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Using the GPU to Design Complex Profile

Extrusion Dies

In the present work the benefits of using graphics processing
units (GPU) to aid the design of complex geometry profile ex-
trusion dies, are studied. For that purpose, a 3D finite volume
based code that employs unstructured meshes to solve and
couple the continuity, momentum and energy conservation
equations governing the fluid flow, together with a constitu-
tive equation, was used. To evaluate the possibility of redu-
cing the calculation time spent on the numerical calculations,
the numerical code was parallelized in the GPU, using a sim-
ple programing approach without complex memory manipula-
tions. For verification purposes, simulations were performed
for three benchmark problems: Poiseuille flow, lid-driven
cavity flow and flow around a cylinder. Subsequently, the
code was used on the design of two real life extrusion dies
for the production of a medical catheter and a wood plastic
composite decking profile. To evaluate the benefits, the results
obtained with the GPU parallelized code were compared, in
terms of speedup, with a serial implementation of the same
code, that traditionally runs on the central processing unit
(CPU). The results obtained show that, even with the simple
parallelization approach employed, it was possible to obtain
a significant reduction of the computation times.

1 Introduction

The need for multitask optimization has been, for long, a prior-
ity during our evolution. The idea that two persons usually per-
form better than one, is intrinsic to our existence, and this re-
flects in our actions, creations and way of life. With the rapid
growth of science, sophisticated machines able to perform
Men’s work were invented, and this influenced, in part, our
concept of parallel work, extending the parallel multitasking
concept to the world of computers.

The desire to get more computing power and better reliabili-
ty by orchestrating a number of low cost computers has given
rise to the creation of computational clusters, with this inven-
tion being (arguably) attributed to Gene Amdahl of IBM (Am-
dahl, 1967), who in 1967 published a seminal paper on parallel
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processing (Amdahl’s Law). Until now, the cluster concept
continues to hold, but the evolution led to the creation of more
powerful computers with more than one core, allowing the em-
ployment of the parallel computing concept in a single com-
puter (Reilly, 2003).

When thinking about the optimization of engineering/phy-
sics problems, we realize that most of them result in the numer-
ical solution of differential or partial differential equations.
This numerical solution is usually expensive because it re-
quires the resolution of large systems of equations. The fact
that the physical models are usually nonlinear, forces an itera-
tive procedure, enhancing the need for more computational
power.

The current industrial problems are becoming more and
more complex on a daily basis, consuming computer resources
and demanding heavy computations. If we want to obtain ac-
ceptable computational times, we must take advantage from
all the parallel computational power available in a computer.
In this framework, graphics processing units (GPUs), for a long
time only seen as powerful tools to enhance the video games
graphics, are now a speedup enhancer for large dimension en-
gineering problems (Elsen et al., 2008).

Therefore, since 1999 we have witnessed an increasing in-
terest on GPUs, and the graphics processors have evolved from
fixed function pipelines towards fully programmable floating
point pipelines (Owens et al., 2008). NVIDIA (2013) has de-
veloped the CUDA programming toolkit, which includes an
extension of the C language and facilitates the programming
of GPUs for general purpose applications, by preventing the
programmer to deal with the graphic details of the GPU (Castro
etal., 2011).

The literature is rich in methods for the GPU parallel compu-
tation of a matrix solution. Bolz et al. (2003) implemented two
basic computational kernels: a sparse matrix conjugate gradi-
ent solver and a regular-grid multigrid solver, showing that
real-time applications, ranging from mesh smoothing and para-
metrization to fluid and solid mechanics solvers, could greatly
benefit from these. Later, Kriiger and Westermann (2003) in-
troduced a framework for the implementation of linear algebra
operators on programmable graphics processors (GPUs). They
proposed a stream model for arithmetic operations on vectors
and matrices for the efficient communication on modern
GPUs. In order to assess their model, they performed simula-
tions of the 2D wave equation and the incompressible Navier-
Stokes equations, using direct solvers for sparse matrices.
These two articles are perhaps the most cited on the GPU spe-
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cific literature. However, there are other works that deserve our
attention. Fatahelian et al. (2004) performed an in-depth analy-
sis of dense matrix-matrix multiplication, which reuses each
element of input matrices O(n) times. Although its regular data
access pattern and highly parallel computational requirements
suggested an efficient evaluation on GPU of matrix-matrix
multiplications, they found that these are less efficient than
current cache-aware CPU approaches. Hall et al. (2003) stud-
ied more efficient algorithms that make the implementation of
large matrix multiplication on upcoming GPU architectures
more competitive, using only 25 % of the memory bandwidth
and instructions of previous GPU algorithms. Ohshima et al.
(2007) proposed a new parallel processing environment for
matrix multiplications by using both CPUs and GPUs. They
decreased 40.1 % the execution time of matrix multiplications
when compared with using the fastest of either CPU only case
or GPU only case. Monakov et al. (2010) presented a new sto-
rage format for sparse matrices that better employs locality,
has low memory footprint and enables automatic specialization
for various matrices and future devices via parameter tuning.

A quick literature survey shows that the use of GPUs for in-
creasing the performance of computations depends on the class
of problems we study. In this work we are interested in the nu-
merical solution of the Navier-Stokes equations. Although
some limitations exist in regard to Computational Fluid Dy-
namics (CFD), we can find in the literature successful works
regarding the solution of Euler and Navier-Stokes equations.
In CFD problems several unknowns, e. g. pressure and veloci-
ty, distributions are calculated by solving systems of equations.
The number of unknowns can be very large (several millions)
which demands a lot of memory and computational time. This
is even more demanding when dealing with optimization prob-
lems, where several simulation trials have to be done. Thus,
any contribution to speedup the calculation, as the one obtained
by code parallelization, may have a huge impact in areas that
make use of CFD.

The first generation of GPU hardware allowed high speed-
ups, but only single precision was used (Elsen et al., 2008; Ha-
gen et al., 2006; Brandvik and Pullan, 2008). For the second
generation of GPU, initially lower speedups were reported in
the literature because of the employment of double precision
numbers (Cohen and Molemaker, 2009; Corrigan et al., 2009),
but Kampolis et al. (2010) and Asouti et al. (2010) reported
double precision speedups for 2D and 3D Navier-Stokes sol-
vers of circa 20 X. A very recent paper on the GPU perfor-
mance for a finite-difference compressible Navier-Stokes sol-
ver, suitable for direct numerical simulation (DNS) of
turbulent flows, also revealed speedups of 22 X. However, in
order to obtain such performance, all the above mentioned im-
plementations required a complex and efficient manipulation
of the several memories available on the GPU. Aiming to eval-
uate the performance of the Fermi GPU generation, Pereira
et al. (2013) obtained maximum speedups of 20 X, solving the
2D Navier-Stokes equations together with an inelastic constitu-
tive equation for simple benchmark flows. The results showed
that it was possible to obtain a significant better performance,
without complex memory manipulations, which are only ac-
cessible to programmers specialized in GPU.

The objective of this work is to assess the performance of a
GPU parallelized 3D Navier-Stokes solver, using inelastic
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fluids governed by the Bird-Carreau constitutive equation,
and its employment on the design of industrially relevant extru-
sion dies for the production of complex profiles, such as a
catheter, for medical applications, and a wood plastic compos-
ite profile (WPC), with application on the building industry.
In this way, we extend to 3D the previous work by Pereira et al.
(2013), where the GPU parallelization was developed just for
2D case studies, but still using the same straightforward imple-
mentation (without any complex memory manipulations).

The remaining of this paper is organized as follows. In sec-
tion 2 we describe the relevant governing equations, the nu-
merical procedure and the code parallelization. In section 3
we present the code verification, discuss the performance ana-
lysis for three benchmark problems and, finally, evaluate the
benefits of employing the GPU parallelized code on the design
of two extrusion dies for the production of complex profiles.
The paper ends with the conclusions in section 4.

2 Governing Equations and Numerical Procedure

2.1 Code Implementation

In this work we consider the isothermal incompressible fluid
flow that is governed by the continuity,
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conservation equations, where p is the fluid density, t is the
time, u; is the i velocity component, p is the pressure and
n(y) is a non-constant viscosity modeled using the Bird-Car-
reau constitutive equation, given by
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where 7 is a function of the second invariant of the rate of defor-
mation center (y =V2uD?, D= 1 <% + %)), Mo is the
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zero shear-rate viscosity, 1, is the viscosity at very high shear
rates, A is a characteristic time, tr stands for the trace of the ma-
trix and n is the power-law index.

For the wall velocity boundary condition, we assumed the
usual no-slip condition,

u; = 0. (4)

A fully-implicit Finite Volume based numerical method is used
to solve Egs. 1 to 3. The method employs a time marching
pressure-correction algorithm, formulated with a collocated
variable arrangement and unstructured meshes (Gongalves
et al., 2013). The governing equations are integrated, in space,
over the control volumes (cells with volume Vp) forming the
computational mesh, and along time, over a time step (A).
The volume integration benefits from the Gauss divergence
theorem, and the subsequent surface integrals are discretized,
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with the help of the midpoint rule, so that sets of linearized al-
gebraic equations are obtained, for each velocity component
u;, having the following general form:

aplp = Z appUnp + Sy. (5)
nb

In these equations ap and a, are the coefficients accounting for
advection and diffusion contributions, S, is a source term en-
compassing all contributions not included in the before men-
tioned coefficients, the subscript P denotes the cell under con-
sideration and subscript nb its corresponding neighbor cells.

The set of algebraic equations (Eq.5) are sequentially
solved for the Cartesian velocity components by an iterative
solver. The newly computed velocity field usually does not sat-
isfy the continuity equation (i.e. Eq. 1), thus it needs to be cor-
rected by an adjustment of the pressure gradients that drive it.
This is accomplished by means of a pressure-correction field
obtained from a discrete Poisson equation, derived from a dis-
cretized form of the continuity equation in combination with
the momentum equation. This pressure correction equation is
solved by a Jacobi iterative solver. The correction of the veloc-
ity field follows the SIMPLE strategy proposed by Patankar
(1980). On the SIMPLE iterative procedure, the viscosity is up-
dated at the end of each iteration step using the model given by
Eq. 3.

For more details on the numerical implementation see Gon-
calves et al. (2013).

2.2 CPU and GPU Implementations

With the second generation of GPUs, the Fermi architecture
was introduced, and GPUs became more suitable for scientific
computations. The GPUs comprises different types of mem-
ories, from fast to slow, and with this new architecture memory
access is automatic, without the need of programmer’s inter-
vention, thus facilitating the implementation of random access
memory algorithms.

Figure 1 shows the sequence of tasks for the GPU code im-
plementation, where the white boxes indicate the routines exe-
cuted on CPU and the gray boxes contain the routines executed
on GPU. The full CPU implementation is similar to that shown
in Fig. 1, without the “coloring scheme” that is not required on
serial implementations.

mesh mesh data coloring
generation structuring scheme
- momentum "
pressure-correction equation flow field
equation solution ; initialization
solution

velocities and pressure

‘ convergence?
correction

Fig. 1. Scheme used for coupling velocity and pressure fields. The
gray boxes represent the routines ported to the GPU
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To port the numerical code to the GPU, we used the most ba-
sic procedure, running on the GPU the most time consuming
routines, and minimizing the time required for the data transfer
between the CPU and GPU, which is done only at the start and
end of the SIMPLE algorithm. Therefore, the mesh generation,
data structuring and coloring scheme routines are executed in
the CPU, while the heaviest part of the algorithm is ported to
the GPU, as can be seen in Fig. 1. Note that the advantages ob-
tained through the SIMPLE algorithm parallelization would be
the same if alternative algorithms (SIMPLER or PISO (Patan-
kar, 1980)) were employed.

It is important to notice that, as discussed in Pereira et al.
(2013), all the SIMPLE iterative procedure (gray boxes in
Fig. 1) must run exclusively on the GPU. Otherwise, the time
required to exchange the information between the GPU and
the CPU, at the end of each iteration, would surpass the advan-
tages obtained by porting the code to the GPU.

In order to avoid information loss, that occurs when two or
more threads (running in parallel) try to access simultaneously
the same memory address, we adopted a coloring scheme
(Kampolis et al., 2010) when assembling the systems of equa-
tions. Accordingly, we colored differently those control vol-
ume faces that contribute to the same term of the system of
equations coefficient matrix diagonal. In this way we guarantee
that implicit contributions to that matrix diagonal are not in-
serted in a concurrent manner.

For both systems of equations (that are solved at each itera-
tion), we chose the point-iterative Jacobi method, which uses
a matrix stored in the compressed sparse row format.

The GPU used in the simulations was the NVIDIA G-force
GTX480, and the CPU was an Intel Core i17-950 Processor
(3.06 GHz) with 8 GB RAM, making use of just one core.

3 Case Studies

The results obtained from the numerical solutions, namely
Poiseuille flow, lid-driven cavity flow, flow around a cylinder,
and flow in a catheter and a wood plastic composite profile
dies, will now be presented, together with a speedup compari-
son between the serial and parallel code implementations. It is
important to notice that for all the tested case studies the results
and number of iterations obtained with serial and parallel ver-
sions of the code were equal.

3.1 Benchmark Problems and Code Verification

Initially, and in order to verify the code implementation, sim-
ple flows like the flow around a cylinder, flow in a simple
channel and the lid-driven cavity flow were studied (see
Fig. 2). Our results were compared with the analytical solu-
tions (Poiseuille flow for Re = 80), and with benchmark solu-
tions that exist in the literature for both the flow around a cylin-
der (Re = 5) (Bharti et al., 2006) and the lid-driven cavity flow
(Re = 100) (Ghia and Ghia, 1982).

In the flow around a cylinder problem, the results were ana-
lyzed comparing the length of wake (or recirculation), Ly, a
dimensionless length, corresponding to the ratio between the
length of the recirculation formed on the back side of the cylin-

Intern. Polymer Processing XXX (2015) 4



N. D. Gongalves et al.: Using GPU to Design Extrusion Dies

der (Ly,) and the cylinder diameter (D), and the angle of se-
paration, Os, the angle between the symmetry line and the flow
separation from cylinder surface (see Fig.2B). The differ-
ences, between our results and the ones given in (Bharti et al.,
2006), obtained for these two parameters, were circa 3.2 %,
for Ly, and 1.7 %, for Os, with a mesh comprising circa 8 times
more cells along the cylinder surface than the one used by
Bharti et al. (2006), who referred that those results were ob-
tained with an accuracy of 1 to 2 %.

As shown in Fig. 3 for the Poiseuille and lid-driven cavity
flows, accurate results were obtained, therefore validating our
implementations in GPU and CPU. Note that for the lid-driven
cavity case study the fluid was assumed to be Newtonian. To
validate the code for non-Newtonian fluids, the Poiseuille flow
was solved considering a Power-law constitutive equation, as-
suming the following parameters: K = 1000 Pa s" and n = 0.3.

In Fig. 4 we present the speedups obtained for these three
benchmark problems, as a function of the number of cells used
in the numerical tests. As shown, a substantial increase of the
code performance is obtained for the three cases. The maxi-
mum speedups achieved were 3.7 X for the Poiseuille flow,
7 x for the flow around a cylinder and 3.5 X for the lid-driven
cavity flow. It can also be seen that the variation of the speedup
with the number of cells leads to a sigmoidal shape, for all
cases, evidencing that the performance scales with the mesh
size.
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Fig. 2. Geometries of the case studies used for the code verification
and speedup calculations: (A) Poiseuille flow, (B) flow around a cylin-
der, (C) lid-driven cavity flow
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Note that for very coarse meshes, the GPU parallel imple-
mentation takes more time to perform the simulations than the
single CPU. This happens because the time taken to exchange
information between the CPU and the GPU is comparable to
the time consumed to solve the problem. For the most refined
meshes the time required for the exchange of information be-
tween the GPU and the CPU is residual.

3.2 Design of Profile Extrusion Dies

The previous results were obtained for quite simple geome-
tries, unlike the complexity of current industrial problems. To
design extrusion dies for the production of profiles comprising
more complex geometries, extensive experience in the extru-
sion process is required, as well as the performance of several
trials in order to achieve acceptable results. One of the main
difficulties on extrusion die design is the achievement of a ba-
lanced flow at the flow channel outlet. To overcome these dif-
ficulties, numerical codes can be a valuable design aid, allow-
ing to minimize the resources spent on the experimental trial-
and-error process. With these tools the designer can improve
the extrusion die channel geometry, by using either numerical
based trial-and-error procedures (Szarvazy etal., 2000) or
automatic algorithms that search for an optimized geometry
guided by an objective function, without any user intervention
(Nobrega et al., 2000).

- analytical
C numerical

ﬁ;‘

B)

Fig. 3. Results obtained for the case studies employed for the code
verification: (A) velocity profile for the Poiseuille flow, (B) streamlines
predicted for the Lid-driven cavity flow: left, obtained with the devel-
oped numerical code; right, presented by Ghia (Ghia and Ghia, 1982)
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In order to evaluate the advantage of the employment of the
parallelized version of the numerical code on the design of
more complex geometries, two additional case studies will be
considered, comprising the design of extrusion dies for the pro-
duction of a medical catheter and a WPC decking profile.

3.2.1 Medical Catheter Extrusion Die

Medical catheters are devices that can be used to aid the treat-
ment of diseases or the execution of surgical procedures, for in-
stance by facilitating the insertion of drugs or surgical instru-
ments in the patient’s body. Catheters can be used on several
applications, e.g., cardiovascular, urological, gastrointestinal,
neurovascular and ophthalmic. Each application requires a spe-
cific catheter that can comprise several holes (lumens) that can
possess different diameters. Due to its constant cross section,
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Fig. 4. Speedup obtained for the benchmark case studies: (A) Poi-
seuille flow, (B) flow around a cylinder, (C) lid-driven cavity flow
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catheters are produced by extrusion, using medical grade mate-
rials.

As shown in Fig. 5A, the catheter geometry considered on
this work has five channels (lumens). Due to symmetry reasons
only half geometry was taken into account. It should be noted
that the relative location of the channels are not expected to
affect the catheter performance, since the lumens functionality
is maintained when their diameter is assured (Fig. 8A). Thus,
the problem to be solved for this profile is to identify the best
location of the lumen that ensures the most balanced flow dis-
tribution. Accordingly, the geometry was parameterized with
the location of the lumen centers (see Fig. 5B) (Gongalves
et al., 2013).

The material employed for the production of the catheter
was a polypropylene homopolymer extrusion grade, Novolen
PPH 2150, from Targor, which rheological behavior was ex-
perimentally characterized in capillary and rotational rhe-
ometers, at 230°C (N6brega et al., 2003). The shear viscosity
data were fitted to a Bird-Carreau constitutive equation, con-
sidering mn,, = 0 Pa s, which yield the following parameters:
My = 5.58 x 10* Pas, L =3.21s and n=0.3014. For the

4.5

¥
®)
Fig. 5. Extrusion die geometry for the production of a catheter profile:

(A) cross-section dimensions (mm), (B) location of the channels and
(C) flow channel dimensions (mm)
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density, a typical value for polypropylene was considered
(p = 900 kg m—3).

To evaluate the dependency of speedup between the CPU
and the GPU versions of the code, regarding to the number of
cells, three meshes were used with 12382, 57085 and 389102
cells, being the last illustrated in Fig. 6.

For this specific problem a maximum speedup of 6.4 x was
obtained (see Fig. 7), with the highest value corresponding to
the most refined mesh.

The outflow distribution for the initial trial is illustrated in
Fig. 8A; it can be seen that higher values of the velocity occur
in regions where the restriction to the flow is lower. In order
to balance the outlet flow, several different locations for the
lumens were used, being the most balanced geometry obtained
on the sixth trial, illustrated in Fig. 8B. More details on the
optimization process are given on (Gongalves et al., 2013).

The improvements obtained during the optimization process
can be evaluated by the evolution of the objective function
(Gongalves et al., 2013) calculated for each trial (Fig. 9). Note
that as the tool performance is improved, the objective function
decreases. Both results, velocity field and objective function,
evidence a significant improvement of the tool effectiveness.

Each run made on the CPU serial code took about 2 h 50 min
of computation time, while for the parallelized GPU code the
same problem took circa 27 min. Therefore, the full optimiza-
tion process takes about 17 h 15 min and 2 h 40 min to run on
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Fig. 6. Typical mesh used on the medical catheter case study, compris-
ing 389102 cells
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Fig. 7. Speedup obtained for the medical catheter case study
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the CPU and GPU, respectively, i.e., a significant reduction
on the total computation time was obtained.

3.2.2 Wood-Plastic Composite Extrusion Die

The second complex geometry considered in this work is an
extrusion die for the production of a wood-plastic composite
(WPC) profile. WPCs are mainly made of wood particles dis-
persed in a thermoplastic matrix. Their main applications lie
in the civil construction area, being an alternative to solid wood
that requires more maintenance and has less flexibility in terms
of geometry.

The dimensions of the cross-section of the initial trial die are
shown in Fig. 10A. Due to symmetry reasons, only half geo-
metry was considered. The achievement of a balanced flow at
the outlet can be sought, keeping the outside contour shape,
and modifying the dimensions of the torpedoes of the extrusion
die that shape the hollow sections of the profile (Fig. 10B).
These changes in the torpedoes can be done easily, since they
are removable, and do not affect the profile functionality,
which is mainly determined by its outer contour.

1 .
ulu,,, l
0
A) B)

Fig. 8. Velocity field obtained for the outflow of a catheter profile:
(A) initial trial, (B) final trial

04

Trial

Fig. 9. Evolution of objective function along the optimization process
for the medical catheter case study
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To characterize the material, we used a capillary rheometer
with dies of 2 mm diameter and L/D of 16 and 4 (L and D stand
for the length and diameter of the die, respectively), to perform
the Bagley correction. The tests were performed at a tempera-
ture of 190°C. The experimental data (shear viscosity versus
shear-rate) were fitted in order to obtain the Bird-Carreau
model parameters that resulted in: n = 0.32, ny = 53993 Pa s,
N = 0Pas and A =2.36s. Other characteristics of the
WPC are: density 1200 kg m=, specific heat 1300 J kg™' K~!
and thermal conductivity of 0.08 W m~! K~

To analyze the evolution of the speedup obtained with the
parallelized version of the code relatively to the serial one, as
function of the number of cells, three different meshes with
57170, 230282 and 814032 cells, were considered (Fig. 11,
shows the most refined mesh employed).

A maximum speedup of 6.7 x was achieved (Fig. 12) for the
finest mesh employed. However, between the two most refined
meshes, there was only a residual increase on the speedup ob-
tained. This asymptotic behavior is common to all the solved
problems as well in other parallel processes. The speedup ob-
tained in any code parallelization has a maximum achievable
value. When coarse meshes are employed, that maximum val-
ue is not obtained because the additional operations required
for parallelization, in what concerns to data manipulation, have
a non-negligible weight on the total computation time. By re-
fining the mesh, the relevance of those operations diminishes
and the maximum speedup value is approached.

The flow distribution of the initial trial at the extrusion die
outlet cross section is shown in Fig. 13A, where it can be seen
that highest average velocities occur in sections where the flow
restriction is lower.

:
: 3 4
i
!
! 5 4
25 | —>Ee— ——
i
I
5
5 & ;
-1 i
1 i
1 i
70
A)
i
i
|
; I L i h
i
i
| —> <o o>
i
E 5 L L
i I 4 1 4
i
[
!
i
i
B)

Fig. 10. Extrusion die geometry for the production of a WPC profile:
(A) dimensions (mm);, (B) parameters employed for optimization pur-
poses
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As in the previous case, the flow balance of this die was also
optimized, and a similar objective function was used to drive
the process. In Fig. 14 it can be seen that the objective function
value decreases significantly from the first to the last trial.

For this case the computation time needed to each run made
on the CPU serial code was about 7 h 40 min, while for the par-

Fig. 11. Typical mesh used on the WPC case study, comprising
814032 cells
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Fig. 12. Speedup obtained for the WPC profile extrusion die flow
simulations
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Fig. 13. Flow distribution at the outlet of the WPC profile extrusion
die: (A) initial trial and (B) final trial
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Fig. 14. Extrusion die for the production of the WPC profile: evolution
of objective function along the optimization process

allelized GPU code the same problem took circa 1 h 15 min.
Since the full optimization process needed five runs, it took
about 38 h 30 min and 5h 30 min to run on the CPU and
GPU, respectively. As in the catheter case study, a significant
reduction on the total computation time was achieved with the
use of the parallelized GPU code.

4 Conclusions

This work presents the GPU parallel implementation of a 3D
finite volume flow solver for unstructured meshes. The assess-
ment of the code was carried out using three benchmark prob-
lems (Poiseuille flow, flow around a cylinder and lid-driven
cavity flow), and its ability to deal with complex problems
was illustrated with the design of extrusion dies for the produc-
tion of a medical catheter and of a wood plastic composite pro-
file. In order to evaluate the advantages of the GPU paralleliza-
tion, speedups between the serial version of the numerical
code, that runs on the CPU, and the GPU parallelized numeri-
cal code, were computed. For the tested case studies, speedups
ranging from 3.5 X to 7 X were obtained.

In what concerns to the design of complex cross-section geo-
metry profile extrusion dies, two case studies were considered.
For the design of the medical catheter extrusion die, six numer-
ical runs were required to attain an acceptable flow balance.
The computation time required decreased from 17 h and
15 min to 2 h and 40 min on the serial (CPU) and parallelized
(GPU) implementations of the numerical code, respectively.
For the wood plastic composite decking profile case, the 5 runs
required for the design process took 38 h and 30 min and 5 h
and 30 min on CPU and GPU implementations of the numeri-
cal code, respectively.

From the results obtained it can be concluded that the GPU
parallelization of the numerical code allowed a significant re-
duction of the time spent in calculation, which will have a no-
ticeable positive impact on the design process. It is important
to notice that these results were obtained without any complex
memory management on the GPU and, therefore, there is room
for additional future improvements.
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