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1 Introduction

Let R be an arbitrary ring with unity 1, Mat (n,R) the full ring of n × n
matrices over R and Tri (n,R) the subring of lower triangular n×n matrices
over R. The identity matrix with the appropriate size is denoted by I. An
m × n matrix A over R is said to be von Neumann regular over R if there
exists an n×m matrix A(1) over R such that AA(1)A = A. Let

Tk = T


a
a1
...

ak−1

 =


a 0 · · · 0 0
a1 a 0
...

. . . . . .
...

ak−2 · · · a1 a 0
ak−1 ak−2 · · · a1 a

 ,

with components a, a1, ..., ak−1 in R, be a lower triangular Toeplitz matrix
over R. It has to be remarked first that the von Neumann regularity of Tk
does not imply the von Neumann regularity of (nonzero) components or
blocks of Tk. Indeed, consider R = Mat (4,Z12) with

a =


1 1 0 0
0 0 0 0
0 0 1 1
1 3 0 0

 , a1 =


1 0 0 0
0 0 0 0
0 0 1 0
0 2 0 0

 .
Then a and a1 are not von Neumann regular in R = Mat (4,Z12) but[

a 0
a1 a

]
is von Neumann regular in Mat (2, R). Secondly, there is a difference be-
tween the von Neumann regularity of Tk in the ring Tri (k,R) and in the
full matrix ring Mat (k,R) . Indeed, if a is of the form ar + aj , with ar von
Neumann regular in R and aj is in the Jacobson radical of R, then

Tk = T


ar
0
...
0

+ T


aj
a1
...

ak−1

 ,

in which the first term is von Neumann regular and the second term is in
the Jacobson radical of Tri (k,R) . This means that Theorem 1 of [2] can
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be applied to see if Tk is von Neumann regular in Tri (k,R) . Clearly, if Tk
is von Neumann regular in Tri (k,R) then Tk is von Neumann regular in
Mat (k,R) , but the following example shows that there are Tk matrices not
von Neumann regular in Tri (k,R) and von Neumann regular in Mat (k,R) .
Indeed, 2 is not von Neumann regular and 8 is von Neumann regular in Z12,
and [

2 0
1 2

]
=
[

8 0
0 8

]
+
[

6 0
1 6

]
.

Theorem 1 of [2] shows that there is no lower triangular von Neumann inverse

of
[

2 0
1 2

]
, although

[
2 0
1 2

]
is von Neumann regular in Mat (2,Z12)

because it is equivalent with
[

0 4
1 0

]
which is von Neumann regular in

Mat (2,Z12) . We clearly state that we wanted to investigate the von Neu-
mann regularity of lower triangular Toeplitz matrices in the full matrix ring
Mat (k,R) . The only restriction we had to make in the general case is that

the lower triangular Toeplitz matrices are of the form
[
U 0
V W

]
, with U

and W von Neumann regular over R. Therefore, we considered first the von

Neumann regularity of block matrices of the form
[
U 0
V W

]
with U and

W square or non-square, but von Neumann regular over arbitrary rings. As
special cases, we consider lower triangular Toeplitz matrices with von Neu-
mann regular components in a commutative ring and also lower triangular
Toeplitz matrices with a von Neumann regular diagonal over a commuta-
tive ring. As an application, we consider the Drazin invertibility of some
companion matrices over arbitrary rings, see also [5]. We refer to [1] for
definitions and notations used in this paper.
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2 The general case

In this section, all matrices are over an arbitrary ring.

Theorem 1. Let M =
[
U 0
V W

]
be a 2 × 2 block matrix such that the

square or non-square U and W are von Neumann regular with (1)-inverses
U (1) and W (1), respectively. Then M is von Neumann regular if and only if

T =
(
I −WW (1)

)
V
(
I − U (1)U

)
is von Neumann regular. Moreover, for any von Neumann inverse T (1) of
T, the product[

I 0
−W (1)V I

] [
U (1)UU (1)

(
I − U (1)U

)
T (1)

(
I −WW (1)

)
0 W (1)WW (1)

]
×

×
[

I 0
−
(
I −WW (1)

)
V U (1) I

]
is a von Neumann inverse of M.

Proof. Firstly, assume
(
I −WW (1)

)
V
(
I − U (1)U

)
is von Neumann regular.

Let

H = I − U (1)U,

G = I −WW (1),

E =
[

0 0
0 G

]
,

F =
[
H 0
0 0

]
.

We remark that UH = 0 and so U (I −H) = U, and that GW = 0 and
therefore (I −G)W = W. Moreover,[

U 0
GVH W

]
= E

[
0 0
V 0

]
F + (I − E)

[
U 0
0 W

]
(I − F ) .

Setting X = E

[
0 0
V 0

]
F and Y = (I − E)

[
U 0
0 W

]
(I − F ) and since

GVH,U and W are von Neumann regular, then X and Y are also von
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Neumann regular. Let X(1) and Y (1) be von Neumann inverses of X and Y,
respectively. Furthermore, since

EX = XF = X,

(I − E)Y = Y (I − F ) = Y,

it follows that

(EXF + (I − E)Y (I − F ))
(
FX(1)E + (I − F )Y (1) (I − E)

)
×

× (EXF + (I − E)Y (I − F ))
= (EXF + (I − E)Y (I − F ))

and
[
U 0
GVH W

]
is von Neumann regular. To show that

[
U 0
V W

]
is

von Neumann regular, we remark that[
I 0
−GV U (1) I

] [
U 0
V W

] [
I 0
−W (1)V I

]
=
[
U 0
GVH W

]
. (1)

Let us now compute a von Neumann inverse of M. Let

T =
(
I −WW (1)

)
V
(
I − U (1)U

)
,

X =
[

0 0
T 0

]
,

X(1) =
[

0 T (1)

0 0

]
,

Y =
[
U 0
0 W

]
,

Y (1) =
[
U (1) 0
0 W (1)

]
.

It was shown in the first part of this proof that FX(1)E+(I − F )Y (1) (I − E)
is a von Neumann inverse of X + Y, i.e.[

U (1)UU (1)
(
I − U (1)U

)
T (1)

(
I −WW (1)

)
0 W (1)WW (1)

]

is a von Neumann inverse of
[

U 0(
I −WW (1)

)
V
(
I − U (1)U

)
W

]
. Using

(1),[
1 0
−W (1)V 1

] [
U (1)UU (1)

(
I − U (1)U

)
T (1)

(
I −WW (1)

)
0 W (1)WW (1)

] [
I 0

−GV U (1) I

]
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is a von Neumann inverse of
[
U 0
V W

]
.

Conversely, let us now assume the von Neumann regularity of
[
U 0
V W

]
.

We remark the following equalities:[
0 0(
I −WW (1)

)
V
(
I − U (1)U

)
0

]
=

[
U 0
V W

] [
I − U (1)U 0

−W (1)V
(
I − U (1)U

)
I −W (1)W

]
=

[
I − UU (1) 0

−
(
I −WW (1)

)
V U (1) I −WW (1)

] [
U 0
V W

]
=

[
0 0(

I −WW (1)
)
V
(
I − U (1)U

)
0

] [
I − U (1)U 0

−W (1)V
(
I − U (1)U

)
I −W (1)W

]
.

As there exists a matrix Z such that[
U 0
V W

]
Z

[
U 0
V W

]
=
[
U 0
V W

]
,

then multiplying on the left by[
I − UU (1) 0

−
(
I −WW (1)

)
V U (1) I −WW (1)

]
and on the right by[

I − U (1)U 0
−W (1)V

(
I − U (1)U

)
I −W (1)W

]
,

we obtain[
0 0(
I −WW (1)

)
V
(
I − U (1)U

)
0

]
Z

[
0 0(
I −WW (1)

)
V
(
I − U (1)U

)
0

]
=

[
0 0(
I −WW (1)

)
V
(
I − U (1)U

)
0

]
,

from which follows that
(
I −WW (1)

)
V
(
I − U (1)U

)
is von Neumann regu-

lar. 2
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Lemma 2. Let U and V be two matrices with the same number of rows.

Then
[
U V

]
is von Neumann regular iff

[
U V
0 0

]
is von Neumann reg-

ular.

Proof. Assume that
[
U ′

V ′

]
is a von Neumann inverse of

[
U V

]
, where

the blocks U ′ and V ′ are such that the products UU ′ and V V ′ exist. As[
U V

] [ U ′
V ′

] [
U V

]
=
[
U V

]
then (UU ′ + V V ′)U = U and (UU ′ + V V ′)V = V. Simple calculations show

that
[
U ′ 0
V ′ 0

]
is a von Neumann inverse of

[
U V
0 0

]
.

Conversely, if
[
U ′ ∗
V ′ ∗

]
is a von Neumann inverse of

[
U V
0 0

]
, then

the equalities (UU ′ + V V ′)U = U and (UU ′ + V V ′)V = V hold. Thus,[
U V

] [ U ′
V ′

] [
U V

]
=
[
U V

]
and

[
U V

]
is von Neumann regular. 2

The next result generalizes Theorem 3.1 in [4].

Theorem 3. Let M be a matrix partitioned column-wise as

M =
[
U V

]
,

where U has a von Neumann inverse U (1). Then M is von Neumann regular
iff S =

(
I − UU (1)

)
V is von Neumann regular. In this case,[
U (1)UU (1) − U (1)V S(1)

(
I − UU (1)

)
S(1)

(
I − UU (1)

) ]
,

is a von Neumann inverse of M , where S(1) is any von Neumann inverse of
S.

Proof. If
[
U V

]
is von Neumann regular, the previous lemma implies

that
[
U V
0 0

]
is von Neumann regular. Then

[
0 0
V U

]
is von Neumann

regular since [
0 I
I 0

] [
U V
0 0

] [
0 I
I 0

]
=
[

0 0
V U

]
.
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As U is von Neumann regular, and using Theorem 1, it follows that
[
U V

]
is von Neumann regular iff S =

(
I − UU (1)

)
V is von Neumann regular. If

S(1) is a von Neumann inverse of S, then

[
I 0

−U (1)V I

] [
0 S(1)

(
I − UU (1)

)
0 U (1)UU (1)

]
=

 0 S(1)
(
I − UU (1)

)
0
−U (1)V S(1)

(
I − UU (1)

)
+U (1)UU (1)


is a von Neumann inverse of

[
0 0
V U

]
. Multiplying on the left and on the

right by
[

0 I
I 0

]
, we have that

[
−U (1)V S(1)

(
I − UU (1)

)
+ U (1)UU (1) 0

S(1)
(
I − UU (1)

)
0

]

is a von Neumann inverse of
[
U V
0 0

]
. By the proof of the lemma,

[
−U (1)V S(1)

(
I − UU (1)

)
+ U (1)UU (1)

S(1)
(
I − UU (1)

) ]
is a von Neumann inverse of

[
U V

]
. 2

Theorem 4. Let M be a matrix partitioned row-wise as

M =
[
U
V

]
,

where U has a von Neumann inverse U (1). Then M is von Neumann regular
iff S = V

(
I − U (1)U

)
is von Neumann regular. In this case,[

U (1)UU (1) −
(
I − U (1)U

)
S(1)V U (1)

(
I − U (1)U

)
S(1)

]
is a von Neumann inverse of M , where S(1) is any von Neumann inverse of
S.

Proof. Similar to the proof of Theorem 3. 2

We can apply now the results of the preceding theorems to the charac-
terization of the von Neumann regularity of triangular Toeplitz matrices.
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Proposition 5. Let a be von Neumann regular. Then[
a 0
a1 a

]
is von Neumann regular

iff λ =
(
1− aa(1)

)
a1

(
1− a(1)a

)
is von Neumann regular.

Moreover, for any von Neumann inverse λ(1) of λ, the product[
1 0

−a(1)a1 1

] [
a(1)aa(1)

(
1− a(1)a

)
λ(1)

(
1− aa(1)

)
0 a(1)aa(1)

] [
1 0

−
(
1− aa(1)

)
a1a

(1) 1

]
is a von Neumann inverse of

[
a 0
a1 a

]
.

Proof. Clear from Theorem 1. 2

Proposition 6. Let a be von Neumann regular. If
[
a 0
a1 a

]
is von Neu-

mann regular, which is equivalent with the von Neumann regularity of λ =(
1− aa(1)

)
a1

(
1− a(1)a

)
, then the following conditions are equivalent:

1.

 a 0 0
a1 a 0
a2 a1 a

 is von Neumann regular.

2.
(
1− aa(1)

) [
a2 a1

](
I −

[
a 0
a1 a

](1) [
a 0
a1 a

])
is von Neumann

regular.

3.

(
I −

[
a 0
a1 a

] [
a 0
a1 a

](1)
)[

a1

a2

] (
1− a(1)a

)
is von Neumann reg-

ular.

4.
(
1− λλ(1)

)
κ
(
1− λ(1)λ

)
is von Neumann regular, with

κ =
(
1− aa(1)

) (
a2 − a1a

(1)a1

) (
1− a(1)a

)
.

Proof. (1)⇔ (2)⇔ (3) follow from Theorem 1.

(1)⇔ (4) Firstly, we assume the von Neumann regularity of

 a 0 0
a1 a 0
a2 a1 a

,

i.e., there exists a matrix T such that a 0 0
a1 a 0
a2 a1 a

T
 a 0 0
a1 a 0
a2 a1 a

 =

 a 0 0
a1 a 0
a2 a1 a

 . (2)

9



Let κ =
(
1− aa(1)

) (
a2 − a1a

(1)a1

) (
1− a(1)a

)
and λ =

(
1− aa(1)

)
a1

(
1− a(1)a

)
.

We remark the following equalities: 0 0 0
λ 0 0
κ λ 0

 =

 a 0 0
a1 a 0
a2 a1 a

 1 0 0
−a(1)a1 1 0(

a(1)a1

)2 − a(1)a2 −a(1)a1 1

(1− a(1)a
)

=
(

1− aa(1)
) 1 0 0

−a1a
(1) 1 0(

a1a
(1)
)2 − a2a

(1) −a1a
(1) 1

 a 0 0
a1 a 0
a2 a1 a


=

(
1− aa(1)

) 1 0 0
−a1a

(1) 1 0(
a1a

(1)
)2 − a2a

(1) −a1a
(1) 1

 a 0 0
a1 a 0
a2 a1 a

×
×

 1 0 0
−a(1)a1 1 0(

a(1)a1

)2 − a(1)a2 −a(1)a1 1

(1− a(1)a
)
.

Multiplying (2) on the right by

 1 0 0
−a(1)a1 1 0(

a(1)a1

)2 − a(1)a2 −a(1)a1 1

(1− a(1)a
)

and on the left by
(
1− aa(1)

) 1 0 0
−a1a

(1) 1 0(
a1a

(1)
)2 − a2a

(1) −a1a
(1) 1

 , we obtain

 0 0 0
λ 0 0
κ λ 0

 =

 0 0 0
λ 0 0
κ λ 0

T
 0 0 0
λ 0 0
κ λ 0

 ,
and therefore

[
λ 0
κ λ

]
is von Neumann regular. As λ is von Neumann reg-

ular, this is equivalent to
(
1− λλ(1)

)
κ
(
1− λ(1)λ

)
be von Neumann regular.

Let us now assume that
(
1− λλ(1)

)
κ
(
1− λ(1)λ

)
is von Neumann regular

with κ =
(
1− aa(1)

) (
a2 − a1a

(1)a1

) (
1− a(1)a

)
. Setting

Y =

 0 0 0
λ 0 0
κ λ 0

 ,
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X =

 a 0 0
−aa(1)a1a

(1)a a 0
−aa(1)

(
a2 − a1a

(1)a1

)
a(1)a −aa(1)a1a

(1)a a


=

 1 0 0
−aa(1)a1a

(1) 1 0
−aa(1)

(
a2 − a1a

(1)a1

)
a(1) −aa(1)a1a

(1) 1

 a,
then both X and Y are von Neumann regular. Let e = aa(1) and f = a(1)a.
Then

Xf = X = eX,

Y (1− f) = Y = (1− e)Y.

Therefore, for any X(1), Y (1),

S = fX(1)e+ (1− f)Y (1) (1− e) ,

is a von Neumann inverse of X + Y since

(eXf + (1− e)Y (1− f))S (eXf + (1− e)Y (1− f)) = eXf + (1− e)Y (1− f)
= X + Y

which equals
a 0 0

a1 − aa(1)a1 − a1aa
(1) a 0(

a2 − a1a
(1)a1

)
− aa(1)

(
a2 − a1a

(1)a1

)
−

−
(
a2 − a1a

(1)a1

)
a(1)a

a1 − aa(1)a1 − a1aa
(1) a


=

 1 0 0
−a1a

(1) 1 0(
a1a

(1)
)2 − a2a

(1) −a1a
(1) 1

 a 0 0
a1 a 0
a2 a1 a

× (3)

×

 1 0 0
−a(1)a1 1 0(

a(1)a1

)2 − a(1)a2 −a(1)a1 1



from which follows that

 a 0 0
a1 a 0
a2 a1 a

 is von Neumann regular.
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In order to give the expression of a von Neumann inverse of

 a 0 0
a1 a 0
a2 a1 a

,

we set A =
[
λ 0
κ λ

]
which is von Neumann invertible. Then

Y (1) =
[

0 A(1)

0 0

]
is a von Neumann inverse of Y and

X(1) = a(1)

 1 0 0
−aa(1)a1a

(1) 1 0
−aa(1)

(
a2 − a1a

(1)a1

)
a(1) −aa(1)a1a

(1) 1

−1

=

 a(1) 0 0
a(1)aa(1)a1a

(1) a(1) 0
a(1)aa(1)a2a

(1) a(1)aa(1)a1a
(1) a(1)


is a von Neumann inverse of X. We recall that

S = fX(1)e+ (1− f)Y (1) (1− e)

which equals ã 0 0
ãa1ã ã 0
ãa2ã ãa1ã ã

+
[

0
(
1− a(1)a

)
A(1)

(
1− aa(1)

)
0 0

]

is a von Neumann inverse of X+Y, where ã = a(1)aa(1), and therefore, using
(3), 1 0 0

−a(1)a1 1 0(
a(1)a1

)2 − a(1)a2 −a(1)a1 1

S
 1 0 0

−a1a
(1) 1 0(

a1a
(1)
)2 − a2a

(1) −a1a
(1) 1



is a von Neumann inverse of

 a 0 0
a1 a 0
a2 a1 a

 . 2

Remark.
Concerning 2, some calculations establish that the matrix(

1− aa(1)
) [

a2 a1

](
I −

[
a 0
a1 a

](1) [
a 0
a1 a

])
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is of the form
[
∗
(
1− aa(1)

)
a1

(
1− a(1)a

) ]
, and the regularity of this

class of matrices can be characterized using Theorem 3.

Corollary 7. If
[
a 0
a1 a

]
is von Neumann regular then


a 0 0 0
a1 a 0 0
a2 a1 a 0
a3 a2 a1 a

 is von Neumann regular

iff(
I −

[
a 0
a1 a

] [
a 0
a1 a

](1)
)[

a2 a1

a3 a2

](
I −

[
a 0
a1 a

](1) [
a 0
a1 a

])

is von Neumann regular.

Proof. Clear from Proposition 5. 2

Corollary 8. If a and

 a 0 0
a1 a 0
a2 a1 a

 are von Neumann regular, then the

following conditions are equivalent:

1.


a 0 0 0
a1 a 0 0
a2 a1 a 0
a3 a2 a1 a

 is von Neumann regular.

2.

I −
 a 0 0
a1 a 0
a2 a1 a

 a 0 0
a1 a 0
a2 a1 a

(1)

 a1

a2

a3

(1− a(1)a
)

is von Neu-

mann regular.

3.
(
1− aa(1)

) [
a3 a2 a1

]I −
 a 0 0
a1 a 0
a2 a1 a

(1)  a 0 0
a1 a 0
a2 a1 a


 is

von Neumann regular.

Proof. Clear from Theorem 1. 2
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3 The commutative case

In this section, the matrices considered are over a commutative ring. For
any matrix over a commutative ring R, there is the following theorem by
Bapat-Prasad-Rao, see [3], that reduces the problem of the von Neumann
regularity of the matrix to a problem in the commutative base ring R.

Theorem 9. Let A be an m×n matrix of rank r over R. Then A is regular if
and only if there are Rao-regular matrices Ak each of which is either a zero
matrix or of rank k with orthogonal Rao-idempotents, for k = 1, 2, . . . , r,
such that

A = Ar +Ar−1 + · · ·+A1.

Such a decomposition is unique.

This [B-P-R] result should be used for triangular Toeplitz matrices over
commutative rings if there is no additional information on the components.
However, here we want to show that if there is more information on the
components of the triangular Toeplitz matrix we can derive some other
results.

Proposition 10. Let R be a commutative ring and Tk a k × k lower tri-
angular Toeplitz matrix over R. If all components of Tk are von Neumann
regular in R then Tk is von Neumann regular in Mat (k,R) . Moreover, there
is a simple reduction formula to compute a special von Neumann inverse T∧k
of Tk.

Proof. We first remark that if e = e2 in R and D and N are von Neumann
regular in Mat (k,R) then De + N (1− e) is von Neumann in Mat (k,R)
and D(1)e+N (1) (1− e) are all von Neumann inverses of De+N (1− e) .

Conversely, if De+N (1− e) is von Neumann regular in Mat (k,R) then
De and N (1− e) are von Neumann regular in Mat (k,R) . Indeed, it follows
from

[De+N (1− e)]X [De+N (1− e)] = De+N (1− e)
that DeXDe = De and N (1− e)XN (1− e) = N (1− e) after multiplying
with e and 1− e, respectively.

Now, if

P0 = P


1

a1a
#

a2a
#

...
ak−1a

#

 and Pi = P


1

ai+1a
#
i

...
ak−1a

#
i

 , i = 1, . . . , k − 2.
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are lower triangular and invertible Toeplitz matrices then the given lower
triangular Toeplitz matrix

T


a
a1

a2
...

ak−1

 = P


1

a1a
#

a2a
#

...
ak−1a

#

 · T


a
a1

(
1− aa#

)
a2

(
1− aa#

)
...

ak−1

(
1− aa#

)



= P


1

a1a
#

a2a
#

...
ak−1a

#



 a

. . .
a

 aa# +


0 0 0
a1 0
...

. . .
...

ak−1 · · · a1 0

(1− aa#
)

and the reduction formula is

T


a
a1

a2
...

ak−1


∧

= a#P−1
0 +

(
1− aa#

)


0
...
0

T


a1

a2
...

ak−1


∧

0 0 · · · 0

P−1
0

= a#P−1
0 +

(
1− aa#

)


0
...
0

P−1
1 a#

1 +


0
...
0

T

 a2
...

ak−1


∧

0 0 · · · 0

P−1
1

(
1− a1a

#
1

)
0 0 · · · · · · · · · · · · 0

P−1
0 . 2

Corollary 11. Under the conditions of Proposition 10,

1. [
a 0
a1 a

]∧
=

[
a# a#

1

(
1− aa#

)
−a1

(
a#
)2

a#

]
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2.  a 0 0
a1 a 0
a2 a1 a

∧ =

 a# a#
1

(
1− aa#

)
a#

2

(
1− a1a

#
1

) (
1− aa#

)
−a1

(
a#
)2

a# a#
1

(
1− aa#

)
a2

1

(
a#
)3 − a2

(
a#
)2 −a1

(
a#
)2

a#



+

 0 0 0

0 −a2

(
a#

1

)2 (
1− aa#

)
0

0 0 0


3. 

a 0 0 0
a1 a 0 0
a2 a1 a 0
a3 a2 a1 a


∧

=


a# a#

1 e a#
2 e1e a#

3 e2e1e

−a1a
# 2 a# a#

1 e a#
2 e1e

a2
1a

# 3 − a2a
# 2 −a1a

# 2 a# a#
1 e

2a1a2a
# 3 − a3a

# 2 − a3
1a

# 4 a2
1a

# 3 − a2a
# 2 −a1a

# 2 a#



+


0 0 0 0

0 −a2

(
a#

1

)2
e −a3a

# 2
2 e1e 0

0
(
a2

2a
# 3
1 − a3a

# 2
1

)
e− a2a

# 2 −a2

(
a#

1

)2
e 0

0 0 0 0

 ,

where e = 1− aa#, e1 = 1− a1a
#
1 , e2 = 1− a2a

#
2 .

Remark that in these three cases the special von Neumann inverse T∧k
of Tk is the sum of a Toeplitz matrix and a zero bordered Toeplitz matrix.

(II)

If A is a square matrix of full rank then A is von Neumann regular iff
detA is von Neumann regular and the matrix

(
1− detAdet(1)A

)
A is von
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Neumann regular. Indeed, detAdet(1)A is a Rao-idempotent,
(

detAdet(1)A
)
A

is Rao-regular and there is the Pierce decomposition

A =
(

detAdet(1)A
)
A⊕

(
1− detAdet(1)A

)
A.

Also, detTk = ak can be von Neumann regular without a to be von
Neumann regular and in this situation the Pierce decomposition is not very
helpful.

However, if we suppose a to be von Neumann regular then we have the
following:

(a) n = 2 : since a(1) exists, a2 6= 0,

T2 =
[
a 0
a1 a

]
= a2

(
a2
)(1)

[
a 0
a1 a

]
+
(

1− a2
(
a2
)(1)
)[ a 0

a1 a

]
= aa(1)

[
a 0
a1 a

]
+
(

1− aa(1)
)[ 0 0

a1 0

]
.

Therefore T2 is von Neumann regular iff s =
(
1− aa(1)

)
a1 is von

Neumann regular. Clearly, the orthogonal idempotents are here aa(1)

and ss(1).

(b) n = 3 : since a(1) exists, a3 6= 0.

T3 =

 a 0 0
a1 a 0
a2 a1 a


= a3a3 (1)

 a 0 0
a1 a 0
a2 a1 a

+
(

1− a3a3 (1)
) a 0 0

a1 a 0
a2 a1 a


= aa(1)

 a 0 0
a1 a 0
a2 a1 a

+
(

1− aa(1)
) 0 0 0

a1 0 0
a2 a1 0

 .
Therefore T3 is von Neumann regular iff the 2 × 2 lower triangular
Toeplitz matrix

T

( (
1− aa(1)

)
a1(

1− aa(1)
)
a2

)
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is von Neumann regular which can be handled if a1 is von Neumann
regular.

(c) n = 4, 5, . . . , in a similar way.

4 Application

Consider the lower companion matrix

L =
[

0 a
In−1 k

]
with kT =

[
a1 a2 · · · an−1

]
over an arbitrary ring. In [6], the group

inverse, i.e. the Drazin index 1 case, of L has been considered. It follows
from [5] and the results obtained here that

Proposition 12. The following are equivalent:

1. L has Drazin index 2,

2. L does not have Drazin index 1, T2 =
[
a 0
a1 a

]
is von Neumann

regular and
U = L4

(
L2
)(1) + I − L2

(
L2
)(1)

is invertible,

3. L does not have Drazin index 1, T2 =
[
a 0
a1 a

]
is von Neumann

regular and
V =

(
L2
)(1)

L4 + I −
(
L2
)(1)

L2

is invertible,

and, if a is von Neumann regular and L does not have Drazin index 1, also
equivalent with

4.
(
1− aa(1)

)
a1

(
1− a(1)a

)
is von Neumann regular and U is invertible,

5.
(
1− aa(1)

)
a1

(
1− a(1)a

)
is von Neumann regular and V is invertible.

Indexes of higher order of L can be also handled in a similar way.
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