
The Mutable Consensus Protocol∗

J. Pereira
Universidade do Minho

jop@di.uminho.pt

R. Oliveira
Universidade do Minho

rco@di.uminho.pt

Abstract

In this paper we propose the mutable consensus proto-
col, a pragmatic and theoretically appealing approach to
enhance the performance of distributed consensus. First, an
apparently inefficient protocol is developed using the simple
stubborn channel abstraction for unreliable message pass-
ing. Then, performance is improved by introducing judi-
ciously chosen finite delays in the implementation of chan-
nels. Although this does not compromise correctness, which
rests on an asynchronous system model, it makes it likely
that the transmission of some messages is avoided and thus
the message exchange pattern at the network level changes
noticeably. By choosing different delays in the underlying
stubborn channels, the mutable consensus protocol can ac-
tually be made to resemble several different protocols.

Besides presenting the mutable consensus protocol and
four different mutations, we evaluate in detail the particu-
larly interesting permutation gossip mutation, which allows
the protocol to scale gracefully to a large number of pro-
cesses by balancing the number of messages to be handled
by each process with the number of communication steps re-
quired to decide. The evaluation is performed using a realis-
tic simulation model which accurately reproduces resource
consumption in real systems.

1. Introduction

Several distributed programming problems such as
atomic broadcast, view synchrony and atomic commit-
ment can be reduced to consensus. Moreover, their imple-
mentation can be highly simplified if based on a central
consensus module [12], hence the relevance of the cover-
age and efficiency of consensus protocols. Nevertheless,
a fundamental result states the impossibility of deter-
ministic consensus in asynchronous distributed systems
where at least one process may crash [8]. This impossibil-

∗ Supported by FCT, project STRONGREP (POSI/CHS/41285/2001).

ity can be circumvented by strengthening the asynchronous
model with additional assumptions.

We focus on protocols based on unreliable failure detec-
tors [7, 21] in asynchronous message passing systems where
processes may fail by crashing. These protocols execute in
asynchronous rounds with a rotating coordinator. In each
round, an estimate is broadcast to all participants by the co-
ordinator of the round. The protocol then tries to gather a
majority of votes, to decide or to enter the next round. When
a value is decided it is reliably broadcast to all participants.

These protocols differ mostly on how votes are collected.
As an example, in the “early” consensus protocol [21] all
votes are broadcast to the entire set of participants, leading
to a quadratic number of messages and imposing a heavy
load on the network. With a centralized protocol [7], votes
are collected by the coordinator and relayed to other partic-
ipants only after a decision has been reached, reducing the
load on the network at the expense of an additional com-
munication step. Such differences have a definite impact in
performance measured in realistic settings [2].

In this paper we address this issue: We present a con-
sensus protocol allowing a trade-off between the number of
communication steps, and the number of messages trans-
mitted and handled by processes. This trade-off depends on
the relative cost of sending, transmitting and receiving mes-
sages, as well as, on the availability of processing and net-
work resources. The evaluation of the proposed protocol
is therefore done in a realistic environment, ensuring that
in practice the proposed algorithm results in good perfor-
mance. By varying system parameters we ensure that per-
formance gains can be obtained in a variety environments.

Our proposal is done in two steps. First, we present a
new consensus protocol based on stubborn channels [10].
Although the result is apparently not attractive by any per-
formance metric, especially when considering the number
of messages exchanged, we notice an interesting property:
as messages can be lost by stubborn channels, it is possible
that only a small fraction of the messages sent by the pro-
tocol are actually transmitted through the underlying net-
work. In fact, we can easily fabricate valid runs which ex-
change a much lower number of messages at the network
level. Unfortunately, it is highly unlikely that a naive imple-

mentation produces such desirable runs.
We therefore seek an implementation which maximizes

the likelihood of desirable runs. Interestingly, this can be
achieved simply by introducing finite delays in a naive im-
plementation of stubborn channels. Moreover, as delays are
finite this does not in any way compromise the correct-
ness of the protocol, which assumes an asynchronous sys-
tem model. In practice, judiciously chosen delays make it
likely that only desirable runs occur thus resulting in very
good performance in practical metrics such as the latency,
number of messages and the number of bytes transmitted.

Such delays avoid the actual transmission of a message
m due to two different reasons. The first is that they in-
crease the likelihood of a more recent message being sent
in the meantime, which in stubborn channels discards all
previously sent messages. The second is that if a decision
can be reached by all processes before the delay expires,
the transmission of m can be entirely avoided in practice.
As an example, consider the usage of consensus to imple-
ment view synchronous multicast, in which an instance of
consensus is run to install each view [12]. As soon as a pro-
cess has started receiving messages (or acknowledgments
to messages) from all others in the recently installed view,
it knows that all participants in the previous consensus in-
stance have decided. It may therefore terminate the consen-
sus protocol and flush all pending messages.

Different configurations of delays lead to different mes-
sages being actually transmitted and thus result in differ-
ent classes of desirable runs. Some of these resemble the
message exchange pattern of well known protocols. Oth-
ers result in innovative message exchange patterns with de-
sirable performance characteristics. We therefore call it the
mutable consensus protocol and each of the combinations
of the protocol with an implementation of stubborn chan-
nels a protocol mutation. In this paper we introduce four
distinct mutations. Two of them mimic well known proto-
cols [7, 21]. A third is called the ring and uses very little
resources at the expense of high latency. Finally, the permu-
tation gossip mutation allows the protocol to scale to very
large groups.

In short, the paper makes two main contributions:
i. A mutable consensus protocol, that can be configured

to a large variety of message exchange patterns with a sim-
ple correctness preserving technique that can be applied in
run-time and without coordination.

ii. The permutation gossip mutation, which is a general
purpose implementation of a stubborn channel that can be
used to obtain an efficient and scalable consensus protocol.

The paper is structured as follows: Section 2 motivates
the work by introducing the consensus problem. Section 3
presents the mutable consensus protocol based on stubborn
channels. Section 4 introduces protocol mutations. Sec-
tion 5 briefly compares their performance. The permutation

gossip mutation is examined in detail in Section 6. Section 7
briefly discusses related work and Section 8 concludes the
paper.

2. Background

In this section we motivate our work by introducing the
consensus problem and its applications in fault-tolerant dis-
tributed systems, and the difficulty in obtaining efficient im-
plementations of existing protocols. We start by briefly de-
scribing the system model assumed.

2.1. System Model

We consider an asynchronous, message-passing system
consisting of a finite set of processes {p1, p2, . . . , pn}.
There is no global clock but each process pi has access to
a local monotonically increasing clock that can be read in
variable Clocki. Assuming an asynchronous system model
means that the correctness of an algorithm holds despite
the actual timing of the system. Using such model is jus-
tified to achieve robust protocols that are correct regard-
less of delays that cannot be (easily) controlled by the pro-
grammer, such as clock synchronization, message passing
duration and scheduling of processes. In fact, in an asyn-
chronous system model the resulting algorithms are correct
also regardless of delays that can be controlled by the pro-
grammer. If desired, one can insert finite delays in the im-
plementation of an algorithm and it would still be correct.

Processes may only fail by crashing, and once a process
crashes it does not recover. A process that does not crash
is said correct and we assume that a majority of the pro-
cesses are correct. Our model of computation is augmented
with a failure detector oracle of class ♦S [7] enabling us to
circumvent the FLP impossibility result [8].

Processes are completely connected through a set of
fair-lossy communication channels [3]. Each channel con-
necting process pi to pj is defined by a pair of primitives
Sendi,j(m) and Receivej,i(m). Such a channel is a reason-
able abstraction of the service provided by existing connec-
tionless network layers and basically ensures that no spuri-
ous messages are created, message duplication is finite, and
that each message has a non-null probability of being deliv-
ered.

2.2. Consensus

The consensus problem abstracts agreement in fault-
tolerant distributed systems, in which a set of processes
agree on a common value despite starting with differ-
ent opinions. More formally, all processes are expected
to start the protocol proposing some value through func-

tion Consensus and then decide on its return value such that
the following properties hold [7]:
Validity: If a process decides v, then v was proposed by

some process.
Agreement: No two processes decide differently.
Termination: Every correct process eventually de-

cides some value.
We focus on consensus protocols based on unreliable

failure detectors of class ♦S [7, 21, 14]. These protocols
execute in asynchronous rounds with a rotating coordina-
tor. In each round, an estimate is broadcast to all partici-
pants by the coordinator of the round. The protocol then
tries to gather a majority of votes to decide. Whenever a
majority of processes votes favorably in a round, the deci-
sion is said to be locked, as no other value can then be de-
cided. When a process decides, it relays the decision to all
participants.

The failure detector is used to avoid blocking when the
coordinator of the round has crashed. Whenever the coordi-
nator is suspected, processes try to leave the current round
to force the coordinator to change. Before being able to
broadcast an estimate, the new coordinator is required to
also gather a majority of votes from participating processes.
This enforces agreement by ensuring that after a value has
been locked it will be used as the estimate for all future
rounds. In fact, such protocols have the desirable property
of being indulgent [9]. Even if the failure detector misbe-
haves (i.e., the assumption that the failure detector is of class
♦S turns out to be wrong) the protocol ensures safety.

Protocols differ mostly in how majorities of votes are
collected. In a centralized protocol [7], all votes are gath-
ered by the current round coordinator. In detail, when enter-
ing a round the coordinator collects estimates from the pre-
vious round. Then it broadcasts a selected estimate and col-
lects the acknowledgments. Upon receiving acknowledg-
ments from a majority, the decision is broadcast. This al-
lows the decision to be reached in three communication
steps and requires that only the coordinator handles mes-
sages from all participants.

On the other hand, in a decentralized protocol [21] all
votes are broadcast to all participants, making it possible
that each process independently gathers a majority and thus
reaches a decision. This allows the decision to be reached
in two communication steps at the expense of a larger num-
ber of messages exchanged. The number of messages ex-
changed can be reduced by using broadcast mechanisms at
the network level when available, but still requires that all
participants handle messages from all others.

It has been shown that these two protocols are extreme
instantiations of a more general protocol [14]. In between,
innovative protocols in which a subset of processes gather
votes can be obtained. Nevertheless, there are always pro-
cesses which must receive and then send messages to all

others. This is unfortunate as, in practice, the performance
of a distributed protocol in general, and in particular its scal-
ability to large numbers of participants, is tightly related to
the number of messages sent and received by each process.
The available processing power of such participants thus di-
rectly translates to an upper bound on the scalability of pro-
tocols. The best trade-off depends on the overhead associ-
ated with transmitting and handling messages.

Limitations on scalability can usually be mitigated by
distributing the message load among all processes. Nev-
ertheless, for each new protocol which uses an innovative
message exchange pattern that is suited to a particular envi-
ronment one would have to redo its correctness proofs. The
added complexity of implementing such protocols would
also require additional effort to ensure that the implemen-
tation itself is correct.

3. Mutable Consensus Protocol

In this section we introduce the mutable consensus pro-
tocol. We start by presenting the definition of stubborn com-
munication channels [10].

3.1. Stubborn Channels

A stubborn channel [10] connecting two processes pi and
pj is an unreliable communication channel defined by a pair
of primitives sSendi,j(m) and sReceivej,i(m), that satisfy
the following two properties:
No-Creation: If pi receives a message m from pj , then pj

has previously sent m to pi.
Stubborn: Let pi and pj be correct. If pi sends a message

m to pj and pi indefinitely delays sending any further
message to pj , then pj eventually receives m.

A stubborn channel is easily implementable over a fair-
lossy channel: It suffices to buffer the last message sent
and periodically retransmit it. More precisely, we consider
here a 1-stubborn channel. The general case, k-stubborn, re-
quires the buffering and the retransmission of the k last mes-
sages.

3.2. Algorithm

The general approach to obtain a mutable proto-
col, which can be reconfigured to mimic protocols with
different message exchange patterns, is as follows:

i. Obtain an algorithm that is correct in an asynchronous
system model.

ii. Modify the algorithm to use stubborn chan-
nels, mostly by ensuring that it can skip messages that
could have been discarded or duplicated.

iii. Ensure that the algorithm encompasses a large num-
ber of possible message exchange patterns by, as often as

Process pi:
Function Consensus(vi):
1 (esti.val, esti.proc)← (vi, i); ri ← 1;
2 while true do
3 phi ← 1; Pi ← ∅; coordi = (ri mod n) + 1
4 if i = coordi then
5 Pi ← {i}; esti.proc = i
6 forall k: sSendi,k((ri, phi, Pi, esti));
7 endif;
8 while #Pi ≤ n/2 do
9 select
10 upon sReceivei,j((rj , phj , Pj , estj)):
11 if ri < rj then
12 esti ← estj ; ri ← rj ;
13 phi ← phj ; Pi ← ∅;
14 endif;
15 if ri = rj ∧ phi < phj then
16 phi ← phj ; Pi ← ∅;
17 endif;
18 if (ri = rj ∧ Pj 6⊆ Pi)∨
19 (phj = 1 ∧#Pj > n/2) then
20 Pi ← Pi ∪ Pj ∪ {i};
21 if estj .proc = coordi then
22 esti = estj ;
23 endif;
24 forall k: sSendi,k((ri, phi, Pi, esti));
25 endif;
26 upon Suspectedi(j):
27 if j = coordi ∧ phi = 1 then
28 phi ← 2; Pi ← {i};
29 forall k: sSendi,k((ri, phi, Pi, esti));
30 endif;
31 endselect;
32 endwhile;
33 if phi = 1 then return esti.val; endif
34 ri ← ri + 1;
35 endwhile

Figure 1. Mutable consensus.

possible, broadcasting messages instead of directing them
to a single destination and by relaying all information re-
ceived, instead of relying on it being directly conveyed.

In Figure 1 we present a consensus algorithm obtained
following this method. Apparently the result is not con-
figurable and, even worse, has a message exchange pat-
tern which is not attractive by any performance metric,
especially when considering the number of messages ex-
changed. This is however a prejudgment based on intuition
accustomed to reliable channels. In fact, sending messages
through stubborn channels does not imply that those mes-
sages are actually transmitted through the underlying net-
work, but only that eventually some message will be trans-
mitted. It is thus possible that only a small fraction of the
messages sent by the protocol actually reaches the network.
In Section 4 we exploit precisely this fact.

The algorithm of Figure 1 proceeds in asynchronous
rounds. Each round has a designated coordinator that tries
to impose its proposal as the decision value. Each round has
two phases. In phase 1, if a majority of the processes en-
dorse the value proposed by the coordinator a decision is

locked and processes can decide. However, if the coordina-
tor is suspected to have failed, then processes are requested
to enter phase 2 and, as soon as a majority does so, they pro-
ceed to the next round. The asynchrony of the rounds means
that processes do not need to synchronize when changing
rounds and thus we may have different processes in differ-
ent rounds. Moreover, due to the unreliability of the com-
munication channels, processes are not guaranteed to re-
ceive all messages and thus processes may be forced to skip
certain rounds. If a process receives a message from a larger
round it immediately jumps to that round.

In detail, each process pi maintains a round (ri) and a
phase (phi) counter, an estimate of the decision (esti), and
a set of voters (Pi). The set Pi contains the processes that pi

knows are endorsers of the current coordinator (phase 1) or
the processes that are detractors of the coordinator (phase
2). In each round the coordinator sets itself as an endorser
of the coordinator´s estimate and initiates the round broad-
casting its estimate and its set of voters (lines 5 and 6).

A round lasts until a majority of votes have been col-
lected (while loop of lines 8 to 32). This set of votes can
be either from phase 1 (an endorsement of the coordina-
tor’s estimate) and if so a decision is reached (line 33), or
from phase 2 and the process proceeds to the next round.

Lines 18 to 25 are actually the core of the algorithm. Be-
fore it, the code handles messages from larger rounds or
phases, and lines 26 to 30 handle the suspicion of the cur-
rent coordinator. A processes exits the main loop of each
round (lines 8 to 32) whenever it collects a majority of en-
dorsers or detractors.

In detail, during a round, the handling of a message may
undergo two processing steps corresponding to the condi-
tional clauses upon reception (lines 10 to 25). Consider a
message m sent by pj and received by pi. Firstly, pi checks
whether m comes from a larger round and if so pi adopts
the message’s estimate and jumps to the round and phase of
m. This is due to the use of stubborn channels as there is
no guarantee that pi receives any messages pj might have
sent to pi before m and that would enable pi to proceed.
The next clause handles messages from phase 2 of the same
round, taking pi to phase 2 and making it a detractor of the
current coordinator.

The second processing step of the message deals with
voting. Depending on the phase pi is in, it may be process-
ing votes supporting the coordinator’s proposal (phase 1) or
votes to leave the current round and to proceed (phase 2).
However, the two cases are not distinguished and are dealt
with in the same way. When the received message is from
the same round that pi is in and brings new votes (Pj 6⊆ Pi),
then pi records the new votes adding its own vote (line 20),
adopts the message’s estimate if it has the coordinator’s vote
and relays its new set of votes to all processes. This very
same processing is done when the received message brings

Process pi:
State:

bi,j initially ⊥
ti,j initially∞

Function sSendi,j(m):
1 ti,j ← ∆0(m);
2 bi,j ← m;
Task retransmiti,j :
3 while true do
4 wait until ti,j ≤ Clocki;
5 Send(bi,j);
6 ti,j ← ∆;
7 endwhile

Process pj :
Function sReceivej,i(m):
8 return Receivej,i(m);

Figure 2. Stubborn channel from pi to pj .

a majority set of votes for phase 1 regardless of the round in
which they were sent. These messages are actually decision
messages: pi records a majority set in Pi, leaves the while
loop of line 8, and since it is in phase 1 it returns from func-
tion Consensus. Suspicions are handled in lines 26 to 30.
If the suspected process is the coordinator for the current
round the process enters phase 2, sending its updated state
to all participants. Upon reception of such message, pro-
cesses still in the first phase of the same round are brought
to the second phase (lines 15 to 17).

We assume that the channel receive and failure suspecter
primitives in lines 10 and 26 are fair. Therefore, no message
is forever pending and not received. Likewise, no suspicion
is forever pending and not acknowledged.

A more thorough description of the algorithm and a cor-
rectness proof can be found in the extended version of this
paper [18].

4. Protocol Mutations

In the implementation of stubborn channels, an issue
with crucial impact in practice, is the retransmission period.
A very short delay will use excessive resources, while a long
delay will introduce high latency when the network is lossy.
Figure 2 presents a simple, slightly detailed, implementa-
tion of a stubborn channel. Each channel connecting process
pi to process pj has an associated buffer bi,j , initially unde-
fined, a timeout value ti,j , initially ∞, and a background
task. When a message is sent, the timeout is set to ∆0 (line
1). The message is also stored in the buffer bi,j (line 2).
Eventually, as ∆ is finite, the background task wakes up
(line 4) and sends the message using the underlying fair-
lossy channel (line 5). A new timeout value is then com-
puted (line 6). Message reception translates directly into the
underlying reception primitive (line 8).

Process pi:
Function ∆0(m):
1 if fresh(bi,j, m) ∨maj(m) then
2 return Clocki;
3 else
4 return Clocki + e;
5 endif;
Function ∆:
6 return Clocki + e;

Figure 3. “Early” mutation.

In this paper we propose four different implementations
of stubborn channels, thus obtaining four protocol muta-
tions. We call them early, centralized, ring and permuta-
tion gossip. Although we are free to use any implementa-
tion, as long as we prove its correctness, we choose to de-
rive all the proposed mutations from Figure 2 just by instan-
tiating functions ∆0(m) and ∆. This trivially ensures their
correctness. We admit that these functions can read the lo-
cal state associated with the channel, i.e., ti,j (the timeout
from i to j) and bi,j (the buffer from i to j).

Some of these mutations use the semantics of messages
exchanged by the consensus algorithm. The computation
of delays involves evaluating the following conditions of
buffered messages:

fresh(b, m) ≡ b =⊥ ∨round(m) 6= round(b) ∨

phase(m) 6= phase(b)

maj(m) ≡ voters(m) > n/2

For any consensus message m = (r, ph, P, est) we have
round(m) = r, phase(m) = ph and voters(m) = P .

Early The early mutation implementation of Figure 3 is the
simplest and aims at a message exchange pattern similar to
that of early consensus [21], in which in every round every
process multicasts its vote to all others, thus allowing deci-
sions to occur in two communication steps.

Each newly arrived message must be immediately trans-
mitted if it is the first being sent from a new round or phase,
or carries a majority of votes (line 1). Such immediate trans-
mission is achieved by returning the current value of Clocki

thus allowing the background task to run. If not (line 4), the
transmission time is set to the current time plus e. The pa-
rameter e (used throughout this section) is an estimate of
the time required to finish running an instance of consensus
thus attempting to avoid the actual transmission of the mes-
sage. This makes it unlikely that all messages but the first
from the coordinator and the last (with a majority of votes)
are actually sent obtaining the desired result.

Centralized The centralized mutation implementation of
Figure 4 aims at producing a message exchange pattern
which resembles that of the Chandra-Toueg centralized al-
gorithm [7]. In contrast to the early mutation, this one does

Process pi:
Function ∆0(m):
1 c← (round(m) mod n) + 1
2 if ((i = c ∨ j = c) ∧ fresh(bi,j , m)) ∨maj(m) then
3 return Clocki;
4 else
5 return Clocki + e;
6 endif;
Function ∆:
7 return Clocki + e;

Figure 4. Centralized mutation.

Process pi:
Function ∆0(m):
1 if j = ((i + 1) mod n) + 1 ∧ (fresh(bi,j , m) ∨maj(m)) then
2 return Clocki;
3 else
4 return Clocki + e;
5 endif;
Function ∆:
6 return Clocki + e;

Figure 5. Ring mutation.

not reproduce exactly the original protocol, as the coordina-
tor does not gather estimates when it enters a round. In fact,
it differs from the early mutation only by avoiding the di-
rect transmission of votes among participants. Instead, these
are relayed by the coordinator.

Therefore, if the sender or the receiver process is the cur-
rent coordinator, the same delays of the early implementa-
tion are used. Otherwise, messages are delayed (line 5) by
the estimated time required to end consensus, thus avoiding
their transmission. Decision messages are never delayed.

Ring One can also achieve innovative message exchange
patterns with desirable performance characteristics. The
ring implementation of Figure 5 delays messages from a
process i to a process j unless j = ((i + 1) mod n) + 1.
The result is a ring-style message exchange pattern in which
each process communicates only with its successor.

Permutation Gossip Gossip-based protocols are used for a
variety of distributed programming problems and are known
for their scalability and resilience to network omissions.
The permutation gossip mutation aims at a gossip-style
message exchange pattern for consensus with determinis-
tic safety and liveness.

The permutation gossip mutation works as follows. Each
process generates a random permutation of the sequence of
process identifiers. This sequence is used as a circular list.
As soon as a message is sent, it is transmitted immediately
to the next F processes (fanout value) in such list and de-
layed for all other processes. The pointer into the list is then
incremented by F . It is worth noting that, in contrast with

Process pi:
State:

c initially 0
u initially a permutation of 1 . . . n

Function ∆0(m):
1 v ← turnsF (u, c, j);
2 c← c + v + 1;
3 return Clocki + ve;
Function ∆:
4 v ← turnsF (u, c, j);
5 c← c + v + 1;
6 return Clocki + (v + 1)e;
Function turnsF (u, c, j):
7 x← 0;
8 while 6 ∃l : 0 ≤ l < F∧
9 u[((l + F (c + x)) mod n) + 1] = j do
10 x← x + 1;
11 endwhile;
12 return x;

Figure 6. Permutation gossip mutation.

other mutations, 1) all message delays are computed using
the same rule and that this rule does not depend on the par-
ticular message contents, and 2) messages are not equally
delayed to all destinations. In fact, with respect to 2), each
transmission is delayed such that after every period e it oc-
curs for the next F processes in the list. Eventually, in at
most n/F periods, the message will have been transmitted
to all processes. This repeats every n/F periods.

The algorithm for the permutation gossip is presented in
Figure 6. Function turnsF (u, c, j) computes the number of
turns until the next transmission of the message for desti-
nation pj . This is done by incrementing counter x (line 9)
until j is within the next F identifiers in the list. The ini-
tial transmission is then scheduled accordingly (line 3). Re-
transmissions are scheduled identically (lines 4 to 6).

5. Evaluation

In this section we describe the implementation, the test-
ing environment and then present the results. We use a prag-
matic approach to evaluate the mutable consensus proto-
col: an implementation is tested in a realistic environment
which accounts for CPU and network overhead. This allows
us to balance communication steps with messages transmit-
ted and handled by a single process.

5.1. Implementation

The implementation of the mutable consensus protocol
and stubborn channels used for evaluation was done in Java.
A single thread is used for each process and the code is
structured as a set of event handlers. The main loop exe-
cuted by the thread is in charge of setting timers and polling

a datagram socket for incoming messages, invoking then the
appropriate event handlers.

Round and phase numbers are represented by 32 bit in-
tegers. The set of voters Pi is represented as a bitmap
and stored as an array of 32 bit integers, making it com-
pact for transmission and reducing set union to a bitwise
OR operation. Conversion between internal and ex-
ternal representation is done using standard classes
(java.io.DataOutputStream and java.io.DataInputStream).
A custom buffer class is used for handling messages, which
are stored internally as a list of byte arrays. Efficient meth-
ods for adding and removing headers are provided. Values
proposed for consensus are also represented as mes-
sage buffers.

5.2. Simulation Runtime

Common metrics often misrepresent the performance
of distributed algorithms in complex environments such as
the Internet [15]. Therefore we use a centralized simulation
model [1] to evaluate the performance of the protocol. Cen-
tralized simulation works as follows: the execution of real
code is timed with a high resolution clock and the result-
ing elapsed time is used to update simulated timelines asso-
ciated with simulated processors in the context of a discrete
event simulation model. Such models have been shown to
accurately reproduce the timing characteristics of real sys-
tems [1] and have several advantages: only a single host
is required, even when testing configurations with a large
number of processes and arbitrarily complex networks; it is
possible to perform global observations, including time du-
rations; and it is very easy to perform fault injection to test
and evaluate distributed fault-tolerant programs.

The centralized simulation runtime used is also imple-
mented in Java and uses a virtual per-process CPU cycle
counter to measure time [20]. By comparing the results of
simple benchmarks run in the simulated environment and in
the corresponding real system, one can derive which config-
uration parameters to use in simulated components and en-
sure that the results closely match [1].

5.3. Simulated Environment

The configuration used to obtain the results presented in
this paper was tuned to reproduce Pentium III 1GHz work-
stations running Linux 2.4.21 and Sun HotSpot JVM 1.4.2.
The model used does not however simulate scheduling la-
tency, thus providing results that can only be observed in a
real system if no other tasks are competing for the CPU or
if a higher priority is assigned to the protocol task.

The simulated network mimics a switched 10Mbit/s Eth-
ernet (i.e., star topology). The model includes the transmis-
sion delay as well as event scheduling and operating sys-

(a) Early (b) Centralized

(c) Ring (d) Perm. gossip (F = 2)

Figure 7. Prefixes of typical executions (1ms).

tem overhead. Buffers are also calibrated according to a real
system in order to accurately reproduce message loss when
the system is congested. Nevertheless, the bandwidth can
be varied and arbitrary packets dropped to stress the proto-
cols. The failure detector is also simulated and can be con-
figured to generate specific patterns. Processes can also be
crashed in specific runs of the protocol.

The simulated application works as follows: Values are
proposed simultaneously by all processes. Each value is an
empty message buffer, thus ensuring that the results ob-
tained are entirely due to protocol overhead. When all pro-
cesses decide they are restarted thus initiating a new run
of consensus. The network is not restarted, although stale
packets are dropped upon reception. Performance results
are obtained in two steps. First, significant events are logged
to files while the simulation is running. When the simula-
tion has stopped, log files are processed to extract relevant
statistics.

5.4. Results

A first intuition on the impact of the delays introduced
in each mutation can be obtained from Figure 7, which
presents the graphical representation of prefixes of actual
runs of the mutable consensus protocol when combined
with each implementation of the stubborn channels. In these
pictures, arrows denote messages and solid dots the return
from the Consensus function (i.e., the decision). The x-axis
represents real-time. The entire duration of the interval pre-
sented is 1 ms. All messages actually transmitted during the
1ms interval are presented. All mutations are configured
with e = 2ms and permutation gossip with F = 2.

Although individual runs presented in Figure 7 provide
an intuition on the behavior of the protocol, the overall per-
formance is better evaluated by statistics on protocol latency
and resource usage. Figure 8(a) shows the latency, from pro-

 0

 1

 2

 3

 4

 5

 0 50 100 150 200

La
te

nc
y

(m
s)

Number of processes

Early
Centralized

Perm. Gossip
Ring

Random Mix

(a) Latency

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

P
ac

ke
ts

 re
ce

iv
ed

Number of processes

Early
Cent. (coord)
Perm. Gossip

Ring
Random Mix

(b) Packets received

 0

 2

 4

 6

 8

 10

 0 50 100 150 200

D
ow

nl
in

k
ba

nd
w

id
th

 (M
bi

ts
)

Number of processes

Early
Centr. (coord)
Perm. Gossip

Ring
Random Mix

(c) Network usage

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

C
P

U
 u

sa
ge

 (%
)

Number of processes

Early
Centr. (coord)
Perm. Gossip

Ring
Random Mix

(d) CPU usage

Figure 8. Performance of protocol mutations.

posal to decision, of the consensus function as seen by one
process other than the coordinator. Notice that with a small
number of processes, the early mutation offers the best re-
sults. As expected, the latency of the ring mutation grows
linearly with the number of processes. The latency of the
permutation gossip mutation grows logarithmically.

The latency of protocol mutations closely follows the
average number of messages processed presented in Fig-
ure 8(b). The exception is the ring mutation, in which the
latency is justified by the low resource consumption.

The sudden increase of latency of early and centralized
mutations is explained by Figure 8(c), which shows the av-
erage bandwidth consumed. It turns out that the correspond-
ing network link in the switched Ethernet becomes saturated
leading to messages being discarded, retransmissions and a
longer time to complete. In contrast, network usage is ex-
tremely low with the ring mutation and moderate with the
permutation gossip, even with a large number of processes.

The effect of network congestion is also visible in Fig-
ure 8(d), which displays average CPU usage. Notice that
with a small number of processes, the early mutation makes
the most efficient usage of resource, therefore justifying the
better latency. Nevertheless, when the network is congested
it becomes the bottleneck and thus the CPU becomes idle.
This is bad, as the system is doing nothing else than solv-
ing consensus. The ring mutation makes a very poor usage
of CPU, as processes are most of the time idle waiting for
messages. In between, the permutation gossip mutation al-
lows a fair usage of CPU and thus its good performance.

One concludes that both the early and centralized muta-
tions do not scale regarding network and CPU usage. The
early mutation is however still the best choice for small
groups (e.g. less than 20 processes). Interestingly, almost all
protocols proposed so far [7, 21, 17, 14, 11] rely on a simi-

 0

 2

 4

 6

 8

 10

 0 50 100 150 200

La
te

nc
y

(m
s)

Number of processes

F=1
F=2
F=3
F=4
F=5

(a) Latency

 0

 50

 100

 150

 200

 0 50 100 150 200

P
ac

ke
ts

 re
ce

iv
ed

Number of processes

F=1
F=2
F=3
F=4
F=5

(b) Packets received

 0

 2

 4

 6

 8

 10

 0 50 100 150 200

D
ow

nl
in

k
ba

nd
w

id
th

 (M
bi

ts
)

Number of processes

F=1
F=2
F=3
F=4
F=5

(c) Network usage

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

C
P

U
 u

sa
ge

 (%
)

Number of processes

F=1
F=2
F=3
F=4
F=5

(d) CPU usage

Figure 9. Protocol parameters.

lar message exchange pattern in which at least one process
receives messages from all others.

The ring mutation is extremely frugal in terms of re-
source consumption, although resulting in high latency. It
would however be desirable if a large number of consen-
sus instances would be running simultaneously and latency
is not a primary concern. Finally, the permutation gossip is
scalable to a large number of processes while at the same
time offering low latency. Such a message exchange pattern
is also highly resilient to crashes and network omissions.

Figure 8 includes also results labeled as random mix.
These were obtained by making each process randomly se-
lect with equal probabilities which mutation to use for each
consensus instance. Although the performance is not good
by any metric, the fact that processes do not block confirms
the correctness of the approach. The poor performance is
explained by the fact that processes using the centralized or
ring mutations communicate only with a single other pro-
cess until period e expires, without the guarantee that such
process does the right thing performance-wise.

6. Configuration of Permutation Gossip

6.1. Protocol Parameters

It is clear from the previous section that the permutation
gossip mutation is the most interesting, in particular, with a
large number of participants. The performance of the per-
mutation gossip mutation is intimately related to the fanout
parameter F . Intuitively, higher values of F should allow
faster dissemination of votes, at the expense of higher re-
source consumption. Figure 9 shows the effect in perfor-
mance and resource consumption of using different values
for F . From the results it is clear that the best results are ob-

 0

 20

 40

 60

 0 100 200 300 400 500

 0 20 40 60 80 100

La
te

nc
y

(m
s)

Bandwidth (Kbits)

Dropped packets (%)

Lossy link
Narrow link

(a) Variable bandwidth

 0

 5

 10

 15

 20

 0 5 10 15 20 25

La
te

nc
y

(m
s)

Number of crashed processes

0...n
Random

(b) Crashed processes

 0

 10

 20

 30

 40

 0 10 20 30 40

La
te

nc
y

(m
s)

Instability (ms)

0
1/5 n
2/5 n

n/2
3/5 n
4/5 n

n

(c) False suspicions

Figure 10. Environment conditions.

tained with F = 2. This is justified by every reception of a
message containing new votes causing a new message to be
sent. It is therefore useless to flood the system with lots of
messages carrying the same set of votes.

We have also experimented different values for gossip
period e and confirmed that, with F = 2 and e larger than
the expected duration of a full run, the performance of the
protocol in normal conditions is independent of e, as no re-
transmission needs to be performed to terminate.

6.2. Environment Conditions

Gossip-based protocols are known for their resilience to
network omissions and process crashes. By using the cen-
tralized simulation facility we can easily crash processes,
inject false suspicions, random message loss and cause con-
gestion to evaluate the protocol. We use an initial set of 50
processes for each of the experiments.

Figure 10(a) shows the effect of forcing the network to
drop a variable amount of messages (solid line, top axis).
The protocol is still providing a very good performance with
up to 40% of packets discarded. The protocol collapses only
when more than 80% of messages are lost.

Dropping messages uniformly and regardless of load is
not however a realistic model of how networks behave. Real
loss is better modeled by constraining the available band-
width (dashed line, bottom axis). Although the protocol is
normally using more than 1Mbit/s (see Figure 9(c)), the pro-
tocol is still functioning reasonably well with as little as
250Kbit/s and collapses only with less than 50Kbit/s.

Figure 10(b) shows the impact of crashed processes in
the performance of the protocol. The worst case scenario
for a protocol that deterministically selects a coordinator
is when the first processes to be selected are all crashed.

Therefore, when k processes have crashed the protocol is
forced to go through k + 1 rounds, resulting in a linear in-
crease in latency as shown by the solid line, even when the
failure detector is behaving perfectly. The more likely sce-
nario is that a random set of processes has crashed. This
results in much better performance as gossiping is able to
route around crashed processes. Performance degrades se-
riously only when the number of failures approaches n/2.

False suspicions have a similar impact in protocol perfor-
mance by forcing the protocol to skip several rounds until a
decision is reached. However, it is not as serious as process
crashes since all processes are still able to relay messages.
Figure 10(c) shows the impact of a variable share of pro-
cesses (selected at random) having their failure detector or-
acles wrongly suspecting all coordinators for a given period
of time. It can be observed that when the number of pro-
cesses with misbehaving detectors is greater than n/2, la-
tency is directly proportional to the instability period. When
the number of processes is equal to or less than n/2, there
is some impact but the protocol quickly converges to a de-
cision despite the instability.

7. Related Work

Although we focus on consensus protocols based on un-
reliable failure detectors, a number of other additions to an
asynchronous system model has been proposed in order to
make consensus solvable (e.g. [4, 6]). It should be possible
to obtain performance advantages with mutable protocols
on different system models, as long as these rely on gather-
ing votes to reach decisions.

The proposal of generalized consensus protocols has
been done before, in particular regarding also the commu-
nication pattern [14] and the oracle used [11]. The first ap-
proach [14] also addresses the trade-off between latency and
bandwidth, but is less flexible in terms of what communica-
tion patterns can be obtained. Specifically, it cannot be in-
stantiated to mimic the ring or the gossip mutations intro-
duced here and requires the coordination of processes on
the pattern used. The second approach [11] addresses only
the issue of which oracle to use. This is orthogonal to our
proposal and it should be possible to combine them.

Gossip-based protocols have been used in several pro-
tocols to solve other distributed programming problems.
Namely, for probabilistic reliable multicast [5] and stability
detection [13]. In common, such protocols offer good scala-
bility to a large number of participants and resiliency to pro-
cess and network omission failures.

In contrast with protocol configuration by layer switch-
ing [16], no coordination at all is required when selecting
the strategy used to compute delays in mutable consensus.
In fact, different processes may be simultaneously using
different strategies without endangering correctness. This

means also that, given an adequate policy, it is simple to
dynamically reconfigure the protocol to adapt to a chang-
ing environment.

8. Conclusions

The mutable consensus protocol is interesting from a
theoretical point of view, as it abstracts the behavior of
several (apparently) distinct consensus protocols. Further-
more, the performance tuning procedure operates only in
the time domain and thus does not, in any way, compro-
mise the correctness of the protocol which assumes an asyn-
chronous system model. This has interesting consequences.
First, strategies used in the computation of delays required
for mutations can be arbitrarily complex and varied with-
out requiring additional correctness proofs. As an example,
in addition to using the semantics of messages as shown
in this paper, it is also interesting to consider using infor-
mation from the environment (e.g. network conditions). Fi-
nally, no coordination at all is required when selecting the
strategy used to compute delays.

Albeit simple, the permutation gossip introduced in this
paper performs very well. In fact, in the realistic setting used
for evaluation in this paper it surpasses other consensus al-
gorithms in scalability to large numbers of processes. It is
also clear that unless the number of processes is small and
there are plenty of resources, the amount of messages to
be handled by a single process is more relevant for perfor-
mance than the number of communication steps required to
decide. This underlines the usefulness of mutating the pro-
tocol depending on the system configuration.

Notice also that protocol mutation is possible because:
(i) the information received is always relayed and (ii) the
protocol assumes lossy channels. The second is particularly
interesting, as it precludes obtaining similar performance
advantages from higher level mutable protocols based on
reliable multicast. To make it possible, one should use se-
mantically reliable multicast, which generalizes the stub-
born channel abstraction to multicast communication [19].
One can also consider developing mutable protocols for dis-
tributed programming problems other than consensus. In
fact, the implementation of mutable consensus presented
here is part of GROUPZ, a group communication toolkit
based on mutable protocols which is configured by select-
ing implementations of stubborn channels.

References

[1] G. Alvarez and F. Cristian. Simulation-based testing of com-
munication protocols for dependable embedded systems.
The Journal of Supercomputing, 16(1), May 2000.

[2] O. Bakr and I. Keidar. Evaluating the running time of a com-
munication round over the internet. In ACM Symp. Princi-
ples of Distributed Computing.

[3] A. Basu, B. Charron-Bost, and S. Toueg. Simulating reliable
links with unreliable links in the presence of process crashes.
In Intl. Ws. Distributed Computing (WDAG), 1996.

[4] M. Ben-Or. Another advantage of free choice: Completely
asynchronous agreement protocols. In ACM Symp. Princi-
ples of Distributed Computing, 1983.

[5] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and
Y. Minsky. Bimodal multicast. ACM Trans. Computer Sys-
tems, 17(2), 1999.

[6] T. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure
detector for solving consensus. Journal of the ACM, 43(4),
July 1996.

[7] T. Chandra and S. Toueg. Unreliable failure detectors for re-
liable distributed systems. Journal of the ACM, 43(2), March
1996.

[8] M. Fischer, N. Lynch, and M. Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the
ACM, April 1985.

[9] R. Guerraoui. Indulgent algorithms. In ACM Symp. Princi-
ples of Distributed Computing, 2000.

[10] R. Guerraoui, R. Oliveira, and A. Schiper. Stubborn commu-
nication channels. Technical Report 98-278, EPFLausanne,
June 1998.

[11] R. Guerraoui and M. Raynal. The information structure of in-
dulgent consensus. Technical Report PI-1531, IRISA, April
2003.

[12] R. Guerraoui and A. Schiper. The generic consensus service.
IEEE Trans. Software Engineering, 27(1), January 2001.

[13] K. Guo, M. Hayden, R. van Renesse, W. Vogels, and K. Bir-
man. GSGC: An efficient gossip-style garbage collection
scheme for scalable reliable multicast. Technical Report
TR97-1656, Cornell University, CS Department, December
1997.

[14] M. Hurfin, A. Mostefaoui, and M. Raynal. A versatile family
of consensus protocols based on Chandra-Toueg’s unreliable
failure detectors. IEEE Trans. Computers, 51(4), April 2002.

[15] I. Keidar. Challenges in evaluating distributed algorithms. In
Future Directions in Distributed Computing, volume 2584 of
Lecture Notes in Computer Science. Springer, 2003.

[16] X. Liu, R. van Renesse, M. Bickford, C. Kreitz, and R. Con-
stable. Protocol switching: Exploiting meta-properties. In
IEEE Intl. Ws. Applied Reliable Group Communication,
2001.

[17] R. Oliveira. Solving Consensus: From Fair-Lossy Channels
to Crash-Recovery of Processes. PhD thesis, EPFLausanne,
February 2000.

[18] J. Pereira and R. Oliveira. The mutable consensus protocol
(extended version). Technical report, University of Minho,
August 2004.

[19] J. Pereira, L. Rodrigues, and R. Oliveira. Semantically reli-
able multicast: Definition, implementation and performance
evaluation. IEEE Trans. Computers, 52(2), February 2003.

[20] M. Pettersson. Linux performace monitoring counters.
http://www.csd.uu.se/ mikpe/linux/perfctr/.

[21] A. Schiper. Early consensus in an asynchronous system with
a weak failure detector. Distributed Computing, 10(3), April
1997.

