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Introduction

Polycaprolactone (PCL) is among the most attractive and

commonly used biodegradable polyesters.[1] It can be used

in different biomedical applications,[2–4] such as in scaf-

folds in tissue engineering, and for controlled release of

drugs. On the other hand, starch is one of the natural bio-

degradable polymers and is produced at a relatively low

price. The development and biodegradable properties of the

blends of starch with PCL (SPCL) has been well documen-

ted in the literature.[5–14] Starch helps to lower the cost of

the ultimate product as well as to give some biodegradable

characteristics to PCL. Recently, SPCL has already been

proposed for biomedical applications, including tissue

engineering scaffolds,[15–17] and for different orthopaedic

purposes.[15,18] Besides adequate physical properties, this

blend exhibits good biocompatibility[16,19] and low inflam-

matory response.[20]

Characterising the thermal properties of such systems

may be useful for the processing of the material and for the

prediction of some features during their potential applica-

tions as biomaterials. Non-isothermal crystallisation behav-

iour is one of the important thermal properties of semi-

crystalline polymers to be characterised, since most pro-

cessing techniques are melt-based and actually occur

under non-isothermal conditions, and the resulting physical

properties (including mechanical and biodegradable behav-

iour) are strongly dependent on the morphology formed and

Summary: Polycaprolactone (PCL) and starch/PCL blends
(SPCL) are shown to have the potential to be used in a range
of biomedical applications and can be processed with con-
ventional melting-based procedures. In this paper, the
thermal and thermomechanical analyses of PCL and SPCL
were performed, using DSC, optical microscopy and DMA.
Starch effectively increased the non-isothermal crystallisa-
tion rate of PCL. Non-isothermal crystallisation kinetics was
analyzed using Ozawa model, and a method, which combines
the theories of Avrami and Ozawa. Starch effectively rein-
forced PCL and enhanced its damping properties, which
indicated that SPCL could be more suitable than PCL in some
biomedical applications, as it might help in the dissipation of
the mechanical energy generated by the patient movements.

Dynamic mechanical behaviour of PCL and SPCL at 1 Hz.
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the extent of crystallisation. Examinations concerned with

the non-isothermal crystallisation features of PCL and its

blends with starch have been published by several authors.

For example, Skoglund et al.[21] presented overall crystal-

lisation characteristics of PCL. Vazquez et al.[22,23] reported

the influence of sisal fibre on the crystallisation behaviour

of PCL. However, there is little information concerning

the influence of starch on the crystallisation behaviour of

PCL. In this article, the melting behaviour and the non-

isothermal crystallisation kinetics of typical commercially

available PCL and SPCL were studied by DSC. The mor-

phology development upon cooling from the melt was also

studied by polarised optical microscopy.

The mechanical characterisation of new polymeric

systems is essential to understand their performance under

loads and may help to elucidate on the micro-structure of

heterogeneous systems, such as semi-crystalline polymers,

blends or copolymers. Especially for implanted materials

that will withstand mechanical stresses in clinical use (e.g.,

in vascular or orthopaedic applications), a proper mechan-

ical characterisation is among the most important physical

tests that must be carried out. Implantable materials should

have a similar mechanical performance of the living tissues

that will be in contact with. Most of the biological tissues,

possibly excepting dental enamel and echinoderm skel-

etons, exhibit a time-dependent mechanical behaviour due

to their viscoelastic nature. Therefore, it is important to

evaluate the solid-state rheological properties of materials

aimed at being used in biomedical applications. Dynamic

mechanical analysis (DMA) is a thermal analysis technique

in which the response of the material under a cyclic load or

strain excitation is measured as a function of frequency or

temperature, being adequate to probe the viscoelastic pro-

perties of polymeric systems.[24,25] It has also been shown

that this technique may be useful to extract relevant infor-

mation in biomaterials.[26] A few authors[5,6,9,27] have

shown some DMA data of PCL and SPCL, but they

only reported the results at a single frequency; moreover,

the data were never integrated in the context of the poten-

tial biomedical applications of the materials. In this work

DMA was also used to access the thermal properties of the

studied materials, especially near glass transition temper-

ature (Tg), and to obtain information about the viscoelastic

properties in this temperature region at meaningful

frequencies.

Experimental Part

Materials

PCL of commercial grade (TONE1 787) was supplied by
Union Carbide, with molecular weight 125 000. The blend of
corn starch with PCL 30/70 wt.-% (SPCL) was provided by
Novamont (Italy). It contained about 63 wt.-% of PCL, 27 wt.-%
of corn starch and 10 wt.-% of natural plasticisers. The

molecular weight of PCL presented in SPCL was about
118 000.

Differential Scanning Calorimetry

A Perkin-Elmer DSC 7 was used to study the thermal be-
haviour of the samples. Sample films of approximately 0.2 mm
thickness were obtained by hot-press at 95 8C for several
minutes. Samples of about 10 mg were cut from the film. Each
sample was used only once and all the runs were carried out
under a nitrogen atmosphere.

Three kinds of experiments were performed:

(1) For isothermal crystallisation experiments, the sam-

ples were heated to 95 8C at 200 8C �min�1 and held for

5 min to eliminate small residual nuclei that might act as

seed crystals. Then, the melt was cooled rapidly to the

crystallisation temperature and kept at this temperature for

a period of time. After this period, the samples were heated

at 10 8C �min�1 without further cooling to characterise the

melting behaviour.

(2) In cooling experiments, the samples were heated to

95 8C at 200 8C �min�1 and held for 5 min. Then, the melt

was cooled to crystallise at selected constant cooling rates,

ranging from 2.5 to 40 8C �min�1.

(3) To investigate the glass transition characteristics, the

samples were heated to 95 8C at 200 8C �min�1 and held for

5 min. Then, the melt was cooled rapidly to�80 8C, and the

heat flow was recorded during a heating at 10 8C �min�1.
Separate calibrations for baseline were made for all heating

and cooling rates. Calibration for the temperature and energy
scale was carried out using a pure indium standard. Precautions
were taken for temperature calibration on cooling. 4-Cyano-40-
octyloxy-biphenyl (M24), which was kindly supplied by
Prof. Schick (University of Rostock, Germany), was used.
The calibration was performed following the procedure
suggested in the literature.[28]

Optical Microscopy

Non-isothermal crystallisation experiments were conducted on
the thin films of the polymers between microscope glass slides
placed on a Mettler hot-stage (FP80) and an Olympus BH-2
polarising microscope, equipped with a video camera system.
The samples were heated to 95 8C, maintained for 5 min and
then cooled down at 2 8C �min�1.

Dynamic Mechanical Analysis

Dynamic mechanical analysis (DMA) testing was carried out
using a Mettler DMA861 equipment. The samples were ob-
tained by compression moulding at a constant force of 10 tons
at 65 8C for 20 min and then cut into bars of about 5.5� 3�
1 mm3. The testing configuration was shear. A constant dyn-
amic force of 10 N was applied and six different frequencies
were used (1, 5, 10, 20, 50 and 100 Hz). The characterisation of
the glass transition was carried out by the tests performed in the
temperature range of �102 to 50 8C at a heating rate of
5 8C �min�1.
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Results and Discussion

Melting Behaviour

The investigation of the melting characteristics is helpful

for the determination of the processing parameters of the

studied systems. Figure 1(A) and (B) shows the melting

behaviour of PCL and SPCL upon heating at 10 8C �min�1,

immediately after being crystallised isothermally at four

different temperatures from 20 to 40 8C, for 30 or 60 min. It

can be seen that crystallisation temperature has a significant

effect on the melting behaviour of PCL and SPCL. With

increasing isothermal crystallisation temperature, the melt-

ing peak moves to higher temperature for both PCL and

SPCL. The melting peaks of PCL are broader than those of

SPCL.

Table 1 summarises characteristic data for melting

behaviour of PCL and SPCL. At the same isothermal cry-

stallisation condition, the subsequent melting peak temper-

ature, Tm, for PCL is about 1.6 8C higher than that of SPCL.

For each of PCL and SPCL, the melting enthalpy, DHf, is

insensitive to isothermal crystallisation conditions at the

studied range. For PCL DHf¼ 61.1� 1.3 J � g�1, and for

SPCL DHf¼ 42.1� 0.7 J � g�1. The values of DHf can be

compared with 139.5 J � g�1, corresponding to a 100%

crystalline PCL.[29] Follow this, the crystallinity of PCL can

be easily estimated. The crystallinity is 43.8� 0.9% and

47.9� 0.8% for PCL and for PCL within SPCL, respectively.

It is well known that plasticiser can decrease the melting

point of polymers.[30] As mentioned earlier, SPCL contains

about 10% of natural plasticiser, while the molecular

weight of PCL and that of SPCL are very close. Therefore, it

is reasonable to suggest that the difference in the melting

temperature is probably due to the plasticisation effect of

the plasticiser on PCL. Another possibility is that the exis-

tence of starch and plasticiser in SPCL leads to the diffe-

rence of crystal lamellae between SPCL and PCL.

Non-Isothermal Crystallisation Behaviour

Figure 2 presents the non-isothermal crystallisation peaks

recorded at different cooling rates. As expected, with in-

creasing cooling rate, the exothermic trace becomes wider

and shifts towards lower temperatures. The observation is

general for both PCL and SPCL samples.

Table 2 summarises the main features for non-isothermal

crystallisation of PCL and SPCL. For both PCL and SPCL,

the crystallisation peak temperatures, Tc, move towards

lower temperature with increasing cooling rate. For a given

cooling rate, the Tc value for SPCL is higher than that for

PCL. The difference in Tc, at cooling rate from 2.5 to

40 8C �min�1, is 21.1 8C for PCL and 10.5 8C for SPCL,

respectively. For both PCL and SPCL, the crystallisation

enthalpies, DHc, and their crystallinities are insensitive to

cooling rates at the studied range, which is consistent with

the results for PCL reported by Skoglund et al.[21] By

comparing DHc with 139.5 J � g�1, for a 100% crystalline

PCL, the obtained crystallinity is 38.2� 0.4% and
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Figure 1. DSC melting thermograms of PCL and SPCL upon
heating at 10 8C �min�1 after being crystallised isothermally
under various conditions. (A) 20 8C for 60 min, (B) 35 8C for
30 min, (C) 38 8C for 30 min, (D) 40 8C for 60 min.

Table 1. Melting behaviour of PCL and SPCL probed by DSC.

Crystallisation
conditions

20 8C,
60 min

35 8C,
30 min

38 8C,
30 min

40 8C,
60 min

PCL
Tm/8C 55.3 56.7 57.3 58.4
DHf/(J � g�1) 63.3 61.3 59.8 59.8
Crystallinity/% 45.4 43.9 42.9 42.9

SPCL
Tm/8C 53.6 55.1 55.7 56.8
DHf/(J � g�1)a) 43.3 41.5 41.6 41.8
Crystallinity/%b) 49.3 47.2 47.3 47.6

a) Per gram of total sample.
b) Based on unit mass of PCL component.
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40.8� 0.5% for PCL and for PCL within SPCL, respec-

tively. The last column (t1/2) of Table 2 is the half-time of

crystallisation and it will be discussed further in the next

section.

To further understand the non-isothermal crystallisation

behaviour, it is necessary to present the data of relative

crystallinity X(T), as a function of crystallisation temper-

ature T, or X(t), as a function of crystallisation time t. X(T)

can be formulated as[31]

XðTÞ ¼
Ð T
T0

dHc

dT

� �
dT

Ð T1
T0

dHc

dT

� �
dT

ð1Þ

where T0 and T1 represent the crystallisation onset and end

temperature, respectively, and dHc, is the enthalpy of crys-

tallisation released during an infinitesimal temperature

range dT. The horizontal temperature scale can be trans-

formed into time domain using the following relationship:

t ¼ ðT0 � TÞ=f ð2Þ

where T is the temperature at crystallization time t, and f is

the cooling rate.

An important parameter which can be obtained is the

half-time of crystallisation t1/2, which is the change in time

from the onset of crystallisation to the time at which X(t) is

50%. It can be seen that from Table 2, for PCL and SPCL,

the higher the cooling rate, the shorter is the time for com-

pleting the crystallisation. At each cooling rate, the crys-

tallisation rate of SPCL is much faster than that of pure

PCL. This suggests that starch in SPCL acts as nucleating

agent, which could enhance the crystallisation rate of

PCL.[6] It has also been reported that starch could effec-

tively increase the crystallisation rate of poly(lactic acid),

even at a 1% content.[32]

The method developed by Dobreva-Veleva and

Gutzow[33] was also applied to analyse the non-isothermal

crystallisation behaviour of polymers in the presence of

nucleation agents. The relationship is established as the

following:

logf ¼ const:� B=ðTm � TcÞ2 ð3Þ

The activity of the filler is related to the parameter f:

f ¼ B*=B0 ð4Þ

where B* is the value of B when the polymer is filled and B0

when it is unfilled.

The value of f decreases from 1 to 0 as the polymer

crystallises in the presence of more efficient nucleating

particles. This approach has been successfully applied to

evaluate the nucleating rate of PP filled with different

mineral particles.[34–36]

In this paper the value off obtained for starch in PCL was

0.65 (graphics with the fits not shown), which is appreciable
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Figure 2. Non-isothermal crystallisation exotherms of (a) PCL
and (b) SPCL at five different cooling rates.

Table 2. Non-isothermal crystallisation behaviour of PCL and
SPCL studied by DSC.

Sample f Tc DHc
a) Crystallinity b) t1/2

8C �min�1 8C J/g % min

PCL 2.5 29.7 54.4 39.0 3.55
5 26.7 52.4 37.5 2.02

10 20.6 53.6 38.4 1.35
20 15.5 53.0 38.0 0.82
40 8.6 53.0 38.0 0.54

SPCL 2.5 34.9 36.3 41.3 1.68
5 32.3 35.8 40.7 1.00

10 29.7 36.6 41.6 0.53
20 27.4 35.6 40.5 0.29
40 24.4 35.2 40.1 0.19

a) Per gram of total sample.
b) Based on unit mass of PCL component.
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and comparable to the value found in PP-Talc composites,

or PP-aluminium hydroxide composites.[34–36]

The crystallisation kinetics of PCL and SPCL will be now

discussed. Several methods to analyse non-isothermal cry-

stallisation kinetics have been developed.[37–39] Ozawa

explained the effect of the cooling rate on the non-

isothermal crystallisation by modifying the Avrami equa-

tion, assuming that crystallisation occurs at a constant

cooling ratef.[37] According to Ozawa’s theory, the relative

crystallinity at temperature T, X(T), can be calculated from

the following equation:

1 � XðTÞ ¼ exp½�KðTÞ=fm� ð5Þ

whereK(T) is the Ozawa crystallisation rate constant, andm

is the Ozawa exponent that depends on the dimension of

crystal growth. Taking the double-logarithmic form,

logf� ln½1 � XðTÞ�g ¼ logKðTÞ � m logf ð6Þ

and plotting log{�ln[1�X(T)]} against log f at a given

temperature, a straight line should be obtained if the Ozawa

method is valid. The Ozawa crystallisation rate constant

K(T) is taken as the antilogarithmic value of the y-intercept,

and the Ozawa exponent m is taken as the negative value of

the slope.

Figure 3 illustrates such plots for the non-isothermal

crystallisation data of PCL and SPCL, using a series of

temperatures. For PCL, the values of m and K(T), in the

temperature range of 20–33 8C, are summarised in Table 3.

Within the studied temperature range, the values of m are

almost constant. It can be concluded that the Ozawa appro-

ach could satisfyingly describe the non-isothermal crystal-

lisation kinetics of PCL. The average value ofm obtained in

this study is equal to 2.3� 0.1, which is lower than the

values, from 2.9 to 3.6, reported by Skoglund et al.[21] The

Ozawa rate constant K(T) is found to decrease with in-

creasing temperature, suggesting that PCL crystallises

slower with increasing temperature. For SPCL, the general

curvature seen in Figure 3 makes impossible to determinem

and K(T). It is apparent that the Ozawa analysis cannot

adequately describe the non-isothermal crystallisation kine-

tics of SPCL, probably because of the disregarded assump-

tions in Ozawa theory, where, for instance, the secondary

crystallisation was not considered. Wang et al.[40] have also

reported that the Ozawa approach could describe the non-

isothermal crystallisation for poly(ethylene terephthalate)

(PET), but not for PET/clay nanocomposites.

Liu et al.[38] developed a method to describe the non-

isothermal crystallisation by combining the Ozawa and

Avrami equations. For the non-isothermal crystallisation

process, the main physical variables related to the process

are the relative degree of crystallinity X(t), cooling rate f
and crystallisation temperature T. Both the Ozawa and

Avrami equations can relate these variables as follows:

log Z þ n log t ¼ log KðTÞ � m logf ð7Þ

and by rearrangement, its final form is given as below:

logf ¼ logFðTÞ � a log t ð8Þ

where the kinetic parameter, F(T)¼ [K(T)/Z]1/m, refers to

the value of cooling rate chosen at unit crystallisation time

when the system has a defined degree of crystallinity, and a

is the ratio of the Avrami exponent n to the Ozawa exponent

Figure 3. Ozawa plots of log{�ln[1�X(T)]} versus log f for
crystallisation of (a) PCL and (b) SPCL.

Table 3. Non-isothermal crystallisation kinetic parameters for PCL based on the Ozawa equation.

T/8C 20 22 24 26 28 30 33

m 2.4 2.3 2.1 2.2 2.3 2.3 2.7
K(T) 3.13� 102 1.32� 102 4.11� 101 2.62� 101 1.47� 101 6.30 1.87
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m (i.e. a¼ n/m). At a given degree of crystallinity, by

plotting log f versus log t (Figure 4), the values of a and

F(T) could be obtained by the slopes and the intercepts of

these lines, respectively (Table 4). The values of F(T)

systematically increase with increasing relative crystallin-

ity for PCL and SPCL. This means that, at a defined crys-

tallisation time, a higher cooling rate should be used to

obtain a higher degree of crystallinity. The values of a are

almost constant for each sample, varying between 0.65 and

0.68 for PCL, and between 0.75 and 0.84 for SPCL. It is

clear that this combined method is adequate in describing

the non-isothermal process of PCL and SPCL, which was

found to be also valid for both PET and its composites with

clay,[40,41] and poly(ethylene 2,6-naphthalate) and its

composites with silica.[42]

The optical micrographs of PCL and SPCL upon cooling

from the melt are shown in Figure 5. It can be seen that

SPCL starts to crystallise at higher temperature than PCL,

and the crystallisation rate of SPCL is higher than that of

PCL, which are consistent with the observation from DSC.

It can also be observed that the concentration of spherulites

of SPCL is much higher than that of PCL, and the sizes of

spherulites of SPCL are smaller than that of PCL. It may be

then concluded that starch can effectively influence the

crystallisation development of PCL and change the kinet-

ics, the extent of crystallisation and the spherulitic

morphology.

Dynamic Mechanical Analysis

In typical DMA experiments it is possible to measure, as a

function of temperature or frequency, both the elastic, G0,
and viscous (loss) component,G00, of the complex modulus:

G*¼G0 þ iG00. The damping properties of the material may

be acceded through the loss factor: tan d¼G00/G0. Figure 6

and 7 show the elastic shear modulus and loss shear modu-

lus of the two materials under study. The upper temperature

limit was dictated by the melting process, which was already

analysed by DSC. The glass transition process of both

materials is detected as a sudden decrease of the complex

modulus and as a peak in the loss curve. The temperatures of

the glass transition measured in the maximum of G00 are

given in Table 5 for the different frequencies used.

Figure 8 shows the relaxation map for the two studied

materials using the data of Table 5. The two trends seem to

converge at lower frequencies. This is consistent with the

similar glass transition found for the two materials by DSC:

�64.3 8C for PCL and �64.6 8C for SPCL (at heating rate:

10 8C �min�1) (results are not shown). Such values are

similar to the value of Tg¼�66.4 8C for a similar blend

reported elsewhere.[43] Within the frequency range used for

the DMA experiments, it is not clear in the plots of Figure 8

the expected curvature in the log f versus 1/T plot due to the

so-called WLF behaviour.[24,25] Therefore, the data were

fitted according to a simple Arrhenius model. The apparent

activation energy, Ea, is slightly higher for the SPCL

material (150 kJ �mol�1) compared to that of the PCL

material (123 kJ �mol�1). As the glass transition temper-

atures of the two materials are similar, the difference in the

apparent activation energy reflects differences in the so-

called fragility. The classification of liquids as ‘‘strong’’ and

‘‘fragile’’ has been promoted by Angell to describe the rela-

xation in glass-forming systems.[43] One relevant parameter

Figure 4. Plots of log f versus log t for (a) PCL and (b) SPCL.

Table 4. Non-isothermal crystallisation kinetic parameters
based on the combination of the Avrami-Ozawa equations.

X(t)/% 20 50 80

PCL
F(T) 4.63 6.29 7.74
a 0.65 0.67 0.68

SPCL
F(T) 2.89 3.49 3.92
a 0.84 0.80 0.75
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here is the fragility indexm that is related to the rate at which

the characteristic time, or other related property such as

viscosity, decreases with increasing temperature at Tg,

when plotted on a normalised Tg/T plot.[44,45] From the

differences observed in Ea we may conclude that PCL is

more ‘‘strong’’ than SPCL. From a practical point of view,

this would mean that around and above Tg, the change of

dynamic properties in SPCL with temperature should be

more smooth than that in PCL, which is consistent with the

presence of the starch phase.

On the other hand, the slightly lower values of Tg in the

SPCL material could be due to both the plasticiser content

and/or the higher crystallisation rate in this polymeric

system, which could induce an amorphous phase of higher

mobility. This kind of result has been previously reported

for PP-talc composites.[34–36] In these materials the talc

phase also acted as nucleating agent for the polymer.

The values ofG0 give relevant indications on the stiffness

properties of the materials. Below Tg the values are above

1 GPa which is typical for glassy polymers. The storage

Figure 5. Polarised optical micrographs of PCL and SPCL during cooling at 2 8C �min�1

from the melt (95 8C). Images (a)–(d) are for PCL and images (e)–(h) are for SPCL.
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modulus is higher for SPCL than for PCL throughout the

temperature range analysed, indicating that starch has a

reinforcing effect in this polyester. Essentially, the temper-

ature variation of G0 is similar to the storage modulus

measured by three-point bending as a function of temper-

ature, reported elsewhere.[26] The values of G0 at 37 8C are

important if one pretends to use such systems in biomedical

applications. Those are shown in Table 5 for the two studied

materials and for the different frequencies analysed.

The values of the loss factor at 37 8C do not depend

significantly on frequency for the two materials. For PCL

tan d¼ 0.05� 0.01 and for SPCL tan d¼ 0.08� 0.01.

Therefore, such materials exhibit considerable damping

capability that may be useful, for example, in some medical

applications: for orthopaedic purposes the implanted mate-

rial should have significant values of tan d because bone

also exhibits clear viscoelastic behaviour, with tan d rang-

ing between 0.02 and 0.03 at meaningfully frequencies.[46]

Table 5. Temperature of maximum ofG00 for the a-relaxation and
storage modulus at 37 8C for PCL and SPCL, obtained by DMA.

Frequency PCL SPCL

Hz Tmax, G00 G0 (37 8C) Tmax, G00 G0 (37 8C)

8C MPa 8C MPa

1 �45.5 144 �48.5 186
5 �42.0 154 �43.5 204
10 �39.8 161 �41.9 201
20 �35.1 138 �39.1 193
50 �33.1 146 �36.8 206
100 �28.9 145 �35.1 215
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Figure 6. Dynamic mechanical behaviour of PCL at different
frequencies. (a) Elastic shear modulus and (b) loss modulus.
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Figure 7. Dynamic mechanical behaviour of SPCL at different
frequencies. (a) Elastic shear modulus and (b) loss modulus.
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Conclusion

We reported a comparative study on the melting, non-

isothermal crystallisation and thermomechanical behaviour

for typical commercial available PCL and the blend of

starch with PCL 30/70 wt.-% (SPCL), using DSC, optical

microscopy and DMA.

The melting peak temperature and melting enthalpy for

PCL are higher than those of SPCL.

Non-isothermal crystallisation investigations show that

the crystallisation rate of SPCL is much higher than that of

PCL, indicating that starch acts as an effective nucleation

agent for PCL. The crystallinity of PCL within SPCL, ob-

tained after cooling from the melt, is larger than that of pure

PCL. For both PCL and SPCL, the crystallinities obtained

are insensitive to cooling rates at the studied range from

2.5 to 40 8C �min�1. The concentration of spherulites of

SPCL is much higher than that of PCL and the sizes of

spherulites of SPCL are smaller than that of PCL. Crys-

tallisation kinetics analysis shows that the Ozawa model

can well describe the non-isothermal crystallisation of PCL,

but fails to describe that of SPCL. However, the method

developed by Liu et al., which combines the theories of

Avrami and Ozawa, is adequate in describing the non-

isothermal crystallisation of PCL and SPCL.

Both DSC and DMA results show that the Tg is higher for

PCL than for SPCL. The change of the dynamic Tg with fre-

quency is more pronounced for PCL, the apparent activa-

tion energy at Tg being higher for SPCL. The temperature

dependence of G0 shows that starch has an effective

reinforcement effect in PCL. At 37 8C, both materials exhi-

bit interesting damping properties (especially SPCL),

which may be relevant in orthopaedic applications, as it

may help in the dissipation of the mechanical energy

generated by the patient movements.
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