Reducing the Cost of Group Communication with
Semantic View Synchrony

Jos Pereira Luis Rodrigues Rui Oliveira
Univ. do Minho Univ. de Lisboa Univ. do Minho
jop@di.uminho.pt ler@di.fc.ul.pt rco@di.uminho.pt

Abstract

View Synchrony (VS) is a powerful abstraction in the desigd anplementation of de-
pendable distributed systems. By ensuring that procesde®idthe same set of messages
in each view, it allows them to maintain consistency acrosmivership changes. However,
experience indicates that it is hard to combine stronglgiip guarantees as offered by VS
with stable high performance.

In this paper we propose a novel abstraction, Semantic Vigucl@ony (SVS), that
exploits the application’s semantics to cope with high digtgput applications. This is
achieved by allowing some messages to be dropped whil@msgerving consistency when
new views are installed. Thus, SVS inherits the elegancaesi gynchronous communi-
cation. The paper describes how SVS can be implemented laattates its usefulness in
the context of distributed multi-player games.

*Sections of this report will be published in ProceedingshefProceedings of the IEEE International Confer-
ence on Distributed Systems and Networks, Bethesda, US#, 2002. These sections have IEEE Copyright.
Personal use of this material is permitted. However, pesioiisto reprint/republish this material for advertising
or promotional purposes or for creating new collective vgoftr resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other wamksst be obtained from the IEEE. Contact: Manager,
Copyrights and Permissions / IEEE Service Center / 445 Haeg LP.O. Box 1331/ Piscataway, NJ 08855-1331,
USA. Telephone: + Intl. 732-562-3966.



1 Introduction

There is an increasing range of distributed applicatioas thust balance reliability require-
ments with a good performance under a high load of request&xample of such applications
are distributed multi-player games. These are typicallplamented today around a centralized,
non-replicated, server. Since the failure of the server afégct a large number of clients, it is
interesting to replicate it without loss of efficiency. Ndkat it is now common that commer-
cial companies exploit long lived games whose state neels fireserved in face of failures,
ideally without service interruption. Another example distributed control and monitoring
applications which exhibit also a highly interactive beioaj4].

In such applications, the state of the server can be modsledelatively small collection
of data items. The values of these items are frequently eddahile handling requests from
clients. A form of primary-backup replication can be usetkfalicate the server: In each system
configuration, one of the servers is chosen to execute theestg from clients and to dissemi-
nate updated state to other replicas using multicast dpasatGroup communication [3] offers
a convenient paradigm to program such applications [13]dadrnihis model, dynamic group
membership keeps track of new members that join the groupBoutrent members that leave,
facilitating the choice of the primary. With View Synchro(lyS), all members receive exactly
the same set of messages between view changes thus enkerscansistency of replicas upon
the crash of the primary.

Unfortunately, experience indicates that it is hard toanstigh message loads with strong
reliability guarantees [23]. This is inherent to reliatyilitself and not an artifact of a specific
implementation: Reliable protocols are required to stoessages until delivered and then until
they have been acknowledged by all group members. Underlbagls, a single slow member
may prevent messages from being delivered or acknowledgthe dame pace they are being
produced. This quickly leads to buffer space shortages agtbbal performance degradation
due to flow control. View synchrony allows expelling pertadomembers from the group,
but unfortunatelyfransient performance perturbations may result in excessive recorsimpns
which themselves threaten high throughput.

To tackle this problem, we propose in this paper a novel abstm called Semantic View
Synchrony (SVS). SVS uses semantic knowledge about theedateanged by the application
such that messages with obsolete content may be discardieel presence of overload condi-
tions. By allowing some messages to be discarded, the systerates better the occurrence
of performance perturbations without demanding the atiooaof additional resources. Never-
theless, these processes are guaranteed to receive sifftdesages to remain consistent, thus
preserving the elegance of view synchrony. SVS makes itilples® avoid group reconfigu-
rations at the cost of delivering less detailed informatiorprocesses suffering performance
perturbations. If purging of obsolete messages is not émaagvercome the perturbation,



reconfiguration can still happen as the dynamic nature of begship is preserved.

This paper builds on our previous work on semantic relipilin [21] we have introduced
the concept of semantic reliability based on message ofsmtee and shown which factors af-
fect its effectiveness without considering inter-replamamsistency constraints. In[22] we have
introduced the specification and implementation of a seiwaiyt reliable broadcast protocol
but we consider only the restricted setting of a static mastbp. This paper makes the fol-
lowing contributions: It introduces the Semantic View Slyrany abstraction, provides a spec-
ification of this service and an algorithm to implement itsitows how obsolescence can be
characterized in distributed multi-user applications egqatesented efficiently; finally it shows
the impact of SVS in a concrete application scenario.

The rest of the paper is organized as follows. Section 2 rat#s/our work by examining the
obstacles to stable high throughput and the intuition ugohgy semantic reliability. Section 3
defines Semantic View Synchrony and presents an algoritimptement it. Section 4 shows
how to apply SVS by describing usage scenarios and how theledzence relation is repre-
sented. The performance of SVS in the context of distributedti-user games is analyzed in
Section 5. Finally, Section 6 compares our approach wittteel work and Section 7 concludes
the paper.

2 Motivation

2.1 Performance Perturbations and Throughput

The low cost and high performance of off-the-shelf compgteatems makes them attractive
for high throughput services. However, it has been docuatktitat the performance of group
communication in such systems is frequently disappoif8§ This is not an artifact of any
specific implementation: To ensure reliability, messagageho be buffered until reception
is acknowledged by all participants. If a performance pbdtion delays transmission or ac-
knowledgment, garbage collection is delayed. Eventuallffelb space is exhausted and the
sender blocks, thus affecting the whole group.

Performance perturbations occur in disk subsystems, sdingdvirtual memory, interfer-
ence by background applications and system tasks, and rietperation. These happen even
in local area networks and in closely controlled environte@md seem to be unavoidable given
the complexity of current computer systems [1]. Their intpaen be observed in several stages
of reliable protocols:

e A message is stored in buffers until it is ready for delivefis might require the mes-
sage to be delayed for ordering or for acknowledgments by jantaof receivers to be
collected in order to ensure uniformity[11]. In either caspurious delays or dropped
messages in the network result in messages being storeshiged periods of time.

3



e Messages can be delivered only as fast as the applicatiococesnme them. Depending
on the resources used by the application, message deliarnpmaffected by the perfor-
mance of CPU, scheduling, memory and disk subsystems [ifprR&nce perturbations
that are likely to happen in any of them result in messagesgbsiored for longer in
protocol buffers.

e With a View Synchronous protocol, the message might haveetoam buffered even
after local delivery, as agreement on delivered messagas vipw change might require
retransmissions to be performed by processes other thaoritfieal sender. Therefore
the space occupied by a message can only be freed after ibwsrkto be stable, i.e.
received by all processes. Again, stability tracking isssare to perturbations of the
network and thus might also lead to increased buffer ocanpan

Although flow control makes it possible to reduce the offelead until the perturbed
member recovers, different group members may suffer teamtgerformance faults in differ-
ent points in time resulting in a performance loss that iscaeptable for high throughput
applications. Although the correctness of algorithms tgyed for the asynchronous system
model is not affected by these perturbations, the perfoomas seriously affected. This pa-
per is concerned with the performance of group communinatiosystems where these sort
of perturbations may occur without impact in correctnessr &pproach is complementary to
mechanisms that detect timing failures affecting corressnn real-time systems|[9, 27].

2.2 Design Alternatives

We can identify different alternative approaches to adsithe problems caused by the occur-
rence of transient performance perturbations and to avegiatiation of group throughput by
flow control:

e Exclude a process from the group as soon as it suffers a peafure perturbation[23].
This allows the throughput to be preserved at the cost ofaieduthe resilience of the
system. Eventually a new replica needs to be added to thgdroarder to replace
the excluded replica, and this typically requires the ekeawof an expensive integration
procedure. The excessive number of group reconfiguratepresent also an impediment
to sustain high throughput.

e To configure large enough buffer space such that it is ableaskmsufficiently large per-
formance perturbations. However, this alternative is esburce efficient. Additionally,
the use of large buffers has also the negative effect of asing the latency of view
changes (e.g. when crashes occur) due to the large numbezssages that have to be
processed during view installation, being itself an oldstém throughput stability.



e To sacrifice the reliability of group communication in petiad group members [5]. How-
ever, doing so forces the application to deal directly withstrof the complexity of dis-
tributed programming; the same complexity that is suppdedoe dealt by view syn-
chrony.

The abstraction proposed in this paper offers a new, pregidemeaningful reliability cri-
terion that allows to conciliate the following goalg:preserve the ability to exclude from the
group processes that have crashigdenforce a consistency criterion that is strong enough to
simplify the development of dependable applicatian¥;accommodate transient performance
perturbations without degrading the system throughputvetitbut forcing excessive group re-
configurationsjv) be resource efficient, in the sense that processing and nyarapacity can
be configured for the stable case.

2.3 Message Obsolescence

Our proposal to address these goals is motivated by the \@#ig®r that when the system is
congested, buffers in the path to the bottleneck are fullthnd are likely to contain messages
that have been produced in different points in time. In mapliaations, recent messages im-
plicitly convey the content or overwrite the effect of preus messages, which thereby become
obsolete prior to their delivery to slow processes.

If obsolete messages can be recognized within protocoéisifnd then purged, the appli-
cation is relieved from processing some of the outdated agessand resources are freed to
process further messages. Therefore, a recipient tharsudf performance perturbation does
not prevent messages from stabilizing and can then be acodated within the group without
disturbing the remaining members. Purging of obsolete agEssis not observed by fast mem-
bers, which quickly deliver messages before becoming ebsolThis means that only slow
processes omit deliveries: They do not receive all the ngesshut they still receive enough
messages to be allowed to remain in the group.

On the other hand, to benefit from message obsolescenceatfie prattern must exhibit
some obsolescence, i.e., our solution is not a panacea. \l¢owecan be observed that a
large class of high throughput applications, such as Oistied multi-player games, allow high
purging rates (this issue is addressed in Section 5). Thécapipn must then provide the
obsolescence relation to the protocol in the multicastestjas discussed in Section 4. Before
addressing these two issues, we show how Semantic View 8mgchan be implemented.



3 Semantic View Synchrony

3.1 System Model

We consider an asynchronous message passing system mgderaed with a failure detec-
tor[7]. In detail, the distributed system is modeled as ao$sequential processes which can:
send a message; receive a message; perform a local coroputatd crash. We do not make
any assumption on process relative speeds but assumestogsfailures of at most a minority
of processes.

Processes are fully connected by a network of point-to{pmiessage passing channels.
Channels are used through primitivesnd(m, j) andreceivg(m, j) and we assume that are
reliable and FIFO ordered. These assumptions are actuallgtrictly required, but used to
simplify the presentation of the protocol. We do not assumg lzound on the time that a
message takes to be transmitted.

A consensus protocol is assumed to be availadhel modeled as a procedure which takes
as an input parameter a proposed value and returns a deadleel \Consensus ensures that
all correct processes eventually decide the same valuehatdhte decided value is one of the
proposed values.

3.2 Definition

The multicast service is used through a pair of primitivesiticastm) anddeliver{m). Multi-
casfm) initiates the transmission of a messa@eliver(m) is used by the application to obtain
a message from the delivery queue, when available. We usea-call style of interface to
ensure that messages not being processed are kept in tloegirbuffers (this simplifies the
purging of obsolete messages). View changes are signali tapplication by delivering a
special control message. Each view notification includesdentification of the view and of
the set of processes which constitute the current memlipessithe group.

The set of events that may lead to a view change are not re¢lewvdhe definition of Se-
mantic View Synchrony, as we are concerned only with safétyamples of possible causes
for triggering a view change to remove a process from the geare the occurrence of failure
suspicions[18], the lack of available buffer space at onmore processes[8] and simply the
existence of processes that voluntarily want to leave.

The definition of semantic reliability is based on obsoleseanformation encapsulated as
a relation on messages. This relation is encoded by thecapipin using techniques that will
be described in Section 4. This makes the SVS protocol int#gr@ of concrete applications.
We assume that messages are uniquely identifiedzLaatdm’ be any two messages. The fact
thatm is obsoleted by m' is expressed as — m/'. Also,m C m' is used as a shorthand for

!Notice that consensus can also be solved without the relgidnnels assumption [12].

6



m =m'Vm C m'. The obsolescence relation is an irreflexive partial order;, @nti-symmetric
and transitive). The intuitive meaning of this relationhatif m = m’ andm’ is delivered, the
correctness of the application is not affected by omittimgdelivery ofm.

The safety properties required to enforce strong consigtare?

Semantic View Synchrony (SVS):If a process installs two consecutive views andv;
and delivers a message in view v;, then all other processes installing bathandv;
deliver somen’, such thatn C m’, before installing view), , ;.

FIFO Semantically Reliable: For all pairs of messages, m' such that some process mul-
ticastsm beforem': (i) no process delivers: after m'; (ii) if a processp installs two
consecutive views; andv;,, and delivers message’ in view v;, thenp delivers some
m”, such thatn C m”, before installing view, , ;.

Integrity : If a messagen is delivered to a process in, thenm has been previously sent by
some process (no-creation). No messages delivered to a procegs more than once
(no-duplication).

Notice that SVS property relaxes View Synchrony [28], asrgymir of processes installing
two consecutive views; anduv;,; will not necessarily deliver the same set of messages byt the
are ensured to deliver (at least) the same set of messadgd®mtiganot been made obsolete by
subsequent messages up to view . For instance, procegs may deliver in viewy; messages
my andms, such thatn; C my, and procesg, may deliver onlym, in the same view. If no
messages, m’ exist such thain = m', SVS reduces to conventional VS. This makes SVS
more general as different concrete semantics, includingdas be obtained by defining an
appropriate obsolescence relation.

The FIFO Semantically Reliable property relaxes the tradél FIFO Reliable proper-
ties[28]. Given a sequence of messages multicast by a wottes ensures that upon view
installation only obsolete predecessors of the last mesdalivered can be omitted.

3.3 View Change Protocol

In this section, we present a protocol that allows purgingg@pplied in the delivery queues as
well as during view changes. The protocol offers perforneaingprovements when accommo-
dating a slower receiver. Additionally, the protocol alsduces the latency of the view change
operation, as shown in Section 5. Techniques to addresaberct of slower network links are
described in[22].

2A previous report describes the implementation of a priritsatisfying the FIFO Semantically Reliable
broadcast primitive [22] for systems with fixed membershijhe interested reader can find there a comprehen-
sive discussion on the topic of ensuring liveness of seraeliability (e.g. a suitable definition of Validity).



declare
View cv = (Integer id, SetOfProcesslds membufrent view
Boolean blocked;
OrderdedSetOfMessages delivered;
OrderdedSetOfMessages to-deliver;
SetOfMessages global-pred[]; // one instance for each view
SetOfProcesslds pred-received[]; // one instance for gt
SetOfProcesslds leave[]; // one instance for each view

function purge (OrderdedSetOfMessagesi8)
while3m = [DATA,v, d],m' = [DATA,V',d’'] € S :
(v="0") A (m C m') doremove (Symn);

t1 : upon deliver A (to-deliver# () do
m ;= removeFirst (to-deliver);
addToTail (deliveredy);

t2 : upon multicastdata A — blockedA self € memb(cv)do
addToTail (to-deliver, [TA, cv, data]);
forall p € memb(cv):p # selfdo send[DATA, cv, data] to p;

purge (to-deliver);

t3 : upon receivem = [DATA, v, d] from p: (v = cv) A— blockeddo
if Am' € (to-deliveru delivered):m C m' do
addToTail (to-deliver, [ATA, v, d]);

purge (to-deliver);

t4 : upon trigger-view-changél) do
forall p € memb(cv)do send[INIT, ¢V, I] to p;

t5 : upon receive[lNIT, v, 1] from p: (v = cv) A— blockeddo
if p # selfdo forall p € memb(cv)do send[INIT, v, (] to p;
blocked := true;
leave(cv) .= Ny,
local-pred(cv) :={[DATA,v, d] € (deliveredu to-deliver): v= cv};
forall p € memb(cv)do send[PRED, cv, local-pred(cv)io p;

t6 : upon receive[PRED, v, P] from p: (v=cv)do
global-pred(cv) := global-pred(cv) P;
pred-received(cv) := pred-received(evp;

t7 : UPON Ve memb(cv):—suspects(p) © P € pred-received(cv)
|pred-received(cy)> i<l go
proposal :={d(cv) + 1, pred-received(c\)leave(cv));
(next-view, pred-view) := consensus(cv, (proposal, glgivad(cv)));
if selfememb(next-viewlo
forall m € pred-view:m ¢ (to-deliveru delivered)do
addToTail (to-delivern);
addToTail (to-deliver, [VEwW, next-view]);

purge (to-deliver);
CV = next-view;
blocked := false;

Figure 1. Semantic View Synchrony.



Interestingly, SVS can easily be obtained by adapting astiexj view synchronous protocol
to include purging of obsolete messages at the approptigps sit is hence possible to derive
SVS implementations to different systems models, by adgtifferent view synchronous im-
plementations. The purpose of this section is not to reAhveew synchronous protocols, since
these have been extensively studied in the literature [Hgjwever, we do want to illustrate
what changes are needed to accommodate SVS. In order to de spted to adapt a protocol
designed to run on asynchronous systems augmented witlugefdetector, which allows only
processes to leave the group and that uses consensus adilagaolibck [14]. The algorithm is
depicted in Figure 1. The parts that have been added to acodatmSVS are highlighted in
the figure (the changes are in gray). For self-containmeatyrevide a brief description of the
complete algorithm.

Each process in the group keeps a variable/ith the most recent view, a boolean variable
blocked that is used to prevent the reception and transmission of messages during the
view change protocol, and two FIFO ordered queues of messageleliver and delivered.
When messages are received they are inserted itotddiver queue where they wait for the
application to consume them using ttieliveroperation. A message in theto-deliver queue
may be purged if a messagé : m C m' is received in the same view. This is modeled by the
purgefunction. Delivery of a message is simply modeled by removing: from the head of
to-deliver and adding it to the tail of thdelivered queue {1). Delivery of views is modeled by
the delivery of a control message. Two types of messagesearsbrted in theo-deliver and
delivered queues: data messages and view messages. A data messadged flesrA, v, d],
is always tagged with the view in which it is sent. A view message is denotedg§W, v].
The protocol uses two additional control messages whogmoparis explained in the following
paragraphs.

Data messages can only be multicast if the group is not btb@Re A multicast message is
tagged with the current view and sent to all the other prazessthe view. The message is also
inserted in théo-deliver queue of the sender. This will ensure that if the senderqpaies in
the next view, all the messages it has sent will be delivargtie current view. Data messages
are only accepted if the recipient is still in the view theyrevsent and if the group is not blocked
(t3). As before, received messages are added ttotldeliver queue of the recipient.

The installation of a new view is triggered by an externakgvén response to this event, the
initiator of the view change simply disseminates\arl control message to all group members
(t4). Upon the reception of the firskilT message, a process forwards tkerlto all other mem-
bers, ensuring that all correct processes initiate the cleange (5). Additionally, each process
computes the sequence of messages it has accepted to dethvercurrent view and sends this
sequence to all other processes inReEP control message. These sets are accumulated by all
correct processes in thgbobal-prec set ¢(6). The set of processes from which theE mes-
sage has been received for the current view is maintaindueinariablepred-received. When



pred-received includes all processes from the current view that are nghetted, and this set
contains a majority of processes, a new view as well as theeseg of messages to be deliv-
ered in the current view are proposed for consenstis (The proposed view corresponds to
the pred-received set (minus thé processes that is given as input parameter to the view change
procedure).

The view installation procedure is concluded after congsmsturns. The agreed sequence
of messages to be delivered in the current view is added ttwtbdivered queue, followed by
the agreed next view. Finally, the current view is updatedi thie group is unblocked.

3.4 Correctness Argument

When addressing the correctness of the algorithm we focuSeomantic View Synchrony and
the second clause of FIFO Semantically Reliable. The re&sothis is that these are the
properties that differ from those found on VS algorithms #émas reflect the impact of purging
obsolete messages.

The original VS algorithm, obtained from Figure 1 withouetehaded lines or with an
empty obsolescence relation, implements conventionall4§ [From this we can derive the
correctness of the implementation of SVS considering tleviang fact: the purge operation
never discards maximal elements by the obsolescenceoretatof the set of messages deliv-
ered by some process prior to installing a given view. If acpss participates in view,; and
purges some message then there is some’ in to-deliver U delivered such thatn — m/' that
would be included in thered-view set decided for;,; and thusn would not be maximal.

The correctness SVS follows from that. For any messagéelivered by some process
installing bothv; andv;,, either (i) m is maximal in the set of messages and thus is never
purged and as in the original algorithm delivered by all psses before installing_; or (ii)

m is not maximal and there is somé& such thatn C m' which is maximal.

The argument for the second clause of FIFO SemanticallyaBleliis similar. As chan-
nels are reliable and FIFO, it can easily be shown that witlewer purging messages-
deliver U delivered contain always complete prefixes of sequences of messagésasiuby
each sender. The subset of maximal elements (as by the ebspte relatiom), which is
guaranteed to be maintained by purging is sufficient to enthe desired property.

4 Capturing Message Obsolescence

For SVS to be applied in practice, one needs to develop effitexhniques to represent the

obsolescence relation such that the protocol can recognid@urge obsolete messages. In this
paper, we concentrate on applications that use reliabléicast to disseminate values of data

items to a group of replicas. Other application scenariesdagcussed in [20].

10



In detail, we assume that all group members maintain a daleof data items. The values
of these items are continuously updated by one process ugailihg requests from external
client processes and then disseminated to other membédre gfoup. Each multicast contains
the updated value of one or more items in the collection. The of SVS is to ensure that
all members in the view receive the most up-to-date valueachdtem. Additionally, if the
group needs to be reconfigured, SVS guarantees that all gnampbers have the same state
when a new view is installed. This behavior captures a furetdat issue in primary-backup
replication, where a primary server executes requests fle@nts and forwards state updates to
backup replicas. The equivalence of state ensures thatlesvé, any surviving replica can be
selected for the role of the primary.

4.1 Types of Multicast Operations

We distinguish two relevant types of multicast messagesi e-item andmulti-item messages.

Single-item Message Each message contains the value of a single modified itemdéfia-
tion of the obsolescence relation is here fairly simple: 8&ggs containing values for the same
item are related and all but the last can be considered diesole

Multi-item Messages A single message updates more than one item. The reasondating
several items with a single message is that this is a simpjeofvansuring the atomicity of a
composite update. When the message is delivered all iteengpatated, if the message is lost,
none of the items is changed.

It is very hard to establish useful obsolescence relatiomsrg messages containing com-
posite updates: ifn andm’ are two composite updates, we only haveC m/' if the set of
items updated byn’ is a super-set of the items updatedrby Therefore, one needs a technique
that allows the protocol to apply the obsolescence to iddial updates within a composite
multicast, while at the same time preserving the atomidityre composite update.

The solution for this is to split an update into a batch of ipeledent messages, where each
message updates an individual item. The batch is terminatealcommit control message.
Messages from a given batch are only applied when the camnelgmt commit message is
received. Since FIFO order is used, the commit message immpead to be only delivered
after all the messages from batch have been delivered. Natéhe role of the commit message
can be performed by the last message in each update, thusatiimy the need for an extra
message. In fact, all the updates from the same batch atg pagybacked by the protocol
in a single transport-level message. Therefore, this tgclendoes not increase the number of
transport-level messages exchanged by the protocol.

Since individual updates from a given batch can only applbén the commit message

11



o - - 0 - - 0 0 = N T T T T T T 0 0 0 = A
e

----|-U(a,1) ..... U(b,l) ..... C(l) U(b,2) ..... U((T,2) ..... 0(2) |

Figure 2: Preserving atomicity of updates in a multi-iteneigion.

arrives, obsolescence should also be only applied at that. jidhis restriction can be captured
by ensuring that only the commit messages, and not the shaiupdates, can make messages
from previous batches obsolete. For instance, in the exaofgdtigure 2, it isc(2) the commit
from the second batch, and not the second update toditexth,2), that makess(b,1) the first
update to itend obsolete.

4.2 Representing Obsolescence

The obsolescence relation has be to encoded by the applida¢fore being conveyed to the
protocol. We are interested in general purpose techniduescan be applied to a wide range
of systems in an efficient manner. Therefore, we excluddisoisisuch as making the protocol
aware of the contents of messages [6] or enriching the messaigh code [26]. Instead, we
prefer to let the application supply this information to ffretocol as an extra parameter of the
multicast operation. Upon multicast of a messagethe protocol is informed of all messages
m' such thatn’ = m. In the following paragraphs we propose and discuss thrifereint
representation techniques: item tagging, message entiomeaadk —enumeration.

Item Tagging The simplest representation technique consists in agsag@unique integer
tag to each data item managed by the application. This iccphatly effective for systems that
use single-item updates. In this case, each message isltagiehe identifier of the data item

it is updating. Tags are added to the message headers anthusedbination with the sender
identification and sequence numbers generated by the pltotbttvo messages from the same
sender carry the same tag, the one with the highest sequantdsen makes the other obsolete.
Although simple, this technique cannot be easily extendepplications that use multi-item
composite updates. In fact, using this technique it is diffito express that a message makes
obsolete several other unrelated messages.

Message Enumeration A more general alternative consists in having each messqgie-e

itly enumerate which preceding messages it makes obsoli& approach is clearly more
expressive than the item tagging approach. On the other, litaischot compact and burdens
the protocol with the task of determining the transitivestice of the relation. Consider three

12



messages such that; — m, C ms. The representation of obsolescence should allow to verify
thatm, = mgy without requiringm,, to be available.

To ensure that the transitivity of the obsolescence is pvesen the message enumeration
technique, a message must enumerate not only its direcegesdors, but all the (transitive)
predecessors. In practice, only the recent messages freranilimeration need to be carried
by each message without any significant impact on the pusfiiency. This optimization is
possible because it is very unlikely that two messages fart @&p the message stream can be
found simultaneously in the same buffer.

k-Enumeration The k-enumeration technique combines the efficiency and siityld the
tagging approach with the expressiveness of the messageeeation approach. The technique
exploits the fact that purging is mainly applied to pairs assages that are close to each other
in the message stream.

The technique works as follows. Each message explicitlyrarates which of thé pre-
ceding messages it makes obsolete. This information catoberlsn a bitmap of: size. If the
nth position of the bitmap is set to true, the message makeslatbshenth preceding mes-
sage. Each messages carriesitkenumeration bitmap as a representation of the obsolescenc
relation. More precisely, letn.sn andm.bm represent respectively the sequence number and
the bitmap associated with message Given two messages andm’ the protocol considers
thatm T m/ if m'.sn — k < m.sn < m'.sn andm’.bm[m’.sn — m.sn).

The k-enumeration is not only extremely compact to be stored amusinitted over the
network but also makes it very easy to compute the represemtaf transitive obsolescence
relations using only shift and binary “or” operators. Thawdrs time and space efficient algo-
rithms and data structures to manipulate protocol buffacs@etermine obsolete messages. It
also makes it very easy to compute, using the same efficiearatys, the representation of
composite updates, as required for the commit messagesaisagdport multi-item multicast.

5 Performance Evaluation

5.1 Application

Although we try to keep the discussion of semantic religpiis generic as possible, perfor-
mance evaluation depends on concrete data about the abs@kscence relation. As such,
to present meaningful performance numbers we have to chexosgplication: a distributed
multi-player game. This is an interesting example it tyfyces not supported by group com-
munication services:

e High availability of servers has not been high in the list obpties of game developers,
as in the past games were normally short-lived, and servamaged on a best-effort basis

13



frequently by players themselves.

e Off-the-shelf group communication services have tradaity been geared toward appli-
cations without the stringent throughput requirementsighly interactive applications.

However, this scenario is bound to change as the number di-piayer games hosted by
commercial services is growing. As a result of this trendgltived games have been appearing
in an attempt to keep players loyal to a server. In such systém need to preserve the server
state and offer continuous service becomes an importargecon Therefore, it is extremely
relevant to ease the task of replicating this type of seveas efficient manner.

5.2 Update Patterns

We have inspected the code of Quak¢16], an open-source multi-player game, to extract
concrete obsolescence relations. The state of the gamedsletbas a set of items. An item is
any object in the game with which players can interact. Thekpeound is described separately
as it is immutable. Each item is represented by a data steithat stores its current position
and velocity in the 3D space. The same data structure mayhalsioadditional type specific
attributes, such as the players remaining strength.

The game advances in rounds which correspond to frames thatisplayed in players
screens. Although the server tries to calculate 30 frameh sacond, this number can be
reduced without loss of correctness. However, this degréue perceived performance of the
game hence the need to sustain a stable throughput. Duithg@and the server gathers input
from clients and re-calculates the state of the game. In gacid, besides being updated, items
can be created and destroyed. For instance, when a bullezdsan item has to be created to
represent it, and if a player is later hit, both the items & ullet and the player have to be
removed. The transmission of the updated state includes:

e Updated values of items, for instance, as their positiortesed. These make previous
values of updates obsolete as they convey newer values.

e Destruction and creation of items. These must be reliadiyeted in order to ensure that
items are kept consistent.

This application closely matches the multi-item messagaado described in Section 4.
Therefore, we use the-enumeration representation technique that we have theschefore
with £ equal to twice the buffer size.

We have instrumented the server of Quake to obtain expetatigithe obsolescence pat-
terns from real gaming sessions. We detect which items aaeggd at each round by moni-
toring internal functions used to update the system stald@disseminate changes to clients.

14



25 T T T T 30 T T T T T T T T T
i 25 E
3
g | % 20 B
3 o
e o 15 | B
5 1 £
O\O o 10 - -
S
| s L i
O 1 1 1 0 1 1 1 1 1 1 1
10 20 30 40 50 2 4 6 8 10 12 14 16 18 20
Item rank Distance to closest related message
(a) Frequency of item modifications. (b) Obsolescence distance.

Figure 3: Characterization of access to application state.

The results presented on this paper have been observeddusiession with 5 players lasting
for approximately 6 minutes and allowing us to record a tofal1696 rounds. This particular
run was selected due to its length with a constant numberayeps.

From the traffic generated it was observed that a share oB2d & the messages never
became obsolete. The obsolescence pattern of the remaimg@agages is related to the item
update pattern. Although an average of 42.33 items werededaactive in each round, only
an average of 1.39 items are modified. In addition, the residilEigure 3(a) show that a small
number of items is modified frequently, while some items haeebeen modified at all during
the measurement period. Therefore, consecutive updathe eame item are likely to be found
close in the message stream. This is confirmed by Figure &(bgh shows the distribution of
distance between related messages. Notice that relatedgraiusually close together (often
within 10 messages of each other).

We have also collected data with other numbers of playersaritbe observed that when
more players join the game that the message rate incre&igeshare of messages that never
become obsolete decreases, but the distance betweenl ralassages increases. This suggests
that higher purging rates would be possible that those ptedehere, although at the expense
of larger buffer sizes.

5.3 Simulation Model

In evaluating of the impact of purging we have used a higlelldiscrete event simulation. The
use of simulation instead of a real protocol allows us toasoperformance degradation due to
a slower receiver from other aspects of group performanée fetwork is modeled as x n
queues fully connecting all processes and it was configurttdwalimited bandwidth in order
not to be a limiting factor of system performance.

15



Producer idle (%)

100

[e]
o

[o2]
o

>
o

N
o

o

T
reliable

semantic

Buffer occupancy (msg)

[ el
oN M O

N A O

o

T T
reliable
I~ semantic

-1~ L

120 100 80 60 40 20

140 120 100 80 60 40 20

Consumer (msg/s) Consumer (msg/s)

(a) Impact in the producer. (b) Impact in buffer occupancy.

Figure 4. Sample runs of the simulation with a buffer holdk@messages and increasingly
slow consumer.

A producer injects traffic in one of the nodes according toitée update pattern recorded
experimentally. Consumers are attached to all nodes. Isithalations, we show the impact
of a single slow receiver in the group. Therefore, all preessexcept the slow one consume
messages instantly; the time it takes for the slower prottessnsume each messages can be
varied.

Each node implements the SVS protocol by managing local deditouffers. When its
delivery queue fills up, a node ceases to accept further yesgeom the network. Eventually,
this will cause the outgoing buffers of the sender to be egtelwhich, in turn, prevents further
messages from the application from being accepted. At thistpthroughput can only be
sustained by expelling the slow member from the group. No&t the protocol must always
reserve separate buffer space for control information arallow group management function
to operate, in particular to execute the view change pragedu

5.4 Simulation Results

Given a traffic profile and a buffer size, we can determine tivémmum rate at which messages
have to be consumed in order not to disturb the source. Ftanos, by selecting a buffer size
of 15 messages, running the simulation with an increasislgiwer consumer and measuring
the amount of time the producer is blocked due to flow-contr@lobtain Figure 4(a). Notice
that when using a reliable protocol the receiver has to be tabtonsume 73 msg/s in order not
to disturb the sender more than 5%. When a semanticallybtelarotocol is used, the traffic
profile and system configuration allow enough purging todeidne producer undisturbed until
a receiver is limited to consume only 28 msg/s.

We also study the impact of SVS in the number of messagesdealtto be flushed in order

16



T T T T T T T T T T T T T
100 F . reliable
semantic ------- )
Q) % 1000 ]
=2 -~ | &
1S N c
= | peee S
S 50 \ 4 ©
= S 500 | .
I =
L e — g
reliable
semantic -------
O 1 1 1 1 1 1 1
4 8 12 16 20 24 28 4 8 12 16 20 24 28
Buffer size (msg) Buffer size (msg)
(a) Threshold value. (b) Tolerated perturbation length.

Figure 5: Impact of purging in the performance of SVS.

to install a new view. This is related to buffer occupancy wleview change is triggered.

Figure 4(b) presents the results of observing the amountifééibused. Notice that between 73
to 28 msg/s, when purging is enough to prevent throughputdiegion, this is achieved without

buffers filling up. This is important as the amount of usedduspace impacts on the latency
of the view change protocol, which must wait for all pendinggsages to be stable.

Of particular interest in such results are the points of kifle of the curves of Figure 4(a).
Figure 5(a) shows what is the lowest threshold value, fodégradation of a receiver, that can
be tolerated (with less that 5% impact on the sender) as difumof the buffer size. The hor-
izontal line shows which is the average rate of input trafficthe presence of periodic traffic,
a receiver could process messages at the average rate tatfifexting the group throughput.
However, as it can be seen from the figure, due to the burstyenat the game traffic pattern,
when a reliable protocol is used, the receiver has to praoessages at a faster pace (to accom-
modate the excess of messages during the bursts). As edpiatan be observed that larger
buffers allow the reliable protocol to better accommodagssage bursts. In any case, with a
reliable protocol, the receiver’s rate can never be lowantthe average input rate, otherwise it
eventually slows down the system no matter how large theeifire. On the other hand, with
SVS, slower receivers can be accommodated by increasinguffer size which enables purg-
ing to be done. Notice that SVS is not effective for very snhalffer sizes due to the distance
among related messages.

The difference between the two lines of Figure 5(a) indisdhe purging rate achieved by
the protocol for each buffer size. The difference betweenrttessages being produced and
the messages being purged indicates the rate at which &diffarp for a given configuration.
From this rate, we can also estimate the maximum length gbéniirbation period that can be
tolerated before the buffers are exhausted. As a functidmedbuffer size, Figure 5(b) shows for
how long can be tolerated a receiver that completely stopsdoess messages. For instance,

17



with a buffer size o4 messages, a reliable protocol can only tolerate a periorbaf 342 ms
while the SVS protocol can tolerate a perturbation of 857 W& conclude that SVS allows
longer perturbations to be tolerated with the same amouall@tated buffer space. Since this
is achieved at the cost of purging obsolete information, rastcht the cost of storing additional
messages, SVS as no negative impact on the latency of thechi@uge protocol.

6 Related Work

The difficulty of ensuring stable high throughput with grocgmmunication systems has been
pointed out in the context of stock exchange applicatioBs§2d then further generalized to a
larger class of applications[4]. This led to the introdootof a probabilistic reliable broadcast
protocol which addresses throughput stability by droppimgssages on processes that fail to
meet performance assumptions[5]. The use of a probabifpistitocol results in an application
programming model which, unlike ours, differs significgrftom conventional view synchrony.

Although message semantics is here used to relax relighilhas often been used for re-
laxing the ordering of messages. For instance lazy rephic@t 7] relies on message semantics
to relax causal order. Generic broadcast[19] is a relaraifdotal order based on message se-
mantics captured as a binary relation. The work on Optimigititual Synchrony [25] also uses
semantic information to alleviate the cost of view changets bnlike our approach, does not
address the issue of limiting the number of these changegoutd be interesting to combine
these approaches with our proposal.

The Bayou [26] replication system is sensitive to semantfagpdate messages. However,
it relies on programs embedded in the updates which makesnjhlementation much more
complex. In contrast, our proposal uses a simple mechatiahiits general purpose protocols.

In the context of synchronous systems, the notion of timeldesh used to define obso-
lescence relations in tha-causal[2] and deadline constrained [24] causal protocolsese
protocols allow timing constraints to be met at the cost stdriding delayed messages. Our
protocol allows to express obsolescence relations that@trenerely based on the passage of
time. As described in the previous section, this makes ifulger applications other than
strictly periodic traffic.

A primary-backup protocol which discards messages andigesweal-time guarantees has
also been proposed [29], although offering only a weak ctescy model. In contrast, our
proposal provides strong consistency and a generic msttpa@mitive which can be used for
purposes other than primary-backup replication.

18



7 Conclusions

In this paper we have addressed the problem of sustainirfigthigughput in group commu-
nication systems in the presence of processes that may pefflormance perturbations. We
have introduced a novel abstraction, called Semantic VigacBrony (SVS) and shown how it
can be easily implemented by modifying existing implemgate of View Synchrony (VS).

SVS exploits the notion of message obsolescence to accoatmpdrformance perturba-
tions without incurring in the disadvantages of previouprapches which relax reliability.
Namely, our solution does not require the offered load tarbééd due to a single slow process,
it does not require the slow process to be immediately exaduwdhen it exhibits transient de-
lays, and avoids resources to be over-allocated to accomtmaderload periods. On the other
hand, SVS still retains the machinery that allows procesisashave crashed to be expelled
from the group while ensuring that group members have a sterdi state when a new view
is installed. Additionally, by not requiring buffer sizes be over-dimensioned, SVS does not
have a negative impact on the latency of view changes.

SVS is a key element in the design of a full group communicettimlkit offering semantic
reliable multicast services. Besides SVS, this encomgaaise causally and totally ordered
multicast[20]. Semantic reliability based on message lelssence is also being considered as
a generally desirable feature of multicast transport mol®[10].

To illustrate the advantages of SVS we have applied it tacafd the server of a distributed
multi-user game. We have proposed efficient techniquesdodmthe obsolescence relation in
this type of applications. Finally, we have collected expentally data from a running applica-
tion to obtain a realistic characterization of obsolesedioc a concrete game. This information
was used to feed simulations and allowed us to discuss thacingd relevant configuration
parameters, such has the buffer size, on the performancé®f S

References

[1] R. Arpaci-Dusseau and A. Arpaci-Dusseau. Fail-stutett tolerance. IrHot Topicsin
Operating Systems (HotOS 8), May 2001.

[2] R. Baldoni, R. Prakash, M. Raynal, and M. Singhal. Effitia-causal broadcastingntl.
Journal of Computer Systems Science and Engineering, 13(5):263—-269, September 1998.

[3] K. Birman. The process group approach to reliable distied computing Communica-
tions of the ACM, 36(12):37-53, December 1993.

[4] K. Birman. A review of experiences with reliable multgtaSoftware Practice and Expe-
rience, 29(9):741-774, July 1999.

19



[5] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, andWnsky. Bimodal multi-
cast.ACM Transactions on Computer Systems, 17(2):41-88, 1999.

[6] A. Carzaniga, D. Rosenblum, and A. Wolf. Content-basddrassing and routing: A
general model and its application. Technical Report CU903-00, Dept. of Computer
Science, Univ. of Colorado, January 2000.

[7] T. Chandra and S. Toueg. Unreliable failure detectorsrétiable distributed systems.
Journal of the ACM, 43(2):225-267, March 1996.

[8] B. Charron-Bost, X. Défago, and A. Schiper. Time vs.apa fault-tolerant distributed
systems. IrProc. of the 6th IEEE Intl. Workshop on Object-oriented Real-time Depend-
able Systems (WORDS 01), Rome, Italy, January 2001. IEEE Computer Society.

[9] F. Cristian and C. Fetzer. The timed asynchronous thsted system modelEEE Trans-
actions on Parallel and Distributed Systems, pages 642—657, June 1999.

[10] S. Elf and P. Parnes. A literature review of recent depeients in reliable multicast error
handling. Technical report, CDT, Lulea Univ. of Tech., 2001

[11] A. Gopal and S. Toueg. Inconsistency and contaminatiohuigi Logrippo, editorProc.
10th ACM Symp. on Principles of Distributed Computing (PODC 91), pages 257-272.
ACM Press, August 1991.

[12] R. Guerraoui, R. Oliveira, and A. Schiper. Stubborn commication channels. Technical
Report 98-278, Département d’Informatiqiole Polytechnique Fédérale de Lausanne,
1998.

[13] R. Guerraoui and A. Schiper. Software-based replicator fault tolerancel EEE Com+
puter, 30(4):68—74, April 1997.

[14] R. Guerraoui and A. Schiper. The generic consensuscg&nMEEE Transactions on
Software Engineering, 27(1):29-41, January 2001.

[15] M. Hiltunen and R. Schlichting. Properties of membgus$ervices. InProc. 2nd. Intl.
Symp. on Autonomous Decentralized Systems, pages 200-207, April 1995.

[16] Id Software Inc. Quake Homepage. http://www.quakeco

[17] R. Ladin, B. Liskov, and L. Shrira. Lazy replication: pwiting the semantics of dis-
tributed servicesACM S GOPS Operating Systems Review, 25(1):49-54, January 1991.

[18] K. Lin and V. Hadzilacos. Asynchronous group membgyshith oracles. 1rDISC’ 1999,
pages 79-93, 1999.

20



[19] F. Pedone and A. Schiper. Generic broadcastPrizc. of the 13th Intl. Symp. on Dis-
tributed Computing (DISC’ 99, formerly WDAG), September 1999.

[20] J. Pereira. Semantically Reliable Group Communication. PhD thesis, Univ. of Minho,
2002. (to appear).

[21] J. Pereira, L. Rodrigues, and R. Oliveira. Semantycedliable multicast protocols. In
Proc. of the Nineteenth IEEE Symp. on Reliable Distributed Systems, pages 60—69, Octo-
ber 2000.

[22] J. Pereira, L. Rodrigues, and R. Oliveira. Semantyoaliable broadcast: Sustaining high
throughputin reliable distributed systems. In P. Ezhilcae and A. Romanovsky, editors,
Concurrency in Dependable Computing, chapter 10. Kluwer, 2002. (to appear).

[23] R. Piantoni and C. Stancescu. Implementing the Swissh&ixge Trading System. In
Proc. of The Twenty-Seventh Annual Intl. Symp. on Fault-Tolerant Computing (FTCS 97),
pages 309-313. IEEE, June 1997.

[24] L. Rodrigues, R. Baldoni, E. Anceaume, and M. Raynal.ad&e-constrained causal
order. InThe Proc. of the 3rd IEEE Intl. Symp. on Object-oriented Real-time distributed
Computing, March 2000.

[25] J. Sussman, I. Keidar, and K. Marzullo. Optimistic wat synchrony. InProc. of the
Nineteenth IEEE Symp. on Reliable Distributed Systems, pages 42-51, October 2000.

[26] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreifand C. Hauser. Managing
update conflicts in Bayou, a weakly connected replicatexhgtosystem. IfProc. of the
15th Symp. on Operating Systems Principles (SOSP-15), December 1995.

[27] P. Verissimo, A. Casimiro, and C. Fetzer. The timelynpating base: Timely actions
in the presence of uncertain timeliness. Aroc. Intl. Conf. on Dependable Systems and
Networks (DSN'00), pages 533-542, New York City, USA, June 2000. IEEE Computer
Society Press.

[28] R. Vitenberg, I. Keidar, G. Chockler, and D. Dolev. Gpooommunication specifica-
tions: A comprehensive study. Technical Report MIT-LCS-T80, The Hebrew Univ. of
Jerusalem and MIT, September 1999.

[29] H. Zou and F. Jahanian. Real-time primary-backup ogpion with temporal consistency
guarantees. IProc. |IEEE Intl. Conf. on Distributed Computing Systems (ICDCS 98),
June 1998.

21



