knappe et al., 2003; Fig. 2.5) and 

the two conserved domains EamA (pfam00892) and TPT (pfam03151) were all identified 

(Fig. 2.3), except in VvGPT2β that lacks the TPT motif.  

 

2.2.2 Transcriptional analyses of VvGPT1, VvGPT2α, VvGPT2β and VvGPT2Ω 

 

The expression of VvGPT1 and VvGPT2 was studied by qRT-PCR in different 

grapevine organs (cv. Vinhão) (Fig. 2.6). VvGPT1 transcripts were more abundant in sink 

tissues, including berries, than in leaves (Fig. 2.6A). 
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Figure 2.2 Transcript structure of GPT1 and GPT2 genes from grapevine. Grey boxes represent 

exons, black lines show introns and dashed lines depict 5’ and 3’ UTRs.  

 

In berries, VvGPT1 transcript levels decreased from the green stage to veraison and 

increased again in mature fruits (Fig. 2.6B). Contrarily to VvGPT1, VvGPT2α and -Ω were 

more expressed in leaves than in sink tissues (Fig. 2.6C). The expression of VvGPT2β was 

marginal in all organs when compared to VvGPT2α and -Ω. 

 

2.2.3 Regulation of VvGPT1 expression in response to environmental and hormonal 

signals in heterotrophic tissues 

 

Because VvGPT1 expression analysis suggested a more important role for this pPT 

in heterotrophic tissues than in leaves, we studied its expression in berries sampled from 

cv. Aragonez vines cultivated in the field under well-established stress conditions (Fig. 

2.7). As described in Materials and methods, grapevines subjected to RDI were irrigated 

with 50% less water than those subjected to SDI, but results showed that VvGPT1 

expression in SDI and RDI conditions was not statistically different. In addition, average 

daily maximal temperatures were 4–5ºC higher in grapes facing the west (RDI-W and SDI-

W) than in those exposed to the east (RDI-E and SDI-E). The steady-state transcript levels 

of VvGPT1 increased after veraison (Fig. 2.8), just as in cv. Vinhão, and its expression 

followed the trend SDI-W > SDI-E and RDI-W > RDI-E, suggesting a positive effect of 

sun exposure on VvGPT1 transcript accumulation. To gain further insights on the regulation 

of VvGPT1 by environmental and hormonal stimuli, the expression of VvGPT1 was studied 

in heterotrophic CSB cultured cells. 
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Figure 2.3 Alignment of GPT proteins from different species. The transmembrane domains for 

AtGPT1 predicted in the ARAMEMNON database are depicted as black lines. EamA and TPT 

conserved domains are marked with black and grey dashed lines, respectively. Asterisk shows 

putative phosphorylation sites for all GPT members, and typical GPT domain TMKRISVIV is 

enclosed by a grey box.  

 

VvGPT1 expression changed 12 h after treatment with hormones, light or several 

sugars (Fig. 2.8A-D). Abscisic acid (ABA), light and galactinol increased the expression 

of VvGPT1 by 1.68, 1.85 and 1.3-fold respectively, and elicitation with MeJA strongly 

upregulated VvGPT1 transcription by 9-fold (Fig. 2.8A). Sucrose and fructose, which are 

very abundant in the mature berries, also upregulated VvGPT1 by 1.37 and 1.32-fold, 

respectively (Fig. 2.8C). The expression of VvPAL1, a gene coding for a phenylalanine 

ammonia-lyase, a key enzyme of the phenylpropanoid pathway, was also measured in 

response to MeJA to evaluate if the increased expression of VvGPTs could somehow be 

involved in the stimulation of secondary metabolism. Figure 2.8c shows that VvPAL1 
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expression was indeed strongly upregulated in response to 20 µM MeJA. Although the 

transcript levels of VvGPT2 splicing variants were less abundant in berries than in 

autotrophic leaves, we also studied the expression of VvGPT2Ω in heterotrophic CSB cells. 

The addition of MeJA and sucrose caused a 74 and 1.83-fold increase of VvGPT2Ω 

transcript levels, respectively (Fig. 2.9). 

 

 

Figure 2.4 Alignment of GPT transit peptides identified by the ChloroP software and protein 

alignment.  

 

 

Figure 2.5 Comparison of a highly conserved region of pPT transporters from grapevine. On the 

right side of the figure it’s depicted the conserved domains that identify different groups of the pPT 

family (Knappe et al., 2003).  
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Figure 2.6 VvGPT1 and VvGPT2 expression in cv. Vinhão. Quantitative Real-Time PCR was used 

to study VvGPT expression in different grapevine organs (A and C) and during berry maturation 

(B). Results indicate the mean ± SD of three independent experiments. Letters denote significant 

differences. 

 

 

Figure 2.7 VvGPT1 expression in berries from cv. Aragonez grown under different irrigation 

regimes and sun exposures. Vines subjected do RDI (regulated deficit irrigation) and SDI (sustained 

deficit irrigation) were used to study the VvGPT1 expression in response to water stress and grapes 
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were sampled accordingly to their higher (W, row facing west) or lower (E, row facing east) sun 

exposure. Results indicate the mean ± SD of three independent experiments. Letters denote 

significant differences. 

 

 

Figure 2.8 Effects of sugars, hormones and light on VvGPT1 transcript levels in Cabernet 

Sauvignon Berry cell suspensions. Results indicate the mean ± SD of three independent 

experiments. Letters denote significant differences.  

 

 

Figure 2.9 Effect of sugars, hormones and light on VvGPT2Ω transcript levels in Cabernet 

Sauvignon Berry cell suspensions. Results indicate the mean ± SD of three independent 

experiments. Letters denote significant differences. 
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2.2.4 Starch accumulation in heterotrophic tissues and starch synthase (VvSS) and 

α-amylase (VvAMY) expression 

 

The amount of starch in the berry and the steady-state transcript levels of starch 

synthase (VvSS) and α-amylase (VvAMY) were developmentally affected in cv. Vinhão. 

(Fig. 2.10a, d and e). Starch content of the berry sharply decreased from the green stage 

(66.4 ± 2.5 µg/g FW) to veraison, and then increased again in the mature phase (47.4 ± 1.6 

µg/g FW) (Fig. 2.10a).  

 

 

Figure 2.10 Starch in berries and canes. Starch was quantified during berry development and in 

canes (A), and free-hand slices from green berries (B) and canes (C) showing sites of starch 

accumulation after iodine staining. The expression of starch synthase (D) and α-amylase (E) was 
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studied by qRT-PCR during grape berry maturation and in canes. Results indicate the mean ± SD 

of three independent experiments. Letters denote significant differences. 

 

 Iodine staining of transversal sections of green berries showed that starch 

accumulated preferentially in the peripheral vascular bundle near the pedicel (Fig. 2.10B 

and 2.11). The increase in the expression of VvSS and VvAMY from veraison to mature 

phase correlated with the observed higher amounts of starch in the mature berries (Fig. 

2.10D and E). As shown before, a similar trend was followed by the expression levels of 

VvGPT1 (Fig. 2.6B).  

 

Starch levels in canes collected 2 weeks after harvest were much higher than in 

berries (Fig. 6A, 255.8 ± 11.1 mg/g FW), and accumulated in well-defined amyloplasts of 

parenchyma ray cells (Fig. 2.10c). α-amylase was highly expressed in canes, contrarily to 

starch synthase.  

 

 

 

Figure 2.11 Grape berry slices stained with Lugol’s solution. Starch accumulates 

predominately in the peripheral vascular bundle, and near the grape pedicel.  
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2.2.5 Subcellular localization and function of VvGPTs  

 

We cloned VvGPT1 and two splicing variants of VvGPT2 (VvGPT2β and 

VvGPT2Ω), which, contrarily to VvGPT2α, structurally differ from VvGPT1 (Fig. 2.2 and 

Fig. 2.4). To study the subcellular localization of VvGPT1, VvGPT2β and VvGPT2Ω, the 

corresponding GPT-GFP fusion were transiently expressed in tobacco epidermal cells. The 

pattern of fluorescence distribution around the plastid clearly suggested that both VvGPT1-

GFP and VvGPT2Ω-GFP fusion proteins were localized in the plastidial envelope (Fig. 

2.12), as previously shown with the same approach for other plastidial transporters 

(Gigolashvili et al., 2009, 2012). 

 

 

Figure 2.12. Subcellular localization of VvGPT1 (A, B and C) and VvGPT2Ω (D, E and 

F) in tobacco leaves. Nicotiana benthamiana leaves were infiltrated with Agrobacterium 

tumefaciens harboring the VvGPT1-GFP and VvGPT2Ω-GFP and after 2 days were 

observed in the confocal (A, B and C) and epifluorescence (D, E and F) microscopes. 

 

Contrarily, when tobacco cells were transformed with the 35S-VvGPT2β-GFP 

construct no fluorescence signal was observed (not shown), suggesting that the 

corresponding protein may be non-functional. This is in agreement with the sequence 

analysis of Fig. 2.4 showing that VvGPT2β lacks the characteristic TPT motif. As shown 

below, a clear GFP labeling of the plastidial membrane was also observed when 



Study of grapevine solute transporters involved in berry quality. A biochemical and molecular approach. 

54      
  

Arabidopsis thaliana was stably transformed with 35S-VvGPT1-GFP and 35S-VvGPT2Ω-

GFP constructs (Fig. 2.13, insets).  

 

Because the Arabidopsis homozygous mutant lacking GPT1 is lethal and the one 

lacking GPT2 does not show an obvious phenotype (Niewiadomski et al., 2005), the 

capacity of VvGPTs to transport glucose-6-Pi in planta was studied in the pgi1-1 mutant. 

The leaves from pgi1-1 are unable to accumulate starch due to the lack of plastidial 

phosphoglucose isomerase (PGI) activity (Fig. 2.13) and, as a result, they show a pale 

yellow color when stained with iodine (Yu et al., 2000; Niewiadomski et al., 2005). In the 

present study, when the pgi1-1 mutant was complemented with 35S-VvGPT1-GFP and 

35S-VvGPT2Ω-GFP constructs leaves recovered the typical strong iodine blue staining of 

the wild type (Fig. 2.14), suggesting that the capacity of chloroplasts to synthesize and 

accumulate starch was recovered, as shown before when the same mutant was 

complemented with AtGPT1 and AtGPT2 (Niewiadomski et al., 2005). Furthermore, the 

transformation with 35S-VvGPT2β-GFP did not recover the capacity of the leaves to 

synthesize starch (Fig. 2.15), in agreement with the probable non-functional nature of 

VvGPT2β. 

 

2.3 Discussion 

 

2.3.1 VvGPTs share typical features of GPT family and VvGPT2 is alternatively 

spliced 

 

Two GPT genes were identified in the grapevine genome, VvGPT1 and VvGPT2, 

and soon after the cloning of both genes three different splicing variants of VvGPT2 were 

found and named VvGPT2α, -β and -Ω. Alternative splicing is one of the main mechanisms 

underlying transcriptome and proteome plasticity. Recent studies pointed out to the 

extensive occurrence of these phenomena in plants and their importance in gene expression 

and stress response (Reddy et al., 2013). In grapevine, 30% of the genes with 2 or more 

exons produce different transcript isoforms, and 64% of the alternative spliced genes 

produced more than two isoforms (Vitulo et al., 2014).  

 

The GPT signature motif TMKRISVIV is present in VvGPT1, VvGPT2α and 

VvGPT2Ω, which shared with other GPTs a high degree of similarity. This motif contains 
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a serine that can be phosphorylated and has been associated with substrate specificity 

because it varies between groups of the pPT family (Fig. 2.4 and 2.5; Knappe et al., 2003).  

 

 

Figure 2.15 Schematic model of the strategy used to study glucose-6-Pi transport in the low-starch 

Arabidopsis mutant pgi1-1. 

 

2.3.2 VvGPTs are glucose-6-Pi translocators 

 

 VvGPT1 and VvGPT2Ω have plastidial transit peptides and the localization of the 

mature protein in the chloroplast envelope was confirmed by transient expression of GPT–

GFP fusion proteins in tobacco epidermal cells (Fig. 2.12). Although to the best of our 

knowledge this is the first time that a GPT-GFP is transiently expressed in tobacco leaves, 

the same pattern of fluorescence distribution around the plastid was observed for the 

plastidial transporters AtTPT (Gigolashvili et al., 2012) and AtBAT5 (Gigolashvili et al., 

2009). 
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Figure 2.14 VvGPT1 and VvGPT2Ω transport glucose-6Pi in planta. The pgi1-1 Arabidopsis 

mutant, lacking phospho-glucose isomerase activity, is unable to convert fructose-6-Pi to glucose-

6-Pi leading to a low-starch phenotype in the leaves (A) (Yu et al. 2000). Plants transformed with 

35S-VvGPT1-GFP (B) and 35S-VvGPT2Ω-GFP (C) are able to accumulate starch by import 

cytosolic glucose-6-Pi and finishing the biosynthetic pathway (Niewiadomski et al., 2005). 

Representative experiment showing Arabidopsis leaves stained with iodine solution at the end of a 

12 h photoperiod. Insets, confocal images of Arabidopsis leaves, showing the localization of 

VvGPT1-GFP and VvGPT2Ω-GFP in the chloroplast envelope.  

 

 

Figure 2.15 VvGPT2Ω does not transport glucose-6-Pi in planta. For details see Fig. 2.13 and 

legend of Fig 2.14.  
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Moreover, Arabidopsis pgi1-1 mutants expressing 35S-VvGPT1-GFP and 35S-VvGPT2Ω-

GFP constructs displayed a clear GFP labeling of the chloroplast envelope (Fig. 2.14). As 

previously mentioned, these pgi1-1 mutants are unable to accumulate transient starch in the 

leaves, which upon iodine staining show a pale yellow color (Yu et al. 2000). In our 

experimental conditions these observations were reproduced, but leaves from stably 

transformed plants overexpressing pgi1-1-35S-VvGPT1-GFP or pgi1-1-35S-VvGPT2Ω-

GFP showed a typical strong iodine blue staining (Fig. 2.14), demonstrating that the 

chloroplasts recovered their capacity to accumulate starch. Altogether, these findings 

clearly demonstrate that VvGPT1 and VvGPT2Ω are indeed glucose-6-Pi transporters.  

  

 Regarding VvGPT2β, the results obtained in both Arabidopsis and tobacco suggests 

that this splicing version, which lacks the TPT motif, codes for a protein that has no function 

or is rapidly degraded. This phenomenon is sometimes observed in transcripts that undergo 

alternative splicing (Uversky, 2014). Much like the remaining VvGPT2 splicing variants, 

VvGPTα is mostly expressed in autotrophic tissues. Because the present study was more 

focused on the role of VvGPTs in heterotrophic tissues we centered the work on VvGPT1. 

Nonetheless, both the localization and function of VvGPTα are good targets for future 

work, as the discovery of different functional or regulatory roles among splicing variants 

is of great scientific interest. Interestingly, in Arabidopsis, GPT2 seems to be involved in 

the dynamic acclimation of leaves to increased light intensities, possibly by altering the 

sugar partitioning between the cytosol and the chloroplast or by altering the phosphate 

balance of the cell (Athanasiou et al., 2010). 

 

2.3.3 VVGPT1 is likely involved in starch accumulation in heterotrophic tissues 

  

 In berries of cv. Vinhão, VvGPT1 expression, which decreased from the green stage 

to the veraison before increasing again in the mature state, correlated well with the variation 

of starch levels along berry development. In tomato fruit, a relationship between starch, 

sucrose, sucrose synthase and symplastic loading has been suggested (N’tchobo et al., 

1999; Nguyen-Quoc and Foyer, 2001). Also, starch and malate levels present in the green 

fruit were related with the content in soluble sugars of the ripe tomato (Centeno et al., 

2011). In green berries of grape, starch may also be involved in the regulation of fruit 

loading since it accumulates preferentially in the outer layers of the mesocarp in the 

peripheral vascular bundle near the pedicel. VvSS, VvAMY and VvGPT1 expressions peaked 



Study of grapevine solute transporters involved in berry quality. A biochemical and molecular approach. 

58      
  

at the mature stage when starch amount were also high. This suggests that a high turnover 

of starch occurs at this stage, involving an upregulation of carbon compartmentation into 

the amyloplast, paralleled by starch synthesis and degradation.  

  

 As a woody perennial plant, grapevine relies on carbohydrate reserves accumulated 

in the canes, roots and trunk to sustain rapid seasonal growth phases (Zapata et al., 2004). 

Even several weeks after bud burst, carbon assimilation is low and growth is maintained 

by sugars assimilated in the previous season that are mobilized from storage organs to sink 

tissues (Zapata et al., 2004). Canes from cv. Vinhão showed a high steady-state expression 

of VvGPT1 and accumulated high amounts of starch in well-defined amyloplasts present in 

xylem rays (Fig. 2.12). Given the plastidial localization of VvGPT1 and its capacity to 

transport glucose-6-Pi, it is likely that this protein is fundamental for carbohydrate 

accumulation in grapevine storage tissues, an important parameter of plant productivity. 

 

2.3.4 VvGPT1 provides glucose-6-Pi for the secondary metabolism within plastids 

 

 In grapevine, stress conditions increase the production of secondary metabolites that 

are synthesized in the plastid (Chaves et al., 2010), which may require additional glucose-

6-Pi to increase the availability of reducing power via the OPPP. Our results showed that 

VvGPT1 expression was slightly increased by ABA and galactinol but was strongly 

upregulated by MeJA in heterotrophic CSB cells growing in the dark. Because MeJA also 

strongly upregulated the expression of VvPAL1, pPT transporters may be important to feed 

the plastids with precursors for the secondary metabolism. In agreement with this 

hypothesis, sucrose, which has been associated with the production of secondary 

compounds in grape cells (Cormier et al., 1989; Larronde et al., 1998), also stimulated the 

expression of VvGPT1 (Fig. 2.8). MeJA is an important plant regulator involved in fruit 

ripening, senescence, vegetative growth, cell cycle regulation, and plant defense 

mechanisms in response to herbivores, pathogen attack, and environmental stresses 

(Creelman and Rao, 2002; Wasternack and Hause, 2002; Liechti and Farmer, 2002; Castillo 

and Léon, 2008; Pauwels and Goosens, 2011). The observed strong upregulation of 

VvPAL1 mediated by MeJA, is in line with previous reports showing that this hormone 

promotes the accumulation of several phenolic compounds including phytoalexins, 

anthocyanins, resveratrol and viniferins, and also induces sesquiterpene biosynthesis in 

grape cells (Krisa et al., 1999; Qu et al., 2011; Righetti et al., 2007; Santamaria et al., 2011; 
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Santamaria et al., 2012; D’Onofrio et al., 2009). In addition, MeJA was shown to activate 

the biosynthesis of terpenoids in the leaves of Vitis cv. Morio Muskat (Hampel et al., 2005). 

Furthermore, the observation that in cv. Aragonez cultivated under well-controlled field 

conditions VvGPTs expression was higher in west-exposed berries – subjected to higher 

temperatures and light intensities – is also in agreement with a possible role of VvGPT1 on 

secondary metabolism, since water deficit, high berry temperature and sun exposure can 

promote the synthesis of some secondary compounds in grapevine (Chaves et al., 2010; 

Carbonell-Bejerano et al., 2014). 

 

2.3.5 Other possible roles of VvGPTs   

 

 VvGPT1 showed a high steady-state expression in grapevine flowers, which may 

account for a higher influx into the plastid of precursors of fatty acid metabolism and 

secondary metabolism. There is a strong relationship between starch and flower 

development in grapevine (Lebon et al., 2005). In Arabidopsis, AtGPT1 t-DNA insertion 

mutants displayed altered pollen and ovule development caused by the disruption of the 

plastidial OPPP, most likely affecting fatty acid metabolism during gametogenesis 

(Niewiadomski et al., 2005).  

  

 When compared to heterotrophic tissues, steady-state levels of VvGPT1 in leaves 

were relatively low, contrarily to VvGPT2 (Fig. 2.6a and b). Similarly to plastids from 

heterotrophic tissues, guard-cell chloroplasts are unable to convert triose-phosphates into 

hexose-phosphates (Hedrich et al., 1985) and rely on the import of cytosolic glucose-6-Pi 

to synthesize starch (Overlach et al., 1993), which is mobilized during the day and 

converted to malate and used as a counter-ion for potassium (Flügge et al., 1999). VvGPT2 

may thus play an important role on the import of G-6-Pi into the plastids of guard cells. 

  

 As previously mentioned, besides its role in the accumulation of several secondary 

metabolites, MeJa is also involved in leaf senescence (Castillo and Léon, 2008; Pauwels 

and Goosens, 2011). The expression of AtGPT2 increase in senescent leaves 

(Niewiadomski et al., 2005; Pourtau et al., 2006). In agreement, VvGPT2α and VvGPT2Ω 

showed higher expression levels in leaves and were additionally upregulated by MeJA in 

cultured cells, which together might suggest a possible involvement of VvGPT2 in leaf 

senescence. Finally, a recent study assigned GPT2 with a fundamental role in the 
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development of Arabidopsis seedlings, controlling the sugar partitioning and/or phosphate 

between the plastids and the cytosol (Dyson et al., 2014).  

  

 In conclusion, the present work provides the first characterization of plastid 

glucose-6-Pi transporters from grapevine, with a special emphasis given to VvGPT1 that 

plays an important role in starch accumulation in heterotrophic tissues. Although both 

VvGPT1 and VvGPT2 appear to mediate the same function at the molecular level, they are 

differentially expressed and regulated in plant organs and in response to environmental and 

hormonal signals. 

 

2.4 Material and Methods 

 

2.4.1 Plant Material 

 

Field-grown grapevines (Vitis vinifera L.) of cv. Aragonez and Vinhão were used 

in the present study. cv. Aragonez vines were collected from commercial vineyards in 

Reguengos de Monsaraz and Estremoz (south of Portugal) and cv. Vinhão from a 

commercial vineyard in Guimarães (north of Portugal). Rows had north–south orientation. 

The cv. Aragonez vines cultivated in Reguengos de Monsaraz were subjected to RDI 

(regulated deficit irrigation) and SDI (sustained deficit irrigation), within the scope of the 

European Project KBBE Innovine. RDI vines were supplied with 50% less water than SDI 

vines, and berries from SDI vines were collected from the green to mature phase to study 

gene expression during maturation. At the mature stage, the following values for leaf water 

potential were measured: –0.7 MPa (RDI) and –0.5 MPa (SDI). The oscillations in berry 

temperature were continuously monitored. Average daily maximal temperatures in grapes 

from clusters exposed to the west (RDI-W and SDI-W) were 4-5ºC higher than in east-

exposed clusters (RDI-E and SDI-E). Grape berry clusters from 4–6 plants, located in three 

different rows, were collected, and grapes from three different berry clusters per plant were 

harvested and immediately frozen in liquid nitrogen. Berries were sampled at green (4 

weeks after flowering (WAF)), veraison (9 WAF), and mature (15 WAF) stages of 

development and ripening. Mature leaves, flowers and canes from cv. Vinhão were used to 

study VvGPT expression.  
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Cultured cells from grape berry pulp (CSB, Cabernet Sauvignon Berry) were grown 

in liquid MS medium (Murashige and Skoog, 1962) supplemented with 2% (w/v) sucrose, 

and maintained in 250 mL flasks on a rotatory shaker at 100 rpm in the dark at 25ºC, 

according to Decendit et al. (1996). To study the effect of different treatments on VvGPT 

expression, 5 mL aliquots were incubated for 12 h with 20 µM ABA, 20 µM salicylic acid 

(SA), 20 µM methyl jasmonate (MeJA), 1 mM galactinol, 150 mM sucrose, 150 mM 

glucose and 150 mM fructose. Also, to study the effect of light exposure, cell aliquots were 

exposed to light (90 µmol m-2 s-1) for 12 h. Cells were immediately frozen in liquid nitrogen 

and stored at -80 °C. 

 

2.4.2 In silico studies 

 

VvGPTs were identified in grapevine genome (V. vinifera cv. Pinot Noir clone 

PN40024 genome sequence; Jaillon et al., 2007) by homology search with AtGPT1. Protein 

sequences were obtained from the database of the National Center for Biotechnology 

Information (NCBI). Sequences from the grapevine genome were used to perform a 

promoter analysis using the Plant Promoter Analysis Navigator - PlantPAN software 

(Chang et al. 2008). Protein alignment was performed by Prankster and the result visualized 

in Genedoc (Nicholas et al., 1997). Phylogenetic trees were obtained with Phylip-3.69 

software package (Felsenstein, 1986), and bootstrap values from 1000 trials were used. 

Chloroplast transit peptides were detected using the software ChloroP (Emmanuelson et 

al., 1999) and phosphorylation sites predicted by NetPhos 2.0 Server (Blom et al., 1999). 

Detection of conserved domains was performed using the CDD method available online at 

the NCBI website (Marchler-Bauer et al., 2013). 

 

2.4.3 RNA isolation and cDNA synthesis 

 

Total RNA was isolated with RNeasy Plant Mini Kit (QIAGEN) following 

manufacturer’s instructions, except that the extraction buffer was changed to 2% CTAB, 

2% soluble polyvinylpyrrolidone K-30, 300 mM Tris-HCl (pH 8.0), 25 mM EDTA, 2.0 M 

NaCl and 2% (v/v) β-mercaptoethanol (Reid et al., 2006). After DNAse treatment, RNA 

integrity was checked in a 1% agarose gel, and first strand cDNA synthesis was performed 

with the Omniscript RT kit (QIAGEN), following the manufacturer’s instructions.  
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2.4.4 Subcellular localization of VvGPT1 and VvGPT2Ω 

 

The 35S-VvGPT1-GFP, 35S-VvGPT2β-GFP and 35S-VvGPT2Ω-GFP constructs 

were prepared using GATEWAY as described previously using the primers given on Table 

3 (Noronha et al., 2014). Constructs were introduced in Agrobacterium tumefaciens 

(GV3101) and transient transformation Nicotiana benthamiana leaf epidermal cells was 

performed according to Sparkes et al. (2006). Briefly, overnight grown bacterial cultures 

were diluted to OD600nm = 0.1 with infiltration buffer (50 mM MES pH 5.6, 2 mM Na3PO4, 

0.5% glucose and 100 μM acetosyringone). Four-weeks-old tobacco plants were infiltrated 

with the bacterial cultures and leaf discs were examined under the confocal and 

epifluorescence microscope 3 days after. 

 

 Primer forward (5’- 3’) Primer reverse (5’- 3’) 

pH7FWG2-VvGPT1-GFP 

 

GGGGACAAGTTTGTACAAA 

AAAGCAGGCTTCATGATCTG 

CTCGATAAAGCAATCCG 

GGGGACCACTTTGTACAAG 

AAAGCTGGGTCCTGCTTTG 

CCTGAGAATACAAGAAAG 

pH7FWG2-VvGPT2β-GFP 

GGGGACAAGTTTGTACAAAAA 

AGCAGGCTGAAATATGATTTC 

TTCAATTAAACAATCAACTGGG 

GGGGACCACTTTGTACA 

AGAAAGCTGGGTGAGGG 

AGAGATCTGATCCAGG 

pH7FWG2-VvGPT2Ω-GFP 

GGGGACAAGTTTGTACAAAAA 

AGCAGGCTGAAATATGATTTC 

TTCAATTAAACAATCAACTGGG 

GGGGACCACTTTGTACAAGA 

AAGCTGGGTGCTGTTCTGC 

ATTTTCATTTTTAGTTTTCC 

qRT-PCR VvGPT1 TCAATGCTCTTGGAGCTGCCATC CTTCCTCACTGCTTTGCCTGAG 

qRT-PCR VvGPT2α ACCAAATTTCATATGGTGGGT TTTGCCTGCGAATAGAGAAA 

qRT-PCR VvGPT2β GCACTGGCTGCTATCACTTG TGACAGAAATCCGCTTCATC 

qRT-PCR VvGPT2Ω ACACCTGTTCAACCCATCAA GGGATAAGAATTTACCTGCGA 

qRT-PCR starch synthase TCGGATACTGACAGTTAGCAAGGG ATGCAGACCATATCCACCTTCGG 

qRT-PCR α-amylase GGTTCTACTCAGGGTCACTGG TGATGCAATTTCAGATCGGT 

qRT-PCR VvPAL1 CCGAACCGAATCAAGGACTG GTTCCAGCCACTGAGACAAT 

PCR detection VvGPT2α GGGATGAAGGGGAAGTCTGT TCACTGCTTTGCCTGCGAATAGAGAA 

PCR detection VvGPT2β GCACTGGCTGCTATCACTTGTAT TCACTGCTTTGCCTGCGAATAGAGAA 

PCR detection VvGPT2Ω CACATCATCAAGAGTGGTGAGC GGGATAAGAATTTACCTGCGA 

Table 3 Primers used in this study 

 

 

 



H. Noronha   Chapter 2 - VvGPTs 

   63 
 

2.4.5 Transformation of Arabidopsis pgi1-1 plants 

 

Arabidopsis pgi1-1 homozygous line (Yu et al., 2000) was transformed by floral 

dipping (Clough and Bent 1998) with 35S-VvGPT1-GFP, 35S-VvGPT2β-GFP and 35S-

VvGPT2Ω-GFP constructs. Transformed plants were self-pollinated and homozygous lines 

were obtained. The presence of VvGPT1, VvGPT2β and VvGPT2Ω in the genome of 

transformed Arabidopsis was confirmed by PCR and confocal microscopy. Plants were 

maintained in a growth chamber with 12 h light period.  

 

2.4.6 Starch staining  

 

 Free-hand slices of grape berries and canes were stained with Lugol’s solution (1% 

(w/v) KI, 0.5% (w/v) I2) and observed in a light microscope. Arabidopsis leaves from pgi1-

1 mutants overexpressing VvGPT1, VvGPT2β and VvGPT2Ω were sampled 4 weeks after 

germination from different positions, placed in a boiling bath with 80% ethanol (v/v) to 

remove chlorophylls, stained with iodine and incubated in deionized water to remove 

unspecific labelling. Images of Fig. 2.13 are representative of several experiments with 

similar results.  

 

2.4.7 Starch quantification 

 

 Starch was quantified in berries and canes following the method by Smith and 

Zeeman (2006) with slight modifications. Frozen berry (1 g FW) and cane (0.1 g FW) 

tissues were washed 3 times with 5 mL 80% ethanol to remove soluble sugars, and the 

starch grains were gelatinized with 15 min incubation in a boiling bath. Starch was 

enzymatically degraded by adding α-amylase (1U, Sigma-Aldrich) and β-glucosidase 

(10U, Sigma-Aldrich) in a medium containing 200 mM sodium acetate (pH 5.5) and 

glucose was quantified using the Glucose (HK) Assay Kit (Sigma). 

  

2.4.8 Real-Time PCR studies 

 

 Quantitative real-time PCR reactions were prepared with a QuantiTect SYBR Green 

PCR Kit (QIAGEN) and were performed in a CFX96 Real-Time Detection System (Bio-

Rad), at an annealing temperature of 50ºC. RNA and cDNA were obtained as mentioned 
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above. Experiments were done in triplicate (biological replicates) with the software Bio-

Rad CFX Manager (Bio-Rad), using VvGAPDH as internal control. After each run, melting 

curves were performed to check for unspecific and primer dimer amplification. Data was 

analyzed using the CFX Manager Software (Bio-Rad), and comparison of gene expression 

was performed following the 2-ΔΔCT method (Livak and Schmittgen, 2001). The primers 

used to study gene expression are shown Table 2.3. 

  

2.4.9 Statistical analysis  

 

 The results were statistically analyzed by Student's t-test and by Analysis of 

Variances tests (one-way ANOVA) using Prism vs. 5 (GraphPad Software, Inc.). For each 

condition, differences between mean values are identified with different letters. 

 

2.4.10 Sequences accession numbers 

 

 Am.trGPT1 (U5DAK5), AtGPT1 (Q9M5A9), AtGPT2 (Q94B38), AtPPT 

(Q8RXN3), AtTPT (Q9ZSR7), AtXPT (Q9LF61), MtGPT1 (G7J1A0), OsGPT1 (Q94JS6), 

SlGPT1 (K4CHA8), SlGPT2 (K4BFE6), SlXPT1 (K4AY31), VvGPT1 (KP133859), 

VvGPT2 (KP133860), VvPAL1 (EC987386), VvPPT (D7SHQ5), VvTPT (D7TJE0), 

VvXPT (F6I5C8), ZmGPT1 (K7UEC7), ZmPPT1 (P93642), ZmTPT1 (B4FWC0). 
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The grape aquaporin VvSIP1 transports water across 

the ER membrane 
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Abstract 

 

Water diffusion through biological membranes is facilitated by aquaporins, 

members of the widespread Major Intrinsic Proteins (MIPs). In the present study, the 

localization, expression and functional characterization of a SIP from the grapevine were 

assessed. VvSIP1 was expressed in leaves and berries from field-grown vines, and in leaves 

and stems from in vitro plantlets, but not in roots. When expressed in tobacco mesophyll 

cells and in Saccharomyces cerevisiae, fluorescent-tagged VvSIP1 was localized at the 

endoplasmic reticulum (ER). Stopped-flow spectroscopy showed that VvSIP1-enriched ER 

membrane vesicles from yeast exhibited higher water permeability and lower Ea for water 

transport than control vesicles, indicating the involvement of protein mediated water 

diffusion. This aquaporin was able to transport water but not glycerol, urea, sorbitol, 

glucose and inositol. VvSIP1 expression in Xenopus oocytes failed to increase the water 

permeability of the plasma membrane. VvSIP1-His-tag was solubilized and purified to 

homogeneity from yeast ER membranes and the reconstitution of the purified protein in 

phosphatidylethanolamine liposomes confirmed its water channel activity. To provide 

further insights into gene function, the expression of VvSIP1 in mature grapes was studied 

when vines were cultivated in different field conditions, but its transcript levels did not 

increase significantly in water stressed plants and western-exposed berries. However, the 

expression of the aquaporins VvSIP1, VvPIP2;2 and VvTIP1;1 was upregulated by heat in 

cultured cells. 
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3.1 Introduction 

 

The physiological role of intracellular aquaporins (AQP) in plants is not yet clear 

and remains a stimulating matter of debate (for reviews see Ishibashi, 2006; Nozaki et al., 

2008; Maeshima and Ishikawa, 2008; Gomes et al., 2009; Wudick et al., 2009; Conde et 

al., 2010). Intracellular AQPs may play important roles in organelle water transport and 

intracellular water homeostasis, but they may also transport small solutes important for cell 

signaling (Gomes et al., 2009).  

 

Comparatively to other organisms, plants appear to have a remarkable large number 

of aquaporins ubiquitously expressed (Javot and Maurel, 2002; Javot et al., 2003). 

Following the identification of Arabidopsis thaliana AtTIP1;1 as the first plant water 

channel (Höfte et al., 1992; Maurel et al., 1993), several intracellular aquaporins have been 

described, particularly at the tonoplast (reviewed by Wudick et al., 2009). However, three 

SIPs (Small Basic Intrinsic Protein) and one NIP (Nodulin-like Intrinsic Protein) from 

Arabidopsis have shown to localize at the ER (Ishikawa et al., 2005; Mituzani et al., 2006). 

Also, an aquaporin able to transport CO2, NtAQP1, was shown to be localized at the 

chloroplast membranes (Uehlein et al., 2003, 2008). AQP8 and AQP9 from mammals were 

localized in the membrane system of the mitochondria (Calamita et al., 2005; Amiry-

Moghaddam et al., 2005), and more recently Arabidopsis AtTIP5;1 was specifically found 

in the mitochondria of pollen tubes (Soto et al., 2010). 

 

SIPs constitute a subfamily of MIPs that was identified for the first time by database 

mining and phylogenetic analyses (Johanson and Gustavsson, 2002), and are related to 

mammalian AQP11 and AQP12 in their intracellular localization and function (reviewed 

by Ishibashi, 2006). Each SIP member may exhibit a particular pattern of expression in the 

plant and play a role specific to each cell. Arabidopsis thaliana SIP1;1 is expressed in the 

roots and flowers, especially in stamens, and pollens, and in trichomes of rosette leaves. 

AtSIP1;2 is expressed in the cotyledon and hydathode tissue of rosette leaves. AtSIP2;1 is 

expressed in the vascular tissue of roots and the leaf veins, in flowers, pollen and siliques 

(Ishikawa et al., 2005).  

 

Regarding key distinctive structural characteristics of SIPs, the first NPA motif of 

the loop B, which participates in the formation of an essential constriction region, is 
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changed to NPT, NPC, or NPL in AtSIP1;1, AtSIP1;2, and AtSIP2;1, respectively, and to 

NPC or NPT in human aquaporins AQP11 and AQP12, respectively. The two NPA motifs 

are involved in the selection of substrate through the hydrogen bond formation between a 

water molecule and the asparagine residue. Thus, any variation of the NPA motif might 

directly reflect the substrate specificity and/or velocity of the water transport (reviewed by 

Ishibashi, 2006; Maeshima and Ishikawa, 2008; Gomes et al., 2009). The SIP members are 

also relatively rich in basic residues such as lysine, and their isoelectric points are higher 

than in aquaporins from other subfamilies.  

 

Grape berries are sophisticated biochemical factories of major economic 

importance. They import and accumulate water, minerals, sugars and amino acids, and 

synthesize organic acids, tannins, anthocyanins as well as flavor and aroma compounds. 

The development and maturation of grape berries have received considerable scientific 

scrutiny because of both the uniqueness of such processes to plant biology and the 

importance of these fruits as a significant component of the human diet and wine industry 

(Conde et al., 2007). The grape genome has only two SIP genes, VvSIP1 and VvSIP2, 

encoding a SIP1 and SIP2 subtype, respectively. The present study investigates the 

expression of VvSIP1 in leaves and grape berries throughout the season and the subcellular 

localization of the protein fused to a fluorescent tag both in tobacco leaves and yeast. 

Expression of VvSIP1 in Xenopus oocytes did not increase the water permeability of the 

plasma membrane. In contrast, when expressed in yeast, VvSIP1-enriched ER membrane 

vesicles exhibited higher water permeability than control vesicles, as determined by 

stopped-flow spectroscopy, and the protein was unable to accept other substrates, including 

glycerol, urea, sorbitol, glucose and inositol. VvSIP1 protein was also purified to 

homogeneity and its water transport activity was reconstituted in 

phosphatidylethanolamine artificial vesicles. The potential role of VvSIP1 in stress 

response was studied in field-grown grapevines and grape cell cultures. 

 

3.2 Results 

 

3.2.1 Analysis of SIP1s protein sequences 

 

The amino acid sequence of Vitis vinifera VvSIP1 was compared to SIP1 

aquaporins from A. thaliana, Zea mays (maize), Olea europaea (olive), Oryza sativa (rice), 
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Medicago truncatula and the moss Physcomitrella patens (Fig. 3.1). All proteins share 6 

transmembrane domains and two intracellular and extracellular loops that fold into the 

membrane and interact with each other through two “NPA” motifs. A 3D computer 

simulation of VvSIP1 using SoPIP2;1 as a template (Thornroth-Horesfiel et al., 2006) 

confirmed that these “NPA” motives form a central constriction. Except for MtSIP1;1 and 

AtSIP1;2, the first “NPA” motive is changed to NPT (Fig. 3.1). The R1 (I, L,V or N), R2 

(I, L or V), R3 (P) and R4 (I or N) residues, which form the Ar/R filter meet proximal to 

the central constriction formed by the two “NPA” motives. Contrarily to most PIPs, TIPs 

and NIPs, which contain an arginine (R) in R4 residue, the SIP1 proteins analyzed show a 

conserved asparagine (N), except in the case of AtSIPs. In SIP1 sequences, the R3 residue 

is a conserved proline (P), which seems a characteristic of SIP1 members. Furthermore, a 

highly conserved AFGWAYI motif is present in the Loop E of all SIP1s.  
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Figure 3.1 Alignment of seven SIP1 proteins showing six transmembrane domains (TMH1-6) and 

two intracellular and extracellular loops containing the conserved “NPA” motives (black lines) and 

the four amino acids corresponding to the Ar/R filter (R1-4). 

 

3.2.2 Expression studies of VvSIP1  

 

To study the expression of VvSIP1, total RNA was isolated from cv. Vinhão leaves 

and berries and from grape berries of cv. Aragonez at three different developmental stages. 

RNAs from grapevine plantlets growing in vitro and from liquid cultured cells were also 

isolated to study the transcript levels of VvSIP1. In cv. Vinhão, VvSIP1 transcripts were 

detected in all samples, but were more abundant at the end of the season, both in leaves and 

mature grapes (Fig. 3.2A and B). Conversely, in berries from cv. Aragonez VvSIP1 

expression decreased during maturation (Fig. 3.2C). In 3-months old grapevine plantlets 

growing in vitro VvSIP1 transcripts were very abundant in leaves and stem but were not 

detected in roots (not shown). Aragonez vines cultivated under field conditions were also 

used to study VvSIP1 expression in berries in response to water deficit and different sun 

exposures (Fig. 3.2D and E). As described in material and methods, grapevines subjected 

to regulated deficit irrigation (RDI) were irrigated with 50% less water than those subjected 

to sustained deficit irrigation (SDI). In addition, average daily maximum temperatures were 

4-5ºC higher in grapes exposed to west (RDI-W and SDI-W) than in those exposed to east 

(RDI-E and SDI-E). Results showed that transcript levels of VvSIP1 did not increase 

significantly in berries from water stressed plants and in berries from western-exposed 

clusters. The expression of VvSIP1 was also studied in mature berries from vines cultivated 

under more pronounced water deficit conditions (non-irrigation), but again, the expression 

of VvSIP1 did not increase significantly (Fig. 3.2E). In suspension-cultured cells (CSB, 

Cabernet Sauvignon Berry), VvSIP1 expression (Fig. 3.2F) did not change after treatments 

with salt (150 mM NaCl) and osmotic stresses (2% (w/v) PEG), as well as after elicitation 

with the stress-related hormones abscisic acid (150 µM) and salicylic acid (150 µM). These 

stress conditions have been reported to induce physiological changes in plant cells. 

 

In contrast, VvSIP1 transcript levels were significantly increased after an overnight 

incubation at 37ºC, while the expression of VvGPT (Vitis vinifera Glucose-Pi Transporter) 

decreased in the same experimental conditions (Fig. 3.3; negative control). Heat seems to 
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be a positive signal for the expression of aquaporins, because plasma membrane VvPIP2;2 

and tonoplast VvTIP1;1 were also upregulated (Fig. 3.4).  

 

 

Figure 3.2 VvSIP1 expression determined by RT-qPCR. Transcript levels in leaves (A) and berries 

(B) from cv. Vinhão and cv. Aragonez (C) during development. VvSIP1 expression in mature 

berries from cv. Aragonez under different irrigation regimes and sun exposures (D, E). Expression 

of VvSIP1 in cultured cells in response to ABA and SA, and salt, osmotic and heat stresses. Results 

indicate mean ± SD of three independent experiments. Letters denote significant differences.  

 

3.2.3 Subcellular localization of VvSIP1  

 

The subcellular localization of VvSIP1-RFP was studied after transient expression 

in tobacco epidermal cells. Fig. 3.5 shows that VvSIP1-RFP co-localized with the ER 

marker GFP-HDEL (Batoko et al., 2000). This reticular nature of the ER of tobacco cells 

has been clearly shown in other reports (Más and Beachy, 1999). VvSIP1 also localized in 
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yeast internal membranes resembling the ER after transformation with VvSIP1-GFP (Fig. 

3.6A). Western-blot analysis with anti-ZmSIP and anti-calreticulin antibodies confirmed 

that VvSIP1 co-purified with the marker calreticulin, further corroborating that VvSIP1 is 

localized at the ER of transformed yeast. 

 

 

Figure 3.3 VvGPT expression determined by RT-PCR in CSB (Cabernet Sauvignon Berry) 

suspension cells incubated overnight at 37ºC and in control cells incubated at 23ºC (for details see 

material and methods). Results indicate mean ± SEM of three independent experiments. Asterisks 

denote significant differences compared to the control: * = P ≤ 0.01. 

 

 

Figure 3.4 VvPIP2;2 and VvTIP1;1 expression determined by RT-PCR in (Cabernet Sauvignon 

Berry) suspension cells and incubated overnight at 37ºC and in control cells incubated at 23ºC (for 

details see material and methods). Results indicate mean ± SEM of three independent experiments. 

Asterisks denote significant differences compared to the control: * = P ≤ 0.05. 
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Figure 3.5 Subcellular localization of VvSIP1;1 in tobacco. Transgenic plants expressing the ER 

marker GFP-HDEL (Batoko et al., 2000) were infiltrated with Agrobacterium strains containing 

the pH7RWG2-VvSIP1-RFP plasmid. Images were acquired two days after infiltration using a 

confocal microscope and showed the green fluorescence (GFP-HDEL), red fluorescence 

(VvSIP1;1-RFP) and the overlap of fluorescence signals (merge). White box zoom in; bar = 100 

µm. 

 

3.2.4 Water transport by VvSIP1 

 

The osmotic permeability coefficient (Pf) of Xenopus oocytes injected with VvSIP1 

cRNA did not increase, contrary to the Pf of the positive control cells injected with tobacco 

NtPIP2;1 cRNA (Fig. 3.7). These results suggest that VvSIP1 is not correctly targeted to 

the plasma membrane of oocytes or that it is inactive. 

To study VvSIP1 function, ER vesicles were isolated from yeast cells expressing 

VvSIP1, and its water permeability monitored by stopped-flow light-scattering 

spectrophotometry. QELS analysis showed that the vesicle size in all batches was 

homogeneous. Unimodal distributions were observed with a mean hydrodynamic diameter 

of 379 ± 65 nm (n = 8) (not shown). To analyze VvSIP1 activity, vesicles were challenged 

with a hypertonic mannitol solution. The change in the light scatter signal due to water 

efflux was used to calculate the Pf and the activation energy (Ea) of water transport. As 

shown in Fig. 3.8A, the shrinking rate of ER vesicles from VvSIP1 expressing yeast cells 

was twice as high as the control (Table 3.1). The increase in water permeability was 

consistent with the decrease in Ea (Fig. 3.8B; Table 3.1) clearly indicating the involvement 

of protein mediated water diffusion.  
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Figure 3.6 Subcellular localization of VvSIP1 in yeast. Cells were transformed with the pUG35-

VvSIP1-GFP plasmid and observed under the confocal microscope (A). Membrane fractions from 

the crude homogenate (CH), microsomal fraction (MF) and endoplasmic reticulum (ER) were 

subjected to immunoblot with anti-calreticulin (B) and anti-ZmSIP (C) antibodies to study both ER 

and VvSIP1 enrichment. 

 

 

Figure 3.7 Study of aquaporin transport activity in Xenopus oocytes 2 days after injection of 

NtPIP2;1 and VvSIP1 cRNAs. Volume changes for individual oocytes were recorded after 

immersion in hyposmotic solutions. Control oocytes were injected with water. Results are the 

means ± SD of at least five cells.  
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Figure 3.8 Stopped-flow experiment for evaluation of the water permeability in ER vesicles. 

Normalized scattered light intensity obtained from stopped-flow experiments with ER vesicles 

purified from yeast cells transformed with pYESDES52-VvSIP1 (grey) or the empty vector (black) 

and suddenly exposed to an osmotic gradient of 120 mOsM with an impermeant solute (A) and the 

corresponding Arrhenius plots (B) used to calculate Ea. To test VvSIP1 specificity for water (C), 

mannitol was replaced by several solutes (glycerol, urea, glucose, sorbitol and inositol) with the 

same osmotic potential. 
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  Pf 

(10-3 cm s-1) 

Ea 

(kcal mol-1) 

 

ER vesicles 

Empty vector 1.99  0.23 13.7  2.6 

 VvSIP1 5.09  0.77* 

 

6.4  1.5* 

 

Liposomes 

Empty 3.8  0.1 x 10-1 16.6  0.5 

 Proteoliposomes (1/50) 5.0  0.4 x 10-1* 12.2  0.7* 

Table 3.1 Permeability (Pf) and activation energy (Ea) for water transport in ER membranes and 

liposomes obtained by stopped-flow (for details see Material and Methods). Asterisks denote 

significant differences compared to the control: * = P ≤ 0.01 

 

To purify VvSIP1, yeast cells were transformed with the construct pYesDes52-

VvSIP1-6his followed by the purification of the ER fraction. Approximately, 7 mg of total 

ER protein was obtained from 1.5 L yeast culture at OD640=1.5. After solubilization with 

2% lysophosphatidylcholine at 1/10 protein to detergent ratio, VvSIP1 was eluted from the 

Ni-NTA column with 300 mM imidazole. Western blot analysis with the anti-ZmSIP1 

antibody confirmed that VvSIP1 was purified to homogeneity (Fig. 3.9). In addition to a 

main band with a molecular mass of ~26 kDa, corresponding to the aquaporin monomer, a 

second band with ~52 kDa was detected, which probably corresponds to a VvSIP1 dimeric 

assembly (Bienert et al. 2012). Finally, a smaller band (~20 kDa) was also detected in 

fractions #3 and #4 that could correspond to VvSIP1 partially degraded. The preparation of 

phosphatidylethanolamine proteoliposomes was optimized for low protein to lipid ratios 

(1/50 lipid to protein ratio) to avoid the use of high amounts of purified protein.  

 

Flow cytometry analysis showed that proteoliposomes formed a homogenous 

population and stained positively when loaded with the fluorescent sugar 2-NBDG, 

suggesting that sealed vesicles were formed, which is a prerequisite for transport 

experiments (Fig. 3.10). To confirm the water transport activity mediated by VvSIP1, the 

shrinkage rate of proteoliposomes resuspended in a hypertonic medium was assayed by 

stopped flow. These proteoliposomes displayed higher water transport activity and lower 

Ea than empty liposomes (Table 3.1), confirming that VvSIP1 is able to facilitate water 

diffusion. 
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Figure 3.9 Purification of VvSIP1 from S. cerevisiae. ER membranes from yeast transformed with 

pYESDES52-VvSIP1-6his were isolated, solubilized with 2% LPC (w/v) at a protein:detergent ratio 

of 1/10 and purified in a Ni-NTA agarose column (for details see Material and Methods). VvSIP1 

monomer (~26 kDa) and dimeric (~52) assembly can be observed. FT, flow-through of the column; 

W, eluates after washing the column. Eluates after addition of 300 mM imidazole (1-10). 

 

 

Figure 3.10 Flow cytometry analysis of phosphatidylethanolamine liposomes showing a 

homogeneous population (A) able to accumulate the fluorescent sugar analog 2-NBDG (B). 

 

3.3 Discussion 

 

3.3.1 Comparison of VvSIP1 to other SIP1 aquaporins 

 

Three members of the SIP subfamily were found in Arabidopsis (SIP1;1, SIP1;2, 

and SIP2;1) (Johanson et al., 2001) and maize (Chaumont et al., 2001), and two in rice 

(OsSIP1;1 and OsSIP2;1) (Sakurai et al., 2005) and grape (VvSIP1;1 and VvSIP2;1) 
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(Fouquet et al. 2008). SIPs have also been described in Populus trichocarpa (Gupta and 

Sankararamakrishnan, 2009), the moss P. patens (Danielson and Johanson, 2008), and a 

putative ER aquaporin was described for the first time in the arbuscular mycorrhizal fungi 

Glomus intraradices (Aroca et al., 2009). As shown in Fig. 4.1, VvSIP1 amino acid 

sequence has a high degree of similarity with SIP1 aquaporins from monocots, dicots and 

moss. In particular, all the sequences analysed share R3 and R4 residues of the Ar/R filter, 

except AtSIP1;1 and AtSIP1;2 where asparagine is replaced by isoleucine in R4, and all 

the sequences contain the motif AFGWAYI in the loop E. The importance of the loop E 

for the oligomerization of aquaporins was already shown (Fetter et al., 2003; Duchesne et 

al., 2002), and a single amino acid substitution in the Loop E of AQP11 is responsible for 

a mice lethal phenotype (Tchekneva et al., 2008). Nonetheless, there is still little 

information on the oligomerization of intracellular aquaporins.  

 

Three types of ER retention signals were identified at the C-termini of 

transmembrane proteins: dihydrophobic, diacidic and dibasic (reviewed by Barlowe, 2003; 

Giraudo and Maccioni, 2003). Interestingly, a dihydrophobic motif (LF) and a dibasic 

signal (KQKK) are present in the C-termini of VvSIP1, but their role in ER retention 

remains to be determined. The presence of a sequence rich in positively charged amino 

acids is a common feature of SIP aquaporins (reviewed by Gomes et al., 2009). 

 

3.3.2 VvSIP1 co-localizes at the ER  

 

So far, only one experimental study was dedicated to SIP localization and function 

(Ishikawa et al. 2005). AtSIP1;1, AtSIP1;2 and AtSIP2;1 are localized at the ER of 

Arabidopsis protoplasts. Likewise, VvSIP1 clearly co-localized at the ER of tobacco 

epidermal cells (Fig. 3.3). This ER localization was further demonstrated in yeast cells 

expressing VvSIP1-GFP and by ER purification followed by western blotting with an anti-

ZmSIP1 (Fig. 3.4). A similar approach was performed to localize AtSIPs (Ishikawa et al., 

2005), and mouse AQP11 and AQP12 (Itoh et al., 2005; Morishita et al., 2005) at the ER.  
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3.3.3 VvSIP1 facilitate membrane water diffusion in ER vesicles and in 

proteoliposomes 

 

Oocytes have been often used as a tool to study the water channel activity of 

aquaporins, especially PIPs and TIPs (Gomes et al., 2009), but, in the present study, oocytes 

injected with VvSIP1;1 cRNA did not show increased membrane water permeability (Fig. 

3.5). This could be due to a failure in VvSIP1 protein expression or trafficking to the plasma 

membrane, which might indicate that this cell model is not suitable to study SIP aquaporins. 

However, we cannot exclude that VvSIP1 was targeted to the plasma membrane but the 

protein was inactive or was able to facilitate the diffusion of other substrates rather than 

water. In agreement, oocytes injected with the intracellular AQP11 did not show water 

transport although the protein was apparently targeted to the plasma membrane (Gorelick 

et al., 2006), contrarily to what was observed previously (Morishita et al., 2005). 

 

To further clarify the function of VvSIP1, water transport activity was monitored 

by stopped-flow light-scattering spectrophotometry in ER membrane vesicles isolated from 

yeast cells expressing VvSIP1 (Fig. 3.6). The observed increase of water permeability, 

together with the decrease of activation energy for water permeation, strongly supports that 

VvSIP1 mediates water fluxes. Furthermore, we showed that VvSIP1 does not transport 

other solutes, including urea, glycerol, glucose, inositol and sorbitol, suggesting that it is 

specific for water. In crude membranes from AtSIP expressing yeasts cells, AtSIP1;1 and 

AtSIP1;2, but not AtSIP2;1, also displayed water transport activity (Ishikawa et al., 2005). 

However, it was not excluded that AtSIP2;1 could facilitate water diffusion after 

heterodimerization with other SIPs.  

 

Some AQPs, but none SIP member, were purified to homogeneity and reconstituted 

in liposomes (Zeidel et al., 1992; Tanimura et al., 2009; Yakata et al., 2007; Liu et al., 

2006). Recently, the intracellular aquaporin AQP11 from mouse was shown to exhibit 

water channel activity after its reconstitution in proteoliposomes followed by stopped-flow 

measurements (Yakata et al., 2006). Here, we reported the solubilization of VvSIP1-6his 

from yeast ER membranes using lysophosphatidylcholine, its purification to homogeneity 

through a Ni-NTA column and its incorporation into phosphatidylethanolamine 

proteoliposomes by detergent dialysis (Fig. 3.7). As observed in ER vesicles, stopped-flow 
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studies with proteoliposomes (Table 3.1) suggested that VvSIP1 plays a role as an 

intracellular water channel. 

 

3.3.4 VvSIP1 is not responsive to different vine water regimes and berry sun 

exposures 

 

As already mentioned, AtSIP1;1 and AtSIP1;2 are expressed in a variety of 

Arabidopsis tissues, but low expression levels were detected in leaves and fruits (Ishikawa 

et al., 2005). In grapevine, expression of VvSIP1 in leaves and berries of cv. Vinhão 

increased during development, peaking at the mature phase (Fig. 3.2A and B). Contrarily, 

VvSIP1 expression in cv. Aragonez decreased during berry development (Fig. 3.2C), 

suggesting VvSIP1 expression pattern may depend on the variety or be affected by the 

terroir. 

 

It has been shown that water deficit is one of many environmental conditions that 

regulate plant aquaporins (Tyerman et al., 2002; Hachez et al., 2008). This is particularly 

relevant since grape berries are highly susceptible to excessive sun exposure and its quality 

is affected by temperature and water availability (Kliewer and Torres, 1972; Spayd et al., 

2002; Pillet et al., 2012). Generally, plants modulate the expression of plasma membrane 

and tonoplast aquaporins in response to drought (Tyerman et al., 2002). In the present 

study, the transcript levels of VvSIP1 did not increase significantly in berries from vines 

subjected to water stress and in berries from western-oriented clusters (Fig. 3.2D and E), 

suggesting that VvSIP1 does not play an important role in stress response under the field 

conditions tested. Contrarily, in in vitro cultures the expression of VvSIP1 (Fig. 3.2D), 

VvPIP2:2 and VvTIP1;1 (Figure 3.4) was upregulated after an overnight incubation at 37ºC. 

This treatment did not affect the viability of the cells and induced HSPs. However, the cells 

kept their morphology substantially unchanged with a prominent central vacuole (not 

shown). Thus, the observed transcription profile of AQPs could be involved in the 

regulation of the intracellular water status under heat stress. In agreement, we cannot 

exclude that more extreme temperature conditions in the field can also promote the increase 

of VvSIP1 expression and other AQP members in grapevine tissues. 

 

Besides regulation at the transcriptional level, several factors may affect the gating 

of aquaporins, including phosphorylation, heteromerization, pH, Ca2+, pressure, solute 
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gradients, and temperature (Chaumont et al., 2005). Post-transcriptional regulation of 

aquaporins by protonation was shown in AtPIP2;2 in response to anoxia (Tournaire-Roux 

et al., 2003). In this regard, the possible involvement of post-transcriptional regulation of 

VvSIP1 deserves further investigation. 

 

Much work is also needed to clarify the specific physiological role of SIPs in the 

ER membrane. In mammals, it was observed that AQP11-knockout mice died before 

weaning due to advanced renal failure, and two important abnormalities were detected: 

vacuolization and cyst formation in the kidney proximal tubule. Because the observed 

vacuoles apparently originated from the ER, it was suggested that AQP11 might have some 

role in vesicle homeostasis (Morishita et al., 2005). In plants, the analysis of Arabidopsis 

mutants followed by complementation experiments is a major tool for the assignment of a 

physiological role to a gene from a non-model plant. However, in preliminary experiments 

with T-DNA insertion mutants of AtSIP1;1 and AtSIP2;1 visible modifications in growth, 

morphology and stress responses were not observed (Maeshima and Ishikawa, 2008). In 

this regard, a thoroughly exploitation of phenotypes at the cellular level, including the study 

of ER ultrastructure, could provide important information on the role of SIPs. 

 

3.3. Material and methods 
 

3.3.1 Plant material 

 

Field-grown grapevines (Vitis vinifera L.) of cv. Aragonez and Vinhão were used 

in the present study. Cv. Aragonez vines were collected from commercial vineyards in 

Reguengos de Monsaraz and Estremoz (south of Portugal) and cv. Vinhão from a 

commercial vineyard in Guimarães (north of Portugal). Rows were oriented north-south. 

Expression studies were also performed in 3-months old grapevine plantlets of the cv. 

Trincadeira growing in vitro. 

 

The cv. Aragonez vines cultivated in Reguengos de Monsaraz were subjected to 

RDI (regulated deficit irrigation) and SDI (sustained deficit irrigation), in the scope of the 

European Project Innovine. RDI vines were supplied with 50% less water than SDI vines, 

and berries from SDI were collected from green to mature phase to study VvSIP1 

expression during maturation. At the mature stage, the following values for leaf water 
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potential were measured: -0.7 MPa (RDI) and -0.5 MPa (SDI). Also, the oscillations in 

berry temperature were continuously monitored. Average daily maximum temperatures in 

grapes from clusters exposed to west (RDI-W and SDI-W) were 4-5ºC higher than in east–

exposed clusters (RDI-E and SDI-E) because ambient temperatures are higher after mid-

day. The expression of VvSIP1 was also studied in berries from SDI-E, RDI-E, SDI-W and 

RDI-W.  

 

The cv. Aragonez vines in Estremoz were subjected to full irrigation (FI, 100% 

evapotranspiration, ETc) and non-irrigation (NI, rain fed only). Watering was applied 

according to crop ETc and soil water content. Grape berry clusters from 4-6 plants, located 

in three different rows, were collected, and grapes from three different berry clusters per 

plant were harvested and immediately frozen in liquid nitrogen. Berries and leaves were 

sampled at green (4 WAF), veraison (9 WAF) and mature (15 WAF) stages of berry 

development and ripening. 

 

Cells of V. vinifera L. (CSB, Cabernet Sauvignon Berry) were cultivated in liquid 

medium according to Decendit et al. (1996), and maintained in 250 mL flasks on a rotatory 

shaker at 100 rpm in the dark, at 25ºC. The mineral medium was supplemented with 2% 

(w/v) sucrose. Cells were subcultured weekly by transferring 10 mL aliquots into 40 mL of 

fresh medium. In order to study the effect of different treatments on VvSIP1 expression, 5 

mL aliquots were incubated overnight with 100 mM NaCl, PEG 2% (w/v), 150 µM ABA 

(Gagné et al., 2011) and 150 µM SA (Laura et al., 2007) at 23ºC. The effect of heat was 

evaluated after an overnight incubation at 38ºC. Cells were immediately frozen in liquid 

nitrogen and stored at -80ºC.  

 

3.3.2 In silico studies 

 

SIP sequences were obtained from the database of the National Center of 

Biotechnology (NCBI). Protein alignment was performed by Prankster and the result 

visualized in Genedoc (Nicholas et al., 1997). The 3D representation was performed by I-

TASSER (Zhang, 2008) using SoPIP2;1 as a template (Thornroth-Horesfiel et al., 2006). 

The resulting 3D model was visualized using the PyMol software (DeLano, 2002).  
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3.3.3 RNA isolation from grape berries and leaves 

 

Total RNA was isolated from grape berries and leaves with QIAGEN RNeasy Plant 

Mini Kit following manufacturer’s instructions, except that the extraction buffer was 

changed to 2% CTAB, 2% soluble polyvinylpyrrolidone (PVP) K-30, 300 mM Tris HCl 

(pH 8.0), 25 mM EDTA, 2.0 M NaCl and 2% (v/v) β-mercaptoethanol. After an in column 

DNAse treatment, the RNA integrity was checked in a 1% agarose gel, and first strand 

cDNA synthesis was performed with the LongRange 2Step RT-PCR (QIAGEN), following 

the manufacturer’s instructions. 

 

3.3.4 Subcellular localization of VvSIP1 

 

The pH7RWG2-VvSIP1-RFP construct was obtained using the GATEWAY 

(Qiagen) recombination technology. Briefly, the recombination sequences (forward: GGG 

GAC AAG TTT GTA CAA AAA AGC AGG CT; reverse: GGG GAC CAC TTT GTA 

CAA GAA AGC TGG GT) were introduced by PCR (primers are shown in Table 3.2) in 

the VvSIP1 cDNA without stop codon and the fragment was recombined into the entry 

vector pDONR221 using the BP clonase enzyme. The VvSIP1 cDNA was recombined into 

the pH7RWG2 vector by the LR clonase enzyme, introduced in Agrobacterium tumefaciens 

(GV3101), and transient transformation of tobacco (Nicotiana tabacum) leaf epidermal 

cells constitutively expressing GFP-HDEL (Batoko et al., 2000) was performed according 

to Sparkes et al. (2006). Bacterial cells were cultivated overnight in liquid LB medium up 

to the exponential-stationary phase and then diluted to OD600nm = 0.1 with infiltration buffer 

(50 mM MES pH 5.6, 2 mM Na3PO4, 0.5% glucose and 100 μM acetosyringone). Diluted 

cells were cultivated again until the culture reached an OD600nm = 0.2. Four-weeks-old 

tobacco plants were infiltrated with the bacterial cultures and leaf discs were examined 

under the confocal microscope 3 days after.  

 

VvSIP1 was cloned into pUG35-GFP behind the cDNA encoding GFP. Restriction 

sites for Bam HI were introduced by PCR (primers are shown in Table 3.2), and the 

fragment was cloned into pUG35-GFP vector after digestion with BamHI. VvSIP1 

expression was regulated by the inducible MET25 promoter. Saccharomyces cerevisiae 

strain CEN.PK 135-5D (ura-) was transformed with the pUG35-SIP1-GFP vector with the 

LiAc/SS-DNA/PEG method (Gietz and Woods, 2002). To study fluorescence localization, 
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transformed yeast cells were cultivated overnight in YNB minimal medium without 

methionine and uracil, washed with deionized water, and observed with a Zeiss 710 

confocal microscope (Carl Zeiss, Jena, Germany), with excitation at 488 nm and detection 

between 506 and 538 nm.  

 

 Primer forward (5’-3’) Primer reverse (5’-3’) 

 

VvSIP1-GFP and 

pXT7-VvSIP 

GCAGATCTATGGGTGTAATAAAGGC GCACCGGTGCTTTCTTCTGCTTTG 

pYES-DEST-VvSIP1 
GGGGACAAGTTTGTACAAAAAAGC

AGGCTGGAGGATGGGTGTAATAAA

GGCGGCGATTG 

GGGGACCACTTTGTACAAGAAAG
CTGGGTCTCAGCTTTCTTCTGCTTT

GTTGGTGCTGG 

pYES-DEST-VvSIP1-6his 
GGGGACAAGTTTGTACAAAAAAGC

AGGCTGGAGGATGGGTGTAATAAA

GGCGGCGATTG 

GGGGACCACTTTGTACAAGAAAG

CTGGGTCGGCTTTCTTCTGCTTTG

TTGGTGCTGG 

qVvSIP1 GTTTTCCTGCTCAGGCAGCTG GCAACCATGTCTTCAATACTGGAC 

qVvGAPDH 
CACGGTCAGTGGAAGCATCATGAA

CTC 

CCTTGTCAGTGAACACACCAGTTG

ACTC 

qVvGPT TCTTTCCTGTTGCAGTAGCTCA CAGTGCGCAGCCTCCAATAA 

RT-VvPIP2;2 TACCACCAGTACATACTGAGAGCAG 
TATGGAACAAAAGATCCAAAGAA

AG 

RT-VvTIP1;1 AGGGGAACTTGGGCATTATT CCCAAAGAAAAGCCCCTAAT 

RT-VvACT1 
GTGCCTGCCATGTATGTTGCCATTC

AGGCTG 

GCTCTTTGCAGTTTCCAGCTCTTG

CTCGTAGTCAA 

Table 3.2 Primers used in this study 

 

3.3.5 Real-Time PCR studies 

 

Quantitative real-time PCR reactions were prepared with a QuantiTect SYBR Green 

PCR Kit (QIAGEN) and were performed in a CFX96 Real-Time Detection System (Bio-

Rad), at an annealing temperature of 50ºC. RNA and cDNA were obtained as mentioned 

above. Experiments were done in triplicate (biological replicates) with the software Bio-

Rad CFX Manager (Bio-Rad), using VvGAPDH as internal control. After each run, melting 

curves were performed to check for unspecific and primer dimer amplification. The primers 

used to study the expression of VvSIP1, VvGAPDH and VvGPT are shown in Table 3.2. 
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3.3.6 Semi quantitative PCR studies 

 

Semi quantitative PCR was performed with HotStarTaq DNA Polymerase (Qiagen) 

to study the effect of heat on aquaporin expression. Briefly, all the primers used were 

previously tested to determine the exponential phase of the amplification curve for each 

condition. Three reactions for each condition were run in the same gel and quantified with 

the software Quantity One (Biorad). The primers used for VvGPT, VvPIP2;2, VvTIP1;1 

and VvACT1 are shown in Table 3.2.  

 

3.3.7 Isolation of yeast endoplasmic reticulum 

 

The recombination sequences of GATEWAY technology were introduced in the 

VvSIP1 cDNA with the stop codon with the primers shown in Table 3.2. The fragment was 

introduced in the vector pDONR221, recombined with pYES-DEST52, and the resulting 

vector pYES-DEST52-VvSIP1 introduced into yeast cells by the method described above. 

ER enriched vesicles were obtained following the method by Wuestehube and Schekman 

(1992), which has been routinely used to purify ER membranes from yeasts. Briefly, yeast 

cells were cultivated overnight in YNB medium without uracil supplemented with 2% 

galactose, and spheroplasts were obtained by digestion with zymolyase 20T (Rodrigues et 

al. 2013) dissolved in digestion buffer (1.35 M sorbitol, 10 mM citric acid, 30 mM 

Na2HPO4, 1 mM EGTA, pH 7.4). After 45 min of digestion, the spheroplasts were lysed in 

a Dounce tissue homogenizer in HEPES-lysis buffer (20 mM HEPES, 50 mM potassium 

acetate, 100 mM sorbitol, 2 mM EDTA, 1mM PMSF, 1 mM DTT, pH 6.8), and a crude 

membrane fraction was obtained by centrifugation at 18000 g for 15 min at 4ºC. This 

membrane fraction was resuspended in HEPES-lysis buffer, layered on top of a 1.2/1.5 M 

discontinuous sucrose gradient and centrifuged at 100000 g for 1 h at 4ºC. The enriched 

ER membrane fraction was collected from the 1.2/1.5 M sucrose interface, centrifuged at 

18000 g for 15 min at 4ºC, and the pellet was resuspended in 100 mM mannitol, 10 mM 

Tris-HEPES (pH 7.5) and stored at -80ºC. The protein amount was estimated by the Lowry 

method (Lowry et al., 1951). The purity of the ER fraction was checked by immunoblot 

with an anti-calreticulin antibody. 
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3.3.8 Functional characterization by stopped flow spectroscopy 

 

Water permeability of membrane vesicles was assessed with the stopped-flow 

technique (HI-TECH Scientific PQ/SF-53). Experiments were performed at 10 to 37°C to 

study activation energies. Five runs were usually stored and analyzed in each experimental 

condition, as described by Soveral et al. (1997). Briefly, vesicles resuspended in 100 mM 

mannitol, 10 mM Tris-HEPES (pH 7.5) (0.1 mL, 0.4 mg protein mL-1) were mixed with an 

equal amount of hyperosmotic mannitol solutions at 23ºC to produce an inwardly directed 

gradient of impermeant solute (osmotic gradient 120 mOsmol). The kinetics of vesicle 

shrinkage was measured from the time course of 90° scattered light intensity at 400 nm 

until a stable light scatter signal was attained. The osmotic water permeability coefficient 

(Pf) was estimated by fitting the light scatter signal to a single exponential curve with the 

equation Pf= k(Vo/A)(1/Vw/(osmout)∞), where Vw is the molar volume of water, Vo/A is the 

initial volume to area ratio of the vesicle population, and (osmout)∞ is the final medium 

osmolarity after the application of the osmotic gradient. The osmolarity of each solution 

was determined from freezing point depression by a semi-micro osmometer (Knauer 

GmbH, Germany). The activation energy of water transport was obtained from the slope of 

an Arrhenius plot (ln Pf as a function of 1/T) multiplied by the gas constant R. Vesicle size 

(initial volume) was determined by quasi-elastic light scattering (QELS) by a particle sizer 

(BI-90 Brookhaven Instruments) as described by Soveral et al. (1997). To determine 

VvSIP1 specificity for water, mannitol was replaced by several solutes (glycerol, urea, 

glucose, sorbitol and inositol) with the same osmotic potential, and solute uptake was 

measured as stated above. 

 

3.3.9 VvSIP1 purification and reconstitution into phosphatidylethanolamine 

liposomes 

 

The construct pYES-DEST52-VvSIP1-His-tag was obtained by GATEWAY 

recombination. Briefly, the pDONR221-VvSIP1 without stop codon (see above) was 

recombined with pYES-DEST52-His-tag in front of GAL1 promoter, and behind 6 

histidines. This vector was used to transform S. cerevisiae, and purified ER membranes 

were obtained as described above. The sample was diluted to 0.2 mg protein mL-1 in 

Na2CO3, incubated for 30 min at 4ºC, and centrifuged for 40 min at 50000 g. The pellet 
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was washed with ice-cold water and resuspended in purification buffer (20 mM imidazole, 

100 mM KCl, 10% (w/v) glycerol, pH 7.5) before protein solubilization. Three detergents 

were tested at different concentrations (1 and 2 % (w/v)) and protein:lipid ratios (1/10 and 

1/20): octyl-glucoside (OTG), n-dodecyl β-D-maltoside (DDM) and 

lysophosphatidylcholine (LPC). The best results were obtained with 2% LPC at 1/10 

protein:lipid ratio after incubation for 2 h at 42ºC under shaking. Non-digested proteins 

were pellet at 100000 g for 30 min at 4ºC. The purification step was started mixing the 

supernatant with Ni-NTA agarose (Qiagen), and, after incubation for 2 h at 37ºC under 

shaking, the mixture was loaded into an empty Bio-Spin Chromatography Column (Bio-

Rad). The column was sequentially eluted with the following buffers: purification buffer 

supplemented with 0.05 % (w/v) LPC, 40 mM imidazole buffer (40 mM imidazole, 10% 

glycerol (v/v), 100 mM KCl, 0.05 % (w/v) LPC, pH 7.5), and 300 mM imidazole buffer 

(300 mM imidazole, 10% glycerol (v/v), 100 mM KCl, 0.05 % (w/v) LPC, pH 7.5). In each 

eluate, the purity of VvSIP1 was checked by western-blot with an anti-ZmSIP1 antibody 

raised in maize against the C-terminal peptide of ZmSIP1;1 (FLPPAPKPKTKKA). To 

reconstitute VvSIP1 in artificial vesicles, phosphatidylethanolamine lipids were mixed by 

sonication in a buffer with 100 mM mannitol, 10 mM Tris-HEPES (pH 7.5), and 2% (w/v) 

OTG before addition of the purified protein (protein:lipid ratio of 1/50). After 30 min 

incubation on ice, the mixture was dialyzed against 100 mM mannitol, 10 mM Tris-HEPES 

(pH 7.5) to remove LPC, and the proteoliposomes were frozen in liquid nitrogen and stored 

at -80 until used (Gerós et al., 1996). 

 

3.3.10 Western blot analysis 

 

Protein samples obtained as described above were separated on 10% acrylamide 

gels as described by Laemmli (1970). Proteins were transferred to a nitrocellulose 

membrane during 1 h 30 min at 100 V, and were blocked during 1 h in Tris-buffered saline 

containing 0.1% (v/v) Tween-20 (TBS-T) with 5% (w/v) skimmed milk powder, 1% (w/v) 

BSA, 0.1% goat serum and 0.05% (v/v) Tween-20. The membranes were probed against 

ZmSIP1 (1:1000 dilution) and calreticulin (1:10000) (Carqueijeiro et al. 2013) during 1 h 

at room temperature in blocking solution, followed by an incubation with an anti-rabbit 

peroxidase conjugated antibody (Sigma) at 1:160000 dilution in TBS-T, for 45 min. The 

immunodetection was accomplished with the chemiluminescent ECL detection substrate 

(Biorad).  
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3.3.11 Oocyte injection and permeability assays  

 

NtPIP2;1 and VvSIP1 cDNAs were cloned into the oocyte expression vector pXT7 

with the primers shown in Table 3.2, and in vitro complementary cRNAs were obtained 

with the Transcript Aid T7 High Yield Transcription Kit (Fisher, Thermo Scientific). 

Xenopus laevis oocytes were isolated and defolliculated by digestion at room temperature 

for 1.5 h with 4 mg/mL collagenase A in Barth’s solution (88 mM NaCl, 1 mM KCl, 2.4 

mM NaHCO3, 10 mM Hepes-NaOH, 0.33 mM Ca(NO3)2, 0.41mM CaCl2, 0.82 mM 

MgSO4, pH 7.4, and 200 mosm/kg). In vitro transcripts or distilled water (50 nL) were 

injected and the oocytes were incubated at 18ºC in Barth’s solution for 2 days. Oocyte 

swelling was measured by transferring the oocytes to 5-fold diluted Barth’s solution and 

the changes in the cell volume were calculated as described before (Fetter et al., 2004).  

 

3.3.12 Flow cytometry 

 

Flow cytometry analysis of proteoliposomes was performed in an Epics XL 

Beckman Coulter flow cytometer equipped with an argon–ion laser with a beam emitting 

at 488 nm at 15 mW. Green fluorescence was collected through a 525 nm band-pass filter. 

Data were analyzed with Flowing Software 2.0 (Rodrigues et al., 2013). 

  

3.3.13 Statistical analysis  

 

The results were statistically analyzed by Student's t-test and by Analysis of 

Variances tests (one-way and two-way ANOVA) using Prism vs. 5 (GraphPad Software, 

Inc.). Post hocmultiple comparisons were performed using the HSD Tukey. For each 

condition differences between mean values are identified with different letters or asterisks.  

 

3.3.14 Sequences accession numbers 

VvSIP1(DQ086835), VvGPT (GSVIVT00006900001), VvPIP2;2 (EF364436), 

VvTIP1;1 (DQ834701), MtSIP1;1 (G7JDK7), MtSIP1;2 (G7KYE4), AtSIP1;1 

(Q9M8W5), AtSIP1;2 (Q9FK43), ZmSIP1;1 (Q9ATM3), ZmSIP1;2 (Q9ATM2), 
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OeSIP1;1 (B0L1W3), OeSIP1;2 (B5KGP0), OsSIP1;1 (Q5VR89), PpSIP1;1 (A9RDU1), 

PpSIP1;2 (A9U3Q2). 
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Abstract 
 

A MIP (Major Intrinsic Protein) subfamily called Uncharacterized Intrinsic Proteins 

(XIP) was recently described in several fungi and eudicot plants. In the present study, the 

localization, expression and functional characterization of the grapevine VvXIP1 were 

performed. Co-localization studies with ZmTIP2;1-YFP and VvXIP1-RFP fusion proteins 

in transiently transformed Nicotiana bethamiana leaves revealed that VvXIP1 is located in 

the tonoplast. Sopped-flow spectrometry in microsomal vesicles from yeast transformed 

with pVV214-VvXIP1 showed that VvXIP1 is unable to transport water but transports 

glycerol, copper, boron and H2O2. Trancriptional analysis showed a much higher steady-

state expression of VvXIP1 in leaves than in berries, canes or flowers from field grown 

grapevines (cv. Vinhão). Furthermore, VvXIP1 transcripts were downregulated in plants 

treated with the copper-based fungicide Bordeaux mixture. Leaves from potted grapevines 

(cv. Aragonez) under severe water deficit showed lower number of VvXIP1 transcripts than 

leaves from fully irrigated grapevines. In agreement, VvXIP1 was downregulated by ABA 

and salt stress in in vitro cultured grape cells.  
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4.1 Introduction 

 

Plants display a much larger diversity of MIPs than other organisms with 35 

isoforms in Arabidopsis thaliana, 55 in poplar, 71 in cotton and at least 36 in maize 

(Chaumont et al., 2001). Twenty three different isoforms were found in the genome of the 

evolutionarily early land plant Physcomitrella patens (Bienert et al., 2011). The MIP 

superfamily in plants was initially divided into four subfamilies: the Plasma Membrane 

Intrinsic Proteins (PIPs), Tonoplast Intrinsic Proteins (TIPs), Nodulin 26-like Intrinsic 

Proteins (NIPs) and the Small Basic Intrinsic Proteins (SIPs). More recently, three new 

subfamilies were identified, the GlypF-like Intrinsic Proteins (GIPs) and the Hybrid 

Intrinsic Proteins (HIPs) in P. patens, and the Uncharacterized Intrinsic Proteins (XIPs) in 

a number of dicotyledonous plants, including tomato and grapevine (Danielson and 

Johanson, 2008; Chaumont and Tyerman, 2014). 

  

XIPs are present in a wide variety of eudicot plant species, but not in Brassicaceae 

(e.g. Arabidopsis) and remain undetected in monocots (Gupta and Sankararamakrishnan, 

2009). The most conserved feature of XIP protein sequences, which could be used as a 

signature for this subfamily, is the NPARC motif, with a cysteine residue located after the 

second NPA motif (Danielson and Johanson, 2008; Shelden et al., 2009; Vandeleur et al., 

2009; Gupta and Sankararamakrishnan, 2009; Noronha et al., 2014). In addition, XIPs 

show considerable amino acid variation at both the first NPA motif and the ar/R filter. 

Based on the four amino acids defining the ar/R filters, XIPs from eudicots can be divided 

into four subclasses, two of which have an ar/R signature similar to that found in some 

plant NIPs, while the other two are even more hydrophobic (Bienert et al., 2011). 

   

In grapevine, up until now, 23 MIPs were identified with genome sequence analysis 

in a single cultivar (Shelden et al., 2009; Tyerman et al., 2012). Several studies have linked 

AQP activity to the vine water status, but Vitis vinifera cultivars have different tolerance 

and responses to water stress, and these differences are particularly significant between 

isohydric and anisohydric grapevines. While Chardonnay (anisohydric) exhibited a 

significant increase in VvPIP1;1 expression under water stress, Grenache (isohydric) did 

not show any alteration (Vandeleur et al., 2009). MIP expression also changes during 

maturation of grapes, and this phenomenon is correlated with the increase in hydraulic 

resistance observed in the post-veraison stages (Tyerman et al., 2012). In a recent study, 
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the endoplasmic reticulum (ER) grapevine small basic intrinsic protein VvSIP1 was 

purified to homogeneity and its incorporation in phosphatidylethanolamine liposomes 

confirmed its water channel activity (Noronha et al., 2014).  

  

In the present study, we characterized the VvXIP1 gene from grapevine and 

performed localization studies, expression analysis and functional characterization of 

VvXIP1.  

  

4.2 Results 

 

4.2.1 VvXIP1 protein sequence analysis 

 

The tree depicted in Fig. 4.1 was constructed with different XIP members from plant 

and fungi. VvXIP1 is phylogenetically close to GhXIP1 from cotton and to PpXIP1 from 

peach. Fig. 4.2 shows the alignments of amino acid sequences from XIPs from V. vinifera 

(VvXIP1), Populus trichocarpa (PtXIP1), Prunus persica (PpXIP), Gossypium hirsutum 

(GhXIP1;1), Ipomea nil (InXIP1;1), Nicotiana tabacum (NtXIP1;1), Lotus japonicus 

(LjXIP1), Ricinus communis (RcXIP). All proteins share the highly conserved NPARC 

motif, despite the slight variations in the first NPA (NPV in most of the aligned species). 

Using TOPCONS (Bernsel et al., 2009) it was also possible to identify regions 

corresponding to the six transmembrane helixes. 

 

4.2.2 Subcellular localization of VvXIP1 

 

To study the subcellular localization of VvXIP1, the corresponding XIP1-RFP 

fusion proteins were transiently expressed in N. benthamiana epidermal cells. Fluorescent 

signal resulting from ZmPIP2;5-YFP expression was used as a plasma membrane 

reference. However, VvXIP1-RFP fluorescence did not co-localize with the YFP-

ZmPIP2;5 signal, but labeled internal membranes and the signal appeared be more patchy. 

Furthermore, when VvXIP1-RFP was co-expressed with the YFP-ZmTIP2;1, a tonoplast 

marker, a clear co-localization was observed, suggesting that VvXIP1 locates in this 

internal membrane. 
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Figure 4.1 Phylogenetic tree comparing XIP proteins from plants and fungi. Amino acid sequences 

from Vitis vinifera (Vv), Populus trichocarpa (Pt), Prunus persica (Pp), Gossypium hirsutum (Gh), 

Ipomoea nil (In), Nicotiana tabacum (Nt), Lotus japonicus (Lj), Ricinus communis (Rc), 

Physcomitrella patens (Ppat), Aspergillus terreus (Ate), Fusarium oxysporum (Fo), Penicillium 

marneffei (Pm), Hypocrea virens (Hv), Hypocrea jecorina (Hj) and Selaginella moellendorffii 

(Sm). 

 

 

Figure 4.2 Alignment of eight plant XIPs (VvXIP1, PtXIP1, PpXIP, GhXIP1;1, InXIP1;1 

NtXIP1;1, LjXIP1 and RcXIP) showing six transmembrane helix domains (black lines) and the 

conserved ‘NPV’ and ‘NPARC’ motifs (grey lines).  
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Figure 4.3 Subcellular localization of VvXIP1 in tobacco leaves. Plants were infiltrated with 

Agrobacterium transformed with pH7RWG2-VvXIP1, pCambia2300-YFP-ZmPIP2;5 and 

pCambia2300-YFP-ZmTIP2;1 plasmids. Images were acquired 2 days after infiltration in a 

confocal microscope.  

 

4.2.3 VvXIP1 transports glycerol but not water 

 

To functionally characterize VvXIP1, the protein was overexpressed in the yeast 

strain YSK1172 (AQy-null). VvXIP1-GFP fluorescence signal was distributed through 

most of the cell, including the ER and the vacuole (not shown). To study membrane 

permeability by stopped flow light-scattering spectrophotometry a total membrane fraction 

from yeast cells transformed with pVV214-VvXIP1 was purified. Vesicle size, measured by 

QELS, was homogeneous in all batches with a mean hydrodynamic diameter of 375 ± 62 

nm (n=8). The figure 4.4A showed no difference in the rate of water efflux when control 

and vesicles from yeasts expressing VvXIP1 were challenged with a hypertonic mannitol 

solution, resulting in similar osmotic permeability coefficient (Pf; Table 4.1). Likewise, the 

activation energies (Ea) determined in both vesicle batches show similar values (Fig. 5A 

and Table 4.1).  
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Figure 4 Stopped flow experiment for evaluation of the water and glycerol permeability in yeast 

membrane vesicles. Normalized scattered light intensity obtained from stopped-flow experiments 

with membrane vesicles collected from yeast cells transformed with pVV214-VvXIP1 (grey) or the 

empty vector (black), suddenly exposed to an osmotic gradient of 240 mOsM with a mannitol 

solution (A) and with a glycerol solution (B).  
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  Pf 

(10-3 cm s-1) 

Ea 

(kcal mol-1) 

 

Water  
pVV214 4.31  0.0005 9.7  0.95 

 VvXIP1 3.70  0.00007 9.1  0.68 

 

Glycerol 
pVV214 9.62  1 x 10-5 26.0  1.14 

 VvXIP1 40.42  2 x 10-5* 11.8  0.76* 

Table 4.1 Permeability (Pf) and activation energy (Ea) for water and glycerol transport in yeast 

membranes obtained by stopped-flow spectroscopy (for details see Material and Methods). 

Asterisks denote significant differences compared to the control: * = P ≤ 0.01. 

 

As shown in Fig. 4B, the swelling rate of the membrane vesicles from VvXIP1-

expressing yeast cells when challenged with a hypertonic glycerol solution was much 

higher than in control vesicles. The corresponding permeability coefficients are shown in 

Table 4.1. As can be seen in Fig. 5B and Table 4.1, the Ea value associated with glycerol 

transport in vesicles from VvXIP1-expressing yeast cells (11.8  0.76 kcal mol-1) was much 

lower than in vesicles from the yeast transformed with the empty vector (26.0  1.14 kcal 

mol-1), indicating protein-mediated diffusion. Moreover, yeasts transformed with the 

pVV214-VvXIP1 construct grew better than control cells (empty vector) in solid media 

supplemented with 1 and 2% ethanol and glycerol, confirming that glycerol can be 

transported byVvXIP1 (Fig. 4.6). Altogether, these results strongly suggested that VvXIP1 

is unable to facilitate water diffusion but permeates glycerol. 

 

4.2.4 VvXIP1 transports H2O2, copper and boron 

 

H2O2 transport was tested through different approaches in the yeast strain YSH1172 

(aqy-null) transformed with the construct pVV214-VvXIP1. When the probe CM-

H2DCFDA was used to measure H2O2 uptake by spectrofluorimetry, yeast cells expressing 

VvXIP1 showed a much higher rate of fluorescence increase after H2O2 addition than 

control cells transformed with the empty vector (Fig. 4.7A). In agreement, when H2O2 was 

added to the incubation media, VvXIP1-transformed yeast showed a 3.5-fold higher rate of 

O2 production than the control, as measured with a Clark electrode (Fig. 4.7B). 
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Furthermore, results suggested that 1 mM HgCl2 completely inhibited H2O2 uptake. 

Moreover, the growth of the transformed yeast was severely inhibited when YNB media 

was supplemented with toxic levels of H2O2, 0.35 and 0.7 mM (Fig. 4.8).  

 

Figure 4.5 Stopped flow experiment to evaluate the activation energy (Ea) for water and glycerol 

transport in yeast vesicles. Normalized scattered light intensity was obtained from stopped-flow 

experiments performed according to a temperature gradient. Membrane vesicles purified from yeast 

cells transformed with pVV214-VvXIP1 (grey) or the empty vector (black) were suddenly exposed 

to an osmotic gradient of 240 mOsM. The gradient was built with mannitol (A) to evaluate water 

transport and with glycerol (B) to evaluate glycerol transport.  
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Figure 4.6 Yeast growth assays in glycerol rich media by cells expressing VvXIP1. Cultures of 

YSH1172 Aqy-null yeast cells transformed the empty vector or pVV214-VvXIP1 were spotted at 

OD600 nm of 0.1 and 0.01 on medium containing the indicated concentrations of ethanol and glycerol 

and growth was recorded after 3 days at 30 ºC. 

 

 

Figure 4.7 H2O2 transport by yeast cells expressing VvXIP1. Cultures of the yeast strain YSH1172 

aqy-null transformed with the empty vector or pVV214-VvXIP1 were incubated with CM-

H2DCFDA probe overnight and the fluorescence response after 600 μM H2O2 addition was 

monitored in a spectrofluorimeter (A). O2 release monitored with a Clark electrode in response to 

50 μM H2O2, which is inhibited by 1 mM HgCl2 (B). 

 

The yeast strains MPY2, MPY3 and YSH1172 were used to assess the VvXIP1 capacity to 

transport copper. MPY2 and MPY3 are, respectively, double and triple null-mutants in 
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copper transporters, and cannot survive when cultivated with respiratory substrates due to 

the lack of means to uptake high amounts of copper required for respiration. 

 

 

Figure 4.8 H2O2 sensitivity of yeast cells expressing VvXIP1. Cultures of YSH1172 aqy-null yeast 

cells transformed with the empty vector or pVV214-VvXIP1were spotted at an OD600 nm of 0.1 and 

0.01 on medium containing the indicated concentrations of H2O2 and growth was recorded after 3 

days at 30 ºC. 

 

 These yeast strains were transformed with pVV214-VvXIP1 construct to evaluate if 

the capacity to grow in respiratory media was recovered. Furthermore, MPY strains were 

also transformed with pVV214-VvCTR1, a copper transporter recently identified and 

characterized by our group (Martins et al., 2014a). Results showed that VvXIP1 and 

VvCTR1 were able to restore yeast growth when both mutant strains were plated onto 100 

μM CuSO4 (Fig. 4.9A). Also, the expression of VvXIP1 in YSH1172 strain increased yeast 

sensitivity to the toxic effects of copper, and thus reduced the growth in YNB media 

supplemented with 5 mM CuSO4 (Fig. 4.9B). 

 

Yeast growth assays were also performed to infer VvXIP1 capacity to facilitate 

boric acid diffusion. Expression of VvXIP1 significantly increased the tolerance of 

YSH1172 yeast cells to externally supplied 30 mM boric acid. However, 60 mM boric acid 

was toxic for both the transformed and control yeast (Fig. 4.10). 

4.2.5 Role of VvXIP1 in osmotic stress response 
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It has been reported that aquaporin expression in yeast may lead to an osmotic stress 

oversensitivity (Leitão et al., 2012). In the present study YSH1172 aqy-null yeast cells 

were transformed with pVV214-VvXIP1 and incubated in YNB media supplemented with 

2.1 M sorbitol. As shown in Fig. 11, cells transformed with VvXIP1 grew less than control 

yeasts, suggesting that they are more sensitive to osmotic stress. 

 

 

Figure 4.9 Copper effect on the growth of yeast cells expressing VvXIP1. Cultures of MPY2 (A), 

MPY3 (A) and YSH1172 (B) yeast cells transformed with empty vector, pVV214-VvCTR1 (only 

used in MPY strains) and pVV214-VvXIP1 were spotted at OD600 nm of 0.1 and 0.01 on medium 

containing the indicated concentrations of CuSO4 and growth was recorded after 3 days at 30 ºC. 

 

4.2.6 VvXIP1 transcriptional analysis  

 

The expression of VvXIP1 was studied in different organs of field grown cv. Vinhão 

grapevines. Total RNA was isolated from leaves, berries, canes and flowers. As shown in 

Fig. 4.12, steady-state transcript levels of VvXIP1 were much higher in leaves than in the 

remaining organs. 
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Figure 4.10 Boric acid effect on the growth of yeast cells expressing VvXIP1. Cultures of YSH1172 

yeast cells transformed with empty vector and pVV214-VvXIP1 were spotted at OD600 nm of 0.1 

and 0.01 on medium containing the indicated concentrations of boric acid and growth was recorded 

after 3 days at 30 ºC. 

 

To study the effect of water stress on the expression of VvXIP1, transcript levels 

were measured in leaves from potted cv. Aragonez grapevines cultivated in a greenhouse. 

As can be seen in Fig. 4.13A, VvXIP1 steady-state transcript levels were lower in leaves 

from non-irrigated plants than in leaves from plants watered every two days, suggesting 

that water deficit downregulates the expression of VvXIP1.  

 

Following the results from heterologous expression experiments, indicating that 

VvXIP1 was able to mediate copper transport, we decided to study whether the application 

of Bordeaux mixture in field conditions could affect the expression of VvXIP1. This task 

took advantage of our previous work (Martins et al., 2014a,b). As shown in Fig. 4.13B, in 

leaves from cv. Vinhão vines treated with Bordeaux mixture (+ copper) a downregulation 

of VvXIP1 expression was observed when compared to plants treated with a conventional 

triazole-based fungicide (- copper). 
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Figure 4.11 Sorbitol induced osmotic stress sensitivity of yeast cells expressing VvXIP1. Cultures 

of YSH1172 aqy-null yeast cells transformed with empty vector and pVV214-VvXIP1 were spotted 

at OD600 nm of 0.1 0.01 on medium containing the indicated concentration of sorbitol and growth 

was recorded after 3 days at 30 ºC. 

 

Figure 4.12 Study of VvXIP1 expression in berries, canes, flowers and leaves from grapevine cv. 

Vinhão. 
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Despite the necessary cautions needed to extrapolate the results to a multicellular 

level, suspension-cultured cells have provided a convenient experimental system to study 

several important aspects of plant cell physiology, including gene expression and functional 

studies (Noronha et al., 2014; Conde et al., 2015). Additionally, in cell suspensions, the 

plasma membrane is readily amenable for challenging with exogenous stressors/elicitors. 

In the present study, cultured CSB cells were used to evaluate VvXIP1 expression after an 

overnight incubation with 100 mM NaCl, 150 µM ABA, 150 µM SA and 2% (w/v) PEG. 

VvXIP1 transcript levels were downregulated by ABA and NaCl but not affected by SA 

and PEG (Fig. 4.13C). 

 

 

Figure 4.13 VvXIP1 expression in response to potential stressors/elicitators determined by qPCR. 

VvXIP1 steady-state transcript levels in leaves from field grown cv. Vinhão grapevines in response 

to copper treatments (Bordeaux mixture) (A), in potted grapevines (cv. Aragonez) under drought 

stress (B) and in CSB cell suspensions treated with salt, ABA, SA and PEG (C). 
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4.3 Discussion 

 

4.3.1 VvXIP1 is a grapevine intracellular solute channel 

 

So far the Uncharacterized Intrinsic Proteins (XIPs) were studied in few plant 

species and fungi, and much work remains to be done to fully understand its specificity and 

true physiological roles. The divergence in the composition of the NPA motives has been 

proposed to reflect differences in the substrate specificity, as previously observed in NIPs 

(Bienert et al., 2011). The alanine of the first NPA motif is replaced by valine in XIPs from 

V. vinifera, P. persica, G. hirsutum and N. tabacum, by isoleucine in Ipomoea nil and P. 

trichocarpa, and by threonine in R. communis. These changes could affect the specificity 

of XIPs that is rather unusual. 

  

After their discovery at the plasma membrane of erythrocytes, researchers found 

that, similarly to other transporters and channels, aquaporins could also localize at 

intracellular membranes and transport other substrates than water (Maurel et al., 2009). 

Actually, it is known that TIPs have a key role in water transport at the tonoplast level and 

are tightly regulated by water deficit conditions (Tyerman et al., 2012). In addition, several 

aquaporins can be located to the membrane of other organelles, including the ER. This is 

the case of VvSIP1 that specifically transports water across the ER of grapevine cells 

(Noronha et al., 2014). In a previous work it was shown that the XIP aquaporin from 

tobacco NtXIP1;1 is located at the plasma membrane (Bienert et al., 2011), but our co-

localization studies strongly suggest that VvXIP1 is not a plasma membrane channel but 

rather localizes at the tonoplast. 

 

4.3.2 VvXIP1 specificity is unusual 

  

H2O2 is an important molecule with dual functions, because it is an oxidative stress 

inducer but also a signaling molecule in plants (Foyer et al., 1997; Bolwell, 1999; Neill et 

al., 2002). In the present study we demonstrated with several approaches that VvXIP1 

transports H2O2. Intriguingly, despite the fact that H2O and H2O2 display high structural 

and electrostatic similarity VvXIP1 was unable to mediate water transport, which is in line 

with previous results in Solaneaceae XIPs (Bienert et al., 2011). 
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H2O transport capacity of VvXIP1 was studied by stopped flow scattered-light 

spectrophotometry in yeast membrane vesicles, a technique recently used in our group to 

confirm water transport capacity of the intracellular aquaporin VvSIP1 (Noronha et al., 

2014). Results showed that the permeability to water of membrane vesicles isolated from 

the yeast strain YSH1172 overexpressing VvXIP1 was similar to control. Also, no changes 

were observed in Ea of water transport across the membrane of the vesicles. PtXIP2;1 and 

PtXIP3;3 from P. trichocarpa are water channels, although their water permeability is low 

when compared to members of the PIP subfamily (Lopez et al., 2012). Stopped-flow 

experiments also showed that glycerol permeates VvXIP1. Glycerol is a common substrate 

for non-water conducting MIPs, particularly from the NIP and XIP subfamilies (Bienert et 

al., 2011). The function of glycerol in plants is not yet fully established, but may have a 

role in fatty acids biosynthesis and as a carbon source (Auberts et al., 1994; Tisserat and 

Stuff, 2011). 

   

 Boron in plants is particularly important in leaves due to its role in the organization 

of cell wall pectic polysaccharides (Matsunaga et al., 2004; Miwa and Fujiwara, 2010). In 

the present study, growth assays of the transformed yeast with externally supplied boric 

acid suggested that VvXIP1 is able mediate the transport of boric acid, because the 

expression of VvXIP1 significantly increased the tolerance of YSH1172 yeast cells to 

externally supplied boric acid, as reported previously by (Bienert et al., 2011; Sabir et al., 

2014). However, at higher concentrations (60 mM) the toxicity of boric acid became 

evident, as reported in the literature (Takano et al., 2007; Sabir et al., 2014). These results 

can be related with the higher expression of VvXIP1 in leaf tissues, suggesting that this 

aquaporin might have an important role in boron mobility in leaves. 

  

 The role of VvXIP1 in copper transport was also demonstrated in transformed 

yeasts. Copper is an important plant micronutrient, but highly toxic at high concentrations, 

leading to a reduction in photosynthetic activity, damage to lipids, proteins and DNA and, 

eventually, cell death. Recent results obtained in our group showed that the treatment of 

the grapevine with the copper-based fungicide Bordeaux mixture caused a transcriptional 

reprogramming of the expression of the VvCTrs (V. vinifera copper transporters) and a 

significant shift in grape berry composition and wine quality (Martins et al., 2012, 

2014a,b). Following the observation that VvXIP1 may transport copper, we found that 

VvXIP1 transcript levels in leaves are downregulated after Bordeaux mixture application in 
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the vineyard. These results open a new avenue of research on how VvXIP1 might cooperate 

with the copper transporters VvCTrs in the regulation of copper 

compartmentation/detoxification in grape cells.  

 

4.3.3 VvXIP1 is expressed in leaves and downregulated by water-deficit stress 

 

Results suggested that VvXIP1 could play an important role in grapevine leaves 

because VvXIP1 steady-state transcript levels where very high in leaf tissues. Also, VvXIP1 

is likely regulated by drought stress, because the levels of mRNAs were reduced by water 

deficit in leaves from cv. Aragonez. In agreement, in CSB cultured cells, VvXIP1 transcript 

levels were reduced by ABA and salt. The role of ABA on plant response to abiotic stresses, 

including water deficit and salt stress is well-known (Tyerman et al., 2012). Thus, the 

treatment of maize roots with ABA results over 1–2 h in a transient increase in hydraulic 

conductivity of the whole organ and of cortical cells and also rapidly enhances the 

expression of some PIP isoforms (Maurel et al., 2008). In the present study, we also showed 

that VvXIP1 greatly increased yeast cell sensitivity to water-deficit stress imposed by 

sorbitol, clearly confirming that VvXIP1 has an important role in osmotic regulation. 

Considering that this protein was proven to be unable to transport water, this effect could 

be due to its role on the homeostasis of osmotically active solutes. The involvement of 

aquaporins in osmotic stress has been extensively studied (Tyerman et al., 2012), but the 

specific role of VvXIP1 deserves further investigation. 

 

In summary, the functional analysis of VvXIP1 revealed an aquaporin with atypical 

features, being inactive for water transport but facilitating the transport of heavy metals like 

copper. What would be the physiological role of an intracellular aquaporin that mediates 

the incorporation H2O2, boron, copper, glycerol, but not water? Why substrates structurally 

and functionally so different could share the same channel? The addressing of these key 

questions in future work will expand our knowledge on the role of intracellular aquaporins 

and will shed light into their structure-function relationships. 
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4.4. Materials and Methods 

 

4.4.1 In silico studies 

 

Phylogenetic analysis was performed in silico using amino acid sequences from 

Vitis vinifera (F6I152), Gossypium hirsutum (D9DBX6), Populus trichocarpa 

(EEE86940), Prunus persica (M5VMI6), Nicotiana tabacum (ADO66667), Lotus 

japonicus (CCI69207), Ricinus communis (B9T717), Physcomitrella patens 

(XP_001758094), Aspergillus terreus (Q0CWK8), Fusarium oxysporum (N4U8H1), 

Penicillium marneffei (B6QIR3), Hypocrea virens (G9N6L5), Hypocrea jecorina 

(G9N6L5) and Selaginella moellendorffii (XP_002971714) obtained from the National 

Center of Biotechnology (NCBI), Uniprot and PlantGDB using the BLAST tool. The 

alignment of sequences was performed with PRANKSTER (Löytynoja and Goldman, 

2005) and Genedoc (Nicholas et al., 1997). The phylogenetic tree was created using these 

alignments with PROTDIST, NEIGHBOR and RETREE from the PHYLIP software 

package (Felsenstein, 1989) and Mega 4 (Tamura et al., 2007). An alignment with VvXIP1 

and several plant XIPs was performed and TOPCONS (Bernsel et al., 2009) was used to 

identify the transmembrane helix domains.  

 

4.4.2 Plant material 

 

Cv. Vinhão berries, canes, flowers and leaves were collected form a commercial 

vineyard near Guimarães, Portugal. Potted cv. Aragonez plants were grown in a greenhouse 

and subjected to different watering regimes during 4 weeks: full irrigation (FI – control), 

with plant watering every two days; and non-irrigation (NI), no watering. Leaves were 

collected when NI plants water potential was -1.3 < Ψpd < -0.9 MPa (Conde et al., 2015). 

  

Cell suspensions of V. vinifera L. (Cabernet Sauvignon Berry - CSB) were freshly 

established from somatic callus that had been previously initiated from Cabernet Sauvignon 

berry pulp. They were maintained on modified Murashige and Skoog (MS) medium, 

supplemented with 2% (w/v) sucrose in 250 mL flasks on a rotary shaker at 100 rpm in the 

dark, at 23 ºC (Decendit et al., 1996). Cells were subcultured weekly by transferring 10 ml 

aliquots into 40 mL of fresh medium. To study the effect of different treatments on VvXIP1 

expression, 5 mL aliquots were incubated overnight with 200 mM NaCl, 2% (w/v) 
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polyethylene glycol (PEG), 150 µM abscisic acid (ABA), or 150 µM salicylic acid (SA) at 

23 ºC. After each treatment, cells were immediately frozen in liquid nitrogen and stored at 

-80. 

 

4.4.3 Yeast strains and growth assays 

 

The following yeast strains were used: YSH1172, MPY2 and MPY3. YSH1172 is 

a deletion mutant for AQY aquaporins and MPY2 and MPY3 are double and triple mutants 

(MPY17 strain with ctr1Δctr3Δ or ctr1Δctr3Δctr2Δ), respectively, in copper transporters, 

thus unable to grow with respiratory substrates such as glycerol and ethanol, which requires 

high amounts of copper. AQY-null strain was transformed with pVV214-VvXIP and 

pVV214-Empty Vector. MPY2 and MPY3 strains were transformed with pVV214-VvXIP, 

pVV214-Empty Vector and with pVV214-VvCTR1. VvCTR1 is a copper transporter 

recently identified and functionally characterized (Martins et al., 2014a). The pVV214-

VvXIP1 construct was prepared by Gateway (Qiagen) and the primers can be found in Table 

4.2.  

 

YSH yeast cells were grown in synthetic medium with 7 g/L YNB, 1.3 g/L SC, 2% 

agar powder, 2% glucose, 300 mg/100 mL leucine and 250 mg/100 mL tryptophan, washed 

and resuspended in sterile water to a final OD600 nm = 1. Different dilutions (0.1, 0.01 and 

0.001) were made and 10 μL of each suspension was spotted in solid medium with the 

following conditions/stressors: i) 2.1 M sorbitol, ii) 1% and 2% of ethanol and the same 

concentrations of glycerol, iii) 30 and 60 mM boric acid (adjusted to pH 5.5 with Tris), iv) 

5 mM CuSO4, v) 0.35 and 0.7 mM H2O2. Appropriate control plates inoculated with non-

complemented mutants were prepared. 

 

MPY yeast cells were grown in synthetic medium containing 7 g/L YNB, 1.3 g/L 

SC, 2% agar powder, 2% glucose, 25 mg/100 mL histidine, 30 mg/100 mL lysine and 25 

mg/100 mL tryptophan, washed and resuspended in sterile water to a final OD600 nm = 1; 

Different dilutions (0.1, 0.01 and 0.001) dilutions were made and 10 μL from each 

suspension were spotted in solid medium containing 10 and 100 μM CuSO4. Yeast growth 

was observed during several days and images were collected with Chemidoc XRS (Bio-

Rad). 
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 Primer forward (5’ – 3’) Primer reverse (5’- 3’) 

 

qGAPDH  

 

CACGGTCAGTGGAAGCATCATGA CCTTGTCAGTGAACACACCAGTTGACTC 

 

qVvXIP1  

 

ATCATGTCGGTTGTTGTTGC CAGCGCGTGAGAAAGAGATA 

GATEWAY 

VvXIP1 

GGGGACAAGTTTGTACAAAAAA 

GCAGGCTTCCAAATGGGTTCA 

CACAATGGGGTTG 

GGGGACCACTTTGTACAAG 

AAAGCTGGGTCTATCAATG 

AATGCCTCAATATATTC 

Table 4.2 Primer sequences used to perform quantitative real-time PCR and to insert VvXIP1 in 

expression vectors 

 

4.4.4 Fluorescence assays 

 

The YSH1172 aqy-null yeast strain was transformed with pVV214-VvXIP1 and 

empty pVV214 vector constructs and pre-cultured in YNB+SC solid medium. Liquid 

cultures were grown in the dark overnight in the presence of 1 μM 5-(and-6)-chloromethyl-

2’,7’-dichlorodihydrofluorescein diacetate acetyl ester (CM-H2DCFDA, Molecular 

Probes), a fluorophore sensitive to reactive oxygen species (ROS) (Bienert et al., 2007). In 

its acetylated form, the dye can freely diffuse into yeast cells but, once inside, the 

fluorochrome is deacetylated and unable to cross the membrane making the cells 

susceptible to oxidation by ROS. After incubation, cells were washed three times with 

MOPS buffer (pH 7.0) and resuspended in the same buffer to a final OD600 nm = 1.4. After 

the addition of H2O2, the fluorescence of 2 ml yeast suspension was followed over time at 

20°C in a spectrofluorometer at an excitation/emission of 492/527 nm (Perkin Elmer 

Luminescence Spectrometer LS 50). 

 

4.4.5 Clark electrode assays 

 

The YSH1172 aqy-null yeast strain was transformed with pVV214-VvXIP1 and 

empty pVV214 vector constructs and pre-cultured in YNB+SC solid medium. Liquid 

cultures were then grown overnight. Cells were then washed three times and resuspended 

in water to a final final OD600 nm = 1.0. H2O2 was then added to the cell suspension to a final 
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concentration of 50 μM and the O2 formation was followed with a Clark electrode coupled 

to an YSI 5300 Biological Oxygen Monitor. 

 

4.4.6 RNA isolation from grapevine berries and leaves 

 

RNA from grape berries and leaves was isolated with a Qiagen RNeasy Plant Mini 

kit following the manufacturer’s instructions. The extraction buffer was changed to 2% 

cetyltrimethyl ammonium bromide (CTAB), 2% soluble polyvinylpyrrolidone (PVP) K-

30, 300 mM Tris-HCl (pH 8.0), 25 mM EDTA, 2.0 M NaCl, and 2% (v/v) β-

mercaptoethanol. After an in-column DNase treatment, the RNA integrity was checked in 

a 1% agarose gel, and the first-strand cDNA synthesis was performed with the LongRange 

2Step RT-PCR (Qiagen), following manufacturer’s instructions. 

 

4.4.7 Co-localization studies 

 

The pH7RWG2-VvXIP1-RFP construct was prepared by Gateway (Qiagen) with the 

primers found in Table 4.2. Recombination sequences were introduced by PCR in the 

VvXIP1 cDNA without a stop codon and the fragment recombined into the entry vector 

pDONR221 with the BP clonase enzyme. VvXIP1 cDNA was then recombined into the 

pH7RWG2 vector by the LR clonase enzyme. pCambia2300-YFP-ZmPIP2;5 and 

pCambia2300-YFP-ZmTIP2;1 were provided by F. Chaumont. The two constructs were 

separately introduced in Agrobacterium tumefaciens (GV3101) and transient 

transformation of N. benthamiana leaf epidermal cells was performed according to a 

previous report (Sparkes et al., 2006). Bacterial cells were cultivated overnight in liquid 

LB medium up to the exponential-stationary phase and then diluted to OD600nm = 0.1 with 

infiltration buffer (50 mM MES pH 5.6, 2 mM Na3PO4, 0.5% glucose, and 100 μM 

acetosyringone). Diluted cells were cultivated again until the culture reached an 

OD600nm=0.2. Four-week-old tobacco plants were infiltrated with the bacterial cultures and 

leaf discs were examined under the confocal microscope 2 days later in a Leica TCS SP5IIE 

scanning confocal microscope (Leica Microsystems). Data stacks were analyzed and 

projected using ImageJ 1.42m software (http://rsb.info.nih.gov/ij/). The yellow 

fluorescence signal from YFP was represented in green in all the acquisitions. 
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4.4.8 Real-time PCR studies 

 

Quantitative Real-time PCRs were performed with a QuantiTect SYBR Green PCR 

Kit (Qiagen) and in a CFX96 Real-Time detection System (Bio-Rad), at an annealing 

temperature of 55ºC. RNA and cDNA samples were obtained as described above. 

Experiments were carried out in biological triplicates with the software Bio-Rad CFX 

Manager (Bio-Rad), using VvGAPDH as an internal control. To verify the absence of 

unspecific and primer-dimer amplification melting curves were performed after each run. 

The primers used to study the expression of VvXIP1 and VvGAPDH can be found in Table 

4.2. 

 

4.4.9 Isolation of yeast membranes 

 

YSH1172 yeast cells transformed with pVV214-VvXIP1 were cultivated overnight 

in YNB medium with leucine and tryptophan. Cells were washed, resuspended in digestion 

buffer (1.35 M sorbitol, 10 mM citric acid, 30 mM Na2HPO4, 1 mM EGTA, pH 7.4) with 

30 mM dithiothreitol (DTT), centrifuged and spheroplasts were obtained by digestion with 

zymolyase 20T (in digestion buffer). After complete digestion, monitored in phase contrast 

microscope, spheroplasts were pelleted and homogenized in a potter homogenizer after 

resuspension in HEPES-lysis buffer [20 mM HEPES, 50 mM potassium acetate, 100 mM 

sorbitol, 2 mM EDTA, 1 mM phenylmethylsulphonyl fluoride (PMSF), 1 mM DTT, pH 

6.8]. The homogenate was centrifuged at 1000g for 10 min and the supernatant saved. The 

membranes were then pelleted at 100 000g for 30 min, resuspended (100 mM mannitol, 

10 mM Tris-HEPES, pH 7.5), centrifuged again at 100.000 g for 30 min, flash frozen, and 

stored at -80 ºC. These procedures were performed according (Rodrigues et al., 2013; 

Noronha et al., 2014). 

 

4.4.10 Stopped flow spectroscopy 

 

Membrane permeability of the microsomal fraction from transformed yeasts was 

studied with the stopped flow technique (HI-TECH Scientific PQ/SF-53). Five runs were 

usually stored and analysed in each experimental condition, as described before (Soveral 

et al., 1997; Noronha et al., 2014). To assess water transport, vesicles resuspended in 100 

mM mannitol, 10 mM Tris-HEPES (pH 7.5) (0.1 mL, 0.4 mg protein ml-1) were mixed with 
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a 340 mM mannitol, 10 mM Tris-HEPES (pH 7.5) solution at 23 ºC to produce an inwardly 

directed gradient of impermeant solute (osmotic gradient 240 mOsM). The kinetics of 

vesicle shrinkage were measured from the time course of 90 º scattered light intensity at 

400 nm until a stable light scatter signal was reached. Experiments were performed at 14-

33 ºC to evaluate the activation energy of water transport (Ea).  

 

To assess glycerol transport, vesicles resuspended in 100 mM mannitol, 10 mM 

Tris-HEPES (pH 7.5) (0.1 ml, 0.4 mg protein ml-1) were mixed with a solution containing 

100 mM mannitol, 240 mM glycerol and 10 mM Tris-HEPES (pH 7.5) at 23ºC to produce 

an inwardly directed gradient (osmotic gradient 240 mOsM). After a fast shrinkage due to 

water outflow, the kinetics of vesicle swelling due to glycerol influx (with consequent water 

influx) were measured from the time course of 90 º scattered light intensity at 400nm until 

a stable light scatter signal was reached. The water permeability coefficient (Pf) and the 

glycerol permeability coefficient (Pgly) were estimated by fitting the light scatter signal to 

a single exponential curve with the equation Pf = k(V0/A) [1/Vw/(osmout)∞] (Soveral et al., 

1997), where Vw is the molar volume of water, V0/A is the initial volume to area ratio of the 

vesicle population and (osmout)∞ is the final medium osmolarity after the application of the 

osmotic gradient. The osmolarity of each solution was determined from freezing point 

depression by a semi-micro-osmometer (Knauer GmbH, Germany). The activation 

energies (Ea) were obtained from the slope of an Arrhenius plot (ln Pf or ln Pgly as a function 

of 1/T) multiplied by the gas constant R. Vesicle size (initial volume) was determined by 

quasi-elastic light scattering (QELS) by a particle sizer (BI-90 Brookhaven Instruments) as 

described by Soveral et al. (1997).  

 

4.4.11 Statistical analysis 

 

The results obtained were statistically verified by analysis of variances tests (one-

way and two-way ANOVA using Prism v. 6 (GraphPad Software, Inc.) Post-hoc multiple 

comparisons were performed using the HSD Tukey test. 
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5.1 Conclusions and perspectives 

 

Grapevine is economically one of the most important fruit species in the world. The 

control and optimization of berry yield and quality are major concerns for viticulturists, to 

whom extreme climate events clearly represent additional undesired challenges. The 

biochemical and molecular mechanisms of grape berry ripening in response to the 

environment has been the main target of the studies developed in our group over recent 

years. Towards this objective, we have combined studies in in vitro cell cultures (Conde et 

al., 2006; Martins et al., 2012), fruiting cuttings and berry samples (Martins et al., 2014a; 

Noronha et al., 2014) with field experiments (Martins et al., 2014b; Teixeira et al., 2014; 

Conde et al., 2015) taking advantage of different molecular, biochemical, metabolomic, 

and transcriptomic approaches. So far, most of our research outcomes have been 

predominantly of an academic nature, but our work also captivates the wine sector due to 

the importance of berry composition on wine quality. In particular, understanding the 

mechanisms and regulation of sugar transport and compartmentation during grape berry 

maturation has both an important fundamental and applied relevance, because fruit sugar 

levels are a critical parameter for wine quality.  

 

Sugars are predominantly produced in the plastids of mature leaves, but these 

organelles play additional important roles, including the synthesis and accumulation of 

starch, as well as the synthesis of several secondary compounds (Wise, 2007). The 

remobilization of leaf transient starch during the night sustains cellular metabolism and 

continuously feeds sink tissues with sugars, thus plastids from sink tissues are 

carbohydrate-importing organelles. As reported in the Introduction, many transport steps 

are involved in the exchange of sugars across the biological membrane of both green and 

non-green plastids, but their characterization in grapevine is still incipient, clearly 

contrasting with the importance of sugars in this crop. Following the work previously 

developed by our group that aimed to elucidate important sugar transport steps at the 

plasma membrane level (Conde et al., 2006, Conde et al., 2015), here, we wanted to further 

unravel the biochemical mechanisms behind sugar exchange at the plastidial membrane. 

The results presented and discussed in Chapter 2 led to the identification of grapevine GPT 

members, and two transcripts, VvGPT1 and VvGPT2Ω, were cloned and characterized. 

These findings are particularly relevant, since, to our knowledge, it was the first time that 

grapevine plastidial transporters were characterized. We showed that VvGPT1 and 
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VvGPT2Ω are glucose-6-Pi/Pi translocators, with the first being abundant in heterotrophic 

tissues. VvGPT1 mediates glucose-6-Pi transport into sink plastids, and likely has a 

fundamental role in the synthesis and accumulation of starch, as well as in the secondary 

metabolism. The approach used to demonstrate the transport capacity of VvGPT1 took 

advantage of previous work developed by Niewiadomski et al., (2005) with the Arabidopsis 

pgi1-1 mutant (Yu et al., 2000). As shown in Chapter 2, leaves from this mutant are unable 

to accumulate starch due to the lack of plastidial phosphoglucose isomerase activity and, 

as a result, have a pale yellow color when stained with iodine. However, when the pgi1-1 

mutant was complemented with 35S-VvGPT1-GFP and 35S-VvGPT2Ω-GFP, leaves 

recovered the typical strong iodine blue staining of the wild type, suggesting that their 

chloroplasts became able to incorporate glucose-6-Pi, bypassing the phosphoglucose 

isomerase step to produce starch. Thus, in plastids from green tissues, which do not express 

glucose-6-Pi translocators, we demonstrated the function of a transporter protein mostly 

expressed in sink tissues. 

 

Future work will be undertaken to characterize VvGPT1 and VvGPT2Ω at the 

protein activity level in chloroplasts purified from leaves of Arabidopsis complemented 

with 35S-VvGPT1 and 35S-VvGPT2Ω. The quantification of the radiolabeled glucose-6-Pi 

entrapped by the purified plastids will enable the precise characterization of the kinetic 

properties and specificity of these proteins and may open additional challenges for future 

research. 

 

 The expression of VvGPT1 and VvGPT2Ω is responsive to environmental and 

endogenous stimuli, including light intensity, sugar levels and hormones. Indeed, field 

experiments clearly showed that VvGPT1 expression in the berries is dependent on the 

degree of sun exposure of the cluster, which most likely interferes with the accumulation 

of sugars and secondary metabolites in the fruit. This is a fascinating research topic, with 

important practical applications, that deserves further investigation in the future. For 

instance, besides the clear effect of the grapevine orientation, other agricultural practices, 

including defoliation, could affect the expression of these sugar transporters in sink tissues, 

and thus modify the berry composition, particularly the amount of sugars, anthocyanins, 

and other secondary metabolites. In this regard, one particularly noteworthy aspect is the 

importance of our collaboration with ITQB (Prof. Manuela Chaves and co-workers), ISA 

(Prof. Sara Amâncio and Prof. Carlos Lopes) and UTAD (Prof. José Moutinho Pereira and 
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co-workers) in achieving our goals, particularly in what concerns the connection between 

basic science and field experiments. In particular, the possibilities opened in the context of 

the European project INNOVINE (http://www.innovine.eu/home.html) to precisely adjust 

and monitor important parameters like water availability, berry temperature and sun 

exposure, has enabled the establishment of precise correlations concerning the effect of a 

specific environmental factors on gene expression and metabolism. 

 

The treatment of CSB cells with MeJA induced a strong increase in the expression of 

VvGPT1 and VvPAL1, further supporting the involvement of VvGPT1 in the synthesis of 

secondary compounds. In a research project recently submitted to FCT (Portuguese 

Foundation for Science and Tecnhology) our group proposed to mitigate drought stress 

symptoms in grapevine through exogenous treatments with polyols and plant hormones 

and/or hormone-like bioactive molecules, in particular abscisic acid. These easy-to-

implement and cost-effective strategies will be tested at the field level (in cooperation with 

Symington) in combination with different irrigation treatments. In this context, the effect 

of the foliar application of MeJA on grape berry composition, particularly in what regards 

sugars and secondary metabolites, also appears of particular interest. 

 

Another important research line opened by our results on plastidial transporters 

concerns the mechanisms of starch accumulation during the winter in the woody tissues 

and roots, and its remobilization to allow rapid shoot growth in the spring. It has been 

shown that the strength of the various sinks to which photoassimilates are allocated varies 

during seasonal vine development (Davies et al., 2012). Sink strength is also affected by 

nutrient availability and soil fertility, vine water status, additional stresses such as insects 

and disease, and crop load – the ratio of fruit to active leaf area (Davies et al., 2012). Early 

vine growth relies on carbohydrate and nitrogen reserves stored in woody tissues, canes 

and roots, and starch is mobilized from canes, cordons, trunk, and roots to the developing 

shoots until mature leaves become net exporters of photoassimilates (Zapata et al., 2004). 

Indeed, most studies developed until now focus on starch degradation in the cereal 

endosperm, but different mechanisms are expected to be involved in the roots and woody 

tissues of grapevine, because at the time of germination the cereal endosperm is a dead 

tissue (Zeeman et al., 2010). Currently, we are using mature grapevine canes to study the 

mechanisms behind starch accumulation and remobilization. The transcriptome of starch 

remobilization in grapevine canes is an interesting research project that we want to 
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undertake, for which the collaboration with the University of Bordeaux will be particularly 

important. In particular, we want to study how the adjustment of source/sink ratio through 

the manipulation of the number of leaves per cluster affects the berry sugar status and the 

total carbon reserves stored in the amyloplasts of woody tissues. The results obtained may 

have important practical applications because canopy defoliation is an agricultural practice 

whose application by the farmers is mostly empirical.  

 

Besides sugar, water content is also an important parameter of berry quality, which 

is particularly intermingled with sugar status during berry development. Thus, the co-

expression of several aquaporins at the same time as sugars transporters suggests a 

functional link between sugar and water fluxes during the processes of unloading and sugar 

accumulation in the flesh cells (Fontes et al., 2012). Water deficit generally leads to smaller 

berries, with higher surface/volume ratio, increasing the concentration of several 

compounds that accumulate in the skin, like anthocyanins and other phenolic metabolites 

(Chaves et al., 2010; Conde et al., 2015). However, water deficit may affect the primary 

and secondary metabolism of the berry through modifications in gene expression, as shown 

in the present work for sugar transporters and aquaporin genes. What should be the role of 

an intracellular aquaporin? This fascinating research topic was explored in Chapters 3 and 

4 of the present study. It was discussed that intracellular AQPs may play important roles in 

organelle water transport and intracellular water homeostasis, and may also transport small 

solutes important for cellular signaling. Nonetheless, their physiological role in plants, 

particularly in grapevine, is still far from being fully understood. We wanted to explore in 

detail the localization and function of aquaporin members from SIP and XIP families – 

VvSIP1 and VvXIP1 – and how they are expressed in berry tissues and regulated by 

environmental conditions, in particular by water-deficit stress.  

 

VvSIP1 is localized at the ER and is not particularly responsive to environmental 

stresses and hormonal treatments, with the exception of heat, which induced its expression 

in cultured cells. After the purification of ER membranes from yeasts overexpressing 

VvSIP1, its transport capacity was assessed by stopped-flow spectroscopy. This technique 

was performed at the laboratory of Prof. Graça Soveral (University of Lisbon) and revealed 

particularly powerful to demonstrate water transport through VvSIP1, because our previous 

results in Xenopus oocytes had been inconclusive. The purification of VvSIP1 was 

performed at Université catholique de Louvain (UCL) in the laboratory headed by Prof. 
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François Chaumont using a Ni-NTA affinity chromatography. After the purification of the 

ER membranes from yeasts overexpressing VvSIP1, the optimization of the conditions to 

extract the protein from the ER, including the detergent type and the appropriate 

detergent:protein ratio, was particularly challenging. The purified protein was incorporated 

into artificial liposomes in our laboratory at University of Minho and its transport activity 

measured again by stopped-flow at University of Lisbon following previous experiments 

in ER vesicles from yeasts overexpressing VvSIP1.  

 

The work originated from the cooperation between University of Minho, University 

of Lisbon, Université catholique de Louvain and University of Bordeaux was published in 

an International Journal and presented in Chapter 3 (Noronha et al., 2014). Importantly, it 

opens good perspectives for future work that may include the characterization of VvSIP1 

after site directed mutagenesis to elucidate which amino acid residues are crucial for protein 

activity, specificity and regulation. 

 

Although few SIPs have been characterized at a molecular and biochemical levels, 

much work is still needed to pinpoint their specific physiological role in the ER membrane. 

In this regard, the study of Arabidopsis mutants could be particularly useful.  However, the 

analysis of T-DNA insertion mutants of AtSIP1;1 and AtSIP2;1 showed no visible 

modifications in Arabidopsis growth, morphology and stress responses (Ishikawa et al., 

2005; Maeshima and Ishikawa, 2008). Therefore, a thorough exploitation of phenotypes at 

the cellular level is needed, and the analysis of the ER ultrastructure may also provide 

relevant information on the physiological role of SIPs. Also, the overexpression of SIP 

members in Arabidopsis, tobacco or tomato, or even RNAi-mediated knockdown of SIPs 

in grape suspension-cultured cells may provide additional information on these intracellular 

water transporters in a near future.  

 

As referred to before, XIPs were studied in few plant species and fungi so far, and 

much work remains to be done to fully understand their physiological role. For this reason, 

this protein family was named Uncharacterized (X) Intrinsic Proteins (Gupta and 

Sankararamakrishnan, 2009; Bienert et al., 2011). The results presented in Chapter 4 

showed for the first time that a XIP protein can be targeted to the tonoplast. Also, stopped-

flow spectroscopy studies with membranes from yeast over-expressing VvXIP1, 

demonstrated that this aquaporin is intriguingly unable to mediate the transport of water, 
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but transports glycerol. Plate growth assays showed that, besides glycerol, VvXIP1 can 

transport boron, H2O2 and copper. Interestingly, in vines treated with Bordeaux mixture, a 

common copper-based fungicide, the expression of VvXIP1 in leaves was reduced. These 

results are particularly interesting, because they opened new possibilities to study the 

cooperation of VvXIP1 and VvCTrs in the regulation of copper 

compartmentation/detoxification in grape cells.  

 

The capacity of VvXIP1 aquaporin to transport copper is likely to have a significant 

impact in the scientific community, because the transport charged molecules have not been 

described so far. Even in the case of boron uptake, it has been shown that the undissociated 

boric acid (H3BO3) is the form that crosses the water channel. In this regard, additional 

studies are in progress to characterize copper transport across VvXIP1 in transformed 

yeasts using copper-sensitive fluorescent probes and radiolabelled copper. In particular, the 

Cu-sensitive fluorophore Phen Green, revealed useful in our laboratory to characterize 

copper transport in cultured cells from grape (Martins et al., 2012). This topic is also 

particularly important for grapevine, since in many vineyards copper has accumulated to 

very high and toxic levels in the soils as a result of decades of treatment with copper sulfate 

(Bordeaux mixture). 

 

Deciphering the physiological role of XIPs is particular difficult because no 

homologs can be found in the Arabidopsis genome (Bienert et al., 2011). Alternatively, the 

use of tomato, a fleshy fruit like grape berry, for over-expression studies may be an 

interesting approach that may allow the identification of the physiological role of VvXIP1 

during fruit development.  

 

As referred to before, understanding how sugars and water, along with other 

important solutes, including organic acids and secondary compounds, are transported and 

compartmented in grape cells, and how these processes are influenced by environmental 

stresses and endogenous signals are of extreme basic and applied importance. The 

continued work on achieving this goal will ultimately enable the improvement of grapevine 

productivity and grape berry quality in the context of the ongoing climatic changes, through 

the precise adjustment of the agricultural practices, like canopy management and irrigation, 

or through mitigation strategies, including the foliar spraying with exogenous substrates or 

hormones. 
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