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The filamentous fungus Ashbya gossypii has been safely and successfully used for more than two decades in the
commercial production of riboflavin (vitamin B2). Its industrial relevance combinedwith its high genetic similar-
ity with Saccharomyces cerevisiae together promoted the accumulation of fundamental knowledge that has been
efficiently converted into a significantmolecular and in silico toolbox for its genetic engineering. This synergy has
enabled a directed and sustained exploitation of A. gossypii as an industrial riboflavin producer. Although there is
still room for optimizing riboflavin production, the recent years have seen an abundant advance in the explora-
tion of A. gossypii for other biotechnological applications, such as the production of recombinant proteins, single
cell oil and flavour compounds. Here, wewill address the biotechnological potential of A. gossypii beyond ribofla-
vin production by presenting (a) a physiological and metabolic perspective over this fungus; (b) the molecular
toolbox available for its manipulation; and (c) commercial and emerging biotechnological applications for this
industrially important fungus, together with the approaches adopted for its engineering.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The filamentous hemiascomycete Ashbya gossypii (syn. Eremothecium
gossypii) has recently emerged as an attractive cell factory to produce yet
unexplored high-value products. Industrially exploited for more than
20 years due to its natural ability to overproduce riboflavin, A. gossypii is
considered a remarkable example of the sustainableWhite Biotechnology
ustrial riboflavin production: A historical perspective and emerging
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business model (Kato and Park, 2012; Lim et al., 2001; Stahmann et al.,
2000; zu Berstenhorst et al., 2009). Nevertheless, the scientific promi-
nence of A. gossypii is not limited to its biotechnological potential, since
it is also extensively used as a model organism in fungal developmental
and evolutionary biology studies (Perez-Nadales et al., 2014; Schmitz
and Philippsen, 2011; Wendland and Walther, 2005). Its industrial rele-
vance and the basic knowledge accumulated along the years promoted
the development of molecular and in silico tools that, in turn, have
allowed the continuous engineering of A. gossypii strains with im-
proved riboflavin production traits, either through random or ratio-
nal approaches.

The overwhelming capacity of A. gossypii to produce riboflavin will
continue to be targeted for optimization, even more with the advent
of systems biology. However, since the beginning of this decade, we
havewitnessed the increasingly stronger shift of the A. gossypii biotech-
nological paradigm from riboflavin to other commercially interesting
high-value compounds, such as recombinant proteins (Ribeiro et al.,
2010), single cell oil (SCO; Ledesma-Amaro et al., 2014a) and flavour
compounds (Ravasio et al., 2014; Ledesma-Amaro et al., 2015). In this
review, we will focus on the emerging biotechnological potential of
this promising cell factory that nowadays goes far beyond riboflavin
production (Fig. 1). This reviewwillfirst provide a historical perspective
over this fungus, highlighting its relevant metabolic and physiological
traits (Section 2). Subsequently, the molecular toolbox established and
available for A. gossypii manipulation will be presented (Section 3)
and the random and rational genetic engineering approaches that
have been used in the context of riboflavin, recombinant protein, SCO
and flavour compounds' production will be described (Section 4). We
will conclude by presenting future challenges anddirections that should
be taken in order to guide these emerging biotechnological applications
through the successful track of riboflavin production.

2. A. gossypii

2.1. Habitat

A. gossypii was originally isolated from infected cotton bolls
(Gossypium sp.) harvested in the BritishWest Indies (Caribbean region)
and identified as one of the causative agents of stigmatomycosis (Ashby
and Nowell, 1926). Subsequently, A. gossypii strains were also isolated
from other crops widespread along the tropic and sub-tropic regions
Fig. 1. A. gossypii's biotechnological applications. Following its established industrial use in
riboflavin production, emerging biotechnological applications for this fungus are: recom-
binant protein, single-cell oil (SCO) andflavour compounds' production. The technological
approaches used for the development of these biotechnological applications are presented
in the closing circle.
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of Northern America, Southern America and South Africa, such as coffee,
citrus fruits and tomatoes (Batra, 1973; Pridham and Raper, 1950).
More recently, A. gossypii was isolated from large milkweed bugs
found feeding on oleander in Florida, USA (Dietrich et al., 2013). Insect
vectors, predominantly those with pierce-sucking mouthparts such as
the Heteroptera, are essential for the transmission of this fungus, as the
fungus itself is unable to penetrate the outer cells of healthy fruits and
seeds unless a mechanical injury occurs (Batra, 1973; Pridham and
Raper, 1950). Since the most important mode of infection requires in-
sects to transport and inject spores ormycelial fragments into the tissue
of the plant (Batra, 1973; Pridham and Raper, 1950), the control of the
insect population by insecticides has proven efficient in preventing
the dissemination of A. gossypii (Dammer and Ravelo, 1990).

The characteristics of the plant tissues where A. gossypii has been
found (rich in readily usable sugars and/or oils; Caskey and Gallup,
1931) and its insect-dependent infectionmode justify modest secretion
of extracellular enzymes by A. gossypii (Aguiar et al., 2014a; Ribeiro
et al., 2010), as its proliferation does not depend on the degradation of
complex substrates. On the other hand, the A. gossypii's need to attract
insects for spreading benefits from its capacity to produce large
amounts of strong volatile aromas (Ravasio et al., 2014; Wendland
et al., 2011). Interestingly, this close relationship between A. gossypii
and certain plant-feeding insects has also provided some hints regard-
ing its riboflavin overproduction capacity (Dietrich et al., 2013;
Walther andWendland, 2012). It has been hypothesised that the over-
production of riboflavin constitutes an ecological advantage for both the
fungus and insects in their natural niches, by conferring themprotection
against some plant defences (Walther and Wendland, 2012; Dietrich
et al., 2013). Therefore, a better understanding of the existing biological
relationship between A. gossypii and its insect vectors holds the poten-
tial to unravel new perspectives and opportunities for biotechnology,
such as the development of environmentally-friendly insecticides.
2.2. Taxonomic history

A. gossypii was first characterized in 1926 by Ashby and Nowell
(Ashby and Nowell, 1926), who at the time named it Nematospora
gossypii, based on the close resemblance of its sporangia and spores to
those of other Nematospora species. In 1928, based on cytological and
phylogenetic studies, Guilliermond (1928) placed this species in the
class Hemiascomycetes and assigned to it a new genus name, Ashbya,
because in contrast to other Nematospora species it grew exclusively
in a mycelial form and polynucleated cells were in the origin of its
sporangia. Fragoso and Ciferri (1928) considered this species to belong
to the order Saccharomycetales (Endomycetales) and also suggested
separating it from the Nematospora genus, presenting a Latin descrip-
tion for it under the generic name Ashbia.

As this species appears to possess characteristics of several families,
further classification attempts differed along the years. Ascospore
morphology (needle-shaped with a whiplike filament at one end) and
the presence of hyphal growth were considered to separate the genus
Ashbya, at least at the family level, from yeast genera belonging to the
Saccharomycetales (von Arx and van der Walt, 1987). However, the
close relationship between A. gossypii and Saccharomyces cerevisiae
started to became obvious when the sequence analysis of the first
set of clones of A. gossypii genomic DNA (gDNA) revealed an unpre-
dictably high degree of synteny to the gene order of their homo-
logues in S. cerevisiae (Altmann-Jöhl and Philippsen, 1996; Steiner
and Philippsen, 1994). Based on phylogenetic analysis of ribosomal
DNA (rDNA) sequence divergence, Kurtzman (1995) placed the genera
Ashbya, Eremothecium, Holleya and Nematospora in a single genus,
Eremothecium, and introduced the family Eremotheciaceae for this
genus. Prillinger et al.'s (1997) data on cell wall sugar composition,
dityrosine content in ascospores, ubiquinone side chains and sequence
analysis of the genes coding for the 18S rDNA and ITS region supported
ustrial riboflavin production: A historical perspective and emerging
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the inclusion of these genera within a single genus, as proposed by
Kurtzman (1995), but within the Saccharomycetaceae family.

The sequencing and annotation of the A. gossypii genome finally elu-
cidated the close relation between A. gossypii and S. cerevisiae, revealing
homologues in S. cerevisiae for 94% of the 4776 annotated protein-
coding genes of A. gossypii, 90% of which at syntenic positions (Brachat
et al., 2003; Dietrich et al., 2004, 2013). Only 6% of the A. gossypii's
protein-coding genes have no homologue in S. cerevisiae, but most of
these genes have a syntenic homologue in other closely related species
(Dietrich et al., 2004, 2013; Wendland et al., 2011; Wendland and
Walther, 2014). The small size (9.12 Mb) and organization of the
A. gossypii's genome into only seven chromosomes also provided
compelling evidence for an ancient whole-genome duplication (WGD)
of the Saccharomyces lineage after its split from the Ashbya lineage
(Dietrich et al., 2004). With the genome sequence of several fungal
species available, fungal phylogenomic studies have been conducted
(Fitzpatrick et al., 2006; Wang et al., 2009), congruently placing
A. gossypii in the order Saccharomycetales, close to other pre-WGD spe-
cies, like Kluyveromyces lactis, Kluyveromyces waltii and Saccharomyces
kluyveri. However, the monophyly of these four species is still unsettled
(Wang et al., 2009). Kurtzman and Robnett (2003) suggested that these
species are paraphyletic, assigning the genus Eremothecium to the clade
12 of the Saccharomyces complex, K. lactis to the clade 11 and K. waltii
and S. kluyveri to the clade 10. In contrast, other studies suggest that
the four species are monophyletic, constituting themselves a clade
(Fitzpatrick et al., 2006; Wang et al., 2009).

2.3. Life cycle

A. gossypii is one of the simplest filamentous fungal species studied,
which due to its close relationship to yeast, small genome size and easy
geneticmanipulation arose as an attractivemodel to study fungal devel-
opmental biology (reviewed in Perez-Nadales et al., 2014; Schmitz and
Philippsen, 2011; Wendland and Walther, 2005). Its life cycle (Fig. 2)
starts with a short period of isotropic growth that initiates the germina-
tion of its uninucleate haploid spores and leads to the formation of a
spherical germ bubble at the centre of the spores, which is where the
nucleous is positioned (Alberti-Segui et al., 2001; Wendland and
Philippsen, 2000). Then, actin patches start to accumulate in a region
of the germ bubble cortex perpendicular to the axis defined by the
spore needle, marking the emergence of the first germ tube and the
switch to polarized growth (Knechtle et al., 2003). The tip of the germ
Fig. 2. Schematic representation of the A. gossypii life cycle. The colony photo represents
growth for eight days on agar-solidified complex medium.
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tube continues extending and an actin ring at the neck between the
germ bubble and the first germ tube initiates the formation of the first
septum (Knechtle et al., 2003). Septation and nuclear division are
uncoupled events in A. gossypii, and thus each hyphal compartment en-
closes multiple nuclei (Kaufmann and Philippsen, 2009; Wendland and
Philippsen, 2000). These exhibit asynchronous division cycles and vari-
able ploidy, despite sharing a common cytoplasm (Anderson et al.,
2015; Gladfelter et al., 2006). At the opposite side of the germ bubble
a second germ tube is formed, giving rise to a bipolar germling
(Wendland and Philippsen, 2000). From these initial hyphae a young
mycelium is generated by lateral branching. Hyphal tip growth speed
increases during maturation and concomitantly hyphal tips start to un-
dergo dichotomous branching, leading to the formation of Y-shaped hy-
phal filaments (Ayad-Durieux et al., 2000). To deal with the high
demand for novel cell surface at the growing tip, secretory vesicles con-
taining newmembrane and cell wall components are transported along
the actin cytoskeleton to the tip of fast-growing hyphae, where they ac-
cumulate in Spitzenkörper-like spherical structures and fuse with the
plasma membrane, releasing their content to the extracellular space
(Köhli et al., 2008). The secretion of proteins required for cell wall
synthesis and lysis of substrates is thus thought to occur preferentially
(although not exclusively) at the hyphal tip (Read, 2011).

The vegetative growth of A. gossypii ceases upon nutrient limitation
and old mycelia eventually enter the sporulation phase, event that is
linked with the production of riboflavin (vitamin B2), which dramat-
ically increases during this phase (Stahmann et al., 2001). However,
riboflavin production is not exclusively connected to sporulation, as
non-sporulating mycelia also accumulate riboflavin (Walther and
Wendland, 2012). Old hyphae fragment at septal sites to form
sporangia that usually contain eight endospores bound together by
filaments, which are set free by lysis of the sporangia cell walls
(Wendland and Walther, 2005). On solid media, the sporulation
zone is rich in strongly aggregated hyphae that rise above the agar
and form synnemata-like structures (Grünler et al., 2010). In liquid
media, old mycelia undergo autolysis during the latest phase of its
life cycle (Pridham and Raper, 1950).

Sporulation in A. gossypii is affected by the mitogen-activated
protein (MAP)-kinase pathway that governs the mating pheromone
response and the starvation/filamentous growth response, and by
the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA)
pathway that governs all aspects of cell physiology, particularly mor-
phogenesis, growth and sporulation (Wasserstrom et al., 2013, 2015;
Wendland et al., 2011). However, the specific mechanisms of spore
formation in A. gossypii are still poorly understood, not being clear
whether there is a meiotic component to sporulation (Wasserstrom
et al., 2013, 2015). The A. gossypii reference strain ATCC10895 was
found to harbour four identical mating-type cassettes in its genome
containing MATa information, but no MATα orthologs were found
(Dietrich et al., 2013; Wendland et al., 2011), which led to question
the existence of a sexual cycle in this fungus (Wendland et al.,
2011). However, the recent genome sequencing of a new A. gossypii
strain (FDAG1) isolated from large milkweed bugs revealed that
this wild isolate encodes both MATa and MATα sequences, suggest-
ing that some A. gossypii strains likely have a sexual cycle (Dietrich
et al., 2013).
2.4. Metabolism and physiology

A. gossypii is a natural overproducer of riboflavin (vitamin B2), which
confers to its mycelia a characteristic yellow colour (Wickerham et al.,
1946). Overproduction of this vitamin in A. gossypii is known to start
at the stationary phase, when the growth rate declines, concomitantly
with sporulation (Karos et al., 2004; Stahmann et al., 2001). As a rule,
similar kinetics of production have been seen during microbial synthe-
sis of secondary metabolites, but not primary metabolites. Therefore,
ustrial riboflavin production: A historical perspective and emerging
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riboflavin is considered in A. gossypii as a pseudo-secondary metabolite
(Schlösser et al., 2001).

Riboflavin is synthesized de novo from guanosine-5-triphosphate
(GTP) and ribulose 5-phosohate (ribulose 5-P) through a multi-step
pathway controlled by six RIB genes (Fig. 3) (Karos et al., 2004). The ri-
boflavin production phase is characterized by a strong increase in the
expression of three of these genes (AgRIB3, AgRIB4, and AgRIB5),
which are regulated at the transcription level (Schlösser et al., 2001,
2007; Walther and Wendland, 2012). Overproduction of riboflavin by
A. gossypii has been shown to be triggered by environmental stresses,
such as nutritional and oxidative stress (Kavitha and Chandra, 2009,
2014; Silva et al., 2015; Schlösser et al., 2007; Walther and Wendland,
2012). Alongside with the induction of riboflavin overproduction and
secretion, oxidative stress has been shown to also induce the activity
of enzymes that are involved in the detoxification of reactive oxygen
species (ROS), e.g. catalase and superoxide dismutase (Kavitha and
Chandra, 2009, 2014). Hence, the secretion of large amounts of ribofla-
vin by A. gossypiiwas suggested to function as a possible stress defence
mechanism against the ROS produced by plant defences (Walther and
Wendland, 2012). The AgYap1p, a transcription factor that plays a
major role in directing the cellular responses to various stresses, was
shown to regulate the expression of the AgRIB4 gene and to mediate
an AgYap1p-dependent increase in riboflavin production during oxida-
tive stress (Walther and Wendland, 2012). AgYap1p also seems to
Fig. 3. Pathways and genes involved in the A. gossypiimetabolism that have been targeted for
scheme: glycolysis and gluconeogenesis (light blue), β-oxidation and fatty acid biosynthesis
novo purine biosynthetic pathway (dark blue), glycine pathways (grey), de novo pyrimidine bios
alaninedegradation (Ehrlichpathway) (green). Dashed arrows indicate amulti-step pathway, d
(MCM)B, (E)-2-8(methoxycarbonylmethyl)butenedioate; DHAP, dihydroxy-acetone-phospha
CoA; PRA, 5-P-β-D-ribosyl-amine; Trans-2,3-DA-CoA, Trans-2,3-dehydroacyl-CoA; XMP, xant
the reader is referred to the web version of this article.)
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regulate the expression of AgRIB3 and AgGSH1 (gene encoding γ-
glutamyl cysteinyl synthase, a rate-limiting enzyme in the biosynthesis
of glutathione - molecule involved in the A. gossypii antioxidant de-
fence), both of which have been shown to be up-regulated in response
to oxidative stress (Kavitha and Chandra, 2014). These evidences show
that riboflavin overproduction by A. gossypii is related with regulatory
mechanisms rather than with metabolic capabilities. Indeed, compara-
tively with its close relatives S. cerevisiae and K. lactis that do not over-
produce riboflavin, A. gossypii does not possess exclusive enzymes
directly involved in the riboflavin biosynthetic pathway that could
explain its overproducing trait (Gomes et al., 2014). On the other
hand, significant differences exist at the intergenic level between
A. gossypii and its non-flavinogenic relatives (Brachat et al., 2003;
Wendland et al., 2011),which hints at the existence of regulatory differ-
ences between them.

The first physiological studies focusing on the influence of some
common environmental factors on the A. gossypii's growth started to
appear in the literature as a reflection of the eventual interest in using
this fungus for industrial applications. As early as 1930, Farries and
Bell (1930) noted the production of a yellow pigment (riboflavin) by
certain A. gossypii strains when investigating the nitrogen requirements
of this species. In their study, potassium nitrate and ammonium salts
were not utilized as nitrogen sources, observations later confirmed by
Buston et al. (1938). However, Ribeiro et al. (2012) recently verified
biotechnological purposes. The pathways are identified according to the following colour
(red), TCA cycle and glyoxylate cycle (purple), pentose phosphate pathway (brown), de
ynthetic pathway (yellow), riboflavin biosynthetic pathway (orange), leucine and phenyl-
otted arrows indicate regulatory roles andfilled arrows indicate a transport reaction. (E)-2-
te; GAR, 5′-phosphoribosylglycinamide; GMP, guanosine-5′-phosphate; M-CoA, malonyl-
hosine-5-phosphate. (For interpretation of the references to colour in this figure legend,

ustrial riboflavin production: A historical perspective and emerging
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that several A. gossypii strains actually grow well on chemically defined
medium containing ammonium as sole nitrogen source when the
medium pH is 6.5, but poorly at pH 4.5, indicating that the lack or
limited growth previously reported probably reflected low medium
pH. Supporting their observations is the fact that A. gossypii is genet-
ically equipped for ammonium (but not for nitrate) assimilation
(Ribeiro et al., 2012).

The sensitivity of A. gossypii to lowmedium pH had been previously
observed by Tanner et al. (1949), whom verified that media initially ad-
justed to pH 4.0 gave little growth and riboflavin production. Between
pH 4.5 and 5.5 there was a good and rapid multiplication, but the best
riboflavin yields were obtained when the initial pH of the medium
was above pH 5.5, preferably in the range of pH 6.0 to 7.0 (Tanner
et al., 1949). The growth temperature also has an impact on riboflavin
production. Although A. gossypii grows over a rather wide temperature
range (20 to 40 °C), the greatest riboflavin accumulation occurs when
cultures are incubated at 26 to 28 °C, which is below the optimum for
growth (30 to 35 °C) (Özbas and Kutsal, 1986; Pfeifer et al., 1950;
Tanner et al., 1949). The presence of low concentrations of NaCl and
Na3PO4, or slightly higher concentrations of mannitol, sorbitol and KCl,
highly inhibit the A. gossypii's growth, displaying this fungus acute
sensitivity to hyperosmotic stress (Förster et al., 1998; Nikolaou et al.,
2009).

Myo-inositol and biotin have early been found to be required for
A. gossypii's growth (Buston and Pramanik, 1931; Farries and Bell,
1930; Kögl and Fries, 1937), as this fungus lacks the genes necessary
for their biosynthesis (Gomes et al., 2014). In fact, the A. gossypii's re-
quirement for biotin played an important role in the discovery of this vi-
tamin (Kögl and Fries, 1937). Thiamine is also necessary for adequate
growth, as A. gossypii synthesizes it in sub-optimal amounts (Pridham
and Raper, 1950). When these “accessory factors” are added to the me-
dium, A. gossypii is capable of utilizing simple mixtures of amino acids,
ammonium aspartate or asparagine as nitrogen sources (Buston and
Kasinathan, 1933), the latter supporting better growth in defined
media (Demain, 1972). Peptone and casein constitute, however, better
nitrogen sources for A. gossypii (Farries and Bell, 1930). Yeast extract
is also a good source of several nutrients necessary for A. gossypii's
growth (Wickerham et al., 1946) and we have observed that it alone
can support residual growth of A. gossypii in liquidmediumwithout ad-
dition of carbon source (Aguiar et. al., personal communication). Crude
nitrogen and vitamin sources, like animal steep liquor, corn steep liquor
and distillers' solubles have, however, been preferably employed in
large-scale riboflavin production (Pfeifer et al., 1950; Smiley et al.,
1951; Tanner et al., 1949).

Several studies on the A. gossypii's carbon requirements indicated
that glucose, fructose, sucrose, starch, maltose and glycerol support
good growth, but plant oils (such as corn oil and soybean oil) are supe-
rior and favour riboflavin production and lipid accumulation (Kutsal
and Özbas, 1989; Ledesma-Amaro et al., 2014a; Pridham and Raper,
1950; Ribeiro et al., 2012; Tanner et al., 1949). Ethanol supports more
limited growth rates (Pridham and Raper, 1950). Cellulose, pentoses
(arabinose, xylose), galactose and lactose are not utilized as carbon
sources (Pridham and Raper, 1950; Ribeiro et al., 2012), which may be
explained by the absence of enzymes and/or pathways necessary for
the metabolism of these substrates in the A. gossypii's genome (Gomes
et al., 2014; Ribeiro et al., 2012). Correlated with the limited range of
carbon sources that A. gossypii utilizes, the variety and amount of hydro-
lytic enzymes secreted byA. gossypii to the extracellularmedium is rath-
er low (Aguiar et al., 2014a; Ribeiro et al., 2010, 2013). Of these, only a
lipase and an invertase have been experimentally characterized thus
far (Aguiar et al., 2014b; Stahmann et al., 1997).

Under aerobic conditions, glucose is oxidized by A. gossypii more or
less completely to carbon dioxide and water (Mickelson, 1950;
Mickelson and Schuler, 1953). However, considerable amounts of etha-
nol and traces of pyruvic, acetic and citric acid are formed during the
course of the fermentation (Mickelson, 1950; Mickelson and Schuler,
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1953). Volatile fusel alcohols and esters derived from the catabolism
of amino acids are also formed via the Ehrlich pathway (Fig. 3),with par-
ticularly high level production of isoamyl alcohol and 2-phenylethanol,
which confer to A. gossypii's cultures a characteristic fruity/floral aroma
(Ravasio et al., 2014). A. gossypii is also able to ferment glucose anaero-
bically, yielding 2 moles of carbon dioxide per mole of sugar consumed,
which approaches the theoretical yield of a typical yeast alcoholic fer-
mentation (Mickelson, 1950). On the other hand, aerobiosis is required
for riboflavin overproduction (Demain, 1972; Pfeifer et al., 1950; Tanner
et al., 1949).

A. gossypii has been shown to accumulate high amounts of lipid
bodies as carbon and energy storage pools (Stahmann et al., 1994;
Ledesma-Amaro et al., 2014a). Although the carbon sources utilized
play a determinant role in its lipidogenic profile, A. gossypii predom-
inantly accumulates unsaturated fatty acids (FA) (Stahmann et al.,
1994; Ledesma-Amaro et al., 2014a). When lipids are used as carbon
source, the glyoxylate cycle plays a fundamental role with respect to
A. gossypii's growth and riboflavin synthesis, as the precursors of
riboflavin, GTP and ribulose 5-P, originate from the carbohydrate
metabolism (Fig. 3) (Schmidt et al., 1996a, 1996b). The first enzyme
of this pathway, isocitrate lyase (ICL), is essential for catalysing the
cleavage of isocitrate to succinate and glyoxylate, thus diverting the
carbon flux from the tricarboxylic acid (TCA) cycle into a carbon-
conserving pathway. The final result of this anaplerotic activity is a net
conversion of fats to carbohydrates through gluconeogenesis (Maeting
et al., 1999; Schmidt et al., 1996a, 1996b). An extracellular lipase secreted
by A. gossypii plays an important role in the degradation of plant oils to
fatty acids and glycerol before their uptake into intracellular organelles
(where β-oxidation takes place) (Maeting et al., 2000; Stahmann et al.,
1997). Addition of non-ionic surface active agents to the culturemedium
(like Tween 80) stabilizes the activity of this enzyme (Stahmann et al.,
1997) and enhances riboflavin production (Demain, 1972; Goodman
and Ferrera, 1954).

Riboflavin biosynthesis is closely related to other biosynthetic path-
ways, such as the purine synthesis pathway (Fig. 3), all of which com-
pete for the same substrates. In addition to being directly used in the
riboflavin biosynthesis pathway, ribulose 5-P can alternatively be isom-
erized to ribose 5-P (Kruger and von Schaewen, 2003). GTP, the other
riboflavin precursor, is synthesized through the purine pathway,
which starts with the formation of phosphoribosyl pyrophosphate
(PRPP) from ribose 5-P and ATP. Interestingly, A. gossypii was recently
shown to secrete high amounts of inosine and guanosine, which are pu-
rine nucleosides produced via this same pathway (Ledesma-Amaro
et al., 2015). PRPP is not only required for the de novo and salvage path-
ways of purine, pyrimidine and pyridine (NAD+, NADP+) nucleotides,
but also as a precursor of histidine (Fig. 3) and tryptophan biosynthesis
(Jiménez et al., 2008). The addition of purines (like hypoxanthine) and,
most importantly, glycine to the culture medium has yield-enhancing
effects on riboflavin production (Demain, 1972; Monschau et al.,
1998). Glycine is an important precursor during the de novo purine bio-
synthesis and is endogenously obtained through the conversion of thre-
onine by the AgGly1p threonine aldolase (Monschau et al., 1998).

One important aspect of the A. gossypii physiology that needs to be
emphasized is the fact that significantly different sporulation efficien-
cies and growth parameters, such as colonial radial growth rate, have
been reported not only for different strains within the species but also
for the same strain deposited in different culture collections (Ribeiro
et al., 2012). This inherent plasticity of A. gossypii also affects riboflavin
production/accumulation, as Nieland and Stahmann (2013) recently
showed that A. gossypii hyphal cells growing in the same culture exhibit
phenotypic differences inwhat concerns overproduction and accumula-
tion of riboflavin. Therefore, one must be cautious when analysing the
available data on the metabolism and physiology of this fungus.

Recent findings reporting the existence of differences between the
mating type of different A. gossypii strains (Dietrich et al., 2013) and of
variable degrees of ploidy within the same cell at different cell cycle
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stages (Anderson et al., 2015) may help explain why physiological and
metabolic differences are observed between and within strains, and
thuswarrant further investigation. On the other hand, as the production
of industrially interesting metabolites varies significantly among wild
strains (Ledesma-Amaro et al., 2015), the systematic exploration of
this fungus natural biodiversity may unravel new biotechnological po-
tential for A. gossypii, and should therefore be considered as a standard
procedure in the development of novel applications (see Section 4).

3. Molecular toolbox

Various genetic tools and molecular methods have been developed
for use in A. gossypii, among which random mutagenesis with physical
(ultraviolet (UV) radiation) or chemical (nitrogen mustard, N-methyl-
N′-nitro-N-nitrosoguanidine (MNNG) and ethyl methane sulfonate
(EMS)) mutagens followed by screening of colonies with the desired
phenotype has been the methodology used for the longest time to gen-
erate and isolate A. gossypii mutants with improved traits (Park et al.,
2007; Pridham and Raper, 1952; Perlman, 1979; Ribeiro et al., 2013;
Schmidt et al., 1996a; Tajima et al., 2009). In fact, randommutagenesis
has been the main classical genetic approach used to manipulate
A. gossypii strains, although adaptive evolution strategies under selec-
tive conditions also allowed isolating spontaneous mutants with im-
proved phenotypes (Pfeifer et al., 1950; Sugimoto et al., 2010). Other
randommutagenesis techniques that do not involve the use of chemical
or physical mutagens have also been used to generate genetic diversity
in A. gossypii, such as insertional mutagenesis by in vitro transposition
(Santos et al., 2005) and disparity mutagenesis using an error-prone
DNA polymerase (Park et al., 2011). The absence of a known sexual
cycle in this fungus has impeded the use of other classical genetic ap-
proaches (Dietrich et al., 2013; Wendland et al., 2011). A significant
technical difficulty associated with the A. gossypii mutagenic screens
that needs to be highlighted is the inability to easily isolate single
spores, as they clump together via terminal filaments (Wendland
et al., 2011).

With the introduction of recombinant DNA technology in A. gossypii,
reverse genetic approaches have been added to mutational techniques
as a means to further improve strains in a rational way. Transformation
methods for inserting foreign DNA into A. gossypii were initially
developed by Wright and Philippsen (1991). The surprising result of
their study was that freely replicating plasmids are propagated in
A. gossypii based on S. cerevisiae autonomously replicating sequences
(ARS) (ARS1 and 2-micron). However, an ARS element and centromere
of the A. gossypii chromosome V, which function in Holleya sinecauda
(a close relative of A. gossypii; Kurtzman, 1995), were found not to be
functional in S. cerevisiae (Schade et al., 2003). S. cerevisiae centromeres
do not function in A. gossypii as well (Wendland and Walther, 2005).
Plasmids containing S. cerevisiae ARS elements have been widely used
since to express homologous and heterologous genes in A. gossypii
(Aguiar et al., 2014b; Altmann-Jöhl and Philippsen, 1996; Ayad-Durieux
et al., 2000; Kato and Park, 2006; Magalhães et al., 2014; Monschau
et al., 1998; Ribeiro et al., 2010).

Strong, constitutive promoters are available for driving homologous
and heterologous gene expression in A. gossypii, such as those of the
A. gossypii translation elongation factor 1α (AgTEF) or glyceraldehyde-
3-phosphate dehydrogenase (AgGPD) (Revuelta et al., 1999; Steiner
and Philippsen, 1994). The S. cerevisiae's TEF2, PDC1, PGK1, LEU2 and
ADH1 constitutive promoters have also been used to drive the expres-
sion of genes in A. gossypii (Kaufmann, 2009; Magalhães et al., 2014;
Ribeiro et al., 2010; Wendland et al., 2000). Regulatable promoters,
such as the A. gossypii's and S. cerevisiae's MET3, the S. cerevisiae's
THI13 and the A. gossypii's SUC2 promoters have been described to reg-
ulate the expression of genes in A. gossypii as well (Aguiar et al., 2014b;
Dünkler and Wendland, 2007; Kaufmann, 2009).

Another interesting characteristic of A. gossypii is that, in contrast to
other filamentous fungi and similarly to S. cerevisiae, it has a highly
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efficient homologous recombination system (Steiner et al., 1995). This
has facilitated the establishment of simple PCR-based gene targeting
techniques in A. gossypii (Wendland et al., 2000). Integrative transfor-
mation of A. gossypii results in primary heterokaryotic transformants,
which contain both wild and mutant nuclei. These heterokaryotic
transformants generate uninucleate spores that when grown under
selective conditions allow the isolation of homokaryotic mutants
(Steiner et al., 1995). Thus, compared with other filamentous fungi,
gene analysis in A. gossypii is particularly straightforward.

A. gossypii strains auxotrophic for threonine (Agthr4Δ; Altmann-Jöhl
and Philippsen, 1996) and leucine (Agleu2Δ; Ayad-Durieux et al., 2000)
have been developed for use in molecular genetic studies. These
auxotrophies are complemented by the corresponding S. cerevisiae
homologue genes (Altmann-Jöhl and Philippsen, 1996; Ayad-Durieux
et al., 2000). Several heterologous selectable marker cassettes for
dominant selection have also been developed, such as the GEN3, NATPS
and BLE3 marker cassettes, which confer resistance to G418/genet-
icin (Wendland et al., 2000), clonNAT/nourseothricin (Hoepfner in
Kaufmann, 2009) and phleomycin (Ribeiro et al., 2013), respectively.
A hygromycin resistance (Hygr) marker gene has also been used to
select A. gossypii transformants (Jiménez et al., 2008; Mateos et al.,
2006).

Reporter proteins, like the Escherichia coli and Aspergillus niger β-
galactosidase and the green fluorescent protein (GFP), have been wide-
ly used in A. gossypii to study gene expression and protein localization
(Ayad-Durieux et al., 2000; Dünkler and Wendland, 2007; Gladfelter
et al., 2006; Magalhães et al., 2014; Monschau et al., 1998; Walther
and Wendland, 2012). In this context, Kaufmann (2009) developed a
plasmid collection for PCR-based gene targeting in A. gossypii that
covers a wide selection of modules for fluorescent protein tagging
combined with different heterologous selection markers. Additionally,
several fluorescent dyes can be used in A. gossypii to stain various cel-
lular organelles and cytoskeleton structures (Gladfelter et al., 2006;
Walther and Wendland, 2004; Wendland and Philippsen, 2001).

Important molecular tools for genetic manipulation of A. gossypii
have been established, but optimal strain design for industrial applica-
tions requires flexible transformation systems that allow the removal
and recycling of exogenous marker genes, especially those conferring
resistance to antibiotics. With this in mind, the Cre-loxP recombination
system of the bacteriophage P1 was adapted for generating A. gossypii
strains free of exogenous marker genes, opening new perspectives for
the deletion and/or integration of multiple genes (Aguiar et al.,
2014c). In the scope of this work, three heterologous recyclable drug
marker cassettes and two Cre recombinase expression vectorswere cre-
ated, being suitable for use in both laboratorial and industrial A. gossypii
strains, as they do not require any predetermined genetic background.
These tools also allowed the generation of stable auxotrophic strains
for uridine/uracil (Agura3Δ), adenine (Agade1Δ) and both (Agura3Δ,
Agade1Δ) (Aguiar et al., 2014c). Unlike the others auxotrophies already
mentioned (A. gossypii Agleu2Δ and Agthr4Δ strains), the corresponding
S. cerevisiae's homologue could not complement the deletion of AgURA3
(Pompejus et al., 1999). Therefore, these auxotrophic strains will be
important for future engineering projects as soon as a selection sys-
tem based on the complementation of these auxotrophies becomes
available.

All these molecular tools have been important for the development
of stable A. gossypii strains for biotechnological purposes (as it will be
discussed in the following section), but the improvement of existing
tools and development of new oneswill be crucial tomeet the demands
of the biotechnology industry and to develop A. gossypii as a new cell
factory. In this regard, the establishment of flexible genome editing
methods (e.g., CRISPR-Cas system; DiCarlo et al., 2013) for engineering
this fungus is of great interest.Moreover, as the number of characterized
promoters currently available for use in A. gossypii is limited, screening
and identification of other promoters with desired characteristics will
settle the basis for the development of new and more flexible gene
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expression tools. Similar screening strategies should be followed for de-
signing new reporter proteins and secretion signal sequences for use in
the scope of recombinant protein production. Beyond these pressing
needs, a major outcome of the upcoming years may be related with
the arising of forward genetic tools for A. gossypii, fading away the de-
pendency on reverse genetics. However, significant work is still needed
in order to elucidate the conditions needed for sexual reproduction. The
first step has already been taken with the isolation of wild A. gossypii
strains possessing mating type regions distinct from those presented
by the first sequenced strain, ATCC10895 (Dietrich et al., 2013).

4. Commercial and emerging biotechnological applications

The filamentous fungus A. gossypii presents several industrially at-
tractive features, such as good performance in large-scale fermentation
processes and ability to grow in inexpensive waste-derived substrates
to high cell densities (Park et al., 2007; Tajima et al., 2009; Wei et al.,
2013). Its capacity to secrete proteins and metabolites to the culture
medium and to undergo autolysis during the late stationary phase of
growth or at low temperature is also industrially appealing, as they
facilitate downstream product recovery (Aguiar et al., 2014a; zu
Berstenhorst et al., 2009). These features, combined with the successful
industrial process of riboflavin production by A. gossypii and with the
availability of several tools for its easy geneticmanipulation, have raised
attention to this fungus for the production of other metabolites and/or
proteins. In the last year, systems biology provided essential in silico
predictive tools to optimize existing and develop new biotechnological
applications for A. gossypii. In this context, the A. gossypii genome was
re-annotated (Gomes et al., 2014) and its reaction set compiled to create
a genome scale metabolic model (GSMM) able to simulate the cell be-
haviour, being now this model in its experimental validation phase
(Gomes et al., personal communication). Other GSMM for A. gossypii
was already published (iRL766) and successfully validated by predic-
tions and comparisons for three experimental parameters: biomass
growth, riboflavin production and substrate utilization (Ledesma-
Amaro et al., 2014b). Together, these new tools are leveraging the
A. gossypii potential as a cell factory organism.

4.1. Riboflavin production

A. gossypii constitutes a paradigm of the sustainable White Biotech-
nology with regard to industrial riboflavin production. Riboflavin is a
precursor of the flavin mononucleotide (FMN) and flavin adenine dinu-
cleotide (FAD), which are essential co-factors for numerous enzymes
(including dehydrogenases, oxidases, oxidoreductases) that participate
in a range of redox reactions critical for major biological processes. This
vitamin is commercially used as a yellow colourant and animal food
additive, and formanyyears itwasmainly obtained by chemical synthe-
sis, until its industrial production shifted to microbial fermentation
(Stahmann et al., 2000; zu Berstenhorst et al., 2009). As an outcome of
Table 1
Random engineering approaches applied in A. gossypii for biotechnological purposes.

Mutagen Screening

UV light Antimetabolite (itaconate)
UV light Yellow colour of the colonies
MNNG Antimetabolite (itaconate)
– Antimetabolite (oxalate)
Mutated DNA polymerase δ Antimetabolite (oxalate and hydrogen peroxide)

Regeneration of the colonies by serial transfers in selective
Stabilization of the colonies in non-selective medium and
of riboflavin production

EMS Selective medium containing CMCa (for EGI), starch (for α
tributyrin (for lipase)
Determination of specific enzymatic activities

a Carboxymethylcellulose.
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classical improvement of naturally overproducing strains by random
mutagenesis and optimization of culture conditions, the industrial fer-
mentation process using A. gossypii for riboflavin production is among
the first biotechnological processes that replaced the chemical process
in use due to its higher economical competitiveness (Kato and Park,
2012; Lim et al., 2001; Stahmann et al., 2000; zu Berstenhorst et al.,
2009).

Wild A. gossypii strains have been reported to produce up to 5 g/L of
riboflavin in optimized culture media, but randomly improved strains
can produce from 14 to 20 g/L of riboflavin (Demain, 1972; Lim et al.,
2001; Park et al., 2011). Many randomly improved A. gossypii strains
for riboflavin production were obtained by several rounds of mutagen-
esis followed by screening of colonies with increased yellow pigmenta-
tion (Perlman, 1979). Since the industrial establishment of this process,
differentmutagenic agents and screening procedureswere adopted and
combined in different manners (Table 1). UV radiation (Park et al.,
2007; Schmidt et al., 1996b; Wei et al., 2012), chemical mutagens
(Lizama et al., 2007; Tajima et al., 2009) and disparity mutagenesis
(Park et al., 2011) have been applied to createmutations. For the screen-
ing procedures, antimetabolites (mainly itaconate and oxalate) have
been themost commonway to isolate overproducing strains, essentially
due to the correlation between the A. gossypii isocitrate lyase (Icl1p;
glyoxylate cycle) activity and riboflavin production (Schmidt et al.,
1996a, 1996b). In fact, Sugimoto et al. (2010)were able to isolate a ribo-
flavin overproducing strain only by growing A. gossypii spores in a me-
dium containing oxalate, without the application of any mutagenic
agent. More recently, through the analysis of the itaconate metabolism
and genetics, its related compounds cis-aconitate and trans-aconitate
were detected in the riboflavin production phase and, as the latter has
an inhibitory effect on aconitase in the TCA, the authors proposed
trans-aconitate as a novel andmore available antimetabolite for screen-
ing of riboflavin overproduction (Sugimoto et al., 2014).

Since the 1990s, when BASF (Germany) launched a riboflavin pro-
duction plant with A. gossypii, the performance of A. gossypii strains
could be much improved by rational design as well. The constantly in-
creasing molecular toolbox for this fungus (see Section 3) and the
deep understanding acquired along the last two decades about the
A. gossypii riboflavin biosynthetic pathway (reviewed in Kato and
Park, 2012) supported this. Among the rational strategies tested
(Table 2), the majority focused on increasing the flux of the riboflavin
biosynthetic pathway and of the purine/glycine biosynthetic path-
ways by (1) overexpressing the AgRIBs genes (Althöefer et al.,
1999; Althöefer and Revuelta, 2003); (2) overexpressing the
AgGLY1 gene, involved in the conversion of threonine to glycine
(Monschau et al., 1998); (3) disrupting the AgSHM2 gene, which
encodes a cytosolic serine hydroxymethyltransferase that converts
glycine into serine (Schlüpen et al., 2003); (4) overexpressing the
S. cerevisiae's AGX1 gene, which is not present in A. gossypii and
encodes an alanine:glyoxylate aminotransferase that converts
glyoxylate into glycine (Kato and Park, 2006); (5) overexpressing
Application Reference(s)

Riboflavin Park et al. (2007), Schmidt et al. (1996b)
Riboflavin Wei et al. (2012)
Riboflavin Lizama et al. (2007), Tajima et al. (2009)
Riboflavin Sugimoto et al. (2010)

medium
quantification

Riboflavin Park et al. (2011)

-amylase) or Recombinant protein
production

Ribeiro et al. (2013)
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Table 2
Target genes of rational genetic engineering strategies in A. gossypii for different biotechnological applications.

Gene Strategy and outcome Reference(s)

Riboflavin production
AgRIB3-5 Overexpression increased the flux of the riboflavin biosynthetic pathway, which resulted in

a 2.5-fold increase in riboflavin production
Althöefer et al. (1999)

AgRIB1,2,4,7 Overexpression increased the flux of the riboflavin biosynthetic pathway, which resulted in
an 1.4-fold increase in riboflavin production

Althöefer and Revuelta (2003)

AgGLY1 Overexpression increased glycine formation from threonine, which allowed a 9-fold increase
in specific riboflavin production

Monschau et al. (1998)

AgSHM2 Disruption abolished the conversion of glycine into serine, which led to a 10.6-fold increase in
specific riboflavin production

Schlüpen et al. (2003)

ScAGX1 Heterologous expression allowed glycine biosynthesis from glyoxylate, which resulted in an
1.3-fold increase in specific riboflavin production

Kato and Park (2006)

AgADE4 Overexpression and elimination of feedback inhibition by site directed mutagenesis increased the
flux of the purine biosynthetic pathway, which resulted in a 10-fold increase in riboflavin production

Jiménez et al. (2005)

AgPRS2,4 and AgPRS3 Overexpression and elimination of feedback inhibition by site directed mutagenesis increased PRPP
availability, which resulted in an 1.7- to 1.8-fold increase in riboflavin production

Jiménez et al. (2008)

AgBAS1 Deletion of the C-terminal interaction and regulatory domain constitutively activated the purine and
glycine pathways, which resulted in a 9.4-fold increase in specific riboflavin production

Mateos et al. (2006)

AgURA3 Disruption blocked the pyrimidine biosynthetic pathway, thus increasing the availability of riboflavin
precursors, which led to a 7.5-fold increase in specific riboflavin production

Aguiar et al. (2014c), Silva et al. (2015)

AgICL1 Overexpression increased riboflavin production from oils (by 2.2-fold) Käsler et al. (1997)
AgMLS1 Overexpression increased riboflavin production from oils (by 1.7-fold) Sugimoto et al. (2009)
AgVMA1 Disruption reduced the accumulation of riboflavin in the vacuole and increased its excretion to the

culture medium (by 2-fold)
Förster et al. (1999)

Recombinant protein production
ShcelA1 Heterologous expression allowed the recombinant production of S. halstedii endo-β-1,4-glucanase Althöefer et al. (2001)
TreglI and TrcbhI Heterologous expression allowed the extracellular production of T. reesei EGI and CBHI Ribeiro et al. (2010)
AnlacA Heterologous expression allowed the extracellular production of A. niger β-galactosidase Magalhães et al. (2014)
ScSUC2 Heterologous expression allowed the extracellular production of S. cerevisiae invertase Aguiar et al. (2014b)

Single cell oil production
YlACL1/YlACL2 Heterologous expression enabled the production of acetyl-CoA from citrate, which increased lipid

accumulation during the trophic phase (by 1.3-fold)
Ledesma-Amaro et al. (2014a)

AgPOX1 and AgFOX2 Disruption blocked the beta-oxidation pathway, which triggered a 2- to 3.5-fold increase in lipid
accumulation

Ledesma-Amaro et al. (2014a)

AgELO586 Overexpression increased cerotic acid (26:0) accumulation and disruption resulted in SCO with
properties that meet some biodiesel quality standards

Ledesma-Amaro et al. (2014c)

AgELO624 Overexpression led to nervonic acid (24:1) production and disruption resulted in SCO with
properties that meet some biodiesel quality standards

Ledesma-Amaro et al. (2014c)

AgDES589 Overexpression increased linoleic acid (18:2) accumulation Ledesma-Amaro et al. (2014c)

Flavour compounds' production
AgARO80 Overexpression increased isoamyl alcohol and isobutanol production (by 2.5-fold) Ravasio et al. (2014)
AgADE12 Disruption increased the excretion of inosine (by 11.5-fold) and guanosine (by 1.2-fold) Ledesma-Amaro et al. (2015)
AgIMD3 Disruption increased inosine excretion (by 1.6-fold) and overexpression increased guanosine

excretion (by 1.5-fold)
Ledesma-Amaro et al. (2015)

AgPNP1 Disruption increased the excretion of inosine (by 1.9-fold) and guanosine (by 1.5-fold) Ledesma-Amaro et al. (2015)
AgISN1 Disruption did not increase inosine excretion Ledesma-Amaro et al. (2015)
AgGUA1 Overexpression increased riboflavin production but did not increase guanosine excretion Ledesma-Amaro et al. (2015)
AgRIB1 Down regulation reduced riboflavin production but did not increase guanosine excretion Ledesma-Amaro et al. (2015)

Ag, A. gossypii; An, A. niger; Sc, S. cerevisiae; Sh, S. halstedii; Tr, T. reesei; Yl, Y. lipolytica.
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several genes involved in the purine biosynthetic pathway such as
AgADE4 (Jiménez et al., 2005), AgPRS2,4 and AgPRS3 (Jiménez et al.,
2008); (6) deregulating the transcription factor AgBas1p that con-
stitutively activates the purine and glycine biosynthetic pathways
(Mateos et al., 2006); and (7) blocking the A. gossypii's de novo py-
rimidine biosynthetic pathway by deletion of the AgURA3 gene
(Aguiar et al., 2014c) to increase the availability/accumulation of
PRPP for the formation and/or accumulation of riboflavin precur-
sors (GTP and ribulose-5P; Silva et al., 2015). Other strategies
focused on improving riboflavin production from plant oils by
overexpressing genes involved in the glyoxylate cycle, such as the
AgICL1 (Käsler et al., 1997) and the AgMLS1 (encoding the malate
synthase; Sugimoto et al., 2009), and on increasing the excretion
of riboflavin into the medium by disrupting the gene encoding
the vacuolar ATPase subunit A, AgVMA1 (Förster et al., 1999).

An increasing number of evidences have shown that the triggering
of riboflavin overproduction inA. gossypii is associatedwith the activation
of intracellular stress signalling cascades in response to environmental
changes (Kavitha and Chandra, 2009, 2014; Walther and Wendland,
2012; Nieland and Stahmann, 2013). Therefore, future attempts to
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further improve riboflavin productionwill rely on the better understand-
ing of the overall stress responses of A. gossypii. Meanwhile, the knowl-
edge already gained with A. gossypii will serve as a basis to guide the
improvement of riboflavin production by other cell factories.

4.2. Recombinant protein production

Beyond riboflavin production, the exploration of A. gossypii as a host
for the production of heterologous proteins has receivedmuchattention
in the last years. An endo-β-1,4-glucanase (celA1) from Streptomyces
halstedii (Althöefer et al., 2001), two cellulases from Trichoderma reesei,
endoglucanase I (EGI) and cellobiohydrolase I (CBHI) (Ribeiro et al.,
2010), a β-galactosidase from Aspergillus niger (Magalhães et al.,
2014) and a S. cerevisiae's invertase (Aguiar et al., 2014b) are among
the repertoire of heterologous enzymes already produced in this host
system (Table 2).

A. gossypii possesses the ability to secrete native and heterologous
enzymes to the extracellular medium and to recognize signal peptides
of other organisms as secretion signals (Aguiar et al., 2014b; Althöefer
et al., 2001; Magalhães et al., 2014; Ribeiro et al., 2010; Stahmann
ustrial riboflavin production: A historical perspective and emerging
.1016/j.biotechadv.2015.10.001

http://dx.doi.org/10.1016/j.biotechadv.2015.10.001


9T.Q. Aguiar et al. / Biotechnology Advances xxx (2015) xxx–xxx
et al., 1997). The amount and variety of native proteins secreted by this
fungus are low, being its secretory potentialmore similar to that of yeast
than to that of other filamentous fungi (Aguiar et al., 2014a). In linewith
this observation, the protease activity in A. gossypii culture supernatants
is negligible (Ribeiro et al., 2010). Together, these features represent
important advantages for heterologous protein production in this
host, as secreted products are less likely to be contaminated or degraded
by native proteins, thus allowing cost-efficient downstream processing
of low- and medium-value enzymes.

A. gossypii is also able to perform protein post-translation modifica-
tions, such as glycosylation and other modifications required for the bi-
ological activity and stability of proteins (Aguiar et al., 2013; Magalhães
et al., 2014; Ribeiro et al., 2010). Compared to the closely related yeast
S. cerevisiae, one of the fungal hosts most commonly used for the pro-
duction of heterologous proteins (Demain and Vaishnav, 2009),
A. gossypii has the tendency to hyperglycosylate secreted glycoproteins
less extensively, as disclosed by the glycosylation pattern of the heterol-
ogous EGI, CBHI (Ribeiro et al., 2010) and β-galactosidase (Magalhães
et al., 2014). This is advantageous for the production of proteins
whose properties may be adversely affected by extensive glycosylation.
A recent characterization of its secreted N-glycome corroborates these
data, as A. gossypii revealed a processing system substantially distinct
from that of S. cerevisiae, which allows the production of much shorter
N-glycans (Aguiar et al., 2013). In fact, this study showed that
A. gossypii predominantly produces N-glycans that are more similar in
extent to those produced by nonconventional yeast hosts such as Pichia
pastoris, Hansenula polymorpha and Yarrowia lipolytica (Aguiar et al.,
2013). Nevertheless, the extent of N-glycosylation and N-glycan phos-
phorylation in A. gossypii is highly influenced by the culture medium
used (Aguiar et al., 2013).

Despite these advantages, the production levels reported for the first
heterologous proteins secreted by A. gossypii (EGI and CBHI) were low,
although comparable to those obtained with S. cerevisiae (Ribeiro et al.,
2010). In fact, the obtainment of reasonable amounts of these cellulases
by recombinant microbial hosts in a biologically active form has been a
challenging task (Ribeiro et al., 2010). Therefore, further investigation of
A. gossypii as a recombinant protein production host went through the
implementation of random engineering techniques to improve its gen-
eral secretory capacity. In this context, the recombinantA. gossypii strain
expressing EGI was exposed to the chemical mutagen EMS (Ribeiro
et al., 2013). The following screening strategy was initially based on
the diameter of the haloes formed around the mutant colonies on
screening media for different enzymatic activities (Table 1). Among
the activities tested, only cellulolytic activity gave a good correlation
and allowed the selection of the most promising mutants (Ribeiro
et al., 2013). Subsequently, these mutants were grown in submerged
cultures and extracellular activities were determined for heterologous
cellulase (T. reesei EGI), native α-amylase and native β-glucosidase.
One mutant exhibiting a superior performance (of 1.4- to 2-fold) in all
extracellular enzymatic activities was identified, suggesting a global im-
provement in its secretory capacity (Ribeiro et al., 2013). Othermutants
also presented partial improvements (of 2- to 3-fold): two in EGI or β-
glucosidase activity, and one in EGI and α-amylase activities (Ribeiro
et al., 2013). Another attempted to increase the general secretory poten-
tial of this fungus involved the deletion of AgGAS1 homologues
(encoding a β-1,3-glucanosyltransglycosylase involved in cell wall
assembly) to enhance the permeability of the cell wall, but the resulting
mutants presented serious growth defects (Ribeiro et al., 2013).

Transcriptomic analysis performed in A. gossypii cells under re-
combinant protein secretion conditions and dithiothreitol-induced
secretion stress subsequently provided useful information about
possible strategies that could be used to further improve its produc-
tivity (Aguiar et al., 2014a). Among these, the use of stronger pro-
moters was found to be of upmost importance, as the heterologous
S. cerevisiae PGK1 constitutive promoter was proved to be inefficient
in driving the overexpression of the EGI-encoding gene (Aguiar et al.,
Please cite this article as: Aguiar, T.Q., et al., Ashbya gossypii beyond ind
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2014a). This study also revealed the existence in A. gossypii of alter-
native regulatory mechanisms to cope with protein secretion stress,
other than the conventional unfolded protein response (UPR), which
may offer novel ways of improving protein secretion in this fungus
(Aguiar et al., 2014a).

The strength of several native (A. gossypii TEF and GPD) and heterol-
ogous (S. cerevisiae PGK1 and ADH1) constitutive promoters was com-
pared when producing a heterologous protein of other origin, the β-
galactosidase from A. niger (Magalhães et al., 2014). Given the ease of
detection of this secreted enzyme, the screening of transformants was
facilitated.Moreover, as this protein had already been efficiently secret-
ed by recombinant S. cerevisiae strains (Domingues et al., 2002, 2005;
Oliveira et al., 2007; Ramakrishnan and Hartley, 1993), it provided a
good model protein to further explore the potential of A. gossypii as a
heterologous protein producer. The strong A. gossypii's TEF promoter
drove the highest production levels of this enzyme in A. gossypii and
S. cerevisiae laboratorial strains, followed by the other native promoter
tested, GPD (Magalhães et al., 2014). Using the TEF promoter, A. gossypii
secreted up to 37-fold more active β-galactosidase than two different
S. cerevisiae strains transformed with the same plasmids (Magalhães
et al., 2014). In similar culture conditions, A. gossypii also produced 2.5-
fold more extracellular β-galactosidase than that previously reported
for a β-galactosidase high-producing S. cerevisiae strain transformed
with a different plasmid under the control of the S. cerevisiae's ADH1 pro-
moter (Domingues et al., 2002; Magalhães et al., 2014). However, much
can still be improved just by manipulating the production conditions, as
demonstrated by the 1.5-fold increase in β-galactosidase secretion
when glucose was replaced by glycerol in the culture medium, which
allowed reaching extracellular activity levels (1127 U/mL) within
the range of those reported for nonmodified A. niger strains (152 to
3000 U/mL) (Magalhães et al., 2014).

In summary, the potential of A. gossypii as a host for heterologous
protein production is still underexplored and much could be learned
about possible strategies to improve its productivity, among which are
as follows: (1) culture medium optimization; (2) screening for better
promoters and secretion signal sequences; and (3) development of bet-
ter expression strategies, preferably through the integration of stable
expression cassettes.

4.3. Single cell oil

The adaptation of A. gossypii for SCO production is a perfect example
of how themolecular (see Section 3) and in silico toolboxmade available
in recent years for this fungus allowed to rationally capitalize its natural
abilities (see Section 2.4). SCO is an alternative source to the oil industry,
which has seen its main sources (crude oil, animal fat and plant oil)
linked to negative environmental and economical effects (Beopoulos
et al., 2011). In spite of being considered a non-oleaginous microorgan-
ism (Vorapreeda et al., 2012), A. gossypii was metabolically engineered
to fit the requisites of a candidate for SCO production (minimum of
20% lipid content in relation to its cell dry weight) (Ledesma-Amaro
et al., 2014a). Two different strategies were used (Ledesma-Amaro
et al., 2014a): first, the genes AgPOX1 and AgFOX2, which are involved
in the β-oxidation pathway, were disrupted to avoid FA degradation;
second, a heteromeric ATP-citrate lyase (Aclp) from Y. lipolytica was
overexpressed in A. gossypii to enable the conversion of citrate into
acetyl-CoA and thus increase the pool of this crucial FAs building block.

Single mutants (pox1Δ or fox2Δ) with the β-oxidation pathway
blockedwere able to improve the accumulation of FAs inmedia contain-
ing only glucose or glucose and oils (Ledesma-Amaro et al., 2014a). In
turn, the doublemutant strain (pox1Δfox2Δ) did not present any advan-
tage in relation to the single mutants. When oils were supplied as the
sole carbon source, all of these strains presented growth limitation
(Ledesma-Amaro et al., 2014a). The pox1Δ mutant revealed to be the
most efficient strain, reaching a lipid content of approximately 40%
(after 3 days of growth) and 70% (after 7 days of growth) of its dry
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weight (Ledesma-Amaro et al., 2014a). The heterologous overexpression
of YlACL1/YlACL2 (encoding both subunits of Aclp from Y. lipolytica) also
fulfilled the goal for which it was originally proposed, i.e., increase the
cellular pool of acetyl-CoA (Ledesma-Amaro et al., 2014a). Thus, the
A. gossypii YlACL1/YlACL2 strain presented superior lipid accumulation,
fulfilling the requirements of oleaginous microorganisms in terms of
lipid accumulation. However, the A. gossypii pox1Δ,YlACL1/YlACL2 strain
did not translate the higher levels of acetyl-CoA available into more
lipid accumulation in comparison with the A. gossypii pox1Δ (Ledesma-
Amaro et al., 2014a). The pox1Δ strain revealed a metabolic unbalance
that increased the acetyl-CoA pool independently of the Aclp presence
and some other cellular mechanisms benefited from these higher levels
of acetyl-CoA (Ledesma-Amaro et al., 2014a). Hence, as suggested by
the authors, this increase in acetyl-CoA pools can be valuable in the
future to explore the production of other relevant products beyond
SCO, such as biobutanol.

The potential applications of SCO are strictly connected with the FA
profile of the strain, which should be manipulated according to the
requisites of a particular industry. This FA profile is largely defined by
the action of enzymes such as the elongases and desaturases, which
are responsible for the length and unsaturations of FAs, respectively
(Hashimoto et al., 2008). In this regard, Ledesma-Amaro et al. (2014c)
performed a functional characterization of selected genes of the
elongation (AgELO586 and AgELO624) and desaturation (AgDES589
and AgDES079) system of A. gossypii, which had already been identi-
fied by Hashimoto et al. (2008). After testing the functionality of the
respective proteins in S. cerevisiae, only AgDES079 did not match its
predicted function, not showing any notable role in FA desaturation
(Ledesma-Amaro et al., 2014c). The regulation of these genes by
the carbon source used (glucose or soybean oil) was also checked
by analysis of their transcription levels. Once again, AgDES079 was
the only gene that did not present any changes (Ledesma-Amaro
et al., 2014c). Finally, all genes were independently overexpressed
or deleted in A. gossypii. Excluding AgDES079, the manipulation of
the other three genes generated a repertoire of strains that can be ap-
plied in different industries according to their FA profile (Table 2). For
instance, the engineered strains A. gossypii elo586Δ and A. gossypii
elo624Δ fulfilled the restrictive requirements established by the
European biodiesel quality standard EN 14214, and are therefore very
promising for application in this industry (Ledesma-Amaro et al.,
2014c).

The adaptation of A. gossypii for SCO presented very consistent and
promising results. According to Ledesma-Amaro et al. (2014a), the
70% of lipid accumulation achieved in the engineered A. gossypii strains
are among the highest accumulation levels reported so far in both
oleaginous and nonoleaginous microorganisms. Moreover, the strains
created by metabolic engineering of the elongation and desaturation
systems have a wide application spectrum in other industrial sectors,
such as cosmetics, food, paper and pharmaceutical industry (Ledesma-
Amaro et al., 2014c).

4.4. Flavour compounds' production

The fermented beverages sector invests strongly in new products
that can offer a new variety of flavour/aroma perceptions, which are de-
terminant features for product quality. Therefore, there is a continuous
effort for screening the biodiversity in order to find new natural pro-
ducers. In this regard, there is a growing interest on non-Saccharomyces
species as natural flavour producers, which many believe to remain
largely underexplored (Domizio et al., 2010).

The Ehrlich pathway plays an important role in the metabolism of
flavour/aromatic compounds and Wendland and Walther (2011) no-
ticed significant genetic differences between A. gossypii and its closely
related E. cymbalariae regarding this pathway. E. cymbalariae harbours
only one gene related with this pathway (ARO8a), whereas A. gossypii
encodes four genes (AgARO8a, AgARO8b, AgARO10 and AgARO80). In
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comparison with S. cerevisiae, A. gossypii lacks ARO9 (Ravasio et al.,
2014). Therefore, Ravasio et al. (2014) decided to characterize and
explore the importance of this pathway in flavour production by
A. gossypii. The profile of volatile compounds produced by A. gossypii is
characterized by high levels of 2-phenylethanol (rose/flower aroma),
which are residual in E. cymbalariae, and of isoamyl alcohol (banana/
fruity aroma), also elevated in E. cymbalariae. Indeed, the production
of 2-phenylethanol by A. gossypii was determined to be higher than
that in S. cerevisiae strains, namely Weihenstephan lager yeast and
laboratorial CEN.PK2 (Ravasio et al., 2014). A. gossypii single mutants
for the ARO genes revealed a strong impairment in the production of
2-phenylethanol and also isoamyl alcohol (with exception for the
AgARO8a) (Ravasio et al., 2014). As AgARO80 encodes a transcriptional
regulator of some of these genes, these authors overexpressed this
gene. Although it was not possible to note significant differences in
the production of 2-phenylethanol (possibly due to phenylalanine
limitation in the culture medium), the engineered strain was able to
produce about 2.5-fold more isoamyl alcohol and isobutanol than the
parent strain (Ravasio et al., 2014). This work reinforced the idea that
the exploration of non-Saccharomyces strains for flavour enhancement
of fermented beverages may result in a new wide line of products.

Very recently, A. gossypii became the first eukaryotic microorganism
presenting good potential for industrial nucleoside production, particu-
larly inosine and guanosine (Ledesma-Amaro et al., 2015). Theseflavour
active compounds (umami flavour) are used by the food industry with
various beneficial effects associated to them. Some wild strains have
the ability to naturally secrete high levels of inosine and guanosine
(Ledesma-Amaro et al., 2015). Furthermore, as a natural riboflavin
overproducer, A. gossypii has strong metabolic flow through the purine
biosynthetic pathway, the central biosynthetic pathway of these two
compounds. Based on this, a series of in silico simulations by the
GSMM iRL766 (Ledesma-Amaro et al., 2014b) allowed defining a set
of target genes (Table 2) for disruption or overexpression in order to
redirect the flux through inosine and/or guanosine biosynthesis. An
engineered strain (overexpressing a deregulated AgADE4; Jiménez
et al., 2005) with increased flux through the purine biosynthetic path-
way, which served before to enhance riboflavin production, was used
as background strain to introduce more specific metabolic shifts
(Ledesma-Amaro et al., 2015). From a total of eight new engineered
strains, the strain deleted for AgADE12, encoding the enzyme responsi-
ble for the conversion of inosine-5'-phosphate (IMP) into adenylo-
succinate (sAMP), and for AgPNP1, encoding the enzyme responsible
for the conversion of the nucleosides (inosine and guanosine) into
nucleobases (hypoxanthine and guanine), was able to produce and
excrete 24-fold more inosine (0.27 g/L) and 2-fold more guanosine
(0.14 g/L) than the wild type strain (Ledesma-Amaro et al., 2015).

The filamentous fungus A. gossypii demonstrated once again to
possess a very interesting natural potential and the machinery need-
ed to create improved engineered strains for different biotechnolog-
ical applications, in this particular case as a natural flavour producer
for the fermented beverages and food industries. The advent of sys-
tems biology has allowed leveraging this natural biotechnological
potential of A. gossypii (Ledesma-Amaro et al., 2015) and will continue
playing a major role in the development of this fungus as a cell factory.

With a dominant position in what concerns industrial riboflavin
production, A. gossypii has beneficiated from constant and sustainable
improvement of its natural ability, thus keeping the commercial com-
petitiveness of the process. Production of riboflavin byA. gossypiiwill al-
ways be a landmark for the White Biotechnology and its improvement
will continue to be pursued. However, there is no doubt that the trend
in the last years show that A. gossypii holds the potential to expand its
biotechnological significance way beyond riboflavin production.
Following the promising results obtained with the production of re-
combinant proteins, SCOs and flavour compounds, future studies
should assess if the optimization, scale-up and intensification of
these bioprocesses can support the obtainment of economically
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sustainable product yields. On the other hand, further strain engineer-
ing should also focus on expanding the range of substrate utilization
by this fungus and address the utilization of low-cost substrates derived
from renewable raw materials in the abovementioned bioprocesses.

5. Conclusions

The filamentous fungusA. gossypii has longbeen exploited for the in-
dustrial production of riboflavin. The fruitful synergy resulting from the
strong investment in both applied and basic researchputs A. gossypii in a
leading position in the establishment of the knowledge-based bio-
economy envisaged by theWhite Biotechnology. Thewealth of molecu-
lar and in silico tools available for this microorganism has allowed the
rational exploitation of its full biotechnological potential, which nowa-
days goes far beyond the production of riboflavin. It is now time to
take advantage of all the knowledge acquired during these years and
go further in the search for new commercially valuable applications
for this emerging cell factory, such as the recently reported production
of recombinant proteins, single cell oil and flavour compounds. To
drive these new A. gossypii applications through the successful commer-
cial track of riboflavin production, newer and more flexible tools for its
rational engineering and synthetic biology will necessarily have to be
combined with process development and optimization. Furthermore,
given the physiological and genetic heterogeneity observed between
A. gossypii strains, future exploration of this fungus natural biodiversity
holds the potential to unravel new strains for the industrial applications
described above or for yet unexplored novel applications.
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