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Active magneto-optical control of spontaneous emission in graphene
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We investigate the spontaneous emission rate of a two-levelquantum emitter near a graphene-coated substrate
under the influence of an external magnetic field or strain induced pseudo-magnetic field. We demonstrate that
the application of the magnetic field can substantially increase or decrease the decay rate. We show that a
suppression as large as 99% in the Purcell factor is achieved even for moderate magneticfields. The emitter’s
lifetime is a discontinuous function of|B|, which is a direct consequence of the occurrence of discreteLandau
levels in graphene. We demonstrate that, in the near-field regime, the magnetic field enables an unprecedented
control of the decay pathways into which the photon/polariton can be emitted. Our findings strongly suggest
that a magnetic field could act as an efficient agent for on-demand, active control of light-matter interactions in
graphene at the quantum level.

The possibility of tailoring light-matter interactions ata
quantum level has been a sought-after goal in optics since the
pioneer work of Purcell1, where it was first shown that the
environment can strongly modify the spontaneous emission
(SE) rate of a quantum emitter. To achieve such objective,
several approaches have been proposed so far. One of them
is to investigate SE in different system geometries2–11. Ad-
vances in nanofabrication techniques have not only allowed
the increase of the spectroscopic resolution of molecules in
complex environments12, but have also led to the use of nano-
metric objects, such as antennas and tips, to modify the life-
time, and enhance the fluorescence of single molecules13–16.
The presence of metamaterials may also strongly affect quan-
tum emitters’ radiative processes. For instance, the impact of
negative refraction and of the hyperbolic dispersion on theSE
have been investigated17–19. Also, the influence of cloaking
devices on the SE of atoms has been recently addressed20.

Progress in plasmonics has also allowed for a unprece-
dented control of light-matter interactions at a quantum level.
When the emitter is located near a plasmonic structure it may
experience a strong enhancement of the local field. This ef-
fect can be exploited in the development of important appli-
cations in nanoplasmonics21–25. However, structures made of
noble metals are hardly tunable, which unavoidably limit their
application in photonic devices. To circumvent these lim-
itations, graphene has emerged as an alternative plasmonic
material due to its extraordinary electronic and optical prop-
erties26–31. Indeed, graphene hosts extremely confined plas-
mons, facilitating strong light-matter interactions28–31. In ad-
dition, the plasmon spectrum in doped graphene is highly tun-
able through electrical or chemical modification of the charge
carrier density. Due to these properties, graphene is a promis-
ing material platform for several photonic applications, spe-
cially in the THz frequency range30. At the quantum level, the
spatial confinement of surface plasmons in graphene has been
shown to modify the SE rate32,33. The electromagnetic (EM)

field pattern excited by quantum emitters near a graphene
sheet34 further demonstrates the huge field enhancement due
to the excitation of surface plasmons. A graphene sheet has
also been shown to mediate sub- and super-radiance between
two quantum emitters35. Recently, the electrical control of
the relaxation pathways and SE rate in graphene has been ob-
served36. Despite all these advances, the achieved modifica-
tion in the emitter’s decay rate remains modest so far. Most
of the proposed schemes consider emitters whose transition
frequencies are in the optical/near infrared range, usually far
from graphene’s intraband transitions. As a consequence, the
effects of graphene on the SE rate are only relevant when the
emitter is no more than a few dozen nanometers apart.

Here, we propose an alternative mechanism to actively
tune the lifetime of a THz quantum emitter near a graphene
sheet by exploiting its extraordinary magneto-optical proper-
ties. We show that the application of a magnetic fieldB al-
lows for an unprecedented control of the SE rate for emitter-
graphene distances in the micrometer range. This is in con-
trast to previous proposals, in which the modification of the
SE rate was achieved by electrically or chemically altering
graphene’s doping level. The fact that we consider a low-
frequency emitter enables us to probe the effects of intraband
transitions in graphene on the decay rate, which have also
been unexplored so far. In summary, our key results are (i)
a striking 99% reduction of the emitter SE rate compared to
the case whereB = 0; (ii) a new distance-scaling law for
the decay rate that corrects the typical1/d4 behavior and is
valid for a broad range of distances and magnetic fields; (iii) a
highly non-monotonic behavior of the SE rate as a function of
|B|, with sharp discontinuities in the regime of low tempera-
tures; and (iv) the possibility of tailoring the decay channels
into which the photon can be emitted. These findings can be
physically explained in terms of the interplay among the dif-
ferent EM modes and of electronic intraband transitions be-
tween discrete Landau levels in graphene.

http://arxiv.org/abs/1506.02176v2
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I. METHODS

Let us consider the situation depicted in Fig1. The half-
spacez < 0 is composed of a non-magnetic, isotropic, and
homogeneous material of permittivityεs(ω), on top of which
(z = 0) a flat graphene sheet is placed. The system is under
influence of a uniform static magnetic fieldB = Bẑ. The up-
per mediumz > 0 is vacuum and an excited quantum emitter
is located at a distanced above the interface.

Figure 1. Quantum emitter at a distanced above a graphene sheet
on the top of a substrate of permittivityεs(ω). The whole system is
under the influence of a magnetic fieldB = Bẑ.

We consider that the quantum emitter dynamics is
well described by two of its energy eigenstates (|g〉
and |e〉). Within the electric dipole approximation
and weak-coupling regime, one can show that the SE
rates Γ⊥ and Γ‖ for transition dipole moments perpen-
dicular and parallel to theXY -plane respectively are
(Appendix A)37–39

Γ⊥

Γ0
= 1+

3

2k30
Im

{

i

∫ ∞

0

k3e2ikzddk

kz
rp,p

}

, (1)

Γ‖

Γ0
= 1+

3

4k0
Im

{

i

∫ ∞

0

ke2ikzddk

kz

[

rs,s− kz
2

k20
rp,p

]}

, (2)

whereΓ0 = |deg|2ω3
0/(3πε0~c

3) is the free space SE rate,deg

is the emitter’s electric dipole matrix element,ω0 = k0c is the
transition frequency,kz =

√

k20 − k2, andrs,s, rp,p are the
graphene-coated wall polarization preserving reflection co-
efficients. Although the cross-polarization reflection coeffi-
cientsrs,p andrp,s are non-vanishing in the case of graphene
under the influence of an uniform static magnetic field, being
responsible for Faraday and Kerr rotations, they do not con-
tribute to the emitter’s lifetime in the present situation (see
Appendix A). The diagonal reflection coefficients are given
by (Appendix B)39–41

rs,s= −Λ2 +∆L
+∆

T
−

Λ2 +∆L
+∆

T
+

, rp,p =
Λ2 +∆L

−∆
T
+

Λ2 +∆L
+∆

T
+

, (3)

where Λ2 = Z2
0kzk

s
zσ

2
H , ∆L

± = kzεs/ε0 ± ksz +

kzk
s
zσL/(ωε0), ∆T

± = kz ± ksz + µ0ωσT , Z0 =
√

µ0/ε0,
ksz =

√

µ0εsω2
0 − k2, and k = |k| = |kxx̂ + kyŷ|.

σL, σT and σH are the longitudinal, transverse and Hall
conductivities of graphene, respectivelly, which are in gen-
eral functions of both frequency and tranverse wavevec-
tor k. Although the dependence of the material proper-
ties on wavevector may be relevant in the near-field42, we
have checked that this is not the case for the distances
we consider. Indeed, the evanescent waves contribution to
the SE process is suppressed by ae−2kd factor, whereas
non-local effects on graphene’s conductivity become signif-

icant for k & max
(

√

eB/~, ω0/vF , τ
−1/vF

)

43,44. Here,

vF ≃ 106 m/s andτ is a phenomenological relaxation
time of electrons in graphene. Therefore, providedd ≫
min

(

√

~/eB, vF /ω0, vF τ
)

we can safely setk = 0 in the

conductivities, in which caseσL = σT .
We will study the lifetime of quantum emitters in the low

temperature (kBT ≪ µc) and frequency (~ω0 ≪ µc) regimes,
whereµc is the graphene’s chemical potential. As a result,
graphene’s conductivities can be approximated by their intra-
band terms30,45–47

σL = σT ≃ σintra
L ≃ e3v2F ~B(ω + iτ−1)(1 + δ0,nc

)

iπ∆intra[∆2
intra − ~2(ω + iτ−1)2]

, (4)

σH ≃ σintra
H ≃ − e3v2FB(1 + δ0,nc)

π[∆2
intra − ~2(ω + iτ−1)2]

, (5)

where∆intra =Mnc+1−Mnc
, Mn =

√
nM1 are the Landau

energy levels,M2
1 = 2~eBv2F , andnc= int[µ2

c/M
2
1 ] denotes

the number of occupied Landau levels.

II. RESULTS

Following previous experimental work on SE48, we con-
sider from now on an emitter with a strong transition atω0 =
4.2×1012 rad/s (∼ 0.7 THz). We setτ=0.184 ps49,µc = 115
meV and, inspired by recent experiments on magneto-optical
effects in graphene50, consider a silicon carbide (SiC) sub-
strate. It is important to clarify thatω0 may be a function of
d (the emitter energy levels can be Lamb-shifted) and ofB
(the levels may also be Zeeman-shifted). However, for the
purposes of the present work, both effects may be neglected.
A numerical estimate shows that for the distances considered
here, the influence of the Lamb shift on the SE rate is unno-
ticeable, regardless of the value ofB. Concerning the Zeeman
shift, we have checked that although some energy levels may
be altered in their absolute values, the suppression and en-
hancement factors of the SE rate due to the application ofB
are insensitive to this shift.

In Fig. 2 we plot the normalized SE rateΓ⊥/Γ0 as a func-
tion of the distanced between the emitter and the half-space
for several values ofB. For d & 100 µm the coupling be-
tween the emitter and the graphene-coated wall is mediated
by propagating modes (k ≤ k0) of the vacuum EM field.
In this regime of distances the emitter’s lifetime is barely
affected byB. This behavior results from the fact that in
the far-field the phasee2ikzd gives a highly oscillatory inte-
grand in Eq. (1), except forkz ∼ 0. In this case, however,
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Figure 2. Normalized decay rateΓ⊥/Γ0 as a function of distance
d between the emitter and the graphene-SiC half-space for different
magnetic fields. The inset presents the relative SE rate∆Γ⊥ as a
function ofd for the same values ofB.

rs, s ∼ rp, p ∼ −1 + O(kz/k0), so that the reflectivity of
the graphene-coated half-space is almost saturated. HenceB
hardly affects the reflection coefficients in this regime. A tran-
sition from the oscillating pattern at large distances to a sharp
growth at small distances takes place ford . 100 µm. In this
regime of distances the emission is dominated by evanescent
modes (k > k0) of the vacuum EM field. Interestingly, for
d . 10 µm changingB strongly affects the lifetime of the
quantum emitter. A striking suppression of99% in the Pur-
cell factor, when compared to the case whereB = 0 T, occurs
for 1 µm . d . 10 µm andB & 10 T. Even for smaller
values ofB the Purcell effect is greatly reduced. For exam-
ple, ford = 3 µm the influence of the graphene-coated wall
on Γ⊥ can be reduced by a factor of 10 forB = 5 T. These
results are highlighted in the inset of Fig.2 where we plot
∆Γ⊥ = [Γ⊥(d,B) − Γ⊥(d, 0)]/Γ⊥(d, 0) as a function ofd
for the same values ofB. For even smaller distances an en-
hancement of the SE rate takes place as the magnetic field in-
creases. For clarity this effect is not shown in Fig.2, although
it can be noticed in the inset ford . 1 µm. For instance, for
B = 5 T andd = 0.2 µm the SE rate is enhanced by∼ 500%.

It is also interesting to analyze the distance-scaling law of
the SE rate for graphene under an external magnetic field. In
the near-field regime, one can show that (Appendix C)

Γ⊥

Γ0
≃ 3ε0c

3Re[σL]

ω4
0(εs + ε0)2

1

d4
F

( |ImσL|
ω0(εs + ε0)d

)

, (6)

whereF (x) is defined in Appendix C, provided Re[σL] ≪
ω0(εs + ε0)d and Im[εs(ω0)] ≃ 0. The validity of this equa-
tion is not restricted to the case when a magnetic field is
present, rather it is valid whenever correction due to ImσL

are non-negligible. Equation (6) explains the results in Fig.
2 for a broad range of distances (0.3 µm . d . 1.4 µm)
and magnetic fields (5 T ≤ B ≤ 20 T) with error. 10%.
The distance scaling-lawΓ⊥ ∝ d−4F (d0/d) [whered0 =
|ImσL|/ω0(εs+ ε0)] differs from the recently observed result
Γ⊥ ∝ d−4, obtained in the caseB = 033. This difference
arises due to (low frequency) intraband transitions and losses

Figure 3. The decay channel probabilities as a function of(a) d,
and(b) B for µc = 115 meV. In (a) solid and dotted curves are for
B = 5 T andB = 15 T, respectively. In (b) the distance is fixed at
d = 4 µm. Γ⊥(d,B)/Γ0 as a function ofB is plotted in(c) d = 200
nm, and(d) d = 1 µm. The vertical lines show the position of the
peak ofΓ⊥(d,B)/Γ0 obtained via Eq. (11).

in graphene, whose signature is coded in the functionF (x)
appearing in Eq. (6). Indeed, while in the high frequency
regime (ω0 ≫ τ−1) graphene’s conductivity is approximately
a real function, this is not true at the frequency considered
here (ω0 ∼ τ−1). However, theΓ⊥ ∝ d−4 can be derived
provided|Im σL| ≪ ω0(εs+ε0)d. Since Im[σL] is greatly af-
fected byB, the magnetic field could be exploited to tailor the
distance ranges where this condition is satisfied, allowingfor
a real time control of the distance-scaling law in the near-field.
Note that the effects ofB on the SE are predominantly related
to changes inσL. We have verified thatσH can be neglected
in Eq. (3) for the chosen material parameters. In this case,
the same modifications in the SE rate could be obtained by
applying a trigonal distortion to graphene, which would gen-
erate a strain induced pseudo-magnetic field, giving rise tothe
formation of Landau levels in graphene’s electronic spectrum,
while keepingσH = 0 due to time-reversal invariance.51,52

To understand such an influence ofB on the SE rate in the
near-field it is necessary to delve a little deeper into the decay
process itself. The spontaneous decay of a source is often as-
sociated to the emission of radiation to the far-field, but that is
not necessarily the case. In particular, in the near-field regime
the emitter decays preferentially into non-radiative channels,
like surface waves characterized byk ≥

√

εs/ε0k0
53. For the

transition frequency we are considering,|ReσL| ∼ |Im σL|,
so that surface magneto-plasmon polaritons43 are strongly
damped, playing essentially no role in the SE process54. Nev-
ertheless, the so called lossy surface waves (LSW)42,55,56are
crucial here. These waves correspond to non-radiative pro-
cesses and emerge in the case where the emitter’s energy is
transferred directly to the substrate or graphene, generally giv-
ing origin to an excitation (e.g. electron-hole pair). Such
waves are quickly damped, with their energy being usually
converted into heat42,56. In the extreme near-field regime, ab-
sorption in the materials governs the SE process and the LSW
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(k ≫ k0) are usually the main channel into which the emitter
loses its energy.

In Fig. 3 we unveil the role played by the different decay
channels in the emitter’s lifetime. Fig.3(a) depicts the decay
probabilitiespP

⊥, pTIR
⊥ , andpLSW

⊥ of energy emission in a prop-
agating (P), totally internal reflected (TIR), or LSW mode,
respectively, as functions ofd for two different values ofB.
These probabilities are given by the ratio between the partial
decay rates into the aforementioned modes and the total SE
rate. The partial contribution of propagating, TIR, and LSW
modes to the SE rate can be respectively well approximated
by (Appendix D)

ΓP
⊥

Γ0
≃ 1+

3

2

∫ k0

0

k3 Re[rp,pe2i
√

k2

0
−k2d]

k30
√

k20 − k2
dk , (7)

ΓTIR
⊥

Γ0
≃ 3

2

∫ k0

√

εs

ε0

k0

k3e−2
√

k2−k2

0
z

k30
√

k2 − k20
Im[rp, p]dk , (8)

ΓLSW
⊥

Γ0
≃ 3

2

∫ ∞

k0

√

εs

ε0

k2e−2kz

k30
Im[rp, p

QS ]dk , (9)

whererp, p
QS are the reflection coefficients of the graphene-on-

substrate system in the quasi-static limit [equivalent to take
c → ∞ in Eq. (3)].

We note in Fig.3 that changingB can severely affect the
possible decay channels in the1 µm . d . 10 µm range,
essentially swapping the role of the LSW and TIR modes as
the dominant decay pathway. Indeed, ford = 4 µm we note
that pLSW

⊥ drops sharply from75% to 15% whenB changes
from 5 T to 15 T. On the other hand,pTIR

⊥ (pP
⊥) increases from

20% (5%) to 67% (18%). This effect is evinced in Fig.3(b),
where we plot the decay probabilities as a function ofB, for
d = 4 µm. It is then clear the overall downward (upward)
trend ofpLSW

⊥ (pTIR
⊥ ) asB is increased, with a dominance ex-

change atB ≃ 10 T.
Figures3(c) and3(d) showΓ⊥(d,B)/Γ0 as a function of

B for d = 200 nm andd = 1 µm, respectively, and two
distinct values ofµc. The SE rate presents sharp discontinu-
ities, which are directly linked to the discrete character of the
Landau levels brought about by the application ofB. These
discontinuities occur whenever a given Landau level energy
crossesµc

41,45–47. Moreover, there exists a critical magnetic
field Bc = µ2

c/(2~ev
2
F ) above which the discontinuities are

no longer present. This is due to the fact that forB > Bc all
positive Landau levels are aboveµc, so no more crossings can
occur. Note that the curves merge in the final plateau, regard-
less of the value ofµc. ForB > Bc we have∆intra = M1,
that does not depend onµc. Hence, providedkBT ≪ µc both
σL andσH are approximately independent ofµc for B > Bc.
As a function ofB, the SE rate presents a maximum whose
position depends on bothµc andd. This behavior can be un-
derstood recalling that for short distances the SE rate is33,39

Γ⊥

Γ0
≃ 3

2k30

∫ ∞

0

dkρ(k) Im [rp, p(k, ω0, B)] , (10)

whereρ(k) = k2e−2kd has a maximum atkmax
1 = 1/d.

In the largek limit Im [rp, p] presents a peak atkmax
2 ≃

Figure 4. 3D plot of the relative spontaneous emission∆Γ||(µc, B)
as a function of bothµc andB for d = 2µm.

ε0ω0[εs/ε0 + 1]/|σL|. Since|σL(ω0, B)| decreases withB
(for B > 1 T in our case) we note thatkmax

2 moves to high
values ofk asB increases. Therefore, for a fixed emitter-
graphene separation, the overlap betweenρ(k) and Im[rp, p]
grows withB until kmax

2 ∼ kmax
1 . After that, this overlap

diminishes and so doesΓ⊥, which explains the behavior of
the SE rate in Fig.3. The value of the magnetic fieldBm

that maximizesΓ⊥ can be estimated by settingkmax
1 = kmax

2 .
This leads to

|σL(ω0, µc, Bm)| ≃ ε0ω0d [εs(ω0)/ε0 + 1] . (11)

The accuracy of this equation is clearly seen in Figs.3(c)-(d)
where we showBm calculated through Eq. (11) for µc = 115
meV andµc = 150 meV.

Similar results hold forΓ‖ in the near-field regime. In-
deed, ford ≪ 2π/k0 the contribution ofrs, s to Γ‖ is neg-
ligible and the approximationkz ≃ ik is valid. Hence,
apart from a factor1/2, Γ‖ can also be written as in Eq.
(10) (see Appendix C)33. In Fig. 4 we plot∆Γ‖(µc, B) =
[Γ‖(µc, B) − Γ‖(µc, 0)]/Γ‖(µc, 0) as a function of bothµc

andB for d = 2 µm. In this case, the reduction in the Purcell
factor in theµm range can be as high as98%, when com-
pared to the caseB = 0. Figure4 corroborates our conclu-
sions that an astounding control on the radiative properties of
quantum emitters can be achieved via magneto-optical prop-
erties in graphene. Moreover, Fig.4 reveals that the SE rate
can be modified by keepingB constant while changingµc,
which could be implemented by applying a gate voltage on
graphene26–30.

III. CONCLUSION

In conclusion, we have shown that the application of a mag-
netic field allows for a great control over the Purcell effect
and decay pathways of quantum emitters near graphene. Alto-
gether, our findings demonstrate the viability of actively dic-
tating optical energy transfer processes with magnetic fields
or strain. By demonstrating that these results are within the
reach of state-of-the-art experiments on quantum emissionin
the THz range, we expect that they may find further applica-
tions in quantum photonics, and may even serve to probe other
light-matter phenomena.
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APPENDIX A: SPONTANEOUS EMISSION NEAR AN
ANISOTROPIC INTERFACE

The spontaneous emission decay rate of a two level emitter
can be written in terms of the EM dyadic Green’s function as

Γ =
2ω2

0

ε0~c2
Im
[

d∗
ge ·G(r0, r0;ω0) · dge

]

, (12)

wherer0 = (0, 0, d) is the position of the quantum emitter and
G(r, r′;ω) is the EM dyadic Green’s function, which allows
one to write the electric field at positionr that is generated by
a point dipole at positionr′, oscillating with frequencyω as

E(r;ω) = µω2
G(r, r′;ω) · d(ω), (13)

whereµ is the permeability of the medium where the dipole
is embedded. In vacuum the dyadic Green’s function satisfies
the inhomogeneous Helmholtz equation

∇×∇×G(r, r′;ω)− ω2

c2
G(r, r′;ω) = Iδ(r− r′) , (14)

with I being the unit dyad.
We are interested in the case where the emitter is located at

a distanced above a semi-infinite homogeneous medium with
flat surface atz = 0, where the graphene layer lies. Since the
dyadic Green’s function obeys the same boundary conditions
as the electric field, we can write it forz, z′ > 0 as

G(r, r′;ω0) = G
(0)(r, r′;ω0) +G

(r)(r, r′;ω0) , (15)

whereG(0)(r, r′;ω0) is the free space Green’s function and
G(r)(r, r′;ω0) is the reflected one. Forz′ > 0 andz < 0,
the dyadic Green’s function can be written as a transmitted
Green’s function,G(t)(r, r′;ω0). Each of these Green’s func-
tions can be conveniently expressed in terms of its spatial 2D-
Fourier transform̃G(0/r/t)(k, z, z′;ω) as37

G
(0/r/t)(r, r′;ω)=

∫

d2k

(2π)2
eik·(x−x

′)
G̃

(0/r/t)(k, z, z′;ω), (16)

wherek = kxx̂ + kyŷ andx = xx̂ + yŷ. The free space
Green’s function is given by

G̃
(0)(k, z, z′;ω)=

i

2kz
eikz |z−z′|

(

ǫ
±
p ⊗ ǫ

±
p + ǫ

±
s ⊗ ǫ

±
s

)

,(17)

with kz defined as

kz =

{

√

k20 − k2 , k < k0
i
√

k2 − k20 , k > k0
, (18)

and we have introduced the polarization vectors fors- andp-
polarized waves (the+ and− signs correspond toz > z′ and
z < z′, respectively)

ǫ
±
s =

kyx̂− kxŷ

k
, ǫ

±
p =

k

k0
ẑ∓ kz

k0

kxx̂+ kyŷ

k
. (19)

Note that these vectors are orthogonal, but they are normalized
only for propagating modes (k < k0).

The reflected Green’s function can be written as

G̃
(r)(k, z, z′;ω) =

i

2kz
eikz(z+z′)

∑

i,j=s,p

ri,jǫ+i ⊗ ǫ
−
j , (20)

whereri,j are the reflection coefficients for an incomingj-
polarized wave that is reflected as ani-polarized wave. Simi-
larly, the transmitted Green’s function is given by

G̃
(t)(k, z, z′;ω) =

i

2kz
e−iks

z
zeikzz

′
∑

i,j=s,p

ti,jǫ−i,t ⊗ ǫ
−
j , (21)

where ti,j are the transmission coefficients (incomingj-
polarized wave, transmittedi-polarized wave) andǫ±i,t are the
polarization vectors in the substrate, given by Eq. (19) af-
ter replacingk0 by k0

√

εs/ε0 andkz by ksz . The reflection
and transmission coefficients are obtained by imposing the
usual boundary conditions on the EM field atz = 0 and by
modelling graphene as a two-dimensional current distribution
(see Appendix B).

The evaluation of the SE rate requires the evaluation of the
dyadic Green’s function at the coincidencer′ = r = r0. In
this case the integration over the momentum angular variable
in Eq. (16) can be easily performed. The only nonzero com-
ponents ofG(0)(r0, r0;ω0) are the diagonal ones. The contri-
bution ofG(r)(r0, r0;ω0) to the SE rate presents polarization
preserving terms (which involveǫ+p ⊗ ǫ

−
p andǫ+s ⊗ ǫ

−
s ) and

cross-polarization terms (which involveǫ+p ⊗ǫ
−
s andǫ+s ⊗ǫ

−
p ).

After performing the angular integration, the polarization pre-
serving terms only select the diagonal terms ofd∗

ge ⊗ dge.
The cross polarization terms select thed∗ge,xdge,y − d∗ge,ydge,x
components of the dipole matrix elements. As the transition
dipole matrix elements of a two-level system can be made
real by a proper choice of the relative phase between|g〉
and|e〉, the cross polarization terms do not contribute to the
SE rate. Therefore, only the reflection coefficientsrp,p and
rs,s give a non-vanishing contribution to the SE process even
though cross polarization coefficientsrs,p and rp,s are non
zero. Similar conclusions hold even in the case of a semi-
infitite anisotropic substrate. By plugging Eqs. (15)-(20) into
(12) it is straightforward to obtain Eqs. (1) and (2).
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APPENDIX B: FRESNEL’S COEFFICIENTS FOR AN
INTERFACE COATED WITH A 2D CONDUCTIVE FILM IN

THE PRESENCE OF AN APPLIED MAGNETIC FIELD

Let us consider that an incoming arbitrarily polarized EM
wave propagating in a dielectric medium with permittivityε1
and permeabilityµ1, impinges on the flat interface with a sec-
ond homogeneous medium, with permittivityε2 and perme-
ability µ2, occupying the half-spacez ≤ 0 coated by a 2D
conductive film. For an impinging electromagnetic wave with
frequencyω and in-plane wavevectork, the electric and mag-
netic fields can be expressed as

EI =
[

Es
Iǫ

+
s,1 + Ep

Iǫ
+
p,1

]

e−ikz,1zei(k·x−ωt) , (22)

HI =
1

Z1

[

Ep
Iǫ

+
s,1 − Es

Iǫ
+
p,1

]

e−ikz,1zei(k·x−ωt) , (23)

whereEs
I , E

p
I are the transverse electric and transverse mag-

netic incoming amplitudes, respectively.kz,n andǫ±s/p,n are
given by Eqs. (18) and (19) replacingk0 by kn = ω

√
εnµn

with n = 1, 2. Zn =
√

µn/εn is the impedance of medium
n. Similarly, the reflected and transmitted fields are writtenas

ER =
[

Es
Rǫ

−
s,1 + E

p
Rǫ

−
p,1

]

eikz,1zei(k·x−ωt) , (24)

HR =
1

Z1

[

Ep
Rǫ

−
s,1 − Es

Rǫ
−
p,1

]

eikz,1zei(k·x−ωt) , (25)

and

ET =
[

Es
T ǫ

+
s,2 + Ep

T ǫ
+
p,2

]

e−ikz,2zei(k·x−ωt) , (26)

HT =
1

Z2

[

E
p
T ǫ

+
s,2 − Es

T ǫ
+
p,2

]

e−ikz,2zei(k·x−ωt) . (27)

We should determine the reflectedEs (p)
R and transmitted

Es (p)
T amplitudes in order to calculate the reflection and trans-

mission coefficients

ri, j =
E i

R

E j
I

and ti, j =
E i

T

E j
I

, (i, j) = (s, p). (28)

The reflected and transmitted amplitudes are obtained by
solving Maxwell’s equations and imposing the appropriate
boundary conditions on the interface atz = 0. Taking into
account the presence of a 2D conductive film at thez = 0, the
boundary conditions that must be satisfied by the EM field are

ẑ× [ET −ER −EI ] = 0 , (29)

ẑ× [HT −HR −HI ] = J2D = σ ·ET , (30)

whereJ2D is a 2D current density that is induced on the con-
ductive field, andσ is the 2D conductivity tensor of the film57.
In the most general case (a 2D homogeneous anisotropic ma-
terial in the presence of a magnetic field) the conductivity ten-
sor can be written as

σ = σLê‖ ⊗ ê‖ + σT ê⊥ ⊗ ê⊥ (31)

+ σH(ê⊥ ⊗ ê‖ − ê‖ ⊗ ê⊥)

+ σsym
xy (ê⊥ ⊗ ê‖ + ê‖ ⊗ ê⊥),

whereê‖ = (kxx̂ + kyŷ)/ |k| andê⊥ = (kyx̂ − kxŷ)/ |k|.
σL (σT ) is the longitudinal (transverse) conductivity,σH is
the Hall conductivity andσsym

xy is only nonzero in anisotropic
materials such as black phosphorus58. In case of graphene
we haveσsym

xy = 0, but in order to keep the discussion as
general as possible and due to the rising interest in black
phosphorus we will allow for a finiteσsym

xy . Using Eqs.
(22)-(27) into Eq. (29) and Eq. (30) one can demon-
strate that the reflected and transmitted amplitudes satisfy
the following equations

Es
I + Es

R = Es
T , (32)

kz,1
k1

(Ep
I − Ep

R) =
kz,2
k2

Ep
T , (33)

1

Z1

kz,1
k1

(Es
I − Es

R) =

(

σT +
1

Z2

kz,2
k2

)

Es
T

+
(

σsym
xy + σH

) kz,2
k2

Ep
T , (34)

1

Z1
(Ep

I + Ep
R) =

(

σL
kz,2
k2

+
1

Z2

)

Ep
T

+
(

σsym
xy − σH

)

Es
T . (35)

Considering separately the cases of s and p incident polar-
ization one can decouple previous equations and show that
Fresnel’s coefficients in the presence of an external magnetic
field are given as

rp,p =
∆T

+∆
L
− + Λ2

∆T
+∆

L
+ + Λ2

, rs,s = −∆T
−∆

L
+ + Λ2

∆T
+∆

L
+ + Λ2

, (36)

tp,p =
Z2ε2
Z1ε0

2kz,1∆
T
+

∆T
+∆

L
+ + Λ2

, ts,s =
µ2

µ0

2kz,1∆
L
+

∆T
+∆

L
+ + Λ2

, (37)

rs,p = ts,p = −2
Z2
0

Z1

µ1µ2

µ2
0

kz,1kz,2
(

σsym
xy + σH

)

∆T
+∆

L
+ + Λ2

, (38)

rp,s=−k1kz,2
k2kz,1

tp,s=2
Z2
0

Z1

µ1µ2

µ2
0

kz,1kz,2
(

σsym
xy −σH

)

∆T
+∆

L
+ + Λ2

, (39)

with

∆L
± = (kz,1ε2 ± kz,2ε1 + kz,1kz,2σL/ω) /ε0, (40)

∆T
± = (kz,2µ1 ± kz,1µ2 + ωµ1µ2σT ) /µ0, (41)

Λ2 = Z2
0µ1µ2kz,1kz,2

[

σ2
H − (σsym

xy )2
]

/µ2
0. (42)

For grapheneσsym
xy = 0 and, in the case where medium 1 is

vacuum (ε1 = ε0, µ1 = µ0) and medium 2 is non-magnetic
(µ2 = µ0), the reflection coefficients reduce to the ones given
in the main text, Eq. (3).

APPENDIX C: DISTANCE-SCALING LAW IN THE NEAR
FIELD FOR TERAHERTZ EMITTERS

In the near field, the main contribution for the SE rate
in Eqs. (1) and (2) comes from large in-plane wavevectors
k ≫ k0. In this case the quasi-static approximation holds
(c → ∞) andkz andksz can be well approximated byik.
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Besides, the Hall conductivity gives a negligible contribution
to the quasi-static reflection coefficients so that we can set
σH ≃ 0. Within these approximations the dominant terms
in Γ⊥ andΓ‖ originate from the polarization preserving trans-
verse magnetic reflection coefficient and can be cast as

Γ⊥

Γ0
≃ 3

2

∫ +∞

0

dk
k2

k30
e−2kd Im[rp,pQS ] , (43)

Γ‖

Γ0
≃ 3

4

∫ +∞

0

dk
k2

k30
e−2kd Im[rp,pQS ] , (44)

where

rp,pQS =
i (εs − ε0)ω0 − kσL

i (ε0 + εs)ω0 − kσL
. (45)

In a regime where|Re[σL]| ≪ (ε0 + εs)ω0d the imaginary
part ofrp,pQS can be approximated by

Im[rp,pQS ] ≃
2ε0ω0kRe[σL]

{(εs + ε0)ω0 − kIm[σL]}2
. (46)

Substituting Eq. (46) into Eqs. (43) and (44) one can show
that the Purcell factor in the near-field regime is given by

Γ⊥

Γ0
≃ 3ε0c

3Re[σL]

(ε0 + εs)2ω4
0

1

d4
F

( |Im[σL]|
(ε0 + εs)ω0d

)

, (47)

Γ‖

Γ0
≃ 3ε0c

3Re[σL]

2(ε0 + εs)2ω4
0

1

d4
F

( |Im[σL]|
(ε0 + εs)ω0d

)

, (48)

with the functionF (x) defined as

F (x) =

∫ +∞

0

dy
y3e−2y

(1 + yx)2
. (49)

APPENDIX D: DECAY CHANNEL PROBABILITIES

In order to determine the different decay pathways prob-
abilities one must study how the total power emitted is dis-
tributed into the different channels. Two processes can be
distinguished:(i) radiative decay, which involves the emis-
sion of a photon that can be detected by a far away detec-
tor; (ii) non-radiative decay, where the emitted power does
not reach the far-field, but is instead absorbed by graphene or
substrate and creates a material excitation. In order to com-
pute each channel contribution to the decay process we use
the fact that the total SE rate given by Eq. (12) corresponds

also to the power emitted by a classical oscillating dipole,
d(t) = de−iω0t + d∗eiω0t. The classical power emitted by
such dipole is related to the SE rate of a two-level quantum
emitter throughP = ~ω0Γ

37,38, provided we choose ford the
transition dipole moment of the quantum emitter. The prob-
ability of decaying into a radiative or non-radiative channel
can be obtained by computing the fraction of the power that is
emitted by the classical dipole to the far field and the one that
is dissipated into the materials, respectively.

The average power emitted by the classical dipole that
reaches the far field (radiative processes) can be expressedas

Prad = lim
r→∞

∫ 2π

0

dφ

∫ π

0

dθ sin(θ) r2r̂ · 〈S(r)〉, (50)

where the Poynting vector in the far field is given by

S(r, t) =
1

Z
E(r, t) ·E(r, t)r̂, (51)

and 〈...〉 denotes time average over one oscillation period.
Here, Z =

√

µ/ε is the impedance of the medium. Us-
ing Eqs. (13) and (51), the time averaged Poynting vector
can be cast as

〈S(r, t)〉 = 2µ2
0ω

4
0

Z
|G(r, r0;ω0) · dge|2 . (52)

In the limit k0|r−r0| ≫ 1, the Green functionG(r, r0;ω0)
can be evaluated from Eq. (16) using the stationary phase
method (where the fast oscillating phase is given byk · x +

ik
(s)
z |z|). The obtained result is

G(r, r0;ω0) ≃
−ikn|z|
2πr2

e
ikn

(

r− z
2

r

)

G̃

(

x

r
kn, z, d;ω0

)

, (53)

with kn = k0 for z > 0 andkn = k0
√

εs/ε0 for z < 0.
Using this result together with equations (20), (21), (50), and
(52), one can put the total power emitted into the far field by
the dipole as37

Prad = P up
rad + P down

rad , (54)

whereP up
rad andP down

rad are the average powers emitted into the
regionsz > 0 andz < 0, respectively. Splitting each term into
contributions from dipole components that are perpendicular
and parallel to theXY -plane, performing the integral overφ
and changing the variable of integrationθ according tok =

k0 sin θ for P up
rad andk = k0

√

εs/ε0 sin θ for P down
rad , we can

express the average powers as
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P up
rad,⊥

P0
=

1

2
+

3

4

∫ k0

0

dk
k3

k30 |kz|
{

2Re
[

e2ikzdrp,p
]

+ |rp,p|2 + |rs,p|2
}

, (55)

P up
rad,‖

P0
=

1

2
+

3

8

∫ k0

0

dk
k

k0 |kz |

{

2Re

[

e2ikzd

(

rs,s − |kz |2
k20

rp,p

)]

+ |rs,s|2 + |kz|2
k20

|rp,p|2 + |rp,s|2 + |kz|2
k20

|rs,p|2
}

, (56)

P down
rad,⊥

P0
=

3

4

∫ k0

√
εs/ε0

0

dk
k3

k30 |kz |
e−2dImkz

|ksz |
|kz |

{

|tp,p|2 + |ts,p|2
}

, (57)

P down
rad,‖

P0
=

3

8

∫ k0

√
εs/ε0

0

dk
k

k0 |kz|
e−2dImkz

|ksz|
|kz|

{

|ts,s|2 + |kz |2
k20

|tp,p|2 + |tp,s|2 + |kz |2
k20

|ts,p|2
}

, (58)

whereP0 = ω4
0 |dge|2/(3πε0c3) = ~ω0Γ0 is the total power

emitted in free space. For the power emitted into thez < 0
region, there are two different contributions:(i) π/2 < θ <

arcsin(
√

εs/ε0), or k0 < k < k0
√

εs/ε0, which is usually
referred to asforbidden light region37 and corresponds to an
inverted total internal reflection process, in which a decaying
wave that is emitted by the dipole is transmitted as a prop-
agating wave once it reaches the interface (we refer to this
contribution asP down,f

rad ); (ii) arcsin(
√

εs/ε0) < θ < π, or
k < k0, which corresponds to the emission of propagating
waves (we refer to this contribution asP down,a

rad ). By subtract-
ing the power emitted via the radiative processes (Prad) from
the total dissipated power (Ptotal = ~ω0Γ), we obtain the

power dissipated via non-radiative processes (Pnon−rad). The
contributions of the perpendicular em parallel componentsof
the electric dipole to non-radiative power can be written in
terms of absorption coefficients as

Pnon−rad,⊥

P0
=

3

4

∫ +∞

0

dk
k3e−2dImkz

|kz | k30
Ap , (59)

Pnon−rad,‖

P0
=

3

8

∫ +∞

0

dk
ke−2dImkz

|kz | k0

(

As +
|kz|2
k20

Ap

)

, (60)

where the absorption coefficients are given by

Ap =























1−
[

|rp,p|2 + |rs,p|2 + |ksz |
|kz |

(

|tp,p|2 + |ts,p|2
)

]

, k < k0

2Im [rp,p]− |ksz |
|kz |

(

|tp,p|2 + |ts,p|2
)

, k0 < k < k0
√

εs/ε0

2Im [rp,p] , k0
√

εs/ε0 < k

(61)

andAs is obtained from Eq. (61) by swappings ↔ p.

Note that fork > k0
√

εs/ε0 the expressions for the non-
radiative emitted power, Eqs. (59) and (60), coincide with the
expressions for the total SE rate, Eqs. (1) and (2). Hence, we
can interpret the integration regionk > k0

√

εs/ε0 in Eqs. (1)
and (2) as being a contribution to the SE rate exclusively
due to non-radiative processes. The regionk < k0

√

εs/ε0
also contributes to the non-radiative decay, as can be seen in
Fig. 5, where the integrands of Eqs. (59) and (60) as a func-
tion of k are plotted. This is only expected as propagating
waves emitted by the dipole can also be absorbed and dissi-
pated by the graphene layer. It should be mentioned, how-
ever, that the contribution of wavevectorsk < k0

√

εs/ε0 to
the non-radiative SE decay is negligible when compared to
the contribution coming fromk > k0

√

εs/ε0 (see Fig. 5).
Therefore, the non-radiative decay due to LSW can be well
approximated by Eq. (9). In the same way, we can approxi-

mate the contribution to the SE rate fromk < k0
√

εs/ε0 in
Eqs. (1) and (2) as being exclusively owing to radiative pro-
cesses. As such we can approximateP down,f

rad,⊥ (TIR modes) by

Eq. (8) andP down,a
rad,⊥ +P up

rad,⊥ (propagating modes) by Eq. (7).
Approximations (7)-(8) were tested numerically against the
exact results and the differences were found to be negligible.

Finally, we notice that the power emitted by the quantum
emitter that is absorbed by graphene due to Joule heating can
be written as

Pg = 2µ2ω4
0 Re

∫

d2k

(2π)
2

×d∗
ge ·G̃† (k, 0, 0;ω0)·σ (k, ω0)·G̃ (k, 0, 0;ω0)·dge . (62)

In the case when Im[εs] = 0, non-radiative decay is exclu-
sively due to graphene and it is possible to show that the power
absorbed by graphene can be written as Eqs. (59) and (60),
with absorption coefficients given by Eq. (61).
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Figure 5. Integrands of Eqs. (59) and (60) for the quantum emitter’s
dissipated power by non-radiative processes. On the left weplot the
the integrand of Eq. (59), on the right we plot the integrand of (60),
splitting it into the individual contributions from the absorption coef-
ficientsAp andAs. The vertical dashed lines mark the pointsk = k0
andk = k0

√

εs/ε0. The values ofB = 5 T andµc = 115 meV
were used.
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