
 

SHAKING TABLE TESTS OF A TWO-STOREY LOG HOUSE 
 

Jorge M. Brancoa, Paulo B. Lourençob, Chrysl A. Aranhac 

a Assistant Professor, ISISE, Univ. of Minho, Dept. of Civil Engineering, Campus de Azurém, 
4810-058 Guimarães, Portugal. 

Tel. +351 253 510 200; Fax: +351 253 510 217 
E-mail: jbranco@civil.uminho.pt; Corresponding author 

 
b Full Professor, ISISE, Univ. of Minho, Dept. of Civil Engineering 

E-mail: pbl@civil.uminho.pt 
 

c PhD student, ISISE, Univ. of Minho, Dept. of Civil Engineering 
E-mail: chryslaranha@gmail.com 

 
 

 

 

 

Abstract: This paper presents the findings of an experimental campaign that was conducted to investigate 

the seismic behaviour of log houses. A two-storey log house designed by the Portuguese company 

Rusticasa® was subjected to a series of shaking table tests at LNEC, Lisbon, Portugal. The paper contains 

the description of the geometry and construction of the house and all the aspects related to the testing 

procedure, namely the pre-design, the setup, instrumentation and the testing process itself. The shaking 

table tests were carried out with a scaled spectrum of the Montenegro (1979) earthquake, at increasing 

levels of PGA, starting from 0.07g, moving on to 0.28g and finally 0.5g. The log house did not suffer any 

major damage and remained in working condition throughout the entire process. The preliminary analysis 

of the overall behaviour of the log house is also discussed. 
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1. Introduction 

Log house construction is one of the foremost practices of building with wood that continues to exist 

even in present times, although to a much lesser extent. In the rudimentary stages, log houses were simple 

box-like enclosures with minimal openings and consisted of inter-connected walls composed of 

horizontally stacked logs. With time, notching techniques and log profiles have been refined. There have 

been advances in carpentry joints and the development of new and enhanced mechanical fasteners has 

facilitated more efficient adjacent log connections, sill log-foundation connections as well as cross-wall 

connections. The upshot of these developments is that modern log houses are stronger and more durable 

structures, with improved stability. However, despite the fact that the practice of building log houses has 

existed since a very long time, the amount of data available on their seismic behaviour and load resistance 

mechanisms is limited (Hirai et al., 2004; Vasconcelos et al., 2011). As an example, no specific design 

guidelines for log houses have been outlined in the Eurocodes. The Log Building Standards published by 

the International Log Builders Association (2000) only deals with common construction for log walls, 

notches, joists and roof systems but does not outline any seismic or wind design procedure. 

For log shear walls, resistance to lateral loads comes from the interlock between logs, wood or steel 

dowels, vertical through-bolts or anchor bolts and friction between logs due to vertical loads (National 

institute for land and infrastructure management et al., 2003).In order to ensure adequate seismic resistance, 

the sill-log must be firmly connected to the foundation, so that uplift is eliminated and friction and 

interlocking mechanisms can come into play (Hahney, 2000).Current building codes only consider that the 

compression perpendicular to the grain and shear stress at intersections between walls are responsible for 

the in-plane resistance. Since the exact contribution to resistance by friction and interlock between logs 

cannot be quantified with current knowledge, friction is not considered as a mechanism (Branco and Araujo, 

2012).The lateral load transfer mechanism and the energy dissipation characteristics of handcrafted log 

walls with different configurations has been studied by subjecting them to quasi-static cyclic and non-linear 

static pushover tests (Popovski, 2002). In the experiments by Graham et al. (2010), the behaviour of log 

shear walls under racking loads was analyzed and the log walls were found to have a higher resistance than 

conventional light-frame shear walls. With the view of increasing the understanding of the seismic 

performance of log houses, a combination of experimental and numerical approaches was adopted in this 

research campaign. 



 

2. Prior work 

A number of experimental tests were carried out as part of the procedure to secure the European 

Technical Approval (ETA) (2002) of the log house system adopted by Rusticasa®. During this process, the 

individual structural components of the building system were studied and the lateral load resistance 

mechanisms seen in Figure 1 were evaluated.  

 
Figure 1: Lateral load resistance mechanisms in log shear walls 

 

The first set of tests was performed on the logs to determine the values of compression strength 

perpendicular to grain and bending strength (Branco and Cruz, 2008) according to the procedure outlined 

in EN 408:2010. This was followed by a series of shear and tensile tests under cyclic loading to investigate 

the behaviour of connections between the sill log and the foundation. In the system angle connectors spaced 

1.5m apart are used to connect the sill log with the foundation. Each connector (BMF 40314) has three 

screws (5x50mm) embedded in the log and two metal anchors (M8) embedded in the foundation. The 

resistance of the connection was calculated to be 3.57kN as per the expressions given in Eurocode 5 (EN 

1995-1-1:2004). The shear tests revealed that the connections possessed good ductility and energy 

dissipation capacity. From the load-displacement graph obtained during the tensile tests, it was found that 

the maximum load value increased in accordance with the cyclic value until a displacement of 15mm, after 

which it decreased.  

In order to study the effect of friction forces between adjacent logs, wall specimens consisting of 

five overlapped logs of 120mm thickness were used. The specimens were subjected to different values of 

vertical pre-compression (10, 30, 50 and 70kN). A relationship between the maximum load(y) and pre-

compression value(x) was established: y=0,3389x+2,2685 (kN) with an R2 value of 0,998. The high levels 

of energy dissipation were attributed to the friction resistance. 



 

The next step was to study the in-plane behaviour of log walls subjected to lateral loads. Full-scale 

wall specimens with cross wall intersections were subjected to monotonic and cyclic tests. The transversal 

stiffness, vertical pre-compression, slenderness ratio and foundation connection were varied. Based on the 

results of the monotonic tests, it was found that the transversal stiffness influences the ultimate load and 

that the level of vertical pre-compression is proportional to the stiffness. While the foundation type had no 

influence on the results of the monotonic tests, it did have an influence on the results of the cyclic tests. 

The specimens where the cross walls were fixed to a steel frame performed better than the specimens with 

the traditional foundation connection. The lateral resistance of the wall specimens increased with the 

vertical pre-compression value and decreased with an increase in the slenderness ratio. 

An overall seismic analysis of a typical Rusticasa® log house was carried out based on the results 

obtained from the experiments conducted previously. The numerical model that was developed pointed out 

the need for an improved connection system between the logs as well as the connection between the sill log 

and foundation. Since seismic forces are highest at the base of the log house, it is essential that the 

connection between the sill log and the foundation is secure (Scott et al., 2005). While previously, the 

system under study relied only on the orthogonal connections between logs for resistance to loads, the 

introduction of metal fasteners connecting the logs was advised. Instead of an anchor plate between the 

wall and the foundation, the use of anchor bolts was recommended (Branco and Araujo, 2012). Both types 

of foundation connections can be seen in Figure 2.  



 

 
Figure 2: Set-up for tests on individual components of the log house (Branco & Araujo, 2012; 

adapted) 
The present and final research phase addresses the understanding of the global behaviour of the 

structure when subjected to seismic loads, its dynamic properties and the interaction of the individual 

components inside the real structure during an earthquake. The test campaign consists of a series of shaking 

table tests conducted on a full-scale two-storey log house at LNEC (National Laboratory of Civil 

Engineering) in Lisbon, Portugal. 

 

3. Experimental campaign 

3.1 Description of the test building 

The log house used in the current research experiment has been designed by the Portuguese company 

Rusticasa®. The house is characterized by a rectangular plan of size 5.64m x 7.3m and is symmetrical in 

the longitudinal direction but asymmetrical in the transverse direction. Its height measures 5.28m at the 

ridge and 4.4m at the edges, forming a gable roof. The logs used in the construction of the walls are made 

from glued laminated timber of Scots Pine trees (Pinus sylvestris L.) and belong to the C24 class of 

resistance as per EN 388:2009. The mechanical properties of the lamellas were obtained using 



 

EN 1194:1999. The logs form a perfect fit with each other as they are grooved both at the top and bottom. 

The dimensions of the cross sections of the logs used are 160mm x 160mm and 80mm x 160mm in the 

outer and inner walls respectively. The floor and the roof beams are superposed by 22m thick Oriented 

Strand Board (OSB) studded panels in order to ensure rigid in-plane behaviour. Figure 3 shows the 3D 

structure of the house. 

 
Figure 3: 3-dimensional structure of the log house showing the ground floor and first floor 

 
All the walls of the building have been provided with openings to study their influence on the seismic 

behaviour of the house. In the case of walls provided with openings on both floors, they are aligned one 

above the other, either as doors or windows. The ground floor plan can be seen in Figure 4. The external 

walls in the longitudinal direction (W2 and W4) have identical openings, with a window and a door on the 

ground floor and two windows in the upper storey. One of the external walls in the transverse direction 

(W1) has a door provided on each floor while the other one (W3) has two windows provided on the upper 

floor. Both internal walls (W5 and W6) are provided with a door on each floor. The inner wall in the 

longitudinal direction is connected with the exterior wall (W3) only along one edge to minimize the effect 

of wall linkages. 



 

 
Figure 4: Floor plans of the log house (all dimensions in cm) 

 
Since a typical log-house does not dissipate a large amount of energy, the value of the behaviour 

factor q was assumed to be 2 taking into account the dissipative action contributed by friction as well 

(Toratti, 2001). In order to simulate real-life loading conditions, additional masses in the form of four steel 

platforms weighing 600kg each and 398 steel plates, weighing 7.1kg each, were placed on the inter-storey 

floor and the roof, respectively.  

As in other timber constructions, connections are important in log houses to dissipate energy. 

Mechanical connectors in the form of screws were provided around the openings, at cross-wall intersections 

and at the ends of floor and roof beams. The sill logs are connected to the foundation (a steel lattice in this 

case) through M16 bolts of class 8.8 that are spaced 0.5m apart. The sill log-foundation connection is rigid 

to ensure that sliding is minimal. Apart from mechanical connections, there are halved joints between two 

intersecting orthogonal logs in the exterior walls and dovetail joints at intersections between logs of exterior 

walls with interior walls. Ends of the floor joists are also appropriately notched to form dovetail joints with 

the log walls. These connections can be seen in Figure 5. 



 

 
Figure 5: Mechanical connections in the log house (all dimensions in mm) 

 

3.2 Frequency estimation 

Prior to the seismic test, it was necessary to make an analytical prediction of the expected behaviour 

of the building during the tests. The design of the test is the key step in the experimental campaign because 

the seismic input and the parameters required for phase tuning the shaking table are determined based on 

the model. The test required an accelerogram that would contain frequencies in the vicinity of the 

frequencies of interest and the control system of the shaking table had to be able to reproduce the motion 

of the chosen reference in the range of the frequencies of interest. 

A numerical model of the building (seen in Figure 6) was developed in SAP2000 to obtain 

information on the dynamic properties of the structure. One of the challenges faced when modelling timber 

structures is the definition of the material. With properties differing in the longitudinal, tangential and radial 

directions, wood is best defined as an orthotropic material. Assuming the material properties obtained from 

previous numerical and experimental studies performed by the University of Minho (Branco and Araujo, 

2012; Branco and Cruz, 2008), wood was modelled as an orthotropic material with different properties 

along the three principal axes.  

 

 



 

 
Figure 6: Preliminary numerical model of the log house developed in SAP2000 

 

The logs were represented by shell elements while the floor and roof joists were represented by 

beam elements. In order to ensure the rigid in-plane behaviour of the floor and roof, diaphragm constraints 

were assigned to the beams elements existing in those two structural systems. Since the main objective of 

the model was to get a rough estimate of the modal frequencies, the model was not a sophisticated one. 

This model neither took into account the effects due to friction nor contribution of the mechanical 

connections. So the behaviour of the log house model is mainly dependent on the compression stress 

perpendicular to grain and shear stresses arising at the connections between orthogonal cross walls. The 

mass of the OSB planks at the inter-storey floor and roof level has been distributed as a uniform load acting 

on the floor and roof beams, respectively. The additional masses on the roof have been distributed uniformly 

along the rafters and the additional masses on the inter-storey floor have been uniformly assigned to the 

floor beams. The value of the modulus of elasticity, E, was assumed to be 2x106MPa in all directions. 

Moreover, the values of shear modulus G13 and G23 were assumed to be 20MPa. This was done in order to 

induce a shear type of behaviour in the house. The value of shear modulus G12 was calculated based on the 

value of the in-plane stiffness (K) obtained in (Branco and Araujo, 2012) and in the geometry (h, L and t) 

of the wall specimen tested there. 

퐺 =
퐾. ℎ
퐿. 푡 =

1289 ∗ 0,75
1,54 ∗ 0,12 = 5231	푘푁/푚  (1) 

Here, K is the in-plane stiffness (kN/m), h is the height of the specimen (m), L is the length of the 

specimen (m) and t is the thickness of the specimen (m). 



 

The values of Poisson’s ratio suggested by Bodig and Jayne (1982) for the case of softwoods, have 

been assumed. The material properties assumed for the wood in the numerical model are presented in Table 

1 and 2. The mechanical properties assumed for the floor and roof beams are seen in Table 3. 

Table 1: Values of mechanical properties differing in the orthogonal directions 

Property 12 13 23 

Poisson’s ratio, ν 0.37 0.42 0.47 

Shear Modulus, G (MPa) 5.321 20 20 

 

Table 2: Values of mechanical properties assumed to be constant in the orthogonal directions 

Property Value 

Modulus of Elasticity, E (MPa) 2000000 

Density, ρ (kg/m3) 340 

 

Table 3: Values of mechanical properties of the roof and floor beams 

Property Value 

Modulus of Elasticity, E (MPa) 11000 

Density, ρ (kg/m3) 420 

Poisson’s ratio, ν 0.37 

Shear Modulus, G (kN/m2) 690 

 

According to the model, the fundamental frequency of the log house was estimated to be 5.04Hz 

and corresponded to translational movement in the x-direction (longitudinal axis). The second mode was 

very close to the first mode with a natural frequency of 5.08Hz (Testoni, 2012). The first five mode shapes 

can be seen later in Section 3.6, Figure 12, where a comparison is made with the experimental mode shapes. 

3.3 Construction of the test building 

As the shaking table at LNEC was not large enough to directly accommodate the building, a lattice 

of steel beams (Figure 7) was used to connect the structure to the table and provide a wider base. The steel 

lattice consisted of two identical sections of in-plane length 7m and in-plane depth 2.65m firmly connected 

to the table by means of steel bars of 36mm diameter, making a base of 7m x 5.3m for the building. Each 

section has two HEA 400 profile beams in the longitudinal direction and three HEA 400 beam profiles 



 

along with two IPE 400 profile beams in the transverse direction. The building was mounted and assembled 

directly over the steel lattice. All primary structural elements of the building were prefabricated in a factory 

at Vila Nova de Cerveira and transported by truck over a distance of about 400km to Lisbon. The 

construction was carried out by three workers and took four days. The stages of assembly can be seen in 

Figure 8. 

 
Figure 7: The steel lattice connected to the shaking table 

  

 
Figure 8: Stages of construction: (a) connecting the sill logs with the steel lattice; (b) laying the 
ground floor walls; (c) placing the inter-storey floor beams; (d) nailing OSB planks to the floor 

joists; (e) laying the first floor walls;(f) positioning the ridge board; (g) connecting the rafters; (h) 
placing the OSB sheaths over the roof; (i) completed house with additional weights 



 

 

3.4 Instrumentation 

Once the house was constructed, the next step was to place the instruments to monitor the 

accelerations, wall slippage and uplift, shear deformations, inter-storey displacements and forces in the 

building components. A total of 80 instruments were placed at different points of interest in the building. 

The instruments were arranged to assess the behaviour of the building in the longitudinal and transverse 

directions, and focused on observing the behaviour of five wall sections on the ground floor, two in the 

longitudinal direction and three in the transverse direction. The different instruments used to collect 

information on the forces and deformations of the building are seen in Figure 9. The data obtained during 

all the stages of testing right from the tuning of the shaking table to the dynamic identification of the 

building and the seismic tests were sampled at a sampling frequency of 125Hz. 

 
Figure 9: Instrumentation layout  

 

3.5 Shaking table test procedure 

Once all measuring instruments were set-up, the following tasks were performed: calibration of the 

instruments, dynamic characterization tests and shaking table tests. The dynamic characterization tests were 

of low intensity, while the seismic tests were carried out with increasing levels of Peak Ground Acceleration 

(PGA).White noise was used as input in the case of the characterization tests. The acceleration time history 

was characterized by a Gaussian distribution of RMS level of 0.05g and the frequency ranged between 

0.1Hz and 30Hz. The purpose of these tests was to calibrate the parameters necessary to control the shaking 

table and to conduct the dynamic identification of the structure. A first frequency evaluation test was 

performed to identify the fundamental period, mode shapes and damping of the structure. In this stage, a 



 

fundamental period of T=0.185s (f=5.389Hz) was obtained. The mode was a mixed mode, with movement 

along the longitudinal as well as the transverse directions.  

 
Figure 10: The unscaled accelerograms of the Montenegro earthquake recorded at the Ulcinj- Hotel 

Albatros station used in the transverse (top) and longitudinal (bottom) directions 
 

The seismic testing procedure that followed was carried out with three different PGA values - 0.07g, 

0.28g and 0.5g. To replicate the effect of an earthquake of a longer duration (the Montenegro earthquake 

has an intense phase of only about 10s), the seismic tests of different intensities were carried out multiple 

times. Despite this, there was no major damage observed in the structure. After the first dynamic 

identification test was performed, four shaking table tests were carried out with a PGA of 0.07g. This was 

followed by another dynamic identification test to determine any changes in the natural frequency of the 

structure. The PGA was then increased to 0.28g and three seismic tests were carried out until a pronounced 

sliding of logs was seen in the window of one of the walls of the house. After this, a dynamic identification 

test was done and the building was subjected to two more seismic tests of 0.28g PGA. Finally two tests 



 

with a PGA of 0.05g were conducted on the log house, which were preceded and followed by dynamic 

identification tests.  

A comparison between the mode shapes and frequencies is seen in Figure 11 as well as Table 4. The 

fundamental frequency of the log house was determined to be 5.39Hz while the numerical model predicted 

a value of 5.04Hz for the first mode and 5.08Hz for the second mode.  

 
Figure 11: Outlines of the mode shapes obtained during the experiments (left) and the predicted 

mode shapes (right) 
 
Table 4: Comparison between the experimental and predicted modal properties of the log house 

 Experimental modes Predicted modes  

No. Description Frequency (Hz) Period (s) Description Frequency (Hz) Period (s) 

1 Mixed mode 5.39 0.186 
Translation-Y 5.04 0.198 

Translation-X 5.08 0.197 

2 Translation-X 11.85 0.084 Torsional 6.39 0.156 

3 Torsional 14.93 0.067 Translation –X 14.55 0.069 

4 Translation-Y 20.53 0.049 Translation- Y 15.37 0.065 

 



 

3.5 Damages observed 

There was no damage observed for the tests carried out with the lowest scaled spectrum of the 

Montenegro (1979) earthquake (0.07g PGA). The only damage that was noticed after the 0.28g tests was 

the sliding of the logs in the North Western corner of the house, located near the window in wall W3. There 

was some more minor damage observed after the PGA was increased to 0.5g. No kind of repair intervention 

was carried out between the successive stages of the experiment. The following damage was observed at 

the end of all the tests: fracture along the grain of the log due to out-of-plane flexure, fracture along the 

grain at connections between orthogonal walls due to shear, internal cracks in the log section and fracture 

at the top and bottom notches of the logs. The typical damages can be seen in Figure 12. 

 
Figure 12: Damage observed after completion of all tests: (a) slipping of logs in the NW part of the 

house; (b) fracture along the grain of the logs; (c) splitting of logs at cross wall intersections; (d) 
internal cracks seen in the log cross section; (e) damage seen at the top notch of a log 

 
5. CONCLUSIONS 

The above tests were performed within the framework of the SERIES Project ‘Multi-storey timber 

buildings’, that involved research groups from the University of Trento, Italy, the University of Minho, 

Portugal and TU Graz, Austria, in collaboration with LNEC, Portugal. In spite of repeated shaking table 

tests and a strong input of 0.5g, the integrity of the log house was hardly affected. The good seismic 

performance can be attributed to the carpentry joints, the positioning of the mechanical fasteners around 

the openings and at the cross-wall corners, the contact between log courses facilitated by the grooves in the 

logs and the anchor bolts connecting the sill-log and foundation. 

 The fast pace and ease of construction and the absence of major damage in the building indicate 

that this form of log construction would be a viable option in areas that have high seismic hazard. The 

fundamental frequency obtained was 5.39Hz during the initial characterization test and reduced to 5.109Hz 

[T=0.196s] during the final characterization test. The small difference in the magnitude reinforces the 

observation that the damages suffered by the log house were minor. The proximity of the values of the first 

two predicted modes can be attributed to what was seen during the shaking table tests – a combination of 



 

longitudinal and transverse movements of the entire house during the first mode. Apart from the 

fundamental mode, there was a discrepancy in the frequency values obtained for the next three modes. This 

can be attributed to the fact that the numerical model was very simple.  The seismic response of the model 

was mainly due to the compression stresses perpendicular to grain and the shear stresses at the cross wall 

connections as the model did not account for the contribution of friction and the self-tapping screws. A 

detailed analysis of the dynamic properties, forces and deformations in the log house will be furnished in 

an ensuing paper. 
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