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Abstract. Liver diseases have severe patients’ consequences, being one of the
main causes of premature death. These facts reveal the centrality of one’s daily
habits, and how important it is the early diagnosis of these kind of illnesses, not
only to the patients themselves, but also to the society in general. Therefore, this
work will focus on the development of a diagnosis support system to these kind
of maladies, built under a formal framework based on Logic Programming, in
terms of its knowledge representation and reasoning procedures, complemented
with an approach to computing grounded on Artificial Neural Networks.
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1 Introduction

Liver disease stands for one of the main causes of premature death, with high treatment
costs, and the lost of working times [1]. Several factors may be associated to this
illness, namely genetic factors, environmental and lifestyle issues (e.g. dietetic, exer-
cise), viruses, obesity, and alcohol [2], or, in other words, alcoholism, autoimmune
diseases, hereditary conditions, drugs and exposure to toxins through ingestion, inha-
lation, or skin absorption, long-term use of certain medications, diabetes, obesity, and
even high levels of triglycerides in blood [3, 4]. Indeed, alcoholic disorder and non-
alcoholic fatty syndromes are significant causes of chronic liver disease worldwide, i.e.,
histological lesions that can include steatosis, which may evolve to cirrhosis, and may
lead to liver failure. Nonalcoholic steatohepatitis stands for the more severe end of this
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spectrum and is associated with infection progression and the development of liver
fibrosis, cirrhosis and hepatocellular carcinoma [5-7].

Physicians usually start with the patient health history, ask about lifestyle habits
and may recommend physical examinations, which may include blood, imaging, and/or
tissue analysis. Regarding the former one, since liver contains thousands of enzymes,
where a few of them are routinely used as indicators of its behaviour, namely ALkaline
Phosphatase (ALP), ALanine aminoTransferase (ALT), ASpartate aminoTransferase
(AST), Gamma-Glutamyl TransPeptidase (GGTP), 5’-NucleoTidase (SNT), Lactate
DeHydrogenase (LDH), serum bilirubin test, albumin test, and even the prothrombin
time test [8]. This test may help in measuring the liver’s ability to synthesize cells,
since most blood clotting factors are produced in the liver. Another commonly test used
in this context is the Mean Corpuscular Volume (MCV). It is a measure of the average
volume of red blood cells and their increase (macrocytosis) may point out to alcohol
abuse and/or other problems [9].

Concerning imaging tests, several modalities are available, like computed tomog-
raphy, magnetic resonance imaging and endoscopic ultrasonography [8]. Regarding
tissue analysis, it consists in collecting a liver tissue sample in order to perform a
laboratorial analysis. Liver biopsy remains as the definitive test to confirm the diagnosis
of particular liver diseases like the Wilson one. However, this technique is absolutely
contra-indicated in patients with inexplicable bleeding history, prothrombine time
higher than 3 to 4 s over control, platelets less than 60000/mm”, prolonged bleeding
time, unavailability of blood transfusion support, suspected hemangioma and unco-
operative patient behavior [8, 10].

Liver disease is typically asymptomatic until the development of clinical compli-
cations. Unfortunately, these snags appear at a relatively late stage of the progression of
the disease. Furthermore, most risk factors for liver disease are also risk features for
other ones (e.g., excess of alcohol consumption is associated with an increased risk of
alcoholic liver disease and breast cancer [11]; obesity is associated with an increased
risk of both non-alcoholic fatty liver disease and the coronary heart one [12]).

The stated above shows that it is difficult to make an early diagnosis of liver
disease, since it needs to consider different conditions with intricate relations among
them, where the available data may be incomplete, contradictory and even unknown. In
order to overcome these drawbacks, the present work reports the founding of a com-
putational framework that uses knowledge representation and reasoning techniques to
set the structure of the information system and the associate inference mechanisms. We
will centre on a Logic Programming based approach to knowledge representation and
reasoning [13, 14], and look at a Soft Computing approach to data processing based on
Artificial Neural Networks (ANNSs) [15].

This paper is organized into five sections. In the former one an introduction to the
problem presented is made. Then the proposed approach to knowledge representation
and reasoning is introduced. In the third and fourth sections is introduced a case study
and presented a solution to the problem. Finally, in the last section the most relevant
conclusions are termed and the possible directions for future work are outlined.
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2 Knowledge Representation and Reasoning

Many approaches to knowledge representation and reasoning have been proposed
using the Logic Programming (LP) epitome, namely in the area of Model Theory [16,
17], and Proof Theory [13, 14]. In this work it is followed the proof theoretical
approach in terms of an extension to the LP language. An Extended Logic Program is a
finite set of clauses, given in the form:

{ P <P, 'apn7n0tq17' . '7n0tLIm
?(Ph o 'apn7n0tq17 c 'anOanl)(n7mZO)
exceptiony, , - - -, exception, (j > 0)} :: scoring,aie

where “?” is a domain atom denoting falsity, the p;, g;, and p are classical ground
literals, i.e., either positive atoms or atoms preceded by the classical negation sign —
[13]. Under this formalism, every program is associated with a set of abducibles
[16, 17], given here in the form of exceptions to the extensions of the predicates that
make the program. The term scoring, .. stands for the relative weight of the extension
of a specific predicate with respect to the extensions of the peers ones that make the
inclusive or global program.

In order to evaluate the knowledge that stems from a logic program, an assessment
of the Quality-of-Information (Qol), given by a truth-value in the interval [0, 1], that
stems from the extensions of the predicates that make a program, inclusive in dynamic
environments, aiming at decision-making purposes, was set [18, 19]. Indeed, the
objective is to build a quantification process of Qol and measure one’s confidence (here
represented as DoC, that stands for Degree of Confidence) that the argument values of a
given predicate with relation to their domains fit into a given interval [20].

Therefore, the universe of discourse is engendered according to the information
presented in the extensions of a given set of predicates, according to productions of the

type:

predicate; — U clausej(xy, - - -, x,) = Qol; :: DoC; (1)

1<j<m

where U and m stand, respectively, for set union and the cardinality of the extension of
predicate;.

3 A Case Study

As a case study, consider a database given in terms of the extensions of the relations (or
tables) depicted in Fig. 1, which stands for a situation where one has to manage
information about patients who may suffer from liver diseases. Under this scenario
some incomplete and/or default data is also available. For instance, in the Liver Disease
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Patients’ Information
# | Age | Gender | Body Mass (Kg) | Height (m) | Waist Circumference (cm) | Hip Circumference (cm)

1{69| M 98 1.89 1 1
65 1.68 61 88
Liver Function Tests
ALP | ALT | AST | GGTP | LDH | 5NT | Bilirubin | Albumin |Prothrombin Time| MCV
0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0
Lifestyle Habits
# |No Smoking| Exercise | Breakfast | Vegetables/Fruit| Low Salt | Low Sugar
1 1 0 1 1 1 1
n 1 1 1 1 1 1
—
Liver Disease Diagnosis
A Body Mass | Waist to | Liver Function | Lifestyle Alcohol Intake Risk
e
< Index  |Hip Ratio Tests Habits | (alcohol units per day) | Factors
1] 69 1 1 1 5 [4.5,6.9] 2
/ n| 27 0 0 0 6 [0.3, 1.6] [0, 2]
Drinking Habits
. Lager, Beer, Cider Alcopops Spirits Wine/Champagne | Fortified Wine
N° | Frequency | N° | Frequency | N° | Frequency | N° |Frequency | N° | Frequency
1] 2 weekly 0 none 5 | monthly 3 diary 3 weekly
n| 2 weekly 0 none 0 none 1 monthly | 1 monthly
Risk Factors
Autoimmune | Hereditary Toxins | Long-term | . High Levels of |High Levels of
# i . Tugs . Diabetes i .
Diseases | Conditions Exposure|Medicaments Triglycerides Cholesterol
1 0 0 0 0 0 0 1 1
n 1 1 0 0 0 0 0 0

Fig. 1. An extension of the relational model for liver diseases diagnosis.

Diagnosis table, the Waist to Hip Ratio in case 1 is unknown, while the Alcohol Intake
ranges in the interval [4.5, 12.9].

In Liver Function Tests table, O (zero) and 1 (one) denote, respectively, normal and
abnormal values. In Lifestyle Habits and Risk Factors tables, 0 (zero) and 1
(one) denote, respectively, no and yes. In Drinking Habits table N stands for the
number of beverages consumed.
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Table 1. Waist to hip ratio and disease risk related to obesity, stratified by age and gender.

Age Men Women
(years) Low |Moderate | High Very Low | Moderate | High Very
high high

[20,30[ |<0.83[0.83, [0.89, >094 |<0.71|[0.71, [0.78, > (.82
0.89[ 0.94[ 0.78[ 0.82[

[30,40[ |<0.84[0.84, [0.92, >0.96 |<0.72|[0.72, [0.79, > 0.84
0.92[ 0.96[ 0.79[ 0.84[

[40,50[ |<0.88 [0.88, [0.96, >1.00 |<0.73|[0.73, [0.80, > 0.87
0.96[ 1.00[ 0.80[ 0.87[

[50,60[ |<0.90[0.90, [0.97, > 1,02 |<0.74|[0.74, [0.82, > (.88
0.97[ 1.02[ 0.82[ 0.88[

>60 <0.91/|[0.91, [0.99, > 1,03 |<0.76|[0.76, [0.84, > 0.90
0.99[ 1.03[ 0.84[ 0.90[

In the Liver Disease Diagnosis table, the domain of Body Mass Index column is in
the range [0, 2], wherein O (zero) denotes BMI < 25; 1 (one) stands for a BMI ranging in
interval [25, 30[; and 2 (two) denotes a BMI = 30. The Body Mass Index (BMI) is
evaluated using the equation BMI = BodyMass/Height* [21]. Waist to Hip Ratio
column ranges in the interval [0, 3] according to Table 1, adapted from [22], wherein 0
(zero), 1 (one), 2 (two) and 3 (three) denote disease risk related to obesity, in terms of a
qualification of low, moderate, high and very high.

The alcohol units for most common beverage were calculated in terms of Eq. 2,
according to what is set in [23, 24], while the values of the Alcohol Intake column of
Liver Disease Diagnosis table was calculated using Eq. 3.

Alcohol Units = Alcohol by Volume(%) * Volume (cm?) /1000 (2)
Alcohol Intake = Z N « Frequency Factor x Alcohol Units (3)
beverage
types

where N stands for the number of beverages consumed. The frequency factor is 1, 1/7,
1/30 and O depending on the intake frequency, i.e., daily, weekly, monthly or none.
The values presented in the remaining columns of Liver Disease Diagnosis table
are the sum of the ones of the correspondent tables, ranging between [0, 10], [0, 6] and
[0, 8], respectively for Liver Function Tests, Lifestyle Habits and Risk Factors columns.
Now, we may consider the relations given in Fig. 1, in terms of the extension of the
liver disease diagnosis predicate, depicted in the form:
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—liveTyisease diagnosis(Age, BMI,W /H ,LFT, LH, Aln, RF)

< not liveryiseqase_aiagnosis(Age, BMI,W /H ,LFT,LH, AIn, RF)

liveryisease_aiagnosis (1, 1, 0, 1, 1, 0.99, 1) 1:1::0.86

attribute's confidence values

[0.7,0.7][0.5,0.5][0,1][0.1,0.1][0.8,0.8][0.2,0.3][0.25,0.25]

attribute's values ranges once normalized

[0,1] [o0,1] [0,1] [0,1] [0,1] [0,1] [0,1]

attribute's domains once normalized

]::1

where its argument’s values make the training and test sets of the Artificial Neural
Network (ANN) given in Fig. 2. Now, let us consider a patient that presents the
symptoms Age =58, BMI=1, WH=2, LFT =2, LH=3,Aln=1[4.5,13.1], RF=3, to
which it is applied the procedure presented in [20]. One may have:

{
—liveryisease_aiagnosis(Age, BMI,W /H ,LFT,LH, AIn, RF)

< not liveryisease dgiagnosis(Age, BMI,W /H ,LFT,LH, Aln, RF)

liveryisease_diagnosis (1, 0, 1, 1, 1, 091, 1> ::1::0.84

attribute's confidence values

]::1

4 Artificial Neural Networks

It was set a soft computing approach to model the universe of discourse of any patient
suffering from liver disease, based on ANNs, which are used to structure data and
capture complex relationships between inputs and outputs [25, 26]. ANNs simulate the
structure of the human brain, being populated by multiple layers of neurons, with a
valuable set of activation functions. As an example, let us consider the case listed
above, where one may have a situation in which the diagnosis of liver disease is
needed. In Fig. 2 it is shown how the normalized values of the interval boundaries and
their DoC; and Qol, values work as inputs to the ANN. The output depicts a liver
disease diagnostic, plus the confidence that one has on such a happening.

In this study 438 patients were considered with an age average of 65.4 years,
ranging from 22 to 93 years old. Liver diseases was diagnosed in 73 cases, i.e., in
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Pre—processing% Input %Hidden Output
Layer Layer Layer Layer

Age

liver disease 0
 Liver disease

diagnosis

Aln —

Fig. 2. The artificial neural network topology.

16.7 % of the analysed population. The gender distribution was 41.6 % and 58.4 % for
female and male, respectively.

In each simulation, the available data was randomly divided into two mutually
exclusive partitions, i.e., the training set with 70 % of the available data, used during
the modeling phase, and the test set with the remaining 30 % of the cases, used after
training in order to evaluate the model performance and to validate it. The back
propagation algorithm was applied in the learning process of the ANN. The activation
function used in the pre-processing layer was the identity one. In the other layers was
used the sigmoid activation function.

A common tool to evaluate the results presented by the classification models is the
coincidence matrix, a matrix of size L X L, where L denotes the number of possible
classes. This matrix is created by matching the predicted and target values. L was set to
2 (two) in the present case. Table 2 presents the coincidence matrix (the values denote
the average of the 30 runs). A perusal of Table 2 shows that the model accuracy was
96.1 % for the training set (296 correctly classified in 308) and 95.4 % for test set (124
correctly classified in 130).

Based on coincidence matrix it is possible to compute sensitivity, specificity,
Positive Predictive Value (PPV) and Negative Predictive Value (NPV) of the classifier.
Briefly, sensitivity and specificity are measures of the performance of a binary clas-
sifier. Sensitivity evaluates the proportion of true positives that are correctly identified
as such, while specificity translates the proportion of true negatives that are correctly
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Table 2. The coincidence matrix for ANN model.

Target | Predictive

Training set Test set

True (1) | False (0) | True (1) | False (0)
True (1) |49 3 20 1
False (0)| 9 247 5 104

identified. Moreover, it is necessary to know the probability of the classifier that give
the correct diagnosis. Thus, it is also calculated both PPV and NPV, while PPV stands
for the proportion of cases with positive results which are correctly diagnosed, NPV is
the proportion of cases with negative results which are successfully labeled. The
sensitivity ranges from 94.2 % to 95.2 %, while the specificity ranges from 95.4 % to
96.5 %. PPV ranges from 80.0 % to 84.4 %, while NPV ranges from 98.8 % to 99.0 %.
Thus, it is our claim that the proposed model is able to diagnosis liver diseases
properly. The inclusion of other patient’s characteristics, like lifestyle and drink habits
may be responsible for the good performance exhibited by the presented model.

5 Conclusions and Future Work

Diagnosing liver disease has shown to be a hard task. On the one hand, the parameters
that cause the disorder are not fully represented by objective data. On the other hand,
liver disease is asymptomatic until the development of clinical complications that are
manifested at a relatively late stage of the progression of the disease. Therefore, it is
mandatory to consider many different conditions with intricate relations among them.
These characteristics put this problem into the area of problems that may be tackled by
Artificial Intelligence based methodologies and techniques to problem solving.

This work presents the founding of a computational framework that uses powerful
knowledge representation and reasoning techniques to set the structure of the infor-
mation and the associate inference mechanisms. This finding is built on a set of
presuppositions, namely:

e Data is not equal to information;

e The translation of the raw measurements into interpretable and actionable read-outs
is challenging; and

e Read-outs can deliver markers and targets candidates without pre-conception, i.e.,
knowing how personal conditions and risk factors may affect the liver disease
predisposition.

The knowledge representation and reasoning techniques presented above are very
versatile and capable of covering almost every possible instance, namely by consid-
ering incomplete, contradictory, and even unknown data, a marker that is not present in
existing systems. Indeed, this method brings a new approach that can revolutionize
prediction tools in all its variants, making it more complete than the existing meth-
odologies and tools for problem solving. The new paradigm of knowledge
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representation and reasoning enables the use of the normalized values of the interval
boundaries and their DoC values, as inputs to the ANN. The output translates a
diagnosis of liver disease and the confidence that one has on such a happening.

The main contribution of this work relies on the fact that at the end, the extensions
of the predicates that make the universe of discourse are given in terms of DoCs values
that stand for one’s confidence that the predicates arguments values fit into their
observable ranges, taking into account their domains. It also encapsulates in itself a
new vision of Multi-value Logics, once a proof of a theorem in a conventional way, is
evaluated to the interval [0, 1]. Future work may recommend that the same problem
must be approached using others computational frameworks like Case Based Rea-
soning [27], Genetic Programming [14] or Particle Swarm [28], just to name a few.
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