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ABSTRACT 

One of the main motivations for hierarchical modelling is to understand how properties, 

composition and structure at lower scale levels may influence and be used to predict the 

material properties at macroscopic and structural engineering scales. Structural timber is, in 
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most cases, characterized by three parameters usually designated as reference properties: 

density, bending modulus of elasticity and bending strength. 

The present paper addresses a review on different possibilities for obtaining reliable data 

about the mechanical behaviour of timber elements by collecting information at different 

levels and by organizing that information into a hierarchy of sequential levels (from lowest to 

highest). The applicability and limitations of statistic and probabilistic methods on the 

prediction and inference of timber’s reference material properties are discussed and 

exemplified. 

KEYWORDS: Bayesian methods; hierarchical modelling; timber reference properties; 

updating 

1. INTRODUCTION 

The quality (reliability) of a probabilistic structural analysis process is highly dependent on 

the quality of the information used for the input variables. Structural timber is, in general 

case, characterized by three parameters usually designated as reference properties: density, 

bending modulus of elasticity and bending strength. 

The onsite assessment of these properties is being done following different approaches, which 

often consider the hierarchical structure of wood. This hierarchical structure can be seen at 

different scales, from nanostructure to macroscale, [1], similarly to other natural materials 

such as bone [2].  

It is recognized that the structural performance of timber elements is dependent on variables 

that operate at different material’s scale. This dependence influences the results obtained 

through the different tools and methods used for  onsite assessment of structural timber 

elements. From the inclination of the microfibrils of cellulose inside the cells walls (micro) 
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through the characteristics of the growth rings (meso) until the effect of gross defects 

(macroscale), different models have been built to deal with the requirement of more reliable 

models for the prediction of structural timber elements’ performance.  

Hierarchical or multilevel modelling is therefore suitable for this material, since it reflects the 

necessity of acquiring knowledge from timber’s variables at different levels. The complexity 

of timber and the restrictions existing when performing onsite assessment make Bayesian 

statistics an excellent tool for combining information from multiple sources (non-destructive 

tests, NDT; semi-destructive tests, SDT; or even destructive tests, DT), to update information 

when new data is available and to include expert opinion (qualitative information). 

Hierarchical Bayesian modelling requires the awareness and the distinction of different scales, 

such that a homogenization step may be taken to each of those scales as to define similar 

properties for each scale. The different hierarchical models applied to wood properties, such 

as density, strength or stiffness, are defined according to the study’s purpose. If the adopted 

main unit is the growth ring then the levels can comprise a macrolevel (multilayer material 

with alternative layer of earlywood and latewood) and can end at a very low level as the 

nanostructure, where the layers of the cell’s secondary wall are considered as unidirectional 

fibre-reinforced composites and middle lamella and primary wall are considered as random 

short-fibre/particle reinforced composites [1][3]. If the main unit is clear wood (macroscale), 

then growth ring (mesoscale) and cell level (microscale) can define the hierarchical model [4]. 

The main unit of analysis can also be the structural member with three levels defined as micro 

(timber board or beam), meso (local) and macro (global) [5]. In the present paper, focus is 

given to the models where the macrolevel is defined at the material level. 

Several attempts were made to hierarchically model the stiffness and strength of timber 

elements, by considering the presence of weak sections separated by segments of clear wood 

[6][7][8][9]. In [10], Bayesian methods were used to update the mechanical properties of 
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existing timber elements and the assessment was performed using First Order Reliability 

Methods (FORM). The results of that work evidenced that different degrees of belief in the 

new data may significantly influence the reliability level. Usually for in-service timber 

elements, new data are derived from NDT results obtained with ultrasound, resistance drilling 

and penetration resistance equipment. In [10], NDT tests were made to chestnut wood 

specimens and combined with results from compressive strength parallel to the grain tests. 

The uncertainty of the different NDT results was modelled by Maximum Likelihood 

estimates. 

Hierarchical modelling has also been carried out using Bayesian Probabilistic Networks 

(BPN) for the analysis of variability of timber mechanical properties [11][12][13]. BPNs are 

used to represent knowledge based on Bayesian regression analysis describing the causal 

interrelationships and the logical arrangement of the network variables. In [11], a hierarchical 

model was used to determine the influence of the origins (different tree growth locations) and 

cross-sectional dimensions of new timber elements on the probability distribution of its 

material properties. On that work, BPNs using information of machine grading indicators 

were used to describe and infer on the dependence of different origins and dimensions of 

sawn structural timber on the relevant timber material properties. The parameters of the prior 

probability distribution functions, as well as the regression parameters, were estimated as 

random variables with mean values, standard deviations and correlations through the 

Maximum Likelihood method.  

The present paper addresses different possibilities for obtaining reliable data about the 

reference properties of timber elements by collecting information at different levels and by 

organizing that information into a hierarchy of sequential levels (from lowest to highest).  



 

5 

2. BAYESIAN PROBABILISTIC METHODOLOGY 

Bayesian statistics is an inference method based in the Bayes’ rule allowing to estimate the 

updated probability, given an additional evidence is provided. Bayesian probability, therefore 

belongs to the category of evidential probability analysis that is used to evaluate the 

probability of a new information or hypothesis. For that aim, Bayesian probabilistic methods 

first specifies a given prior probability, which is then updated when new relevant data are 

made available. The prior probability distribution expresses the uncertainty about a given 

parameter before evidence is taken into account. The posterior probability function, which is 

the conditional distribution of the uncertainty, may be obtained by considering the Bayes’ 

theorem, multiplying the prior distribution by the likelihood function and then normalizing it. 

As the prior distribution probability is often only the subjective assessment of an expert, in 

Bayesian methods probabilities are considered as the best possible expression of the degree of 

belief in the occurrence of a certain event. The Bayesian probabilistic approach does not 

consider that probabilities are direct and unbiased predictors of occurrence frequencies that 

can be observed in practice. The only consideration is that, if the analysis is carried out 

carefully, the probabilities will be correct if averaged over a large number of decision 

situations [14]. To fulfil that consideration, it is necessary that the subjective and purely 

intuitive part is neither systematically over conservative, nor over confident. Therefore, 

calibration to common practice and to empirical data may be considered as an adequate path 

to that aim. 

The JCSS Probabilistic Model Code [15] concludes that, compared to the frequentistic 

interpretation the Bayesian interpretation is the only one that makes sense in the end, as it 

overcomes the difficulties of updating distributions when more statistical data is available. 

When uncertainties are present, The Bayesian interpretation overcomes these difficulties and 

provides the most logical and useful framework for consistent decision making [14]. 
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Bayesian methods allow quantifying an approximation about the statistical uncertainty related 

to the estimated parameters, regarding both the physical uncertainty of the considered 

variable, as well as the statistical uncertainty related to the model parameters. Therefore, they 

offer a suitable method for parameter estimation and model updating. However, for making 

this possible, it is necessary to take into account the measurement and the model uncertainties 

in the probabilistic model formulation. Since Bayesian methods grant the opportunity to 

incorporate different considerations about the uncertainty of models in the updated 

probabilistic model, the comparison between different assessment experts’ results may be 

regarded as a problem, as consensus about a comparison basis has not yet been established. 

2.1. Maximum Likelihood method 

In a probability paper, the vertical scale is changed by means of a non-linear transformation 

such that the cumulative distribution curve plotted in that graph is represented by a straight 

line. Attending to the configuration of that line (location and slope) it is possible to assess the 

parameters of the inherent distribution. This method is useful for normality tests [16] and to 

determine if a given data sample is well defined by a specific type of probability distribution. 

However, a more efficient and accurate method is the Maximum Likelihood method, which is 

based on finding the set of parameters of an assumed probability distribution function which 

most likely characterizes the underlying data sample. Although the Maximum Likelihood 

method is not a full Bayesian approach and it can also be used in a frequentistic approach, it is 

commonly used to find the distribution parameters of the prior information in a Bayesian 

methodology, and thus it will be briefly described here. In general, for a fixed set of data and 

an underlying statistical model, the Maximum Likelihood method allows to select the set of 

values of the model parameters that maximizes the likelihood function. The general procedure 
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on how to implement the Maximum Likelihood method can be found in [5][16] and also in 

[18], where a parameter that describes the model uncertainty is also implemented. 

In Bayesian statistics, the maximum likelihood estimator coincides with the most probable 

Bayesian estimator, given that the parameters of the prior distribution are uniformly 

distributed, meaning that the maximum posterior estimate is the parameter that maximizes the 

probability of that parameter given the analyzed data. Therefore, the Bayesian estimator 

coincides with the maximum likelihood estimator for a uniform prior distribution. 

In probabilistic analysis, as the inference on characteristic values is of special interest in the 

field of structural safety assessment, it is also recommended that special focus is given to the 

extreme values of the distributions. Therefore, a scheme for estimating the parameters of 

probability distributions focusing on the tail behaviour should also be addressed, as 

considered in [19] where a censored Maximum Likelihood estimation technique was used. 

2.2. Bayesian Probabilistic Networks 

Bayesian Probabilistic Networks (BPN) are used to represent knowledge upon a system, 

based on Bayesian regression analysis describing the causal interrelationships and the logical 

arrangement of the network variables. BPNs are represented by directed acyclic graphs 

(DAG), composed by a set of nodes representing each system variable, connected by a set of 

directed edges linking the variables according to their dependency or cause-effect 

relationship. The causal relationship structure of a BPN is often described by family relations 

that differentiates child node variables with ingoing edges (effects), from parent node 

variables with outgoing edges (causes) [20]. A (parent) node without any ingoing edges, thus 

without any parent node converging to it, is often called a root node. The direction-dependent 

criterion of connectivity evidences the induced dependency relationship between variables 

and is classified as converging, diverging or serial (or cascade), according to its arrangement 
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[21]. Each variable node represents a random variable, either defined as a continuous random 

variable or as a finite set of mutually exclusive discrete intervals.  

The main objective of a BPN is to calculate the distribution probabilities regarding a certain 

target variable, by considering the factorization of the variables' joint distribution based on the 

conditional relations within the developed generic algorithm. In this light, the DAG is the 

qualitative part of a BPN, whereas the conditional probability functions serve as the 

quantitative part. Therefore, the algorithms themselves are indifferent to the scope for which 

the BPN is employed, and thus have been employed in several different real-world problems, 

besides the hierarchical modelling of timber reference properties. 

In the case of BPNs, it is recommended that the parent nodes are composed by indicators with 

strong correlation with the child node (reference property in analysis) expressed, for instance, 

by high coefficients of determination. The strength of the correlation may be qualitatively 

described as proposed in [15] where coefficients of correlation of 0.8, 0.6, 0.4 and 0.2 indicate 

high, average, low and very low correlation, respectively. After determining the indicators 

with higher predictive power, the dependencies within the DAG are created with different 

levels of hierarchy according to expert decision. The levels of hierarchy should attend to the 

source of the data, its relevance and both its size and material scale. 

When considering decay in timber elements, dynamic BPNs should be implemented as to 

incorporate a time dimension through the addition of a direct mechanism for representing 

temporal dependencies among the variables, see e.g. [22][23]. Dynamic BPNs have been 

extended to the modelling of deterioration [24], while aspects of optimization of inspection 

and decision making for maintenance regarding deterioration have been addressed by BPN 

analysis in e.g. [25][26][27]. 

A limitation of Bayesian methods is the overall requirement of a sufficient large sample for a 

reliable analysis. It should also be noted that, in a parallel BPN, a small sample may lead to 
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the impossibility of factorization of the  joint probability due to the non occurrence of a given 

intersection of evidences. In this case, the construction of a BPN is highly dependent of the 

choice of the intervals’ range when using discrete variables. 

3. PREDICTION OF REFERENCE PROPERTIES  

Reference properties can be predicted from information collected at different scales. Figure 1 

illustrates the variables and their interaction for the inference of the reference properties (in 

gray). The wood species information can be considered a cross-scale variable that influences 

decisively some other variables, as for instance visual strength grading. 

3.1. Density 

Wood density is a basic quality indicator of the mechanical properties of timber. Density is 

used for establishing clear wood strength values which is afterwards adjusted accounting the 

presence of defects (strength ratio) presented by the timber element to deliver the final 

strength (allowable strength) [28]. Several indicators can be used for predicting the density of 

a structural timber element (visual grading/strength class mean value, core drill, penetration 

resistance, drill resistance, pull-out resistance), Figure 2. 

An initial (first level) prediction of density of a timber element is provided by the onsite 

visual strength grading (VSG) process. This first prediction is generally the value obtained 

from the preliminary visual survey and allocated to part or all timber elements in the structure 

(broader concept of macrolevel) for the assessment of the timber element or, in an even more 

macrolevel, a general value given to all timber elements of the structure in order to proceed to 

a first structural analysis of the timber structure [29]. 

At a mesolevel, the element can be considered as being composed of clear wood zones and 

knot zones [9]. Density of clear wood zones can be determined using different NDT and SDT 
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methods, some indicated in Figure 2. Core drilling is a direct method and one that could also 

provide information about the wood species, superficial decay and moisture content [29], 

although the process of extraction of the wood core may substantially influence the moisture 

content due to the drill friction. 

Density prediction is also necessary for predicting the modulus of elasticity (MOE) through 

the determination of the dynamic modulus of elasticity. Matters related to the importance of 

density and difficulties/uncertainties related with its prediction can be found in [31]. 

Accuracy and precision of density’s prediction model is strongly dependent on the variability 

showed by each individual timber element. Density’s variation occurs along the length and 

within the cross-section (width and depth) of a timber beam. The error of prediction can be 

partially dealt if the NDT or SDT method is applied taking into consideration important 

characteristics of the member (namely wood species, growth ring pattern and spatial variation 

inside the member) and if a sufficient number of readings are collected. The determination of 

penetration resistance along the length of the beam can provide more reliable data by 

incorporating possible density’s lengthwise variation pattern [32]. As this method only 

considers the surface layers of the timber element, it does not take into account the cross-

section variation that can be much larger that the longitudinal variation. The uncertainty in the 

prediction of density within a cross-section is considerably high given the difficulties of the 

NDT/SDT methods to take into account the growth rate variations and the effect of juvenile 

wood [33]. 

Density data obtained from core drilling, penetration resistance or drilling resistance can be 

balanced with expert estimation through Bayesian analysis. 

To illustrate the application of hierarchical Bayesian analysis, data from thirty different new 

timber beams with a cross-section of 90 x 160 mm
2
 and length of 2400 mm was used. The 

Portuguese standard for visual grading was applied [34] as the beams were identified as 
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maritime pine (Pinus pinaster Ait.). The standard specifies two grades, being the density 

defined in terms of rate of growth – lower or equal to 6 mm for the upper grade (mean density 

610 kg/m
3
), or lower or equal to 10 mm for the lower grade (mean density 580 kg/m

3
). A 

clear wood zone, 551 mm long, was cut from the beams, following a probabilistic framework 

for analysing the bending behaviour of timber beams as a heterogeneous material composed 

of clear and weak zones [9]. 

The mean value of each visual grade was used as prior information on the density of each 

beam. Apparent density was determined according to [35]. In the second step a core drilling 

method was applied to get new information. Two wood cores were taken from one edge of the 

specimen, at each end (to take into account a possible lengthwise variation). The length of the 

cores was 1/4 of the depth of the beam (what is called marginal areas in most visual strength 

grading standards).  

The employed Bayesian hierarchical model adopted a normal distribution as priori 

distribution [36] and although the mean and standard deviation are considered known 

(resulting from visual grading) a certain level of uncertainty was adopted. Therefore, the 

hyperparameters distribution’s (hyperprior) are assumed as normal (location parameter) and 

gamma (scale parameter) distributions. The Bayesian model posterior distribution was 

estimated through a Markov Chain Monte Carlo (MCMC) method. MCMC was carried out by 

running Winbugs inside R software trough R2WinBUGS package (1 chain, 1 000 burn-in 

iterations, 90 000 used iterations).  

Figure 3 shows the correlation obtained by density inference using the information from 

visual grade core drilling and the combination of both (visual grading and core drilling) by 

Bayesian inference. 

The obtained results, Figure 3 and Figure 4a, showed that Bayesian inference resulted in a 

non-significant adjustment on the density values obtained from core sampling. The average 
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error (underestimation) in density prediction was -3.06% and -3.68%, respectively using 

solely core drilling or applying the Bayesian hierarchical model (BHM). Nevertheless, 

although minor, an increase of the coefficient of determination, r
2
, was obtained (Figure 3) 

and of precision (Figure 4b) by the BHM. 

The high scatter of individual errors shown in Figure 4a.2 (core drilling) can be explained by 

the fact that the core extraction did not take into account the variation of density inside the 

cross-section. Variation of wood density across the cross-section can be taken into account (at 

least partially) by including in the model information from type of annual ring patterns 

exhibited by each beam and information from other NDT methods as the drilling resistance. 

In the present case although Bayesian inference did not provide a clear improvement of the 

reliability of the density prediction provided by core drilling, it was able to combine 

information from expert and new data providing a more robust prediction model.  

It should be stressed that the use of hierarchical Bayesian models is strongly affected by the 

choices made (using non-informative or informative prior distributions for instance) and in 

the case of small sample size (which is almost always the case) this effect can be stronger 

[37]. 

3.2. Modulus of elasticity in bending 

Modulus of elasticity in bending is often determined considering information obtained 

through NDT made onsite, for example using flexural and longitudinal vibrational tests, stress 

wave transmission time, penetration depth, and its correlation to laboratory tests [32]. 

However, the information obtained should always be complemented with visual grading of 

the timber element, since as mentioned in [38] for ancient timber elements, the knot incidence 

(knot diameter to depth/width ratio) and slope of grain, are important influencing parameters 

that may lead to significant MOE reduction. In [8], a hierarchical model was built for the 
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multi-scale variability of MOE which included an explicit representation of the stiffness’ 

variability between timber boards and the stiffness’ variability within boards. All parameters 

of the hierarchical stiffness model were estimated based on a sample of 30 randomly selected 

new timber boards within the strength class L25 of Norway spruce from southern Germany. 

The elements were differentiated along its length in weak sections and in clear wood sections. 

After, a model was proposed by defining the mean modulus of elasticity within an element 

and the differences between that mean and the results within sections of the same element and 

between other elements. These values were modelled by probabilistic distributions with 

parameters obtained using the Maximum Likelihood method. 

In [9], a hierarchical model for inferring on the reference properties of existing timber 

elements was proposed by also considering the distinction between clear and knot wood 

zones. This work, however, presented a framework for timber elements in-service and was 

thus different from the previously mentioned. The model procedure was based in three main 

steps: i) visual identification of clear and knot wood zones; ii) non-destructive prediction of 

the properties of clear wood zones; iii) prediction of the reference materials using clear wood 

properties and applying a knot factor for predicting the strength reduction effect of knots on 

clear wood properties. The application of this procedure to maritime pine beams evidenced an 

average to high correlation between experimental and predicted global modulus of elasticity 

(coefficient of determination, r
2
, between 0.76 and 0.55 with p-value  110

-8
). Nevertheless, 

weaker results were obtained for bending strength, evidencing the need to improve the 

method for determining the strength reduction effect of weak zones. 

Attending the need to consider defects in the prediction of modulus of elasticity and taking 

into account the scale effect, a Bayesian Probabilistic Network is used in this example. The 

BPN considers the data from a multi-scale experimental campaign described in [13][16] 

which collected the results from bending tests in old chestnut timber floor beams in different 
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structural sizes (beams and boards) and for segments with different visual grading. The 

network is presented in Figure 5, where visual grading was considered as parent node, 

because it provides a link between scales and it is a  parameter commonly available in the 

assessment of existing timber structures. The classes for visual grade were obtained according 

to UNI 11119:2004 [39], which for on-site diagnosis considers three classes (I, II and III). 

The timber element is classified in a given class if it fulfills all the imposed requirements. 

Otherwise, it is graded in this study as non-classifiable (NC). 

By consideration of an evidence, e, in a given node N of the BPN, the probability of the class 

C with evidence, Ce, in that node is P(Ce) = 1, whereas the remaining classes with no 

evidence, Cn_ev, have P(Cn_ev) = 0. This means that the state of node N is known with certain 

to be from class Ce. In a BPN, this inference permits to propagate information between nodes. 

Based on this evidence, e, the probability distribution of the remaining nodes can be updated 

by use of Bayes’ theorem. For example, if considering the scale fixed to the material scale 

(segments of the boards) and evidence is given in child node VIb (visual inspection in boards), 

the Bayes’ theorem for the probability of frequency of bending modulus of elasticity (Em) 

follows as:  
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The results deriving from evidence in VIb = I (local scale information) and for different 

considerations on the visual inspection of a beam (global scale information) are presented in 

Figure 6 through the cumulative frequency functions of the modulus of elasticity. It should be 

noted that no beam was graded as class I in the experimental campaign, and therefore no 

information is available for that case. For the other cases of beams’ visual grades, it is clear 

that beams classified with lower visual grades (III and NC) will result in lower values of 



 

15 

modulus of elasticity, while beams classified as VIB = II will result in higher values of 

modulus of elasticity. Although this is an expectable result, the Bayesian Probabilistic 

Networks allows to more adequately combine the information from different size scales and 

to predict the value range for modulus of elasticity and its variation for different scenarios 

with the possibility of updating with different premises. The information given in Figure 6 

allows to define the characteristic values of bending modulus of elasticity, Em, (accounting to 

the probability of frequency) for each combination of prior information, therefore obtaining 

updated values for the design or assessment of the structural element. The results of Figure 6 

also evidence that, even for the same local information (VIb = I), the global visual inspection 

is important to accurately define the modulus of elasticity of the structural element. 

3.3. Bending strength 

For new timber elements, bending strength may be determined either directly or indirectly. 

Indirectly through machine strength grading via empirically known correlations to other 

reference properties, such as density and modulus of elasticity, and directly through samples 

tested in bending up to failure load. These procedures are often incompatible with the 

assessment of in-service timber elements, as its removal is either not possible or cost 

inefficient. In these cases, an onsite assessment method is required for predicting the strength 

of the timber elements. This method is normally based on a combination of NDT methods and 

visual inspection. When removal of small samples is possible, the information of small scale 

mechanical tests may also be employed for a more precise prediction of the global mechanical 

properties. 

Earlier work [40] adopted a stochastic model of hierarchical series system to represent the 

bending strength of Swedish spruce (new wood) anticipating failure in a weak section with 

defects. The model parameters were defined regarding Maximum Likelihood estimates 
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according to the results of 197 bending test results. Assuming that the estimated parameters 

are applicable in the series system model for the full uncut beams, a theoretical bending 

strength distribution function was obtained in dependence of number of defect clusters within 

the span of constant bending moment loading. A strong test of the prediction power of the 

model was established by experiments with 54 long beams from the same population of 

beams from which the small test pieces were cut. 

For the example considered in this work, bending strength (fm) of timber elements is predicted 

using a Bayesian Probability Network that considers prior information on the bending 

modulus of elasticity and visual inspection of small scale elements. This model, therefore, 

considers a differentiation between clear wood segments and sections with different levels of 

defects according to visual grading. As also seen for the previous example, when analyzing 

the modulus of elasticity in bending, a probabilistic framework for the hierarchical model is 

considered as it allows for the inference and updating of the relevant material property by 

combining different prior evidence. 

The Bayesian Probabilistic Network is built from the same database  considered for the 

previous bending modulus of elasticity prediction example [17]. In this case, a sample of 51 

tests (four point bending tests) made to old chestnut (Castanea sativa Mill.) boards was 

considered. Bending stiffness and strength were measured globally as to include the presence 

and influence of natural defects. This example considers only the scale concerning the boards 

global scale, but assumes a division according to visual grading since it was noticed, during 

the experimental campaign, that the failure mode was directly influenced by local defects. 

Although modulus of elasticity in bending and bending strength are both considered as 

individual reference properties of timber, in this example information on the modulus of 

elasticity is used as prior data for the prediction of bending strength, since a high correlation 
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between these two properties was found for the analyzed sample (coefficient of determination 

of r
2
 = 0.69 and p-value  4.510

-14
). 

Considering the modulus of elasticity in bending (Em) obtained by the results of the 

mechanical tests in different boards (Em with classes from 5 kN/mm
2
 up to 17.5 kN/mm

2
 with 

class interval of 2.5 kN/mm
2
) and the visual inspection (VI) of boards (VI with visual grades 

I, II, III and NC of UNI 11119:2004 [39]) as parent nodes, the bending strength (fm) was taken 

as a child node in a simplified parallel network (Figure 7). Conditional probabilities are given 

for the child node and updating of nodes within the network is made by knowledge upon the 

parent nodes using Bayes theorem. 

In this case, if evidence is given in parent node VI, the Bayes’ theorem follows as in Equation 

(2), whereas if evidence is given in parent node Em , the theorem follows as in Equation (3).  
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These equations lead to the posterior joint probabilities, or updated probabilities, of the 

bending strength fm. Figure 8 presents the comparison between distribution curves in the same 

stiffness class but with updated information regarding different visual grade, whereas Figure 9 

presents the comparison within the same visual inspection grade and with updated 

information regarding different stiffness classes. The results are fitted to Lognormal 

probability distributions taking into account the indicators obtained through Maximum 

Likelihood Estimates. Lognormal distributions were chosen, due to their good fit to the lower 

tail of the results and also regarding the recommendations of the Probabilistic Model Code 

[36] for timber. Each case is plotted against the initial distribution without any evidence, 
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which corresponds to the full sample of the experimental results without any posterior 

information. 

In this example, it should be noted that for lower values of Em (0 to 7.5 kN/mm
2
) no higher 

classes of visual inspection (I and II) were found, and that higher values of Em (more than 

10 kN/mm
2
) have no case of non-classifiable (NC) segments. This is in accordance to real 

practice assessment, as it not expected to find high values of Em for low visual graded 

elements or, on the other hand, to find low values of Em for high visual graded elements. 

Between different classes of Em an increase of bending strength for higher values of stiffness 

is visible, whereas, within the same stiffness class, a reduction of bending strength is found 

for lower visual grade classes, as expected. In all cases, the lower tail of the distribution with 

evidence is significantly different from the distribution without any information, which leads 

to significant differences in the characteristic value. As example, when comparing the 5th 

percentile value of the prior distribution without any information and the calculated values for 

the distributions resulting from evidence of Em = [10;12.5] kN/mm
2
 an increase of 22% is 

found when VI = I, whereas decreases of 23% and 30% are found respectively for VI = II and 

VI = III. 

By this hierarchical model, it was possible to update the prior distributions of a reference 

property regarding information obtained by different sources, namely mechanical tests and 

visual inspection. This model evidenced that differences above 20% for design values may be 

obtained depending on different posterior information, therefore showing the importance of 

the updating process for a better definition and assessment of reference properties. 

4. CONCLUSIONS 

Bayesian methods are statistic tools that may consider data from different sources, such as 

different NDTs, SDTs or DTs, or even their combination. However, these data must be 
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classified and arranged with respect to its relevance and dependability, in order to obtain an 

adequate hierarchical modelling and inference for different reference properties of timber. 

This paper addressed different possibilities for obtaining reliable data about the mechanical 

behaviour of timber elements by collecting information at different levels and by organizing 

that information into a hierarchy of sequential levels. The applicability and limitations of 

statistic and probabilistic methods were presented for the prediction and inference of timber’s 

reference material properties, namely density, bending modulus of elasticity and bending 

strength, by means of examples.  On those examples it was noted that the construction of the 

hierarchical Bayesian models is strongly affected by expert decision regarding the 

arrangement of nodes, its dependency and selection of scale levels. It was also noted that the 

predicted reference properties were highly dependent on the information that was inputted 

into the model as prior and posterior information. 

The presented examples also evidenced that Bayesian methods are able to combine 

information obtained from different scales and sources, for the prediction the value, variation 

and distribution of updated parameters in the assessment of timber reference properties. 
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Figure 1: Interaction of different variables for the inference of timber reference properties. 
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Figure 2: Different levels and indicators used to predict wood’s density. 
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Figure 3: Correlation obtained between apparent density and density obtained from visual 

grading (VS), core drilling (core) and Bayesian hierarchical modelling (BHM) using visual 

and core drilling as prior and new data, respectively. 
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Figure 4: a) Error (as function of apparent density) due to core drilling (a.1) and Bayesian 

hierarchical modelling (a.2); Normal distribution curves fit to density values predicted by 

visual grading (VS), core drilling (core) and Bayesian hierarchical modelling (BHM). 
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Figure 5: Example of a proposed hierarchical model for inference on bending modulus of 

elasticity (MOE) regarding different scales on visual grading, adapted from [16]. 
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Figure 6:  Cumulative frequency distributions results obtained through a hierarchical BPN 

inferring on bending stiffness regarding different evidences on visual grading, adapted from 

[16]. 
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Figure 7: Simplified parallel model for bending strength inference. 
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a) 

 

b) 

 

Figure 8: Distribution curves for bending strength (N/mm
2
) within the same stiffness class 

and updated information for different visual inspection grades: a) 7.5 to 10 kN/mm
2
; b) 10 to 

12.5 kN/mm
2
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a) 

 

b) 

 

Figure 9: Distribution curves for bending strength (N/mm
2
) within the same visual inspection 

grade and updated information for different stiffness classes: a) class I; b) class NC. 
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