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“Life is not easy for any of us.  

But what of that?  

We must have perseverance and  

above all confidence in ourselves.  

We must believe that we are gifted 

 for something and that this thing,  

must be attained” 

 

Marie Curie 
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Abstract 

 

This thesis is divided into two parts. At first, two starting synthon compounds 

were obtained: the benzylidene acetal D-erythrose aldehyde and the unsaturated lactone 

derived from this aldehyde. Both compounds were obtained following methods reported 

in the literature.  

The first part of the work focuses on aldehyde reactions with different primary 

aliphatic amines, yielding the respective imines. These were reduced to afford the 

respective secondary amines in low to good yields. The cleavage of the benzylidene 

acetal group was conducted in an acid medium, leading to the synthesis of amino-

polyols also in good yields. Carbon nucleophiles were added to imines, but without 

success; either the starting material was recovered or complex mixtures obtained. In the 

second part, the unsaturated lactone was studied regarding to its reactivity and 

selectivity. Epoxidation, bromination and aziridination reactions do not led to the 

expected products. The osmilation led to a single product, which after cleavage of the 

acetal in acidic medium gave the allonic acid. Reactions with carbon, sulfur and 

nitrogen nucleophiles also led to pure products. Nitromethane, benzyl mercaptan, 

ethanethiol and hydroxylamine gave substituted lactones at position 4 in good yields. 

Hydrazine, 2-aminoethanol, benzylamine and propylamine led to amides in yields that 

vary from good to quantitative. The acetal group in these compounds was also removed 

under acidic conditions to give polyhydroxylated 4-substituted-lactones in good to 

excellent yields; amides undergo intramolecular cyclization yielding L-hydroxylated 

lactams 4- and N-substituted in quantitative yield. Hydrogenation of the lactam with two 

benzyl groups, was found to be chemo-selective, cleaving the benzyl at the amine 

function, and retaining the benzyl at the amide function. Both lactones and lactams were 

subjected to enzymatic assays. One of the lactams showed excellent activity and 

selectivity for α-glucosidase, which makes it a potentially powerful anticancer agent.
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Resumo 

 

 

O presente trabalho encontra-se dividido em duas partes. Numa primeira 

abordagem foram sintetizados dois sintões de partida, um aldeído da D-eritrose, e uma 

-lactona insaturada, derivada do aldeído anterior. Os dois compostos foram obtidos 

seguindo metodologias reportadas na literatura.  

A primeira parte do trabalho debruça-se sobre reações do aldeído com diferentes 

aminas primárias alifáticas, obtendo-se as respetivas iminas, que foram reduzidas 

obtendo-se as respetivas aminas secundárias com rendimentos variados. A clivagem do 

grupo benzilideno acetal foi realizada em meio ácido, levando à síntese de amino-

polióis, com bons rendimentos. Às iminas foram também adicionados nucleófilos de 

carbono, todavia sem sucesso, levando sempre à recuperação do reagente de partida ou 

à obtenção de misturas complexas. Na segunda parte do trabalho, a lactona obtida foi 

sujeita a estudos de reatividade e seletividade. Reações de epoxidação, bromação e 

aziridinação não levaram à obtenção do produto esperado. Por osmilação obteve-se um 

único produto, que após clivagem do acetal em meio ácido deu origem ao ácido alónico. 

Reações com nucleófilos de carbono, enxofre e azoto levaram também à obtenção de 

um produto puro. O nitrometano, o benzilmercaptano, o etanotiol e a hidroxilamina 

originaram lactonas substituídas na posição 4, com bons rendimentos. A hidrazina, o 2-

aminoetanol, a benzilamina e a propilamina levaram à obtenção de uma amida com 

rendimentos entre bons e quantitativos. Após a remoção do acetal, em meio ácido, 

obtiveram-se -lactonas polihidroxiladas 4-substituídas com bons a excelentes 

rendimentos; as amidas sofreram um processo de ciclização intramolecular, originando 

L-lactamas polihidroxiladas N- e 4-substituídas com rendimento quantitativo. Foi 

possível encontrar um método de hidrogenação quimio-seletivo de um dos dois grupos 

benzilo contidos na lactama; apenas é removido o grupo benzilo da função amina. Tanto 

as lactonas finais como as lactamas foram submetidas a ensaios enzimáticos. Os 

resultados mostraram excelente atividade e seletividade de uma lactama para a α-

glucosidase, o que a torna um potencial agente anticancerígeno. 
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1. General aspects 

 

The extensive need of new pharmacological drugs to increase the survival rate in 

some diseases is necessary, looking for the increase of the population’s average life 

expectancy. The work of a medicinal chemist is the search of new lines of study, to help 

the general population having a better life.  

Since carbohydrates are essential for all the good operations of our organisms, 

they can be classified as one of the most important classes of nutrients. Sugars are 

present in all organisms, and are the key to many metabolisms processes in life. Many 

diseases are connected to the irregular behaviour processes in which these molecules are 

involved. Diabetes1, Gaucher’s2 and Krabbe’s3 disease, as well as some types of 

cancer4, etc., are caused by the malfunction of enzymatic metabolic mechanisms. The 

key for the treatment of some of these diseases involve the selective linkage of 

molecules that mimics sugar units, to certain enzymes. For example, Gaucher’s disease 

is one of the most predominant lyssomal storage disorders. Is caused by a deficient 

activity of the -glucocerebrosidase enzyme, causing an accumulation of 

glucosylceramide5. 

 

 

 

Figure 1 Structure of miglitol 1 and N-butyl-deoxynojirimycin 2. 

 

In the market, there are two imino-sugars compounds, whose therapeutic targets 

are glycosidases. Miglitol 1 (figure 1) named as Glyset® introduced in 1996 for the 

treatment of type II diabetes as an inhibitor of α-glucosidase1 (figure 2), and N-butyl- 

deoxynojirimycin 2 as Zavesca® in 2003 for the treatment of Gaucher’s disease, as an 

inhibitor of glucosylceramide6. 
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Figure 2 Sugar beet alpha-glucosidase7. 

 

2. Synthetic strategies for amino-alcohols from tetroses 

 
 

Amino-alcohols provide an interesting scaffold for many applications, including 

for the synthesis of imino-sugars. Isomerically pure aminopolyols can be reacted with 

halopurines, and then applied in oligonucleotides sequences, to be used as mutagenic in 

microorganisms8. Dunlap et al9, have synthesised (2R,3S)-4-amino-1,2,3-triol 6 from 

aldehyde 3 (scheme 1). Direct conversion of the aldehyde into the amide 4 is obtained 

in 86 % by treatment of aldehyde 3 with iodine, aq. ammonia and hydrogen peroxide at 

rt. Reduction of the amide to amine 5 (η= 85 %) is achieved by treatment with LiAlH4. 

The final cleavage of the acetal protecting group was obtained in BCl3 at -78 ºC giving 

the amino-polyols 6 with 75 % yield.  

 

 

Scheme 1 

 

Reagents and conditions9: i) I2, NH4OH, H2O2, THF, rt, 4 h, 86 %; ii) LiAlH4, THF, 0 ºC to reflux, 6 h,  

77 %, iii) BCl3, DCM, -78 ºC, 1.5 h, 75 %.   
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Nechev et al8b have synthesised the aminotriol 10 a diastereomer of 6, in three 

steps, from ester 7 (scheme 2). After bubbling NH3 for 4 h, amide 8 was obtained with 

excellent yield (η= 97 %). Reduction of the amide with LiAlH4 afforded the amine 9. 

Final cleavage of the isopropylidene acetal under acidic medium with HCl gave the 

aminotriol 10 with 90 % yield.  
 

       

 

 

Scheme 2 

 

Reagents and conditions8b: i) NH3, MeOH, rt, 4 h, 97 %; ii) LiAlH4, THF, rt, to reflux, 6 h, 89 %; iii) 

HCl 1 M, THF, rt, 20 h, 90 %. 

 

 

Sphingofungin10 11 and Myriocin11 12 (figure 3) are relevant amino alcohol 

compounds found in nature. They are biologically active with antifungical and 

immunosuppressive abilities, respectively.   

 

 

 

Figure 3 Sphingofungin 11 and Myriocin 12. 

 

Ceramides and his analogues contain amino alcohol chains, attached to 

lipophilic chains. The synthesis of ceramides and derivatives has been speeded up by 
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their potential in the treatment of Gaucher’s disease, as inhibitors of 

glucosylceramidase12.  

 

Duclos13 had reported a total synthesis of ceramide 20 from D-galactose (scheme 

3). The aldehyde 13 was reacted with the ylide 14 generated in situ with phenyllithium 

to give the alkene 15 in moderate yield (η= 44 %). After the alcohol function 

mesylation, compound 16 was obtained in 86 % yield, and the mesyl group substituted 

by the azido unit (17) with poor yield η= 21 %. Reduction of the azido group to amine 

18 was carried out by refluxing compound 17 in isopropanol with sodium borohydride. 

Product 18 was isolated in quantitative yield. Acetylation of the amine with palmitoyl 

chloride provides compound 19 in η= 95 %. After cleavage of the benzylidene group 

obtained in presence of catalytic amount of p-toluenesulphonic acid monohydrate 

ceramide 20 was formed with good yield (η= 80 %).   

 

 

 

Scheme 3 

 

Reagents and conditions13: i) PhMe, PhLi in Et2O, -30 ºC, 16 h, 44 %; ii) TEA, MsCl, DCM, -30 to 0 

ºC, 45 min, 86 %; iii) NaN3, DMSO, 95 ºC, 3 days, 21 %; iv) NaBH4, isopropanol, reflux, 48 h, 100 %; v) 

DIPEA, Palmitoyl chloride, DCM, -19 ºC to rt, 2 h, 95 %; vi) p-TSA·H2O, DCM/MeOH, rt, 14 h, 80 %.  
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3. Synthetic strategies for the synthesis of hydroxylated lactones  

 
 

Lactones are one of the most common functional group inserted in the complex 

structures isolated from natural sources. They also present a large range of biological 

activities. Are examples, the lactones extracted from Goniothalamus genus: 

Goniopypyrone 21 and Goniotriol 22. In particular the 6-member ring lactone 22, had 

demonstrated higher anti-tumour activity that the 5-member ring Goniofufurone 23 also 

extracted from Goniothalamus plant14 (figure 4). 

 

 

 

Figure 4 Structure of Goniopypyrone 21, Goniotriol 22, and Goniofufurone 23. 

 

 

 

Prasad and Gholap14 reported different approaches for the synthesis of some 

lactones extracted from this plant, using a common scaffold 29 synthesised from D-(−)-

tartaric acid, as described in scheme 4. After the synthesis of dimethyl amide 2415, this 

compound was treated with phenylmagnesium bromide, to give 25 with excellent yield 

(92 %). Ketone reduction with a mixture of sodium borohydride and CeCl3 at -78 ºC, 

gave compound 26 (η= 86 %). Alcohol protection with TBDMS group, in presence of 

imidazol/DMAP provided 27 (η= 98 %). 3-Butenylmagnesium bromide was added to 

the amide, to afford ketone 28 with excellent yield (93 %). In the final step L-selectride 

led to alcohol 29, isolated in η= 96 %.          
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Scheme 4 

 

Reagents and conditions14: i) PhMgBr, THF, -10 ºC, 30 min, 92 %; ii) NaBH4/CeCl3, MeOH, -78 ºC, 2 

h, 86 %; iii) TBDMSCl, imidazole/DMAP, DMF, rt, 6 h, 98 %; iv) 3-butenylmagnesium bromide, THF, -

10 ºC, 30 min, 93 %; v) L-selectride, THF, -78 ºC, 1 h, 96 %.   
 

 

(+)-Goniopypyrone 21 was synthesised from compound 29 (scheme 5). First, 

the alcohol function was protected with benzyl group to give compound 30 with 91 % 

yield. The acetal cleavage occurred in HCl at room temperature furnishing polyol 31. 

Ozonolysis of the double bond at -78 ºC to 0 ºC, followed by treatment with Ag2CO3 

impregnated on Celite in reflux of toluene, provided the formation of lactone 32 (η= 78 

% for 2 steps). Protection of the alcohol functions with methyl chloromethyl ether in the 

presence of base at room temperature afford the product 33 with good yield (80 %). 

Oxidation of compound 33 with lithium bis(trimethylsilyl)amide followed by the 

addition of phenylselenyl bromide at -78 ºC provided compound 34 (η= 69 %). 

Treatment with titanium tetrachloride at 0 ºC deprotected the alcohol function to give 
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35, which after DBU treatment at room temperature, gave by intramolecular Michael 

addition (+)-Goniopypyrone 21 with 75 % yield.         

 

 

 

Scheme 5 

 

Reagents and conditions17: i) NaH, BnBr, DMF, 0 ºC to rt, 2 h, 91 %; ii) 4N HCl:THF (1:1), rt, 6 h, 84 

%; iii) (a) O3/Me2S, DCM:MeOH, -78 ºC to 0 ºC, 6 h, (b) AgCO3/Celite, toluene, reflux, 30 min, 78 %; 

iv) MOMCl, DIPEA, cat. DMAP, DCM, reflux, 6 h, 80 %; v) (a) LHMDS, PhSeBr, THF, -78 ºC, 1 h; 

(b) 30 % H2O2, DCM, 0 ºC, 30 min, 69 %; vi) TiCl4, DCM, 0 ºC, 1.5 h, 78 %; vii) DBU, THF, rt, 4 h, 

75 %. 

 

 

 (+)-Goniotriol 22 was obtained by the same authors by a similar methodology. 

This time, an inversion of a chiral centre was included in the process, as represented in 

scheme 6. The removal of TBDMS protecting group by TBAF at 0 ºC to rt gave the free 

alcohol 36 with 94 % yield. The inversion of the chiral centre, was achieved by 

Mitsunobu approach, using triphenylphosphine and diisopropyl azodicarboxylate, 

followed by treatment with potassium carbonate to give the product 37 in 86 % yield. 

The following steps followed the synthesis of compound 21. 
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Scheme 6 

   

Reagents and conditions14: i) TBAF, THF, 0 ºC to rt, 1.5 h, 94 %; ii) (a) Ph3P, PMBA, DIAD, THF, 0 

ºC to rt, 1 h, (b) K2CO3, MeOH, 0 ºC to rt, 30 min, 86 %.  

 

Adames et al16, have isolated -lactones 38 and 39 from the fungus Libertella 

blepharis F2644, having tested them against different cancer cells and parasites. 

Compound 38 showed to be moderately active against parasite Trypanosoma cruzi and 

against breast MCF-7 cancer cell line. Also was considerably active against lung H460 

cancer cell lines. However, lactone 39 showed no activity (figure 5). 

 

 

 

Figure 5 Lactones extracted from Libertella blepharis F2644. 
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 (-)-Muricatacin 40 (figure 6) extracted from Annona muricata L. showed a 

growing interest since the discovery of its high cytotoxicity towards several human 

tumour cell lines, in both enantiomeric forms17.  

 

 

Figure 6 Structure of (−)-Muricatacin.  

 

González et al18 reported a total synthesis of compound 40 (scheme 7) starting 

from D-malic acid (41). The intermediate aldehyde 42 was obtained in 13 steps with 

72.9 % overall yield. The synthetic sequence represented in scheme 7 starts from 

compound 42. Initially compound 42 was submitted to nucleophilic attack of acetylene 

anion generated from 43 by reaction with butyl lithium to give 44. Reduction of C≡C 

using Lindlar methodology gave the cis olefin 45. Reaction in acidic medium provided 

an intramolecular cyclization furnishing furan 46 (η= 71 %) which afforded the lactone 

47 with good yield (η= 71 %) in one pot reaction. Reduction of the double bond with 

palladium on carbon and hydrogen delivered compound 48. In the final step the alcohol 

function was deprotected to give lactone 40 with good yield η= 80 %. 
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Scheme 7 

Reagents and conditions18: i) n-BuLi, THF, -78 ºC to 0 ºC, 2 h, 89 %; ii) H2, Lindlar catalyst, hexane, rt, 

1 h; iii) HCl, 71 % for 2 steps; iv) (a) O2, MeOH, rose Bengal, DIPEA, h , 3 h, (b) NaBH4, CeCl3·7H2O, 

MeOH, rt, 2 h, (c) HCl, MeOH, rt, 15 h, 71 % for 3 steps; v) H2, Pd/C, MeOH, rt, 4 days, 99 %; vi) 

TBAF, THF, rt, 22 h, 80 %. 

 

4. Synthetic strategies for the synthesis of hydroxylated lactams 
 
 

The importance of lactams is well recognized in the medicinal chemistry, for 

example, in the antibiotic class of compounds. Its importance in carbohydrate chemistry 

field has grown exponentially on the last decades, with the discovery of glucono--

lactam 49 (figure 7), as a selective glycosidase inhibitor19. An explanation for its 

activity is supposed to be connected with the possibility of tautomerism within the 

amide function, which can also act as imine/hydroxyl moiety, enabling hydrogen 

bonding20. 

 

 

Figure 7 Glucono--lactam 49. 
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Nishimura et al21 synthesised lactam derivatives of all known hexoses. These are 

represented in figure 8: D-glucono--lactam 49, D-mannono--lactam 50, D-galactono-

-lactam 51, D-gulono--lactam 52, D-allono--lactam 53, D-talono--lactam 54, D-

altrono--lactam 55 and D-idono--lactam 56. These compounds were tested as 

inhibitors of α and  of three types of enzymes: glucosidase (Baker’s yeast and 

almonds), mannosidase (Jack beans and Snail) and galactosidase (Aspergillus nier and 

Aspergillus niger).  

Lactam with the glucose configuration showed to be selective for -glucosidase 

(IC50= 6.2x10-5 M). Lactam 50 showed to be more active against -mannosidase (IC50= 

1.1x10-5 M) than to α-mannosidase (IC50= 1.0x10-4 M), and is also very potent against 

-glucosidase (IC50= 7.9x10-7 M).  

 

 

 

Figure 8 -lactams derivatives of hexoses. 

 

The galacto isomer 51 and talono isomer 54 are non-selective compounds: 51 is 

active against -glucosidase (IC50 = 1.6x10-4 M) and -galactosidase (IC50= 1.7x10-5 M); 

54 is active against the same enzymes with IC50= 1.8x10-4 M in -glucosidase and with 

IC50= 6.2x10-5 M in -galactosidase.  Lactams 52, 53 and 55 do not showed inhibitory 

activity at 5.6x10-2 M in any of the enzymes tested. Compound 56 is selective for -

glucosidase (IC50= 7.0x10-5 M).   
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An example of the synthetic methodology applied for these lactams is presented 

in scheme 8; it is related to compound 50.  

Starting with L-gulonic acid -lactone, was obtained 2,3-O-isopropylidene-L-

gulonic acid -lactone 5722. This compound was transformed in situ, by dibutyltin oxide 

into the cyclic stannoxane 58. Treatment with trityl chloride in the presence of DIPEA, 

afforded 59 with excellent yield (η= 97 %). Activation of the remaining free alcohol 

with triflic anhydride, followed by substitution of the trifluorosulfonic group by azide 

gave 60 in 80 % yield. Raney Nickel methodology reduce the azido group, and an 

intramolecular cyclization was followed to obtain 61 in good yield (η= 65 %). 

Treatment of compound 61 with 4 M HCl removed simultaneously the isopropylidene 

and trityl group, to provide the pure lactam 50 (η= 68 %).            

 

 

 

Scheme 8 

 

Reagents and conditions21: i) (n-Bu)2SnO, benzene, MS 4Å, 85 ºC, ov; ii) Ph3CCl, DIPEA, 

DMF, rt, 3 h 97 % (for 2 steps); iii) (a) (CF3SO2)2O, py, DCM, -40 ºC, 2 h, (b) NaN3, DMF, rt, ov, 80 %; 

iv) Raney Ni, H2, MeOH/AcOEt, rt, 4 h, 65 %; v) 4 M HCl, dioxane, rt, 6 h, 68 %. 
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Carmona et al23 synthesised novel tetrahydroxypyrrolizidines (scheme 9) from 

D-allitol24,25. After the synthesis of aldehyde 62, Wittig elongation, provided a mixture 

of isomers trans/cis in a 10:1 ratio, respectively. Trans isomer 63 was isolated and 

submitted to Sharpless asymmetric dihydroxylation with AD-mixα and AD-mix giving 

the respective products 64 and 66, both in 61 % yield. Cleavage of the protecting groups 

with aq. trifluoroacetic acid and H2/Pd lead to an intramolecular cyclization giving 

lactams 65 (η= 52 %) and 67 (η= 68 %).     

Either compound 65 and 67 were tested against -galactosidase from bovine 

liver, revealing weak inhibition. 

 

 

 

Scheme 9 

 

Reagents and conditions23: i) Ph3P=CHCOOEt, DCM, reflux, 2 h, 90 %; iia) AD-mixα, t-

BuOH/H2O, MeSO2NH2, rt, 16 h; iib) AD-mix, t-BuOH/H2O, MeSO2NH2, rt, 20 h; iii) (a) 80 % TFA 

aq. 25 ºC, 2 h, (b) H2, 10 % Pd/C, abs EtOH, 4 h, (c) Reflux EtOH, 24 h. 
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Reddy and co-workers26 synthesised morpholine fused sugar-derivatives, 

starting with the corresponding D-glycals 68. Reaction of 68 with dimethyl dioxirane 

generated in situ, provided the epoxides 69 following the procedure in the lit27 (scheme 

10). Opening the epoxides with azide in the presence of CAN showed to be an efficient 

methodology, giving the respective azido-alcohol 70 in 5 min with good yields (η= 74-

80 %). Alkylation of the alcohol with ethyl bromoacetate in the presence of sodium 

hydride provided the product 71. Hydrogenolysis of the azido group afforded the amino 

group, which immediately get involved in an intramolecular cyclization to give lactams 

72 in one pot.     

These lactams 72 showed no activity against α-glucosidase and α-galactosidase.  

 

 

 

Scheme 10 

 

Reagents and conditions26: i) CAN, NaN3, CH3CN/H2O, rt, 5 min; ii) BrCH2COOEt, NaH, DMF, 0 ºC to 

rt, 30 min; iii) Pd(OH)2/C, MeOH, H2 (5 atm), 30-34 h. 

 

Starting from the commercial available D-glucal 68, Kumari and Vankar28, have 

reported the synthesis of new quinolizidines (scheme 11) and tested their activity 
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against some glycosidases. The intermediate 73 was obtained after 5 reaction steps in 

68.3 % overall yield. Reflux of compound 73 in DCM in the presence of Grubbs’ 

catalyst gave compound 74 isolated in good yield (η= 80 %). Dihydroxylation of the 

C=C bond with osmium tetroxide gave the alcohol 75 with excellent yield (η= 98 %). 

Hydrogenolysis with palladium hydroxide, deprotected the alcohols affording pure 

product 76 (η= 80 %). The double bond of 74 was also reduced to give product 77 (η= 

80 %).  

Quinolizidines 76 and 77 were submitted to enzymatic assays. Compound 76 

demonstrated to be active but not selective. Assays against α-glucosidase gave IC50= 

1.58x10-3 M, against -glucosidase IC50= 1.98x10-3 M, and toward α-mannosidase 

IC50= 2.50x10-3 M. Nevertheless, 77 showed to be active against -galactosidase IC50= 

1.40x10-3 M, and selective.      

 

 
Scheme 11 

 

Reagents and conditions28: i) 5 mol% Grubbs’ catalyst, DCM, reflux, 7 h, 80 %; ii) cat. OsO4, NMO, 
tBuOH-acetone-water (1:2:2), rt, 12 h, 98 %; iii) Pd(OH)2, MeOH, 50 psi H2, rt, 24 h, 80 %. 
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Pandey and co-workers29 reported an approach for the synthesis of -lactam-

azasugar 90 (scheme 12). Starting from L-(+)-tartaric acid, compound 77 was obtained 

following the procedure on the lit30. The alcohol function in compound 77 was oxidized 

to give the respective aldehyde 78 (η= 85 %). On the other hand, 3-aminopropanol was 

used to provide cyclic compound 79, which was further α-methylated, affording amino-

alcohol 80 (η= 88 %). The combination of 78 and 80 gave the secondary amine 81, 

which upon treatment with paraformaldehyde in a Dean-Stark apparatus provided 82 in 

excellent yield (95 %). At 450 W 82 cyclised affording 83. Dihydroxylation of the C=C 

bond occurred with osmium tetroxide in the presence of a hexacyano iron complex to 

afford 84 in excellent yield (η= 90 %). Oxidative cleavage of the vicinal diol with 

sodium periodate followed by reduction with sodium borohydride gave the alcohol 85 

(η= 82 % for 2 steps) as single diastereomer. Benzyl protection of the formed alcohol 

function provided compound 86. Cleavage of the acetal protection with aq. HCl 

followed by the protection with the benzyl groups, gave 87 (η= 78 %). Treatment of 87 

in strong acidic medium (HCl 6 M) removed the methylene group between the nitrogen 

and oxygen atoms. Then, with (Boc)2O, the nitrogen atom is protected, and finally the 

alcohol was oxidized to carboxylic acid 88 using PDC (η= 57 % for 3 steps). The 

removal of the Boc was carried out with TFA, then, a coupling agent, Mukaiyama 

reagent, provided the closure of 4-membered ring, forming the -lactam 89 (η= 53 %). 

Lactam 90 was isolated in excellent yield (η= 95 %) after hydrogenolysis of 89. 

This bicycle azasugar 90, had demonstrated inhibitory activity, against α-

galactosidase (Ki= 900 μM) and -galactosidase (Ki= 172 μM).    
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Scheme 12 

 

 Reagents and conditions29: i) IBX, EtOAc, reflux, 9 h, 85 %; ii) (Boc)2O, TEA, 18 h; iii) 

CH3CH(OEt)2, PPTS, benzene, reflux, 24 h, 77 % for 2 steps; iv) s-BuLi, TMEDA, - 78 ºC, 3 h, then 

TMSCl, -78 ºC to rt, 3 h; v) 2 N HCl, dioxane, 80 ºC, 45 min, 88 % for 2 steps; vi) NaBH(OAc)3, 1,2-

dichloroethane, 12 h, then 2 N NaOH, 2 h, 71 %; vii) (CH2O)n, benzene, Dean-Stark, 4 h, 95 %; viii) h, 

450 W, lamp, CH3CN, i-PrOH (3:1), 4 h, 60 %; ix) OsO4, K3Fe(CN)6, K2CO3, py, t-BuOH/H2O (1:1), rt, 

16 h, 90 %; x) (a) NaIO4, silica gel, 15 min, (b) NaBH4, MeOH, rt, 4 h, 82 %; xi) BnBr, NaH, THF, 

reflux, 12 h, 86 %; xii) (a) 1 N HCl, MeOH, rt, 4 h, (b) BnBr, NaH, TBAI, THF, reflux, 24 h, 78 %; xiii) 

(a) 6 N HCl, dioxane-MeOH, reflux, 48 h, (b) (Boc)2O, TEA, rt, DCM, 8 h, (c) PDC, DMF, rt, 8 h, 57 %; 

xiv) (a) TFA, DCM, 0 ºC, 3 h, (b) 2-chloro-1-methylpyridinium iodine, TEA, CH3CN, 60 ºC to rt, 32 h, 

53 %; xv) H2, Pd/C, 60 psi, MeOH, 6 h, 95 %. 
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Recently, Parihar et al31, reported the synthesis of the first two hydroxylated 

spiro-bislactam 101 and 103 (scheme 13), as selective and potent glycosidase inhibitors.  

Compound 91 was synthesised from D-glucose following a procedure reported 

in the lit32. Treatment of 91 with lithium diisopropylamide in DCM provided the adduct 

obtained from addition of a dichloromethane unit to the ketone function giving 92 with 

moderate yield (η= 60 %). Heating 92 in presence of catalytic amount of TBAI, provide 

the formation of a chlorooxirane intermediate, that was further attacked by sodium 

azide, opening the oxirane ring with formation of compound 93 (η= 82 %). Elongation 

by Wittig reaction gave 94, which after hydrogenolysis of the azido group, afforded the 

free amine. An intramolecular cyclization occurred spontaneously by the attack of the 

amine to the ester function, providing compound 95 with η= 86 %. Selective removal of 

the exocyclic isopropylidene group was obtained with aqueous acetic acid giving diol 

96. Which was submitted to oxidative cleavage, followed by reduction to afford 97 (η= 

87 %). Tosylation of the free alcohol function in pyridine and catalytic DMAP followed 

by substitution of the O-tosyl group by azide furnished compound 99. Treatment of 99 

with TFA led to the removal of the last isopropylidene group, giving the intermediate 

100 which upon treatement with TFA/H2O for longer time gave compound 101 which 

was isolated in 87 % yield. If 100 was treated first with sodium periodate, was isolated 

intermediate 102, which upon TFA treatment gave the 5-member ring lactam 103 with 

good yield (η= 73 %).  

Spiro-lactam 101 demonstrated a very good inhibitory activity against α-

mannosidase (IC50= 1.07x10-7 M) and α-galactosidase (IC50= 1.27x10-7 M). However, 

103 showed to be more potent that 101 against α-mannosidase (IC50= 8x10-8 M) and α-

glucosidase (IC50= 1.77x10-7 M).           
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Scheme 13 

  

Reagents and conditions31: i) LDA, THF, DCM, -78 ºC to rt, 60 %; ii) NaN3, cat. TBAI, DMF, 60 ºC, 8 

h, 82 %; iii) PPh3=CH-CO2Et, DCM, reflux, 2 h, 92 %; iv) H2, Pd/C, MeOH, rt, 12 h, 86 %; v) (a) NaIO4, 

acetone-water, 0 ºC to rt, 4 h, (b) NaBH4, MeOH-H2O, 0 ºC, 4 h, 87 %; vi) TsCl, py, cat. DMAP, 0 ºC to 

rt, 12 h, 92 %; vii) NaN3, dry DMF, 100 ºC, 6 h, 93 %; viii) TFA-H2O (3:1), 0 ºC to rt; ix) TFA-H2O 

(5:1), 0 ºC to rt, 24 h, 87 %; x) NaIO4, acetone-water, 0 ºC to rt, 4 h; xi) TFA-H2O (5:1), 0 ºC to rt, 24 h, 

73 %. 

 

Bhuma and co-workers20 synthesised lactams with D-xylose configuration, 

bearing a halogen (fluoride or chloride) at position 4 (scheme 14). Starting from 

compound 91, a CCl3 unit was selectively added to the ketone function providing 

alcohol 104 (η= 65 %). A dichloroepoxide was formed in situ in the presence of DBU; 

this was further opened by nucleophilic attack of a chloride ion, affording compound 

105b. The fluoro compound 105a was obtained through the same procedure, but using 
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CsF as the nucleophile source. Selective removal of the exocyclic isopropylidene group, 

was carried out by acetic acid 65 % giving compounds 106, isolated in good yields (η= 

86-88 %). Oxidative cleavage with sodium periodate gave the corresponding aldehyde, 

that was reduced with sodium borohydride providing the respective alcohols 107 (η= 

90-92 %). Activation of the hydroxyl group with triflic anhydride, followed by 

substitution with azide affording compounds 108 (η= 86-90 %). Treatment with TFA 

allowed the isolation of lactams 109 in good yields (η= 70-72 %). 

The glycosidase inhibitory activity of these lactams were tested against α-

glucosidase (baker’s yeast and rice), -galactosidase (bovine liver and almond), α-

mannosidase (almond and jack bean), α-fucosidase (bovine kidney) and N-acetyl--D-

glucosaminidase (jack bean and bovine kidney). None showed to be potent inhibitors at 

10 mM.           

 

 

 

Scheme 14 

Reagents and conditions20: i) LHMDS, CHCl3, -78 ºC, 65 %; ii) (a) for 105a: CsF, DBU, t-BuOH, 

MeOH, rt, 2 h, for 105b: DBU, MeOH, rt, 2 h, (b) Ac2O, py, DCM; iii) 65 % AcOH/H2O, 50 ºC, 3.5 h; 

iv) (a) NaIO4, THF/H2O, 0 ºC to rt, 2.5 h, (b) NaBH4, MeOH, 0 ºC, 20 min; v) (a) Tf2O, pyridine, DCM, -

10 ºC, 1 h, (b) cat. TBAI, NaN3, DMF, rt, 1 h; vi) (a) TFA/H2O (5:1), 0 ºC to rt, 14.5 h, (b) TFA, 0 ºC to 

rt, 12 h. 
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Wang and co-workers33 reported new N-substituted glucose-type -lactams, 

bearing aliphatic or aromatic substituents. The octyl chain showed to be the most 

promising lactam synthesised for the treatment of Gaucher’s disease. Using it in 

chaperone therapy revealed a significative increase in the activation of mutant N370S -

glucocerebrosidase (figure 9).  

 

 

 

Figure 9 Structure of N370S -glucocerebrosidase34.  

 

 

The synthesis of lactam 115 is presented in scheme 15. First, compound 110 was 

submitted to ozonolysis giving lactam 111. This lactam was not isolated; the crude 

material was treated instead with NaCNBH3, ZnCl2 and the amine, leading through a 

cascade of reactions to lactam 114 with good yield (η= 82 %). The authors propose the 

formation of intermediate 112 by methanolysis under action of ZnCl2, followed by 

reductive amination to give 113 which spontaneously cyclize33. The final step consisted 

in the removal of benzyl groups leading to the formation of lactam 115 in excellent 

yield (η= 98 %).        
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Scheme 15 

 

Reagents and conditions33: i) O3, Me2S, MeOH, -78 ºC, 3 min; ii) Amine, NaCNBH3, ZnCl2, reflux, 2 h, 

82 %; iii) 10 % Pd/C, H2, AcOH, H2O, THF (4:2:1), 24 h, 98 %.  

 

 

Chris H. Hill et al3 synthesised many imino-sugars from a common intermediate 

117, starting with 2,3-O-isopropylidene-D-ribofuranose 116 which gave 117 in 9 steps 

with 80.4 % overall yield. The synthesis of iso-galacto-fagomine lactam 123 is 

represented in scheme 16.  

The starting material is reacted with pivaloyl chloride in the presence of pyridine 

leading to selective protection of the primary alcohol with formation of 118 in good 

yield (η= 83 %). The remaining alcohol function was activated with triflic anhydride 

(119), substituted by cyanide to give 120a (η= 49 %). In the process, the elimination 

product 120b is also formed in 18 % yield. Reduction of cyano group using nickel 

chloride with sodium borohydride, led to the amine, which was not isolated, but the 

reaction mixture treated with Boc2O providing the protected amine 121 (η= 51 %). 

Oxidation of 121 by treatment with TEMPO and m-CPBA in presence of TBAB afford 

the lactam 122 instantly in good yield (η= 74 %). Hydrogenolysis under Pearlman’s 
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catalyst deprotected the alcohol functions, and addition of TFA removed the Boc group 

leading to the desire lactam 123 (η= 68 %).     

This lactam 123 had shown to be a promissory scaffold for potential treatment of 

Krabbe’s disease, a devastating neurodegenerative disorder3, acting as chaperone. The 

authors proved that lactam 123 is more active than the fagomine analogue.    

 

 

 

 

Scheme 16 

 

Reagents and conditions3: i) PivCl, py, 0 ºC, 3.5 h, 83 %; ii) Tf2O, py, DCM, 20 min; iii) TBACN, THF, 

0 ºC, 1.15 h, 120a 49 %, 120b 18 %, (for 2 steps); iv) (a) NiCl2·6H2O/NaBH4, Boc2O, MeOH, 0 ºC to rt, 

ov; (b) Boc2O, K2CO3, MeOH, 40 ºC, 44 h, 51 %; v) TEMPO, m-CPBA, TBAB, DCM, rt, instantaneous, 

74 %; vi) (a) H2, Pd(OH)2/C, AcOEt/MeOH, 1.5 h, (b) TFA, 15 min, 68 %.  
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5. D-Allose scaffold  

     5.1. Biological relevance 

Allose 124 (figure 10) is a rare sugar, a C3 epimer of glucose, which belong to 

the aldohexose family. Therapeutically, is used as an inhibitor of sporocarp formation, a 

multicellular structure, and of sporulation of Myxococcus Xanthus35.  

 

 

Figure 10 D-allose. 

 

Besides this application, D-allose had demonstrated activity as antitumor, anti-

inflammatory, antihypertensive, immunosuppressant36. It inhibits proliferation of cancer 

cells37, is an anti-oxidante38, and display protective properties in ischemia-reperfusion 

injuries39-41.   

 

5.2. Synthetic strategies 

There are no many synthetic strategies for the synthesis of allose and precursors. 

It can be extracted from Prontea Rubropilosa as 6-O-cinnamyl glycoside, or from the 

alga Ochromas malhamensis42. One strategy reported in the literature is the conversion 

of D-ribose by pyranose oxidase enzyme. This methodology is in one hand expensive 

due to the high price of the enzyme, and on the other hand, presents low selectivity, 

giving different allose derivatives43, and also other sugars. Other reported methodology 

for the synthesis of D-allose starts from D-glucose.  
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Minnaard et al44 developed a selective method to oxidise C3 of 1-methoxy-

glucose 125 with palladium catalyst and benzoquinone to give the ketone 126 (scheme 

17). Reduction of the ketone function with sodium borohydride gave the inverse 

configuration at C3. Compound 127 was obtained in excellent yield (η= 95 %). D-Allose 

was isolated after treatment with TFA.    

 

 

 

Scheme 17 

  

Reagents and conditions44: i) 2.5 % palladium complex, benzoquinone, CH3OH/H2O, 98 %; ii) NaBH4, 

MeOH, 0 ºC, 95 %; iii) TFA (yield not show). 

 

 

Diacetone allose 130 can be obtained from glucose diacetonide 128 by a similar 

approach45 (scheme 18).   

 

 

 

Scheme 18 

 

Reagents and conditions45: i) Tetrabutylammonium bromide, KBr, tetramethylpiperidine, nitrogen 

oxide, H2O2, DCM, 10-15 ºC, 2 h; ii) NaBH4, isopropanol, 10 ºC, 50 min, 74.7 %.   
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Introduction 

 

In this work, the D-erythrose moiety was tested as chiral inductor in the 

synthesis of amine, lactone and lactam derivatives of this sugar unit. The work is 

divided in part A and part B; part A is relative to amines synthesis and part B is relative 

to lactones and lactams synthesis.   

In part A, imines were obtained in the first instance, by the reaction of the 

aldehyde 3 with aliphatic amines. The crude products were analysed by 
1
H NMR 

spectroscopy to access whether the reaction is complete. The imines were not isolated, 

but reacted further with hydride and carbon nucleophiles. Reductive reactions with 

NaBH4 gave secondary amines in good yields. With carbon nucleophiles, the imines 

either gave mixture of products or showed no reactivity.       

In part B of the work, was obtained an erythrose -lactone derivative 133 which 

was tested as reagent in epoxidation, osmilation, aziridination and bromination of the 

C=C incorporated in the lactone, and in Michael addition. Osmilation gave the target 

product; epoxidation and aziridination fail to occur. Bromination attempts gave complex 

mixtures. Very interesting results were obtained by Michael addition to the unsaturated 

-lactone 133 with C-, S- and N-nucleophiles. These adducts were the key step to the 

synthesis of new chiral polyhydroxylated lactones, lactams and open-chain products. 

The stereo-selectivity was found to be complete in every case, and the products were 

obtained pure by simple work-up. The new compounds were tested against glycosidases 

to judge their inhibitory potency and selectivity.  
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2.1. Synthesis of the precursors: aldehyde 3 and lactone 133  

 

2.1.1. Synthesis of aldehyde 3 

 

An efficient methodology for the synthesis of aldehyde 3 has been reported in 

two steps
46

, starting with D-glucose, a cheap chiral material. D-glucose was reacted with 

benzaldehyde dimethyl acetal in the presence of a catalytic amount of p-

toluenesulphonic acid to obtain 4,6-O-benzylidene-D-glucopyranose 131 formed in 58.3 

%, as a white solid obtained by precipitation (scheme 19).    

 

 

Scheme 19 

 

Oxidative cleavage of 131 occurred with sodium periodate in phosphate buffer at 

pH= 7.8. The product, compound 3, was obtained in quantitative yield, without 

purification, as an yellow oil. 
1
H NMR spectroscopy analysis of the aldehyde 3 shows a 

complex pattern probably due to the equilibrium with the dimeric structure shown in 

scheme 19. In D2O the spectrum shows a single pattern probably of the dimer. The 

equilibrium is shifted to the aldehyde monomer in the presence of acid catalysis, which 

allows the Wittig reaction in the next step.    
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2.1.2. Synthesis of lactone 133 

 

 Wittig reaction
47

 is the preferred method for the synthesis of a C=C bond. It 

occurs by reaction of an aldehyde or ketone with a phosphin ylide. The geometry of the 

double bond depends on the reaction conditions and on the nature of the ylide used. 

Generally, a stabilized ylide generates the E isomer, and a non-stabilized the Z isomer. 

Aldehyde 3 was reacted with methyl 2-(triphenylphosphoranylidene)acetate in 

the presence of catalytic amount of p-toluenesulphonic acid as described in the lit
48

 

(scheme 20). After flash chromatography, isomers 132 were isolated (η= 92.9 %), in 

2.3:1 ratio, with preference to the Z compound.  

 

 

Scheme 20 

  

An intramolecular cyclization of the Z isomer 132 occurs at 70 ºC
48

, after several 

hours at 500 mbar. This constitutes an upgrade of the synthesis of -lactone 133, 

obtained in large scale from 4 g of compound 132. Compound 133 was obtained in 60.3 

% yield. The reactivity and selectivity of lactone 133 to nucleophiles is the object of 

study of this work. 
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Part A. Reactions with aldehyde 3 

 

2.2. Synthesis of amines 135a-e 

 

2.2.1. Synthesis of imines 134a-f  

 

The syntheses of the imines were performed in dry solvent under N2 atmosphere 

and under freshly activated molecular sieves 4 Å. The end of the imines synthesis 

(scheme 21) was observed by 
1
H NMR (CDCl3), where the characteristic peak CH=N 

appeared between δH 7.82-8.73 ppm. All the imines could not be isolated, except in the 

case of phthalimide derivative 134f. 

 

 

 
 

 

Scheme 21 
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Table 1 Synthesis of imines 134: starting amine, reaction time and chemical shifts of the CH imine 

function.  

Entry Amine Time δH of imine peak (ppm) 

1 NH2Pr 30 min 7.87 

2 NH2
t
Bu 1 h 7.82 

3 NH2Bn 2 h 7.98 

4 (R)-(+)-α-NH2CHCH3Ph 45 min 7.95 

5 (S)-(−)-α-NH2CHCH3Ph 45 min 7.95 

6 NH2Pht 12 h 8.73 

 

 

 

2.2.2. Reduction of the imines 134a-c,e 

 

After the imine synthesis, the reductive process is followed immediately. First 

was added a mixture of MeOH:THF (1:1), then 2 eq. of NaBH4. The mixture was stirred 

at rt for different periods of time, to afford the respective amines 135a-e as pure 

products in low to good yields η= 37.1-87.2 % (scheme 22). By 
1
H NMR spectroscopy 

is possible to visualize the disappearance of the imine peak, and the appearance of a 

doublet of doublets between δH 2.75-3.17 ppm, corresponding to H-4a, with a geminal 

constant J= 11.6-12.2 Hz. In the 
13

C NMR spectra of C4a showed up its signal at the 

aliphatic region (C 46.9-53.2 ppm) as expected. All the other signals appeared at a 

lower field due to the direct attachment to an oxygen atom. In the case of C2 the peak 

showed up at 100 ppm due attachment to two oxygen atoms.  
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Scheme 22 

 

Table 2 
1
H NMR spectroscopic data of amines 135a-e (400 MHz, CDCl3, ppm). 

 

Comp. H-2 H-4 H-4a H-5 H-6 

135a 
5.52 

(s) 

3.69 (td, 

J= 8.4, 4.0 

Hz) 

2.97 (dd, J= 12.0, 8.8 Hz); 

3.14 (dd, J= 12.2, 4.8 Hz) 

3.82 (td, 

J= 10.0, 

5.2 Hz) 

3.62 (t, J= 10.8 Hz); 

4.31 (dd, J= 10.8, 5.2 

Hz) 

135b 
5.52 

(s) 

3.59 (td, 

J= 9.6, 4.0 

Hz) 

2.87 (dd, J= 11.6, 10.0 Hz); 

3.17 (dd, J= 11.6, 4.4 Hz) 

3.82 (td, 

J= 10.0, 

5.2 Hz) 

3.62 (t, J= 10.4 Hz); 

4.31 (dd, J= 10.4, 5.2 

Hz) 

135c 
5.51 

(s) 

3.70 (td, 

J= 8.8, 4.4 

Hz) 

2.98 (dd, J= 12.0, 8.8 Hz); 

3.17 (dd, J= 12.0, 4.4 Hz) 

3.84 (td, 

J= 9.6, 5.2 

Hz) 

3.63 (t, J= 10.4 Hz); 

4.31 (dd, J= 10.8, 5.2 

Hz) 

135d 
5.47 

(s) 

3.58 (td, 

J= 8.4, 4.4 

Hz) 

2.86 (dd, J= 12.0, 8.4 Hz); 

2.97 (dd, J= 12.0, 4.8 Hz) 

3.86 (td, 

J= 10.0, 

5.2 Hz) 

3.61 (t, J= 10.4 Hz); 

4.31 (dd, J= 10.4, 5.2 

Hz) 

135e 
5.46 

(s) 

3.59-3.70 

(m)* 

2.75 (dd, J= 12.0, 8.4 Hz); 

2.98 (dd, J= 12.0, 4.4 Hz) 

3.59-3.70 

(m)* 

3.58 (t, J= 10.4 Hz); 

4.25 (dd, J= 10.4, 4.4 

Hz) 

*indistinguishable 
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Table 3 
13

C NMR spectroscopic data of amines 135a-e (100 MHz, CDCl3, ppm). 

 

Comp. C2 C4 C4a C5 C6 

135a 101.3 78.2 53.2 67.7 70.9 

135b 101.3 79.0 46.9 64.7 70.9 

135c 101.3 78.4 52.6 67.5 70.9 

135d 101.2 79.1 51.1 67.3 70.8 

135e 101.1 78.7 50.6 67.0 70.7 

 

 

2.3. Attempts of pyrrolidine synthesis 

Polyhydroxylated pyrrolidines bearing hydrophobic groups (136) proved to be 

potent inhibitors of α-D-galactosidase and α-L-fucosidase with values of Ki between 

0.25-9.0 μM
49

. Also, compounds like 137, proved to be excellent inhibitors of 

mannosidases, which can be considered as alternative lead of swainsonine
50

 (figure 11).  

 

 
 

Figure 11 

 

The synthesis of this type of compounds can be rationalized from aldehyde 3. A 

retro-synthetic plan is shown in scheme 23. Imines will be first synthesized and then its 

reactivity tested to carbon nucleophiles, acetal cleavage and finally, ring closure to 

afford the polyhydroxylated pyrrolidines.  
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Scheme 23 
 

 

Unfortunately, the imine crude products were reacted with carbon nucleophiles, 

without success (scheme 24). The instability of the imine may in part explain the failure 

of the attempts to obtain polyhydroxylated pyrrolidines 138. Table 4 summarize 

reagents and conditions of the attempts made.  

 
 

Scheme 24 

 

Grignard reagents led to intractable mixtures, except in entry 9 where it was 

possible to identify two of the products formed; they were formed by water elimination 

as shown in scheme 25. Compounds 139 and 140 were isolated in 4.8 % and 3.1 % 

respectively. The compounds were identified by 
1
H, 

13
C NMR spectroscopy combined 

with bidimentional HMBC and HSQC spectra. From the mechanistic point of view, the 

formation of these compounds is possible due to the acidic nature of H-4 under the 

influence of the imine bond. The nucleophile used, acts as a base, removing this proton, 

promoting water molecule elimination. Hydrolysis of the imine function in compound 

139, explains the formation of aldehyde 140.  

1
H NMR spectra of compounds 139 and 140 showed two doublet of doublets 

corresponding to the H-5 at H 5.58/6.12 ppm, with J= 3.6 and 2.4 Hz to the two H-6. 

On the other hand, each H-6 is also a doublet of doublets with a large geminal coupling 

J= 17.2/18.8 Hz and the vicinal coupling described to H-5. The imine peak appears at 

δH 7.69 ppm in compound 139, and the aldehyde proton at δH 9.27 ppm in compound 

140, both as a singlet.          
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Scheme 25 

 

Boronates also gave intractable mixtures, except for methyl boronates, which 

gave back the starting material probably for being less reactive.  
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Table 4 Reaction conditions and results of C-nucleophiles attack to imines 134. 

a) By 
1
H NMR spectroscopy.  

Entry 
Imine 122  

(R) 
Conditions Results

a) 

1 Bn 

1.1 eq. MeMgBr 

Dry THF, MS 4 Å 

0 °C  rt, 20 h 

Recovery of starting 

material 

2 Bn 
6 eq. MeMgBr 

Dry DCM, MS 4 Å, rt, 24 h 
Complex mixture 

3 Pr 
5 eq. vinylMgBr 

Dry DCM, MS 4 Å, rt, 23 h 
Complex mixture 

4 Pr 

3 eq.  vinylMgBr 

Dry DCM, MS 4 Å 

-78 °C  rt, 5.30 h 

Complex mixture 

5 Pr 
vinylB(OCH3)2 

dry THF, rt, 7 days 
Complex mixture 

6 Pr 

methyl B(OCH3)2 

(S)-Binol 

Dry toluene, MS 4 Å, rt, 2 days 

No reaction 

7 Pr 
methyl B(OCH3)2 

Dry toluene, MS 4 Å, rt, 2 days 
No reaction 

8 

R-

methylbenzyl- 

amine 

3 eq. vinylMgBr 

-78 °C  rt, 24 h 
Imine + unknown product 

9 

S-

methylbenzyl- 

amine 

4 eq. vinylMgBr 

0 °C  rt, 18 h 
Compounds 139 and 140 

10 Phthalimide 

4,4,5,5-tetramethyl-2-vinyl-1,3,2-

dioxaborolane 

Dry THF 

rt  55 °C, 3 days 

Recovery of the starting 

material 

11 Pr 

vinylMgBr 

BF3·OEt2 

Dry THF, -20 °C  rt, 24 h 

Complex mixture 

12 Bn 

Tri-o-tolyl borate 

Dry DCM 

MS 4 Å, -78 °C  rt, 24 h 

Complex mixture 

13 Phthalimde 

Tri-o-tolyl borate 

20 % mol BF3·OEt2 

Dry DCM 

MS 4 Å, -78 °C  rt, 18 h 

Complex mixture 



Chapter 2 − Results and Discussion 

 

 41 

2.4. Acetal cleavage of amines 135a-c,e 

 

The removal of the acetal was obtained by dissolving the amine 135a-c,e in 1,4-

dioxane, followed by addition of HCl 1 M at rt (scheme 26). The solvent and the 

benzaldehyde formed were evaporated in the rotary evaporator. Crude products were 

dissolved in 1,4-dioxane and passed through basic resin. Removal of the solvent in the 

rotary evaporator, provided compounds 141a-c,e as pure products in moderate to good 

yields (57.7-85.8 %).     

 

 

 

Scheme 26 

 

1
H NMR spectra showed the absence of the proton of the acetal moiety and the 

phenyl group, as expected. Protons H-1, H-2 and H-3 appeared usually as multiplets, 

except for H-4 which showed up as doublet of doublets between H 2.55-3.28 ppm with 

the geminal coupling constants J= 12.0-13.2 Hz. 

The 
13

C NMR spectra showed expected values compared to the precursors 

amines 135. 
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Table 5 
1
H NMR spectroscopic data of amino-alcohols 141a-c,e (400 MHz, D2O, ppm). 

 

Comp. H-1 H-2 H-3 H-4 

141a 
3.63-3.65 (m); 

3.76-3.79 (m) 

3.92 (ddd, J= 

9.6, 6.8, 3.2 

Hz) 

3.67-3.70 (m) 
3.07 (dd, J= 13.2, 9.6 Hz); 

3.28 (dd, J= 12.8, 2.8 Hz) 

141b 

3.59-3.64 (m); 

3.77 (dd, J= 10.8, 

2.4 Hz) 

3.64-3.70 

(m)* 

3.64-3.70 

(m)* 

2.64 (dd, J= 12.0, 8.0 Hz); 

2.79 (dd, J= 12.0, 3.2 Hz) 

141c 
3.58-3.66 (m); 

3.73-3.76 (m) 
3.80-3.85 (m) 3.58-3.66 (m) 

2.80 (dd, J= 12.8, 9.2 Hz); 

2.99 (dd, J= 12.8, 2.8 Hz) 

141e 
3.52-3.59 (m)*; 

3.65-3.70 (m)* 

3.52-3.59 

(m)*; 

3.65-3.70 

(m)* 

3.52-3.59 

(m)*; 

3.65-3.70 

(m)* 

2.55 (dd, J= 12.4, 8.4 Hz); 

2.64 (dd, J= 12.4, 3.6 Hz) 

*indistinguishable 

 

 

 

Table 6 
13

C NMR spectroscopic data of amino-alcohols 141a-c,e (100 MHz, D2O, ppm). 

 

Comp. C1 C2 C3 C4 

141a 62.1 67.3 73.1 49.6 

141b 61.8 70.8 or 73.5 70.8 or 73.5 43.4 

141c 62.3 69.3 73.5 49.7 

141e 61.8 70.1 or 73.3 70.1 or 73.3 48.5 
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Part B. Reactions with lactone 133 

 

2.5. Attempts to epoxidation of 133  

 

Epoxides are a 3-member ring O-heterocycles, very useful in synthesis due to 

the possibility of ring-opening with a large range of nucleophiles, including many times 

the control of stereo- and regio-selectivities
51

. 
 

Epoxidation of the C=C bond in lactone 133, followed by ring-opening, would 

led to the introduction of two vicinal functions, according to scheme 27, that we found 

interesting to explore.  

 

Scheme 27 

Standard epoxidation procedures
52,53

 were followed, namely m-CPBA protocol, 

oxone method and hydrogen peroxide 30 %. The reactions did not work, and the 

amount of starting reagent was totally recovered pure or contaminated with the product 

formed after benzylidene acetal cleavage (table 7).  

 

Table 7 Attempts to epoxidation of compound 133. 

a) By 
1
H NMR spectroscopy. 

b) Contaminated with benzylidene acetal cleaved compound.  

Entry Conditions Results
a) 

1 
133 (1 eq.), 1,1,1-trifluoracetone (10 eq.), NaHCO3 (18 eq.),  

oxone (25 eq.), CH3CN/H2O, 0 ºC  rt, 24 h. 
133

b)
  

2 
133 (1 eq.), m-CPBA (1 eq.+2), 

DCM, rt  reflux, 21 h. 
133

b)
  

3 
133 (1 eq.), H2O2 30 % (1.5 eq.) 

1,4-dioxane, rt  40 ºC, 7 days. 
133 

4 
133 (1 eq.), 1,1,1-trifluoracetone (10 eq.), NaHCO3 (15 eq. + 25), 

oxone (5 eq. + 10), CH3CN/H2O, rt, 15 days. 
133 
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2.6. Osmilation of 133 

  

Upjohn dihydroxylation
54

 methodology is used for cis hydroxylation of C=C 

bonds, using a catalytic solution of osmium tetroxide in the presence of N-

methylmorpholine N-oxide as the oxidant agent, in acetone (10)/water (1) as solvents.  

Applying the same conditions to lactone 133 was isolated pure compound 142, 

after extraction, in moderate yield (40 %) as a white oil (scheme 28).  

 

 

 

Scheme 28 

One of the proposed mechanism for the Upjohn dihydroxylation is a 1,3-dipolar 

cycloaddition, that is represented in scheme 29 for the conversion of lactone 133 into 

product 142.   

 

 

 

Scheme 29 
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Before in our laboratory, lactone 133 was reacted with various 1,3-dipoles, 

having been shown that the cycloaddition occurred by the re face, leading to the 

stereochemistry shown in 142. In figure 12 is shown compound 142 and compound 143 

drawn in perspective. The structure of compound 143 had been fixed by single crystal 

X-ray
48

.   

 

 

Figure 12 

 

In the 
1
H NMR spectrum, the acetal proton of the D-erythrose moiety appeared 

following the usual pattern. H-7 is a doublet, with J= 4.0 Hz, due to the vicinal H-8. H-8 

is a doublet of doublets, coupling with H-7 (J= 4.0 Hz) and with H-8a (J= 6.4 Hz). 

13
C NMR data was expected for the dihydroxylated compound, with the 

aliphatic peaks appearing in the low field aliphatic region.  
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Table 8 
1
H NMR spectroscopic data of compound 142 (400 MHz, D2O, ppm). 

 

Comp. H-2 H-4 H-4a H-8a H-7 H-8 

142 5.68 (s) 

3.76 (dd, J= 11.2, 

10.0 Hz); 

4.32 (dd, J= 10.8, 5.2 

Hz) 

4.00-

4.07 (m) 

3.98 (dd, J= 

9.6, 6.4 Hz) 

4.49 (d, J= 

4.0 Hz) 

4.35 (dd, J= 6.0, 

3.6 Hz) 

 

 

 

Table 9 
13

C NMR spectroscopic data of 142 (100 MHz, D2O, ppm). 

 

Comp. C2 C4 C4a C8a C7 C8 C=O 

142 100.9 69.9 63.3 78.7 71.8 74.0 175.4 

 

 

2.7. Attempts to bromination of 133  

 

The addition of bromine to double bonds has been widely described in the lit
55-

57
. The introduction of bromide at the α-position of the carbonyl group in compound 

133 can led to intermediate 144 that would be transformed either into the α-azido-

carbonyl compound 145 or led to the α-bromohydrin compound 147 (scheme 30). The 

last, would be an alternative approach to achieve an epoxide 148, this time with 

opposite configuration at the functional carbon atom, in relation to the first epoxide 

tried. The α-azido compound 145 would be pyrolysed to give 2H-azirine 146 and this 
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tested to several nucleophiles. None of the attempts made were effective, leading to the 

recovery of the starting material or complex mixtures (table 10).  

 

 

 

 

Scheme 30 

Table 10 Attempts to bromination of compound 133. 

Entry Conditions Results
a) 

1 133 (1 eq.), NBS (1 eq. +1+1), rt, 7 days. 133 

2 
133 (1 eq.), N-methylmorpholine N-oxide (1.5 eq.), NBS (1 

eq.), rt, 6 days. 
133 

3 
133 (1 eq.), bromine (1 eq.) 

0 ºC   rt, 30 min. 
Complex mixture 

4 
133 (1 eq.), bromine (1 eq.), NEt3 (3 eq.), 

0 ºC   rt, 24 h. 
Complex mixture 

5 
133 (1 eq.), bromine (1 eq.), NEt3 (2 eq.), 

-15 ºC   rt, 3 days. 
Complex mixture 

6 
133 (1 eq.), pyridine N-oxide (1.5 eq. +1), NBS (1 eq. +1) 

rt, 9 days. 
133 

a) By 
1
H NMR spectroscopy. 
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2.8. Attempts to aziridination of 133 

 

In scheme 31 is shown a reaction sequence in order to achieve piperidine 

products, an interesting type of compound from the biological point of view. Aziridine 

149 has been obtained before
48

 by photolysis of the adduct formed by addition of alkyl 

azides to lactone 133. Now it was sought to turn the aziridine formation more 

expeditious.   

 

 

Scheme 31 

 

Several methods
58-63

, using different combinations of N-aminophthalimide with 

lead(IV) acetate (entry 1-3), (diacetoxyiodo)benzene (entry 5) or 2-iodoxybenzoic acid 

(entry 6) appeared to be successful in the lit., as well as the use of O-

(diphenylphosphinyl)hydroxylamine combined with N-methylmorpholine (entry 4) have 

been used. However, none of these procedures had showed to work in the present case. 

The starting material (133) was recovered in all cases, except in entry 5 (table 11), 

where the lactone opened to give the respective carboxylic acid.  
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Table 11 Attempts to aziridination of compound 133. 

Entry Conditions Results
a) 

1 
133 (1 eq.), NH2Pht (1.5 eq.), Pb(OAc)4 (1.6 eq.), dry THF, 

0 ºC  rt, 24 h. 
133 

2 
133 (1 eq.), NH2Pht (1.5 eq.), Pb(OAc)4 (1.6 eq. +1), dry THF, 

rt  reflux, 7 days. 
133 

3 
133 (1 eq.), NH2Pht (1.5 eq.), Pb(OAc)4 (1.5 eq. +1), K2CO3 (2.8 

eq.), dry DCM, 0 ºC  rt, 17 days. 
133 

4 
133 (1 eq.), DppONH2 (1.05 eq.), N-methylmorpholine (1.05 eq.), 

NaOH (2 eq.), dry DCM, rt, 8 h. 

133 as carboxylic 

acid derivative 

5 
133 (1 eq.), PhI(OAc)2 (1.5 eq.), K2CO3 (2.8 eq.+1), NH2Pht (1.4 

eq.+1), DCM, rt  reflux, 7 days. 
133 

6 
133 (1 eq.), NH2Pht (1.5 eq.), 2-iodoxybenzoic acid (1.4 eq.), 

Na2CO3 (2.8 eq.), dry AcOEt, reflux, 40 h. 
133 

a) by 
1
H NMR spectroscopy. 

 

 

 

2.9. Nucleophilic additions to lactone 133  

 

1,4-Nucleophilic additions to α,-unsaturated esters are widely described in the 

lit
64-69

. In this work it was consistently found that nucleophiles as carbon, amines and 

thiols were added to lactone 133 in a stereoselective way. Single products 150a-d were 

formed in all cases in moderate to good yields η= 51.4-85.9 % (scheme 32). 

 
 

Scheme 32 
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The nucleophilic attack at C8 would be controlled by H-8a. This proton is on the 

way of the nucleophile when this attacks by the bottom face; the attack at the upper face 

is of course open as shown in figure 13.  

 

 

Figure 13 

 

Studies in our group have showed that the R-configuration at the C4a is crucial 

for the stereo-selectivity in the Michael addition. With the galacto-configuration, the 

lactone in figure 14 (S-configuration at H-4a), is showed the complete loss of stereo-

selectivity when reacted with osmium tetroxide, giving a mixture of two diastereomers 

in 1:1 ratio.      

 

 

Figure 14 
 

1
H NMR of products 150a-d showed two doublet of doublets between δH 2.72-

3.21 ppm due to H-7, instead of the olefin protons of the starting material. The geminal 

coupling constant between the two H-7 is very large J= 16.8-18.8 Hz. H-8 appeared as 

doublet of doublet of doublets in compounds 150b,c and a multiplet in other cases. The 

coupling constant between H-8a and H-8 is lower (J= 4.0 Hz), except for compound 

150a (J= 8.4 Hz). A possible explanation is that compound 150a adopts a different 

conformation, leading to different dihedral angle between the protons. All other protons 

appeared with the chemical shift and coupling constants of the starting material.   
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The stereochemistry was confirmed by NOE spectra of compound 150a (figure 

15). Irradiation of H-8 showed H-4 signal to increase in intensity (7 %), which shows 

that the protons are in the same side of the molecule.  

 

Figure 15 

13
C NMR spectra show comparable values in all lactones 150. C8 and the 

carbonyl group are the only exceptions for compound 150d, appearing a little higher 

than in the others, for obvious reasons.    

 

Table 12 
1
H NMR spectroscopic data of lactones 150a-d (400 MHz, CDCl3, ppm). 

 

Comp. H-2 H-4 H-4a H-8a H-7 H-8 

150a 5.60 (s) 

3.85 (dd, J= 10.8, 

10.0 Hz); 

4.52 (dd, J= 10.8, 

5.2 Hz) 

4.32 (td, 

J= 9.6, 

4.8 Hz) 

4.14 

(dd, J= 

9.6, 8.4 

Hz) 

2.72 (dd, J= 16.8, 7.2 

Hz); 

2.92 (dd, J= 16.8, 8.0 

Hz) 

3.42-3.52 

(m) 

150b 5.61 (s) 

3.85 (t, J= 10.4 

Hz); 

4.48 (dd, J= 10.8, 

5.2 Hz) 

4.87 (td, 

J= 10.0, 

5.2 Hz) 

4.13 

(dd, J= 

9.6, 4.0 

Hz) 

2.90 (dd, J= 18.8, 2.4 

Hz); 

3.21 (dd, J= 18.4, 7.6 

Hz) 

3.66 (ddd, 

J= 7.6, 

4.0, 2.4 

Hz) 

150c 5.63 (s) 

3.87 (t, J= 10.8 

Hz); 

4.51 (dd, J= 10.8, 

5.2 Hz) 

4.98 (td, 

J= 10.0, 

5.2 Hz) 

4.13 

(dd, J= 

9.6, 4.0 

Hz) 

2.75 (dd, J= 18.4, 2.4 

Hz); 

3.09 (dd, J= 18.4, 7.6 

Hz) 

3.45 (ddd, 

J= 7.6, 

4.0, 2.4 

Hz) 

150d 5.53 (s) 

3.66 (t, J= 10.8 

Hz); 

4.35 (dd, J= 10.8, 

4.8 Hz) 

3.80-3.86 

(m)* or 

4.10-4.20 

(m)* 

3.72-

3.76 

(m) 

2.86 (dd, J= 17.6, 7.2 

Hz); 

2.98 (dd, J= 17.6, 4.4 

Hz) 

3.80-3.86 

(m)* or 

4.10-4.20 

(m)* 

*indistinguishable 
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Table 13 
13

C NMR spectroscopic data of lactones 150a-d (100 MHz, CDCl3, ppm). 

 

Comp. C2 C4 C4a C8a C7 C8 C=O 

150a 101.9 68.3 67.1 74.6 31.8 31.2 167.7 

150b 102.2 68.3 66.8 77.7 36.8 40.0 167.0 

150c 102.2 68.3 66.9 78.4 36.1 38.1 167.1 

150d 101.2 70.6 61.6 or 65.3* 78.4 31.9 61.6 or 65.3* 176.8 

 

 

2.10. Nucleophilic additions to lactone 133 leading to amides  

 

Amines attacked the position 4 and 2 of the α,-unsaturated carbonyl system of 

lactone 133 (scheme 31), even at low temperature (-78 ºC), and with 1 eq. of the amine. 

Supposedly, the amine attacks first at C=C bond, followed by lactone ring-opening in a 

second step. 

 

 

Scheme 33 
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Hydroxylamine, probably for being a weaker nucleophile, attacks only C4 

position giving lactone 150d. Many cases in the lit
70,71

 showed that hydroxylamine adds 

exclusively at C-4 of a α,-unsaturated ester. 

In compounds 151 the geminal coupling constant between the two H-2 is J= 

14.4-15.2 Hz, lower than the geminal coupling of related protons in compounds 150 

which is J= 16.8-18.8 Hz. This indicates that a higher angle occurs between the two 

protons
72

 in compounds 151, which is consistent with its incorporation in an open chain.  

The 
1
H NMR spectroscopy of compounds 151a-d also showed the signal of the 

amide proton between H 5.71-8.01 ppm. In compounds 151c,d, runned in CDCl3, this 

signals showed up as broad singlets, where in 151b is a triplet in DMSO-d6. 
1
H NMR of 

compound 151a runned in D2O completely exchanged the mobile proton with 

deuterium.  

H-4a couples differently to H-3, depending on the solvent used to run the 

spectrum. In CDCl3, H-4a couples to H-3 with large coupling constant (J= 8.8 Hz). The 

signal of H-4a is in this case a triplet, because the coupling to H-3 and H-5a is the same. 

When the solvent is changed to CD3OD or DMSO-d6, H-4a showed up as doublet of 

doublets. The large coupling with H-5a remains but the J with H-3 is smaller (J= 4.0/4.4 

Hz).  

Minimization of energy in a 3D structure of compound 151c (figure 16), showed 

a - stacking between the phenyl groups, giving H-4a and H-3 in an antiparalel 

disposition of the two H, which explains the large J between those protons.   

 

Figure 16 3D Structure of compound 151c as is minimum energy state with the dihedral angle between 

H-3 and H-4a. 
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A possible explanation for a different pattern in compounds 151 dissolved in 

polar solvents is the ability of the solvent to be involved in hydrogen bonding, leading 

to a different conformation.  

To confirm this assumption, compound 151d was dissolved in CD3OD and in 

CDCl3. H-4 showed up as a triplet in CDCl3, and as a doublet of doublets in CD3OD 

proving that different conformations occur in these two solvents.      

13
C NMR spectra of compounds 151a-d showed up at the expected regions, with 

values that agree with those of compounds 151a-d. The chemical shift of C3 is of course 

only similar to 150d, due to the nature of the attached atom (N). 

 

Table 14 
1
H NMR spectroscopic data of amides 151a-d (400 MHz, deuterated solvent, ppm). 

 

Comp. H-2 H-3 H-2a H-4a H-5a H-6a NHCO 

151a
a) 

2.42 (dd, J= 

15.2, 8.0 Hz); 

2.60 (dd, J= 

15.2, 4.4 Hz) 

3.48 (dt, 

J= 8.0, 

4.0 Hz) 

5.57 

(s) 

3.88 (dd, 

J= 8.8, 

4.0 Hz) 

3.74 (td, 

J= 10.0, 

4.8 Hz) 

3.66 (t, J= 10.0 

Hz); 

4.25 (dd, J= 

10.4, 4.8 Hz)  

--- 

151b
b) 

2.23 (dd, J= 

14.8, 8.4 Hz); 

2.36 (dd, J= 

14.8, 4.0 Hz) 

3.20-3.23 

(m) 

5.48 

(s) 

3.59 (dd, 

J= 8.8, 

4.4 Hz) 

3.53 (td, 

J= 9.6, 

4.4 Hz) 

3.47 (t, J= 9.6 

Hz); 

4.07 (dd, J= 9.6, 

4.0 Hz) 

8.01 (t, 

J= 5.6 

Hz) 

151c
c) 

2.46 (dd, J= 

14.4, 4.0 Hz); 

2.65 (dd, J= 

14.4, 3.6 Hz) 

3.22 (dt, 

J= 9.6, 

4.0 Hz) 

5.13 

(s) 

3.45 (t, 

J= 8.8 

Hz) 

3.73 (td, 

J= 10.0, 

5.2 Hz) 

3.50 (t, J= 10.8 

Hz); 

4.24 (dd, J= 

10.8, 5.2 Hz) 

5.96 

(br s) 

151d
c) 

2.42 (dd, J= 

14.4, 4.8 Hz); 

2.58 (dd, J= 

14.8, 3.6 Hz) 

3.08-3.17 

(m) 

5.46 

(s) 

3.50 (t, 

J= 8.8 

Hz) 

3.84 (td, 

J= 10.0, 

5.2 Hz) 

3.61 (t, J= 10.4 

Hz) 

4.29 (dd, J= 

10.8, 5.2 Hz) 

5.71  

(br s) 

a) in CD3OD + 1 drop of D2O; b) DMSO-d6; c) CDCl3.  
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Table 15 
13

C NMR spectroscopic data of amides 151a-d (100 MHz, deuterated solvent, ppm). 

 

Comp. C2 C3 C2a C4a C5a C6a C=O 

151a 33.3 61.3 102.4 81.8 64.4 72.0 174.0 

151b 35.7 55.9 100.1 81.3 63.6 70.6 171.5 

151c 33.1 59.1 101.4 79.6 67.2 70.9 171.0 

151d 33.5 60.1 101.5 79.8 67.5 71.0 171.3 

 

2.11. Other nucleophilic additions to lactone 133  

 

In this sections were compiled a group of reactions, shown in table 16, that for 

one or other reason were not successful. Trimethylsilyl cyanide (entry 1) have been 

combined with lactone 133 in large excess for a long period of time, but the 
1
H NMR 

spectrum of the reaction crude showed exclusively the lactone after 12 days. Tert-

butylamine (entry 2) in excess and even in the presence of triethylamine did not react, 

probably due to steric impediment. Grignard reagents showed to be much aggressive 

leading to complexes mixtures from which no product could be separated by column 

chromatography (entry 3). Reaction with trimethylsilyl azide (entry 4) showed by 
1
H 

NMR the presence of a lactone of type 150, together with the amide 151 and impurities. 

The reaction did not evolved to one of the compounds after 15 days at 40 ºC. p-

Toluenesulfonyl hydrazine and N-aminophthalimide (entry 5,6) showed to be 

unreactive. Finally, (entry 7) bubbling ammonia thought a solution of lactone 133 in 

acetonitrile formed a mixture of lactone type 150 and amide type 151. Even longer 

periods of time led the reaction no further. Products showed to be instable and 

purification was infeasible.  
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Table 16 Reaction conditions and results of attack of several C and N nucleophiles to lactone 133. 

Entry Nucleophile Conditions Results
a) 

1 TMSCN 
133 (1 eq.), TMSCN (2.5 eq. +2.5), 2-propanol (2.5 

eq. + 2.5), toluene, rt, 12 days. 
133 

2 
t
BuNH2 

133 (1 eq.), tert-Butylamine (2 eq.), NEt3 (1 eq.), 

dry CH3CN, 0 ºC  rt, 24 h. 
133 

3 MeMgBr 

1. CoBrSMe2 (0.5 eq.), MeMgBr (2 eq.), rt  

1 h. 

2. 133 (1 eq.), dry THF, -15 ºC  rt, 2 h. 

Complex mixture 

4 TMSN3 

1. TMSN3 (5 eq.), AcOH (5 eq.) rt, 20 min. 

2. 133 (1 eq.), dry CH3CN, 40 ºC, 15 days. 
Complex mixture 

5 
p-toluenesulfon- 

hydrazide 

133 (1 eq.), p-toluenesulfonhydrazide (1 eq.), dry 

CH3CN, -15 ºC  35 ºC, 5 days. 
133 

6 

N-

aminophthalimi

de 

133 (1 eq.), N-aminophthalimide (1 eq.), NEt3 (2 

eq. +10), dry CH3CN, rt  40 ºC, 7 days. 
133 

7 NH3 133 (1 eq.), NH3 (g), dry CH3CN, -10 ºC  rt, 1 h.  ----
b) 

a) By 
1
H NMR spectroscopy. b) Probably a compound with the structure 151 was formed but is 

instable which prevent its isolation and characterization.  

 

 

2.12. Acetal cleavage 

 

2.12.1. of the lactone 142 

 

Acetal cleavage with hydrochloric acid at rt provides the D-allonic acid 152 in 

low yield (28.3 %) as a colourless oil (scheme 34). The acid medium promotes the 

opening of the lactone, giving the carboxylic acid. The low yield can be explained by 

the used of basic resin that would retain the allonic acid.  



Chapter 2 − Results and Discussion 

 

 57 

 

Scheme 34 

 

1
H and 

13
C NMR spectra of compound 152 were consistent to what its described 

in the lit
43

. 

 

 

Table 17 
1
H NMR spectroscopic data of compound 152 (400 MHz, D2O, ppm). 

 

Comp. H-2 H-3 H-4 H-5 H-6 

152 
4.26 (d, J= 

3.2 Hz) 

4.06 (dd, J= 

6.8, 3.2 Hz) 

3.85 (dd, J= 

6.8, 5.6 Hz) 

3.88-3.92 

(m) 

3.68 (dd, J= 12.0, 6.8 Hz); 

3.83 (dd, J= 12.0, 3.2 Hz) 

 

 

 

Table 18 
13

C NMR spectroscopic data of compound 152 (100 MHz, D2O, ppm). 

 

Comp. C2 C3 C4 C5 C6 C=O 

152 73.5 72.5 71.7 73.5 62.3 178.1 

 

 



Chapter 2 − Results and Discussion 

 

 58 

2.12.2. of the lactones 150a-d 

 

Lactones 150a-d were treated under acidic medium in order to cleave the acetal 

group. The 
1
H NMR spectra presented the absence of the typical singlet H-2 and the 

phenyl group showing the end of the reaction. All the products were isolated in good to 

excellent yields η= 78.1-92.9 % (scheme 35).  

  

 

Scheme 35 

 

In the 
1
H NMR spectra of the compounds 153, H-3 appeared at δH 2.41-3.27 

ppm as doublet of doublets with a high geminal coupling constant J 19 Hz, larger than 

in lactone 150. The geminal coupling of H-7 protons are typically between J= 10.8-12.4 

Hz, except for 153c in which the geminal coupling disappeared; this signal is a doublet 

with J= 6.0 Hz due to coupling to the vicinal H-6. H-6 appeared with different type of 

signals, probably depending on the conformation adopted by the structure. H-5 showed 

up as a triplet in compounds 153a-c with coupling constants between J= 3.6-5.2 Hz, and 

in compound 153d as doublet of doublets, with J= 4.4, 2.0 Hz.    

13
C NMR spectra showed signals at expected chemical shifts for the structures. 

There is a consistency of the signals in all the spectra, except for 153d, due to the 

different nature of the attached atom.    
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Table 19 
1
H NMR spectroscopic data of lactones 153a-d (400 MHz, deuterated solvent, ppm). 

 

Comp. H-3 H-4 H-5 H-6 H-7 

153a
a) 

2.66 (dd, J= 18.8, 5.6 

Hz); 

3.08 (dd, J= 18.8, 10.0 

Hz) 

3.35-3.44 

(m) 

4.58 (t, J= 

5.2 Hz) 

3.95-3.99 

(m) 

3.69 (dd, J= 12.4, 

6.0 Hz); 

3.77 (dd, J= 11.6, 

4.4 Hz) 

153b
a) 

2.73 (dd, J= 18.8, 5.2 

Hz); 

3.27 (dd, J= 18.8, 9.2 

Hz) 

3.83-3.87 

(m) 

4.60 (t, J= 

4.4 Hz) 

3.99 (dt, J= 

6.8, 4.4 Hz) 

3.71 (dd, J= 10.8, 

6.8 Hz); 

3.76-3.79 (m) 

153c
b) 

2.41 (dd, J= 18.4, 3.6 

Hz); 

3.03 (dd, J= 18.4, 8.8 

Hz) 

3.65 (dt, 

J= 8.8, 3.6 

Hz) 

4.52 (t, J= 

3.6 Hz) 

3.81 (td, J= 

6.0, 4.0 Hz) 
3.54 (d, J= 6.0 Hz) 

153d
a) 

2.94 (dd, J= 19.2, 2.4 

Hz); 

3.27 (dd, J= 19.2, 9.2 

Hz) 

4.55 (dt, 

J= 9.2, 2.0 

Hz) 

5.00 (dd, J= 

4.4, 2.0 Hz) 

4.02 (q, J= 

4.8 Hz) 

3.72 (dd, J= 12.0, 

5.6 Hz); 

3.77 (dd, J= 12.0, 

4.4 Hz) 

a) D2O; b) CD3OD. 
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Table 20 
13

C NMR spectroscopic data of lactones 153a-d (100 MHz, deuterated solvent, ppm). 

 

Comp. C3 C4 C5 C6 C7 C=O 

153a
a) 

32.4 34.1 82.4 72.2 61.7 179.2 

153b
a) 

36.5 38.3 86.1 71.3 61.6 178.9 

153c
b) 

37.6 39.3 87.4 73.2 63.4 178.0 

153d
a) 

29.9 57.1 80.6 70.6 61.4 176.7 

a) D2O; b) CD3OD. 

2.12.3. of the amides 151b-d 

 

The acetal cleavage procedure used in previous reactions did not led to the 

expected product in the case of amides 151b-d (scheme 36).  

Compound 151a gave an untreatable complex mixture; compounds 151b-d gave 

lactams 154b-d.   

 

 

 

Scheme 36 

 

  



Chapter 2 − Results and Discussion 

 

 61 

By 
1
H NMR analysis, the acetal group cleaved first, and then the product 

cyclized to lactam 154, isolated in quantitative yield, as a single product. The 

mechanism of cyclization should be a SN2 process according to scheme 37. The 

nitrogen atom of the amide group attacks carbon 5, inverting the configuration of this 

chiral centre. 

 

 

Scheme 37 

The main clue for the identification of the cyclic structure 154 is the 
1
H NMR 

spectra, showing the two H-3 with a geminal coupling constant near J= 19 Hz, similar 

to H-3 in lactones 153. Geminal coupling constants in six-membered ring compounds 

154 (H-3) are larger than in the open chain counterpart 151. There is another geminal 

coupling constant (J= 12.0-12.4 Hz) in the spectra. It was attributed to H-7. The 

chemical shift value for H-7 is similar to H-7 of lactones 153. H-6 protons appeared as 

quartets in these structures. H-5 are doublet of doublets in all cases, with low coupling 

constants between J= 2.4-5.2 Hz. All other signals are very similar to the open-chain 

precursor.
  

13
C NMR spectra of lactams 154b-d showed comparable values to lactones 153. 

Of course the seven-membered ring closure was also possible to occur, 

according to scheme 37, but the 
1
H NMR spectra is consistent with the six-membered 

ring compounds (compare with lactones 153).  
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Table 21 
1
H NMR spectroscopic data of lactams 154b-d (400 MHz, D2O, ppm). 

 

Comp. H-3 H-4 H-5 H-6 H-7 

154b 

2.96 (dd, J= 19.2, 3.2 

Hz); 

3.31 (dd, J= 20.0, 9.2 

Hz) 

4.35 (dt, 

J= 9.2, 2.8 

Hz) 

4.89 (dd, J= 

4.8, 2.4 Hz) 

3.99 (q, J= 

4.4 Hz) 
3.75 (t, J= 4.8 Hz) 

154c 

3.02 (dd, J= 19.2, 3.2 

Hz); 

3.35 (dd, J= 19.2, 9.2 

Hz) 

4.38-4.43 

(m) 

4.97 (dd, J= 

5.2, 2.4 Hz) 

4.01 (q, J= 

4.8 Hz) 

3.73 (dd, J= 12.3, 

5.2 Hz); 

3.80 (dd, J= 12.4, 

4.4 Hz) 

154d 

2.97 (dd, J= 19.2, 2.8 

Hz); 

3.36 (dd, J= 19.2, 9.2 

Hz)  

4.35 (dt, 

J= 9.2, 2.4 

Hz) 

4.93 (dd, J= 

4.8, 2.4 Hz) 

4.03 (q, J= 

5.2 Hz) 

3.78 (dd, J= 12.4, 

5.2 Hz); 

3.83 (dd, J= 12.0, 

4.4 Hz) 

 

 

Table 22 
13

C NMR spectroscopic data of lactams 154b-d (100 MHz, D2O, ppm). 

 

Comp. C3 C4 C5 C6 C7 C=O 

154b 31.9 54.5 81.7 70.3 61.5 175.9 

154c 31.8 54.2 81.8 70.3 61.2 175.9 

154d 32.0 54.7 81.9 70.5 61.6 176.2 
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2.13. Cleavage of benzylamine 

 

Cheng et al
73

, reported an efficient hydrogenolysis method to cleave the benzyl 

group in benzylamines, using 1,1,2-trichloroethane, a catalytic amount of palladium on 

carbon and hydrogen gas.  

Lactam 154c was subjected to this procedure (scheme 38). After stirring at rt 

overnight, a single product (155) was isolated with good yield (η= 69.6 %).  

 

 

Scheme 38 

 

Only one benzyl group remained, according to the 
1
H NMR spectrum. The 

spectrum of this compound showed the absence of the amide proton in DMSO-d6 that 

usually appeared above δH 5-8 ppm, and the disappearance of the two doublets 

corresponding to the CH2 of the benzylamine moiety. The singlet due to CH2 of the 

benzylamide moiety remained in the spectrum. HSQC showed the disappearance of the 

correlation between H-4 and the CH2 of the benzylamine moiety (figure 17), present in 

the starting material.  

 

Figure 17 C-H correlation in bidimentional HSQC of compound 154c. 
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The cleavage of the benzyl group attached to the amide function was tried by 

increasing the amount of carbon palladium, 1,1,2-trichloroethane, together with longer 

periods of time, without success. This means that the methodology is chemo-selective 

for benzylamine group and led untouched the benzyl group at the amide nitrogen.     

H-4 proton appeared in the 
1
H NMR spectrum as a doublet of doublets with 

coupling constants of J= 8.8, 3.2 Hz. H-6 was a quartet in the previous structure (154c), 

being a doublet of triplets in this one with J= 5.6, 4.0 Hz. 

13
C NMR showed similar values that the previous lactam, with a little decrease 

of the C4 value as expected, from C 54.2 to 47.6 ppm.    

 

Table 23 
1
H NMR spectroscopic data of lactam 155 (400 MHz, D2O, ppm). 

 

Comp. H-3 H-4 H-5 H-6 H-7 H-1’ 

155 

2.88 (dd, J= 19.2, 3.6 

Hz); 

3.31 (dd, J= 19.2, 9.2 

Hz) 

4.38 (dd, J= 

8.8, 3.2 Hz) 
--ª

) 

4.02 

(dt, J= 

5.6, 4.0 

Hz) 

3.76 (dd, J= 12.0, 5.2 

Hz); 

3.81 (dd, J= 12.4, 4.0 

Hz) 

4.23 

(s) 

a) this signal is under residual peak of HOD. 

 

 

Table 24 
13

C NMR spectroscopic data of lactam 155 (100 MHz, D2O, ppm). 

 

Comp. C3 C4 C5 C6 C7 C=O C1’ 

155 33.1 47.6 82.9 70.6 61.6 176.3 43.0 
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2.14. Synthesis of lactone 156 

 

To test if the acetal group in lactone 133 is important for the addition reaction’s 

selectivity of nucleophiles, the acetal group was removed in order to use the new 

template in addition reactions. The acetal was removed under aq. HCl giving the 

expected product 156 (scheme 39).  

The product showed two doublet of doublets, corresponding to the H-7 with a 

geminal coupling constant of J= 12.0 Hz. H-6 appeared as a doublet of triplets with J= 

6.0, 4.4 Hz. H-4 have a vicinal constant with H-5 of J= 1.6 Hz, and with H-3 of J= 6.0 

Hz. 
13

C NMR spectrum showed two carbons in the allyl region, corresponding to H-3 

and H-4, and all the others signals in the regions expected. 
1
H and 

13
C NMR spectra 

were compared with the NMR spectra of 133 described in the lit
48

.   

 

 

 

Scheme 39 

 

The neutralization of the product of the acetal cleavage was obtained by adding 

basic resin, but the compound showed to be unstable when the contact time was 

prolonged. Reaction with propylamine gave a mixture of products, and the selectivity 

could not be proved.  
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Table 25 
1
H NMR spectroscopic data of diene 156 (400 MHz, D2O, ppm). 

 

Comp. H-7 H-6 H-5 H-4 H-3 

156 

3.72 (dd, J= 12.0, 6.0 

Hz); 

3.79 (dd, J= 12.0, 4.4 

Hz) 

4.08 (dt, 

J= 6.0, 

4.4  Hz) 

5.36 (dt, 

J= 3.6, 

1.6 Hz) 

7.85 (dd, 

J= 6.0, 

1.6 Hz) 

6.31 (dd, J= 

6.0, 2.0 Hz) 

 

 

 

Table 26 
1
H NMR spectroscopic data of lactones 156 (400 MHz, D2O, ppm). 

 

Comp. C7 C6 C5 C4 C3 C=O 

156 61.8 70.9 84.9 156.1 121.5 176.2 

 

 

2.15. Enzymatic assays 

 

Compound 152, lactones 153a-d and lactams 154b-d and 155 were submitted to 

enzymatic assays, against different glycosidases: α-glucosidase, -glucosidase and -

galactosidase to evaluate its inhibitory potency in a primary assay at 0.5 mM.  

Is possible to visualize in table 27, that compound 154c, a lactam bearing two 

phenyl rings, is the most and the only active compound against α-glucosidase. This 

compound showed no inhibition in -glucosidase, which represents the discovery of a 

selective and potent inhibitor, with an IC50 of 129 μM, three times more potent that the 

positive control acarbose (IC50 = 337 μM). 
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Comparing this result with compound 155, where it was removed a benzyl 

group, is possible to rationalize that this group is important to the linkage to the active 

site of the enzyme, since the inhibition was reduced in almost 50 %, from 98.6 % to 

49.4 %.    

Any of the compounds 152 and 153a-d did not showed significant activity 

against any of the enzymes tested.  

Compound 153c showed 71.4 % inhibition in -galactosidase, near the 80 % 

needed for IC50 calculation. This lactone bears a thiobenzyl group at position 4. For 

future work, extension of the carbon chain next to the phenyl group might be 

interesting. Selectivity needs to be confirmed by testing this compound against α-

galactosidase.    

Hereafter, these compounds, especially 154c would be tested in cancer cell lines 

to search for its activity.  

 

Table 27 Enzymatic inhibition and IC50 data of lactones and lactams tested at 0.5 mM against to different 

glycosidases. 

Entry Compound 

α-glucosidase -glucosidase -galactosidase 

% inhibition  SEM IC50 (μM)  SEM 
% inhibition  

 SEM 

% inhibition  

 SEM 

1 152 3.8  0.9 -- 37.5  3.3 N.I. 

2 153a 8.9  6.4 -- 14.0  2.2 15.8  3.6 

3 153b N.I.
 

-- 4.9  1.0 17.6  5.7 

4 153c 13.8  3.1 -- N.I. 71.4  5.2 

5 153d 38.8  2.9 -- N.I. 18.7  7.3 

6 154b 12.9  8.5 -- 20.2  4.3 10.9  3.2 

7 154c 98.6  0.3 129  3.4 N.I. 69.0  0.4 

8 154d 21.6  3.2 -- N.I. 25.2  4.2 

9 155 49.4  0.4 -- N.I. 42.4  4.5 

10 Acarbose 65.3  0.3 337  9.1 N.I. 43.9  10.6 

N.I.:
 
No inhibition at 0.5 mM; 

SEM: Standard mean error of the experiments. 
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Graphic 1 Linear correlation in the determination of IC50 of compound 154c. 
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Future perspectives 

  

From the results obtained it would be interesting to develop new synthetic 

strategies for the synthesis of compounds with potential biological interest. Imines 

would be tested against aromatic boronic acids. Methyl boronic acids have been tested 

and found to fail due to it’s low reactivity. Aromatic as are more reactive could produce 

the kind of adducts represented in scheme 40, that could further evolve to pyrrolidine 

type compounds. 

 

 

Scheme 40 

 

Amino-acids can also be achieved from the secondary amine 136 previously 

synthesized, by the reaction of the amine with ethyl glyoxalate followed by one pot 

addition of a boronic acid (scheme 41). This would consist in an interesting pathway for 

the synthesis of polyhydroxylated α-amino-acids. 

 

Scheme 41 
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Lactone 156 (figure 18) showed to be very similar to Goniotriol 22. It can be 

further tested against tumor cells.  

 

 

Figure 18 

 

Using compound 150a and 150d is possible to achieve new  and  amino-acids 

(scheme 42). These amino-acids would be easy to achieve and would be interesting also 

from a synthetic point of view.  

 

Scheme 42 

 

The incorporation of bulkier thiols than benzyl mercaptan in the lactone 133 will 

be carried out to test its activity against α-galactosidase. Also different groups can be 

easily introduced in lactone 133 to achieve other derivatives. These compounds would 
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be tested with the aim of finding more potent and selective α-glucosidase inhibitors than 

154c. A structure/activity relationship in the enzyme can be deduced (ex. scheme 43). 

 

 

Scheme 43 
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3.1. General  

 

1
H and 

13
C NMR spectra were runned in a Bruker Avance III 400 (400 MHz for 

1
H 

and 100 MHz for 
13

C), using as intern reference the solvent peak. The chemical shifts 

are reported as δ (ppm) and the coupling constants (J) in hertz (Hz). CDCl3, DMSO-d6, 

D2O and CD3OD were used as solvents. The multiplicities of the signals are: singlet (s), 

broad singlet (br s), doublet (d), doublet of doublets (dd), doublet of doublet of doublets 

(ddd), triplet of doublets (td), triplet (t), doublet of triplets (dt), quartet (q), quintet 

(quint), sextet (sext) and multiplet (m).   

All reagents were purchased from Sigma-Aldrich, Acros, TCI or Alfa Aesar and 

used without further purification, except for p-toluenesulfonic acid monohydrate which 

was dried under a vacuum pistol at 120 °C. 

Aldehyde 3
42

 and lactone 133
48

 were synthesised following the procedures 

described in the literature. 

Dried DCM, CH3CN and EtOAc were obtained by reflux under calcium hydride, 

and THF under reflux with metallic sodium and benzophenone. Toluene was dried by 

simple distillation eliminating the head fraction; DMF and NEt3 were obtained dried by 

fractionated distillation.  

Basic resin Dowex 1x2 50-100 Cl was swollen in water, and exchanged with 

NaOH 2 M; Acidic resin Amberlite IR-120 H
+
 was swollen in water. Resins were 

filtrated-off using glass microfiber filter (whatman
®
) and water pump.   

Dry-flash chromatography was performed in silica gel 0.035-0.070 mm 

Kieselgel 60, using water pump vacuum; Column chromatography was performed in 

silica gel 0.060-0.200 mm Kieselgel 60 silica gel.  

TLC plates (silica gel 60 F254, Macherey-Nagel) were visualized either with an 

UV lamp or with I2. 

The melting points were determined on a Gallenkamp melting point apparatus, 

and are uncorrected.  

IR spectra were recorded on a FT-IR Bomem MB 104 using nujol mulls or oils 

as thin films in sodium chloride cells.  
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The optical rotation [α] of chiral compounds were measured in a micro-

polarimeter AA-1000 optical activity, being expresses in °dm
-1

c
-1

 (c= g/100mL). 

Elementary analysis was performed in an LECO-CHNS-932 apparatus.   

HRMS were recorded by ESI-MS methodology in a Bruker Microtof. Low mass 

spectroscopy was recorded by ESI-MS methodology in a HPLC Finnigan LXQ.  

 

3.2. Glicosidases assays procedure 

 

 α-Glucosidase from Saccharomyces Cerevisiae (substrate: p-nitrophenyl-α-D-

glucopyranoside), -glucosidase from almonds (substrate: p-nitrophenyl--D-

glucopyranoside), -galactosidase from bovine liver (substrate: p-nitrophenyl--D-

galactopyranoside) and their substrates were purchased from Sigma-Aldrich. Acarbose 

was used as positive control and purchased from TCI. 

Enzymatic assays were conducted in a total of 100 μL reaction mixture, 

containing 70 μL of phosphate buffer (50 mM, pH= 6.8), 10 μL of the respective test 

compound (0.5 mM) followed by the addition of 10 μL of the enzyme (0.2 units/mL). 

The contents were mixed, pre-incubated for 10 min at 37 ºC and pre-read at 400 nm. 

The reaction was initiated by the addition of 10 μL of the respective substrate (0.5 mM). 

After 30 min of incubation at 37 ºC absorbance of the yellow colour produced due the 

formation of p-nitrophenol was measured at 400 nm using a Thermo Scientific 

Varioskan Flash 96-well microplate reader. All experiments were carried out in 

triplicate. The percent of inhibition was calculated by the following equation
74

: 

 

Inhibition (%) = 
                          

              
  x 100 

  

IC50 values (concentration at which there is 50 % inhibition in enzyme) were 

calculated varying the concentration of the test compound. 
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Part A: Synthesis of aminopolyols bases on D-erythrose 

structure 

 

3.3. Synthesis of amines 135a-e 

 

3.3.1. General procedure  

 

i) Synthesis of imines 134a-e 

 

To a solution of the aldehyde 3 (0.10−0.24 mg, 0.49−1.15 mmol) in dry solvent 

(2−5 mL), activated molecular sieves 4 Å (1 g), was added the amine (59−126 μL, 

41−124 mg, 0.49−1.15 mmol) under N2 atmosphere at rt. The reaction was completed 

after 0.5−3 h. The reaction mixture was passed through a pad of Celite
®
, and washed 

with DCM (10 mL). The solvent was removed in the rotary evaporator to give the 

product as an oil or a solid. The resulting imines were used in the next step without 

purification. 

 

ii) Reduction of imines 134a-e  

 

To the crude residue was added a mixture of THF (5 mL) and MeOH (5 mL), 

followed by NaBH4 (38−87 mg, 0.98−2.30 mmol) with continued stirring at rt for 

1.15−12 h. The solvent was evaporated and the crude dissolved in DCM (30 mL), 

washed with water (3x30 mL). The organic layer was dried over MgSO4 and filtered. 

After removing the solvent in the rotary evaporator compounds 135a-e were obtained 

(58−300 mg, 0.19−1.01 mmol, 37.1−87.2 %).  
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3.3.1.1. Synthesis of (2R,4S,5R)-2-phenyl-4-((propylamino)methyl)-1,3-dioxan-

5-ol 135a 

 

 

 

Synthesis of imine 134a: Aldehyde 3 (0.14 g, 0.71 mmol); Solvent: DCM (2 

mL); Propylamine (64 μL, 46 mg, 0.78 mmol); 30 min. 
1
H NMR (CDCl3, 400 MHz) δ 

0.92 (t, J= 7.6 Hz, 3H, H-4d), 1.64 (sext, J= 7.2 Hz, 2H, H-4c), 3.38-3.44 (m, 2H, H-

4b), 3.72 (t, J= 10.4 Hz, 1H, H-6), 3.98 (td, J= 8.8, 4.8 Hz, 1H, H-4 or H-5), 4.15 (dd, 

J= 9.2, 1.2 Hz, 1H, H-4 or H-5), 4.37 (dd, J= 10.8, 5.2 Hz, 1H, H-6), 5.57 (s, 1H, H-2), 

7.37-7.41 (m, 3H, H-5’ and H-6’), 7.51-7.53 (m, 2H, H-4’), 7.86 (s, 1H, N=CH) ppm. 

Reduction of imine 134a: THF (5 mL)/ MeOH (5 mL); NaBH4 (0.05 g, 1.43 

mmol); 2 h. Yellow oil 135a (0.13 g, 0.52 mmol). Yield: 72.8 %.     
  

 + 12.6 (c 0.7, 

DCM). IR (nujol) νmax 3311, 3067 cm
-1

. 
1
H NMR (CDCl3, 400 MHz) δ 0.94 (t, J= 7.2 

Hz, 3H, H-4d), 1.54 (sext, J= 7.2 Hz, 2H, H-4c), 2.60-2.64 (m, 1H, H-4b), 2.66-2.74 

(m, 1H, H-4b), 2.97 (dd, J= 12.0, 8.8 Hz, 1H, H-4a), 3.14 (dd, J= 12.2, 4.8 Hz, 1H, H-

4a), 3.62 (t, J= 10.8 Hz, 1H, H-6), 3.69 (td, J= 8.4, 4.0 Hz, 1H, H-4), 3.82 (td, J= 10.0, 

5.2 Hz, 1H, H-5), 4.31 (dd, J= 10.8, 5.2 Hz, 1H, H-6), 5.52 (s, 1H, H-2), 7.34-7.40 (m, 

3H, H-5’ and H-6’), 7.48 (dd, J= 7.6, 2.0, 2H, H-4’) ppm. 
13

C NMR (CDCl3, 100 MHz) 

δ 11.5 (C4d), 22.9 (C4c), 51.9 (C4b), 53.2 (C4a), 67.7 (C5), 70.9 (C6), 78.2 (C4), 101.3 

(C2), 126.1 (C4’), 128.2, 128.9 (C5’ and C6’), 137.6 (Cq) ppm.   
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3.3.1.2. Synthesis of (2R,4S,5R)-4-((tert-butylamino)methyl)-2-phenyl-1,3-

dioxan-5-ol 135b 

 

 

 
 

Synthesis of imine 134b: Aldehyde 3 (0.11 g, 0.51 mmol); Solvent: THF (3 

mL); Tert-butylamine (59 μL, 41 mg, 0.56 mmol); 1 h. 
1
H NMR (CDCl3, 400 MHz) δ 

1.22 (s, 9H, H-4c), 3.72 (t, J= 10.4 Hz, 1H, H-6), 3.97 (td, J= 10.4, 5.2 Hz, 1H, H-4 or 

H-5), 4.14 (dd, J= 8.8, 1.2 Hz, 1H, H-4 or H-5), 4.37 (dd, J= 10.8, 5.2 Hz, 1H, H-6), 

5.59 (s, 1H, H-2), 7.38-7.40 (m, 3H, H-5’ and H-6’), 7.52-7.55 (m, 2H, H-4’), 7.82 (s, 

1H, N=CH) ppm. 

Reduction of imine 134b: THF (5 mL)/ MeOH (5 mL); NaBH4 (0.04 g, 1.02 

mmol); 2 h. Colourless oil 135b (0.10 g, 0.38 mmol). Yield: 74.0 %.     
   + 36.0 (c 

0.68, DCM). IR (nujol) νmax 3283, 3120 cm
-1

. 
1
H NMR (CDCl3, 400 MHz) δ 1.14 (s, 

9H, H-4c), 2.87 (dd, J= 11.6, 10.0 Hz, 1H, H-4a), 3.17 (dd, J= 11.6, 4.4 Hz, 1H, H-4a), 

3.59 (td, J= 9.6, 4.0 Hz, 1H, H-4), 3.62 (t, J= 10.4 Hz, 1H, H-6), 3.82 (td, J= 10.0, 5.2 

Hz, 1H, H-5), 4.31 (dd, J= 10.4, 5.2 Hz, 1H, H-6), 5.52 (s, 1H, H-2), 7.36-7.38 (m, 3H, 

H-5’ and H-6’), 7.49 (dd, J= 7.6, 1.6 Hz, 2H, H-4’) ppm.
13

C NMR (CDCl3, 100 MHz) δ 

28.6 (C4c), 46.9 (C4a), 50.9 (C4b), 64.7 (C5), 70.9 (C6), 79.0 (C4), 101.3 (C2), 126.1 (C4’), 

128.3, 128.9 (C5’ and C6’), 137.7 (Cq) ppm. 
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3.3.1.3.  Synthesis of (2R,4S,5R)-4-((benzylamino)methyl)-2-phenyl-1,3-dioxan-

5-ol 135c 
 

 
 

Synthesis of imine 134c: Aldehyde 3 (0.24 g, 1.15 mmol); Solvent: THF (5 mL); 

Benzylamine (126 μL, 124 mg, 1.15 mmol); 2 h. 
1
H NMR (CDCl3, 400 MHz) δ 3.84 (t, 

J= 10.4 Hz, 1H, H-6), 4.16 (td, J= 10.4, 5.2 Hz, 1H, H-4 or H-5), 4.34 (dd, J= 8.8, 1.2 

Hz, 1H, H-4 or H-5), 4.49 (dd, J= 10.8, 5.2 Hz, 1H, H-6), 4.77 (s, 2H, H-4b), 5.69 (s, 

1H, H-2), 7.36-7.65 (m, 10H, Ph-CH), 7.98 (s, 1H, N=CH) ppm. 

Reduction of imine 134c: THF (5 mL)/ MeOH (5 mL); NaBH4 (87 mg, 2.30 

mmol); 12 h. White solid 135c (0.30 g, 1.01 mmol). Yield: 87.2 %. M.p.: 72−75 °C. 

    
   + 25.5 (c 0.67, DCM). IR (nujol) νmax 3350, 3200 cm

-1
. 

1
H NMR (CDCl3, 400 

MHz) δ 2.98 (dd, J= 12.0, 8.8 Hz, 1H, H-4a), 3.17 (dd, J= 12.0, 4.4 Hz, 1H, H-4a), 3.63 

(t, J= 10.4 Hz, 1H, H-6), 3.70 (td, J= 8.8, 4.4 Hz, 1H, H-4), 3.84 (td, J= 9.6, 5.2 Hz, 1H, 

H-5), 3.83 (d, J= 12.8 Hz, 1H, H-4b), 3.90 (d, J= 12.8 Hz, 1H, H-4b), 4.31 (dd, J= 10.8, 

5.2 Hz, 1H, H-6), 5.51 (s, 1H, H-2), 7.29-7.38 (m, 8H, H-Ph), 7.46-7.49 (m, 2H, H-4’) 

ppm. 
13

C NMR (CDCl3, 100 MHz) δ 52.6 (C4a), 54.1 (C4b), 67.5 (C5), 70.9 (C6), 78.4 

(C4), 101.3 (C2), 126.1 (C4’), 127.1, 127.5, 128.3, 128.7, 129.0 (CH, Ph), 137.6 (C3’), 

138.8 (C4b’) ppm.           
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3.3.1.4. Synthesis of (2R,4S,5R)-2-phenyl-4-((((S)-1-

phenylethyl)amino)methyl)-1,3-dioxan-5-ol 135d 

 

 

 

Synthesis of imine 134d: Aldehyde 3 (0.10 g, 0.49 mmol); Solvent: THF (3 

mL); (S)-(−)-α-methylbenzylamine (64 μL, 61 mg, 0.49 mmol); 45 min. 
1
H NMR 

(CDCl3, 400 MHz) δ 1.53 (d, J= 6.8 Hz, 3H, H-4c), 3.75 (t, J= 10.8 Hz, 1H, H-6), 4.06 

(td, J= 8.0, 4.0 Hz, 1H, H-4 or H-5), 4.14 (q, J= 6.4 Hz, 1H, H-4b), 4.03-4.11 (m, 1H, 

H-4 or H-5), 4.39 (dd, J= 10.4, 5.2 Hz, 1H, H-6), 5.57 (s, 1H, H-2), 7.27-7.54 (m, 10H, 

Ph-CH), 7.95 (s, 1H, N=CH) ppm. 

Reduction of imine 134d: THF (5 mL)/ MeOH (5 mL); NaBH4 (38 mg, 0.98 

mmol); 1:15 h. White oil 135d (58 mg, 0.19 mmol). Yield: 37.1 %.     
   − 18.9 (c 1.13, 

DCM). IR (neat) νmax 3300, 2964 cm
-1

.
 1

H NMR (CDCl3, 400 MHz) δ 1.44 (d, J= 6.4 

Hz, 3H, H-4c), 2.86 (dd, J= 12.0, 8.4 Hz, 1H, H-4a), 2.97 (dd, J= 12.0, 4.8 Hz, 1H, H-

4a), 3.24 (br s, 1H, NH), 3.58 (td, J= 8.4, 4.4 Hz, 1H, H-4), 3.61 (t, J= 10.4 Hz, 1H, H-

6), 3.81 (q, J= 6.8 Hz, 1H, H-4b), 3.86 (td, J= 10.0, 5.2 Hz, 1H, H-5), 4.31 (dd, J= 10.4, 

5.2 Hz, 1H, H-6), 5.47 (s, 1H, H-2), 7.27-7.39 (m, 8H, H-Ph), 7.47 (dd, J= 7.6, 2.4 Hz, 

2H, H-4’) ppm. 
13

C NMR (CDCl3, 100 MHz) δ 23.3 (C4c), 51.1 (C4a), 58.7 (C4b), 67.3 

(C5), 70.8 (C6), 79.1 (C4), 101.2 (C2), 126.1 (C4’), 126.3, 127.4, 128.2, 128.7, 128.9 

(CH, Ph), 137.6 (C3’), 144.1 (C4b’) ppm.     
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3.3.1.5. Synthesis of (2R,4S,5R)-2-phenyl-4-((((R)-1-

phenylethyl)amino)methyl)-1,3-dioxan-5-ol 135e 

 

 

 

Synthesis of imine 134e: Aldehyde 3 (0.12 g, 0.58 mmol); Solvent: THF (3 mL); 

(R)-(+)-α-methylbenzylamine (74 μL, 55 mg, 0.58 mmol); 45 min. 
1
H NMR (CDCl3, 

400 MHz) δ 1.53 (d, J= 6.4 Hz, 3H, H-4c), 3.72 (t, J= 10.4 Hz, 1H, H-6), 3.98 (td, J= 

9.6, 4.8 Hz, 1H, H-4 or H-5), 4.13 (q, J= 6.8 Hz, 1H, H-4b), 4.22 (dd, J= 8.8, 0.8 Hz, 

1H, H-4 or H-5), 4.36 (dd, J= 10.8, 5.2 Hz, 1H, H-6), 5.58 (s, 1H, H-2), 7.27-7.49 (m, 

10H, Ph-CH), 7.95 (s, 1H, N=CH) ppm. 

Reduction of imine 134e: THF (5 mL)/ MeOH (5 mL); NaBH4 (44 mg, 1.20 

mmol); 1 h. Orange oil 135e (125 mg, 0.40 mmol). Yield: 69.2 %.     
   + 50.7 (c 0.7, 

DCM). IR (neat) νmax 3300, 2965 cm
-1

. 
1
H NMR (CDCl3, 400 MHz) δ 1.38 (d, J= 6.8 

Hz, 3H, H-4c), 2.75 (dd, J= 12.0, 8.4 Hz, 1H, H-4a), 2.98 (dd, J= 12.0, 4.4 Hz, 1H, H-

4a), 3.41 (br s, 1H, NH), 3.58 (t, J= 10.4 Hz, 1H, H-6), 3.59-3.70 (m, 2H, H-4 and H-5), 

3.78 (q, J= 6.8 Hz, 1H, H-4b), 4.25 (dd, J= 10.4, 4.4 Hz, 1H, H-6), 5.46 (s, 1H, H-2), 

7.23-7.35 (m, 8H, H-Ph), 7.43 (dd, J= 7.6, 2.4 Hz, 1H, H-4’) ppm. 
13

C NMR (CDCl3, 

100 MHz) δ 24.0 (C4c), 50.6 (C4a), 58.4 (C4b), 67.0 (C5), 70.7 (C6), 78.7 (C4), 101.1 

(C2), 126.0 (C4’), 126.5, 127.4, 128.1, 128.6, 128.9 (CH, Ph), 137.6 (C3’), 143.8 (C4b’) 

ppm.     
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3.4. Synthesis of imine derivative 134f 

 

3.4.1.  Synthesis of 2-((E)-(((2R,4S,5R)-5-hydroxy-2-phenyl-1,3-dioxan-4-

yl)methylene)imino)isoindoline-1,3-dione 134f 

 

 
 
 

To a flask containing activated molecular sieves 4 Å (1 g) was added a solution 

of aldehyde 3 (0.19 g, 0.89 mmol) in dry CH3CN (4 mL) followed by N-

aminophthalimide (0.15 g, 0.89 mmol) under N2 atmosphere. Stirring was continued at 

rt for 12 h. The solution was then passed through a pad of Celite
®
, washed with DCM 

(10 mL) and EtOH (10 mL), and solvents removed in the rotary evaporator to give the 

pure product. Beige solid 134f (0.26 g, 0.75 mmol). Yield: 83.9 %. M.p.: 198−200 °C. 

    
  

 + 21.1 (c 0.6, CH3CN). IR (nujol) νmax 3466, 1716 cm
-1

. 
1
H NMR (DMSO-d6, 400 

MHz) δ 3.65 (t, J= 10.4 Hz, 1H, H-6), 3.74-3.79 (m, 1H, H-5), 4.26 (dd, J= 10.4, 4.8 

Hz, 1H, H-6), 4.34 (dd, J= 9.2, 6.4 Hz, 1H, H-4), 5.51 (d, J= 6.0 Hz, 1H, OH), 5.69 (s, 

1H, H-2), 7.34-7.38 (m, 3H, H-5’ and H-6’), 7.45 (dd, J= 7.6, 2.4 Hz, 2H, H-4’), 7.82-

7.92 (m, 4H, H-6a and H-7a), 8.73 (d, J= 6.0 Hz, 1H, H-4a) ppm. 
13

C NMR (DMSO-d6, 

100 MHz) δ 62.6 (C5), 70.7 (C6), 81.5 (C4), 99.9 (C2), 123.6 (C6a or C7a), 126.3 (C4’), 

127.9 (C5’ or C6’), 128.1 (C5a), 129.8 (C5’ or C6’), 135.1 (C6a or C7a), 137.6 (C3’), 158.0 

(C4a), 164.5 (C=O) ppm.   
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3.5. Attempts to functionalize imine 

 

3.5.1. Synthesis of the mixture of (S,E)-1-phenyl-N-(((R)-2-phenyl-4H-1,3-

dioxin-6-yl)methylene)ethanamine 139 and (R)-2-phenyl-4H-1,3-

dioxine-6-carbaldehyde 140 

 

 

 

To a solution of aldehyde 3 (0.34 g, 1.60 mmol) in dry THF (3 mL) contained in 

round bottom flask, together with activated molecular sieves 4 Å was added (S)-(−)-α-

methylbenzylamine (218 μL, 0.193 g, 1.6 mmol) under N2 atmosphere. After stirring at 

rt for 1:30 h, the reaction was placed in an ice bath and vinylmagnesium bromide (0.7 

M, 9.40 mL, 0.84 g, 6.40 mmol) added. The mixture was stirred at rt overnight. Then 

sat. sol. NH4Cl was added, followed by water (40 mL) and the mixture extracted with 

AcOEt (5x40mL). The organic layers were combined, washed with brine (100 mL), 

dried over MgSO4, filtered and the solvent removed in the rotary evaporator, to give an 

orange oil that was purified by dry-flash chromatography (n-hexane/AcOEt), giving a 

brown oil (30 mg of mixture), that consisted in a mixture of 139 (η= 3.1 %) and 140 (η= 

4.8 %).  

 

Compound 139: 
1
H NMR (400 MHz, CDCl3) δ 1.59 (d, J= 6.4 Hz, 3H, H-4c), 4.47 (dd, 

J= 17.2, 4.0 Hz, 1H, H-6), 4.49 (q, J= 6.8 Hz, 1H, H-4b), 4.62 (dd, J= 17.2, 2.4 Hz, 1H, 

H-6), 5.58 (dd, J= 3.6, 2.4 Hz, 1H, H-5), 5.93 (s, 1H, H-2), 7.69 (s, 1H, H-4a) ppm. 
13

C 

NMR (CDCl3, 100 MHz) δ 24.3 (C4c), 64.1 (C6), 69.4 (C4b), 98.9 (C2), 108.9 (C5), 144.3 

(Cq), 150.1 (C4), 154.5 (C4a) ppm.*  

 

Compound 140: 
1
H NMR (400 MHz, CDCl3) δ 4.63 (dd, J= 18.8, 4.0 Hz, 1H, H-6), 

4.74 (dd, J= 18.8, 2.0 Hz, 1H, H-6), 5.85 (s, 1H, H-2), 6.12 (dd, J= 3.6, 2.4 Hz, 1H, H-
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5), 9.27 (s, 1H, H-4a) ppm. 
13

C NMR (CDCl3, 100 MHz) δ 64.4 (C6), 98.6 (C2), 119.6 

(C5), 151.7 (C4), 185.0 (C4a) ppm.*         

*The peaks were not discriminated to one or the other compound: in the region 

H 7.34-7.56 ppm (m, 15H, H-Ph) and in the region C 126.5-136.8 ppm. 

 

3.6. Acetal cleavage in amines 135a-c,e 

 

3.6.1. General procedure for the cleavage of the acetal – formation of 

compounds 141a-c,e 

 

Compound 135a-c,e (62−150 mg, 0.29−0.49 mmol) was dissolved in 1,4-

dioxane (4−5 mL) and HCl 1 M (0.5 mL) was added dropwise at rt and stirred for 

further 12 h. Basic resin was added to the mixture and filtered. The solvent was 

evaporated in the rotary evaporator to give the respective product 141a-c,e (34−89 mg, 

0.20−0.42 mmol, 57.7−85.8 %).  

 

3.6.1. 1. Synthesis of (2R,3S)-4-(propylamino)butane-1,2,3-triol 141a 

 

 

 

Compound 135a (62 mg, 0.25 mmol); 1,4-dioxane (4 mL); HCl 1M (0.5 mL); 12 

h. Yellow oil 141a (34 mg, 0.20 mmol). Yield: 84.4 %.     
     3.60 (c 0.78, MeOH). 

IR (neat) νmax 3356, 2960 cm
-1

. 
1
H NMR (D2O, 400 MHz) δ 0.99 (t, J= 7.6 Hz, 3H, H-

7), 1.71 (m, 2H, H-6), 3.01 (t, J= 7.6 Hz, 2H, H-5), 3.07 (dd, J= 13.2, 9.6 Hz, 1H, H-4), 

3.28 (dd, J= 12.8, 2.8 Hz, 1H, H-4), 3.63-3.65 (m, 1H, H-1), 3.67-3.70 (m, 1H, H-3), 

3.76-3.79 (m, 1H, H-1), 3.92 (ddd, J= 9.6, 6.8, 3.2 Hz, 1H, H-2) ppm. 
13

C NMR (D2O, 

100 MHz) δ 10.2 (C7), 19.3 (C6), 49.5 (C5), 49.6 (C4), 62.1 (C1), 67.3 (C2), 73.1 (C3) 

ppm.   

 



Chapter 3 – Experimental Section 

 

 86 

3.6.1.2. Synthesis of (2R,3S)-4-(tert-butylamino)butane-1,2,3-triol 141b 

 

 

 

Compound 135b (76 mg, 0.29 mmol); 1,4-dioxane (4 mL); HCl 1M (0.5 mL); 

12 h. Colourless oil 141b (30 mg, 0.17 mmol). Yield: 59.1 %.     
    4.20 (c 0.7, 

MeOH). IR (neat) νmax 3397, 2986 cm
-1

. 
1
H NMR (D2O, 400 MHz) δ 1.12 (s, 9H, H-6), 

2.64 (dd, J= 12.0, 8.0 Hz, 1H, H-4), 2.79 (dd, J= 12.0, 3.2 Hz, 1H, H-4), 3.59-3.64 (m, 

1H, H-1), 3.64-3.70 (m, 2H, H-2 and H-3), 3.77 (dd, J= 10.8, 2.4 Hz, 1H, H-1) ppm. 
13

C 

NMR (D2O, 100 MHz) δ 26.9 (C6), 43.4 (C4), 49.5 (C5), 61.8 (C1), 70.8 (C2 or C3), 73.5 

(C2 or C3) ppm.       

 

3.6.1.3. Synthesis of (2R,3S)-4-(benzylamino)butane-1,2,3-triol 141c 

 

 

 
 

 

Compound 135c (0.15 g, 0.49 mmol); 1,4-dioxane (5 mL); HCl 1 M (0.5 mL); 

12 h. Yellow oil 141c (89 mg, 0.42 mmol). Yield: 85.8 %.     
  

  6.0 (c 0.47, MeOH). 

IR (neat) νmax 3362, 2932 cm
-1

. 
1
H NMR (D2O, 400 MHz) δ 2.80 (dd, J= 12.8, 9.2 Hz, 

1H, H-4), 2.99 (dd, J= 12.8, 2.8 Hz, 1H, H-4), 3.58-3.66 (m, 2H, H-1 and H-3), 3.73-

3.76 (m, 1H, H-1), 3.80-3.85 (m, 1H, H-2), 3.93 (d, J= 13.2 Hz, 1H, H-5), 3.98 (d, J= 

13.2 Hz, 1H, H-5), 7.40-7.49 (m, 5H, H-Ph) ppm. 
13

C NMR (D2O, 100 MHz) δ 49.7 

(C4), 51.9 (C5), 62.3 (C1), 69.3 (C2), 73.5 (C3), 128.1, 128.9, 129.0 (CH, Ph), 136.5 (Cq) 

ppm.  
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3.6.1.4. Synthesis of (2R,3S)-4-(((R)-1-phenylethyl)amino)butane-1,2,3-triol 

141e 

 

 

 

Compound 135e (41 mg, 0.13 mmol); 1,4-dioxane (4 mL); HCl 1 M (1 mL); 12 

h. Colourless oil 141e (17 mg, 0.08 mmol). Yield: 57.7 %.     
  

 + 43.8 (c 0.75, 

MeOH). IR (neat) νmax 3373, 3307, 2922 cm
-1

.
 1

H NMR (D2O, 400 MHz) δ 1.39 (d, J= 

6.4 Hz, 3H, H-5b), 2.55 (dd, J= 12.4, 8.4 Hz, 1H, H-4), 2.64 (dd, J= 12.4, 3.6 Hz, 1H, 

H-4), 3.52-3.59 (m, 2H, H-1 and H-2 or H-3), 3.65-3.70 (m, 2H, H-1 and H-2 or H-3), 

3.85 (q, J= 6.4 Hz, 1H, H-5a), 7.34-7.47 (m, 5H, H-Ph) ppm. 
13

C NMR (D2O, 100 

MHz) δ 21.6 (C5b), 48.5 (C4), 57.1 (C5a), 61.8 (C1), 70.1 (C2 or C3), 73.3 (C2 or C3), 

126.4, 126.9, 128.3 (CH, Ph), 143.9 (Cq) ppm.         
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Part B: Synthesis of functionalized lactones and lactams  

 

3.7. Osmilation of 133 

3.7.1. Synthesis of (2S,4aR,7R,8S,8aS)-7,8-dihydroxy-2-

phenyltetrahydripyrano[3,2-d][1,3]dioxin-6(7H)-one 142 

 

 

 

To a solution of lactone 133 (35 mg, 0.15 mmol) in acetone (1.6 mL) and water 

(0.16 mL) was added N-methylmorpholine N-oxide (26 mg, 0.23 mmol) and then a 

solution of osmium tetroxide 4 % in water (16 μL, 2.5 μmol) and the solution stirred at 

rt overnight. A aqueous solution of Na2S2O3 5 % (6 mL) was added, stirred for 10 min, 

and extracted with ethyl acetate (320 mL). The organic layer was dried over MgSO4, 

filtered and the solvent removed in the rotary evaporator to give the pure product. 

Colourless oil 142 (16 mg, 0.06 mmol). Yield: 40 %.     
    21.2 (c 0.48, AcOEt). IR 

(nujol) νmax 3362, 1732 cm
-1

. 
1
H NMR (400 MHz, D2O) δ 3.76 (dd, J= 11.2, 10.0 Hz, 

1H, H-4), 3.98 (dd, J= 9.6, 6.4 Hz, 1H, H-8a), 4.00-4.07 (m, 1H, H-4a), 4.32 (dd, J= 

10.8, 5.2 Hz, 1H, H-4), 4.35 (dd, J= 6.0, 3.6 Hz, 1H, H-8), 4.49 (d, J= 4.0 Hz, 1H, H-7), 

5.68 (s, 1H, H-2), 7.47−7.51 (m, 5H, H-Ph) ppm. 
13

C NMR (100 MHz, D2O) δ 63.3 

(C4a), 69.9 (C4), 71.8 (C7), 74.0 (C8), 78.7 (C8a), 100.9 (C2), 126.0, 128.6, 129.6 (CH, 

Ph), 136.4 (Cq), 175.4 (C=O) ppm.  
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3.8. 1,4-Nucleophilic additions to lactone 133 to give lactones 150a-d 

 

3.8.1. General procedure  

 

To a solution of lactone 133 (23−173 mg, 0.10−0.74 mmol) in CH3CN (4−15 

mL) refrigerated in an ice/salt bath, and under N2 atmosphere was added the nucleophile 

(48−53 μL, 51−60 mg, 0.41−0.99 mmol), followed by NEt3 (57−138 μL, 42−100 mg, 

0.41−0.99 mmol). The reaction was carried out for specific time (2−12 h) at specific 

temperature (rt−50 °C). After treatment, pure products 150 were isolated (25−149 mg, 

0.09−0.48 mmol, 51.4−85.9 %).   

 

3.8.1.1. Synthesis of (2S,4aR,8R,8aS)-8-(nitromethyl)-2-

phenyltetrahydropyrano[3,2-d][1,3]dioxin-6(7H)-one 150a 

 

 

 

Compound 133 (23 mg, 0.10 mmol); CH3CN (4 mL); nitromethane (53 μL, 60 

mg, 0.99 mmol); NEt3 (138 μL, 0.10 g, 0.99 mmol); 50 ºC; 12 h. Treatment: 

evaporation of the solvent in the rotary evaporator, followed by addition of chloroform 

(2 mL). The solid was filtered. White solid 150a (25 mg, 0.90 mmol). Yield: 85.9 %. 

M.p.: 170−173 °C.     
  

 + 111.5 (c 0.48, acetone). IR (nujol) νmax 1745, 1557, 1460 cm
-

1
. 

1
H NMR (400 MHz, CDCl3) δ 2.72 (dd, J= 16.8, 7.2 Hz, 1H, H-7), 2.92 (dd, J= 16.8, 

8.0 Hz, 1H, H-7), 3.42−3.52 (m, 1H, H-8), 3.85 (dd, J= 10.8, 10.0 Hz, 1H, H-4), 4.14 

(dd, J= 9.6, 8.4 Hz, 1H, H-8a), 4.32 (td, J= 9.6, 4.8 Hz, 1H, H-4a), 4.42 (dd, J= 14.0, 

8.4 Hz, 1H, H-8’), 4.52 (dd, J= 10.8, 5.2 Hz, 1H, H-4), 4.82 (dd, J= 13.6, 6.0 Hz, 1H, 

H-8’), 5.60 (s, 1H, H-2), 7.40 (s, 5H, H-Ph) ppm. 
13

C NMR (100 MHz, CDCl3) δ 31.2 
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(C8), 31.8 (C7), 67.1 (C4a), 68.3 (C4), 74.3 (C8’), 74.6 (C8a), 101.9 (C2), 125.9, 128.4, 

129.5 (CH, Ph), 135.9 (Cq), 167.7 (C=O) ppm. Anal. calcd for C14H15NO6: C, 57.34; H, 

5.16; N, 4.78. Found: C, 56.16; H, 5.16; N, 4.76. 

 

3.8.1.2. Synthesis of (2R,4aR,8S,8aR)-8-((2-hydroxyethyl)thio)-2-

phenyltetrahydropyrano[3,2-d][1,3]dioxin-6(7H)-one 150b 

 

 

 

Compound 133 (173 mg, 0.74 mmol); CH3CN (10 mL); 2-mercaptoethanol (52 

μL, 58 mg, 0.74 mmol); NEt3 (104 μL, 75 mg, 0.74 mmol); rt; 2 h. Treatment: the 

solvent was evaporated in the rotary evaporator to give the product. White oil 150b (149 

mg, 0.48 mmol). Yield: 62.6 %.     
    22.2 (c 0.53, DCM). IR (nujol) νmax 3500, 1745 

cm
-1

.
 1

H NMR (400 MHz, CDCl3) δ 2.80 (ddd, J= 12.8, 6.4, 5.2 Hz, 1H, H-8’), 2.90 

(dd, J= 18.8, 2.4 Hz, 1H, H-7), 2.99 (dt, J= 12.8, 6.4 Hz, 1H, H-8’), 3.21 (dd, J= 18.4, 

7.6 Hz, 1H, H-7), 3.66 (ddd, J= 7.6, 4.0, 2.4 Hz, 1H, H-8), 3.69−3.73 (m, 2H, H-8’’), 

3.85 (t, J= 10.4 Hz, 1H, H-4), 4.13 (dd, J= 9.6, 4.0 Hz, 1H, H-8a), 4.48 (dd, J= 10.8, 

5.2 Hz, 1H, H-4), 4.87 (td, J= 10.0, 5.2 Hz, 1H, H-4a), 5.61 (s, 1H, H-2), 7.39−7.41 (m, 

3H, H-5’ and H-6’), 7.46−7.49 (m, 2H, H-4’) ppm. 
13

C NMR (100 MHz, CDCl3) δ 35.9 

(C8’), 36.8 (C7), 40.0 (C8), 61.2 (C8’’), 66.8 (C4a), 68.3 (C4), 77.7 (C8a), 102.2 (C2), 126.0 

(C4’), 128.4, 129.5 (C5’ and C6’), 136.4 (Cq), 167.0 (C=O) ppm. HRMS (ESI): calcd for 

C15H18O5S: 333.0767 (M+Na
+
); obtained: 333.0766.   
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3.8.1.3. Synthesis of (2R,4aR,8S,8aR)-8-(benzylthio)-2-

phenyltetrahydropyrano[3,2-d][1,3]dioxin-6(7H)-one 150c 

 

 

 

Compound 133 (95 mg, 0.41 mmol); CH3CN (15 mL); benzyl mercaptan (48 

μL, 51 mg, 0.41 mmol); NEt3 (57 μL, 41 mg, 0.41 mmol); rt; 2 h. Treatment: the solvent 

was removed in the rotary evaporator, and the crude product purified by column 

chromatography using a mixture of petroleum ether and ethyl acetate with increasing 

polarity (starting with PE (5) : EA (1)). White solid 150c (75 mg, 0.21 mmol). Yield: 

51.4 %. M.p.: 117−118 °C.     
    154.1 (c 0.94, AcOEt). IR (nujol) νmax 1740, 1397, 

1378, 1362 cm
-1

.
 1

H NMR (400 MHz, CDCl3) δ 2.75 (dd, J= 18.4, 2.4 Hz, 1H, H-7), 

3.09 (dd, J= 18.4, 7.6 Hz, 1H, H-7), 3.45 (ddd, J= 7.6, 4.0, 2.4 Hz, 1H, H-8), 3.84 (d, J= 

13.2 Hz, 1H, H-8’), 3.87 (t, J= 10.8 Hz, 1H, H-4), 4.04 (d, J= 13.2 Hz, 1H, H-8’), 4.13 

(dd, J= 9.6, 4.0 Hz, 1H, H-8a), 4.51 (dd, J= 10.8, 5.2 Hz, 1H, H-4), 4.98 (td, J= 10.0, 

5.2 Hz, 1H, H-4a), 5.63 (s, 1H, H-2), 7.27−7.29 (m, 5H, H-SCH2Ph), 7.41−7.43 (m, 3H, 

H-5’ and H-6’), 7.53−7.55 (m, 2H, H-4’) ppm. 
13

C NMR (100 MHz, CDCl3) δ 36.1 

(C7), 36.7 (C8’), 38.1 (C8), 66.9 (C4a), 68.3 (C4), 78.4 (C8a), 102.2 (C2), 126.1 (C4’), 

127.2, 128.5, 129.1 (-SCH2Ph), 128.4, 129.4 (C5’ and C6’), 136.7 (C3’), 137.3 (C8’’), 

167.1 (C=O) ppm. HRMS (ESI): calcd for C20H20O4S: 357.1155 (M+1); obtained: 

357.1153. 
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3.8.1.4. Synthesis of (2S,4aR,8S,8aS)-8-(hydroxyamino)-2-

phenyltetrahydropyrano[3,2-d][1,3]dioxin-6(7H)-one 150d 

 

 

 

To a solution of 133 (80 mg, 0.34 mmol) in CH3CN (1 mL), H2O (1 mL) and 

EtOH (1 mL) was added hydroxylamine hydrochloride (24 mg, 0.34 mmol) and 

NaHCO3 (58 mg, 0.68 mmol). The mixture was stirred at rt for 2 h. The solvent was 

removed in the rotary evaporator, DCM (20 mL) added, followed by water (15 mL) and 

extracted with DCM (5x20 mL). The organic layers were combined and dried over 

MgSO4, filtered and the solvent removed in the rotary evaporator to give the pure 

product. Colourless oil 150d (75 mg, 0.28 mmol). Yield: 82.1 %.     
    10.0 (c 0.7, 

CHCl3). IR (neat) νmax 3350, 1776, 1260 cm
-1

. 
1
H NMR (400 MHz, CDCl3) δ 2.86 (dd, 

J= 17.6, 7.2 Hz, 1H, H-7), 2.98 (dd, J= 17.6, 4.4 Hz, 1H, H-7), 3.66 (t, J= 10.8 Hz, 1H, 

H-4), 3.72−3.76 (m, 1H, H-8a), 3.80−3.86 (m, 1H, H-4a or H-8), 4.10−4.20 (m, 1H, H-

4a or H-8), 4.35 (dd, J= 10.8, 4.8 Hz, 1H, H-4), 5.53 (s, 1H, H-2), 7.38−7.41 (m, 3H, H-

5’ and H-6’), 7.44−7.46 (m, 2H, H-4’) ppm. 
13

C NMR (100 MHz, CDCl3) δ 31.9 (C7), 

61.6 (C4a or C8), 65.3 (C4a or C8), 70.6 (C4), 78.4 (C8a), 101.2 (C2), 126.0 (C4’), 128.4, 

129.3 (C5’ and C6’), 136.8 (Cq), 176.8 (C=O) ppm. HRMS (ESI): calcd for C13H15NO5: 

266.1023 (M+1); obtained: 266.1022. 
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3.9. 1,4-Nucleophilic additions to lactone 133 to give amides 151a-d 

 

3.9.1. General procedure 

 

To a solution of lactone 133 (51−75 mg, 0.22−0.32 mmol) in dry CH3CN (4−12 

mL) refrigerated in an ice/salt bath under N2 atmosphere, was added the amine (39−439 

μL, 14−47 mg, 0.44−0.64 mmol). The solution was allowed to warm to rt and stirred for 

specific time (0.5−1 h). Products were obtained after evaporation or precipitation of the 

solid 151 (47−96 mg, 0.15−0.27 mmol, 67.3−quantitative yield).  

 

 

3.9.1.1. Synthesis of (S)-3-hydrazinyl-3-((2S,4S,5R)-5-hydroxy-2-phenyl-1,3-

dioxan-4-yl)propanehydrazide 151a 

 

 

 

Compound 133 (51 mg, 0.22 mmol); CH3CN (10 mL); Anhydrous hydrazine (1 

M, 439 μL, 14 mg, 0.44 mmol); 30 min. White solid 151a (47 mg, 0.16 mmol). Yield: 

72.2 %. M.p.: 135−136 °C.     
   − 59.8 (c 0.60, MeOH). IR (nujol) νmax 3583, 3297, 

3245, 3199, 1664 cm
-1

. 
1
H NMR (400 MHz, CD3OD + 1 drop of D2O ) δ 2.42 (dd, J= 

15.2, 8.0 Hz, 1H, H-2), 2.60 (dd, J= 15.2, 4.4 Hz, 1H, H-2), 3.48 (dtap, J= 8.0, 4.0 Hz, 

1H, H-3), 3.66 (t, J= 10.0 Hz, 1H, H-6a), 3.74 (td, J= 10.0, 4.8 Hz, 1H, H-5a), 3.88 (dd, 

J= 8.8, 4.0 Hz, 1H, H-4a), 4.25 (dd, J= 10.4, 4.8 Hz, 1H, H-6a), 5.57 (s, 1H, H-2a), 

7.37−7.39 (m, 3H, H-5a’ and H-6a’), 7.47−7.49 (m, 2H, H-4a’) ppm. 
13

C NMR (100 

MHz, CD3OD + 1 drop of D2O) δ 33.3 (C2), 61.3 (C3), 64.4 (C5a), 72.0 (C6a), 81.8 (C4a), 
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102.4 (C2a), 127.4 (C4a’), 129.2, 130.1 (C5a’ and C6a’), 139.1 (Cq), 174.0 (C=O) ppm. 

HRMS (ESI): calcd for C13H20N4O4: 297.1557 (M+1); obtained: 297.1550. 

 

3.9.1.2. Synthesis of (S)-3-((2S,4S,5R)-5-hydroxy-2-phenyl-1,3-dioxan-4-yl)-

N-(2-hydroxyethyl)-3-((2-hydroxyethyl)amino)propamide 151b 

 

 

 

Compound 133 (75 mg, 0.32 mmol); CH3CN (12 mL); ethanolamine (39 μL, 39 

mg, 0.64 mmol); 1 h. White solid 151b (88 mg, 0.25 mmol). Yield: 76.9 %. M.p.: 

158−160 °C.     
   − 50.6 (c 0.60, MeOH). IR (nujol) νmax 3410, 3294, 1624 cm

-1
. 

1
H 

NMR (400 MHz, DMSO-d6) δ 2.23 (dd, J= 14.8, 8.4 Hz, 1H, H-2), 2.36 (dd, J= 14.8, 

4.0 Hz, 1H, H-2), 2.60−2.69 (m, 2H, H-3’), 3.04−3.17 (m, 2H, H-1’), 3.20−3.23 (m, 1H, 

H-3), 3.37 (q, J= 6.0 Hz, 2H, H-1’’), 3.41 (q, J= 5.6 Hz, 2H, H-3’’), 3.47 (t, J= 9.6 Hz, 

1H, H-6a), 3.53 (td, J= 9.6, 4.4 Hz, 1H, H-5a), 3.59 (dd, J= 8.8, 4.4 Hz, 1H, H-4a), 4.07 

(dd, J= 9.6, 4.0 Hz, 1H, H-6a), 4.49 (t, J= 5.6 Hz, 1H, H-3: OH), 4.61 (t, J= 5.6 Hz, 1H, 

H-1: OH), 5.48 (s, 1H, H-2a), 5.73 (br s, 1H, H-3: NH), 7.33−7.36 (m, 3H, H-5a’ and 

H-6a’), 7.40−7.42 (m, 2H, H-4a’), 8.01 (t, J= 5.6 Hz, 1H, H-1: NH) ppm. 
13

C NMR 

(100 MHz, DMSO-d6) δ 35.7 (C2), 41.4 (C1’), 48.9 (C3’), 55.9 (C3), 59.9 (C1’’), 60.7 

(C3’’), 63.6 (C5a), 70.6 (C6a), 81.3 (C4a), 100.1 (C2a), 126.1 (C4a’), 127.9, 128.5 (C5a’ and 

C6a’), 138.2 (Cq), 171.5 (C=O) ppm. Anal. calcd for C17H26N2O6: C, 57.61; H, 7.39; N, 

7.90. Found: C, 57.07; H, 7.35; N, 8.07. 
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3.9.1.3. Synthesis of (S)-N-benzyl-3-(benzylamino)-3-((2S,4S,5R)-5-hydroxy-

2-phenyl-1,3-dioxan-4-yl)propanamide 151c 

 

 

 

Compound 133 (51 mg, 0.22 mmol); CH3CN (4 mL); benzylamine (48 μL, 47 

mg, 0.44 mmol); 1 h. White solid 151c (66 mg, 0.15 mmol). Yield: 67.3 %. M.p.: 

164−166 °C.     
  

 + 30.3 (c 0.76, DCM). IR (nujol) νmax 3303, 3285, 3169, 1614 cm
-1

.
 

1
H NMR (400 MHz, CDCl3) δ 2.46 (dd, J= 14.4, 4.0 Hz, 1H, H-2), 2.65 (dd, J= 14.4, 

3.6 Hz, 1H, H-2), 3.22 (dt, J= 9.6, 4.0 Hz, 1H, H-3), 3.45 (t, J= 8.8 Hz, 1H, H-4a), 3.50 

(t, J= 10.4 Hz, 1H, H-6a), 3.73 (td, J= 10.0, 5.2 Hz, 1H, H-5a), 3.80 (d, J= 12.8 Hz, 1H, 

H-3’), 4.05 (d, J= 12.4 Hz, 1H, H-3’), 4.20 (dd, J= 14.8, 5.2 Hz, 1H, H-1’), 4.24 (dd, J= 

10.8, 5.2 Hz, 1H, H-6a), 4.63 (dd, J= 14.4, 6.8 Hz, 1H, H-1’), 5.13 (s, 1H, H-2a), 5.96 

(br s, 1H, NHCO), 7.22−7.35 (m, 15H, H-Ph) ppm. 
13

C NMR (100 MHz, CDCl3) δ 33.1 

(C2), 43.5 (C1’), 51.1 (C3’), 59.1 (C3), 67.2 (C5a), 70.9 (C6a), 79.6 (C4a), 101.4 (C2a), 

125.9, 127.5, 127.8, 128.1, 128.3, 128.5, 128.7, 128.9, 129.1 (CH, Ph), 137.6, 138.2, 

138.5 (Cq), 171.0 (C=O) ppm. Anal. calcd for C27H30N2O4: C, 72.62; H, 6.77; N, 6.27. 

Found: C, 72.37; H, 6.63; N, 6.27. 
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3.9.1.4. Synthesis of (S)-3-((2R,4R,5R)-5-hydroxy-2-phenyl-1,3-dioxan-4-yl)-

N-propyl-3-(propylamino)propamide 151d 

 

 

 

Compound 133 (63 mg, 0.27 mmol); CH3CN (10 mL); propylamine (45 μL, 32 

mg, 0.54 mmol); 1 h. Pale yellow 151d (96 mg, 0.27 mmol). Yield: quantitative. M.p.: 

98−100 °C.     
        (c 0.52, DCM). IR (nujol) νmax 3297, 3277, 3105, 1723 cm

-1
. 

1
H NMR (400 MHz, CDCl3) δ 0.89 (t, J= 7.2 Hz, 3H, H-1’’’), 0.95 (t, J= 7.2 Hz, 3H, H-

3’’’), 1.42−1.51 (m, 2H, H-1’’), 1.52−1.59 (m, 2H, H-3’’), 2.42 (dd, J= 14.4, 4.8 Hz, 

1H, H-2), 2.51−2.55 (m, 1H, H-3’), 2.58 (dd, J= 14.8, 3.6 Hz, 1H, H-2), 2.85 (dt, J= 

11.2, 6.8 Hz, 1H, H-3’), 3.08−3.17 (m, 2H, H-3 and H-1’), 3.21−3.30 (m, 1H, H-1’), 

3.50 (t, J= 8.8 Hz, 1H, H-4a), 3.61 (t, J= 10.4 Hz, 1H, H-6a), 3.84 (td, J= 10.0, 5.2 Hz, 

1H, H-5a), 4.29 (dd, J= 10.8, 5.2 Hz, 1H, H-6a), 5.46 (s, 1H, H-2a), 5.71 (br s, 1H, 

CONH), 7.37−7.39 (m, 3H, H-5a’ and H-6a’), 7.43−7.45 (m, 2H, H-4a’) ppm. 
13

C 

NMR (100 MHz, CDCl3) δ 11.4 (C1’’’), 11.7 (C3’’’), 22.9 (C1’’), 23.2 (C3’’), 33.5 (C2), 

41.0 (C1’), 48.9 (C3’), 60.1 (C3), 67.5 (C5a), 71.0 (C6a), 79.8 (C4a), 101.5 (C2a), 126.0 

(C4a’), 128.4, 129.1 (C5a’ and C6a’), 137.8 (Cq), 171.3 (C=O) ppm. HRMS (ESI): calcd 

for C19H30N2O4: 351.2277 (M+1); obtained: 351.2278.                           
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3.10. Acetal cleavage  

 

3.10.1. of lactone 142 

3.10.1.1. Synthesis of (2S,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexanoic acid 152 

 

 
 

To a solution of 142 (25 mg, 0.09 mmol) in 1,4-dioxane (3 mL) was added HCl 

1M (500 μL) and stirred at rt overnight. The solvent was removed in the rotary 

evaporator, and then basic resin was added, filtered and the solvent evaporated to give 

the pure product. Colourless oil 152 (5 mg, 0.03 mmol). Yield: 28.3 %.     
    8.22 (c, 

0.75, H2O). IR (neat) νmax 3358, 1620 cm
-1

. 
1
H NMR (400 MHz, D2O) δ 3.68 (dd, J= 

12.0, 6.8 Hz, 1H, H-6), 3.83 (dd, J= 12.0, 3.2 Hz, 1H, H-6), 3.85 (dd, J= 6.8, 5.6 Hz, 

1H, H-4), 3.90 (ddd, J= 8.4, 6.4, 2.8 Hz, 1H, H-3), 4.06 (dd, J= 6.8, 3.2 Hz, 1H, H-5), 

4.26 (d, J= 3.2 Hz, 1H, H-2) ppm. 
13

C NMR (100 MHz, D2O) δ 62.3 (C6), 71.7 (C4), 

72.5 (C3), 73.5 (C2 and C5), 178.1 (C=O) ppm.  

 

3.10.2. of lactones 150a-d 

 

3.10.1.1. General procedure 

 

To a solution of respective compound 150a-d (21−40 mg, 0.07−0.14 mmol) in 

solvent (3−4 mL) was added HCl (0.04−1.0 mL) and stirred at rt overnight. The solution 

was concentrated in the rotary evaporator, basic resin was added, then filtered and the 

solvent removed in the rotary evaporator to give the pure product 153a-d (12−26 mg, 

0.06−0.13 mmol, 78.1−92.9 %).  
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3.10.1.2.1. Synthesis of (4R,5S,6R)-5-hydroxy-6-(hydroxymethyl)-4-

(nitromethyl)tetrahydro-2H-pyran-2-one 153a 

 

 

 

 

Compound 150a (40 mg, 0.14 mmol); 1,4-dioxane (2 mL) and CH3CN (1 mL); 

HCl 3 M (1 mL); overnight. Yellow oil 153a (26 mg, 0.13 mmol). Yield: 92.9 %. 

    
   17.5 (c 0.6, MeOH). IR (neat) νmax 3373, 1775, 1553, 1423, 1381 cm

-1
. 

1
H NMR 

(400 MHz, D2O) δ 2.66 (dd, J= 18.8, 5.6 Hz, 1H, H-3), 3.08 (dd, J= 18.8, 10.0 Hz, 1H, 

H-3), 3.35−3.44 (m, 1H, H-4), 3.69 (dd, J= 12.4, 6.0 Hz, 1H, H-7), 3.77 (dd, J= 11.6, 

4.4 Hz, 1H, H-7), 3.95−3.99 (m, 1H, H-6), 4.58 (t, J= 5.2 Hz, 1H, H-5), 4.77 (dd, J= 

14.4, 7.2 Hz, 1H, H-4’), 4.86 (dd, J= 14.4, 6.4 Hz, 1H, H-4’) ppm. 
13

C NMR (100 MHz, 

D2O) δ 32.4 (C3), 34.1 (C4), 61.7 (C7), 72.2 (C6), 76.5 (C4’), 82.4 (C5), 179.2 (C=O) 

ppm. MS: m/z 205. 

 

3.10.1.2.2. Synthesis of (4S,5R,6R)-5-hydroxy-4-((2-hydroxyethyl)thio)-6-

(hydroxymethyl)tetrahydro-2H-pyran-2-one 153b 

 

 
 

 Compound 150b (21 mg, 0.07 mmol); 1,4-dioxane (4 mL); HCl 1M (135 

μL, 0.14 mmol); overnight. Colourless oil 153b (12 mg, 0.05 mmol). Yield: 79.8 %. 

    
   32.2 (c 0.6, CH3OH). IR (neat) νmax 3364, 1769 cm

-1
. 

1
H NMR (400 MHz, D2O) 

δ 2.73 (dd, J= 18.8, 5.2 Hz, 1H, H-3), 2.86 (t, J= 6.4 Hz, 2H, H-4’), 3.27 (dd, J= 18.8, 
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9.2 Hz, 1H, H-3), 3.71 (dd, J= 10.8, 6.8 Hz, 1H, H-7), 3.76−3.79 (m, 1H, H-7), 3.81 (t, 

J= 6.4 Hz, 2H, H-4’’), 3.83−3.87 (m, 1H, H-4), 3.99 (dt, J= 6.8, 4.4 Hz, 1H, H-6), 4.60 

(t, J= 4.4 Hz, 1H, H-5) ppm. 
13

C NMR (100 MHz, D2O) δ 32.9 (C4’), 36.5 (C3), 38.3 

(C4), 60.1 (C4’’), 61.6 (C7), 71.3 (C6), 86.1 (C5), 178.9 (C=O) ppm. HRMS (ESI): calcd 

for C8H14O5S: 245.0429 (M+Na); obtained: 245.0454.  

     

   

3.10.1.2.3. Synthesis of (4S,5R,6R)-4-(benzylthio)-5-hydroxy-6-

(hydroxymethyl)tetrahydro-2H-pyran-2-one 153c 

 

 

 

Compound 150c (25 mg, 0.08 mmol); 1,4-dioxane (4 mL); HCl 1M (40 μL, 0.40 

mmol); overnight. Yellow oil 153c (17 mg, 0.06 mmol). Yield: 78.1 %.     
   14.3 (c 

0.57, MeOH). IR (neat) νmax 3323, 1782 cm
-1

.
 1

H NMR (400 MHz, CD3O ) δ 2.41 (dd, 

J= 18.4, 3.6 Hz, 1H, H-3), 3.03 (dd, J= 18.4, 8.8 Hz, 1H, H-3), 3.54 (d, J= 6.0 Hz, 2H, 

H-7), 3.65 (dt, J= 8.8, 3.6 Hz, 1H, H-4), 3.81 (td, J= 6.0, 4.0 Hz, 1H, H-6), 3.88 (d, J= 

2.4 Hz, 2H, H-4’), 4.52 (t, J= 3.6 Hz, 1H, H-5), 7.23 (t, J= 7.6 Hz, 1H, H-4d), 7.33 (t, 

J= 8.0 Hz, 2H, H-4c), 7.39 (d, J= 7.2 Hz, 2H, H-4b) ppm. 
13

C NMR (100 MHz, 

CD3OD) δ 36.4 (C4’), 37.6 (C3), 39.3 (C4), 63.4 (C7), 73.2 (C6), 87.4 (C5), 128.3 (C4d), 

129.6 (C4c), 130.0 (C4b), 139.2 (Cq), 178.0 (C=O) ppm. HRMS (ESI): calcd for 

C13H16O4S: 291.0664 (M+Na); obtained: 291.0662.            
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3.10.1.2.4. Synthesis of (4S,5S,6R)-5-hydroxy-4-(hydroxyamino)-6-

(hydroxylmethyl)tetrahydro-2H-pyran-2-one 153d 

 

 

 

 Compound 150d (25 mg, 0.09 mmol); 1,4-dioxane (4 mL); HCl 1M (100 μL, 

0.27 mmol); overnight. Yellow oil 153d (15 mg, 0.09 mmol). Yield: 89.8 %. 

    
   11.0 (c 1.0, H2O). IR (neat) νmax 3582, 3371, 2928, 1779, 1630 cm

-1
. 

1
H NMR 

(400 MHz, D2O) δ 2.94 (dd, J= 19.2, 2.4 Hz, 1H, H-3), 3.27 (dd, J= 19.2, 9.2 Hz, 1H, 

H-3), 3.72 (dd, J= 12.0, 5.6 Hz, 1H, H-7), 3.77 (dd, J= 12.0, 4.4 Hz, 1H, H-7), 4.02 (q, 

J= 4.8 Hz, 1H, H-6), 4.55 (dt, J= 9.2, 2.0 Hz, 1H, H-4), 5.00 (dd, J= 4.4, 2.0 Hz, 1H, H-

5) ppm. 
13

C NMR (100 MHz, D2O) δ 29.9 (C3), 57.1 (C4), 61.4 (C7), 70.6 (C6), 80.6 

(C5), 176.7 (C=O) ppm. HRMS (ESI): calcd for C6H11NO5: 178.0707 (M+1); obtained: 

178.0710.       

 

3.10.3. of amides 151b-d 

 

3.10.3.1. General Procedure  

 

To a solution of the amides 151b-d (27−49 mg, 0.08−0.11 mmol) in 1,4-dioxane 

(3−5 mL) was added aq. HCl 37 % (2.0−2.5 mL). The solution was stirred at rt for 4 

days. The solvents were removed in the rotary evaporator, MeOH was added to give the 

pure products 154b-d (22−41 mg, 0.08−0.11 mmol, quantitative yield) as solids. 
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3.10.3.1.1. Synthesis of (4S,5S,6S)-5-hydroxy-1-(2-hydroxyethyl)-4-((2-

hydroxyethyl)amino-6-(hydroxymethyl)piperidine-2-one 

hydrochloride salt 154b 

 

 

 

 Compound 151b (37 mg, 0.10 mmol); 1,4-dioxane (4 mL); HCl 37 % (2 

mL). Orange oil 154b (30 mg, 0.10 mmol). Yield: quantitative.     
    4.7 (c 1.2, 

MeOH). IR (nujol) νmax 3392, 1781 cm
-1

.
 1

H NMR (400 MHz, D2O) δ 2.96 (dd, J= 19.2, 

3.2 Hz, 1H, H-3), 3.12 (t, J= 5.2 Hz, 2H, H-4’), 3.27−3.29 (m, 2H, H-1’), 3.31 (dd, J= 

20.0, 9.2 Hz, 1H, H-3), 3.75 (t, J= 5.8 Hz, 2H, H-7), 3.79 (t, J= 5.6 Hz, 2H, H-4’’), 

3.85−3.87 (m, 2H, H-1’’), 3.99 (q, J= 4.4 Hz, 1H, H-6), 4.35 (dt, J= 9.2, 2.8 Hz, 1H, H-

4), 4.89 (dd, J= 4.8, 2.4 Hz, 1H, H-5) ppm. 
13

C NMR (100 MHz, D2O) δ 31.9 (C3), 41.2 

(C4’), 47.8 (C1’), 54.5 (C4), 56.5 (C1’’), 57.5 (C4’’), 61.5 (C7), 70.3 (C6), 81.7 (C5), 175.9 

(C=O) ppm.  
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3.10.3.1.2. Synthesis of (4S,5S,6S)-1-benzyl-4-(benzylamino)-5-hydroxy-6-

(hydroxymethyl)piperidine-2-one hydrochloride salt 154c 

 

 

 

Compound 151c (49 mg, 0.11 mmol); 1,4-dioxane (5 mL); HCl 37 % (2.5 mL). 

Beige solid 154c (41 mg, 0.11 mmol). Yield: quantitative. M.p.: 165−167 °C.     
   

 3.80 (c 0.8, MeOH). IR (nujol) νmax 3583, 3344, 3292, 1791 cm
-1

.
 1

H NMR (400 MHz, 

D2O) δ 3.02 (dd, J= 19.2, 3.2 Hz, 1H, H-3), 3.35 (dd, J= 19.2, 9.2 Hz, 1H, H-3), 3.73 

(dd, J= 12.4, 5.2 Hz, 1H, H-7), 3.80 (dd, J= 12.4, 4.4 Hz, 1H, H-7), 4.01 (q, J= 4.8 Hz, 

1H, H-6), 4.22 (s, 2H, H-1’), 4.34 (d, J= 13.2 Hz, 1H, H-4’), 4.41 (d, J= 12.8 Hz, 1H, 

H-4’), 4.38−4.43 (m, 1H, H-4), 4.97 (dd, J= 5.2, 2.4 Hz, 1H, H-5), 7.48−7.53 (m, 10H, 

H-Ph) ppm. 
13

C NMR (100 MHz, D2O) δ 31.8 (C3), 43.0 (C1’), 49.6 (C4’), 54.2 (C4), 

61.2 (C7), 70.3 (C6), 81.8 (C5), 128.7, 129.1, 129.3, 129.7, 129.81 (CH, Ph), 129.83, 

132.5 (Cq), 175.9 (C=O) ppm. HRMS (ESI): calcd for C20H24N2O3: 252.1230 (M+1-

Bn); obtained: 252.1230.  
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3.10.3.1.3. Synthesis of (4S,5S,6S)-5-hydroxy-6-(hydroxymethyl)-1-propyl-4-

(propylamino)piperidine-2-one hydrochloride salt 154d 

 

 

 

 Compound 151d (27 mg, 0.08 mmol); 1,4-dioxane (3 mL); HCl 37 % 

(2.5 mL). Beige solid hydroscopic 154d (22 mg, 0.08 mmol). Yield: quantitative. 

    
    6.50 (c 1.0, MeOH). IR (nujol) νmax 3395, 1783 cm

-1
. 

1
H NMR (400 MHz, 

D2O) δ 1.01 (t, J= 7.6 Hz, 3H, H-1c), 1.03 (t, J= 7.6 Hz, 3H, H-4c), 1.71 (quint, J= 7.6 

Hz, 2H, H-1b), 1.79 (quint, J= 7.6 Hz, 2H, H-4b), 2.97 (dd, J= 19.2, 2.8 Hz, 1H, H-3), 

3.01 (t, J= 6.4 Hz, 2H, H-1a), 3.15 (t, J= 7.6 Hz, 2H, H-4a), 3.36 (dd, J= 19.2, 9.2 Hz, 

1H, H-3), 3.78 (dd, J= 12.4, 5.2 Hz, 1H, H-7), 3.83 (dd, J= 12.0, 4.4 Hz, 1H, H-7), 4.03 

(q, J= 5.2 Hz, 1H, H-6), 4.35 (dt, J= 9.2, 2.4 Hz, 1H, H-4), 4.93 (dd, J= 4.8, 2.4 Hz, 1H, 

H-5) ppm. 
13

C NMR (100 MHz, D2O) δ 10.2 (C1c and C4c), 19.3 (C4b), 20.3 (C1b), 32.0 

(C3), 41.2 (C1a), 47.8 (C4a), 54.7 (C4), 61.6 (C7), 70.5 (C6), 81.9 (C5), 176.2 (C=O) ppm. 

HRMS (ESI): calcd for C12H25N2O3: 245.1862 (M+1); obtained: 245.1860.  
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3.11. Benzylamine cleavage 

 

3.11.1. Synthesis of (4S,5S,6S)-4-amino-1-benzyl-5-hydroxy-6-

(hydroxymethyl)piperidine-2-one hydrochloride salt 155 

 

 

 

To a solution of 154c (100 mg, 0.27 mmol) in methanol (5 mL) contained in a 

50 mL two-necked flask was added ClCH2CHCl2 (54 μL, 79 mg, 0.59 mmol), HCl 37 

% (7 μL) and Pd/C (10 %, 10 mg). The solution was purged 5 times with H2 (g) and left 

stirring at rt overnight. Basic resin was added, the suspension passed through a pad of 

Celite
®
, and the solvent removed in the rotary evaporator to give the pure product. 

Orange solid 155 (53 mg, 0.18 mmol). Yield: 69.6 %. M.p.: >300 °C.     
    8.0 (c 

0.83, H2O). IR (nujol) νmax 3379, 3247, 1785 cm
-1

. 
1
H NMR (400 MHz, D2O) δ 2.88 

(dd, J= 19.2, 3.6 Hz, 1H, H-3), 3.31 (dd, J= 19.2, 9.2 Hz, 1H, H-3), 3.76 (dd, J= 12.0, 

5.2 Hz, 1H, H-7), 3.81 (dd, J= 12.4, 4.0 Hz, 1H, H-7), 4.02 (dt, J= 5.6, 4.0 Hz, 1H, H-

6), 4.23 (s, 2H, H-1’), 4.38 (dd, J= 8.8, 3.2 Hz, 1H, H-4), 4.80 (under HOD peak, H-5), 

7.51 (s, 5H, H-Ph) ppm. 
13

C NMR (100 MHz, D2O) δ 33.1 (C3), 43.0 (C1’), 47.6 (C4), 

61.6 (C7), 70.6 (C6), 82.9 (C5), 128.8, 129.1 (CH, Ph), 132.5 (Cq), 176.3 (C=O) ppm. 
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3.12. Synthesis of lactone 156 

 

3.12.1. Synthesis of (5S,6R)-5-hydroxy-6-(hydroxymethyl)-5,6-dihydro-2H-

pyran-2-one 156 

 

 

 

To a solution of lactone 133 (53 mg, 0.23 mmol) in 1,4-dioxane (4 mL) was 

added HCl 3 M (1 mL) at rt and stirred overnight. Then HCl 37 % (5 drops) were added 

and the solution allowed to stirring for another day. The solvent was evaporated in the 

rotary evaporator to give pure product. Yellow oil 156 (33 mg, 0.23 mmol). Yield: 

quantitative.     
    148.9 (c 0.95, H2O). IR (nujol) νmax 3331, 3096, 1741 cm

-1
. 

1
H 

NMR (400 MHz, D2O) δ 3.72 (dd, J= 12.0, 6.0 Hz, 1H, H-2’), 3.79 (dd, J= 12.0, 4.4 

Hz, 1H, H-2’), 4.08 (dt, J= 6.0, 4.4 Hz, 1H, H-2), 5.36 (dt, J= 3.6, 1.6 Hz, 1H, H-3), 

6.31 (dd, J= 6.0, 2.0 Hz, 1H, H-5), 7.85 (dd, J= 6.0, 1.6 Hz, 1H, H-4) ppm. 
13

C NMR 

(100 MHz, D2O) δ 61.8 (C7), 70.9 (C6), 84.9 (C5), 121.5 (C3), 156.1 (C4), 176.2 (C=O) 

ppm. M= m/z: 144.  
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