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Abstract

Financial institutions, acting as financial intermediaries, need to handle
numerous information sources and feed them to multiple processing, storage,
and display services. This requires filtering and routing, but these feeds are
usually provided in custom formats and protocols that are not the best fit for
further processing. Moreover, the sheer volume of information and stringent
timeliness and reliability requirements make this a substantial task.

In this paper, i) we characterize one of these information feeds (the Ex-
change Data Publisher feed from the NYSE Euronext European Cash Mar-
kets) and ii) we present and evaluate a dissemination system for this particu-
lar feeder based on commodity hardware and open-source message-oriented
middleware (Apache Qpid). This allows us to assess the feasibility of this
approach and to point out the main challenges to be overcome.

1 Introduction

Market data feeds such as the NYSE Euronext XDP [5] provide to financial institu-
tions a detailed account of orders, trades, and quotes in real time. This information
is needed for trading activities within the institution as well as to serve external
clients through Web- based trading and home banking platforms. This requires
that these feeds are processed, filtered, and routed towards a number of different
services that encapsulate processing, storage, and further dissemination activities.

This is however a challenging task. First, due to the sheer volume of infor-
mation and to stringent timeliness and reliability requirements. But also because
the protocol used to deliver the data across a wide area network from the market
systems is custom tailored to a specific set of requirements and not fit for further
processing and usage within the institution. As further detailed in Section 2, this
protocol is tailored to providing reliable transmission with minimal recovery la-
tency while minimizing feedback to the sender for greater scalability and resilience
of market systems. As a consequence, the coarse granularity of subscriptions and
upfront redundant data transmission cause a large bandwidth overhead.
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Reconciling this with the typical requirements of a financial institution means
publishing the market data feed to a more flexible event dissemination system. In
this paper we describe an experiment to assess the feasibility of achieving this
with off-the-shelf hardware and software and minimal additional configuration and
performance tuning effort. This leads to two contributions:

• We characterize the workload imposed by a typical market data feed in terms
of number and type of events, but also how frequently and far apart related
events are found in the incoming data.

• We deploy a test system using Apache Qpid [3] message broker and several
event consumers and measure the latency introduced while accounting for
resources used.

The rest of the paper is structured as follows. The NYSE Euronext data feed is
characterized in Section 2, followed by a description of our experimental setting
in Section 3. Then, in Section 4 we present the experimental results. Finally, we
summarize the lessons learned, discuss the results and lay plans for future work.

2 NYSE Euronext XDP

The NYSE Euronext European Cash Markets Exchange Data Publisher (XDP) feed
is disseminated in real-time via dual multicast channels with different Market Data
product sets having its own pair of dedicated multicast channels (Figure 1). In
particular, the Exchange Data Publisher feed, has seven main different product
sets, or services: Euronext Equities - Referential Data (101), Euronext Equities -
Trades (102), Euronext Equities - Quotes (103), Euronext Equities - Orders (104),
Euronext Warrants - Trades (105), Euronext Warrants - Quotes (106), and Euronext
Indices - Composition and Values (107).

Real-Time 
Services

Retransmission 
Services

Refresh 
Services

Client

TCP/IPTCP/IP
Dual

Multicast
Channels

Dual
Multicast
Channels

Figure 1: NYSE Euronext UTP-MD platform

The usability of these feeds, in terms of packet recovery, is assured by three
components: i) the Market Data Server (MDS) that provides the real-time data via
dual multicast channels (the data of each of the above services is received inde-
pendently in two channels), ii) the Retransmission Server (RTS) that is able to fill,
upon request and by TCP connections, the packet gaps that clients may experience,
and iii) the Refresh Server (RFS) that is able to provide a snapshot of the current
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market state using a second set of multicast channels or, upon request, via TCP
connection.

2.1 Protocol

The real-time market data is delivered as payload of IPv4 UDP datagrams with
fixed length fields. Each Euronext packet has, at least, 16 bytes in a packet header
and never exceeds 1400 bytes. It can also have several market data messages in
its payload (the number of messages is specified in one field of the packet header).
And each packet will only contain complete messages.

The 16-byte packet header has these fields: PacketLength(2), PacketType(2),
PacketSeqNum(4), SendTime(4), ServiceID(2), DeliveryFlag(1), and NumberMs-
gEntries(1). Each Market Data message also has a 4 byte message header with two
fields: MsgSize(2) and MsgType(2).

2.2 Session traffic

Table 1 and Figures 2 and 3 represent the raw data, in terms of packets and bytes,
received from the Euronext network in a typical session during a March 2011 ses-
sion starting at 05:10 and finishing at 22:00. The resulting data is representative of
most sessions, although it is not the worst case scenario that was observed.

This Euronext session traffic, arriving through a single 48 Mbps leased line,
was captured [6] by a software based solution - dumpcap 1 - without any packets
being dropped. The capture process only listened for multicast packets and no
switch port-mirror facility was used.

Packets Data size
Service Number % Bytes %

Realtime 78790668 97.0 26872066702 95.9
101 69943 0.1 17595944 0.1
102 4450056 5.5 561680548 2.0
103 28504078 35.1 12073599450 43.1
104 28762398 35.4 10014669786 35.7
105 649279 0.8 125315792 0.4
106 15731559 19.4 3851438560 13.7
107 623355 0.8 227766622 0.8

Refresh 2426944 3.0 1153843507 4.1
Total 81217612 100.0 28025910209 100.0

Table 1: Real-time services: traffic summary

For this particular session more than 81 million packets (ethernet frames), to-
taling 26.1 GiB of data, were captured. For Euronext traffic these numbers can be

1Dumpcap is part of the Wireshark [2] software suite.
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Figure 2: Packets per minute
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Figure 3: Bytes per minute

further divided in Realtime and Refresh traffic, where 97% of the packets belong to
the first category and 3% belong to the second. The 81 millions of Euronext pack-
ets contained more than 410 millions of Euronext messages, the average Euronext
packet size (the UDP datagram payload) was 287.53 bytes, the average Euronext
message size was 53.74 bytes, and the average number of Euronext messages per
packet was 5.05.

Figures 4 and 5 show the raw incoming data splitted by the seven real-time
services. The ten bigger traffic peaks for this particular session, in terms of packet
and bytes rates, are listed in Tables 2 and 3.

Finally, we characterize how often related events are found in the stream by
computing the interarrival time of events referring to the same SymbolIndex. As
can be seen in Figure 6, containing the corresponding empirical cumulative dis-
tribution, when a symbol is repeatead in the same stream, approximately 70% of
times it will be within the same millisecond and 80% of times before 10 millisec-
onds. This means that multiple references to the same symbol appear in bursts.
Note that the interarrival time was calculated using only packets from the first
channel of each service. This means that there is potential for caching of rules
within the broker when filtering and routing messages based on the symbol.
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Figure 4: Real-time services: packets per minute
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Figure 5: Real-time services: bytes per minute
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Figure 6: Same symbol interarrival

The challenge is thus to determine to what extent an off-the-shelf middleware
package can be used on typical hardware components to perform the information
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Time Packets Bytes
09:33:42 10297 5480480
13:29:56 9349 4802572
08:24:47 8871 5488584
13:50:39 8634 4603524
08:05:00 8545 3845246
09:33:43 8453 4870922
08:04:58 8386 3250192
08:05:11 8184 2088188
09:33:47 8162 4724620
09:33:46 8153 5414590

Table 2: Packet peaks

Time Packets Bytes
16:34:55 4790 5975840
05:16:29 4660 5912564
07:59:58 5989 5899770
05:16:24 5237 5897868
05:16:23 5496 5793488
05:16:25 4319 5670150
05:16:30 4459 5668254
05:16:26 4611 5628434
08:24:47 8871 5488584
09:33:42 10297 5480480

Table 3: Byte peaks

dissemination and filtering activities required to support a service oriented infras-
tructure. In particular, we are concerned with the ability to meet desired latency
targets in spite of traffic bursts when performing dissemination and filtering at dif-
ferent granularities, namely, by service or by symbol.

3 Experimental Setup

M7
Client

M6
Client

M5
Client

M1
Replay

M2
Gateway

M3
Broker

M4
Client

CC

UDP TCP TCP

1Gbps1Gbps1Gbps

1Gbps

Figure 7: Experimental setup
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To address this challenge, we setup an infrastructure that can deterministically
replay a representative sample of traffic and feed it into different middleware con-
figurations. In detail, the architecture used is depicted in Figure 7, showing the
main computers used and their network connections. All computers had at least an
Intel Core2 Duo CPU, 2 network interfaces, and 2 GB of RAM 2 and were running
Scientific Linux 6.1 x86 64, a Red Hat Enterprise Linux clone, with kernel 2.6.32
(2.6.32-131.6.1.el6.x86 64). The two switches used, one for interconnecting the
broker with the clients, and the other for the command-and-control network, are
both gigabit. All links are gigabit with the exception of the replay machine (M1)
command-and-control link that is only 100 Mbps.

Server M1 was responsible for impersonating the NYSE Euronext XDP feed.
This impersonation was done by replaying traffic captured during a real Euronext
session. The traffic, which has been previously captured, was replayed with the
tcpreplay [7] tool, after being modified with tcprewrite 3 in order to change the
frame source mac address and the source IP address. It basically replayed the
multicast XDP packets (Ethernet/IPv4/UDP/XDP).

Server M2 had a simple thread-based software component implemented in C++
that received the feeder real-time multicast traffic (XDP data over UDP), dropped
the duplicate packets, optionally splitted the packets in its messages, and injected
them in the Qpid broker as AMQP messages (Eth/IPv4/TCP/AMQP/XDP). Note
that this application ignored the Refresh multicast traffic, i.e., it didn’t join the
Refresh multicast groups. This application was linked against the Qpid client and
the Boost [1] libraries.

Server M3 runned a Qpid broker, an open source implementation of the Ad-
vanced Message Queuing Protocol (AMQP) [4]. This particular Qpid broker was
installed via yum using the RPMs available in the Scientific Linux repositories
(qpid-cpp-server-0.10). All system components, in particular the kernel and the
broker, had their default configurations, with the exception of the broker default
queue size that was increased to 500 MiB. All published and subscribed data was
handled over AMQP messages.

Hosts M4, M5, M6, and M7 executed the client application, that consumed or
subscribed the feed information using either a direct or a topic exchange 4. The
client application was also done in C++, linked with the Qpid client and the Boost
libraries. All subcribed data was transported in AMQP messages.

Finally, CC was used to start the tests and collect the system under test statis-
tics. These operations were performed through a second and independent gigabit
network.

2The gateway had 3 gigabit network interfaces; the broker had a quad core CPU (Intel i7), 5
gigabit network interfaces, and 8 GB of RAM

3Tcprewrite is part of the tcpreplay software suite.
4The topic exchange supports multiple words keys
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4 Measurements

The latency introduced by the middleware system, an Apache Qpid broker, was
measured in two major scenarios: i) a publish/ subscribe scenario where every
non-duplicated real-time Euronext packet was independently published and ii) a
publish/subscribe scenario where every Euronext message of non-duplicated real-
time Euronext packets was independently published. Each of the previous scenar-
ios was further subdivided in two separated experiments: i) using a broker direct
exchange for the publish/subscribe operations and ii) using a broker topic exchange
for the publish/subscribe operations.

Other important system considerations were:

• A subset of the captured Euronext session traffic was replayed at 40 Mbps
from M1 system. The subset used, the captured traffic between 07:55 and
10:00, contained approximately 20.1 millions Euronext packets that repre-
sented roughly 9.99 millions non-duplicated real-time Euronext packets con-
taining 50.6 millions Euronext messages.

• Every time a non-duplicated Euronext real-time packet arrived at the gate-
way (M2), it was pushed to its respective service queue 5. Another thread,
one for each real-time service, was used to consume the packets from the
service queue, and publishing them on the Qpid broker. In the second sce-
nario, this thread was also responsible for splitting the Euronext packets in
its messages, suffixing them with a 7 byte tag (Service ID, PacketSeqNum,
and MessageNum), before publishing them to the Qpid broker.

In the first scenario, and for every odd PSN Euronext packet, an UDP control
message containing the current packet tag was sent to the CC system where
it was timestamped on arrival. In the second scenario, an UDP message was
sent for every odd message of every odd PSN Euronext packet (roughly 1
control message for every 4 Euronext messages).

• The publish/subscribe control client (M4), either a direct or a topic exchange
client, for every message with an odd PSN it received, extracted the message
tag and sent it in an UDP control message to the CC system, where it was
also timestamped on arrival. In the second scenario, an UDP control message
was sent for every odd message of every odd PSN Euronext packet.

• The CC machine, by timestamping the messages it received from the gate-
way and from the control client, and matching their tags, was able to calcu-
late the latency introduced on the system by the Qpid broker.

5Remember that every service receives data via two independent channels
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4.1 Scenario 1 - Euronext packets as AMQP messages data

The results of this setup, where there is a one-to-one relation between the number
of non-duplicated real-time Euronext packets and the number of AMQP messages
published, are summarized in Tables 4 and 5 and in Figures 8, 9, and 10.

Clients Mean Min Max P(50%) P(90%)
1 0.786 0.008 421.028 0.762 1.007
2 0.871 0.008 271.007 0.836 1.137
4 0.918 0.008 323.354 0.883 1.193
6 1.216 0.008 347.970 1.026 1.946
8 1.464 0.008 264.230 0.999 2.932
10 1.519 0.008 277.401 0.975 3.119

Table 4: Packets: direct exchange latencies (ms)

Clients Mean Min Max P(50%) P(90%)
1 0.807 0.009 301.832 0.783 1.034
2 0.903 0.008 383.946 0.856 1.167
4 0.990 0.008 1595.953 0.931 1.303
6 1.326 0.008 265.208 1.048 2.327
8 1.516 0.008 253.650 1.002 3.097
10 1.566 0.009 404.169 1.000 3.201

Table 5: Packets: topic exchange latencies (ms)
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Figure 8: Euronext packets: latencies

During this setup runs, the machines CPU load, network load, and memory
consumption were monitored using Dstat [8], and no resource related problems
were detected in any of them. In particular, the system load of the broker (M3)
oscillated between 2% and 12% while its user load oscillated between 8% and
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Figure 9: Packets: direct exchange latencies
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Figure 10: Packets: topic exchange latencies

30%; the replay system transmitted 5 MB/sec, the gateway transmitted 3 MB/s in
its publishing link, and the client consumed data at 3.4 MB/s.

The conclusion is that it is possible to use the proposed middleware as the
backbone for dissemination, even if topic subscribtion is being performed instead
of direct exchange. Note however that if the application is highly sensitive to delay,
the long tails in Figures 9 and 10 indicate that, even in this case in which broker
resources are far from being exhausted, there are some packets that are delayed
significantly more than the average delay.
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4.2 Scenario 2 - Euronext messages as AMQP messages data

The results of this setup, where there is a one-to-five relation between the number
of non-duplicated real-time Euronext packets and the number of AMQP messages
published, are summarized in Tables6 and 7 and in Figures 11, 12, and 13.

Clients Mean Min Max P(50%) P(90%)
1 0.762 0.009 505.393 0.709 1.024
2 0.809 0.021 589.011 0.702 1.081
3 0.974 0.018 567.455 0.754 1.183
4 2.230 0.022 592.593 1.001 3.763
5 60.652 0.088 705.414 53.199 125.689

Table 6: Messages: direct exchange latencies (ms)

Clients Mean Min Max P(50%) P(90%)
1 0.775 0.018 530.459 0.713 1.033
2 1.062 0.009 596.690 0.753 1.340
3 2.185 0.022 613.629 0.969 3.512
4 10.850 0.043 503.512 3.985 29.263
5 120.456 0.221 720.153 120.128 146.817

Table 7: Messages: topic exchange latencies (ms)
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Figure 11: Euronext messages: latencies

During this setup runs, the machines CPU load, network load, and memory
consumption were monitored using Dstat [8], and some resource related problems
start to appear. While the broker (M3) maintained its resources under control,
where its system load oscillated between 2% and 10% and its user load oscillated
between 15.5% and 38%, the gateway started to experience some CPU and memory
stress: the broker producer flow-control and what appears to be a single-thread per
connection publishing started to increase the memory consumption and CPU load.
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Figure 12: Messages: direct exchange latencies
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Figure 13: Messages: topic exchange latencies

In this setup the replay system transmitted 5 MB/sec, the gateway transmitted 6.1
MB/s in its publishing link, and the client consumed data at 7.8 MB/s.

In this case, in which the broker has to manage a substantially higher number
of messages, even if smaller in size, it becomes clear that it becomes a bottleneck
fairly quickly. In fact, with as little as 5 subscriptions, there is significant queuing
happening with dramatic impact in latency.

5 Lessons learned

These experiments, where the data was replayed at a constant bit rate and every
client subscribed to all data published, allowed us to uncover the following lessons.
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First, splitting the XDP packets too soon in the dissemination path causes sev-
eral problems: i) the broker CPU load (as seen in figure 15) increased sharply with
the higher number of smaller messages being published, ii) the broker network
bandwidth usage in the link where the subcribers were connected (as seen in figure
14) more than duplicated; this also show us how critical the protocols overheads
were and how easy it would be to saturate a 1 Gbps network link even with a small
number of clients, iii) the end-to-end latencies increased rapidly (Tables 6 and 7 vs
Tables 4 and 5) making the SUT become unusable with only 5 clients.

Second, the fine grained pub/sub also caused problems in the gateway system,
making its memory usage grow steadly (due to queueing of messages) as the bro-
ker started to throttle back the producer message rate (Qpid producer flow control
feature). This behaviour was observed in the Messages/Topic experiment of the
second scenario (Figure 16). This also made the gateway a prime contributer to the
end-to-end latency.
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Figure 15: Broker CPU load
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6 Conclusions

In this paper we describe an experiment with an event processing and dissemination
infrastructure for handling a typical financial market data feed within a financial
institution. The first contribution is thus a characterization of this workload, that
should be useful when researching event dissemination systems, for instance, when
generating realistic workloads for testing.

Although our setup handles the load while consuming only a fraction of avail-
able CPU and memory bandwidth of the broker, we observed that additional clients,
in particular with fine grained publication/subscription, quickly cause an increasing
share of events to be delayed for an increasingly larger period. This is worrisome
and thus future work should explore the scalability limits of the system. Moreover,
the large number of related events close together in the event stream found by this
study should also be considered in future research.
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