
José Pedro Lopes Faria

June 2015U
M

in
ho

|2
01

5

Modeling Microbes: New methods for
integrated metabolic and regulatory
network reconstruction

Universidade do Minho

Escola de Engenharia

Jo
sé

 P
ed

ro
 L

op
es

 F
ar

ia
M

o
d

e
li
n

g
 M

ic
ro

b
e

s:
 N

e
w

 m
e

th
o

d
s 

fo
r 

in
te

g
ra

te
d

 
m

e
ta

b
o

li
c
 a

n
d

 r
e

g
u

la
to

ry
 n

e
tw

o
rk

 r
e

c
o

n
st

ru
c
ti

o
n

Esta investigação foi financiada pela Fundação para a Ciência e Tecnologia 
através da concessão de uma bolsa de doutoramento (SFRH / BD / 70824 / 2010), 
co-financiada pelo POPH - QREN - Tipologia 4.1 -Formação Avançada - e 
comparticipados pelo Fundo Social Europeu (FSE) e por fundos nacionais do 
Ministério da Ciência, Tecnologia e Ensino Superior (MCTES).

Governo da República 
Portuguesa Fundo Social Europeu



PhD Thesis in Bioengineering

This work was executed under the supervision of:

Doctor Isabel Cristina de Almeida Pereira da

Rocha

Co-supervisors:

Doctor Miguel Francisco de Almeida Pereira

da Rocha

Doctor Christopher Scott Henry

José Pedro Lopes Faria

June 2015

Modeling Microbes: New methods for
integrated metabolic and regulatory
network reconstruction

Universidade do Minho

Escola de Engenharia



    iii 

!

!

!

 

 

 

STATEMENT OF INTEGRITY 

 

I hereby declare having conducted my thesis with integrity. I confirm that I have not used 
plagiarism or any form of falsification of results in the process of the thesis elaboration. 

 

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of 
Minho. 

 

University of Minho, June 22nd 2015 

 

 
                             !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

José Pedro Lopes Faria 

!

!

!

!

!

!

!

!

!



iv  

!

!

  



    v 

!

ACKNOWLEDGEMENTS 

So many people are responsible for me to be able to finish my PhD thesis that I have trouble to 

figure out how to start. More than anyone else, my advisors are main reason I am able to actually 

finish a PhD thesis. Thank you Miguel, Isabel and Chris for the guidance and good times outside 

the lab walls. I don’t want to sound cheesy, but you guys are the best advisors a graduate student 

could ask for. 

For my friend’s at Argonne, thank you for a great work environment and good laughs with the Star 

Wars and Star Trek live size cut offs. I am looking at you guys, Ric, Janaka, Neal, Pam and Sam. 

Also a shout out to all the FIG people, with a special thanks for Veronika, Svetta and Ross for all 

your help. Thank you Ross for being a mentor more than a co-worker. Also a special thanks for 

everyone from the BisBii research group at University of Minho, you guys are the best, I know I can 

be a annoying sometimes, but you guys always put up with me. Thank you so much for that. 

A very heartfelt thank you to my girlfriend Eileen. Thank you for listening to my never ending thesis 

rants, and for cheering me up when I was feeling down. Can’t wait to see you!  

It has been hard to live between the United States and Portugal, back and forward for 4 years 

during my PhD. A lot of good people on both sides made it easier though. There are so many of 

you for me to name only a few or to name all. I am so blessed to have so many good friends; I just 

want you all to know I could not have done it without you guys. 

I also would also like to thank FCT for the financial support (SFRH / BD / 70824 / 2010) that 

allowed me to conduct the research necessary for this thesis. 

Deixo para o final o obrigado mais importante para o meus pais a quem dedico esta tese. Pelo 

apoio que sempre me deram fosse qual fosse a minha decisão. E sobretudo por me terem dado o 

privilégio de poder estudar, muitas vezes com alguns sacrifícios, mas isso nunca os dissuadiu de 

fazerem de tudo para que eu pudesse ter sempre mais e melhor. Estou muito grato por tudo que 

me deram até hoje e continuarei a fazer tudo para que vocês se possam orgulhar de mim... já que 

eu tenho todo o orgulho de vocês. 



vi  

!

  



    vii 

!

ABSTRACT 

The reconstruction of genome-scale metabolic models (GEMs) from genome functional annotations 

is, nowadays, a routine practice in Systems Biology (SB) research. The models have been 

successfully used to predict organisms’ behavior, gene essentiality, growth phenotypes and to aid 

strain optimization via metabolic engineering strategies. As the community acknowledges the 

usefulness of GEMs, they also present limitations, most notably the inability to account for the 

impact of regulation on the metabolic activity. The overall objective of this thesis was to reconstruct 

and perform in silico phenotype simulations for integrated models of metabolism and regulation.  

The number of genomes available in the public domain increased exponentially in the last decade. 

The overwhelming amount of data led to the introduction of automated pipelines for genome 

annotation, also facilitating the propagation of annotation inconsistencies from public repositories. 

In this work, we explore the use of GEMs as tools for annotation curation. A protocol for annotation 

curation with metabolic network reconstructions was designed and applied to the genus Brucella. 

The high-throughput reconstruction and analysis of genome-scale transcriptional regulatory 

networks is a current challenge in SB research. In this work, the model organism Bacillus subtilis 

was chosen as a case study and a new manually curated network for its transcriptional regulation 

was introduced. We proposed a new methodology for the inference of regulatory interactions from 

gene expression data. The newly proposed methodology dubbed “atomic regulon inference” was 

shown to capture many sets of genes corresponding to regulatory units in the manually curated 

network. 

Following this line of work, based on the proposed regulatory transcriptional regulatory network for 

B. subtilis, we introduced an integrated genome-scale model for the metabolism and transcriptional 

regulation in B. subtilis. Model validation was performed with in silico growth phenotype 

simulations for mutant strains described in the literature. The integrated model was able to predict 

transcription factor knockouts for growth in multiple environmental conditions, expanding the 

predictive capabilities of the metabolic model by itself. 
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RESUMO 

A reconstrução de modelos metabólicos à escala genómica (MMEGs) a partir de anotações 

funcionais do genoma é, hoje em dia, uma prática comum na investigação em Biologia de 

Sistemas (BS). Estes modelos foram usados com sucesso para prever o comportamento de 

organismos, essencialidade de genes, fenótipos de crescimento e na optimização estirpes 

bacterianas com estratégias de engenharia metabólica. Com o reconhecimento pela comunidade 

da utilidade de MMEGs, várias limitações foram identificadas, principalmente a incapacidade 

destes modelos explicarem o impacto da regulação de genes na actividade metabólica. O objetivo 

global desta tese foi a reconstrução e execução de simulações de fenótipo in silico para modelos 

que integram metabolismo e regulação. 

O número de genomas disponíveis no domínio público aumentou exponencialmente na última 

década. Com este aumento exponencial de dados, plataformas para anotação automática de 

genomas tornaram-se uma necessidade, o que facilita a propagação de inconsistências nas 

anotações em repositórios públicos. Neste trabalho exploramos o uso MMEGs como ferramentas 

para melhoramento de anotações. Um protocolo para o melhoramento de anotações com o uso de 

MMEGs foi desenvolvido neste trabalho e testado na melhoria de anotações do género Brucella.  

A reconstrução e análise de redes regulatórias de fenómenos de transcrição à escala genómica é 

um desafio actual na investigação em BS. Neste trabalho, foi efectuada a reconstrução manual da 

rede regulatória da transcrição  para o microrganismo Bacillus subtilis. Um novo método para 

inferência automática de interações de regulação, a partir de dados de expressão de genes, foi 

igualmente desenvolvido. Este novo método mostrou ser capaz de inferir interações regulatórias 

comparáveis às observadas na rede reconstruída manualmente.  

Com base na rede regulatória proposta para a regulação da transcrição de B. subtilis, 

desenvolvemos um modelo à escala genómica que integra o metabolismo e regulação da 

transcrição em B. subtilis. O modelo foi validado com simulações de fenótipo de crescimento in 

silico para estirpes mutantes descritas na literatura. O modelo integrado foi capaz de prever o 

efeito da deleção de factores de transcrição no crescimento em várias condições ambientais, 

ampliando as capacidades de previsão do modelo metabólico por si só. 
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1.1 CONTEXT AND MOTIVATION 

In the mid 1970s, the pioneer work performed in DNA sequencing unveiled the “power” of DNA and 

triggered a paradigm shift in biomedical research, launching the genomic era [1]. This era was defined 

by major advances in Molecular Biology and culminated with complete sequencing of the human 

genome [2]. In the turn of the century, Bioinformatics and Computational Biology had already emerged 

as multidisciplinary fields to handle the wealth of data from sequencing projects, propelling the 

beginning of the post-genomic era [3]. 

As the first bacterial genome sequences became available, genome functional annotation quickly 

became one of the biggest challenges in the post-genomic era [4]. The lack of standards led to the 

introduction of inconsistencies and errors in the annotations [5]. As the number of sequenced 

genomes increased exponentially over the last decade, a rise of automatic pipelines for genome 

annotation in detriment of manual curation became common practice [6]. The heavy reliance on 

sequence homology in these pipelines propagates inconsistencies across multiple organisms and 

databases, as new genomes can be annotated with old and out of date references [7]. 

Simultaneously, the increase in the abundance of available experimental data in the beginning of the 

new millennia boosted the emergence of a new perspective on Biology, which was named as Systems 

Biology [8]. This approach aims to understand the dynamics and behavior of an organism by exploring 

the relationships between genes, the proteins they encode and their organization into pathways [9]. 

Genome-scale metabolic models (GEMs) have become major tools in Systems Biology, and 

reconstructions are already in place for a growing number of organisms, including prokaryotic, 

archaeal, and eukaryotic species [10]. Advances were made towards the use of these models and 

computational tools for the in silico design and optimization of enhanced microbial strains [11]. 

Indeed, Metabolic Engineering (ME) has made use of such models to successfully establish new 

metabolic enzyme functions and pathways or altering existing pathways for the optimization of the 

production of chemicals of interest [12].  
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As the use of GEMs in ME and biological discovery became a common practice, tools have been 

introduced to automate the reconstruction process [13]. Automation substantially decreased the effort 

for the reconstruction of new GEMs, but these metabolic reconstructions have been based on 

automated annotation pipelines and still require manual refinements and validation against 

experimental datasets. Also, in spite of their achievements, these models are not able to capture the 

impact of gene regulation or signaling networks. When we entered the post-genomic era, obtaining a 

whole cell model that can be used in simulation was proposed as a major goal for the field in the 21st 

century [14]. Today, nearly 15 years later, only one whole-cell model has been proposed for 

Mycoplasma genitalium, one of the smallest known genomes of any free-living organism [15], still 

presenting many limitations. 

Early studies with GEMs pointed to the importance of the integration of gene expression data into 

metabolic models to account for regulatory effects [16]. The first endeavors for the integration of 

regulatory networks with metabolic models revealed increased accuracy in predicting in silico 

phenotypes for Escherichia coli [17] and unveiled novel regulatory mechanisms in Saccharomyces 

cerevisiae [18]. The main limitation of these modeling efforts is the requirement of extracting the 

knowledge from gene expression data and its conversion into Boolean gene regulatory rules.  

New methods have been developed to tap into the wealth of transcriptomics data and its integration 

with GEMs. Some of these methods enabled the prediction of tissue-specific metabolic models of 

human tissues [19], the prediction of drug targets [20] and mycolic acid production in Mycobacterium 

tuberculosis [21]. Despite these cases of success, a recent evaluation of the most widely used 

methods that integrate metabolic models and gene expression data shows that the latter underperform 

when compared with predictions from methods that account just for metabolism [22]. This fact casts 

some doubts about the way transcriptional regulation affects metabolic fluxes [23] and motivates the 

development of novel models and methods to exploit this interaction.  
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1.2 RESEARCH OBJECTIVES 

The overall objective of this thesis was to reconstruct and perform in silico phenotype simulations for 

integrated models of metabolism and regulation. To achieve this goal, studies were performed covering 

all individual components that should be integrated to fulfill the overall purpose, including analyses of 

genome annotations, reconstructions of GEMs, analyses of gene expression data and reconstruction of 

regulatory networks.  

According to the challenges presented in the previous section, several aims were proposed to attain 

the global objective stated above: 

• Assess the quality and caveats of current automated reconstructed GEMs by performing 

metabolic reconstructions for a large set of microbial genomes available in public databases. 

• Examine the consistency of genome annotations across multiple databases and explore the 

development of methodologies that make use of metabolic reconstructions as tools for 

annotation curation.  

• Review repositories and databases with notable bacterial transcriptional data, as well as 

methods for transcriptional regulatory network reconstruction.  

• Perform the reconstruction and analysis of the regulatory network for Bacillus subtilis using 

manual curation and high throughput gene expression datasets. 

• Build an integrated genome-scale model for the metabolism and transcriptional regulatory 

network of B. subtilis.  

• Perform in silico growth phenotype simulations to validate the integrated model with 

experimental datasets and knowledge of regulatory interactions described in the literature. 
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1.3 THESIS OUTLINE 

The thesis is structured in 5 chapters, as shown on Figure 1.1. This first chapter, “Introduction”, details 

the motivations and the objectives of the thesis work, providing the outline of the texts structure. 

!

Figure 1.1 Thes is  out l ine.  

In order to develop integrated models of metabolism and regulation, three main elements have been 

identified as the “core” of the research conducted in this thesis: genome annotations, metabolic 

networks and regulatory networks. The three main chapters are organized according to each of those 

core elements. It is important to note that each chapter contains its own state of the art relevant to the 

specific work developed.  
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In chapter 2, “Using metabolic networks and models to improve genome annotations”, we investigate 

the current state of automated reconstructed metabolic models. We attempt to achieve this objective 

by reconstructing GEMs for all genomes available in the PubSEED repository [24]. This process led to 

the identification of annotation errors and caveats of automated reconstruction processes. A study of 

the Brucella genus was conducted to assess the quality of genome annotations at the pan-genome 

level, and provide a protocol for genome annotation curation using metabolic models [25]. 

In chapter 3, “Analysis of the regulatory network of Bacillus subtilis” we explore the reconstruction of 

regulatory networks. A comprehensive review of databases for gene regulation data and methods for 

regulatory network reconstruction is presented [26]. Afterwards, we introduce a new manually curated 

regulatory network for B. subtilis. A new methodology we named “atomic regulon inference” is 

proposed for the inference of regulatory network elements from gene expression data. Finally, the 

conducted efforts to reconcile the manually curated and the automatically inferred regulatory networks 

are presented and discussed.  

In chapter 4, “A genome-scale model for the metabolism and transcriptional regulation of Bacillus 

subtilis”, we integrate the regulatory network presented in chapter 3 with the latest genome-scale 

metabolic model for B. subtilis proposed in the literature. We validate our model with growth 

phenotypes for knockout strains described in literature for multiple environmental constraints. 

In chapter 5, we present the final conclusions. Additionally, we reflect on limitations and future work of 

the research developed for this thesis. 
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1.4 SCIENTIFIC OUTPUT 

The results presented in this thesis have been partially presented elsewhere. 

Publ icat ions 

Faria, J.P., et al., “Genome-scale bacterial transcriptional regulatory networks: reconstruction and 

integrated analysis with metabolic models. Briefings in Bioinformatics”, 2014. 15(4): p. 592-611. 

Faria, J.P., et al., “Enabling comparative modeling of closely related genomes: example genus 

Brucella”. 3 Biotech, 2014: p. 1-5. 

Faria, J. P., Overbeek, R., Taylor, R. C., Goelzer, A.,Fromion, V., Rocha, M., Rocha, I., &,Henry, C.  

“Reconciling gene expression data with regulatory network models–a stimulon-based approach for 

regulatory modeling of Bacillus subtilis.” 

Abstract accepted for full manuscript submission, Frontiers in Systems Microbiology, 2015. 

Faria, J. P., Rocha, M., Rocha, I., Henry, C. S.  

“A genome-scale model for the metabolism and transcriptional regulation of Bacillus subtilis” 

Manuscript in preparation, 2015 

 

Poster presentat ions 
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“Modeling Microbial Life - Reconstruction of 3000 Metabolic Models”. E3 Forum: Education, 
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ABSTRACT 

Genome-scale metabolic models have emerged as a valuable resource for generating 

predictions of global organism behavior based on the sequence of nucleotides in the genome. 

These models can accurately predict essential genes, organism phenotypes, organism 

response to mutations, and metabolic engineering strategies. One of the host groups for this 

work has developed the Model SEED resource (http://seed-viewer.theseed.org/models/) for 

the high-throughput reconstruction of new genome-scale metabolic models for microbial 

genomes. We applied the Model SEED to produce draft metabolic models for over 3000 

microbial genomes. We applied these models to study the diversity of microbial genomes, the 

completeness of our knowledge of these genomes, and the areas of our knowledge where 

more annotation gaps presently exist. 

We also explored the application of draft models to exposing and reconciling inconsistencies in 

the genome annotations among a family of closely related genomes. Using fifteen strains of 

the genus Brucella, which contain pathogens of both humans and livestock, we developed a 

protocol for the comparative analysis of models of closely related genomes. This study 

resulted in the identification and subsequent correction of inconsistent annotations in the 

SEED database, as well as the identification of 31 biochemical reactions that are common to 

all Brucella genomes studied, which were not originally identified by automated metabolic 

reconstructions. We are implementing this protocol for improving automated annotations 

across the entire SEED database to facilitate the future creation of consistent annotation 

systems and high quality model reconstructions to support accurate phenotype predictions, 

including pathogenicity, media requirements, or respiration type.   
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2.1 INTRODUCTION 

Genome-scale metabolic models (GEMs) are major tools used in the field of Systems Biology [1], and 

reconstructions are already in place for a growing number of organisms, including prokaryotic, 

archaeal, and eukaryotic species [2]. At the same time, many new systems engineering approaches 

are emerging for production and utilization of metabolic pathway reconstructions. As a result, pathways 

are being refined and the quality of metabolic models is improving [3]. Cases of success for the use of 

GEMs can be found across several fields. 

Indeed, in industry, GEMs were used for the improved production of bioethanol [4, 5], one of 

Biotechnology’s most notorious products [6] and for environmental remediation [7]. In research, GEMs 

have been used in studies for identifying new drug targets [8, 9], to better understand bacterial 

evolution [10] and to improve genome functional annotations [3].  

The number of complete genome sequences have been growing exponentially, but metabolic models 

have been growing at a much slower pace. Figure 2.1 shows the shift towards the rapid increase in the 

availability of GEMs with the development of automated reconstruction tools, such as the Model SEED 

[11]. As the pipelines for automated GEM reconstruction become more robust, we are rapidly 

progressing towards having models for every available sequenced genome. However, the creation of 

accurate, high quality models requires a substantial investment in mining phenotypic data and an 

iterative reconciliation with experimental data [12]. These high quality models have a demonstrated 

capability to accurately predict gene essentiality, phenotypes and metabolic engineering strategies 

[13]. 

In this chapter, we focus on assessing the quality of automatically reconstructed models, the 

application of models to identify and fill gaps in functional annotations, the comparison of models to 

explore microbial diversity, and the use of models to rigorously study variation within a single family of 

microbial genomes. We begin by applying the Model SEED [11] to produce draft metabolic models for 

over 3000 microbial genomes, representing nearly all complete microbial genomes available in the 

SEED genomics database [14] (as of Winter 2011).  
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Figure 2.1 Deve lopment o f  metabol ic  models  versus  ava i lab i l i ty  o f  genome sequences.  
Descr ibed in  the p ic ture is  the t imel ine for  the las t  20 years o f  metabol ic  model  
deve lopment.  P ic tured are re levant  events ,  such as the f i rs t  pathway models  for  E. co l i  in  
the ear ly  90s,  the re lease o f  the f i rs t  genome sca le metabol ic  mode (GEM),  the re lease o f  
the Model  SEED automated f ramework for  GEM reconstruct ion and the 3000 models  
deve loped for  th is  thes is  work and presented at  2011 AIChE (Amer ican Inst i tu te  for  
Chemica l  Eng ineers)  Annual  Meet ing.  

This was only possible due to the development of new algorithms for various steps of the model 

reconstruction process: iterative gap filling to enable the activation of all reactions in models; the 

generation of biomass reactions based on completeness of annotated pathways for biomass 

precursors; and, finally, new algorithms were applied for using the SEED tools to identify gene 

candidates that may be associated with the gap filled reactions.  

This work reveals insights into the diversity of microbial genomes, the completeness of our knowledge 

of these genomes, and the areas of our knowledge where more gaps presently exist. This application of 

our analysis across all available prokaryotic genomes unveils systematic errors in annotation or model 
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reconstruction that may be subsequently corrected. This study also provides a rigorous assessment of 

the current state of the art for genome annotation and metabolic model reconstruction in the SEED. 

In addition to our large-scale reconstruction of models for all available prokaryotic genome sequences, 

we also conducted a smaller scale study focused on performing a rigorous comparative analysis of 

models and annotations for a single family of closely related genomes. We conducted this study to 

evaluate the consistency of the annotations that form the foundation of our GEM reconstructions. In 

order to achieve this objective we developed a protocol [15] for improving the annotations and 

metabolic reconstructions for an entire genus. We demonstrate how this protocol has improved the 

annotations and metabolic reconstructions for the genus Brucella, a group of intracellular facultative 

bacterial pathogens of humans and livestock. While Brucella is an important pathogen for study, there 

is limited wet lab research on this family of genomes, and there is no curated metabolic model 

published in the literature. Thus, the development of a set of predictive metabolic models for this 

family of organisms is highly desirable.  
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2.2 STATE OF THE ART 

2.2.1 Genome sequencing and annotat ion 

It has been almost 20 years since the first whole genome sequence of any organism was released for 

Haemophilus influenzae Rd [16]. Sequencing costs have declined exponentially over the past two 

decades, leading to an exponential increase in available genome sequences [17].  

 

F igure 2.2 Number o f  complete genome sequences in  the NCBI Reference Sequence 
(RefSeq) database [18] .  

The latest release of NCBI Reference Sequence (RefSeq) database has now over 40.000 complete 

sequenced genomes submitted [19]. The growth of the RefSeq database across different domains of 

life is shown in Figure 2.2 (http://www.ncbi.nlm.nih.gov/refseq/statistics/).  

The rapid increase in genome sequence availability leads to the need of automated annotation 

pipelines [20]. Most automated genome annotation tools follow a generic pipeline structure as seen in 

Figure 2.3 (adapted from Richardson and Watson 2012 [21]). 
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F igure 2.3 Gener ic  automated annotat ion p ipe l ine.  A gene pred ic t ion a lgor i thm is  appl ied 
for  ident i f ica t ion o f  cod ing genes.  A homology search is  conducted aga inst  re ference 
genomes prev ious ly  annotated.  Annotat ion o f  re ference genome is  added to  the new 
genome sequence when a homologue is  found.  Otherwise is  annotated as hypothet ica l  
prote in .  

After sequencing, a gene prediction algorithm (e.g. GLIMMER [22] or GeneMark [23]) is used to 

identify the coding genes in the target genome. Each gene in the target genome is compared against 

reference genomes, which are usually curated, and a search for homologues is conducted (e.g. using 

the BLAST tool [24]). If no homologues are found in the reference genomes, the annotation is marked 

as “hypothetical protein”. If a homologue is found, the reference annotation is adopted for the gene. 

This process comes at a price, as annotation errors in the reference genomes are easily propagated to 

new genome annotations. Data sharing protocols further propagate errors across multiple databases. 

Common errors introduced by automated pipelines have been identified [21]. One of the most 

common causes of inconsistent annotation is the fact that each research group uses different protocols 

for its annotations. Spelling mistakes in the annotation name are another common source of 

inconsistencies. The reliance on homology is still another issue, as genes are arbitrarily assigned a 

“hypothetical protein” annotation when a homologue cannot be found in the reference genomes.  

The UniProt Consortium responsible for the UniProtKB [25] tried to address the issues above by 

creating TrEMBL [26], a dedicated database for automated annotations separated from its curated 
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database Swiss-Prot. Keeping the two databases separate allows UnitProt to use Swiss-Prot as the 

database of reference for the automated annotation conduced in TrEMBL.  

On the other hand, to improve the quality of its annotations, RefSeq establishes collaborations with 

research groups responsible for highly curated organism-specific databases. Most notably, annotations 

are directly contributed to RefSeq from the Saccharomyces Genome Database (SGD) (Saccharomyces 

cerevisiae), FlyBase (Drosophila melanogaster) and The Institute for Genomic Research (TIGR) 

(Arabidopsis thaliana). 

The RAST (Rapid Annotation using Subsystem Technology) applies a different approach to genome 

annotation based on the creation and curation of subsystems [27]. A subsystem is a set of functional 

roles that are part of a specific biological process and can be defined as a generalization of the term 

pathway [27]. It is often common that researchers have an expert knowledge of a specific set of a 

particular cellular machinery/pathway/subsystem. In contrast, it is significantly harder to have expert 

knowledge for the biology of a whole organism. The subsystem approach for annotation takes 

advantage of this fact as experts build/curate subsystems and annotate genes for subsystems across 

multiple genomes instead of focusing on annotating a single organism. Automated annotation becomes 

less error prone when the annotations are projected from a curated subsystem across multiple 

genomes in comparison to project single gene annotations based on homology. Pathway Tools uses a 

similar approach to RAST in its annotation framework [28]. 

2.2.2 Genome-scale metabol ic model reconstruct ion 

Metabolic models have evolved for almost 25 years now. Looking at the evolution of the model for E. 

coli [29] we see the growth in complexity of the models, as more information became available: the 

shift to genome scale modeling [30], the addition of Gene-Protein-Reaction associations (GPRs), the 

inclusion of thermodynamic information for reaction reversibility, and assignment of cellular 

compartments to all metabolites in the model. On Figure 2.4, we describe the main components of 

GEMs. 
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Figure 2.4 Main components o f  genome-sca le metabol ic  models .  a )  S to ich iometry ;  b)  Gene-
Prote in -React ion assoc ia t ions (GPRs) ;  c )  B iomass react ion.   

The first main component featured in Figure 2.4 is reaction stoichiometry. The stoichiometric matrix 

(Figure 2.4 a)) encodes the biological knowledge from the metabolic network (Metabolites (M) and 

reactions (R)) into mathematical terms [31, 32]. For more details on stoichiometric modeling from the 

constraint-based perspective [33] see section 4.2.1. GPRs are another main component of GEMs. 

These associations establish the relationship and dependence from genes to proteins and ultimately 

from proteins to the reactions they catalyze [34]. Figure 2.4 b) displays multiple scenarios for these 

associations, such as two (or more) genes (G) encoding one protein (P) and one subsequent reaction 

(R). The inclusion of GPRs in GEMs allows the development of Metabolic Engineering studies [35]. 

Gene deletion [36] and gene over/under expression [37] are among the studies enabled by the 

inclusion of GPRs. The third main component featured in Figure 2.4 c) is the biomass reaction. The 

biomass reaction defines the list of metabolic resources that a cell must produce in order to grow [38]. 

It allows the use of computational growth phenotype simulation methods, such as Flux Balance 

Analysis (FBA), [39] (for more details on FBA formulation see chapter 4 section 4.3.1.). 
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Detailed protocols have been established for GEM reconstruction and validation [12, 40]. 

Reconstruction of GEMs can be extremely time consuming, with the protocol proposed by Thiele and 

Palsson [12] being comprised of 96 individual steps. Figure 2.5 (adapted from Thiele and Palsson) 

shows the main stages involved in a GEM reconstruction and main tasks performed in each stage. 

Three main stages were defined as: Draft Reconstruction; Refinement and Curation; and Model 

Evaluation. The first stage, draft reconstruction, provides mainly the assignment of metabolic reactions 

to the metabolic functions predicted in the input genome annotation. GPRs, one of GEMs’ main 

components discussed previously are generated during this stage.  

!

Figure 2.5 Genome-sca le metabol ic  model  reconstruct ion.  Main tasks per formed in  the 
reconstruct ion process organized in  three s tages:  Draf t  Reconstruct ion;  Ref inement and 
Curat ion;  and Model  Eva luat ion.  

The second stage aims to refine and curate the original draft reconstruction. Reactions, stoichiometry 

and directionally are usually verified along with GPRs and extra and intra-cellular transport reactions. 

Spontaneous and exchange reactions are also added if necessary. Biomass composition is assessed, 

as biomass precursors vary depending on the organism’s physiology. BioMog [41] is a recently 

introduced framework to address this issue, which uses high-throughput growth phenotype and fitness 
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datasets to generate de novo biomass components. Usually, at this stage, the biomass reaction is 

added to the model and specific media growth requirements are assessed to enable Model Evaluation 

in the next stage.  

Identification of metabolic dead-ends aims to locate metabolites that cannot be consumed or generated 

by the network, being one of the first steps to evaluate the model. Verification of biomass precursor 

production is also performed at this stage, to assess if all molecules that enable growth can be 

produced from the medium components. The results from these two steps usually reveal candidates 

for gap filling in the network. Unbalanced metabolites and gaps in the network are a common cause of 

blocked reactions (reactions that are unable to carry flux through the network). Flux Variability Analysis 

(FVA) [42] is able to minimize and maximize flux through all reactions in the network and can be used 

to identify these blocked reactions. Growth tests can also be conducted using a simulation method, 

such as FBA with maximization of biomass to determine the model capabilities to represent known 

physiological properties of the organism. Single gene knockouts and growth data for different medium 

conditions are ideal for this task. The refinement and evaluation stages are handled as an iterative 

process. Inconsistencies identified during Model Evaluation will be curated, and this process is 

repeated until a refined model is ready for release.  

2.2.3 Methods for automated GEM reconstruct ion 

In this thesis, we focused our efforts on automated reconstruction of GEMs. Many tools have been 

developed for this task in the last decade [43]. Here, we chose to review some of the early methods 

along with more recently developed ones that produce higher quality automated reconstructions. A 

comparison of those methods is shown on Table 2.1. 

GEM System [44] and AUTOGRAPH [45] were released in 2006 and were among the first methods 

attempting to automate GEM reconstruction. AUTOGRAPH uses published models as a template and 

performs an ortholog search from the target genome to the reference genomes to map genes and their 

gene-protein reactions. GEM System allows for the use of both annotated and un-annotated genomes. 

Homology and orthology searches are conducted against the SWISS-PROT and TrEMBL [26] databases 
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to match metabolic genes to the EC number of their protein products. Subsequently, the EC numbers 

are matched to the KEGG Orthology and Pathway database [46]. The downside of early methods was 

the limited capability to only produce draft reconstructions. A draft reconstruction cannot be used as a 

functional model, as it requires significant additional curation to properly simulate growth behavior. 

GEM System allows export draft reconstructions in the Systems Biology Markup Language (SBML) 

format [47]. A more complete list of GEM System features is shown on Table 2.1. 

Most recent methods start with the draft reconstruction and provide tools to refine and evaluate the 

network reconstructions. Merlin (metabolic models reconstruction using genome-scale information) 

[48] provides several tools for annotation curation along with the tools for network reconstruction. The 

Model SEED [11] was the first platform to integrate the capability to generate draft models and perform 

network refinement and curation, automated gap filling [49] and network evaluation with FBA and 

phenotype datasets. Pathway Tools [28] stemmed from the development of EcoCyc [50] as a tool to 

create organism specific pathway databases. Since then, it has evolved and its latest release [51] 

features a full suite of tools for GEM reconstruction.  

The RAVEN (Reconstruction, Analysis and Visualization of Metabolic Networks) Toolbox [52] is a 

software suite that focuses on providing tools for network visualization and analysis in addition to the 

network reconstruction tools. The SuBliMinal Toolbox [53] takes a modular approach to the 

reconstruction process. Different modules can be used independently to perform the tasks necessary 

for the reconstruction process. The modular infrastructure allows users to plugin multiple tools, such 

as the popular Cheminformatics software Marvin Beans (www.chemaxon.com) to determine metabolite 

charges. 

The first feature shown on Table 2.1 is the input data. Much like the GEM System, merlin allows users 

to upload a genome sequence file. Merlin provides an array of tools that allow users to curate/re-

annotate the functional annotations in the genome submitted. The RAVEN Toolbox [52] and Pathway 

Tools require annotated genomes as input. The Model SEED uses annotations from the RAST platform 

[14, 54]. Annotation tools are available in RAST, where users can use publicly available genomes or 
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submit their own. SuBliMinal Toolbox [53] uses KEGG and MetaCyc [55] limiting the reconstruction 

process to organisms available on those databases.  

Table 2.1 Compar ison between d i f ferent  resources for  automated GEM reconstruct ion 
(Adapted f rom Hami l ton,  J .J .  and J .L .  Reed,  2014 [56])  

 
GEM 
System 

Merl in 
Model 
SEED 

Pathway 
Tools 

Raven 
Toolbox 

SuBl iMinal 
Toolbox 

Input data 

Annotated 
or un-
annotated 
sequence 

Annotated 
or un-
annotated 
sequence 

RAST 
annotation 

Annotated 
sequence 

Annotated 
sequence 

Organisms 
in KEGG and 
MetaCyc 

Reference 
Databases 

KEGG, 
BioCyc 

KEGG, 
TCDB 

Model 
SEED 
database 

MetaCyc 
KEGG, 
Published 
models 

KEGG, 
MetaCyc 

Interface 
Standalone 
(GUI) 

Standalone 
(GUI) 

Web 
Standalone 
(GUI), Web 

MATLAB 
Standalone 
(cmd line) 

Output SBML SBML 
SBML, 
Excel 

SBML, 
BioPax 

SBML, 
Excel 

SBML 

Network 
Visual izat ion 

YES YES YES YES YES NO 

Simulat ion 
Support 

NO NO YES YES YES NO 

Integrates 
Gap f i l l ing 

NO NO YES YES YES NO 

 

Regarding reference databases, all the tools described in Table 2.1 use KEGG and additional 

databases. The downside of KEGG is that it does not feature charged and mass balanced metabolites 

and reactions (although all reactions for which the metabolites have formulae are balanced). The 

Model SEED internal database absorbs KEGG and published models. It is curated to address the lack 

of proper metabolite/reaction charges and balancing in KEGG. Pathway Tools follows the same 

“philosophy” as the Model SEED, using the curated database MetaCyc. Both the Model SEED and the 

RAVEN Toolbox use reactions from published models, as these are usually curated during their 

respective reconstruction processes. Merlin makes additional use of a transporters database TCDB 

[57] in the effort to better annotate and identify transport reactions. The SuBliMinal Toolbox, as 

mentioned before, absorbs the KEGG and MetaCyc databases. 
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All tools presented on Table 2.1 have different user interfaces. Merlin, Pathway Tools and the 

SuBliMinal Toolbox are distributed as standalone applications. The SuBliMinal Toolbox presents a 

command-line interface. On the other hand, both Merlin and Pathway Tools have a user-friendly 

graphical user interface (GUI). The Model SEED is a web application presenting also with a GUI and 

requiring users to set up an account to get started. A disadvantage of a web interface is that some 

researchers are still reluctant to upload their private genome sequences/annotations into the web. 

Pathway Tools also has a web interface distribution. RAVEN Toolbox is distributed as a MATLAB plugin, 

having the drawback of the need of a license for MATLAB.  

SBML is the standard output for all the tools. The Model SEED and RAVEN Toolbox also provide output 

for the Microsoft Excel software. Pathway Tools provides additional output in the BioPax community 

standard for pathway sharing [58]. Network Visualization can be an important feature for both curation 

and model evaluation. RAVEN Toolbox uses manually curated CellDesigner [59] maps and Pathway 

Tools has their own tools to draw metabolic pathways. Merlin and the Model SEED provide a more 

basic visualization functionality, drawing on top of KEGG maps. 

Support for simulations is also essential for model evaluation. FBA is the basic simulation method 

provided by Model SEED, Pathway Tools and the RAVEN Toolbox. RAVEN Toolbox and Pathway Tools 

provide additional flux balance simulation algorithms to support model evolution. Tools lacking 

simulation support need the use an additional platform, such as the COBRA Toolbox [60] and OptFlux 

[61]. 

Integrated gap filling is one of the most important features in a reconstruction, as it can be 

exceptionally time consuming. When performed manually, one has to identify the gaps and candidate 

reactions to complete a pathway/network. Model SEED and Pathway Tools provide algorithms that 

allow for completely automated gap filling. The RAVEN Toolbox approach suggests candidate reactions, 

but requires the users to assign the proper gene/GPR for reactions to be added. Merlin provides tools 

to find gaps, but no support is provided for automated gap filling.  
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Automated gap filling solutions still require inspection for further refinement, as reactions can be 

arbitrary added to restore model connectivity and pathway completeness. This fact calls for the 

continuous development of improved gap filling algorithms. To address that issue, all platforms that 

integrate gap filling usually provide their own algorithms. Those algorithms are variations of the GapFill 

algorithm, originally purposed by Kumar et al. [49]. The gap filled formulation, as it is implemented in 

the Model SEED, is detailed in section 2.3.2. 

One of the drawbacks of GapFill and its variations is the use of Mixed-Integer Linear Programing (MILP) 

to determine the minimum set of reactions to be added to the model. GapFill was found to take over 

14 hours to gap fill a single model of a prokaryote [62]. Databases such as MetaCyc and the Model 

SEED database are now comprised of over 10.000 reactions, which further extends the computation 

time for gap filling. Models of multiple cellular compartments add additional complexity to the gap-

filling problem, further extending the computational time. In the development of the heavily 

compartmentalized human metabolic reconstruction (Recon 1) [63], the authors chose to de-

compartmentalize the network to facilitate the gap filling process. This approach has the disadvantage 

of coupling reactions that do not co-occur in the same cellular compartment [64].  

Recently, methods have been introduced that use linear programing (LP) to substantially reduce the 

computational time of gap filling. FASTCORE [65] adopts an LP formulation that was shown capable of 

obtaining good approximations to optimal solutions when compared with a MILP formulation. 

FastGapFill [64] presents itself as an expansion of FASTCORE that optimizes its LP formulation for 

heavily compartmentalized organisms. FastGapFill is available as an extension to the COBRA Toolbox 

[60]. A similar method, FastGapFilling [66] that also utilizes an LP formulation was used to effectively 

gap fill E. coli and yeast networks, performing up to three times faster when compared with a MILP 

formulation. FastGapFilling was integrated in the simulation framework of MetaFlux [67] that is 

distributed with Pathway Tools.  
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2.3 METHODS 

2.3.1 The Model  SEED  

The Model SEED pipeline was used to build the models for different studies in this chapter. Figure 2.6 

shows all the steps in the pipeline for automated reconstruction of GEMs in the Model SEED. 

 

 

Figure 2.6 Model  SEED genome sca le reconstruct ion p ipe l ine [11] .  

On Figure 2.6 we can see that the Model SEED proposes 7 different pipeline steps, tapping into 

multiple sources of data for the process of GEM reconstruction. Here, we detail the steps 1-4 as they 

were used to build the models necessary for this study. Steps 5-7 involve additional model curation 

and optimization of the models using experimental data when available. The Model SEED can use 

Biolog phenotyping arrays and gene essentiality data for this task. As we conducted reconstructions for 
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over 3000 organisms, this type of experimental data is only available for very few organisms, thus 

these steps were not performed in this research work. 

1st Step -  RAST annotat ion server 

Users can upload genome sequences using the RAST server (http://rast.nmpdr.org/). The genomes 

will be annotated with the SEED Subsystem approach described in section 2.2.1. A search can also be 

conducted in the Model SEED for genomes already available in the SEED and previously annotated by 

RAST. 

2nd Step -  Prel iminary reconstruct ion 

The second step in the pipeline performs a preliminary reconstruction, where the RAST annotations are 

used to generate draft models. Draft models comprise a reaction network complete with GPR 

associations, predicted Gibbs free energy of reaction values and the biomass reaction. The biomass 

reaction includes non-universal cofactors, lipids and cell wall components. The biomass reaction is 

organism-specific, based on a biomass reaction template. The template makes use of the SEED 

subsystems and RAST functional annotations to assign non-universal (e.g., cofactors, cell wall 

components) biomass components that represent unique biological functions exhibited by an 

organism.  

In order for an organism-specific biomass component to be added to the biomass reaction, its genome 

must contain the proper subsystems and annotations specified in the template. The GPR associations 

represent the mapping between the biochemical reactions and the standardized functional roles 

assigned to genes during the RAST annotation. This mapping allows to differentiate cases where 

protein products from multiple genes form a complex to catalyze a reaction, and cases where protein 

products from multiple genes can independently catalyze the same reaction. The draft model includes 

all reactions associated with one or more enzymes encoded in the genome. Additionally, spontaneous 

reactions are also added on this step.  
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3rd Step – Auto-complet ion 

Draft models quality depends on the quality of the annotations used in the preliminary reconstruction. 

Due to this fact, these models usually contain gaps preventing the production of some biomass 

components. In this step, the Model SEED applies an optimization algorithm that identifies the minimal 

set of reactions that must be added to each model to fill these gaps [49, 68]. The gap filling algorithm 

is described in detail in section 2.3.2. Reactions to be used by gap filling are selected from the Model 

SEED internal database. This curated database contains mass and charge balanced reactions, 

standardized to aqueous conditions at neutral pH. The Model SEED reaction database integrates all the 

biochemistry contained in KEGG and 13 published genome-scale metabolic models. This step is 

conducted to ensure that every model is capable of simulating cell growth. 

4 th Step -  Model analys is 

Model analysis is performed to assess the capacity of reactions to carry flux and reaction essentiality. 

The Model SEED pipeline uses Flux Variability Analysis (FVA) to classify the reactions in the SEED 

models as essential, active or blocked. The detailed formulation of FVA is described on Section 4.3.2. 

Reactions that must carry flux for growth to occur are classified as essential; reactions that only 

optionally carry flux were classified as active; and reactions that are unable to carry flux were classified 

as blocked. Genes encoding reactions that were classified as essential were subsequently classified as 

essential, as long as alternative isozymes did not exist for these genes. Additionally, FBA is used to 

iteratively assess which compounds in the in silico media formulation are essential for the model to be 

able to produce biomass. These results provide clues for additional manual curation efforts. 

2.3.2 Gap f i l l ing in the Model SEED 

The gap filling as implemented in the Model SEED is detailed below as described by Henry et al. [69]. 

This method has been originally proposed by Kumar et al. [49] attempting to correct false negative 

predictions from the simulations provided by the original model. This is achieved by two alternative 

ways: (i) relaxing reversibility constraints on the model’s reactions; (ii) adding new reactions to the 

existing model. For each condition, where the model simulation led to a false negative prediction, the 
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formulation detailed below was used based on a database of reactions consisting of every balanced 

reaction in the KEGG or in the published genome-scale models available in Model SEED. 

!"#"!"$%! (!!"#$%&&,!!!)
!!"#$%&&%'!

!!!
 (2.1) 

subject to:  

!!"#$%&'()* ∙ ! = 0 (2.2) 

0 ≤ !! ≤ !!"#,!!!                          ! = 1,… , ! (2.3) 

!!"# > !!"# (2.4) 

!

The objective function (2.1) minimizes the number of reactions, which are not present in the model, 

but should be added for biomass to be produced in those conditions. Since, in this case, there is a 

false negative prediction, at least one reaction will need to be added.  

In the formulation, all reactions are treated as reversible, being every reversible reaction decomposed 

into two reactions in the two directions. This allows for the independent addition of each direction in 

the algorithm. As a result of this, reactions represented in the formulation are the forward and 

backward components of the reactions in the database (from KEGG/models in SEED). In the objective 

function, !!"#$%&&%'! represents the total number of reactions in the database; !! is a binary variable 

equal to zero if the flux through reaction ! is zero and one otherwise; and, !!"#$%&&,! is a constant value 

stating the cost associated of adding reaction ! to the model. If reaction ! is already present in the 

model, !!"#$%&&,! is zero. Otherwise, !!"#$%&&,!  is calculated using equation (2.5): 

!!"#$%&&,! = 1+ !!"##,! + !!"#$%"$#&,! + !!"#$"!∆!,! + !!"#$%&'$()*,! 3+
∆!!!,!"#°!

10  (2.5) 

Each of the P variables in equation (2.5) is binary, representing a penalty applied when adding different 

types of reactions to the model: they are equal to one if the penalty applies to the type of the particular 

reaction and equal to zero otherwise. !!"##,! is related to reactions not in KEGG; !!"#$%"$#&,! to the 
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addition of reactions involving metabolites with unknown structure. !!"#$"!∆!,!  to reactions for 

which∆!!°cannot be calculated; !!"#$%&'$()*,! to reactions operating in an unfavorable direction.  

Equation (2.2) implements the mass balance constraints related to the steady-state assumption of 

FBA. Here, !!"#$%&'()* is the stoichiometric matrix, and ! flux vector through reaction database. 

Equation (2.3) enforces the bounds on reaction fluxes (!!), and the values of the reaction use variables 

(!!). This equation ensures that each reaction flux, !! , is zero unless !! is one. The !!"#,! term in 

equation (2.3) is the core to the simulation using FBA. If !!"#,! corresponds to a reaction associated 

with a knocked-out gene, !!"#,! is set to zero. If !!"#,! corresponds to the uptake of a nutrient not in 

the medium, !!"#,! is also set to zero.  

Equation (2.4) constrains the biomass flux, !!"#, to a nonzero value, to ensure growth.  

The result of the gap filling optimization includes a list of irreversible reactions from the model that 

should be made reversible, and a set of reactions not in the model that should be added to fix a false 

negative prediction. Recursive mixed integer linear programming (MILP) [70] is used to perform 

multiple gap filling to correct each false negative prediction.  

2.3.3 I terat ive gap f i l l ing of  GEMs for react ion act ivat ion 

We developed a new gap filling method with the aim of activating all blocked/inactive reactions in a 

metabolic model. A single “iteration” of our approach is identical to the fundamental gap filling 

algorithm described in the previous section.  

The difference between the two formulations is the objective of the gap filling. As implemented in the 

Model SEED, gap filling is performed when the model is unable to produce biomass. In our new 

formulation, the gap filling is performed to activate all inactive reactions in the model, regardless of 

their impact in the biomass production.  As the objective of the gap filling is the activation of blocked 

reactions in the network, a sizable number of reactions can be added depending on the number of 

inactive reactions in a given model. In each iteration of our algorithm, we force one reaction in our 
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model to be active, while minimizing the addition of new reactions. If a reaction is already active in the 

model, no new reactions will be added. If a reaction is involved in a pathway with a single gap, then 

reactions might be added.  We apply this process iteratively to all annotated reactions in our original 

model, while integrating the new reactions identified in each iteration into the model, such that we 

accumulate an increasing number of gap filled reactions, while activating an increasing number of 

annotated reactions. We iterate through reactions in a specific order, starting with central carbon 

reactions, progressing to primary biosynthesis pathways, then catabolic and degradation pathways, 

and finally secondary metabolic pathways. 

Often, reactions that are gap filled later in this iterative process may eliminate the need for reactions 

gap filled earlier in the process. For example, filling a gap in the biosynthesis pathway for a precursor 

metabolite may eliminate the need to add a transporter for the same precursor compound. For this 

reason, the final step of our iterative gap filling approach is a sensitivity analysis, where we remove gap 

filled reactions from our model one at a time and evaluate the impact of this removal using FVA. If the 

removal of a gap filled reaction has no impact (e.g. it causes no annotated reactions to become 

inactive), then we leave the reaction out of the model. Otherwise, we restore the reaction. A second 

benefit of this analysis is that it permits to associate gap filled reactions with the annotated reactions 

they correct, which enables us to use this analysis to quantify the quality of reaction annotations based 

on how much gap filling must be done to activate the reaction. 

2.3.4 Assessing conf idence in genome annotat ion   

As described in the previous section 2.3.3, our iterative gap filling algorithm provides us with data that 

may be used to evaluate the confidence in each annotated reaction included in our model. Specifically, 

the gap filling process indicates how many un-annotated reactions must be gap filled in a model for 

each annotated reaction to function. It follows that a reaction that requires more gap filling to be 

activated in a particular model would have reduced confidence in that model.  

To quantify this confidence, we developed a metric to compute the “cost” of an annotated reaction as 

the number of reactions that must be gap filled to activate the annotated reaction: 
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!! =
1

!!"#,!

!!"#$,!

!!!
! (2.6) 

In Equation 2.6, !! is the cost of annotated reaction !; !!"#$,! !is the number of gap filled reactions 

whose activity is coupled to reaction ! (e.g. meaning knockout of the gap filled reactions results in 

inactivation of reaction !);!!!"#,! is the total number of annotated reactions that have been coupled to 

gap filled reaction !. We include!!!"#,! !in equation 2.6 because it is important to account for the fact 

that a single gap filled reaction will often correct many annotated reactions at once. Consider a linear 

pathway with ten steps, nine of which are annotated. Our gap filling algorithm will fill in the missing 

step and associate the gap filled reaction with all nine annotated reactions. Without the !!"#,! scaling 

factor, each annotated reaction would have a cost of 1, and we are failing to capture the fact that our 

annotated pathway is actually 90% complete. When we include!!!"#,! ,! every reaction has a cost of 1/9, 

and we are successfully capturing the fact that our pathway is 90% complete, and the annotated 

reactions, therefore, have a low cost and a high confidence. 

This same approach can also be applied to associate a value with each gap filled reaction, enabling us 

to identify the gap filled reactions that are most likely to be correct, and prioritizing the search for 

genes to associate with these gap filled reactions. In this case, we quantify the value of a gap filled 

reaction as the number of annotated reactions that were activated by the gap filled reaction: 

!! =
1

!!"#$,!

!!"#,!

!
 (2.7) 

In Equation 2.7, Vi is the value of gap filled reaction!!; !!"#,! !is the number of annotated reactions 

whose activity has been coupled to reaction !; and !!"#$,! is the number of other gap filled reactions 

that are also required to permit reaction ! to function. As before, it is important to scale by !!"#$,! 
when computing the gap filled reaction value because a single activated reaction may often require 

many gap filled reactions to correct it.  
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2.4 RESULTS AND DISCUSSION 

We applied the Model SEED algorithm to construct draft models for over 3000 genomes, with the goal 

of exploiting our models as a tool to evaluate and improve genome annotations. We accomplished this 

goal with three studies: a global gene knockout and flux variability analysis to quantify essential genes 

and blocked reactions (section 2.4.1); applying our iterative gap filling formulation to identify important 

gaps and assess annotation confidence (section 2.4.2); and, a detailed comparison of all models 

within a single family of closely related genomes to evaluate annotation consistency (section 2.4.3). 

2.4.1 Global  analys is of  the automated reconstructed GEMs 

The Model SEED pipeline (Section 2.3.1) was used to reconstruct approximately 3000 GEMs, 

representing all genomes available in the SEED as of Winter 2011. We utilized FVA with these models 

to classify all reactions as active, blocked, or essential, as detailed in the methods’ section. The results 

of this analysis are shown in Figure 2.7, and can be used to evaluate model quality, and by extension, 

annotation quality in three ways: (i) a poorer model and annotation will have more incomplete 

pathways resulting in a larger fraction of blocked reactions; (ii) a poorer model and annotation will 

generally have fewer genes mapped to metabolism and a greater fraction of gap filled reactions; and, 

(iii) a poorer model and annotation will have fewer essential genes relative to the number of essential 

reactions (a sign of many essential reactions having no genes).  

Generally, we find that the number of essential reactions in our models varies little, despite wide 

variations in model size (red points in left panel of Figure 2.7). This is to be expected, as there is little 

variation in the biomass composition across our models, and all models were analyzed in a common 

rich medium condition. We found the number of active reactions to be roughly proportional to the 

overall model size (blue points in left panel of Figure 2.7); however, we found significant variation in the 

number of inactive/blocked reactions (green points in left panel of Figure 2.7). As previously 

mentioned, the number of inactive reactions is one of our indicators of model and annotation quality. 

Thus, this result indicates that there is also a significant variation in annotation quality among our 

3000 genomes.  
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Figure 2.7 Character iza t ion o f  react ions and genes across a l l  models .  Lef t :  react ions were 
c lass i f ied in  3 d i f ferent  c lasses;  essent ia l ,  act ive and inact ive/blocked.  Essent ia l  react ions 
are react ions that  d isrupt  model  growth when removed f rom a model .  React ions that  carry  
f lux  are c lass i f ied as act ive and react ions unable to  carry  f lux  were c lass i f ied as inact ive .  
R ight ;  Genes encoding essent ia l  react ions were c lass i f ied as essent ia l .  Model  genes are a l l  
genes inc luded in  the metabol ic  model  reconstruct ion.  

There is one other possible explanation for the presence of inactive reactions, relating to the biomass 

composition of the models. In some cases, the biomass composition of the model is incomplete, failing 

to capture the biological distinctiveness of the organism being modeled. Thus, some inactive pathways 

may be responsible for producing a biomass component that has been left out of the biomass 

composition for the model, creating an erroneous dead-end in the model. We ultimately hope to apply 

our algorithms to recognize and correct these types of errors. Overall, the large fraction of inactive 

reactions in our models indicates that there is a significant opportunity to greatly improve models if gap 

filling algorithms could be adapted to correct these reactions. 

We also compared the number of essential metabolic genes with the total number of genes in each 

model and genome (red versus blue points in right panel of Figure 2.7). As with essential reactions, we 

observe little variation across the 3000 models for essential genes.  
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F igure 2.8 Dis t r ibut ion o f  funct iona l  ro les across major  ce l lu lar  processes for  3000 
genome-sca le metabol ic  models .  The funct iona l  ro les and the ir  respect ive subsystems were 
ident i f ied for  a l l  react ions in  the models .  The number o f  funct iona l  ro les (y -ax is )  is  shown 
for  5 d i f ferent  f ract ions ( in  20% in terva ls )  o f  the to ta l  o f  models  used in  th is  ana lys is  (x -
ax is ) .  The legend shows the 24 major  ce l lu lar  processes chosen to  categor ize the funct iona l  
ro les .  
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This fact shows that essentiality, at least as predicted by the genome-scale models, is not related to the 

genome size. This result is corroborated by previous studies, which found that larger genomes mostly 

contain additional non-essential functions (e.g. secondary metabolism) to improve their capacity to 

survive in environments where resources are scarce but diverse [71]. A recent study of the phenotypic 

evolution of bacteria using gene essentiality data also shows significant conservation of gene 

essentiality [72].  

We also analyzed the functional roles associated with reactions included in our models. There were 

approximately 2800 functional roles assigned to reactions across all of our 3000 models. To give an 

overview of the roles present in the models, we grouped the functional roles by subsystem and 

subsystem categories, which consist of 24 major cellular processes (Figure 2.8). All data used in this 

analysis is available in Supplementary Material S2.1. Our results show that most functional roles are 

present in only 0-20% of the models (far left side of Figure 2.8). Within this group of rare functions, we 

see representatives from a wide range of subsystems, highlighting the diversity of our models. 

!

Figure 2.9 The 20 most  gap f i l led subsystems in  the 3000 genome-sca le metabol ic  models .  
The f ract ion o f  gap f i l led funct iona l  ro les represents ,  for  each subsystem, the quot ient  o f  
the number o f  gap f i l led ro les by the to ta l  number o f  ro les .  
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On the other side of the spectrum (far right side of Figure 2.8), we have ~300 functional roles that 

appear in 80-100% of the models. We observe that almost half of these ubiquitous  

Table 2.2 React ions assoc ia ted wi th most  gap f i l led subsystems !

Subsystem Name 

Pyridoxin(Vitamin B6) Degradation Pathway 2-(acetamidomethylene)succinate hydrolase (EC 3.5.1.29) 

Pyridoxin(Vitamin B6) Degradation Pathway Pyridoxine 4-oxidase (EC 1.1.3.12) 

Coenzyme F420 hydrogenase Coenzyme F420 hydrogenase beta subunit (FrcB) (EC 1.12.98.1) 

Coenzyme F420 hydrogenase Coenzyme F420 hydrogenase gamma subunit (FruG) (EC 1.12.98.1) 

Coenzyme F420 hydrogenase Coenzyme F420 hydrogenase beta subunit (FruB) (EC 1.12.98.1) 

Coenzyme F420 hydrogenase Coenzyme F420 hydrogenase gamma subunit (FrcG) (EC 1.12.98.1) 

Coenzyme F420 hydrogenase Coenzyme F420 hydrogenase alpha subunit (FruA) (EC 1.12.98.1) 

Coenzyme F420 hydrogenase Coenzyme F420 hydrogenase alpha subunit (FrcA) (EC 1.12.98.1) 

Lactose utilization Beta-galactosidase (EC 3.2.1.23) 

Lactose utilization Lactose permease 

Heme biosynthesis  Cytochrome cd1 nitrite reductase (EC:1.7.2.1) 

Aromatic Amin Catabolism Monoamine oxidase (1.4.3.4) 

Aromatic Amin Catabolism Amiloride-sensitive amine oxidase [copper-containing] precursor (EC 
1.4.3.21) 

Aromatic Amin Catabolism Monoamine oxidase (1.4.3.4) 

Aromatic Amin Catabolism Phenylacetaldehyde dehydrogenase (EC 1.2.1.39) 

Aromatic Amin Catabolism 4-hydroxyphenylacetate 3-monooxygenase (EC 1.14.13.3) 

Aromatic Amin Catabolism 4-hydroxyphenylacetate 3-monooxygenase (EC 1.14.13.3) 

 

functions were assigned to two subsystem categories: amino acids and derivatives and carbohydrates. 

The amino acids and derivatives category contains functions relating to amino acid biosynthesis and 

degradation. The carbohydrates category includes functions related to carbohydrate biosynthesis, 

central carbon metabolism, fermentation, etc. Thus, together these subsystems cover most the core 
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biochemistry and essential metabolite biosynthesis, as well as energy production. We would expect to 

find these functions in nearly all prokaryotic genomes. 

Our analyses of reaction essentiality and functional role assignment both considered all of the reactions 

included within our models. However, some of these reactions were gap filled during the auto-

completion step of the Model SEED reconstruction pipeline. We applied our models to identify which 

functional roles were most commonly associated with gap filled reactions (Figures 2.9-11 and 

Supplementary Material S2.2). In our first analysis, we identified the twenty subsystems for which the 

largest fraction of associated reactions in our models were gap filled (Figure 2.9). This fraction was 

computed by dividing, for each sub-system, the number of gap filled roles by the total number of roles. 

Vitamin B6 degradation was the most gap filled subsystem, followed by Coenzyme f420 hydrogenase 

and lactose utilization. The reactions associated with the most gap filled subsystems are shown on 

Table 2.2. These results provide valuable guidance to our future annotation efforts, emphasizing the 

need for additional work curating these subsystems. As these curation efforts proceed, annotations in 

these subsystems will be corrected in all genomes, and ultimately in all models and the Model SEED 

itself.  

Our analysis of gap filled reactions in subsystems revealed that for a majority of cellular processes at 

least one subsystem required gap filling (Figure 2.10). The only category that required no gap filling 

was phages, prophages and transposable elements (detailed results available in the Supplementary 

material S2.2). This is a reasonable result, as that cellular process does not include essential 

metabolic functions that will typically be gap filled.  
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Figure 2.10 Fract ion o f  funct iona l  ro les that  were gap f i l led in  the 3000 genome-sca le 
models .  The f ract ion o f  gap f i l led funct iona l  ro les represents for  each subsystem, the 
quot ient  o f  the number o f  gap f i l led ro les by the to ta l  number o f  ro les.  The number o f  
subsystems that  required gap f i l l ing is  shown for  10 in terva ls  (x -ax is )  represent ing d i f ferent  
f ract ions o f  gap f i l led ro les .  The legend shows the 24 major  ce l lu lar  processes chosen to  
categor ize the subsystems.  



CHAPTER 2 43 

!

We also observe that the largest number of subsystems (~150) fell in the category 0 – 0.05 (0 – 5%), 

indicating many subsystems requiring only a small amount of gap filling; in contrast, only 20 

subsystems required extensive gap filling of 40% to 100% of their reactions (corresponding to the 

interval of fraction of gap filled roles 0.4 – 1 in Figure 2.10).  

The large number of subsystems requiring little gap filling and the small number of subsystems 

requiring extensive gap filling points to the quality of the manually curated SEED subsystems, as little 

effort would be required to curate a majority of the subsystems. It also demonstrates how these data 

can greatly improve SEED annotations by identifying key subsystems where more curation is needed.  

Additionally, we recognize that the size of the subsystem can cause noise in the previous analysis, as 

subsystems with few functional roles can more easily have a high fraction/percentage of gap filled 

reactions.  

!
Figure 2.11 Dis t r ibut ion o f  gap f i l led funct iona l  ro les in  the 3000 genome-sca le metabol ic  
models .  The number o f  gap f i l led ro les per  subsystem (y -ax is )  is  shown for  the to ta l  number 
o f  ro les in  the subsystem (x -ax is )  

To verify this hypothesis, we examined the total roles in a subsystem vs. the number of gap filled roles 
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(Figure 2.11 and details in Supplementary material S2.2). We found that many subsystems indeed 

have few functional roles. We also found that subsystems with a larger number of roles also tend to 

have a low percentage of gap filled roles. Overall, the roles that are most often gap filled are associated 

with subsystems with a large number of roles, like amino acids biosynthesis, regulation and cell 

signaling or carbohydrates. This result was not totally unexpected as many roles associated with those 

cellular processes can be essential and will be prioritized for gap filling when missing from genome 

annotation.  

2.4.2 Assessing conf idence in genome annotat ions 

In the previous study, we determined that many of the reactions in our 3000 GEMs are inactive (Figure 

2.7). We suggested these inactive reactions were due to a combination of missing annotations and 

limitations in our biomass composition reaction. Gap filling provides a means of correcting inactive 

reactions that are a result of missing annotations by adding additional reactions to the models. The 

issue is that the gap filling applied as part of the Model SEED auto completion step (as described in 

Section 2.3.2) adds only the minimal set of reactions needed to produce all biomass precursors, and 

this gap filling is performed on extremely rich media. This leaves many possible gaps in the network 

related with pathways that are not utilized by the model for biomass production, with reactions involved 

in synthesis of nutrients present in the rich gap filling media, or with reactions involved in degradation 

of nutrients not present in the rich media. Our previous studies also demonstrated, however, how even 

this very limited form of gap filling provided valuable guidance to our annotation curation efforts.   

Motivated by these results, we developed a new gap filling formulation that favors the activation of 

inactive reactions in the network. This new methodology was described in section 2.3.2. We can then 

quantify how many reactions were required to be gap filled to activate each inactive reaction. We can 

also quantify which biomass precursors required the most gap filled reactions. This solution analysis 

allows us to use the data as a metric to quantify the impact of gap filling on models and assess the 

quality of genome annotations.  
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To assess quality of the genome annotations, we used the data from this analysis to compute two 

different scores: cost of annotated reaction and value of gap filled reaction. The formulation of these 

scores can be found in Section 2.3.3. The cost of annotated reaction score aims to quantify, across all 

models, the number of gap filled reactions required to enable each inactive gene associated reaction to 

carry flux in the network. The higher the cost of an annotated reaction, the lower the confidence in that 

genome annotation. We use these data to compute the distribution of annotated reaction costs across 

all 3000 of our GEMs (Figure 2.12 and Supplementary Material S2.3). 

 

Figure 2.12 Dis t r ibut ion o f  va lues for  the cost  o f  annotated react ion for  the 3000 genome-
sca le metabol ic  models .  The cost  o f  annotated react ion is  shown as the number o f  gap 
f i l led react ions required for  an inact ive react ion to  carry  f lux  (x -ax is ) .  To fac i l i ta te  
comprehens ion,  the x -ax is  is  not  l inear ,  be ing va lues organized in  b ins o f  d i f ferent  s izes to  
bet ter  show cases where a large number o f  gap - f i l led react ions is  necessary .  The 
d is t r ibut ion o f  the cost  is  shown for  25 in terva ls .  The number o f  genes assoc ia ted w i th  
model  react ions assoc ia ted is  shown in the y -ax is .  

One of the most clear results that we can observe by looking at the first interval in Figure 2.12 (that 

required a change of scale) is that the vast majority of gene associated reactions required one gap 

filled reaction to be able to carry flux through the network. This is a very positive result for the quality of 



46 USING METABOLIC NETWORKS AND MODELS TO IMPROVE GENOME ANNOTATIONS 

!

annotations used to build the models. Another good indicator of the current state of the annotations is 

that only 0.2% of reactions require 10 or more gap filled reactions to become active. We can use these 

results to drive the removal of over annotations from the genomes and models. The 0.2% of reactions 

that require 10 or more gap filled reactions can probably be safely removed, as there seems to be very 

little contextual evidence for their presence in the network. 

 

Figure 2.13 Dis t r ibut ion o f  the va lue o f  gap f i l led react ion for  3000 genome-sca le metabol ic  
models .  The va lue o f  a  gap f i l l ing react ion is  shown as the number o f  gene assoc ia ted 
react ions in  the network that  are corrected by gap f i l l ing (x -ax is ) .  The d is t r ibut ion is  shown 
for  25 in terva ls .  The number genes added to  the model  by gap f i l l ing is  shown in the y -ax is .  

The second score we considered computes the value of a gap filling reaction by calculating the number 

of gene associated reactions in the network that are repaired by this gap filling. Figure 2.13 

(Supplementary material S2.4) displays a histogram of the number of gene-associated reactions that 

were corrected by each gap filled reaction. The first column in the distribution is quite large, 

comprising of 41.3% of gap filled reactions correcting less than 0.2 gene associated reactions in the 

network. This indicates that many gap filled reactions are of low quality, but the large size of this 
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column is the result of diminishing returns when gap filling many reactions to fix only a single gene 

associated reaction.  

Additionally, we observed that a large set of reactions were activated/corrected by the addition of only 

1 gap filled reaction. Only 5% of reactions were activated/corrected by the addition of 2 or more gap 

filled reactions. The reactions with higher gap filling value are prime candidates for inspection to fill in 

missing gene annotations. 

We inspected the most extreme case found on this analysis with a gap fill value of 43.65 (highlighted in 

Figure 2.13). Glycerophosphodiester phosphodiesterase (Glycerophosphoglycerol) was the reaction 

associated with the highest score (Model SEED reaction rxn08699): H2O +Glycerophosphoglycerol=> 

Glycerol-3-phosphate + Glycerol 

This reaction is present in 2943 models, but it was gap filled in only 278 models. The highest value 

was found for the model of Thermobaculum terrenum ATCC BAA-798 (Model SEED model ID 

Seed525904.4.796). Since our 3000 models were reconstructed for all genomes publicly available on 

the SEED, we used the SEED tools to investigate annotations associated with this reaction.  

Table 2.3 Curated genome annotat ions 

Genome Old annotat ion Gene ID New annotat ion 

Thermobaculum 
terrenum ATCC BAA-798 

Glycerophosphoryl 
diester 
phosphodiesterase 

fig|525904.4.peg.2926 

Glycerophosphoryl 
diester 
phosphodiesterase 
(EC 3.1.4.46) 

Desmospora sp. 8437 
Glycerophosphoryl 
diester 
phosphodiesterase 

fig|997346.3.peg.2633 Glycerophosphoryl 
diester 
phosphodiesterase 
(EC 3.1.4.46) Desmospora sp. 8437 

Glycerophosphoryl 
diester 
phosphodiesterase 

fig|997346.3.peg.2632 

Streptomyces 
griseoaurantiacus M045 

secreted hydrolase fig|996637.3.peg.5832 

Glycerophosphoryl 
diester 
phosphodiesterase 
(EC 3.1.4.46) 
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We searched the SEED for the gene(s) associated with gap filled glycerophosphodiester 

phosphodiesterase (EC 3.1.4.46) functional role for that organism. The gene (SEED id 

fig|525904.4.peg.2926) associated with the gap filled role had an incomplete annotation name, 

lacking the proper EC number. Using the compare regions feature tools in the SEED, we were able to 

assess that the same annotation inconsistency was occurring in additional organisms (Figure 2.14). In 

the genome annotation of Streptomyces griseoaurantiacus M045 the gene associated with the gap 

filled functional role was annotated as “secreted hydrolase”. We were able to use the SEED annotation 

tools to easily fix this error across all occurrences in the cluster. The fixes introduced by this work are 

shown on Table 2.3.  

 

!
Figure 2.14 Comparat ive ana lys is  o f  genes ( represented in  red)  assoc ia ted wi th the gap 
f i l led funct ion g lycerophosphodiester  phosphodiesterase (EC 3.1.4.46) .   

This same process was repeated with other gap filled reactions leading to the correction of multiple 

errors in the SEED database of genome annotations. 

After assessing the cost of genome annotations and value of gap filled reactions, we performed an 

analysis to assess the gap filling of missing biomass precursors. Table 2.4 shows the most commonly 

gap filled biomass compounds. The average score in Table 2.4 represents the average number of 

reactions that had to be gap filled to enable the production of the specific biomass compound.  
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Table 2.4 Most  commonly  gap f i l led b iomass components 

Compound Models Gap f i l led Avg. score 

Cardiolipin 2134 (62.20%) 1618 (75.82%) 4.49 

Phosphatidylglycerol 1743 (50.80%) 1176 (67.47%) 4.30 

Calcium 3431 (100%) 2301 (67.06%) 0.71 

Ubiquinone-8 1919 (55.93%) 1242 (64.72%) 4.98 

Heme B  69 (2.91%) 43 (62.32%) 0.73 

 
Cardiopilin was found to be the most gap filled compound, present in 2134 models (62% of total 

models) and being gap filled in 75% of those. This is due to the fact that the Model SEED uses a 

template biomass reaction in its network reconstruction process. Some compounds are marked as 

universal (e.g. amino acids) being present in the biomass reaction for all models. Other compounds 

are associated with a specific subsystem or function role or class (e.g. gram negative vs gram positive) 

and are only included in models that have fit those criteria. Cardiopilin is a non-essential phospholipid 

for growth in prokaryotes [73-75] and was wrongly associated with a high number of organisms that do 

not require Cardiopilin as a biomass precursor, causing it to be gap filled in the vast majority (75%) of 

the models in which it is present. Phosphatidylglycerol is another phospholipid that, like Cardiopilin, 

can be used for optimal growth but is not essential [75]. 

Calcium is an essential co-factor [76, 77] being present in all models and being gap filled in 67% of the 

models. To further investigate why an essential compound such as calcium was being highly gap filled, 

we looked at the most gap filled reactions (Table 2.5). We found that 3/4 of the most gap filled 

reactions were associated with calcium transport. Particularly, the calcium transport via ABC system is 

gap filled in ~60% of the models. This revealed an error in the Model SEED reaction database 

regarding the calcium transporters not being properly mapped to reactions in the model.  
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Table 2.5 Most  commonly  gap f i l led react ions  

React ion 
Number of  
t imes gap f i l led 

Funct ional ro le  

Calcium transport via ABC system 

(H2O + ATP + Ca2+ [e] => ADP + Phosphate + Ca2+ + 
H+) 

2024 Calcium-
transporting ATPase 
(EC 3.6.3.8) 

Citrate-Ca2+ :H+ symporter 

(Ca2+ [e] + H+[e] + Citrate[e] <=> Ca2+  + H+ + Citrate) 

217 Ca2+/citrate 
complex secondary 
transporter 

Citrate-Mg2+ :H+ symporter 

(H+[e] + Citrate[e] + Mg[e] <=> H+ + Citrate + Mg) 

72   

Calcium / sodium antiporter 

(Ca2+  + Na+[e] <=> Ca2+ [e] + Na+) 

42 Ca2+/Na+ 
antiporter 

 

The correction of these errors impacted a substantial percentage of the models generated for this 

study, as well as future reconstructions generated using the Model SEED. In the first study we 

conducted, we analyzed gap filling at a subsystem level, pointing to subsystems that potentially require 

additional curation of genome annotations. With the analysis conducted in this section, we are able to 

find problems in genome annotations in specific genomes. This large-scale study also provided 

perspective on the quality of automated GEMs generated by the Model SEED. Finally, we were able to 

use this analysis to find and fix multiple errors in genome annotations and in the Model SEED reaction 

database.  

2.4.3 Analys is of  stra ins f rom the genus Brucel la   

The previous studies were done for all genomes available in the SEED. As part of on-going 

collaborations with the SEED research group, it was possible to conduct those studies at large scale to 

infer about the quality of automated GEMs and genome annotations. We were also able to fix gene 

annotations for multiple organisms across all bacteria phyla. However, most researchers focus their 

efforts on a specific organism or a small set of organisms. Inspired by that fact, we developed a 

protocol that can be used to assess annotation consistency with the aid of metabolic models for a 
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small set of closely related organisms. The results of that protocol applied to 15 species of Brucella are 

shown below.  

Descr ipt ion of  the Protocol  

Step 1.  Choice of genomes for analysis. We have chosen fifteen genomes representing the major 

species, biovars and clades of the genus Brucella [78] (Table 2.6). 

Table 2.6 Bruce l la  genomes used in  th is  s tudy wi th  the i r  SEED [14,  27]  and PATRIC [79,  
80] ident i f iers ,  s izes,  number o f  cont igs ,  and number o f  prote in cod ing sequences (CDSs) .  

Genome Name PubSEED 
ID 

PATRIC 
Genome ID 

Genome 
S ize (bp) 

Number 
o f  Cont igs 

Number 
o f  CDSs 

Brucella abortus bv. 1 str. 9-941 262698.4 15061 3286445 2 3413 

Brucella canis ATCC 23365 483179.4 25663 3312769 2 3394 

Brucella ceti str. Cudo 595497.3 28239 3389269 7 3578 

Brucella ceti M13/05/1 520460.3 83544 3337230 22 3367 

Brucella melitensis bv. 1 str. 
16M 

224914.11 92729 3294931 2 3446 

Brucella microti CCM 4915 568815.3 92249 3294931 2 3374 

Brucella neotomae 5K33 520456.3 114381 3329623 11 3383 

Brucella ovis ATCC 25840 444178.3 136990 3275590 2 3499 

Brucella pinnipedialis 
M292/94/1 

520462.3 74143 3373519 15 3356 

Brucella sp. 83/13 520449.3 75385 3153851 20 3152 

Brucella inopinata BO1 470735.4 109945 3366774 55 3361 

Brucella inopinata-like BO2 693750.4 146994 3305941 174 3276 

Brucella sp. NVSL 07-0026 520448.3 103899 3297137 17 3442 

Brucella suis 1330 204722.5 107850 3315175 2 3402 

Brucella suis bv. 5 str. 513 520489.3 73489 3323676 19 3316 

 

Step 2. Potential mobile element proteins are identified and removed from consideration. In order to 

find potential mobile protein elements, we first identified repeat regions in each chromosome. BLASTN 

[81] was used to compare each of the fifteen genomes against itself. Any DNA region (other than rRNA 
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operons) occurring more than once in the genome with a nucleotide identity ≥ 90% and a length ≥ 200 

nucleotides was considered to be a repeat. Although there are many ways to identify mobile element 

proteins that could be substituted within this framework [82], for the purposes of this study, we define 

a potential mobile element protein as one that overlaps a repeat region by at least 10 bp. All of the 15 

Brucella genomes were then compared to the list of potential mobile element proteins using BLASTP, 

and matching proteins with identity larger or equal to 50% and coverage larger or equal to 80% were 

also considered to be potential mobile element proteins regardless of proximity to a repeat region. This 

resulted in the creation of 50 mobile element protein families, containing a total of 410 proteins. These 

proteins were excluded from subsequent steps due to their variability and because they are not 

currently used for metabolic model reconstructions. 

Step 3. Families of core proteins are generated.  To find the core proteins, the remaining genes from 

each of the Brucella genomes were compared. Two proteins were placed in the same protein family if 

they were bi-directional best hits between a pair of genomes with greater than 50% identity and 80% 

coverage, and the genes occurred within a conserved genomic context [83, 84]. We considered the 

context of the matched pairs to be conserved if there were at least 3 pairs of bi-directional best hits co-

occurring within a 10 Kb region. This resulted in 5,038 families (with two or more proteins) containing 

a total of 52,626 proteins. From these initial families we generated core protein families, which are 

defined as families containing at most one protein from each genome, where 80% of the genomes are 

represented in the family. Similar to Step 2, it would be possible to use other methods for finding 

orthologous genes at this step as well [85]. 

Step 4.  Annotation inconsistencies are removed.  The core protein families of the RAST-annotated 

Brucella genomes were compared and inconsistencies (defined as two or more family members having 

different annotations) were evaluated. We manually curated a total of 398 families containing 4,848 

proteins.  We defined two metrics to measure progress.   
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The first: 

Given a protein family (i.e., from one of the 5,038 families we constructed), at what frequency has any 

given pair of proteins within the family been assigned precisely the same annotation by RAST [14]?    

We report this property before and after manual cleanup, and compare our annotations to other public 

annotation resources (Table 2.7).    

Tab le 2.7 The cons is tency o f  annotat ions across d i f ferent  resources.  For  each prote in in  a  
Bruce l la  prote in fami ly  used in  th is  s tudy,  a l l  o f  the prote ins wi th  ident ica l  sequences were 
found in  var ious databases and the percentage o f  pa irs  that  were incons is ten t ly  annotated 
was computed.  Annotat ions were co l lected f rom RefSeq [18] ,  UniProt  Knowledgebase 
(UniProtKB) [25] ,  the Trans la ted EMBL Nucleot ide Sequence Data L ibrary  (TrEMBL) [26] ,  
the In tegrated Microb ia l  Genomes ( IMG) system [86] and the SEED [14,  27] .   

Source 
Number of  
Pairs 

Number of  Pairs 
Inconsistent ly 
Annotated 

% of Pairs 
Inconsistent ly 
Annotated 

RefSeq 562597217 383808122 68.2 

IMG 101525838 52434525 51.6 

UniProtKB/TrEMBL 112735194 46284849 41.1 

UniProtKB/SwissProt 803819 42429 5.3 

SEED 271622566 9056551 3.3 

Original RAST Output 16349603 102097 0.6 

RAST After Manual Curation 16349603 47504 0.3 

 

The second:  

How many Brucella-universal-reactions have been assigned to each genome?   

By universal reactions we mean the reactions that are present in all Brucella genomes used in this 

study. We chose this second metric to demonstrate that improvements in annotations lead to 

improvements in the metabolic reconstructions.  

Step 5. Annotation and reaction database improvements are made based on metabolic network 

reconstructions. Metabolic reconstructions were built for the fifteen Brucella genomes (Tables S1 and 
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S2 on the online supplementary material), using the Model SEED automated reconstruction pipeline. 

Starting with the manually improved genomes, we focused on the reactions that were non-universal 

among the 15 Brucella strains. The annotations relating to these reactions were manually evaluated 

and corrected, if needed.  

The initial set of metabolic reconstructions from the original RAST annotations contained 1011 

Brucella-universal-reactions. The second set of reconstructions from the manually curated annotations 

(step 4) contained 1016, of which 20 were found to be new core-reactions and 15 were removed from 

the set due to annotation errors. Finally, the third set, after using the metabolic reconstructions to 

guide the annotation cleanup, contained 1047 Brucella-universal-reactions, of which 31 previously 

unrecognized core reactions were found.   

Annotat ion Improvements 

As a way to eliminate sequencing, annotation and modeling errors from true strain-specific differences, 

we manually examined the 86 non-universal reactions from the second set of metabolic 

reconstructions. This revealed problems with the automated assertion or omission of reactions in 

certain genomes (Table S3 of the online Supplementary material). We verified the absence of 39 

reactions from the set of genomes and identified 31 cases of Brucella-universal-reactions that had not 

been identified in the first round of metabolic reconstruction. The leading cause for the omission of 

reactions was insufficient sequencing quality (e.g., frame shifts, incomplete ORFs at the end of contigs 

or stretches of low quality sequence) that resulted in gene calling errors. We also found 16 annotation 

errors (outdated functional roles), errors in the reaction database (labeled as “functional role 

ambiguities” in Table S3) and one gene fusion. 

More importantly, this process resulted in the identification of five unique non-universal reactions in the 

Brucella inopinata BO1 and Brucella inopinata-like BO2 strains. Those reactions are involved in 

rhamnose-containing glycan synthesis and confirm the findings for those strains reported in [78]. 

Additionally we proposed candidate proteins in all Brucella for the N-acetyl-L,L-diaminopimelate 
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deacetylase, the missing step in the diaminopimelate pathway (DAP) of leucine biosynthesis. All 

Brucella non-universal reactions for each genome are provided in Tables S4 and S5.  
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2.5 CONCLUSIONS !

The studies performed within this chapter resulted in the analysis of huge amounts of data. It was the 

first time that metabolic models were reconstructed and analyzed for such a large number of 

prokaryotic genomes. The analysis of reactions revealed that even with the improved gap filling 

methods, there are still a large number of reactions that remain inactive. This fact is probably due to 

lack of components on the biomass reactions or to errors in annotations. Another interesting fact was 

how the number of essential genes did not vary even with genomes with various sizes. This reveals that 

gene essentiality is likely not dependent on the genome size. The study of the functional roles across 

the 3000 models also showed interesting results.  

One of the most relevant was to see how diverse the models are, since the majority of functional roles 

are only present in about 20% of the models. The closer look at the gap filled reactions in subsystems 

unveiled the most gap filled subsystems. This can help to correct errors and to improve the genome 

annotations. When looking at the fraction of subsystems that required gap filling, we reached two 

conclusions: many subsystems may have at least one gap filled role, but at the same time fewer than 

5% of roles were gap filled. We showed that this issue was due to the fact that several subsystems have 

a small number of roles. Gap filling is a computational attempt to fill gaps in the biological knowledge, 

and we showed the importance of properly analyzing the gap filling solution to obtain biological 

meaningful results.  

This study aimed to show the importance of the development of high throughput tools for model 

reconstruction and how models can be tools to refine and curate genome annotation. To aid this effort, 

we developed measures of confidence in genome annotations. These measures allowed us to identify 

and fix multiple errors in SEED annotations. Similarly, we assessed the confidence in biomass 

compounds leading to the discovery of errors associated with Calcium transport in the Model SEED 

reaction database. We were also able to verify the use of a template biomass reaction as one of the 

caveats of automated model reconstruction, as we observed compounds being wrongfully assigned as 

universal biomass compounds.  
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In this chapter, we also described a workflow for improving the annotations of a genus utilizing 

metabolic reconstructions as a measure of annotation consistency. This has resulted in the production 

of an accurate and consistent collection of annotations and initial estimates of the metabolic network 

for the genus Brucella. By manual curation of 398 protein families (used in metabolic models) whose 

members had inconsistent annotations for isofunctional homologs, we have lowered the percentage of 

inconsistently annotated pairs of genes from 0.6% to 0.3%. Those improvements have led to changes 

in the metabolic reconstructions, generating a larger set of Brucella-universal reactions and highlighting 

the real metabolic differences between organisms. We believe that knowledge of the real differences 

will be of importance when deciding on sets of “representative models” to portrait the entire genus. 

The “representative models” will aid in the research of less studied or newly-sequenced strains.  

With this work, we have demonstrated that the use of a controlled vocabulary for the annotation of 

genomes is key for the construction of reaction networks and future predictive comparative models. 

The automated annotations provided by the RAST system and the SEED’s controlled vocabulary 

provide a good start, but annotation inconsistencies caused by sequencing and propagation errors 

have to be manually processed. The methods devised in different studies of this chapter reduce the 

workload of researchers who are trying to build models, but also clearly exposed bottlenecks where 

future computational tools must be built that can meet and exceed the skill level of an expert human 

annotator. This work has improved the annotations in the SEED and RAST and the reaction databases 

in Model SEED by flagging ambiguities in current functional roles. It has also improved the Brucella-

specific collections of protein families that are propagated to RAST and PATRIC, the PathoSystems 

Resource Integration Center, which is dedicated to enabling bioinformatics research for bacterial 

pathogens and has particularly strong ties to the Brucella research community.  

With this proof of concept, we plan to use these methodologies to improve annotations of other 

conserved genera, as well the entire PubSEED. 
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2.7 SUPPLEMENTARY MATERIAL 

 
The supplementary material is available online at http://darwin.di.uminho.pt/jplfaria/phdthesis/ 

Chapter_2_SupplMaterial.zip.   

S2.1 Analysis of functional roles in the 3000 models (Figure 2.8). 

S2.2 Analysis of gap filled function roles in the 3000 models (Figures 2.9-11). 

S2.3 Distribution of values for the cost of annotated reaction for the 3000 genome-scale metabolic 

models (Figure 2.12). 

S2.4 Distribution of the value of gap filled reaction for 3000 genome-scale metabolic models (Figure 

2.13).  

Additional supplementary material is available online via the PATRIC website at: 

http://enews.patricbrc.org/annotation_protocol_brucella/ 

Table S1 -Initial Set of Brucella-universal-reactions 

Table S2 - Improved set of Brucella-universal-reactions 

Table S3 - Non-universal reactions analysis 

Table S4 - Non-universal reactions per organism 

Table S5 - Non-universal reactions functional roles 
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ABSTRACT  

Advances in sequencing technology are resulting in the rapid emergence of large numbers of 

complete genome sequences. High-throughput annotation of these genomes and metabolic 

modeling of the corresponding organisms is now a reality. The high-throughput reconstruction 

and analysis of genome-scale transcriptional regulatory networks represents the next frontier 

in microbial bioinformatics. The fruition of this next frontier will depend on the integration of 

numerous data sources relating to mechanisms, components, and behavior of the 

transcriptional regulatory machinery, as well as the integration of the regulatory machinery 

into genome-scale cellular models. In this chapter, we review existing repositories for different 

types of transcriptional regulatory data, including expression data, transcription factor data, 

and binding site locations; and we explore how these data are being used for the 

reconstruction of new regulatory networks. From template network-based methods to de novo 

reverse engineering from expression data, we discuss how regulatory networks can be 

reconstructed and integrated with metabolic models to improve model predictions and 

performance.  

We then introduce a manually curated regulatory network for Bacillus subtilis, tapping into the 

notable resources for B. subtilis regulation. We propose the concept of Atomic Regulon, as a 

set of genes that share the same “ON” and “OFF” gene expression profile across multiple 

samples of experimental data. Atomic regulon inference uses prior knowledge from curated 

SEED subsystems, in addition to expression data to infer regulatory interactions. We show how 

atomic regulons for B. subtilis are able to capture many sets of genes corresponding to 

regulated operons in our manually curated network.  Additionally, we demonstrate how atomic 

regulons can be used to help expand/validate the knowledge of the regulatory networks and 

gain insights into novel biology. 
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3.1  INTRODUCTION 

As a model organism, literature for the bacterium Bacillus subtilis regulation is extensive and several 

resources/databases are available. A regulatory network model for the central carbon metabolism was 

made available by Goelzer et al. in 2008 [1]. Multiple inferred networks based on expression data have 

also been proposed in the literature [2, 3]. RegPrecise [4], a resource for transcription factor binding 

site (TFBS) based network inference also provides a network for B. subtilis [5]. Subtiwiki [6, 7] is a 

community collaborative resource for B. subtilis that includes a vast compendium of regulatory 

information. DBTBS [8] is another B. subtilis comprehensive resource of regulatory data with 

promoters, transcription factors (TFs), TFBS, motifs and regulated operons. Our novel genome-scale 

reconstruction of the B. subtilis regulatory network integrates the previous work from the Goelzer et al, 

literature and the other notable resources for regulation described above [4, 7-9].  

We reconciled our new model against a large set of high-quality gene expression data [10, 11]. For the 

process of reconciliation with expression data, we introduce the concept of Atomic Regulons. Atomic 

regulons are sets of co-regulated genes that share the same “ON” and “OFF” expression profile 

(meaning the genes in these sets are “ON” and “OFF” in the same conditions). While predicting 

traditional operon structures can be a difficult task [12], our approach for computing atomic regulons 

from expression data is fairly easy. Our approach begins by constructing draft regulons using a 

combination of crude operon predictions and SEED subsystem technology [13-15]. We then 

decompose and expand these draft regulons based on consistency with expression data. This process 

results in a set of co-regulated gene clusters, now called Atomic Regulons. We show how atomic 

regulons can be used to help expand/validate the knowledge of the regulatory network and gain 

insights into novel biology.  
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3.2  STATE OF THE ART 

3.2.1 Introduct ion  

Systems biology has provided numerous tools for modeling biological systems [16], many of which 

depend on the reconstruction of genome-scale metabolic models (GEM). These models now exist for a 

growing number of organisms, including prokaryotic, archaeal, and eukaryotic species [17]. With the 

advent of next-generation sequencing, the development of GEMs has become routine [17, 18], and 

many steps involved in the reconstruction and optimization of draft GEMs have been automated [19]. 

Algorithms and methods for GEM reconstruction have been reviewed in detail elsewhere [20-22], and 

in the previous chapter. 

However, nearly all-existing GEMs fail to account for the impact of gene expression regulation on 

metabolic activity. In order to capture the impact of regulation on the behavior of an organism, a GEM 

must integrate some abstraction of regulatory mechanisms, which include the activity of RNA 

polymerase, transcription factors (TFs), promoters, transcription factor binding sites (TFBS), and sigma 

factors. Sigma factors allow the recognition of the enzyme by the promoter region, enabling 

transcription to begin. TFs bind to specific TFBSs in the promoter region and can act as activators, 

repressors, or both (dual regulators). In eukaryotes, TFs are able to perform other tasks affecting 

regulation, such as chromatin-modifying activities [23]. Other elements have been identified as taking 

part in the control of transcription regulation in bacteria, such as riboswitches [24], RNA switches [25], 

antisense RNA [26], or microRNAs [27].  Here, we focus on regulation by transcription factors, a 

mechanism illustrated in Figure 3.1. Also displayed are some of the technologies, tools, and resources 

necessary for reconstructing transcriptional regulatory networks. 

The integration of these regulatory mechanisms in GEMs requires methods for the reconstruction and 

analysis of transcriptional regulatory networks (TRNs). Once a regulatory model has been constructed 

for an organism, it can be integrated with GEMs to improve predictive accuracy and reveal new 

biological insights. For example, some cellular processes exhibit a dominance of regulatory 

mechanisms, affecting their behavior and leading to incorrect predictions when only metabolism is 
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accounted for [28]. The first genome-scale integrated metabolic and regulatory model for E. coli [29] 

revealed that regulation significantly affects growth phenotype predictions, and these predictions 

improved with the addition of regulatory constraints. Simultaneously, the study of TRNs has unveiled 

novel interactions; in Salmonella enterica, 14 regulators were identified that affect the same genes 

leading to a systemic infection [30]. Similar studies led to the discovery of novel regulatory 

mechanisms in Saccharomyces cerevisiae [31]. 

!

Figure 3.1 Technolog ies,  too ls ,  and resources for  t ranscr ip t iona l  regu la tory  network 

model ing and reconstruct ion.  

In this chapter, we review the reconstruction of TRNs, by firstly exploring the data available for TRN 

reconstruction, covering the most prominent databases of expression data and repositories of TF/TFBS 

data. Next, we examine how data availability triggered the development of a variety of TRN inference 

methods, including reverse engineering from expression datasets [32-36], network inference from 

TFBS site data [37-39], and knowledge-based template methods [40]. 
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3.2.2 Regulat ion data for TRN reconstruct ion – From standards and 
technologies to databases 

The development of microarray technologies gave rise to a revolution in biomedical research [41], also 

bringing new problems such as quality control of experiments [42] and selection of an appropriate level 

of detail [43]. To address these issues, the Functional Genomics Data Society (FGED) launched a 

proposal to standardize the publishing and sharing of microarray data (MIAME) [44]. The majority of 

the community adopted the proposal, requiring authors to follow the MIAME guidelines. Publishers also 

required authors to store data [45] in either NCBI’s Gene Expression Omnibus (GEO) [46] or EBI’s 

ArrayExpress [47], the major public gene expression data repositories, both MIAME compliant. 

These databases integrate data from a variety of technologies that can help determine regulatory 

interactions, although expression profiling and genome binding and occupancy studies have become 

the most prevalent. Expression profiling techniques vary from the traditional array oligonucleotide 

hybridization technology for measuring gene expression level to mRNA quantification methodologies, 

such as serial analysis of gene expression (SAGE) [48, 49] or reverse transcriptase PCR (RT-PCR). 

Genome binding and occupancy experiments have the advantage of identifying the spots 

corresponding to DNA-protein binding targets. Chromatin immunoprecipitation with array hybridization 

(ChIP-chip) [50, 51] is used to overcome limitations of common expression profiling. Other ChIP 

technologies have also been developed in combination with different expression techniques, such as 

SAGE (ChIP-SAGE [52]), to achieve a particular level of detail, depending on the organism and tissue 

studied [53]. With the development of next-generation sequencing technologies, ChIP-Seq [54] and 

RNA-Seq emerged [55, 56]. ChIP-Seq enables whole-genome ChIP assays, while RNA-Seq provides a 

capacity for direct measurement of mRNA, small RNA, and noncoding RNA abundances [57]. ChIP 

methods have been widely used to collect expression data from E. coli [58-60]; and, more recently, 

RNA-Seq methods have been adjusted for studying bacterial transcriptomes [61, 62]. RNA-Seq has 

been also successfully used to detect transcription start sites [63] that can be used for regulon 

inference. 
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Data available for TRN inference can be categorized into two major groups: (i) databases of gene 

expression data (including genome binding experimental data), and (ii) databases of TF and TFBS. 

Table 3.1 shows the most notable databases of the former group.  

Table 3.1 Gene express ion repos i tor ies w i th  bacter ia l  t ranscr ip t iona l  data .  

Database Main Features 

GEO [46] NCBI’s database for expression data. Supports multiple expression 
studies platforms for all organisms. Browsing tools available. 

ArrayExpress [47] EBI’s database for expression data. Data submitted by users and 
imported from GEO. Advanced queries and ontology-driven searches. 

M3D [64] Data uniformly normalized from Affymetrix microarrays for Escherichia 
coli, Saccharomyces cerevisiae and Shewanella oneidensis. 

SMD [65] Partially public database with data from around 60 organisms. 
Escherichia coli, Mycobacterium tuberculosis and Streptomyces coelicor 
are among the most represented microbes. Data analysis framework 
embedded.  

COLOMBOS [66] Cross-platform expression compendia for E. coli, B. subtilis, and S. 
enterica subspecies serovar Typhimurium. Provides tools for expression 
analysis and extraction of relevant information. 

 

We surveyed GEO as the major expression database, gathering statistics on the type of studies 

conducted, availability of data, quantification of bacterial data, and the most represented microbes 

(Figure 3.2). These statistics clearly indicate that most of the current data are from expression 

profiling, with 18,498 experimental series (85%). Although next-generation sequencing technologies 

were introduced recently [67], we can already see a change in the types of experiments being 

performed (Figure 3.2 b). Examining the organisms for which expression data are available, we find 

that only 7% of datasets are from bacteria (Figure 3.2 c), with Escherichia coli being the most 

represented prokaryote (Figure 3.2 d). 
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Figure 3.2 Survey o f  the GEO database.  (a )  Types o f  express ion s tud ies on the database 
[68] .  (b)  Number o f  ser ies o f  exper iments ava i lab le  f rom next -generat ion sequencing 
technolog ies [68] .  (c )  Percentage o f  data f rom bacter ia  in  the ent i re  database:  f rom a to ta l  
o f  28,150 ser ies o f  exper iments on ly  2,196 represent  bacter ia l  organisms. (d)  Most  
represented bacter ia  on GEO. The organisms presented have at  least  a  min imum of  43 
ser ies o f  exper iments .  Data for  (c )  and (d)  were obta ined wi th  GEO too ls  [69] in  Apr i l  2012. 

Table 3.1 also includes other notable databases, from which we highlight the Many Microbe 

Microarrays Database (M3D) [64] currently holding around 2,000 microarrays for Escherichia coli, 

Saccharomyces cerevisiae, and Shewanella oneidensis. The data available are all from Affymetrix 

single channel microarrays, allowing a uniform normalization procedure and higher-quality data. The E. 

coli data have already been applied for TRN inference [70]. 
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Figure 3.3 Compar ison o f  bacter ia l  genomes wi th express ion data in  GEO versus genomes 
wi th  complete DNA sequences in  the PubSEED [13] .  The 20 bacter ia l  fami l ies  that  conta in 
genomes wi th express ion data in  GEO are arranged in  a  topo log ica l  t ree.  For  each fami ly ,  
the most  abundant ly  sampled spec ies in  the PubSEED was p icked to  represent  that  fami ly ,  
and the a l ignment o f  the i r  16S sequences was used to  reconstruct  the bacter ia l  fami ly  t ree.  
The co lor -cod ing o f  the t ree nodes denotes the phy la  they be long to .  Most  phy la  conta in 
on ly  one fami ly ,  w i th  the except ion o f  Cyanobacter ia  (3 fami l ies) ,  Bactero idetes (4 
fami l ies) ,  and F i rmicutes (3 fami l ies) .  The last  two phy la  are espec ia l ly  overrepresented in  
terms of  both sequenced genomes and express ion data .  The numbers on the r ight  o f  each 
t ree node denote the number o f  genomes wi th GEO express ion data (566 in  to ta l )  and the 
number o f  genomes present  in  the PubSEED (3,493 in  to ta l ) .  Archaea organisms were 
removed f rom th is  s tudy s ince we a im to survey on ly  bacter ia l  genomes.  In  the hor izonta l  
bar  p lo t ,  we show the f ract ion o f  each bacter ia l  fami ly  for  which express ion data is  
ava i lab le  ( in  dark red) .  The t ree was des igned wi th the In teract ive Tree o f  L i fe  Too l  [71,  
72] .  

Figure 3.3 shows the discrepancy between the number of sequenced genomes and the number of 

genomes for which any type of expression data exists. In this study, we cluster bacterial genomes 

available in the PubSEED [13] (a large repository of genomes and annotations) at the taxonomical level 

of family. The set of 20 bacterial families associated with expression data in GEO are shown in the 
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phylogenetic tree. On average, 16.2% of the 3,493 PubSEED genomes that fall into these families have 

expression data linked to them. Expression data are available for 55% of the genomes in the 

Gammaproteobacteria family, demonstrating the extensive amount of data available for this taxonomic 

clade. In contrast, more than half of the bacterial phyla have expression data for less than 10% of their 

species, revealing that numerous phylogenetically distinct clusters of microbes have little gene 

expression experimentally characterized. 

Repositories with regulatory interactions also hold valuable information. Table 3.2 shows the most 

comprehensive resources available for prokaryotes. Organism-specific databases are available for well-

known organisms such as E. coli, B. subtilis, and M. tuberculosis, including a comprehensive collection 

of regulatory information. Among those, RegulonDB is the most comprehensive resource for regulatory 

interactions data of any single organism (E. coli). In its latest release, genetic sensory response units 

are introduced to better represent the biology of gene regulation [73], trying to capture all the 

phenomena involved in regulation, from the initial signal to gene response. Another major resource for 

E. coli data is EcoCyc [74], integrating RegulonDB and curated data from over 21,000 publications and 

TRN descriptions that include genes, ligands, and regulators with their targets. DBTBS [8] is the major 

resource for B. subtilis regulatory data.  

Less comprehensive databases present fewer types of different regulatory information (sometimes only 

TFBS predictions or TF information) but cover a wide range of bacteria (Table 3.2). Notable examples 

are ODB [75], which stores known operon data for about 10,000 operons in 56 organisms and 

putative operons for over 1000 genomes; RegTransBase [76], which collects regulatory data from the 

literature; and RegPrecise [4], a repository of manually curated regulons that provides tools for regulon 

propagation. 

Reconstruction of TRNs can use different types of data, and the accurate selection of data/database(s) 

for the method of choice is paramount in the reconstruction process. Organism-specific databases are 

particularly useful for reverse engineering methodologies as training datasets and essential for 

validation. Methodologies based on comparative genomics approaches make good use of less 

comprehensive databases but cover a wider range of organisms. 
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Table 3.2 Databases wi th notab le bacter ia l  t ranscr ip t iona l  data .  

Database Organism(s) Main Features 

Organism specific   

DBTBS [8]  B. subtilis 
Compendium of regulatory data with promoters, 
TFs, TFBS, motifs and regulated operons 

RegulonDB [73]    E. coli 
Compendium of regulatory data, promoters, 
TFs, TFBS, transcription units, operons and 
regulatory network interactions. 

EcoCyc [74] E. coli 
Comprehensive database with gene products, 
transcriptional, post-transcriptional data and 
operon organization 

DPInteract [77] E. coli DNA binding proteins and binding site data. 

MTBRegList [78] M. tuberculosis. TFBS and regulatory motifs 

Organism class/family   

CoryneRegNet [79] Corynebacteria TF and regulatory networks 

cTFbase [80] Cyanobacteria Putative TFs 

TractorDB [81]  Gamma-
proteobacteria 

TFBS predictions 

MycoRegNet [82]  Mycobacteria TF and regulatory networks 

Non-organism specific   

ExtraTrain [83] Bacteria and 
Archaea 

Transcriptional data and extragenic regions 

DBD [84]  

Bacteria 

TF predictions 

RegTransBase [76] 
Regulatory interactions from literature and 
TFBS 

PRODORIC [85] 
TFs, TFBSs, regulon lists, promoters, 
expression profiles 

sRNAMap [86]  Small noncoding RNAs and regulators 

ODB [75]  Known and putative operons 

RegPrecise [4]  Regulon database 
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3.2.3 TRN Reconstruct ion – From template networks and inference 

a lgor i thms to integrat ion with GEMs  

TRN reconstruction aims to make sense of gene expression and binding site data by revealing the 

interactions between the different elements of the cell’s regulatory machinery. Different methodologies 

have been proposed for TRN inference. However, there is no consensus for classification in the 

literature. Some reviews classify methods as bottom-up and top-down [87], others focus on inference 

from a specific type of data such as gene expression [88], while others present methods and 

computational tools [89].  

!

Figure 3.4 TRN reconstruct ion methodolog ies.  (a )  Template network based methods.  b)  
TFBS data based v ia  regu la tory  c is  e lements .  (c )  De novo  reverse eng ineer ing.  

Here, we review and categorize different methodologies within two major types: genomics-driven and 

data-driven. The first uses comparative genomics approaches, while the second refers to de novo 
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reverse engineering from expression data. Within the genomics-driven approaches, we describe two 

methodologies: template network-based methods and TFBS data-based methods via prediction of cis–

regulatory elements, including propagation from known regulons and ab initio regulon inference. The 

comparative genomics approaches are described in Figure 3.4 a) and b); Figure 3.4 c) describes data-

driven methods from expression data. 

Template network-based methods 

Template-based methods [90] rely on one or more well-characterized networks to serve as a starting 

point for the reconstruction. These methods exploit the conservation of prokaryotic gene networks [91-

94] to reconstruct TRNs (Figure 3.4 a). Starting with a well-characterized network, a search for 

orthologous genes (e.g. using bidirectional best hits [95]) is conducted on the genome of interest. With 

the orthologous TFs and their targets noted on the target genome, random networks are generated 

from the template network to confer statistical strength to the new reconstructed interactions in the 

target genome, since this shows the significant trends. After this analysis, the new interactions on the 

target genome are reconstructed. This approach can be useful for propagation of TRNs to other strains 

of a model organism or to closely related organisms. 

This methodology presents some limitations, however. The first is intrinsic: the need for a high-quality 

template network derived for an organism that is phylogenetically close to the organism being studied. 

A long phylogenetic distance between the template and the target organisms can generate 

meaningless interactions; hence, the choice of the template network is of paramount importance for 

the reconstruction. Another limitation is the scale of the network to be reconstructed; here, our focus is 

genome-scale network reconstruction, and reconstructions on this scale depend on the availability of a 

template network that also exists at the genome scale. 

TFBSs data-based methods v ia predict ion of  cis  – regulatory e lements 

TRN reconstruction from binding site data can also be defined as a comparative genomics approach. 

Prior to the development of the first binding-site approaches, most methods relied almost entirely on 

functional information from expression data [34, 96]. The GRAM (Genetic Regulatory models) algorithm 
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[97] was the first to combine the use of expression data and binding site data in a genome wide 

inference process, enabling the inclusion of information about physical interactions between regulatory 

genes and their targets. Other work focused on the conservation of the regulatory machinery across 

different organisms.  

Regulogger [98] was introduced to generate regulogs, or sets of genes that are co-regulated and have 

their regulation processes conserved across several organisms. Using Staphylococcus aureus, regulogs 

were produced for well-known sets of genes and provide clues about the functions of unannotated 

genes. Studies of δ-proteobacteria [38] revealed that very diverse species of proteobacteria have 

similar regulatory mechanisms.  

The principles behind this methodology were reviewed by Rodionov [99]. Figure 3.4 b) describes one of 

the two strategies proposed. The first step is to gather all available information related to TFs and 

TFBSs in a selected model organism. These data are then used as a training set for the TFBS model. 

The accuracy of the methodology is closely connected to the quality and quantity of sequences used 

for training. E. coli is usually used as a model species for gram-negative bacteria, and B. subtilis for 

gram-positive bacteria. If the TFBSs corresponding to a particular TF are unknown, all genes regulated 

by the TF in the model species are identified, and then orthologues for these genes in closely related 

genomes are found. With a TFBS training set built by this process or experimentally determined (see 

Table 3.2), positional weight matrices (PWMs) are constructed for the collection of binding sites. 

Several algorithms are available that perform motif pattern recognition [100] to construct PWMs. One 

of the first algorithms developed for this task was AlignACE [101]. This algorithm was recently 

upgraded to W-AlignACE [102] incorporating a new learning approach [103] and showing increased 

accuracy in obtaining PWMs for gene sequences, gene expression data, and ChIP-chip data [102]. 

Using the PWMs, one can perform a genome wide search for putative TFBSs on the target genomes.  

This comparative-genomics-based approach requires a high-quality training set; using genomes that 

are not closely related can lead to generation of false positive TFBS predictions. Even for a set of 

closely related genomes, selecting a threshold for binding site detection can be difficult. The final step 

of the TFBS prediction involves the verification of site consistency. Early studies on E. coli and H. 
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influenzae regulon predictions showed conservation of co-regulated genes by orthologous TFs [104]. 

Based on this principle, a search is conducted for binding sites upstream from the operons regulated 

by each TF. If the site is conserved, the TFBS prediction is assumed to be correct. On the other hand, 

if matches to the predicted TFBS motif are found dispersed across the genome, the prediction is 

assumed to be a false positive. By accounting for changes in the operon structure, further consistency 

checks are possible. This method showed improved results in binding site detection in several studies 

such as nitrate and nitrite respiration in γ-Proteobacteria [105] and nitrogen metabolism in gram-

positive bacteria [106]. 

These methodologies have been implemented in the RegPredict web resource [107], a state-of-the-art 

tool for TRN reconstruction with TFBS data. The webserver comprises a large set of comparative 

genomics tools available in two reconstruction frameworks; the first reconstructs regulons for known 

PWMs, and the second performs de novo regulon inference for unknown binding sites using analysis of 

regulon orthologues across closely related genomes. One of the novelties of RegPredict is the concept 

of CRONs (Clusters of co-Regulated Orthologous Operons) to facilitate and improve consistency check. 

This semi-automated approach provides the community with a more swift reconstruction, curation and 

storage of regulons. RegPredict was used for TRN reconstruction of the central metabolism of the 

Shewanella genus [108], for the analysis of the regulation of the hexunorate metabolism in 

Gammaproteobatceria [109], and for the elucidation of control mechanisms for proteobacterial central 

carbon metabolism by the HexR regulator [110]. FITBAR [111] is another web tool for prokaryotic 

regulon prediction that aims to fill the gap of the lack of statistical comparison for calculating the 

significance of the predictions.  

Techniques also exist for predicting TFBSs when the available regulatory information is not sufficient 

for regulon-based approaches. Phylogenetic footprinting [112] identifies highly conserved untranslated 

regions (UTRs) upstream from the genes of interest, since these are prime regulatory site candidates. 

An orthologous search for these regions is performed across closely related genomes; candidate 

binding sites are identified; and these sites are used to perform a regulatory motif search across all 

analyzed genomes. This technique successfully identified the FabR regulon in E. coli and regulon 
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members in several cyanobacteria genomes [113]. Another approach has been described as 

subsystem oriented [99] based on the hypothesis that one TF regulates the genes on the same 

metabolic pathway. A search for orthologous genes on the same metabolic pathway of closely related 

genomes is conducted. Using the orthologous operons from the same subsystem, one can perform a 

motif search to build the PWM and search for TFBS. Concepts of this approach were also implemented 

in RegPredict with the introduction of the SEED subsystems [13] for regulon reconstruction and 

curation.  

De novo  reverse engineer ing 

As gene expression data became available through microarray technologies, development began on 

methods for inference of regulatory networks from expression data [114]. Early reviews describe 

several mathematical formalisms such as Bayesian networks, Boolean networks, and differential 

equations to represent regulatory networks [115], together with appropriate algorithms to support 

network inference.  

The development of these methodologies led to the creation of the DREAM (Dialogue for Reverse 

Engineering Assessments and Methods) project in 2007 [116], bringing together experts from different 

areas and aiming to provide tools to enable the unbiased evaluation of various methods [117], hosting 

annual challenges. The lessons gained from the results obtained in those challenges have provided 

improved methods for network inference [118]. Each year different methods are ranked as top 

performers on specific sub challenges that differ in either the type of data or network size. 

Past reviews have categorized reverse engineering network inference methods according to (i) 

mathematical modeling approach [88, 119], (ii) module-based or direct inference methods [87, 120], 

and (iii) unsupervised and (semi)-supervised methodologies [87, 121, 122]. 

In the first category [88, 123], the differential equation (ODEs)-based [124, 125], mutual information-

based [126, 127], and Bayesian network-based methods [128, 129] are the most popular approaches. 

Other notable approaches are based on Boolean networks [130], neural networks [131, 132], 

correlation analysis [133], and relevance networks [134]. 
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The second category divides methods into those based on a modular view of regulatory networks that 

infer regulatory programs for sets of co-expressed genes and those able to infer the regulatory behavior 

of individual genes (direct inference) [79]. Module-based inference is inspired by evidence that 

regulatory networks exhibit a modular structure of co-expressed genes [135, 136], using a separate 

algorithm for the module inference step, typically based on clustering or biclustering algorithms, such 

as cMonkey [137]. Direct inference methods search for single interactions between targets and their 

regulators [70, 138] (Figure 3.5 a)).  

!

Figure 3.5 Network in ference methods c lass i f ica t ion.  (a )  Network node Module Based vs 
D irect  In ference.  (b)  Superv ised vs unsuperv ised.  Superv ised methods require a t ra in ing set  
o f  prev ious known in teract ions.  

A comparison between representative methods of both approaches showed that none can be defined 

as the best solution [120]: the module-based method LeMoNe [139, 140] is able to retrieve more 

efficiently targets for regulators with a high number of targets, and the direct-inference method CLR 

[70] is preferable for detecting regulators with one or few targets. Thus, these methods can be seen as 

complementary when handling genome-scale regulatory model reconstruction. 

The third category divides methods into supervised [141, 142] and unsupervised [143, 144] (Figure 

3.5 b)). The former use a training set of known interactions creating classification problems (e.g., to 
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infer whether a given gene is regulated by a transcription factor) (Figure 3.5). Some supervised 

methods are known as semi-supervised [145, 146]. Supervised methods have shown to provide more 

accurate predictions than unsupervised methods [147], with successes in expanding the compendium 

of TF-gene interactions in E. coli [145]. At the same time, when inferring interactions for an organism 

that is not well known, the lack of a proper training set can lead to a better performance by 

unsupervised methods.  

A detailed review of the mathematical formalisms and detailed inference algorithms is out of the scope 

of this review. From the overwhelming number of methods available, we chose to briefly describe 10 

methods, including the most widely used, the most recent [87], and the best performing from the 

DREAM challenges [117, 118, 148-150]. We focus our review on methods that produce genome-scale 

regulatory network reconstructions in the form of regulatory models that may be integrated with GEMs. 

While no method currently exists that completely satisfies these criteria, several algorithms, given in 

Table 3.3, can provide important results in the route to achieve the goal of fully integrated genome-

scale models. 

ARACNE [138] is one of the most widely used methods, first applied to infer regulatory interactions on 

human B cells [151]. Also, it has shown capacity for genome-wide inference in bacterial species such 

as Streptomyces coelicor [152]. CLR (context likelihood of relatedness) introduced the use of data from 

different experimental conditions for the same organism to infer regulatory interactions and enabled 

the identification of over 700 novel interactions in E. coli [70]. Being one of the most cited methods 

with an ability to predict edges in the RegulonDB, CLR is the method of choice for regulatory 

interactions studies [153]. It was recently used to unveil virulence factors in Salmonella [154]. A newer 

algorithm based on CLR, called SA-CRL (synergy augmented-CLR) [155], was the best-performing 

method in the DREAM2 genome-scale inference challenge, exploiting the concept of synergy among 

multiple interacting genes [156], where a pair of genes is used to infer the expression of a third to 

increase prediction accuracy. 
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Table 3.3 Methods for  reverse engineer ing o f  gene regula tory  networks f rom express ion 
data. 

  Inference 

Approach 

Semi / 
Supervised  

Algor i thm Model ing Approach DI* MB** Yes No 

ARACNE [138] 

Mutual Information (MI) 

X   X 

CLR [70]  X   X 

SA-CRL [155] X   X 

tlCLR [157]                    + MI  X  X 

Inferelator [158] ODE Model  X  X 

Yip et al. [159]                     + Noise Model X   X 

GENIE3 [142] Regression tress X  X  

SEREND [160] Logistic regression X  X  

GPS [161] Fuzzy Clustering  X  X 

DISTILLER [162] Association rules (itemsets)  X  X 

*DI – Direct Inference | **MB – Module-Based 

The Inferelator [158] was applied for genome wide reconstruction of Halobacterium. A mixed approach 

combining this method with CLR was one of the top performers in the DREAM3 in silico network 

challenge [157], using a modified version of CLR to compute mutual information values that are 

subsequently used by Inferelator to produce an ODE model. This method, called tlCLR (time-lagged 

CLR), takes advantage of two types of data: steady-state data from knockout experiments and time 

series gene expression data. Another method using different types of data was introduced by Yip et al. 

[159] gathering steady-state data from a noise model and time series data from an ODE model; this 

method was the top performer of the DREAM3 in silico challenge. Most algorithms in Table 3.3 can 

use steady-state or time series data, thus showing the benefits of integrating both types of data.  

DREAM5 featured a genome-scale network inference challenge with a large dataset from a 

compendium of microarray data for E. coli comprising 805 chips, 334 TFs, and 4,511 genes. Large 

datasets were also provided for network inference on Saccharomyces cerevisiae and Staphylococcus 

aureus. GENIE3 (GEne Network Inference with Ensemble of trees) [142] uses tree-based methods 
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[163] decomposing the inference problem of p size into p distinct regression models. This method was 

the best performer overall and the top performer in the in silico network. GENIE3 had already been the 

best performer in the DREAM4 in silico inference for the 100-gene-multifactorial subchallenge, where 

only multifactorial data were provided, and showed equal capacity in successfully inferring networks 

from real data when compared with widely used methods such as CLR and ARACNE [142].  

Several methods integrate multiple data types (e.g., inference from expression, binding site data) to 

facilitate TRN reconstruction. SEREND (SEmi- supervised REgulatory Network Discoverer) [160] uses a 

semi-supervised and iterative approach to unveil regulatory interactions. SEREND depends on a 

curated set of TF-gene interactions and TF-gene motif scores as a training set to construct a logistic 

regression model. The known predictions are then expanded and the predictions validated with ChiP-

chip and time-series expression data. This approach was used to better predict and to give new 

insights into the factors involved in activation and repression in the aerobic/anaerobic regulation 

mechanism in E. coli [160].  

GPS (Gene promoter Scan) [161] is also able to integrate other types of data; but as a module-based 

method, it follows a different approach. GPS is a machine learning method that builds promoter 

models and their relationships computed from a dataset. In the next step, characterized profiles 

(groups of promoters) are generated. The best profiles are used as candidates for genome wide 

predictions. Studies with E. coli and S. enterica using GPS unveiled previously unknown interactions 

and novel members of the PhoP protein controlled regulon [161].  

DISTILLER [162] is another method that exploits the concept of regulation modularity integrating other 

sources of data for network inference. This framework can be applied to any organism and incorporate 

motif and ChiP-Chip data. The integrated approach was used to study the FNR regulon in E. coli 

identifying novel predictions that were experimentally validated. These studies provided insights on 

modularity dynamics pointing to the existence of polycistronic transcription [164].  

A search for the best inference method usually turns to benchmarking studies; but the choice of 

benchmark datasets presents a problem, with different studies showing very sparse results [165, 166]. 
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Lessons from all the DREAM challenges show that there is no individual best method. Results from 

community predictions, a combination of several reverse engineering methods, are closer to a state-of-

art/best method, outperforming results from individual algorithms. The determination of error profiles 

enables the advantages and limitations of each inference method to be assessed in order to determine 

which method is “the best” for a specific inference problem.  

The methods described above show recent advances, providing a good summary of the huge number 

of approaches that have been put forward. However, the underlying problem is complex, given the 

large search spaces involved and the still restricted availability of data that leads to an undetermined 

problem where many solutions can explain the data equally well. Hence, most of the methods rely on 

heuristic methods using different strategies to simplify the problem. The most important simplification 

is to reduce the search for a network or model explaining the data, with a huge number of possible 

interactions between the different entities involved, to the search of individual interactions or to small 

clusters or modules. This allows in some cases for distinct methods to be integrated to better support 

the results and, in the most elaborate methods, being followed by steps of determining regulatory 

programs based on these individual interactions. 
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3.3 METHODS 

In this chapter, we explore the reconstruction of regulatory networks using 2 different approaches. In a 

first approach, we combine the information available in databases with notable regulatory 

transcriptional data for B. subtilis [5, 8, 9] into a comprehensive manually curated regulatory network.  

In the second approach, we developed a methodology, dubbed “atomic regulon inference”, to infer 

regulatory interactions from gene expression data. For this purpose, we chose a dataset comprised of 

269 samples across 104 different experimental conditions [10, 11]. To take advantage of both 

approaches and expand our knowledge of the B. subtilis regulatory network, we propose a process to 

reconcile the output from both approaches. 

3.3.1 Atomic regulon inference  

We define an Atomic Regulon as a set of genes with identical binary (ON/OFF) expression profiles. That 

is, in any given state of the cell, all of the genes in an atomic regulon will either be expressed or "not 

expressed". This notion has meaning only in a simplified model of the cell in which genes are either 

ON or OFF in any condition. Thus, we must have the ability to accurately assign genes to these binary 

states based on their normalized expression values from a variety of experimental samples.  

Atomic regulons differ subtly from existing abstractions for describing the co-regulation of genes: 

regulons (set of genes that respond to the same regulator), and stimulons (set of genes that respond to 

the same stimuli) (Figure 3.6). Figure 3.6 a) shows a set of six genes (G1-G6) being regulated by three 

regulators (R1-R3) and effected by two stimuli (S1 and S2). Figure 3.6 b) overlays the theoretical 

atomic regulons with the previous figure.  
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Figure 3.6 The in terp lay between St imulons,  Regulons and Atomic Regulons.  a)  The 
representat ion features s ix  genes (G1-G6),  three regu la tors  (R1-R3) and two s t imul i  (S1-S2) .  
The red l ines def ine the regu lons and the b lue l ines def ine the s t imulons.  b)  Features in  
addi t ion to  a) :  the Atomic Regulons (AR1-AR3) in  the representat ion as sets  o f  genes that  
have ident ica l  b inary  pro f i les .  

We compute atomic regulons using a three-step process (Figure 3.7) a) Inference of initial atomic 

regulons, b) Estimation of gene ON and OFF calls from expression data, and c) Merge regulons with 

similar expression profiles. Note that steps (a) and (b) are interrelated, and that step (c) is the final 

step merging the results of the previous steps.   

In step (a) of our atomic regulon inference pipeline (Figure 3.7 a)), we perform 4 different 

computations. 

(i) First we compute a set of hypotheses of the form: 

Genes G1 and G2 should be in the same atomic regulon 

These hypothesis are motivated largely by estimates of location in the chromosome via operon 

prediction and descriptions of SEED Subsystems [13]. The operon prediction gives us hypothetical 

atomic regulons based of position in strand. Sets of close genes in the same strand within 200 base 

pairs up and down stream are predicted to be in the same operon (Figure 3.7 a) i)).  
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Figure 3.7 Atomic Regulon In ference.  a)  In ference o f  in i t ia l  A tomic Regulons.  Gene (G)  
locat ion in  the chromosome and genome in format ion f rom SEED subsystem [13] are both 
used to  generate the in i t ia l  gene c lusters .  S ing le - l inkage c luster ing generates large c lusters  
f rom the or ig ina l  set .  In i t ia l  A tomic Regulons are created us ing the Pearson corre la t ion 
coef f ic ient  for  the normal ized express ion va lues to  break down the large c lusters .  b)  The 
ON and OFF gene ca l ls  are ca lcu la ted.  The in i t ia l  threshold for  a lways ON prof i le  is  
determined by a large set  o f  genes wi th  funct iona l  ro les (FR) assoc ia ted wi th  t ranscr ip t ion 
and t rans la t ion that  are assumed to  be “a lways ON”. The ON and OFF prof i le  is  ca lcu la ted 
for  each gene in  every  sample (S) .  c )  Merg ing genes wi th  s imi lar  express ion prof i les .  Genes 
wi th  the same express ion pro f i le  are merged to  create the f ina l  a tomic regu lons.  

In order to understand how we use the descriptions of the SEED subsystem, it is important to 

understand the notion of “subsystem” and “populated subsystem”. A subsystem is a set of functional 

roles (described as FR in Figure 3.7) that represent a biological process/pathway. A populated 

subsystem describes the exact genes that implement the functional roles of the subsystem across the 

specific genomes in which the FR is present. Each column in the subsystem corresponds to a FR with 
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each row representing a genome. Each individual cell identifies the genes within each specific genome 

that encode proteins, which implement the specific FRs (Figure 3.7 a) i)). 

(ii) We generate binary connections between the genes predicted to be in the same operon. In the 

same manner, for a populated subsystem we generated binary connections between the genes in the 

row that corresponds to our genome of interest. 

(iii) Then, we use the binary connections and form large clusters using transitive closure (if A is 

connected to B and B is connected to C, then A is connected to C). This leads to a situation in which 

any 2 genes that are connected are in the same cluster. 

(iv) When necessary, we split large clusters based on Pearson correlation coefficients of the normalized 

gene expression values. We chose the simple approach of asserting a connection between two 

adjacent genes on the chromosome if they have a Pearson correlation coefficient greater than or equal 

to 0.4. For the split, a notion of "distance" (3.1) between genes X and Y is introduced: 

!"#$%&'( = ! 2 − !"" + 1
2  (3.1) 

where PCC is the Pearson correlation coefficient based on the normalized experimentally-derived 

expression values. Then, the genes from a single, perhaps too large, cluster from step iii) are used to 

construct sub-clusters.  

Sub-clusters are formed by taking the two closest genes and methodically adding other genes to the 

growing sub-cluster. At each point, the gene with the minimum average distance to genes in the 

growing sub-cluster is added to the sub-cluster, until no such gene exists with an average distance less 

than or equal to 0.25.  If this simple accretion algorithm produces a single sub-cluster, no splitting is 

required, If not, the sub-clusters become the set of tentative/initial atomic regulons. 

In step (b) of our atomic regulon inference pipeline (Figure 3.7 b), we attempt to estimate ON and OFF 

profiles for each gene in our expression data. For each sample (S), we do the following computations: 
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(i) First, we determine the threshold for a gene to be considered ON based on the normalized 

expression of genes associated with functions that are believed to be universally expressed. For this 

task, we constructed a list of 175 functional roles from the SEED [167], largely from translation and 

transcription. Genes believed to implement these roles are thought of as "almost always ON". 

(ii) We create an initial "ON threshold" as the 10th percentile of observed expression values of the 

genes believed to be almost always on. The initial OFF threshold is computed as the 80th percentile of 

the observed expression values below the initial ON threshold. 

(iii) We then adjusted the ON/OFF boundaries for samples in which the difference in the ON and OFF 

thresholds was quite low. Specifically, we computed the differences between ON and OFF thresholds 

for all samples, and then looked at samples for which the difference was below the 25th percentile. In 

those cases, we reset the OFF threshold to the value of the ON threshold minus the 25th percentile of 

the difference scores. 

(iv) All genes with values above the ON threshold were treated as "ON". All genes with expression 

values below the OFF threshold for a sample were classified as "OFF". Genes with expression values 

between the thresholds were labeled as "UNDECIDED". 

In step (c) of our Atomic Regulon inference pipeline (Figure 3.7 c), we merge our initial atomic 

regulons together, if they have identical ON/OFF expression profiles, and we split them if the profiles of 

genes within the atomic regulon are not internally consistent. Finally, we estimate the ON/OFF status 

of each atomic regulon in any specific experimental sample by a simple voting algorithm using the 

ON/OFF estimates for the genes that make up the atomic regulon. After picking ON/OFF/UNDECIDED 

values for both the genes and atomic regulons, we make one final pass. For each sample, if the 

expression values for the gene and atomic regulon are incompatible, the value for the gene is altered to 

match that of the atomic regulon. 

It is important to note that the resultant set of reconciled atomic regulons is not comprehensive (that 

is, not all genes are placed into an atomic regulon), but this set attempts to capture many of the 

operational groups of genes.  
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3.3.2 Atomic regulon curat ion 

Genes contained within the same atomic regulon must share a common expression profile; so we 

assume they must respond to the same stimuli. Following that principle, three assertions were made 

for the reconciliation of our manually curated network with expression data: 

1. Each regulon is a subset of at least one stimulon 

2. Genes often take part in multiple stimulons, and they will vary in whether they are induced or 

suppressed in the stimulon.   

3. A set of genes that all take part in identical sets of stimuli with identical induction/suppression 

profiles comprises an atomic regulon. 

Figure 3.6 b) demonstrates these criteria: AR1 includes genes only affected by S1, AR2 includes genes 

affected by S1 and S2, and AR3 includes genes only affected by S2. 

In order to curate the atomic regulons with these assertions, we organized the relevant data into 

Entities and Relationships. We begin by creating a basic Entity-Relationship model that will organize the 

data we propose to use for studying the notion of atomic regulons, as they might apply to Bacillus 

subtilis: 

Ent i t ies 

Our data is organized into the following entities: 

• PEG: Protein-Encoding Gene (unique id). 

• Peg function: RAST Annotation [167]. 

• Gene name: which is normally a 3-4-character string that is the most common name of the 

gene. 

• Locus id: id assigned by the sequencing project. 

• Atomic regulon: has an associated description (a description of the molecular mechanism), 

relating to the PEGs it contains. 

• Stimulus: stimuli/effectors from the manually curated regulatory network. 
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• Study: the expression estimates were gathered as part of specific studies. Each study has two 

associated fields; a description of the study experimental conditions, and a general explanation 

of what was sought by doing the study.  

• Sample set: each study includes sample sets, which are sets of associated samples from the 

expression data. 

• Sample: includes estimates of activity for every PEG.  

 

Relat ionships Between Ent i t ies 

We support the following relationships: 

• AtomicRegulon-PEG: connects an AR to the PEGs it includes. 

• Sample-AtomicRegulon: connects a sample to the AR.  

• AtomicRegulon-Stimulus: connects AR to stimuli that either turn the AR “ON” or “OFF”. 

• SampleSet-Sample: connects a sample set to the samples it includes. 

• Sample-PEG: connects samples to the PEGs, showing the ON/OFF values as intersection data. 

• PEG-Stimulus: connects PEGs to the stimuli that control their expression (when known). The 

relationship should contain a sign indicating activation or deactivation, but for now the 

connection just indicates relevance. 

• Study-SampleSet: connects a study to the sample sets that were gathered. 

• PEG-PEG: relationship showing the calculated correlation of expression values. There is a single 

field as intersection data -- the Pearson correlation coefficient, which ranges from -1 to 1.  

The Web Si te 

To display and analyze the data according to the entity relationship model described above, we 

developed a web site. The initial version of the web site can be seen at 

http://tinyurl.com/AtomicRegulons. An improved version is being prepared for the upcoming 

submission of the full manuscript comprising the work described in this chapter. This initial page will 

get the user to a list of the ARs, some of which have general descriptions.  
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The website can be used for other analysis of the expression data, under the notion of AR for other 

studies out of the scope the work presented in this chapter. 
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3.4 RESULTS AND DISCUSSION 

3.4.1 Draf t  regulatory network of  Baci l lus subt i l is  f rom manual curat ion 

The model that we have manually constructed and curated describes the current state of knowledge of 

the transcriptional network of B. subtilis. Our model corresponds to an updated and enlarged version of 

the regulation network in the central metabolism originally proposed in 2008 [1]. We have extended 

that original network to the whole genome by including the information from the DBTBS database [8]. 

The DBTBS compendium of regulatory data includes promoters, TFs, TFBS, motifs and regulated 

operons. The addition of the DBTBS led to a significant increase in the size of the regulatory network 

(Table 3.4). Additionally, we consolidated our network with all the information on regulation included in 

the Subtiwiki [7, 9] as of March 2013. Subtiwiki is the reference community-curated resource for B. 

subtilis. This consolidation with Subtiwiki resulted in some revision of regulatory data included in the 

original network by Goelzer et al [1]. Also, it significantly enlarged the network with respect to other 

microbial processes. All the above data reflect experimentally-validated regulatory interactions. 

Additionally, RegPrecise [4], a database that provides tools [107] for prediction and curation of 

regulons, recently released their reconstruction of the regulatory network for B. subtilis [5]. 

Reconciliation with the RegPrecise inferred network resulted in the addition of a total of 39 regulators 

to our experimentally validated network.  

Table 3.4 Compar ison between notab le  resources for  Baci l lus subt i l is  regu la tory  network 
model ing 

Resource TFs 
Sigma 
Factors 

RNA 
Regulators 

Ef fectors 
Regulated 
Genes 

Goelzer et al. 2008 65 9 21 95 434 

Leyn el at. 2013  129 - 33 130 1065 

This work 177 19 60 169 1993 

 

We compared our reconstruction with previously described reconstructions in the literature (Table 3.4). 

This comparison exposes a substantial increase in network coverage from the original Goelzer et al.. 
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This increase is due in large part to an expansion of the scope of our model from the central carbon 

metabolism to genome-scale, as well as our effort to include most of the regulation mechanisms for B. 

subtilis that have been described in the literature to date. Our model includes 177 regulators, 

representing a wide variety of regulatory mechanisms: TFs conditioned by metabolites, accessory 

proteins, phosphorylated proteins and stress factors. Sigma factor regulation was included as it plays a 

role in governing many major cell functions such as sporulation (sigE, sigF, sigG and sigH), regulation 

of flagella, motility and chemotaxis (sigD), cell wall surface properties and stress (sigX, sigW and sigV). 

Elements relating to anti-sense RNA, riboswitches, RNA switches, RNA antiterminators and small 

regulatory RNAs compose the 60 RNA regulators described in our network. The increase in the number 

of regulators in our model led to a corresponding increase in effectors. We distinguish our effectors into 

two categories; biochemical (involving metabolites) and environmental effectors (e.g. DNA damage and 

heat shock). The 177 regulators in our model are linked to a set of regulons comprised of a total of 

2000 genes. However, notably, the detailed regulatory mechanisms associated with some of the 

regulons on our model, particularly in cases of sigma factor and RNA regulation, remain unclear or 

unknown. All details related to our new regulatory model are provided on Supplementary material S3.1 

and S3.2. 

3.4.2 Atomic regulon computat ion 

Once the initial reconstruction of our new regulatory model of B. subtilis was complete, we validated 

and reconciled our model with available gene expression datasets for B. subtilis. We began this 

process by surveying the data present in current expression databases. Currently (as of January 2014) 

there are approximately 1750 datasets in GEO [46] related to B. subtilis strains. To reconcile 

expression data with our manually curated network, we used the Atomic Regulon Inference 

methodology described in the Methods section.  

To infer atomic regulons for B. subtilis, we utilized a subset of the existing expression data for B. 

subtilis. Numerous expression experiments have been performed for B. subtilis, spanning a wide range 

of academic labs and gene expression measurement platforms. Utilization of all of these data poses a 

challenge, as protocols vary from lab to lab, and various expression platforms can produce different 
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results. Thus, we selected a dataset emerging from a single publication, comprised of 269 samples 

across 104 different conditions [10, 11]. Figure 3.8 shows an overview of the inferred atomic regulons 

for B. subtilis. The entire set of atomic regulons is available in Supplementary material S3.3 

!

Figure 3.8 Overv iew of  B. subt i l is  a tomic regu lons.  a)  Express ion data used for  a tomic 
regu lon in ference in  B. subt i l is .  b )  Categor iza t ion o f  genes in  a tomic regu lons.  Genes have 
been categor ized based on the express ion prof i le  as a lways “ON”, a lways “OFF” and 
d i f ferent ia l ly  expressed.  C)  Gene funct ion for  genes a lways “ON” and “OFF”.   The genes 
were c lass i f ied among 6 d i f ferent  major  groups o f  ce l lu lar  funct ions def ined in  the 
Subt iWik i  [7] .  

!

 A total of 688 atomic regulons were computed comprising 3168 genes (approximately 72% of the 

genome) (Figure 3.8 a). We categorized these ARs according to their expression profile (Figure 3.8 b): 

only 4% (137) of the genes were always OFF in all conditions, while 17% (523) of the genes were ON in 

all conditions. This result was consistent with the claim by the authors of the study that 95% of the 
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genes in B. subtilis had been expressed in at least one condition. We explored the functions associated 

with the genes that we found to be always ON or always OFF (Figure 3.8 c). !

40% of the always-ON genes (211) are categorized as information processing, which encompasses: 

RNA synthesis and degradation (transcription); protein folding, modification and degradation and 

(translation); and, DNA replication. 25% (129) of the genes always-ON were metabolic, including 

Central carbon, nucleotide, and lipid metabolism. Finally, 12% (63) of the always-ON genes were 

associated with cellular process, including cell wall biosynthesis, cell division, transporters and 

homeostasis. 

The small set of genes (137) found to be OFF in all conditions is comprised of genes across a diverse 

set of functions. To verify that no gene found to be OFF in all conditions was an essential gene, we 

compared the set with a list of B. subtilis essential genes [168, 169]. No essential B. subtilis gene was 

found to be OFF in all conditions. 

3.4.3 Reconci l ing expression data with the draf t  regulatory network for 

Baci l lus subt i l is  

Our definition of AR states that genes contained within the same AR must respond to the same set of 

stimuli (Figure 3.6). We can use this principle to identify and reconcile inconsistencies that exist 

between the stimuli mapped to the genes in our B. subtilis model and the set of genes comprising 

each AR. Considering sucrose as an example (Figure 3.9), we can explore the set of ARs computed for 

the genes comprising the Sucrose stimulon. We have 8 genes in the Sucrose stimulon; ywdA, sacA and 

sacP [170] are all effected by fructose-biphosphate and glucose-6-phosphate; sacX and sacY are 

effected by an uncharacterized stimulus [171]; sacB and levB are effected by two uncharacterized 

stimuli [171]; yveA shares the same uncharacterized stimulus as the previous genes plus another 

uncharacterized stimulus [172].  
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Figure 3.9 Atomic regulons for  the sucrose s t imulon.  a)  E f fectors  for  a l l  genes in  the 
sucrose s t imulon and theoret ica l  a tomic regu lons.  E ight  genes compose the sucrose 
s t imulon (dark b lue t r iang le) .  Fructose -b iphospshate (FBP),  G lucose-6 -phosphate and 
uncharacter ized e f fectors  are a lso e f fectors  ( l ight  b lue t r iang les) .  The theoret ica l  a tomic 
regu lons (AR) are represented in  green t r iang les.  b)  A tomic regu lons in ferred for  the 
sucrose s t imulon.  The atomic regulons that  were in ferred are shown wi th the average 
Pearson corre la t ion coef f ic ient  (  PCC) wi th  o ther  members o f  the AR. Number o f  samples 
ON an OFF for  each AR is  a lso shown.  

Based on the available expression data, we initially divided the sucrose stimulon into three ARs (green 

triangles in Figure 3.9 a)) and lists in Figure 3.9 b): (ywdA , sacA and sacP), (sacX and sacY) and (sacB 

and levB). yveA was not placed into an ARs due to the assertions previously discussed on the inference 

methodology. Figure 3.9 b) shows the average Pearson correlation coefficient (PCC) for each gene; the 

average PCC is computed for each gene relative to the other members of the AR to which the gene 

was assigned. Figure 3.9 b) also shows the number of studies in our expression data set in which each 

AR was considered to be ON and OFF. The capacity of our AR inference methodology to divide the 
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genes that respond different stimuli into different ARs demonstrates the robustness of the approach. 

To further investigate the Sucrose stimulon, we also developed a set of web resources to display and 

analyze the ARs. Table 3.5 shows the Sucrose stimulon as featured in the analysis web page. The web 

resource allows a user to explore the AR data, the effector/stimuli data from the network 

reconstruction, and the metadata from the genome expression experiments. The web resource is 

available at: http://tinyurl.com/AtomicRegulons. 

Table 3.5 Sucrose s t imulon represented in  the AR web analys is  resource 

Atomic 
Regulon 

PEG St imul i  

254 
fig|224308.113.peg.3951, 
sacX, BSU38410 

Uncharacterized, Sucrose 

254 
fig|224308.113.peg.3952, 
sacY, BSU38420 

Uncharacterized, Sucrose 

376 
fig|224308.113.peg.3912, 
ywdA, BSU38030 

D-fructose-1,6-bisphosphate,Glucose-6-Phosphate, 
Sucrose 

376 
fig|224308.113.peg.3913, 
sacA, BSU38040 

D-fructose-1,6-bisphosphate,Glucose-6-Phosphate, 
Sucrose 

376 
fig|224308.113.peg.3914, 
sacP, BSU38050 

D-fructose-1,6-bisphosphate, Glucose-6-Phosphate, 
Sucrose 

625 
fig|224308.113.peg.3544, 
sacB, BSU34450 

Uncharacterized, uncharacterized, Sucrose 

625 
fig|224308.113.peg.3545, 
levB, BSU34460 

Uncharacterized, uncharacterized ,Sucrose 

!
In our AR analysis web resource (link above), we display the size of each atomic regulon and the 

samples in which each AR has been called as being ON or OFF (Figure 3.10). The first column shows 

the AR number arbitrarily assigned by the inference algorithm (the ARs described in Figure 3.9 were 

assigned AR numbers 254, 376 and 625). From this page, it is possible to check all genes in each AR, 

associated stimuli from the regulatory network (if available), and genome annotation. All gene 

identifiers are derived from and linked to the PubSEED (http://pubseed.the-seed.org), which also 

provides a series of comparative genomics tools that allow for further analysis. It is also possible to 

retrieve a list of the experiments in which each gene is characterized as being either ON or OFF. 
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Figure 3.10 Atomic regu lon ana lys is  web resource. !

Figure 3.9 shows that the genes in 2 ARs (254 and 625) respond to uncharacterized effectors. It also 

shows that those ARs are only ON in very few experiments (Figura 3.9 b). For AR 625 we checked the 

experiments in which the genes were ON (Table 3.6). 

Table 3.6 Exper iments in  which AR 625 was found to  be “ON” 

Study Sample Study explanat ion 

study0003 S6/t_2_hyb42359702 
tested gene expression at regular intervals after sporulation 
was induced 

study0003 S6_2_hyb29634602 
tested gene expression at regular intervals after sporulation 
was induced 

study0003 S8_5_hyb43271102 
tested gene expression at regular intervals after sporulation 
was induced 

Genes in AR 625 were found to be “ON” in experiments that tested gene expression at regular 

intervals after sporulation was induced. A detailed description of the study can be found by checking 

the associated study number (in this case “study0003”). Sporulation was induced with the use of CH 

medium [173], and cells were harvested at hourly intervals, with the genes in our ARs being ON in the 

late intervals of the study. This fact tells us that our uncharacterized effector can be related with 
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sporulation and that a compound in the CH medium can be a candidate for the uncharacterized 

effector. 

To assess the consistency of all ARs when compared with the stimuli in the regulatory network, we 

organized all computed ARs into four categories: consistent, consistent with missing stimuli, 

inconsistent, and empty (counts in Table 3.7).  

Table 3.7 Consis tency o f  the Atomic regulons wi th  the regula tory  network.  Ref lects  the 

cons is tency o f  the or ig ina l  ARs (V1)  and the curated ARs (V2)  

Classi f icat ion V1 V2 

Consistent (+) 151 174 

Consistent with missing stimuli (+/-)  74 45 

Inconsistent (*) 48 32 

Empty (-) 415 425 

Total 688 676 

(+) All ARs members have the same stimuli/effectors in the regulatory network. 

(+/-) Some members of the AR have the same stimuli/effectors while other 
members have no described stimuli in the regulatory network. 

(*) ARs members have different stimuli associated in the regulatory network. 

(-) No stimuli described in the regulatory network 

The category consistent comprises ARs members that have the same stimuli/effectors in the 

regulatory network. Consistent with missing stimuli comprises cases in which a member of the AR has 

the same stimuli/effectors while other members have no described stimuli in the regulatory network. 

The inconsistent category displays ARs with members that have different stimuli associated in the 

regulatory network. ARs with no stimuli/effectors described in the regulatory network were categorized 

as “empty”. Additionally, we used the web resource described above to curate and improve the ARs 

(results in Table 3.7). 

In Table 3.7 (V1) we can see that 151 ARs were found to be consistent, as all genes shared the same 

set of stimuli from the regulatory network. 74 were found to be consistent with missing stimuli, 

meaning some members of the AR have no stimuli assigned in the regulatory network. 48 ARs showed 
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inconsistencies; and 415 ARs had no stimuli associated. Here, we highlight some of the considerations 

we made during the process of manual curation. 

Table 3.8 Atomic Regulon 56  

PEG St imul i  Avg. PCC 

fig|224308.113.peg.2590, zur, BSU25100 
 

0.664 

fig|224308.113.peg.2903, hemL, BSU28120 Hydrogen_peroxide 0.885 

fig|224308.113.peg.2904, hemB, BSU28130 Hydrogen_peroxide 0.900 

fig|224308.113.peg.2905, hemD, BSU28140 Hydrogen_peroxide 0.905 

fig|224308.113.peg.2906, hemC, BSU28150 Hydrogen_peroxide 0.906 

fig|224308.113.peg.2907, hemX, BSU28160 Hydrogen_peroxide 0.893 

fig|224308.113.peg.2908, hemA, BSU28170 Hydrogen_peroxide 0.804 

 

We found multiple occurrences in which members of an AR included regulatory proteins. These genes 

are the genes responsible for imposing the regulatory mechanism. This contradicts our definition of 

ARs in which we are trying to represent as sets of regulated genes. Table 3.8 shows one of such cases 

in AR 56. All members of AR 56 except zur have hydrogen peroxide as stimuli. Upon further inspection 

we noted that AR 56 is capturing the hemAXCDBL operon [174], which has been found to be regulated 

by PerR and is induced by hydrogen peroxide [175]. Zur is a PerR paralogous protein [176], involved in 

regulation of the zinc homeostasis as the zinc uptake repressor [177]. zur was removed from AR 56 

making this AR consistent according to our previously described categorization. We subsequently used 

the information from our manually curated network to remove all known regulatory proteins from the 

ARs.  

AR 612 is comprised of 10 genes having functions associated with heme/iron transport (Table 3.9). 

From our regulatory network we have “Iron” associated with 8 out of the 10 AR members. A survey for 

yetG (now hmoA) revealed that the gene has been recently characterized to encode a heme 

monooxygenase [178]. hmoA has also been shown to be regulated by Fur, the same regulator as the 
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other members of AR 612. We suggest the expansion of regulatory information for hmoA to be 

consistent with AR 612 (the latest release of Subtiwiki has already implemented this change). yetH was 

removed from AR 612 as it was found not to be related with other members of AR 612 and it had the 

lowest average PCC among all members of AR 612. We applied this same logic to suggest multiple 

additions to the regulatory network. 

Table 3.9 Atomic Regulon 612 

PEG St imul i  Avg. PCC 

fig|224308.113.peg.385, yclN, BSU03800 Iron 0.804 

fig|224308.113.peg.386, yclO, BSU03810 Iron 0.807 

fig|224308.113.peg.387, yclP, BSU03820 Iron 0.815 

fig|224308.113.peg.388, yclQ, BSU03830 Iron 0.806 

fig|224308.113.peg.747, yetG, BSU07150 
 

0.716 

fig|224308.113.peg.748, yetH, BSU07160 
 

0.605 

fig|224308.113.peg.780, yfmF, BSU07490 Iron 0.621 

fig|224308.113.peg.781, yfmE, BSU07500 Iron 0.702 

fig|224308.113.peg.782, yfmD, BSU07510 Iron 0.769 

fig|224308.113.peg.783, yfmC, BSU07520 Iron 0.764 

fig|224308.113.peg.1063, yhfQ, BSU10330 Iron 0.779 

 

We also analyzed the ARs that were flagged as inconsistent. Some inconsistencies were caused by AR 

members with low average PCC that were found to be unrelated to the other AR genes and 

subsequently removed. Another inconsistency involved genes in ARs where all members of the AR did 

not share the same set of stimuli. An example of this case is AR 332 (Figure 3.10). 

 



CHAPTER 3 107 

!

Table 3.10 Atomic regulon 332 

 

On a first analysis we noted that 3 out of 4 members of the AR 332 share the same effectors. These 3 

members (treP, treA and treR) were found to comprise the tre operon [179]. TreR is a transcriptional 

repressor, involved in the regulation of trehalose utilization and it is inhibited by trehalose-6-phosphate 

[180]. The additional stimuli, D-fructose-1,6-bisphosphate and Glucose-6-Phosphate, relate to the 

activity of the carbon catabolite repression global regulator CcpA [181]. The fourth member of the AR, 

yfkO, has been described in the literature as a nitroreductase [182]. Upon inspection of this region of 

the chromosome we found yfkO up-stream of the transcriptional regulator TreR, and not a member of 

the tre operon/TreR regulon. Due to this analysis we removed yfkO from AR 332. As noted before we 

also removed TreR as the protein imposing the regulatory activity. This curated AR was classified as 

“Trehalose Utilization”. 

PEG St imul i  
Avg. 
PCC 

Funct ion 

fig|224308.113.peg.810,treP,BSU07800 

D-fructose-1,6-
bisphosphate,Glucose-6-
Phosphate,phosphate,D-
trehalose-6-phosphate 

0.807 

PTS system, 
trehalose-specific IIB 
component (EC 
2.7.1.69)  

fig|224308.113.peg.811,treA,BSU07810 

D-fructose-1,6-
bisphosphate,Glucose-6-
Phosphate,phosphate,D-
trehalose-6-phosphate 

0.814 
Trehalose-6-
phosphate hydrolase 
(EC 3.2.1.93) 

fig|224308.113.peg.812,treR,BSU07820 

D-fructose-1,6-
bisphosphate,Glucose-6-
Phosphate,phosphate,D-
trehalose-6-phosphate 

0.734 
Trehalose operon 
transcriptional 
repressor 

fig|224308.113.peg.813,yfkO,BSU07830 Disulfide_stress_conditions 0.706 

Oxygen-insensitive 
NAD(P)H 
nitroreductase (EC 
1.-.-.-) 
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Table 3.7 also shows that 415 ARs were found to have no associated stimuli in the regulatory network. 

Previously, we attempted to use details in the gene expression experiments to aid in the 

characterization of unknown effectors (Figure 3.9). We applied the same approach to genes for which 

there are no effectors in the regulatory network.  

Table 3.11 Atomic Regulon 651. 

PEG St imul i  Avg. PCC Funct ion  OFF  ON   

fig|224308.113.peg.2068,yosW,BSU19980 
 

0.906 unknown  261  4   

fig|224308.113.peg.2069,yosV,BSU19990 
 

0.948 unknown  261  4   

fig|224308.113.peg.2070,yojW,BSU19999 
 

0.941 unknown  261  4   

 

As an example we looked at AR 651 (Table 3.11). In addition to having no regulatory information in the 

network, all genes in AR 651 also have unknown functions. The members of AR 651 show a high 

average PCC and are only “ON” in a very small number of samples. In the experiment that activated 

AR 651, cells were grown in LB medium at 37°C with vigorous shaking. During exponential growth 

(O.D.600 approx. 0.25), the cell culture was divided into two subcultures: one subculture acted as 

control [no mitomycin C, M0], while mitomycin was added to the second subculture at a concentration 

of 40 ng/mL [mitomycin, M40]. Samples were harvested at 0, 45 and 90 minutes after mitomycin 

addition [t0, t45 and t90]. Addition of mitomycin C promoted prophage induction. To verify that the 

prophage induction occurred, we developed the capability in our web tools to compare the difference 

between “ON” and “OFF” profiles among experimental conditions. This web resource can be found at: 

http://tinyurl.com/ARStudies. We are able to do pairwise comparisons for all samples in the 

expression data used to compute the atomic regulons. For this study, we compared the control sample 

(grown in LB media only) against the sample grown with mitomycin C. The results can be found at 

http://tinyurl.com/LBvsMitomycin. In the results, we see several AR, associated with prophages being 

ON in the experiment where mitomycin C was added. Mitomycin C serves to stimulate the expression 

of these specific genes, leading to its addition as a stimulus for these ARs.  
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The “case studies” presented before were part a larger manual curation effort. All changes made to 

ARs during the curation process can be found on supplementary material S3.4. In Table 3.7 we can 

see the impact of the curation process (V2) across our four different categories. We see a decrease in 

ARs categorized as inconsistent and consistent with missing stimuli. This led to a subsequent increase 

in the number of consistent ARs. The improved set (Supplementary materials S3.5 and S3.6) contain 

new versions of ARs and the Regulatory network that reflect all the changes made during the manual 

curation process. 

 3.4.4 Atomic Regulons in the SEED 

In the previous sections, we used the atomic regulons in combination with comparative genomics tools 

developed in the PubSEED environment to expand our knowledge of the B. subtilis transcriptional 

regulatory network. Atomic regulons also show potential in elucidating unknown gene functions. In 

order to exploit this functionality, we collected expression datasets from GEO for an additional set of 21 

organisms and computed ARs.  

Unfortunately, these organisms for which we computed AR (and most organisms in general) have far 

fewer experimental data points in their expression data than E. coli or B. subtilis (Figure 3.3). To 

assess the impact of this data sparseness on our AR inference algorithm, we analyzed all the ARs that 

were computed for this study.   

 We can see by the results of Table 3.12 that, when compared with the model organisms’ B. subtilis 

and E. coli, other organisms have significantly fewer atomic regulons. Additionally, we see that for most 

organisms, a significant percentage of their total genes are being placed in a small number of ARs. 

This results in large ARs that fail to account for the diversity of cellular machinery. 

This indicates that most expression series lack data from the wide variety of conditions that are 

necessary for the inference algorithm to capture diverse and unique ARs.  

To make use of the ARs to aid in genome annotation efforts, we integrated the computed ARs for this 

study in the SEED database. They can be accessed in the interface for all genes that are members of a 
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computed AR. Figure 3.11 shows an example of the integration of the atomic regulon information in 

the gene features page in the SEED website. 

!

Figure 3.11.  In tegrat ion o f  A tomic Regulons in  the SEED websi te .  
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Table 3.12 Organisms wi th  computed Atomic Regulons (ARs)  ava i lab le  in  the 
PubSEED. 

Organism 
PubSEED 
ID 

% of genes 
in ARs 

Number of  
ARs 

Genome 
size 

Shewanella oneidensis MR-1 211586.9 38% 343 4167 
Thermus thermophilus HB8 300852.3 63% 168 2239 
Vibrio parahaemolyticus RIMD 
2210633 223926.6 81% 194 4664 
Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 99287.12 38% 334 4969 
Bacillus anthracis str. Ames 198094.1 91% 129 5665 
Vibrio fischeri ES114 312309.3 92% 116 3798 
Bradyrhizobium japonicum USDA 
110 224911.1 58% 642 8594 
Pasteurella multocida subsp. 
multocida str. Pm70 272843.1 77% 111 2026 
Rhodopseudomonas palustris 
CGA009 258594.1 85% 161 4891 
Staphylococcus aureus subsp. 
aureus Mu50 158878.1 60% 431 2770 
Rhodobacter sphaeroides 2.4.1 272943.3 67% 227 4127 
Helicobacter pylori HPAG1 357544.13 55% 73 1596 
Streptomyces coelicolor A3(2) 100226.1 57% 275 8154 
Escherichia coli K12 83333.1 60% 626 4309 
Eubacterium rectale ATCC 33656 515619.6 72% 144 3194 
Bacillus subtilis subsp. subtilis str. 
168 

224308.11
3 74% 676 4292 

Bacteroides thetaiotaomicron VPI-
5482 226186.1 84% 256 4832 
Mycoplasma pneumoniae M129 272634.1 83% 36 689 
Streptococcus pyogenes 
MGAS5005 293653.3 72% 128 1865 
Synechococcus elongatus PCC 
7942 1140.3 52% 106 2729 
Rickettsia rickettsii str. Iowa 452659.3 57% 43 1599 
Pseudomonas aeruginosa PAO1 208964.1 43% 432 5682 
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3.5 CONCLUSIONS 

In this work, we started by conducting a survey of the available resources for gene regulatory network 

data. This survey revealed the current status of expression data available in major public repositories. 

As part of this analysis, we compared the availability of expression data sets in GEO versus the number 

of genomes available in the NCBI. The results of this comparison show how only a small portion of 

sequenced organisms have available expression data. This is due to the recent exponentially rise in 

genome sequencing (as discussed in Chapter 2) vs the price of gene expression studies. We also 

surveyed databases with notable bacterial transcriptional regulatory data. This survey showed that 

detailed information of regulatory networks is only available for a small number of organisms. In 

addition to our survey, we extensively reviewed methods for regulatory network inference. The results 

of this data survey and inference methods review were published in the February 2013 issue of the 

journal Briefings in Bioinformatics. 

Taking in to account the data survey conducted, we introduced a more comprehensive regulatory 

network for B. subtilis, compiling information from multiple notable sources of gene regulatory data. 

We show that our reconstruction is more comprehensive than other previous versions found in the 

literature. We also introduced a new methodology called Atomic Regulon Inference to reconcile our 

proposed network with available gene expression data. We show how this methodology is able to 

elucidate details of the regulatory network. The reconciliation process allowed us to extend our 

knowledge of the regulatory network. We were also able to provide clues for putative gene function 

assignments for genes with unknown functions. ARs were integrated into the PubSEED, and they can 

be used as part of the annotation curation tools available in that framework. A web resource was also 

created showing the relationship between the ARs and the expression data used for their computation. 

This resource is available for the public and can be used to conduct analysis of the ARs and expression 

data sets beyond the objectives of the work described in this chapter.  

During the reconciliation process, we were able to see how many ARs represent the same regulatory 

mechanisms we found in our manually curated network. This fact highlights the convenience of using 
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ARs to study the regulatory network of an organism without a huge effort from initial manual curation. 

As part of the manuscript in preparation for the work discussed in this chapter, we plan to provide AR 

inference as a pipeline, in which users can submit their own data for inference. 

As new algorithms are proposed for the task of regulatory gene network inference, no algorithm can be 

defined as the best algorithm for this task. In the state of the art section we discuss this issue, as 

algorithms were best performers in different DREAM network inference challenges. Due to this fact, the 

community has been advocating to the wisdom of crowds, as integration of multiple methods shows 

better results that any individual method [183]. We believe AR inference can be valuable for this type 

wisdom of crowds approach, as it leverages the prior knowledge from SEED Subsystems instead of 

relying purely in inference from expression data. This can be extremely useful especially for organisms 

lacking high quality expression data.  

We expect that, with the growth of next generation high throughput sequencing data, we are able to 

use the wealth of data to better characterize regulatory networks. 
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3.7 SUPPLEMENTAL MATERIAL 

The supplementary material is available online at http://darwin.di.uminho.pt/jplfaria/phdthesis/ 

Chapter_3_SupplMaterial.xlsx.   

The following tables comprise the supplementary material:   

Table S3.1 Manually curated regulatory network for B. subtilis. 

Table S3.2 Regulators described in the regulatory network. 

Table S3.3 Atomic regulons for B. subtilis. 

Table S3.4. Curation of atomic regulons. 

Table S3.5 Atomic regulons or B. subtilis (version 2). 

Table S3.6 Manually curated regulatory network for B. subtilis (version 2) 
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ABSTRACT 

!
The reconstruction of genome-scale metabolic models from genome annotations has become 

a routine practice in Systems Biology research. The potential of metabolic models for 

predictive biology is widely accepted by the scientific community, but these same models still 

lack the capability to account for the effect of gene regulation on metabolic activity. Our focus 

organism, Bacillus subtilis, is most commonly found in soil, where it is subject to a wide 

variety of external environmental conditions. This reinforces the importance of the regulatory 

mechanisms that allow bacteria to survive and adapt to such conditions. 

 

In this chapter, we present the first attempt to simulate the metabolism and regulation of B. 

subtilis at genome-scale. Both expression data and a regulatory network were used to 

generate and impose regulatory constraints in the genome-scale metabolic model for B. 

subtilis. We validated our integrated model with mutant phenotypes described in the literature, 

considering the knockout of transcription factors represented in the regulatory network. The 

impact in our model of different environmental constraints was assessed across a sizable 

variety of growth media. The integrated regulatory and metabolic model was able to replicate 

the regulatory behavior described in the literature for different environmental constraints. 
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4.1 INTRODUCTION 

Phenotype simulation using reconstructed biochemical networks has been one of the major goals and 

challenges of Systems Biology since the reconstruction of the first metabolic models [1-3]. At the same 

time, early works on the integration of metabolic networks with gene expression data revealed cellular 

phenotypes that cannot be described by the metabolic flux distribution itself [4]. The ultimate goal of 

whole cell modeling and simulation has been described as one of the great challenges of the century 

[5]. Integration of regulatory networks was identified as one of the key factors in achieving this goal [6]. 

Significant advances have been made in the reconstruction of metabolic, regulatory and signaling 

networks [7, 8], and in the integrated simulation of these three network types [9, 10]. However, we are 

still far from a whole-cell model. Here, we focus on the potential for the simulation of integrated 

metabolic and regulatory networks and the challenges which will arise as we attempt to achieve this 

objective [11].  

The integration of regulatory and metabolic networks for predictive modeling is possible only with the 

development of integrated phenotype simulation methods. The most widely used approach for 

simulating genome-scale metabolic models (GEMs) is flux balance analysis (FBA) [12]. To account for 

regulatory information, FBA was expanded with new methodologies, including rFBA [13] and SR-FBA 

[14].  

In this chapter, we introduce a genome-scale model that integrates the metabolic and regulatory 

networks of B. subtilis. This was achieved by making use of the manually curated regulatory network 

and gene expression data sets [15, 16], introduced in the previous chapter. We apply the probabilistic 

regulation of metabolism (PROM) [17] formulation to integrate the regulatory network and the gene 

expression data with the latest published genome-scale metabolic model of B. subtilis [18]. A 

previously existing model for B. subtilis metabolism and regulation only covered the central carbon 

metabolism [19].  

To validate our model we ran in silico growth phenotype simulations for knockout strains to attempt to 

replicate mutant growth phenotypes described in the literature. This validation was performed across 
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multiple medium conditions to assess the ability of our model to represent regulatory effects imposed 

by different environmental constraints. The results showed both the ability of the model to represent 

the regulatory interactions described in the literature and limitations of the model and simulation 

framework. All the methods necessary for the work on this chapter were implemented in the DOE 

KnowledgeBase of Systems Biology (www.kbase.us) facilitating their use and analysis. 
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4.2 STATE OF THE ART 

4.2.1 Constra int -based model ing 

Several mathematical formalisms such as Boolean and Bayesian networks and constraint-based 

models (among others), have been applied to model different types of biochemical networks. Using 

these formalisms, the modeling community has developed different types of models, such as 

stoichiometric and kinetic models. Modeling approaches and mathematical formalisms for integrated 

metabolic and regulatory network reconstruction and analysis have been reviewed recently [20-23]. 

Here, we will focus on the methods described in the literature that can be applied in genome-scale, 

mainly stoichiometric and regulatory models using the constraint-based approach [24, 25]. Several 

efforts have been made recently to produce a genome-scale kinetic model of yeast metabolism [26], 

but the lack of data and complexity of these models has driven the community to primarily using 

constraint-based modeling [27].  

!
Figure 4.1 Sto ich iometr ic  model ing.  The metabol ic  network is  used to  construct  the 
s to ich iometr ic  matr ix  us ing mass ba lances o f  the metabol i tes .  The constra in t -based 
approach is  used to  impose constra in ts  to  the s to ich iometr ic  model .  S .v  = 0 – pseudo 
s teady -s ta te assumpt ion;  v  > 0 – revers ib i l i ty  constra in t ;  v  < vmax –  capac i ty  constra in t .  

!
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Constraint-based stoichiometric models do not account for intercellular dynamics, as they assume a 

pseudo steady state of the cell in which metabolite accumulation does not occur. That pseudo steady 

state is defined mathematically by a set of linear constraints over the fluxes through each metabolic 

reaction, defined by the mass balance around each internal metabolite (Figure 4.1):  

S .  v  = 0 

where S  represents the stoichiometric matrix and v  represents the vector of fluxes through all 

metabolic reactions. The set of fluxes that satisfy the steady-state constraints define the feasible space 

for all reaction fluxes in the cell’s metabolism. The constraint-based approach relies on the assumption 

that biological phenomena are coordinated by a set of constraints that limit and control their behavior. 

Constraints can be imposed on reaction reversibility and directionality (v  > 0),  on enzyme capacity (v 

< vmax), and on nutrient availability and uptake. 

Several methods were developed to analyze and simulate phenotypes using constraint-based models. 

Most of those methods have initially been developed for stoichiometric metabolic models, but 

extensions have been made to accommodate constraints derived from regulatory interactions. Figure 

4.2 shows existing methods for the analysis and simulation of integrated metabolic and regulatory 

networks. Global network analysis methods, such as Extreme Pathway Analysis [28], a pathway-based 

method [29], were developed to analyze specific pathway properties, such as length and redundancy, 

and were used successfully to characterize changes in the solution space with the addition of 

regulatory constraints [30]. 

Before methods like regulatory FBA (rFBA) [13], Steady-State Regulatory FBA (srFBA) [31], integrated 

FBA (iFBA) [9] or integrated dynamic FBA (idFBA) [10] can be applied, transcriptional regulatory 

networks (TRNs) must be translated into Boolean network models that connect external stimuli to 

internal metabolic reactions activity. The methodologies that make use of omics data use gene 

expression to impact reaction fluxes, without the need to develop Boolean gene regulatory network 

rules. 
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Figure 4.2 Pathway-based and Constra in t -based methods for  the ana lys is  and s imulat ion o f  
in tegrated metabol ic  and regula tory  networks.  FBA (F lux  Ba lance Analys is ) ;  rFBA ( regu la tory  
FBA);  SR-FBA (Steady -Sta te Regula tory  FBA);  idFBA ( in tegrated dynamic FBA);  iFBA 
( in tegrated FBA);  PROM (Probabi l is t ic  Regula t ion o f  Metabol ism);  tFBA ( t ranscr ip t iona l  
contro l led FBA);  iMAT (The in tegrat ive metabol ic  ana lys is  too l ) ;  gene -express ion data FBA 
(GX-FBA) 

4.2.2 Simulat ion of  integrated models  

The FBA approach utilizes linear programming to identify the specific flux distributions that satisfy all 

problem constraints and best reflect the state of the cell [32, 33] (detailed FBA formulation is available 

in Section 4.3.3). FBA was expanded to account for regulatory information with the development of 

rFBA, which uses Boolean logic formalisms, as additional constraints that specify which genes in the 

network are ON or OFF based on specified stimuli (e.g. stress). This approach was successfully applied 

with the first genome-scale integrated model of metabolism and regulation in E. coli, resulting in the 

correction of several phenotype predictions compared with the use of mass balance and flux boundary 
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constraints alone [34]. However, this approach requires the integrated model to be initialized at a 

relevant state for the regulatory components of the system. The Boolean regulatory constraints are 

then applied to determine how the state of the regulatory components will change over time in 

response to stimuli. Selection of a relevant initial condition for the model remains a challenge for this 

methodology, since many equally consistent states exist for a set of stimuli, with equally valid 

associated flux distributions. 

To address some of the limitations of rFBA, SR-FBA was introduced, differing from rFBA in that it 

accounts for metabolic and regulatory constraints in a single step and quantifies the impact of these 

constraints on the flux distribution. This methodology enables the rapid exploration of feasible 

combined regulatory and metabolic states and it rapidly identifies constraints that are internally 

inconsistent, preventing their simultaneous enforcement in a single steady-state. Yet, therein lies the 

substantial limitation of this approach, since inconsistent regulatory constraints often arise, because 

regulatory mechanisms exist to manage transitions between states of the cell in response to stimuli. 

Some of these transitions involve a cascade of intermediate unstable states that cannot be captured by 

the SR-FBA formalism. The constraints that manage these cascade transitions are not designed to be 

simultaneously enforced with all other constraints in the cell, meaning they appear to be internally 

inconsistent.  

As more information became available, the quest for the whole-cell model moved the community 

efforts towards the development of methods that can also integrate signaling networks. Two methods 

have been proposed; iFBA [9] and idFBA [35]. iFBA is an expansion of the rFBA approach that aims to 

further integrate ordinary differential equations (ODEs) that might be associated with metabolic, 

regulatory or signaling networks. To perform their studies, an rFBA model for the central metabolism of 

E. coli [36] was combined with an ODE kinetic model for the phosphotransferase system (central 

metabolism). An algorithmic approach is suggested to integrate both models at different time steps. 

The first step involves the computation of regulatory constraints and numeric integration of the ODE 

model. Following this step, the FBA optimization is performed with specific boundaries to 

match/combine fluxes from the ODE integration. The last step comprises the update of external 
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metabolite concentrations and biomass. An important consideration is the length of the time-steps that 

have to be tuned properly to maintain the FBA pseudo steady-state assumption. The comparison with 

both individual rFBA and ODE models showed improved predictions. The authors suggested that 

prediction improvements arose from the improved accounting of internal metabolite concentrations 

enabled by iFBA.  

idFBA [35] is an FBA-based approach for integrated analysis with a focus on the integration of signaling 

networks. The novelty of idFBA is the incorporation of slow and fast reactions into the stoichiometric 

framework on the three types of networks integrated. Slow reactions are incorporated directly into the 

stoichiometric matrix with a time-delay, while fast reactions rely on the pseudo steady-state assumption 

of the FBA approach. As with the iFBA approach, an algorithm is used to deal with the different time-

steps of the integrated approach. idFBA was applied to the analysis of yeast metabolism, with a 

comparison performed on an integrated kinetic pathway model of S. cerevisae [37]. This analysis 

demonstrated an approximation for the time-course prediction of time-delayed reactions, with the 

advantage of requiring fewer measured parameters then full kinetic modeling.  

4.2.3 Metabol ic and regulatory model ing wi th omics data 

Multiple methods have been proposed in the literature to integrate omics data with genome-scale 

metabolic models [17, 38-41]. A recent review evaluated the performance of methods that integrate 

transcriptomics data into constraint-based metabolic models [23]. In this review, Machado and 

Herrgård propose a categorization of this type of methods according to the way they use expression 

data. The distinction is made between methods that integrate discrete or continuous levels of 

expression, and between the use of absolute values for a single condition, or relative expression levels 

between different conditions. Due to the multitude of methods available in the literature, here we 

choose to review 5 widely used methods spanning across those proposed strategies for use of 

expression data.  
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PROM [42] was introduced as a constraint-based method for the generation of integrated models 

directly from high-throughput expression data. The first step of the framework introduced by PROM is 

the definition of the stoichiometric matrix for the metabolic network. The next is the evaluation of the 

regulatory structure from microarray data and regulatory interactions from databases such as 

RegulonDB (for E. coli). The regulatory interactions (gene-TF) and gene states are represented as 

probabilities inferred from the expression data. This concept of probabilities aims to circumvent the 

Boolean approaches that would consider a gene as either ON or OFF. When all the constraints are 

properly set, optimal cellular growth is calculated via linear programming using FBA. A more detailed 

description of the PROM methodology is available in section 4.3.1. PROM aimed to overcome 

limitations of the rFBA and SR-FBA models, and the authors showed a comparison study with PROM 

outperforming rFBA on phenotype prediction in E. coli for a validation set of 1875 growth phenotypes. 

The differences in the predictions are attributed to the Boolean formalism of rFBA that sets up more 

“rigid” flux restrictions, while PROM presents a more continuous flux restriction. The approach was 

also used for a reconstruction of M. tuberculosis and can be extended to other organisms when data 

are available. The reconstruction of the integrated model for M. tuberculosis also showed a potential 

use of PROM for drug target prediction. PROM can be seen as the closest methodology for semi-

automated reconstruction of integrated metabolic and regulatory networks. 

Transcriptional controlled FBA (tFBA) [43] is another method that uses experimental expression data 

for assessment of the regulatory state. Like PROM, tFBA authors aim to surpass the rigid ON/OFF 

gene states imposed by the Boolean formulation. They introduce the concept of up/down constraints, 

as being more relaxed than ON/OFF constraints. The concept of the new type of constraints lies in the 

fact that, as more experimental data are available, the level of expression of a gene can be observed to 

change under specific conditions. The authors refer to this assessment of expression levels as 

“relative” gene expression in an effort to effectively predict “relative” intercellular fluxes for all the pairs 

of conditions in the expression compendia. The regulatory constraints are defined between all pairs of 

conditions, generating an FBA model for each condition. This method shows how the addition of large 
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quantities of expression data can provide a way to improve FBA-based methods in the absence of 

kinetic parameters for metabolites and reactions. 

The integrative metabolic analysis tool (iMAT) [40] is a web implementation of the method for 

integration of expression data with metabolic models originally proposed by Sholomi et al. [44]. The 

method was originally developed to find tissue-specific activities using the human metabolic genome-

scale model, and was more recently applied to identify regulators of virulence in Listeria 

monocytogenes [45]. To account for the impact of non-transcriptional regulatory effects that are not 

represented by the expression data in the metabolic flux activity, expression levels do not determine 

directly an enzyme activity. In the iMAT framework reactions are classified based on associated gene-

expression data as either highly expressed or lowly expressed. Flux maximization is performed to 

identify a possible steady-state flux distribution among those that maximize the number of reactions 

with predicted flux, consistent with the gene-expression data and the model stoichiometric constraints. 

As changes in gene expression levels seem to be key to control tissue specific metabolic functions 

[46], this method laid the foundations for rapid development of tissue-specific models. 

E–Flux was introduced to make use of continuous expression levels to model the maximum flux 

possible for all reactions in the metabolic network. This method was originally used to predict mycolic 

acid production in Mycobacterium tuberculosis [38]. As a way to define maximum fluxes/bounds for all 

reactions, it normalizes the expression of each gene by the maximum gene expression level across all 

genes. An analogy can be made as “setting the width of pipes” in the network, as loose constraints 

(allowing for a higher possible flux) are applied to the flux of reactions encoded by highly expressed 

genes. In the same manner, tight constraints (limiting the maxing flux possible) are applied for 

reactions encoded by lowly expressed genes. FBA is then applied subject to the reaction bounds set by 

the expression levels of the genes associated with each reaction. 

The gene-expression data FBA (GX-FBA) [39] is yet another method that incorporates expression data 

into the FBA formulation. It is similar to E-Flux as it makes use of continuous expression levels, but it 

makes use of relative expression between a reference/control condition and a perturbed condition, like 

tFBA. The method was proposed to enhance FBA with the ability to better predict responses of the cell 
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to the changes in the environment. It accomplishes this by first generating a wild type flux distribution 

for a reference/control condition. In a second step, the maximum and minimum fluxes possible for 

each reaction in the perturbed condition are determined and expression levels are used to constrain 

the reactions. A new objective function for the perturbed condition is then formulated with these 

constraints and the reference wild type flux distribution. 
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4.3 METHODS 

After the review of methods available in literature, we chose PROM to perform our simulations of the 

metabolism and regulation.  This choice was motivated by the results of the previous chapter in which 

we introduced a curated regulatory network for B. subtilis. Additionally, we also commented on the 

quality of a regulatory dataset that we used to infer regulatory interactions. The PROM framework uses 

gene expression data and the regulatory network interactions between transcription factor and target 

genes. The inference of the regulatory interactions from expression data under the PROM formalism 

allows us to simulate our regulatory network without having to build a Boolean network model that 

connects external stimuli to internal metabolic reactions activity. The reconstruction of Boolean network 

model simplifies regulatory interactions to a binary process, where genes can either be “ON” or “OFF” 

and logical functions, including the use of operators AND, OR and NOT, are used to represent the 

relationships between genes (e.g. between regulated genes and transcriptional factors) and between 

genes and stimuli. The generation of Boolean gene regulatory rules is an extremely time consuming 

task, since an algorithm to automate the inference of these rules is yet to be proposed in the literature. 

Manual reconstruction of these rules also limits the amount of regulatory interactions that can be 

modeled. This limitation has been described as the main reason for the existence of very few models 

that integrate metabolism and regulation in the literature [17]. In this context, PROM was considered 

the most suitable method to be applied to the data we have available. We also proposed modifications 

to the original PROM formulation, which can be found below in section 4.3.3. 

4.3.1 Flux Balance Analys is (FBA) and Pars imonious Enzyme Usage FBA 

(pFBA) 

FBA is a constraint-based simulation method used to define the limits on the metabolic capabilities of a 

microorganism as it calculates the flow of metabolites through the metabolic network. FBA is 

formulated as a linear programming problem that maximizes or minimizes a configured objective 

function. !!"#$%&'($  specifies the flux being optimized, and the maximization of biomass 

production/growth rate is usually the choice [47]. 
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!"#$!$%&!/!!"#"!"$%!!!!!!!!"#$%&'($ (4.1) 

subject to:  

!!!" ∙ !! = 0!, ∀!
!

 (4.2) 

!!! ≤ !! ≤ !!!!!,!!!!!!!!!!!∀!    (4.3) 

 

where !!corresponds to the flux of reaction !, and !!"stands for stoichiometric coefficient of metabolite 

! in reaction !. The objective function (4.1) allows to calculate the steady-state fluxes that satisfy the 

stoichiometric constraints (4.2). Constraint (4.3) sets the upper (!!!) and lower (!!!) bounds on the 

individual fluxes. 

Maximization of biomass production with FBA aims to represent the assumption that growth selection 

pressure will select for the fastest growing strains. In addition to that assumption, Lewis et al. [48] 

proposed that there would be a growth advantage to the more efficient cells using the least amount of 

enzymes [48]. This method was named parsimonious enzyme usage FBA (pFBA).  

This approach employs a two-step linear program formulation to minimize enzyme-associated fluxes, 

subject to optimal biomass. In the first step, the FBA simulation is performed as described in (4.1-3); 

the constraints for the second step are detailed bellow: 

 

!"#"$"%&! |!"|!!!
!

 (4.4) 

Subject to  

!!"#$%&'($! = !!!!"#/min !!"#$%&'($! !! ∈ ℝ!!    (4.5) 
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Constraints (4.2) and (4.3) 

where!  !!"#$%&'($!is the optimized objective flux, α is a relaxing coefficient applied to the optimized 

objective (4.5). 

4.3.2 Flux Var iabi l i ty  Analys is (FVA) 

Flux variability analysis (FVA) [49] allows to determine the range of permissible fluxes in the optimal 

solutions of a constraint-based analysis problem. Using FVA, we can determine the minimum and 

maximum possible flux through a reaction for a given growth rate. FBA is used to calculate the growth 

rate !!∗, followed by FVA to assess the variability of fluxes in the network: 

!"#"!"$%!/!"#$!$%&!!!!!  (4.6) 

subject to 

!!"#$%! ≥ !!∗ (4.7) 

Constraints (4.2) and (4.3) 

This process is typically repeated for all reactions r in the model. 

4.3.3 Probabi l is t ic  Regulat ion of  Metabol ism (PROM) 

The PROM methodology (as previously described in the State of the Art) makes use of probabilities to 

assess gene states and interactions between genes and transcription factors to enable the integration 

of regulatory and metabolic networks.  

In order to apply the PROM methodology [50] three elements are necessary:  

1) Metabolic network.  

2) Transcriptional regulatory network with transcription factor and target gene interactions. 

3)  High throughput gene expression data 
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To produce our integrated model with the PROM formulation, we chose the GEM for B. subtilis 

iBsu1103V2 [18]. The iBsu1103V2 is the second iteration of the iBsu1103 model [51] with additional 

curation using a growth dataset of 157 gene deletion intervals. For the regulatory network component, 

we used our own manually curated model that was described on chapter 3. The high throughput gene 

expression data of choice was the high quality dataset proposed by Nicolas et al. and Buescher et al. 

[15, 16]. This dataset comprehends a huge variety of conditions as recommended for PROM. We 

extensively analyzed this dataset, and more details can be found on chapter 3. 

PROM uses conditional probabilities for modeling transcriptional regulation and uses FBA for modeling 

metabolic networks. This methodology introduces probabilities to represent interactions between a 

transcription factor (TF) and the subsequent gene states. The probability of target gene (TG) “A” being 

active when the TF factor “B” is not active is represented by: 

! ! = 1 ! = 0  (8) 

 

while the probability of TG being active if TF is also active is: 

! ! = 1 ! = 1   (9) 

 

The information from the high throughput gene expression data is then used to determine the 

relationship between TFs and TGs. To assess this relationship, a preprocessing of the data is 

performed to discretize the data to ON and OFF states. This allows for the representation of all gene 

states as either ON or OFF. The probability of TG “A” being ON, when the TF factor “B” is OFF, is 

given by the number of times (N) that this combination of states was observed, over the total of times 

the TF was OFF in the expression data. This description is represented by the following formula: 
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For example, when observed that in 90% of the samples the TG is found to be ON when the TF is OFF, 

then the probability ! ! = 1 ! = 0 = 0.9. For TFs that affect multiple genes, this relationship is 

calculated for all its TGs. This information is used to constrain the fluxes of the reactions encoded by 

each TG. The flux through the reaction regulated by gene “A” (!!) when its corresponding regulator “B 

“is turned OFF, is constrained by: 

! ∙ !!! ≤ !! ≤ ! ∙ !!! (11) 

 

where !  is the probability of the gene being active under the specific phenotype observed in the 

expression data. For irreversible reactions, only upper bounds are defined. Estimates of the reaction 

lower and upper bounds are given by running FVA on the metabolic network without the regulatory 

constraints.  

The PROM algorithm is able to violate the regulatory constraints and exceed reaction bounds to 

maximize growth. This capability was implemented to set regulatory constraints as soft constraints to 

account for the inherent uncertainty that comes from experimental techniques, lack of knowledge of 

the regulatory mechanisms and non-transcriptional regulation. A penalty is applied to prevent this from 

happening often. The final formulation for the PROM model, is given by: 

!"#$!$%&!!!!!!!!"#$%!"#$! − ! ! ∙ (!! !+ !!!)
!

 (12) 

subject to 

 

!!" ∙ !! = 0!,
!

!!!∀! (13) 

! ! = 1 ! = 0 = !(! = 1|! = 0)
!(! = 0)  (10) 
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! ∙ !!! − !! ≤ !! ≤ ! ∙ !!! + !! ,   ∀!   (14) 

!! ,!! ≥ 0!,    ∀!   (15) 

 

The PROM objective function adds a term to the FBA objective function that represents the penalty for 

exceeding an upper or lower bound ! ⋅ !(!! + !!) . It is subject to the same steady state 

constraints,!where !!" represents the stoichiometric coefficient of the metabolite ! and reaction ! in the 

network. 

! ∙ !!! and ! ∙ !!! represent the transcriptional regulation bounds, !!and !!are positive variables that 

allow the described violation of the reactions bounds. !  represents the cost of reaction bounds 

violation. The higher the value of !, the greater the constraint on the system based on transcriptional 

regulation. For values of ! significantly greater than 1, the regulatory constraints become hard, and for 

values less than 0.1, they become insignificant. A ! value of 1 is typically used to balance this effect 

on the regulatory constraints. 

PROM also allows the incorporation of interactions for which strong evidence from the literature or 

experimentation exists. Probabilities can be manually set to assign 0 or 1 for a specific interaction, 

setting the corresponding TG to either fully active or completely inactive.  

 

4.3.4 Modi f icat ions to the or ig inal  PROM formulat ion 

In this chapter, we applied PROM with 3 changes to the original methodology. First we decided to 

remove the penalty term!! ∙ !(!!! + !!!)!for the relaxation constraints that allows reaction bounds to 

be violated. As we experimented with the method, we noticed that the inclusion of this term resulted in 

unpredictable behavior from the method that led to prediction artifacts, including: (i) regulatory 

constraints being entirely ignored at random; and, (ii) suboptimal solutions being selected to exploit 
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weaker penalties on alternative fluxes. Generally, removing this term makes the regulatory constraints 

hard, allowing us to make a better assessment of the impact of the regulatory constraints on the 

metabolic network.  

The second change introduced to the PROM algorithm was the use of an FBA formulation with 

minimization of fluxes (pFBA). The FBA objective function can return alternate optimal solutions, 

achieving the same growth rate with different flux distributions. [33]. The flux variability of alternate 

optimal solutions was also shown to be dependent on environmental conditions [49]. As we performed 

in silico simulations across approximately 100 different environments, it would be important to 

minimize these flux variability effects in our solutions. The use of pFBA provides the minimal flux 

distribution that complies with the constraints imposed in the FBA simulation, eliminating most of the 

variability. 

The third change was introduced to properly model isoenzymes. In the methodology, there was no 

description of how the methodology handles flux restrictions when a TF knockout affects the flux of an 

isoenzyme. As we experimented with the methodology, we noted flux being restricted for a reaction 

encoded for a given isoenzyme when a TF was knocked out, when the regulator did not affect the other 

isoenzyme. To correct this effect, we adjusted the methodology to properly handle the restriction of 

reaction fluxes of isoenzymes when different regulators affect them. 
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4.4 RESULTS AND DISCUSSION 

To analyze our integrated model of metabolism and regulation for B. subtilis, we conducted 2 different 

studies. In the first study (section 4.4.1), we searched SubtiWiki [52] for mutant phenotypes for 

regulators in our model and performed in silico simulations to attempt the validate those phenotypes. 

In a second study, we wanted to assess if our model was representing the regulatory interactions 

imposed by different environmental constraints for knockout strains. To make this assessment, we 

performed in silico knockout growth simulations for over 80 media conditions and for all regulators in 

our model. We then searched the literature to validate observed lethal phenotypes. 

All the necessary methodologies to run the studies in this chapter were performed with the tools 

implemented on the DOE Knowledge Base of Systems Biology (www.kbase.us). A “reviewer” account 

was created to provide access to all data and simulation results performed. Additional information on 

how to access these results is available in section 4.7. 

4.4.1 Model va l idat ion wi th transcr ipt ion factor mutant phenotypes 

To validate GEMs, it is common practice for researchers to make use of growth phenotypes for 

knockout strains [53]. The iBsu1103V2 model was validated with an extensive dataset of multiple gene 

deletions. We validated our integrated model against this dataset and obtained the same results 

observed for iBsu11033 (these results are available in Supplementary material S4.1). To validate the 

specific addition of regulatory constraints into the model, we adopted the same strategy to validate our 

integrated model, simulating mutant phenotypes for TFs included in the regulatory network. For this 

purpose, we performed a search for all regulators in our model in SubtiWiki, as it provides in the gene 

entries a report of observed mutant phenotypes in the literature. We were able to find mutant 

phenotypes for 35 TFs. A majority of those we are not able to simulate with our model, as they report 

non-metabolic defects in colony or biofilm formation, delayed sporulation, etc. From that list we picked 

6 mutant phenotypes to validate with our model, which are shown in Table 4.1. The full list of 

phenotypes found in SubtiWiki is available in the Supplementary material S4.2.  
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Table 4.1 Transcr ip t ion factor  mutant  phenotypes repor ted in  Subt iWik i  

TF KO Locus ID Observed phenotype 
In s i l ico 

phenotype 

AlsR BSU36020 No acetoin production [54] True 

CitT BSU07590 Unable to grow with citrate as sole carbon 

source [55] 

False 

CcpN BSU25250 Impaired growth on glucose [56] False 

CysL BSU37650 Unable to grow with sulfate or sulfite as the sole 

sulfur source [57] 

True* 

GltC BSU18460 Auxotrophic for glutamate [58] True 

PutR BSU03230 Unable to grow with proline as single source of 

carbon or nitrogen [59] 

True* 

*Model curation necessary to achieve phenotype 

 

We were able to simulate in silico the proposed phenotypes in silico ΔalsR, ΔcysL, ΔgltC and ΔputR. 

For the knockouts of the CysL and PutR, additional model curation was necessary to achieve the 

observed growth phenotype. We were unable to simulate the phenotypes observed for CitT and CcpN. 

Here, we discuss in detail the regulatory mechanisms associated with each mutant phenotype and 

their simulation with our integrated model.  

ΔalsR 

AlsR is the regulator of acetoin synthesis and the mutant of this transcription factor was found to 

disrupt the production of acetoin in B. subtilis [54]. Acetoin is a major compound of interest for the 

industry as a flavor agent [60] and is produced by multiple microorganisms as a glycolytic product. 

Recently, efforts have been conducted in metabolic engineering of B. subtilis to increase the production 

of acetoin [61, 62]. Acetolactate synthase and acetolactate decarboxylase are enzymes involved in 

acetoin formation. The genes alsS and alsD have been found to encode these enzymes and are 
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regulated by AlsR [54]. In addition to the alsD and alsS, alsR was found to be essential for anaerobic 

expression of lctE and lctP [63].  

To simulate this AlsR mutant phenotype in silico with our integrated metabolic regulatory model, we 

first assessed if the iBsu1103V2 was able to produce acetoin. The iBsu1103V2 has 2 reactions 

capable of producing acetoin. The model reaction ID, reaction name and model GPRs are show in 

Table 4.2.  

Table 4.2 iBsu1103 model  react ions that  can produce aceto in  

React ion ID React ion Name GPR  

rxn02112 Acetoin reductase/2,3-butanediol 

dehydrogenase 

bdhA 

rxn02113 Acetolactate decarboxylase alsD 

 

Alpha-acetolactate decarboxylase (rxn02113) is encoded by alsD (Table 4.2). The additional reaction 

(rxn02112) is associated with the production of 2,3-butanediol dehydrogenase from acetoin by 

fermentation [64]. We ran a wild-type FBA simulation with a rich media (LB) formulation to verify if the 

model can produce acetoin. We observe 0 flux through reaction rxn02113, meaning no acetoin is not 

being produced by the model. This result was not totally unexpected as acetoin is a fermentation 

product and the FBA simulation conducted has biomass maximization as its objective function. When 

maximizing biomass in a nutrient rich media, it is expected for the model not to produce some 

byproducts of fermentation during cellular growth.  

Due to this fact, we decided to complement our FBA simulation with a FVA analysis. FVA minimizes 

and maximizes the fluxes through all reactions in the model, allowing us to see if rxn02113 is capable 

of carrying flux. Reaction rxn02113 was found to be able to carry a maximum flux of 23.3 mmol. 

gDW−1 .h−1 under the defined simulation conditions. After verifying the ability of the model to produce 

acetoin, the next step involved inspecting our PROM regulatory constraints. Table 4.3 shows the PROM 

constraints generated for the genes regulated by AlsR. 
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Table 4.3 PROM Constra in ts  for  A lsR regu la ted genes 

Gene Name (TG) Locus ID Prob TG ON | TF OFF Prob TG ON| TF ON 

lctE BSU03050 0.318 0.375 
lctP BSU03060 0.212 0.208 
alsD BSU36000 0.0980 0.375 
alsS BSU36010 0.0980 0.375 
 
On Table 4.3, we have the probabilities for a target gene (TG) to be ON if the TF is ON or OFF. For our 

analysis, we can see that the genes encoding acetolactate synthase (alsS), and acetolactate 

decarboxylase (alsD) have an approximate probability of zero to be ON, when AlsR is knocked out. A 

probability of 0 means the reactions encoded by those genes will be OFF in the metabolic model. To 

simulate the AlsR knockout in silico and verify if the model becomes unable to produce acetoin, we ran 

a PROM simulation with FVA. The results show that rxn02113 is unable to carry flux and the FVA 

results also show maximum flux of 0, validating the phenotype observed in the literature. 

Δci tT 

The second phenotype listed on Table 4.1 reports no growth with citrate as sole carbon source for the 

CitT mutant. citT  and citS genes compose a two-component system [65] that was shown to positively 

regulate the expression of citM [55]. The gene yflN was found to be polycistronically transcribed with 

citM, and these two genes represent the citM-yflN operon. As part of the two-component system, citS 

acts as the sensor kinase and citT as the response regulator. In B. subtilis, citM encodes the transport 

of the citrate-Mg complex [66]. The function of the yflN is currently unknown. 

The first step for validation of this phenotype was to inspect both the metabolic and regulatory models 

to ensure that interactions described in the literature are being captured by our integrated model. The 

analysis of the GPRs for yflN and citM revealed that no reaction in the iBsu1103 model is associated 

with yflN. citM is associatd with Citrate-Mg2+  :H+ symporter reaction (rxn05214). The sensor kinase 

citS is also not represented in the metabolic model. Our regulatory model captured the regulation of 

the yflN-citM operon by CitT and the respective PROM constraints are shown on Table 4.4. 
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Table 4.4 PROM constra in ts  for  C i tT  regu la ted genes 

Gene Name (TG) Locus ID Prob TG ON | TF OFF Prob TG ON | TF ON 

yflN BSU07620 0.0792 0.333 

citM BSU07610 0 0.310 

  

The PROM constraints shown on Table 4.4 reveal that the knockout of CitT is turning citM ON with a 

probability 0, and this will subsequently cause reaction rxn05214 to be unable to carry flux, stopping 

the activity of the Citrate-Mg symporter.  

Table 4.5 F lux through c i t ra te  t ransport  model  react ions in  the Δc i tT  w i th  c i t ra te  as so le  

carbon source 

React ion  Flux Equat ion GPR 

rxn05211  0 Citrate[e] + H+[e] <= Citrate[c] + H+[c] cimH 

rxn05213  13.4 
Citrate[e] + H+[e] + Ca2+[e] <=> Citrate[c] + H+[c] + 

Ca2+[c] 

citH 

rxn05214  0 
Citrate[e] + H+[e] + Mg[e] <=> Citrate[c] + H+[c] + 

Mg[c] 

citM 

rxn05557  0.003 
Fe3+[e] + Citrate[e] + ATP[c] + H2O[c] => Fe3+[c] + 

H+[c] + Citrate[c] + Phosphate[c] + ADP[c] 

(yfiY AND yfiZ 

AND yfhA) OR 

yusV 

All fluxes are in mmol. gDW−1 .h−1 

To simulate this phenotype in silico we created a minimal media formulation containing only citrate as 

carbon source and ran a PROM simulation with TF CitT knocked out. The results show that the model 

was able to obtain growth under these conditions. Since the PROM constraints are turning OFF the 

Citrate-Mg symporter, we inspected the PROM results for citrate transport in the model. We found 4 

reactions (Table 4.5) capable of transporting citrate into the cell.  
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As expected, no flux is observed through reaction rxn05214 encoded by citM. Citrate is entering the 

cell via a reaction encoded by citH. The gene citH was found to be a homologous gene of citM sharing 

60% of its identity [66]. The two transporters differ in cation specificity and preference. The cation 

specificity of citM, in order of preference is Mg2+, Mn2+, Ba2+, Ni2+, Co2+, Ca2+ and Zn2+[67]. For citH, 

the cation specificity in order of preference, is Ca2+, Ba2+ and Sr2+ [68]. These transporters belong to 

the secondary transport of metal-citrate complexes, the CitMHS family [69]. As said, mutant strains of 

citM were found not to be able to grow with citrate as sole carbon source suggesting that citH is not 

able to uptake citrate under these conditions. [55]. Citrate uptake by citH was found to be inhibited in 

the presence of Mg2+[66] To understand how the model is handling citrate transport, we performed 

mutant simulations for ΔcitT, ΔcitM, ΔcitH. Those results are shown on Table 4.6. Additional transport 

reactions of the cations involved in the metal-citrate transport complexes (Ca2+ and Mg2+) are also 

shown on the table. 

Table 4.6 F luxes through the c i t ra te ,  Ca2+ and Mg2+ model  t ransport  react ions for  the wi ld -
type,  Δc i tT ,  Δc i tM, Δc i tH  mutants w i th  c i t ra te  as so le  carbon source.  

Reaction ID WT* ΔcitT ΔcitM ΔcitH Equation 

rxn05211  0 0 0 0 Citrate[e] + H+[e] <= Citrate [c] + H+[c] 

rxn05213  13.3 13.4 13.4 0 
Citrate[e] + H+[e] + Ca2+[e] <=> Citrate[c] + 

H+[c] + Ca2+[c] 

rxn05214  0.099 0 0 0 
Citrate[e] + H+[e] + Mg[e] <=> Citrate[c] + 

H+[c] + Mg[c] 

rxn05557  0.003 0.003 0.003 0 

Fe3+[e] + Citrate[e] + ATP[c] + H2O[c] => 

Fe3+[c] + H+[c] + Citrate[c] + Phosphate[c] + 

ADP[c] 

rxn05513  0 0 0 0 
ATP[c] + Ca2+[c] + H2O[c] => H+[c] + Ca2+[e] 

+ Phosphate[c] + ADP[c] 

rxn05514  13.3 13.4 13.4 0 H+[e] + Ca2+[c] <=> H+[c] + Ca2+[e] 

rxn05616  0 -0.099 -0.099 0 Mg [c] <= Mg [e] 

*Wild-type  
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All fluxes are in mmol. gDW−1 .h−1 

Analyzing the wild type flux distribution through all transport reactions, we can see that rxn05213, the 

Citrate-Ca symporter (previously described as encoded by citH) is the preferred reaction for citrate 

transport into the cell. This fact appears to be caused by a cycle of Ca2+. Ca2+ is co-transported with 

citrate the cell via the Citrate-Ca symporter (rxn05213) and excreted back to the extracellular 

environment via an antiport transport mechanism (rxn05514). Flux through rxn05214 encoded by citM 

is very low. The flux distribution for ΔcitT and ΔcitM was found to be the same as expected. With the 

knockout of citM we observe the transport of Mg to be conducted via a uniport transporter (rxn05616). 

The knockout of citH was found to be lethal as we see no flux through all reactions in mutant ΔcitH. As 

these results contradict the experimental observations, we formulated 2 hypotheses. The first is that an 

additional transporter of Mg is not described in the model, to allow for a similar functionality as the 

calcium transporters. The second hypothesis is that an unknown regulatory effect, or the reported 

inhibition of citH in the presence of Mg, may block the ability of this citrate transporter to function. 

 

ΔccpN 

Mutants of the TF CcpN were reported to show impaired growth on glucose [56]. CcpN has been 

described as a regulator of carbon catabolite repression (CCR) in B. subtilis [70]. CCR repression via 

CccN was shown to be independent of CcpA, the major regulator for CCR in B. subtilis [71]. CcpN 

regulates the activity of the genes gapB and pckA. These encode the gluconeogenic enzymes 

glyceraldehyde-3-phosphate dehydrogenase and phosphoenolpyruvate carboxykinase, respectively. As 

a transcriptional repressor, CcpN prevents fluxes through these enzymes, in the presence of glucose 

(and other glycolytic substrates). Additionally, CcpN was found to regulate the activity of the small 

noncoding regulatory RNA sr1 [72]. This regulatory RNA is involved in arginine catabolism and was 

found to have a minor impact in the phenotype exhibited by the CcpN mutants [64]. The impaired 

growth on glucose shown by the CcpN mutant is due to a shift in the internal fluxes from glycolysis to 

the pentose-phosphate pathway. This shift of internal flux to the pentose-phosphate pathway is 

attributed to the derepression of pckA, activating the activity of phosphoenolpyruvate carboxykinase (EC 
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4.1.1.49). Analyses of the fluxomic data [56] revealed an extensive futile cycling through the pyruvate 

kinase (EC 2.7.1.50), pyruvate carboxylase (EC 6.4.1.1) and phosphoenolpyruvate carboxykinase (EC 

4.1.1.49). Figure 4.3 illustrates the futile cycle through these reactions. 

 

!

Figure 4.3 Par t ia l  KEGG metabol ic  map of  the c i t r ic  ac id  cyc le  (TCA).  The fu t i le  cyc le  
through pyruvate k inase (EC 2.7.1.50) ,  pyruvate carboxy lase (EC 6.4.1.1)  and 
phosphoenolpyruvate carboxyk inase (EC 4.1.1.49) is  h igh l ighted in  red in  the metabol ic  
map.  

The futile cycle causes dissipation of ATP and causes a drain of the citric acid cycle (TCA) 

intermediates leading to the reduce growth of a ccpN mutant. The high flux through the PP pathway in 

the CcpN mutant is modulated by the flux through the glyceraldehyde-3-phosphate dehydrogenases, 

gapA and gapB. The derepression of gapB was shown to increase the concentration of intermediates in 

upper glycolysis indicating that gapB overexpression leads to a metabolic jamming of this pathway and 

the observed increased flux through the pentose-phosphate pathway [56]. 
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The analysis of the PROM constraints (Table 4.7) for the genes regulated by CcpN shows that the 

probability of all target genes being ON is 1 if the TF is OFF.  These results seem to be capturing the 

derepression effect of the CcpN knockout to turn ON the gluconeogenic enzymes encoded by gapB and 

pckA. 

Tab le 4.7 PROM constra in ts  for  CcpN regula ted genes 

Gene Name (TG) Locus ID  Prob TG ON | TF OFF Prob TG ON | TF ON 

sr1 BSU14629 1 0.337 

gapB BSU29020 1 0.288 

pckA BSU30560 1 0.397 

 

When we perform a PROM simulation in a medium with glucose, we do not observe any impaired 

growth rate when compared with the wild type. This fact shows us a limitation of the FBA (used by the 

PROM) methodology to simulate the activation of an enzyme, in this case phosphoenolpyruvate 

carboxykinase. With the objective function set to growth maximization, the FBA solution does not return 

an optimal that would be caused by a futile cycle. In addition to this limitation, we also cannot simulate 

the effect of accumulation of upper glycolysis intermediates, as the steady-state assumed in our 

simulation does not allow the accumulation of metabolites.  

ΔcysL 

The TF CysL was described as a regulator involved in cysteine biosynthesis in B. subtilis [57]. CysL 

regulates the activity of the cisJI operon, which was found to be part of the sulfate reduction pathway 

encoding sulfite reductase [73]. The sulfite reductase enzyme catalyses the reaction responsible for the 

reduction of sulfite to sulfide, one of the substrates of cysteine biosynthesis. The sulfate reduction 

pathway is represented on Figure 4.4. The mechanisms previously described are highlighted in the red 

dotted box.  



158 MODEL FOR THE METABOLISM AND TRANSCRIPTIONAL REGULATION OF BACILLUS SUBTILIS 

!

!
Figure 4.4 Sul fa te  reduct ion pathway.  The su l f i te  reductase encoded by cysJ I  and regu la ted 
by the TF CysL is  h igh l ighted in  the red dot ted box.     

CysL mutants are unable to grow with sulfate or sulfite as sole sulfur sources, as the cell is not capable 

of producing cysteine in these conditions [57]. Additionally, researchers reported that the CysL mutant 

was able to grow on other sources of sulfate, such as cysteine and methionine. To simulate the 

observed phenotypes in silico, we created four minimal media formulations varying only the sulfur 

source. The results of the PROM simulation under these conditions are shown on Table 4.8.  

Table 4.8 Model  growth on d i f ferent  su l fur  sources for  w i ld  type and CysL mutant  

 
iBsu1103V2 + PROM 

Constraints 

iBsu1103V3 + Adjusted PROM 

constraints 

Sul fur 

source 
WT ΔcysL WT ΔcysL 

Sulfate 0.619 0.619 0.619 0 

Sulfite 0 0 0.619 0 

Cysteine 1.11 1.11 1.11 1.11 

Methionine 1.19 1.19 1.19 1.19 

Growth rate unites are given in h-1 

The iBsu1103V2 was able to grow with sulfate, cysteine and methionine as unique sulfur sources, but 

not sulfite. We inspected the model and noted the absence of a mechanism of transport for sulfite, 

lacking a transporter to the intracellular environment. We added the following sulfite passive transport 

reaction to the model: 
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rxn12453:  Sulfite[c] <=> Sulfite[e] 

For ΔcysL, we observe the same behavior as in the wild type, not being in accordance with the 

experimental observations. To evaluate the cause for growth on sulfate in ΔcysL we inspected the 

PROM constraints in our model (Table 4.9). The PROM constraints show a high probability (~80%) for 

the cysI and cysJ to be ON if the TF CysL is knockout out, thus the false positive result. 

Tab le 4.9 PROM constra in ts  for  CysL regu la ted genes 

Gene Name (TG) Locus ID Prob TG ON | TF OFF Prob TG ON | TF ON 

cysI BSU33430 0.816 1 

cysJ BSU33440 0.781 0.923 

 

The PROM constraints are generated automatically from the expression data. The probabilities for a TF 

knockout are given from the estimation of the number of microarray samples in which the target gene 

was ON when the TF is OFF. The PROM constraints were inferred from a rich expression data set, with 

several different experimental conditions with multiple rich and minimal media. The high probability 

leads us to believe that in a majority of experiments (especially rich media) multiple sulfur sources 

were available rather than just sulfate or sulfite. To compensate for this fact, we manually adjusted the 

PROM constraints to 0 and ran the previous simulations again with the model including the sulfite 

transport reaction (iBsu1103V3). The results are shown on Table 4.8. With the new manually curated 

model and regulatory constraints, we are able to observe the phenotypes described in the literature. 

The addition of the transport reaction allowed the model to grow on sulfite and the manual tune of the 

PROM constraints did not affect growth on other sulfur sources. 

Δgl tC 

GltC is a regulator of the gltA-gltB operon, which encodes the enzyme glutamate synthase in B. subtilis 

[58]. Glutamate synthase plays a major role as a link between the carbon and nitrogen metabolism 

[74]. The regulation of glutamate synthase was found to be nutrient dependent [75]. When grown in 
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complex media, alternative pathways such as amino acid degradation pathways can be used to 

produce glutamate [76]. In minimal media, when no source of glutamate is present in the media, it 

was found essential under the regulation of GltC [58, 77]. The different mechanisms for glutamate 

biosynthesis are described in Figure 4.5. 

!
Figure 4.5 G lutamate b iosynthes is .  G lutamate synthase enzyme is  h igh l ighted in  the red 
dot ted box.   F igure adapted f rom Picoss i  et  a l .  [75] .  

To determine if our integrated model is able to replicate the phenotypes described in the literature, we 

performed wild type and ΔgltC simulations for 3 media formulations: a rich media (Luria-Bertani) and 

two minimal media with glucose and glutamine as sole carbon sources. The results are shown onTable 

4.10. 

Our integrated model was able to grow in the rich media for both for the wild type and ΔgltC. 

Regarding the minimal media formulations, we were able replicate the dependency of the ΔgltC on a 

source of glutamate, in this case glutamine.  
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Table 4.10 Model  growth on LB, g lucose min imal  and g lu tamine min imal  media for  w i ld  
type and CysL mutant  

Media WT ΔgltC 

LB 30.5 30.5 

Glucose minimal 0.629 0 

Glutamine minimal 0.429 0.429 

Growth rate units are given in h-1 

ΔputR 

PutR is a regulator of the putBCP operon, responsible for proline utilization in B. subtilis [78]. The 

putBCP operon genes encode proline uptake and two-step oxidation of proline to glutamate. Its activity 

was found to be essential with proline as sole source of carbon and nitrogen [59]. Proline 

dehydrogenase (putB), 1-pyrroline-5-carboxylate dehydrogenase (putC), and a proline uptake protein 

(putP), are encoded by the genes in this operon. With proline as sole carbon and nitrogen source, the 

activity of this operon becomes essential, as it becomes the only pathway available for glutamate 

production. Mutants of the glutamate dehydrogenase were found to be able grow on these conditions 

[79]. To assist in the understanding of this mechanism, we represented putB and putC on Figure 4.5. 

To assess if our model is able to represent the behavior reported in literature, we performed wild-type 

and mutant simulations for a proline minimal medium (proline as sole source of carbon and nitrogen) 

and for a glucose minimal medium supplemented with proline. The results are shown on Table 4.11. 

Table 4.11 Model  growth on pro l ine min imal  and g lucose min imal  (supplemented wi th  
pro l ine)  media for  w i ld  type and PutR knockout  mutant  

Media WT ΔputR ΔputRΔrocA 

Proline minimal 0.429 0.429 0 

Glucose minimal 

(supplemented with 

proline) 

  1.23   1.23 

 

0.632 

Growth rate unites are given in h-1 
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We observed no change in the predicted growth of in the ΔputR, when compared with the wild type. As 

we did in previous mutant phenotypes studies, we inspected the PROM constraints to verify if the 

knockout effect was being captured by the automatically inferred regulatory constraints. The analysis of 

the regulatory constraints revealed that PROM assigned a probability of 0.1 to the genes encoding the 

reaction of the two-step oxidation of proline to glutamate. 

Table 4.12 PROM constra in ts  for  PutR regu la ted genes !

Gene name (TG) Locus ID Prob TG ON | TF OFF Prob TG ON | TF ON 

putB BSU03200 0.122 0.778 

putC BSU03210 0.102 0.778 

putP BSU03220 0.594 0.833 

 

With such low probabilities restricting the reaction fluxes encoded by putB and putC, a very reduce 

growth or knockout phenotype was expected. When we inspected the model for the reactions encoded 

by putB and putC we noted an extra GPR association for the reaction encoded by putC. The gene rocA 

also catalises an 1-pyrroline-5-carboxylate dehydrogenase, making putC and rocA isoenzymes. Induced 

by arginine, rocA encodes a 1-pyrroline-5-carboxylate dehydrogenase as the third step in the arginine 

degradation pathway, also leading to the production of glutamate [80]. The activity of rocA requires 

induction by arginine, thus its in vivo inactivity during growth on proline minimal media. On the other 

hand, the representation of the isoenzymes with the logic “OR” in the model allows rocA to encode the 

reaction associated with 1-pyrroline-5-carboxylate dehydrogenase, when we perform the knockout of 

putR that only inactivates putC. To attempt to simulate the phenotype described in the literature, we 

performed a double knockout ΔputRΔrocA simulation. The results on Table 4.11 show the expected 

lethal phenotype for the proline minimal medium and a reduced growth for the glucose minimal 

medium supplemented with proline. To properly simulate this phenotype with our model, an additional 

regulatory constraint, accounting for this information on the arginine dependency of rocA, would have 

to be added to the model. This is a limitation of PROM that infers regulatory interactions from gene 

expression data and does not account for the presence of specific substrates in the medium. Manual 
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addition of a Boolean gene regulatory constraint to connect external stimuli in the medium (in this case 

arginine) to internal metabolic reaction activity would allow to proper simulate this phenotype. This is a 

direct consequence of our decision to infer of regulatory interactions from expression data in detriment 

of manual design of Boolean gene regulatory rules. 

4.4.2 Impact of  d i f ferent environmental  condi t ions  

In the previous study, we validated our model with growth phenotypes for 6 TF knockouts. For those 6 

phenotype studies, we performed simulations across different media as the regulators knocked out 

responded to different environmental conditions. Inspired by those findings, we decided to perform in 

silico mutant simulations for all regulators in our model across different medium conditions. We chose 

4 different medium formulations, 2 minimal and 2 rich media commonly used for bacterial cultures.  

The composition of the 4 media is available on Table 4.13.  

Table 4.13 Bacter ia l  cu l ture growth medium composi t ion 

M9  GMM NMS LB 

Citrate, 

Molybdate, 

Na+, NH3, 

Ni2+, Sulfate 

L-Tryptophan, 

Na+, NH3, 

Sulfate 

Glutamine 

Biotin, Citrate, H2S, 

Molybdate, Niacin, 

Pyridoxal, 

Riboflavin, Thiamin, 

Vitamin B12, Amino 

acids1 

Adenosine, Arsenate, Cd2+, Chromate, 

CMP, Deoxyadenosine, Deoxycytidine, 

Folate, GMP, Heme, Hg2+, Hypoxanthine, 

Inosine, Na+, Niacin, Pyridoxal, Riboflavin, 

Shikimate, Sulfate, Thiamine phosphate, 

Thymidine, Uracil, Uridine, Amino acids2 

Common compounds 

Mn2+, Cl-, Fe2+, Ca2+, D-Glucose, Cu2+, H2O, Mg, K+, Phosphate, Fe3+, Zn2+, O2, Co2+  

1 All amino acids but glycine 

2 All amino acids but asparagine 

We choose as minimal medium the M9 salts minimal medium supplemented with citrate, and glucose 

minimal medium (GMM). We also performed in silico knockouts for two variations of the GMM, one 
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variation without oxygen to simulate anaerobic environments, and another replacing ammonia with 

glutamine. As rich media, we opted for nitrate mineral salts (NMS) and Luria-Bertani (LB). The results 

of the knockout for all regulators in our model are available in the Supplementary material S4.3. On 

Figure 4.6, we show the results for the knockouts that have reduced growth of 10% or more, when 

compared with the growth achieved in the wild type.  

Analyzing the results on Figure 4.6, we see that the first 5 gene knockouts are unable to grow in any 

medium. These five genes (dnaA, birA, hbs, rplT and walR) have been described in the literature as 

essential genes in rich LB medium [81] and that are thus also essential in more strict conditions. We 

also found mutants that show shifts on growth behavior on minimal media (citB, tnrA and PhoP 

mutants) that will be further analysed below.  

!

Figure 4.6 In  s i l ico  gene knockouts for  5 d i f ferent  bacter ia l  growth media .  M9 sa l ts  min imal  
media,  g lucose min imal  media (GMM),  GMM with g lu tamine ( instead of  ammonia) ,  n i t ra te  
minera l  sa l ts  (NMS) and Lur ia -Ber tan i  (LB) .  Red represents a le tha l  phenotype.  
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The mutant of CitB is only able to grow in GMM-Glu and rich media compositions. CitB has been 

described as a trigger enzyme [82], meaning it is able to act as regulator in addition to its metabolic 

capabilities. CitB encodes the TCA enzyme aconitase that convert citrate to isocitrate (see Figure 4.5) 

requiring an iron-sulfur cluster for its activity. CitB was also found to be able to bind iron responsive 

elements to genes controlling iron homeostasis, when iron is limited [83]. The lethal phenotype we are 

observing is due to its enzymatic activity as the interruption of the TCA cycle makes the cell 

auxotrophic for glutamate [84], thus the growth on media conditions that have glutamine precursors. 

The mutant of GltC as we discussed in the previous section is also auxotrophic for glutamate. 

TnrA is the regulator responsible for the global regulation of nitrogen assimilation in B. subtilis [85]. In 

conditions of nitrogen limitation, TnrA is responsible for activating the! expression of genes involved in 

the assimilation of various nitrogen sources. TnrA mutants were found not to be able to assimilate 

sources poor in nitrogen such as allantonin, nitrate or urea [85], but no effect of the mutation was 

observed for cultures grown on medium where ammonium or glutamine were added [86]. Our in silico 

simulation the TnrA mutant showed no growth defect with glutamine as sole nitrogen source, but was 

unable to grow in ammonium as sole nitrogen source. As the global regulator of the nitrogen source 

metabolism, TrnA is affecting the regulation of multiple operons, either as an activator or a suppressor, 

being involved in the regulation of over 100 genes. In our in silico knockout study, all these regulatory 

effects are simulated at once, not properly capturing the complexity of the regulation by TnrA. This fact 

makes the knockout of the TrnA impact the flux of over 100 reactions in our network, which may be 

causing a flux restriction that makes the model unable to grow with ammonium as sole nitrogen 

source.  

This seems to be the case for another global regulator, PhoP, responsible for the regulation of the 

phosphate metabolism in conditions of phosphate limitation [87]. Studies on the regulation of PhoP 

described a very complex regulatory network affected by stresses other than phosphate starvation and 

post-exponential-phase processes that influence the expression of PhoP [88]. In our in silico simulation, 

we observe no growth in all media but LB, with no media conditions representing a scenario of 

phosphate starvation. Our inability to proper represent these growth phenotypes may be due to the 
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complexity of the regulatory mechanism, and also possibly due to heavy flux restrictions as we 

hypothesized for the TnrA mutant. Other global regulators and regulators affecting a large number of 

genes are also represented on Figure 4.6, showing small changes in growth predictions, when 

compared with the wild type. Some examples are the regulator of sporulation (SpoIIID) [89] and the 

regulator of iron homeostasis (Fur) [90]. 

This notion that heavy flux restrictions may be causing some of the observed in silico phenotypes is 

supported by our initial knockout studies performed with PROM using relaxation of constraints. Relaxed 

constraints permit reaction bounds to be exceeded to allow flux maximization (results available in 

Supplementary material S4.4). In these results, we observe no predicted growth rate changes when 

compared with the wild type for the knockout mutants of Phop, SpoIIID and Fur. 

The relaxation of the constraints was introduced in the initial PROM formulation to account for lack of 

knowledge of the regulatory mechanisms and regulatory effects other than transcriptional regulation. 

The observation that, without the relaxation constraints a wider impact is felt, was not completely 

unexpected, as we purposely enforced hard regulatory constraints to better observe the impact of the 

regulatory network in our model, without the possibility of reaction bounds being exceeded.  

As we saw very few variations in the growth predictions across our 5 media formulations, we decided 

to perform knockout growth simulations for additional 78 minimal media conditions, varying only in the 

carbon source. The full results of this study are available in Supplementary material S4.5. Due to scale 

of the study conducted with had to narrow down the predicted in silico phenotypes to analyze. We 

selected, for this analysis, regulators that only showed lethal phenotypes for growth in 1/78 medium 

conditions. The selected regulators and carbon sources, in which the lethal phenotype was predicted, 

are shown on Table 4.14. Literature evidence (when available) assessing the lethality of the regulator 

knockout was also added to Table 4.14. A growth phenotype was considered lethal when less than 5% 

of the wild type growth rate is observed. 
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Table 4.14 Regula tor  mutants  pred ic ted to  have a le tha l  phenotype in  s i l ico .   

 

B. subtilis can grow with glycerol as sole carbon source [91]. In our study, the GlpP mutant exhibited 

an in silico lethal phenotype during growth on glycerol. The glpP gene is a member of the glp regulon, 

which comprises the necessary genes for growth with glycerol or glycerol-3-phosphate as sole carbon 

sources [100]. Within the glp regulon, mutants of GlpK (glycerol kinase) and GlpD (glycerol-3-

phosphate dehydrogenase) are not able to grow with glycerol as sole carbon source [91]. Additionally, 

mutants of GlpP were found to exhibit a pleiotropic phenotype causing the non-induction of GlpK and 

GlpD pointing to the activity of GlpP as a regulator. GlpP encodes a regulatory protein that regulates the 

expression of the GlpK and GlpD via a mechanism of transcriptional antitermination [101]. This 

mechanism prevents transcriptional termination of the enzymes catabolizing glycerol, making GlpP 

essential for growth on glycerol as sole carbon source. We also tested growth on glycerol-3-phosphate 

and achieved a significant growth reduction to approximately 15% growth rate when compared with the 

wild-type. 

Inositol is a compound widely available in the environment, especially in the soil. Several soil bacteria, 

including B. subtilis are capable to grow with inositol as sole carbon source [92]. The iol operon 

comprises the genes responsible for catabolism of inositol in multiple steps converting it to acetyl-CoA. 

In B. subtilis, the iol operon and the gene iolT (encoding an inositol transporter [102]) are regulated by 

the repressor iolR [103]. In the absence of inositol in the medium, iolR represses expression of the iol 

Regulator Name Locus ID Carbon Source Li terature evidence 
GlpP BSU09270 Glycerol Lethal [91]  
IolR BSU39770 myo-inositol Non-lethal [92] 
RbsR BSU35910 Deoxyribose Non-lethal [93] 
TreR BSU07820 Trehalose Non-lethal [94] 
RhaR BSU31210 Rhamnose Non-lethal* [95] 
ManR BSU12000 Mannose Lethal [96] 
HxlR BSU03470 β--methyl-D-glucoside Unknown 
GabR BSU03890 γ-Aminobutyric acid Lethal [97] 
XylR BSU17590 Xylose Non-lethal [98] 
GutR BSU06140 Glucitol Lethal [99] 
*Phenotype only predicted by bioinformatics analysis 
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operon and iotT. In the presence of inositol, iolR is antagonized and the iol operon expressed. A 

knockout of iolR leads to the constitutive expression of its target genes [92].  

Table 4.15 PROM constra in ts  for  Io lR regu la ted genes 

Gene Name (TG) Locus ID Prob TG ON | TF OFF Prob TG ON | TF ON 

iolA BSU39760 0 0.422 
iolB BSU39750 0 0.441 
iolD BSU39730 0 0.451 
iolI BSU39680 0 0.471 
iolT BSU06230 0 0.167 
IolG BSU39700 0 0.471 
iolH BSU39690 0.0120 0.539 
iolF BSU39710 0 0.382 
iolE BSU39720 0 0.392 
iolJ BSU39670 0 0.520 
iolC BSU39740 0 0.441 
iolS BSU39780 0.964 1 
 

Our in silico knockout study showed a lethal phenotype for the iloR mutant in medium containing 

inositol as the carbon source. We inspected the PROM regulatory constraints for the iolR regulation 

(Table 4.15) and observed that most genes have a 0 probability of being ON (with the exception of iolS 

that is co-transcribed with iloR [92]) when iolR is inactive. This leads us to believe that the dataset used 

to infer the regulatory interactions lacks conditions in which inositol was used a sole carbon source to 

allow the observation of the regulatory interaction described in the literature.  

Additional transcriptional repressors on Table 4.14 showed similar behavior to IolR, with the PROM 

constraints revealing that the expression data did not capture the proper regulatory interactions 

between the regulators and their target genes. This is the case for TheR, repressor of the threalose 

utilization operon [104], which is induced by threalose-6-phosphate [94]. The transcriptional repressor 

XylR is another example, as the regulator of the xylose utilization operon being induced by xylose [98]. 

The last example of this behavior is RbsR, the transcriptional repressor of the ribose transport operon 
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[93]. For all these cases we manually adjusted the regulatory constraints to properly represent the 

knockout phenotypes. 

The transcriptional regulator RhaR was predicted to control the utilization of rhamnose in multiple 

Bacillales species, including B. subtilis using the bioinformatics tool in the RegPredict [95] (RegPredict 

[105, 106] is described in section 3.2.3). We included this predicted regulator in our model as part of 

the manual curation effort for the reconstruction of a more comprehensive B. subtilis regulatory 

network. A description of the predicted rhamnose utilization operons, predicted by RegPredict, is 

shown in Figure 4.7. 

 !

Figure 4.7 Pred ic ted RhaR regulon for  rhamnose ut i l i za t ion in  Baci l la les  spec ies.  Arrows 
represent  genes. TF genes are co lored in  b lack,  catabo l ic  enzymes in  gray,  and genes 
lack ing or tho logs in  B. subt i l is  are in  whi te .  Adapted f rom Leyn el  a l .  [95] .  

This predicted regulator was found to be a DeoR-like regulator, a family of transcriptional repressors 

[107]. Additional comparative genomics analysis, aimed to characterize the poorly studied rhamnose 

catabolic pathways in bacteria, suggested a novel enzyme for the rhamnose catabolism in B. subtilis 

that was verified in vivo [108]. This same study confirmed the repression activity by RhaR and its 

negative regulation when induced by rhamnose in Chloroflexus aurantiacus. Our in silico phenotype 

simulation predicted lethal phenotype for the mutant of RhaR with rhamnose as sole carbon source. 

Trusting the described mechanism in Chloroflexus aurantiacus functions likewise in B. subtilis, we are 

lead to believe that similarly to the activity previously described for other transcription repressors, the 

experimental data did not have growth conditions capable of capturing this regulatory interaction. We 

also manually fixed the regulatory constraints to correct the knockout phenotype. 
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Many organisms, including B. subtilis, are capable of using mannose as sole carbon source [109]. Our 

in silico knockout study predicted the ΔmanR mutant to be lethal. In B. subtilis, the mannose utilization 

operon (manPA-yjdF) is composed by manP, manA and yjdF. manP encodes the mannose specific 

phosphotransferase transporter system [110], manA encodes the mannose-6-phosphate isomerase 

which converts mannose-6-phostphate to fructose-1,6-bisphosphate, and the function of yjdF is still 

unknown [96]. ManR was found to be the transcriptional activator of the manPA-yjdF operon and the 

ΔmanR mutant was found to be unable to grow in minimal medium with mannose as sole carbon 

source [96]. 

A similar mechanism of transcriptional activation was described for the GutR, the regulator of the 

glucitol utilization operon [111]. GutR mutant strains show a complete loss of glucitol induction by this 

operon, showing the role of GutR regulator for induction of glucitol [99]. As B. subtilis can grow in 

glucitol as sole carbon source [112], the knockout of the regulator required for its induction causes a 

lethal phenotype. Our model also predicted the knockout of GutR as lethal in a medium condition with 

glucitol as sole carbon source. 

B. subtilis was found able to grow with β-methyl-D-glucoside as substrate, but the genes coding for its 

transport and utilization remain unknown [113]. In our model, B. subtilis becomes unable to grow on 

β-methyl-D-glucoside in the mutant of gene the hxlR. This gene was described as a transcriptional 

activator of the ribulose monophosphate pathway in B. subtilis [114]. This pathway was originally 

described in methylotrophs [115], but was found to be present in many other bacteria involved in 

formaldehyde fixation and detoxification [116]. The 3-hexulose-6-phosphate synthase and 6-phospho-3-

hexuloisomerase are the enzymes regulated by HxlR. These enzymes are responsible for the synthase 

of hexulose-6-phosphate from formaldehyde and ribulose-5-phosphate, and for the isomerization of 

fructose-6-phosphate from hexulose-6-phosphate. 

Our model was able to achieve growth with β-methyl-D-glucoside. Since this is a process that is still 

unknown in the literature, we investigated the iBsu1103V2 uptake and catabolism of this substrate to 

assess its relation to the ribulose monophosphate pathway and HxlR. Regarding the transport into the 
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cell, β-methyl-D-glucoside is uptaken via a proton symport mechanism described by reaction 

rxn11397: 

H+  [e] + (1) beta-Methylglucoside[e] <=> H+  [c] + (1) beta-Methylglucoside[c] 

We found that this transport reaction was added to the iBsu1103V2 model via gap filling (this process 

is described in detail in Section 2.2.2) and, therefore, has no GPR association in the model. After the 

transport into the cell, β-methyl-D-glucoside is converted into glucose and methanol by a beta-

glucosidase enzyme described by reaction rxn09979: 

beta-Methylglucoside[c] + H2O  [c] <=> D-Glucose[c] + Methanol[c] 

Methanol is converted to Formaldehyde via the action of a methanol dehydrogenase, described by 

reaction rxn00430:  

NAD[c] + Methanol[c] <=> H+ [c] + NADH[c] + Formaldehyde[c] 

Like the previous transport reaction, the one encoding methanol dehydrogenase was also added by 

gap filling during the reconstruction process of iBsu1103V2 and has no GPR associated. After these 3 

steps, formaldehyde enters the ribulose monophosphate described above, thus leading to the in silico 

phenotype observed when we knockout the transcriptional activator of this pathway. Even though the 

mechanisms described above seem to validate our in silico phenotype, we analyzed the additions to 

the model via gap filling. The analysis of the reactions added by gap filling revealed that the NAD 

dependent methanol dehydrogenase does not occur in B. subtilis. Researchers found no activity of this 

enzyme in B. subtilis, neither sequence homologs when compared with the methanol dehydrogenase 

of Bacillus methanolicus [114]. Removal of the methanol dehydrogenase in the same environmental 

conditions leads to a lethal phenotype prediction by our model. Due to this fact, we cannot validate this 

regulatory interaction predicted by our model. 

In our in silico simulation, the knockout of gene gabR caused a lethal phenotype with γ-Aminobutyric 

acid (GABA) as sole carbon source. GabR is described in the literature as the regulator of the GABA 

utilization pathway. GabR regulates the activity of two enzymes (GABA aminotransferase and succinic 
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semialdehyde dehydrogenase) that provide an alternative route of glutamate biosynthesis using GABA. 

This route via aminotransferases is represented in Figure 4.8.  

!

!

Figure 4.8 GABA degradat ion pathway (Pathway representat ion f rom BSubCyc [117]) .  

The knockout of the transcriptional activator GabR was found to be lethal, with GABA as sole nitrogen 

source [97]. The same work reported the inability of both the wild type and GabR mutant to grow with 

GABA as sole carbon source, the medium condition in which our simulation was performed and 

achieved growth in wild type.  We inspected our model for the reactions encoded by gabT and gabD 

and found they are represented as described in Figure 4.8. Our model is able to grow with GABA as 

sole carbon and nitrogen source due to the use of the succinate that is produced by the reaction 

encoded by gabD. The most common path for GABA degradation involves transamination to succinate 

semialdehyde, followed by oxidation to succinate. Many organisms can grow on GABA as the sole 

carbon and nitrogen source, but B. subtilis can only grow with GABA as sole nitrogen source [118]. 

The reason why this happens in B. subtilis is unknown. With no basis, researchers theorized a possible 

regulatory toxicity effect due to the accumulation of GABA or succinate semialdehyde, or both [97], to 

be the cause of this behavior. 

To assess if our model properly represents the regulation by GabR, as described in the literature, we 

simulated the knockout of GabR in a media with GABA as sole nitrogen source and glucose as carbon 

source. The result of this simulation also predicted a lethal phenotype. As our model appears to 

accurately represent the metabolism of the GABA degradation pathway, no suggestions are proposed 

to introduce changes in the model. 
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4.5 CONCLUSIONS 

In this chapter, we present the first attempt to model the metabolism and regulation of B. subtilis at 

genome-scale. This was achieved by combining the comprehensive regulatory network reconstruction, 

manually curated by us and presented in chapter 3, a large dataset of high quality expression data with 

multiple growth conditions and the published genome-scale metabolic model iBsu1103V2. We chose 

the PROM algorithm for the integrated simulation of metabolism and regulation, but we introduced a 

couple of changes to its original formulation.  

We introduced pFBA into the formulation to avoid redundant alternative optimal solutions generated by 

FBA. Another change introduced to the methodology removed the ability of the flux bounds to be 

violated making the regulatory constraints hard constraints. By using hard regulatory constraints, we 

were able to better assess the impact of the flux restrictions in our in silico knockout studies, and noted 

an inability to proper represent the regulatory interactions for the global regulators TnrA and PhoP. We 

also modified the formulation to account for isoenzymes activity. We verified the impact of this change 

in our phenotype simulation for the isoenzymes PutC and RocA. The isoenzymes are induced by 

different substrates, a notion that is not being captured by our regulatory constraints leading to an 

inability to properly represent the knockout of an individual isoenzyme. To solve this issue we suggest 

that additional regulatory constraints accounting for the presence of induction substrates in the 

medium formulation could be added to the model. This approach is adopted by simulation methods 

that apply manually curated Boolean regulatory rules such as rFBA and SR-FBA. 

We were able to validate our model with TF knockouts described in the literature. For the mutant 

phenotypes reported by Subtiwiki, we were able to replicate the regulatory effects observed in the 

literature for the mutants of AlsR, CysL, GltC and PutR. It is important to note the importance of being 

able to replicate the mutant phenotypes for GltC and PutR, as these TFs regulate genes involved in 

glutamate biosynthesis, a key metabolite for both carbon and nitrogen metabolism. Being able to 

accurately predict TF knockouts can have added value for Metabolic Engineering strategies for strain 

optimization [119, 120].  
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We were also able to assess additional limitations of our methodology and point to possible unknown 

regulatory effects not represented by our model. We observed in multiple in silico knockouts that the 

expression data used failed to properly represent the regulatory interactions described to the literature.  

These observations were not totally unexpected as we attempted to simulate growth in many specific 

carbon sources not comprised in the experimental conditions of our dataset. This issue reveals a lack 

of better experimental datasets available for validation of this type of models, when compared with 

datasets available for metabolic model validation. As mentioned when we analyzed the mutant 

phenotype of PurR these results are direct consequence of our decision to use the PROM formulation 

to infer regulatory interactions from expression data in detriment of manual design of Boolean gene 

regulatory rules. Even with this limitation to properly represent some regulatory interactions, 

nevertheless, the overall results were encouraging. Our model was able to properly simulate multiple 

phenotypes described in the literature and was validated against a large dataset of multiple gene 

deletions. 

The integration of the regulatory constraints with the metabolic model also demonstrated issues with 

the metabolic model with reactions that were added by gap filling. This fact points to the ability of using 

the integration of regulatory constraints as a tool to flag inconsistencies and curate the metabolic 

model Recently, studies have debated the role of transcriptional regulation in controlling metabolic 

fluxes [121] since other regulatory effects, such as allosteric regulation, thermodynamics and post 

transcriptional can also be a factor [122]. One of these effects may be responsible for the interesting 

result that was shown for growth with GABA as sole carbon source.  

Additionally, work in progress for full implementation of these methods in the KBase of Systems 

Biology will allow for an easier access to these tools. Automatic genome-scale metabolic model 

reconstruction is available on KBase and the other necessary datasets can be uploaded to the KBase 

environment.  
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4.7 SUPPLEMENTARY MATERIAL  

The supplementary material is available online at http://darwin.di.uminho.pt/jplfaria/phdthesis/ 

Chapter_4_SupplMaterial.xlsx 

The following tables comprise the supplementary material:   

S4.1 Model validation for data set of multiple genes deletions 

S4.2 Full list of regulator mutant phenotypes found in SubtiWiki 

S4.3 Mutant phenotype simulations for the media conditions described in Table 4.13 

S4.4 Mutant phenotype simulations results for the media conditions described in Table 4.13, with the 

original PROM formulation 

S4.5 Mutant phenotype simulation results for 78 carbon sources 

 

Additionally supplementary, material for all the data and simulations performed for the validation of the 

mutant phenotypes in section 4.4.1 is avaible on line in the KBase and can be found in the here:!!

https://narrative.kbase.us/functional-site/#/ws/objects/jplfaria:Chapter_4_SupplMaterial 

All the details about the data used and simulation results are described on Table 4.16. 
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Table 4.  16 Data and s imulat ions resu l ts  on KBase 

ΔalsR 
KBase Type Object KBase Name 
Model 
 

iBsu1103V2 

Media 
 

LB 
 

PROM constraint PromConstraints 
Simulation results Wildtype_LB 

AlsR_KO_FVA_LB 
Δci tT  
Model iBsu1103V2 
Media Carbon-Citrate 
PROM constraint PromConstraints 

 
Simulation results Wildtype_Carbon-citrate 

CitT_KO_Carbon-citrate 
citM_KO_Carbon-citrate 
citH_KO_Carbon-citrate 

ΔccpN   
Model iBsu1103V2 
Media Carbon-D-Glucose 
PROM constraint PromConstraints 

 
Simulation results CcpN_KO_Carbon-D-Glucose 
ΔcysL  
Model 
 

iBsu1103V2 
iBsu1103V3 

Media 
 

Sulfate-Sulfate 
Sulfate-Sulfite 
Sulfate-L-Cysteine 
Sulfate-L-Methionine 

PROM constraint PromConstraints 
AjustedPromConstraints_CysL 

Simulation results CysL_KO_Sulfate 
CysL_KO_Sulfite 
CysL_KO_L-Cysteine 
CysL_KO_-L-Methionine 
CysL_KO_Sulfatev2 
CysL_KO_Sulfitev2 
CysL_KO_L-Cysteinev2 
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CysL_KO_-L-Methioninev2 
Δgl tC   
Model iBsu1103V2 
Media 
 

Carbon-D-Glucose 
Carbon-L-Glutamine 
LB 

PROM constraint PromConstraints 
Simulation results GltC_KO_Carbon-D-Glucose 

GltC_KO_Carbon-L-Glutamine 
GltC_KO_LB 

ΔputR   
Model iBsu1103V2 
Media 
 

Minimal-Media-Proline 
Carbon-D-Glucose-Proline 

PROM constraint PromConstraints 
Simulation results Wildtype_Minimal-Media-Proline 

Wildtype_Carbon-D-Glucose-Proline 
Carbon-D-Glucose-Proline_PutR_KO 
Proline_Minimal_PutR_KO 
Proline_Minimal_PutR_rocA_KO 
Carbon-D-Glucose-Proline_PutR_rocA_KO 
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5.1 MAIN RESULTS AND CONTRIBUTIONS 

The research conducted in this thesis had the overall objective of reconstructing and performing in 

silico phenotype simulations for integrated models of metabolism and regulation. We achieved that 

objective, proposing a genome-scale model for the metabolism and transcriptional regulation of the 

bacterium Bacillus subtilis. To achieve this goal, we set out to perform studies with the individual 

elements that are necessary for the reconstruction of integrated metabolic and regulatory models. 

Those elements include genome functional annotations, genome-scale metabolic models (GEMs), 

regulatory networks and gene expression data.  

Here, we present the main results from those studies: 

• Genome annotat ions and GEMs – Genome functional annotations are a key element in 

the reconstruction of GEMs as we add reactions to the metabolic network that correspond to 

metabolic functions in the genome. We performed a large-scale model reconstruction effort 

leading to the reconstruction of automatically generated GEMs for all prokaryotic genomes 

available in the SEED database [1]. Analysis of these models allowed us to assess the diversity 

and quality of automatically generated GEMs. In order to allow growth phenotype simulations, 

we used gap filling algorithms to complete pathways in the metabolic networks. Analyzing the 

impact of gap filling in the models led to the identification of inconsistencies in genome 

annotations.  

Inspired by those results, a protocol was developed for improving the functional annotations of 

a genus utilizing metabolic reconstructions as a measure of annotation consistency. This 

resulted in the production of more accurate and consistent annotations and inference of the 

metabolic network for the genus Brucella [2]. We also demonstrated that the use of a 

controlled vocabulary for the annotation of genomes leads to more consistent annotations, 

while annotation inconsistencies caused by sequencing and propagation errors still require 

manually curation.  
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• Regulatory networks and gene of expression data – We conducted an extensive 

survey of the available resources for gene expression and notable bacterial transcriptional 

regulatory network data [3]. This survey revealed the lack of detailed regulatory network 

information and expression data for most organisms. Prompted by the results of this survey, 

we presented a manually curated regulatory network for B. subtilis, compiling information from 

multiple databases with regulatory data. Our regulatory network reconstruction is more 

comprehensive when compared with others available in the public domain.  

In addition to the data survey, we also extensively reviewed methods for regulatory network 

inference. We introduced a new methodology for regulatory interaction inference from 

expression data called Atomic Regulon Inference. Reconciling the manually curated network 

with atomic regulons allowed us to expand our knowledge of the regulatory network. This 

analysis also demonstrated how atomic regulons could be a tool in genome annotation efforts.  

To make use of this potential, atomic regulons were integrated into the SEED database and are 

available as part of the annotation tools in the system.  

• Integrated models of  metabol ism and regulat ion – We introduced the first genome-

scale model for the metabolism and regulation of B. subtilis at genome-scale. This 

accomplishment was only possible by making use of the regulatory network introduced in this 

thesis, combined with a published GEM for B sublitis. Our model was validated with 

transcription factor (TF) knockouts described in B. subtilis dedicated databases and the 

literature for multiple environmental conditions. The accurate prediction of TF knockouts can 

make this model of use for methods addressing the discovery of gene deletions for strain 

optimization [4].  

The integration of the regulatory constraints with the metabolic model also flagged issues with 

the published metabolic model. As more data become available, the study of phenotypes for 

validation of regulatory interactions can be used as a tool to perform additional manual 

curation in the metabolic reconstructions. It is also important to note that the methodologies 
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necessary for this modeling effort were implemented in the KBase of Systems Biology 

(www.kbase.us).  

Across all the results, we highlight the following main contributions: 

• Identification and correction of multiple genome annotation inconsistencies in the SEED 

database, leading to the development of a protocol to make use of GEMs as tools for genome 

annotation curation.  

• Reconstruction of a more comprehensive manually curated transcriptional regulatory network 

for B. subtilis.  

• First genome-scale modeling study for the metabolism and transcriptional regulation of B. 

subtilis. 
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5.2 LIMITATIONS 

All research subjects have inherent limitations. Acknowledging and discussing those limitations can 

bring insights into some of the conclusions drawn previously: 

 

• Genome annotat ions – Genome functional annotations are a key element for GEM 

reconstruction. We used genome annotations for over 3000 organisms in the reconstruction 

efforts conducted. The increasing number of genomes available led to the need to annotate 

genomes with automatic pipelines that heavily rely in sequence homology, leading to several 

inconsistencies in the genome annotations [5]. Recent studies evaluating the performance of 

genome annotation tools have shown that this reliance on sequence homology can have lower 

accuracy when compared with other methods available [6]. Even the highly curated genome 

annotation for B. subtilis, which is continuously updated by the community still reports 

approximately 1/3 of unknown gene functions [7]. 

• Genome-scale metabol ic models – We made use of automated reconstructed GEMs and 

a highly curated published model for B. subtilis. Even with highly curated models, there is still 

a lack of capabilities in the pursuit to accurately simulate cellular behavior with no inherent 

dynamic or regulatory predictions. The use of comprehensible kinetic information for all 

reactions should be able to allow a more accurate representation of the microorganisms that 

are undergoing any kind of model reconstruction processes. However, kinetic data are still 

scarce for most organisms, and the simulation of large-scale dynamic models brings additional 

computational challenges. 

Regulatory networks – We introduced a more comprehensive transcriptional regulatory 

network for B. subtilis. The network was then used for the integrated model of metabolism and 

regulation. Capturing only transcriptional regulation limits our understanding of complete 

regulatory effects in the cell. Other regulatory effects, such as allosteric regulation, post 
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transcriptional or pure thermodynamics, were shown to also be involved in the regulation of 

metabolic fluxes [8]. 

• Phenotype s imulat ion – FBA was the method of choice for growth phenotype simulation 

with genome-scale metabolic models and PROM the algorithm for making predictions with 

integrated models of metabolism and regulation. It is important to note that PROM uses FBA 

for growth simulation with the additional regulatory constraints from gene expression data. 

Predictions based mostly on growth phenotypes represent a simplification of actual cell 

behavior. Both simulation methods perform their predictions under a steady-state assumption, 

not being able to perform model predictions in other phases of microorganism’s life cycle.  The 

inability of FBA to use kinetic parameters makes it unsuitable to predict metabolite 

concentrations. Additionally, the PROM algorithm assumes that transcription factors that are 

not knocked out are active. In the same manner, target genes that are not directly connected 

to a knocked out transcription factor are also active. 

• Expression data – To infer regulatory interactions in our studies we made use of gene 

expression data. We pointed to the high quality of the B. subtilis gene expression data sets [9] 

used, but we were unable to infer proper regulatory interactions for growth in multiple 

environmental constraints. This fact tells us that increasing the variety of conditions for 

genome expression studies is still needed to increase the accuracy of methods that infer 

regulatory interactions from expression data. 
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5.3 ONGOING AND FUTURE WORK 

The following objectives reflect the future research efforts that spawned from the work developed for 

this thesis: 

• The reconstruction of GEMs for all genomes available in the SEED database paved the way for 

a new version of the ModelSEED reconstruction pipeline to be released in 2015. 

• The development of an atomic regulon inference pipeline that will allow users to infer their own 

atomic regulons. This pipeline will only require users to submit a genome annotated with SEED 

subsystems and a normalized gene expression dataset. 

• The implementation of the methodologies for the modeling of integrated metabolic and 

regulatory network in the KBase environment (www.kbase.us) will allow us to easily adopt the 

same strategy to develop integrated models for others organisms. 
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