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Abstract

In this work we perform a comparison of two different numerical schemes for the
solution of the time-fractional diffusion equation with variable diffusion coefficient and
a nonlinear source term. The two methods are the implicit numerical scheme presented
in [M.L. Morgado, M. Rebelo, Numerical approximation of distributed order reaction-
diffusion equations, Journal of Computational and Applied Mathematics 275 (2015)
216-227] that is adapted to our type of equation, and a colocation method where Cheby-
shev polynomials are used to reduce the fractional differential equation to a system of
ordinary differential equations.

Key words: Time-fractional diffusion equation, Caputo derivative, Chebyshev poly-
nomials

1 Introduction

It is well known that several diffusion processes that occur in nature, present super-diffusive
or a sub-diffusive behavior. Therefore, for the correct modeling of these physical phenomena,
fractional differential models were proposed in the literature, allowing this way to overcome
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the difficulty in predicting reliable results by using classical models for the modeling of such
extreme diffusion processes. Most of these models are complex, and, analytical solutions
are only possible for a small number of particular cases. Therefore, the numerical solution
of these fractional models is a demand.

In this work we are interested on the numerical solution of the time-fractional diffusion
equation with a variable diffusion coefficient and a non-linear source term [1, 2], given by

∂αu(x, t)

∂tα
− ∂
∂x

(
k (x)

∂u(x, t)

∂x

)
= f (x, t, u(x, t)) , 0 ≤ x ≤ L, t > 0 (1)

with boundary conditions:

u(0, t) = φ0 (t) , u(L, t) = φL (t) (2)

and an initial condition,
u(x, 0) = g (x) , (3)

where ∂α

∂tα is the fractional Caputo derivative given by [3],

∂αu(x, t)

∂tα
=

1

Γ (1− α)

∫ t

0
(t− s)−α ∂u(x, s)

∂s
ds (4)

with 0 < α < 1. Note that k (x) is a function of x, meaning that we can deal with possible
anisotropy.

2 Numerical solution

Method 1

For the numerical solution of Eq. 1, we will use a similar method to the one proposed in [4]
for the numerical solution of distributed order reaction-diffusion equations.

The method is now briefly explained. The diffusive term (second term on the left-hand-
side of Eq. 1) is approximated using a second order finite difference formula,

∂

∂x

(
k (x)

∂u(x, t)

∂x

)
≈

k
(
xi +

Δx
2

)
u(xi+1, t)−

(
k
(
xi +

Δx
2

)
+ k

(
xi − Δx

2

))
u(xi, t) + k

(
xi − Δx

2

)
u(xi−1, t)

(Δx)2

(5)

and for the fractional derivative we use the backward finite difference formula provided by

Diethelm [3] (O
(
(1t)2−α

)
),

∂αu(x, t)

∂tα
≈ (1t)−α

Γ (2− α)

l∑
m=0

a
(α)
m,l (u (xi, tl−m)− u (xi, 0)) + cα (1t)2−α ∂

2u

∂t2
(xi, ηl), ηl ∈ (0, tl)

(6)
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a
(α)
m,l =

⎧⎨⎩
1, m = 0

(m+ 1)1−α − 2m1−α + (m− 1)1−α 0 < m < l

(1− α) l−α − l1−α + (l − 1)1−α m = l

The source term, f (x, t, u(x, t)) , is simply given by

f (xi, tl, u(xi, tl)) = f (xi, tl−1, u(xi, tl−1)) +O (1t) . (7)

We assume uniform meshes for both spatial (Δx = L/K) and time discretizations
(Δt = T/R), with K and R the number of divisions of each grid.

Denoting the approximate value of u (xi, tl) by uli, and k
(
xi ± Δx

2

)
by ki± 1

2
the finite

difference scheme is then given by,

(�t)−α

Γ(2−α)

∑l
m=0 a

(α)
m,l

(
ul−m
i − u0i

)
=

k
i+1

2
ul
i+1−

(
k
i+1

2
+k

i− 1
2

)
ul
i+k

i− 1
2
ul
i−1

(Δx)2
+ f

(
xi, tl−1, u

l−1
i

)
i = 1, ...., N − 1, l = 1, ...., R

(8)
together with the initial and boundary conditions:

u0i = g (xi) , i = 1, ..., N − 1 (9)

ul0 = ϕ0 (tl) , u
l
k = ϕL (tl) , l = 1, 2, ...R (10)

Method 2

A second numerical method is now proposed, based on the assumption that the solution
can be written in terms of a Chebyshev series expansion.

Chebyshev polynomials are defined in the interval [−1, 1] and can be obtained through
the following recurrence formula:

T0(z) = 1, T1(z) = z, Tn+1(z) = 2zTn(z)− Tn−1(z), n = 1, 2, . . . .

Alternatively, they can also be obtained from:

Tn(z) = n

[n/2]∑
i=0

(−1)i2n−2i−1 (n− i− 1)!

i!(n− 2i)!
zn−2i, n = 0, 1, . . . ,

([n/2] represents the integer part of n/2) and satisfy the following orthogonality conditions:

∫ 1

−1

Ti(z)Tj(z)√
1− z2

dz =

⎧⎪⎨⎪⎩
π, i = j = 0

π/2, i = j �= 0

0, i = j

.
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In order to use these polynomials in the interval [0, T ], we introduce the change of variable
z = (2t/T − 1) and obtain the so-called shifted Chebyshev polynomials:

TT,n(t) = Tn (2t/T − 1) .

These shifted Chebyshev polynomials can also be obtained from the following expression
(see [5]):

TT,n(t) = n

n∑
k=0

(−1)n−k 2
2k(n+ k − 1)!

(2k)!(n− k)!T k
tk, n = 1, 2, . . . ,

where

TT,i(0) = (−1)i and TT,i(T ) = 1, (11)

and satisfy the following orthogonality relation:∫ T

0
TT,j(t)TT,k(t)ωT (t)dt = δkjhk,

where ωT (t) =
1√
Tt− t2

and h0 = π, hk = π
2 , k = 1, 2, . . . .

A function y(t) belonging to the space of square integrable functions on [0, T ], may be
expressed as

y(t) =
∞∑
i=0

ciTT,i(t), (12)

where the coefficients ci are given by:

ci =
1

hi

∫ T

0
y(t)TT,i(t)ωT (t) dt, i = 0, 1, 2, . . . .

For computational purposes, only the first (m + 1) terms in (12) are considered, and then
the following result holds:

Theorem 1. ([5])
Let y(t) be a square integrable function on [0, T ] approximated as

y(t) =
m∑
i=0

ciTT,i(t). (13)

Then, for α > 0 we have:

Dαym(t) =

m∑
i=�α�

i∑
k=�α�

ciw
(α)
i,k t

k−α,
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where

w
(α)
i,k = (−1)i−k 22ki(i+ k − 1)!Γ(k + 1)

(i− k)!(2k)!Γ(k + 1− α)T k
,

and the error |E(m)| = |Dαy(t)−Dαym(t)| is bounded by

|E(m)| ≤
∞∑

i=m+1

ci

⎛⎝ i∑
k=�α�

k−�α�∑
j=0

θi,j,k

⎞⎠ ,
where

θi,j,k =
(−1)i−k2i(i+ k − 1)!Γ

(
k − α+ 1

2

)
hjΓ

(
k + 1

2

)
(i− k)!Γ(k − α− j + 1)Γ(k + j − α+ 1)Tα

,

h0 = 2, hj = 1, j = 1, 2, . . . .

For the numerical solution of (1) let

u(t, x) ≈ um(t, x) =

m∑
i=0

vi(x)TT,i(t),

Using the results given before, and taking into account that 0 < α < 1, we can discretize
the time fractional diffusion equation as:

m∑
i=1

i−1∑
k=0

vi(x)w
α
i,kt

i−k−α = k′(x)
m∑
i=0

v′(x)TT,i(t)+k(x)
m∑
i=0

v′′(x)TT,i(t)+f

(
t, x,

m∑
i=0

vi(x)TT,i(t)

)
.

(14)
We now collocate this equation at the m zeros of the shifted Chebyshev polynomial TT,m(t),
Tp, p = 0, 1, . . . ,m−1, obtaining the followingm second order ordinary differential equations
on the (m+ 1) unknowns vi(x), i = 0, 1, ...,m:

m∑
i=1

i−1∑
k=0

vi(x)w
α
i,kt

i−k−α
p = k′(x)

m∑
i=0

v′(x)TT,i(tp)+k(x)
m∑
i=0

v′′(x)TT,i(tp)+f

(
tp, x,

m∑
i=0

vi(x)TT,i(tp)

)
.

(15)
The extra equation is achieved considering the initial condition,

m∑
i=0

(−1)ivi(x) = g(x),

obtaining in this way, a system of (m+ 1) differential equations.
Taking into account the boundary conditions (2), we obtain the following 2m conditions:

m∑
i=0

vi(0)TT,i(tp) = φ0(tp), p = 0, . . . ,m− 1, (16)

m∑
i=0

vi(L)TT,i(tp) = φL(tp), p = 0, . . . ,m− 1. (17)
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From the initial condition when x = 0, we obtain also that

m∑
i=0

(−1)ivi(0) = g(0), (18)

m∑
i=0

(−1)ivi(L) = g(L). (19)

The approximate solution of the time-fractional diffusion equation, may then be reduced to
a system of second order ordinary boundary value problems, which is linear if f is linear
with respect to the third argument, and nonlinear otherwise.

3 Results and Discussion

In order to illustrate the feasibility of the methods, an example for which the analytical
solution is known is now presented. The numerical error is measured by determining the
maximum error at the mesh points (xi, tl):

εΔx,Δt = max
i=1,...,N, l=0,...,R

∣∣∣u(xi, tj)− uli∣∣∣ , (20)

where uli is the numerical solution at (xi, tl).

Example⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂αu(x,t)

∂tα = ∂
∂x

(
(x+ 1)∂u(x,t)∂x

)
− t2

(
2− 2x− 9x2

)
x+ t2 (1− x)x2

−u(x, t)− 2t2−αx2(x−1)
(2−3α+α2)Γ(1−α)

u(x, 0) = 0, x ∈ (0, 1)
u(x, t)|x=0,1 = 0, t ∈ (0, 1)

(21)

whose analytical solution is T (x, t) = t2x2 (1− x).
Tables 1 and 2 show the convergence order obtained for method 1. We obtained con-

vergence orders of approximately 2 and 1 for the space and time. Note that the convergence
order in time is reduced due to the assumption that the reaction term comes from the previ-
ous iteration. For this particular case, there is no need for this approximation, since we are
dealing with a linear source term, but, we want to test the basic behavior of the method.

In Table 3 we compare the different methods by numerically solving the equation given
in the example.

It can be seen that for Method 2, the absolute errors are much lower when compared
to Method 1. For Method 1 we have used Δt = 0.025 and Δx = 0.1, but, even refining the
mesh to Δt = 0.005 and Δx = 0.005, the small error obtained with Method 2 could not be
achieved.
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Step sizes α = 0.5

Δt Δx εΔx,Δt q

0.002 1/6 0.001958 −
0.002 1/12 0.000475 2.04
0.002 1/24 0.000097 2.29

Table 1: Numerical results obtained for the problem given in Eq. 21 (Method 1), for α = 0.5 : values of the

maximum of the absolute errors at the mesh points and the experimental orders of convergence q, for the variable x

(Δt = 0.002).

Step sizes α = 0.5

Δt Δx εΔx,Δt p

1/10 0.01 0.001544 −
1/20 0.01 0.000770 1.00
1/40 0.01 0.000380 1.02

Table 2: Numerical results obtained for the problem given in Eq. 21 (Method 1), for α = 0.5 : values of the

maximum of the absolute errors at the mesh points and the experimental orders of convergence p, for the variable t

(Δx = 0.01).
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exactu . .ex appu u− . . 1ex appu u m− = . . 2ex appu u m− = . . 3ex appu u m− =

Method1 Method 2

Table 3: Absolute error obtained for the two different methods (α = 0.5 and t = 1). For Method 1 we have used

Δt = 0.025 and Δx = 0.1.
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It should be noted that these results were obtained for the particular function shown
in example 1, and, more studies should be performed in order to formulate accurate con-
clusions.

4 Conclusions

We derived two different numerical methods for the solution of the time-fractional diffusion
equation with variable a diffusion coefficient and a nonlinear source term, together with
Dirichlet boundary conditions. One of the methods is based on a straightforward finite
difference method, while the second method assumes that the solution can be written in
terms of Chebyshev polynomials. From simple simulations, we concluded that the second
method provides smaller absolute errors, but, more studies need to be performed.
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