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Abstract 

An accurate prediction of the compressive strength of masonry is essential both for the analysis of 

existing structures and the construction of new masonry buildings. Since experimental material 

testing of individual masonry components (e.g. masonry unit and mortar joints) often produces 

highly variable results, this paper presents a numerical modelling based approach to address the 

associated uncertainty for the prediction of the maximum compressive load of masonry prisms. 

The method considers numerical model to be semi-random for a masonry prism by adopting a 

Latin Hyper cube simulation method used in conjunction with a parametric finite element model 

of the individual masonry prism. The proposed method is applied to two types of masonry prisms 

(using hollow blocks and solid clay bricks), for which experimental testing was conducted as part 

of the 9th International Masonry Conference held at Guimarães in July 2014. A Class A prediction 

(presented before the tests were conducted) was generated for the two masonry prisms according 

to the proposed methodology, and the results were compared to the final experimental testing 

results. The root mean square deviation of the method for prediction of eccentric compressive 

strength of both types of prisms differed by only 2.2KN, thereby demonstrates the potential for 

this probabilistic approach. 

 

Keywords: Masonry Structure, Eccentric compressive strength, Semi-random field finite element, 

Uncertainty analysis, Latin Hypercube sampling 



1 Introduction  

Determination of the mechanical behaviour of masonry material is important in order to 

determine the safety of historical masonry structures and to design new masonry buildings.  For 

many types of masonry structures (e.g. load-bearing walls, vaults, and pillars) the predominant 

load-carrying ability of masonry is through axial loading in compression. As such, determination 

of the compressive strength of masonry is crucial to ensure the overall performance for many 

masonry structures. However, there generally exists some degree of uncertainty in the 

determination of properties for individual masonry constituents obtained from experimental 

testing, which is rather high when the properties of the composite are estimated from the properties 

of the components.  

To overcome these limitations, this paper presents a novel methodology for the prediction 

of the maximum compressive load for masonry prisms. The methodology adopts a probabilistic 

approach to consider the variation in experimental data for the individual masonry components [1, 

2]. This methodology was recently presented at the 9th International Masonry Conference, for 

which experimental data provided validation. The methodology was applied to produce a Class A 

prediction [3] for two different prisms; 1) a hollow block masonry prism and 2) a clay brick 

masonry prism. The two prism types were subsequently tested experimentally to determine the 

maximum compressive load, allowing for the accuracy of the predicted results to be assessed [1, 

2]. This paper presents the proposed method and the detailed outcomes. 

2 Background 

Despite the large quantities of masonry experimental data and the number of theoretical 

approaches currently available for the estimation of masonry strength under compression, masonry 



material behaviour is not yet fully understood [4]. The need for further research is confirmed by 

the fact the modern design codes [i.e. EuroCode6 [5] and ACI [6]] employ semi-empirical relations 

for compressive strength prediction, instead of simplified theoretical approaches [7]. Traditionally 

masonry compressive strength has been determined by two approaches [8]. The first involves the 

use of prescribed tables (or analytical expressions) that predict masonry strength based on the 

individual block strength and mortar type according to empirical formulae [using standards, e.g.  

EuroCode6]. The second consists of the testing small masonry assemblages either stacked bond 

prisms with height-to-thickness ratio (h/t) of at least 2 but no greater than 5 or wallettes [5].  

The results from experimental testing of masonry assemblages tend to be quite variable 

due testing conditions, material variability (both block and mortar), and workmanship. 

Furthermore, multiple prism samples are required to produce a reliable estimation of the masonry 

stress and stiffness data for use in large-scale structures. Previous experimental tests have 

demonstrated a high level of uncertainty in the prediction of masonry compressive strength. For 

example, [9] in the testing of 84 sets of masonry prisms reported a coefficient of variation (COV) 

of 0.23 for compression strength and 0.34 for the elastic modulus. In a similar study, [4] 

demonstrated COV values of 0.30 and 0.40 for the compressive strength and elastic modulus, 

respectively. Kaushik et al. (2007) also reported discrepancies of up to 480% when various 

analytical prediction methods [5, 6, 10, 11]were compared to a wide variety of experimental results 

for brick masonry prisms [9, 12-19]. This same study demonstrated that when mortar strengths 

were less than 20MPa unconservative errors in excess of 100% were predicted when analytical 

equations from current codes are applied [117% for EuroCode6 [5], and 110% for ACI [20]].  

In an attempt to provide more accurate predictions of the compressive strength of 

masonry, sophisticated non-linear numerical models have been adopted.  Ahmad and Ambrose [8] 

https://www.researchgate.net/publication/228355769_Stress-Strain_Characteristics_of_Clay_Brick_Masonry_under_Uniaxial_Compression?el=1_x_8&enrichId=rgreq-74a9c7db-d055-4c94-98bc-a8522f9edc95&enrichSource=Y292ZXJQYWdlOzI3MTIxNDE1NDtBUzoxOTAyODI0NTI3MDExODVAMTQyMjM3ODI4MDM0Mw==


pioneered the use of a three-dimensional (3D) finite element model to study the complex behaviour 

of hollow block prisms under axial compression. The most significant parameters were found to 

be mortar type, prism geometry, and bearing plate stiffness; results for concrete masonry prisms 

were also presented but without experimental validation. By using a homogenised finite element 

(FE) model, [7] predicted closer experimental outcomes than current codes when considering a 

wide range of previously reported experimental results [12, 15, 21]. The average absolute error 

was 32% for the of the homogenised FE model, 36% for EuroCode6 [5] and 43% for ACI [20] and 

both showed non-conservative estimations for clay bricks [21]. Blackard et al. [22] generated only 

a 12% discrepancy with a 3D FE model for a masonry prism consisting of clay bricks and cement 

mortar under non-eccentric loading, for experimental data with a COV equal to 0.10. However, 

the estimated peak reached in adopted plane strain method was 41% higher than the corresponding 

experimental results. Even when the generalised plane strain was adopted, the peak was 25% 

higher than the experimental results. Notably, when tensile cracking is of interest Pina-Henriques 

and Lourenço [23] advocate adopting meso-scale approaches to incorporate heterogeneity at a 

lower level and to induce tensile cracking under uniaxial compression.  

Overall, the literature review shows that the better estimation is needed to increase the 

accuracy of material strength of masonry, which could influence the safety and cost issues in 

assessing relevant structures. 

3 Methodology 

In this study, a probabilistic methodology was adopted for the determination of the maximum 

compressive load for two types of masonry prism. To do so, a Semi-Random Finite Element 

Method (SRFEM) was adopted. This method make uses of random field theory [24] to consider 



the variance in the determination of the individual masonry material components (e.g. blocks and 

mortar joints). Generally, the Random Finite Element Method (RFEM), not available 

commercially, is an extension of the Finite Element Method that is able to  add randomness to all 

the integration points of the FE model by applying random field theory (i.e. each integration point 

has randomly a different characteristic in term of material properties) [25]. To simplify the model, 

a semi-random field concept was applied, and each block or mortar layer was characterised by 

different material properties.  

The methodology used to conduct the semi-random field finite element analysis is 

illustrated in Figure 1.  A parametric finite element model of each prism was initially generated 

using ABAQUS commercial finite element software [26]. Loading was applied in a quasi-static 

manner, so as to simulate the loading process that will be adopted in the testing phase. The models 

were subsequently coupled with a Latin Hypercube Sampling (LHS) algorithm generated in 

MATLAB [27]. The statistical distribution of each material property was determined according to 

the experimental results, provided before masonry prism testing [1, 2]. The parametric models 

were subsequently conducted which simulated the arbitrary sets of material properties. Plasticity 

parameters for the applied constitutive law were calibrated with experimental test results, again 

provided before masonry prism testing. A stochastic analysis was then conducted and the 

maximum compressive load for each prism was determined according to the results of the 

probabilistic analysis.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Semi-random field finite element analysis methodology
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Two sets of eccentric loading tests (three tests for each type) were carried out 240 days 

after construction of the masonry specimens, allowing for an assessment of the accuracy of the 

numerical prediction. Figure 2 shows the geometry of the specimens and the location of the applied 

loading where additional information regarding the experimental testing may be found in [1, 2].  

 

 

 



 

         

                                     a)                                                                                b) 

Figure 2. The geometry of specimens with eccentric load application: a) brick prisms (front and 

lateral view); and b) concrete hollow prisms (front and lateral view) 
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3.1 Material Constitutive Law 

A continuum plasticity-based damage model [28] was adopted for defining the failure 

behaviour of each component of the masonry prisms (i.e. bricks, mortar layers and concrete hollow 

blocks). This material model assumes that the main two failure mechanisms of the brittle material 

are tensile cracking and compressive crushing. The evolution of the yield (or failure) surface is 

controlled by two hardening variables, the tensile equivalent plastic strain, pl
tε

~ , and the 

compressive equivalent plastic strain, pl
cε

~ , which are linked to the failure mechanisms under 

loading. The model assumes that the uniaxial tensile and compressive response of the material is 

characterized according to a softening law, as illustrated in Figure 3. 

Under uniaxial tension, the stress-strain response follows a linear elastic relationship until 

the value of the failure stress, 0tσ , is reached. The failure stress corresponds to the onset of micro-

cracking in the material. Beyond this stress level, the formation of micro-cracks is represented 

macroscopically by a stress-strain softening response, which induces strain localization in the 

material structure. Under uniaxial compression, the material response is linear until initial yield is 

reached, 0cσ . In the plastic regime the material response is typically characterized by stress 

hardening followed by strain softening beyond the ultimate stress, cuσ . This representation, 

although somewhat simplified, captures the main features of the response of masonry. There is 

also an assumption that the uniaxial stress-strain curves can be converted into stress versus plastic-

strain curves (this conversion is performed automatically by ABAQUS from the user-provided 

stress versus “inelastic” strain data).



 

 

 

 

Figure 3. Response of masonry to uniaxial loading in tension (a) and compression (b) [28] 
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3.2 Stochastic Analysis  

Experimental results of compression tests and flexural tests all masonry components 

reported herein were provided by [1, 2]. To implement this data in a stochastic analysis, the results 

of each material experiment were fitted to the constitutive law described in previous section. 

Figures 4 and 5 illustrate the stochastic analysis of the compressive strength of brick masonry 

samples and concrete hollow blocks, respectively, for use with a plasticity-based damage model 

where a summary of the material properties is provided in a separate tables (Table 1 and 2) and , 

where mu indicates the average value. The stress-strain curve for each sample was divided into 

three separate material zones of behaviour:  (1) linear behaviour as indicated by the compression 

initial yield value, σc0 and the corresponding strain, ec, (2) pre-failure inelastic behaviour as 

indicated by the ultimate compression yield value, σcu and the corresponding strain, ed, and (3) 

post-failure inelastic behaviour as indicated by a stress of 20MPa in the post-failure region, ee. In 

other words, the material constitutive law for each sample was approximated with 3 critical 

points(c, d and e which were defined in Figure 3) and the summary of results were provided for 

statistical analysis. In both cases of brick and hollow concrete blocks, the coefficient of 

determination, R-square value, of the linear region of material behaviour was in excess of 0.95, 

which demonstrates the high level of appropriateness of the applied regression procedure. Due to 

complexity of mortar behaviour, the R-square value for linear part of mortar samples under 

compression were less than brick and hollow concrete block. However, as the value was more than 

0.89 for all samples, a similar procedure was followed for the mortar sample data, as presented in 

Figure 6 and Table 3.  
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Figure 4. Stochastic analysis of compressive data for different brick masonry samples: a) 

SCB.C1, b) SCB.C2, c) SCB.C3, d) SCB.C4,  e) SCB.C4 
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Table 1- Summary of results for stochastic analysis of compressive data for different brick 
masonry samples 

Sample σC0 
(MPa) 

ec σCu 
(MPa) 

ed ee
* E 

(MPa) 
SCB.C1 17.0 0.02 21.9 0.04 0.05 1079 
SCB.C2 18.3 0.02 22.7 0.04 0.05 906 
SCB.C3 18.1 0.02 20.6 0.04 0.04 908 
SCB.C4 16.1 0.02 21.0 0.04 0.04 1129 
SCB.C5 14.1 0.01 21.2 0.03 0.05 1013 

μ 16.7 0.02 21.5 0.04 0.05 1007 
COV 0.08 0.21 0.03 0.10 0.09 0.08 

*The strain corresponds to a stress of 20MPa 
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Figure 5. . Stochastic analysis of concrete hollow block compressive data: a) HCB.C2, b) 
HCB.C3, c) HCB.C4, d) HCB.C5 
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Table 2- Summary of results for stochastic analysis of concrete hollow block compressive data 

Sample σC0 
(MPa) 

ec σCu 
(MPa) 

ed ee
* E 

(MPa) 
HCB.C2 28.7 0.0036 31.3 0.0047 0.0048 8195 
HCB.C3 35.6 0.0004 39.1 0.0004 0.0006 10122 
HCB.C4 33.3 0.0078 35.8 0.0086 0.0112 3825 
HCB.C5 33.3 0.0047 36.7 0.0054 0.0063 6436 

μ 32.7 0.0041 35.7 0.0062 0.0057 7144 
COV 0.07 0.57 0.07 0.25 0.58 0.29 

*The strain corresponds to stress of 30MPa 
Bolded data are outliers, and they are used to indicate  the probable upper bounds or lower bounds of  the 
corresponding probabilistic distribution functions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
a)  
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c)                                        d) 

      
e) 

Figure 6. Stochastic analysis of mortar sample compressive data: a) MS.C7, b) MS.C8, c) MS.C9, d) MS.C10, e) 
MS.C11 
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Table 3- Summary of results for analysis of mortar sample compressive data 

 

Sample σC0 
(MPa) 

ec σCu 

(MPa) 
ed ee

* E 
(MPa) 

MS.C7 6.1 0.022 7.0 0.029 0.037 292 
MS.C8 5.9 0.024 7.0 0.031 0.041 303 
MS.C9 6.0 0.022 6.6 0.027 0.033 365 
MS.C10 6.0 0.022 7.0 0.027 0.035 354 
MS.C11 5.9 0.013 7.3 0.025 0.036 61 

μ 6.0 0.021 7.0 0.028 0.036 275 
COV 0.01 0.11 0.03 0.08 0.07 0.40 

*The strain corresponds to stress of 6MPa 
Bolded data are outliers, and they are used to indicate  the probable upper bounds or lower bounds of  the 
corresponding probabilistic distribution functions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Figures 7, 8 and 9, respectively illustrate the results for the brick samples, concrete hollow 

block samples and mortar samples respectively. According to the data provided [1, 2], the flexural 

elastic modules of specimens were determined by using the 3-point bending test’s classic formula 

(i.e. 3

3

4bd
LFE

δ
= , which F is the maximum load applied to the beam, δ is the maximum deflection 

corresponding to F,  L is the length of specimen, b is the width, and d is the depth of specimen’s 

section).  The flexural strength of samples, σ f, were derived by using approximate classic failure 

formula (i.e. 25.1
bd
FL

f =σ ). Tables 4 to 6 summarise these calculations for different samples.  

A comparison of the results from the flexural test and the compression tests demonstrated 

a close match for both the concrete hollow blocks and the mortar samples. However, for the brick 

samples, the results differed. Thus, the Young's modulus of the bricks derived from the flexural 

testing was not adopted herein. Instead, they were used to determine the ultimate tensile strength 

value of the brick masonry. 

 

 

 

 

 

 



 

 

Figure 7. Stochastic analysis of the brick samples’ flexural data: Force-Displacement Diagram  
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Table 4- Summary of flexure results for brick samples 
 

Sample Ff (KN) σf(MPa) E 
(MPa) 

SCB.F1 3.5 3.2 3705 
SCB.F2 5.0 3.6 6052 
SCB.F4 4.2 3.1 6274 
μ 4.2 3.3 5344 
COV 0.12 0.12 0.19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 8. Stochastic analysis of the concrete hollow blocks’ flexural data: Force- 

Displacement Diagram  
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Table 5.  Summary of results for hollow blocks’ flexural data 

 

Sample Ff (KN) σf(MPa) E 
(MPa) 

HCB.F2 3.6 5.8 6384 
HCB.F3 4.3 7.0 8340 
HCB.F4 4.2 6.6 2140 
HCB.F5 4.2 6.7 6948 

μ 4.1 6.5 5953 
COV 0.07 0.07 0.40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Stochastic analysis of the mortar samples’ flexural data: Force-Displacement Diagram 
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Table 6 - Summary of results for mortar samples’ flexural data 

Sample Ff (KN) σf(MPa) 
E 

(MPa) 
MS.F4 1.5 3.4 340 
MS.F5 1.6 3.7 395 
MS.F6 1.6 3.6 347 

μ 1.6 3.6 361 
COV 0.03 0.03 0.07 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.3 Parametric 3D Finite Element Model 

The two masonry prisms outlined in Figure 2 were numerically simulated using the 

commercial finite element software, ABAQUS Version 6.10. A MATLAB code was subsequently 

generated to parameterize the model. The brick masonry prism and concrete hollow prism models 

consisted of 9,000 and 7,059 first order hexahedral elements (C3D8R), respectively. These 

corresponded to models of 32,577 and 39,690 model degrees of freedom (DOF). An eccentric, 

quasi-static loading was applied to each model using an explicit step function with linear 

amplitude, in order to apply a concentrated point load. To adopt a semi-random field criterion, 

each material layer was assigned identifiable material properties. Figure 10 illustrates the three-

dimensional (3D) models, and Figure 11 demonstrates the deformed mesh, along with the 

equivalent plastic strains for each model for an arbitrarily selected set of material properties.  

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

                                   a)        b) 

Figure 10. Finite Element 3D Model: a) Brick prism, b) Concrete hollow prism 

(Variation in colour indicates different material properties) 



Figure 11 illustrates the lateral “bursting”, which occurred under loading for arbitrarily 

selected material properties. This material phenomenon was concentrated in the mortar layers and 

the lower blocks of the brick prism and reflected the non-symmetric distribution of material 

properties occurring in the semi-random field concept. For the concrete hollow prism, the bursting 

was concentrated in the mortar layers of the prism, particularly in the lower layer.



 

 

a)          b) 

Figure 11. Distribution of principal equivalent plastic strain (PEEQ) at the integration points upon 

failure: a) Brick prism, b) Concrete hollow prism 



3.4 Numerical Model Calibration 

Since a damage-plasticity constitutive law was utilised in ABAQUS, which assumes a 

continuum material behaviour, simulation of the prisms according to the raw data provided may 

have introduced inaccuracies. Therefore, to help ensure that the numerical model closely 

represented the experimental behaviour, three numerical models were initially conducted for 

which the numerical material behaviour was back-calibrated against the previously analysed, 

experimental data.  

This was done using three parameters related to the damage-plasticity model:  dilation angle, flow 

potential eccentricity, and ratio of initial equi-biaxial compressive yield stress to the initial uniaxial 

compressive yield stress (fb0/fc0). The analyses were conducted for a variety of values of these 

three parameters until a match with the experimental results was achieved. Figure 12 illustrates a 

comparison between the calibrated numerical results and the actual material behaviour for the 

concrete hollow blocks. Since post-failure behaviour of the specimens was not of interest in this 

study, the adoption of a perfectly plastic, post-yield material response in compression was 

considered acceptable, and provided faster convergence of the non-linear process. 



 

 

                                  a)                                       b) 

Figure 12.Numerical results for calibration the compression test of hollow concrete block 

(specimen HCB-C2): a) Comparison of simulation results with experimental data, b) Distribution 

of principal equivalent plastic strain (PEEQ) at the integration points during failure  
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This procedure was also adopted for the brick and mortar samples. Figure 13 demonstrates the 

comparison between the numerically predicted and experimentally established material behaviours 

for the brick sample, as well as the distribution of principal equivalent plastic strain (PEEQ) at the 

integration points.  

Behaviour of the mortar samples is particularly complex as it is highly dependent on the 

variation of the Poisson’s ratio during loading and failure [29]. To simplify the model to derive 

satisfactory results, the mortar layer was also fitted to the damage plasticity model. Moreover, to 

consider the general effect of the Poisson’s ratio, a  probabilistic function with uniform distribution 

considering the lower bound and upper bound was adopted in the parametric model for Poisson’s 

ratio relevant to uncertain value of stress/strain ratio during failure [29]. Simulation results for a 

mortar specimen are illustrated in Figure 14. Since the predominant failure mode in prism tests 

was compression and since the preliminary results showed that none of integration points in FEM 

reached to tension plastic strain during failure of prisms, the calibration of flexural test was not 

conducted. 



 
                                  a)                                   b) 

Figure 13. Numerical results for calibration the compression test of brick (specimen SCB-C2):  a) 

Comparison of Simulation results with experimental data, b) Distribution of principal equivalent 

plastic strain (PEEQ) at the integration points during failure  
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                                  a)                                     b) 

Figure 14. Numerical results for calibration the compression test of mortar (specimen MS.C9) a) 

Comparison of simulation results with experimental data, b) Distribution of principal equivalent 

plastic strain (PEEQ) at the integration points during failure 
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3.5 Latin Hypercube Sampling Algorithm 

The assessment and presentation of the effects of uncertain input variables for a complex 

system can be recognized simply by the following equation: 

   )( ii XfY =    (Eq. 1) 

where the function f  represents the model under investigation, [ ]iniii xxxX ,,, 21 =  is a vector of 

model inputs, and [ ]iniii yyyY ,,, 21 =  is a vector of model predictions. In this paper, inx  s are the 

material properties (e.g. Young’s modulus, Poisson's ratio, yield stress, etc.) where ‘i’ represents 

the prism type (i=1 for brick masonry prism and i=2 for concrete hollow masonry prism), 

respectively, and iny  (with n=1) is the maximum compressive load of the model. 

The goal of the uncertainty analysis was to determine the uncertainty in the elements of 

Y  that arose from the uncertainty in the elements of X  [7]. In this paper, f  is quite complex, as 

demonstrated in the parametric ABAQUS model generated in the previous section using 

MATLAB. To conduct the uncertainty analyses through the parametric FE model based on 

experimental data, characterization of the uncertainty in the input variables was required. In this 

case, the uncertainty in the elements of X was assumed to be characterized by a sequence of 

distributions: 

   XnDDD ,,, 21    (Eq. 2) 

where jD  is the distribution associated with the element jx  of  X  and nX  is the number of 

elements contained in X  (i.e., [ ]nXxxxX ,,, 21 = ). The various distribution functions adopted 

in this analysis are presented in Table 7. For notational convenience and also for the ease of 



presentation, the distributions in Eq. 3 below will be represented by a probability space ( suS , suΓ ,

sup ), where the subscript “su” is used as a designator for “subjective”. The probability space    

( suS , suΓ , sup ), consists of three elements:  a set S that contains all possibilities that could occur 

in the particular universe under consideration; a collection Γ of subsets of S for which probability 

will be defined; and a function p that actually defines probability for the elements of Γ . When 

viewed in its most general form, an uncertainty analysis simply involves the determination of the 

distribution y  for those results from the function f  in Eq. 2. Furthermore, the distribution for 

y  can be presented as a cumulative distribution function (CDF) or as a complementary 

cumulative distribution function (CCDF), which is simply one minus the CDF. The CCDF can be 

formally defined by the integral [30]: 

    [ ]∫=>
suS susuY dVXdxfYyprob )()()( δ  (Eq. 3) 

where )( Yyprob >  is the probability that a value larger than Y  will occur, sud represents the 

density function corresponding to the distributions in Eq. 4 and hence to the probability space  

( suS , suΓ , sup ), the differential sudV  is selected for mnemonic purposes, because integration will 

typically be over a high-dimension (i.e., nX ) volume. When X  and f  are predefined, the 

uncertainty analysis is simple in concept and involves evaluation of the integral in Eq. 3 to obtain 

the CDF and CCDF. 

[ ]
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>

Yxfif

Yxfif
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)(0

)(1
)(δ  (Eq. 4) 



Many different methods are available to evaluate the integral of Eq. 3 including Monte 

Carlo simulation [31], differential analysis [32], a response surface methodology [33], the Fourier 

amplitude sensitivity test (FAST) [34] [and the closely related Sobol variance decomposition [35]], 

and fast probability integration [36]. According to [30], a Monte Carlo simulation with Latin 

Hypercube Sampling (LHS) is the most broadly applicable approach to the propagation and 

analysis of uncertainty and often the only approach that is needed. In this study, a LHS method 

based on a Monte Carlo simulation algorithm was generated in MATLAB to evaluate the effect of 

the uncertain input material properties of the two prisms.



Table 7. Characterization of the input variable distribution functions 

 

 

 

Parameter Symbol  Mean STD Lower 
Bound 

Upper 
Bound 

Distribution Unit 

  Solid Bricks 
Young’s modulus  Eb 

 1007 80 900 1200 Normal MPa 
Poisson's ratio νb 

 0.2 - - - Deterministic - 
Compression initial 
yield 

σc0b 
 16.7 1.3 13.0 19.0 Normal MPa 

Compression ultimate 
stress 

σcub  21.5 0.6 20.0 23.0 Normal MPa 

Tension failure stress σt0b  3.3 0.4 3.0 5.0 Normal MPa 
Concrete Hollow Blocks 

Young’s module  Eb 
 9200 4500 3800 22000 Normal MPa 

Poisson’s ratio νb 
 0.2    Deterministic - 

Compression initial 
yield 

σc0b 
 32.7 2.3 28.0 35.0 Normal MPa 

Compression ultimate 
stress 

σcub  35.7 2.5 35.0 40.0 Normal MPa 

Tension failure stress σt0b  6.5 0.4 5.0 7.0 Normal MPa 
 Mortar Layers 
Young’s module  Em 

 313 89 60 400 Normal MPa 
Poisson’s ratio νm 

 0.15 - 0.05 0.25 Uniform - 
Compression initial 
yield 

σc0 
 6.2 0.3 5.0 6.5 Normal MPa 

Compression ultimate 
stress 

σcum  7.0 0.2 6.5 8.0 Normal MPa 

Tension failure stress σt0m  3.6 0.1 
 

3.0 4.0 Normal MPa 



4 Results and Discussion 

4.1 LHS Simulation  

For each model, 200 LHS simulations were performed, and a set of stratified probabilistic 

distribution functions (PDF) of the maximum eccentric compressive strength was derived for the 

two prisms (see Table 8). The statistical results indicated that the applied load for model 1 was in 

the range between 85.8kN and 124.7kN. For model 1, the mean maximum compressive load value 

was equal to 104.1kN and COV was equal to 0.07. For model 2, the mean value was equal to 

47.9kN and COV was equal to 0.08. The maximum of load value reached was equal to 62.6kN; 

and its minimum value was equal to 41.1kN.



Table 8. Statistical summary of the model PDFs 

 1 2 
Model Brick masonry prism Concrete hollow block prism 

Maximum (kN) -124.7 -62.6 
Median (kN) -106.3 -47.2 

Minimum (kN) -85.8 -41.1 
Mean (kN) -104.1 -47.9 

COV 0.07 0.08 

 



Figure 15 shows the CDF for the two models based on the results in Table 2. This 

illustrates the range of predicted values of the maximum compressive strength at the point of 

failure for each prism. The range of results appears reasonable considering the uncertainty in 

determining material characteristics. To determine the maximum compressive load of each 

masonry prism, the acceptable probability level must be considered for design purposes. For 

instance, if the accepted probability was set to 0.95, the results would correspond to 88.8kN for 

the brick prism and 43.3kN for the concrete hollow prism. However, for the purposes of the student 

challenge (a blind prediction), it was decided to consider the acceptable probability failure level at 

a lower value of 0.50 (the mean value). This corresponded to a maximum compression load equal 

to 104.1kN for the brick masonry prism and 47.9kN for the concrete hollow block prism. These 

values were reported to the IMC challenge committee without prior knowledge of the final result. 

 



 

a) 

 
b) 

Figure 15- CDFs of outputs: a) Brick masonry prism and b) Concrete hollow block prism 

(Continuous and dashed vertical lines correspond to the probability of 0.95 and 0.50, respectively)
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4.2 Experimental Results and Comparison 

Three specimens of each prism type were subsequently tested to determine the maximum 

compressive load during the IMC conference. The statistical summary of the experimental results 

is reported in Table 9.



Table 9- Statistical summary of the Experimental Results 

 1 2 

Model Brick masonry prism Concrete hollow block prism 

Maximum (kN) -126.1 -51.0 

Minimum (kN) -122.5 -46.8 

Mean (kN) -124.4 (15%)* -48.5 (2%)* 

COV 0.01 0.04 

*Value in brackets indicate the error of result corresponded to the predictions 



A comparison of Table 9 to what was summarized from Class A prediction in Table 8 

shows that the error of predictions of mean value for brick and hollow concrete bock prisms were 

15% and 2%, respectively. The root mean square deviation (RMSD) of the method for both types 

of prisms was just 2.2KN, which demonstrates the robustness of the probabilistic approach applied. 

The experimental results had, remarkably, a very low scatter, much lower than the predicted by 

the probabilistic model, despite the low number of specimens considered. Table 10 compares the 

predicted values with the EuroCode. The code is shown to be extremely conservative for both the 

brick and the concrete blocks by allowing less than 50% of the capacity in both cases.



Table 10- Statistical summary of the Experimental Results 

 1 2 

Model Brick masonry prism Concrete hollow block prism 

Class A prediction (kN) 104.1 47.9 

Experimental Result (kN) 124.4 48.5 

Maximum Ultimate Load by Euro Code (kN) 55.0 23.0 
 



5 Conclusions 

This paper outlined the probabilistic methodology implemented by University College 

Dublin’s Urban Modelling Group to predict the maximum compressive load of two masonry 

prisms. The experimental material data provided to all participants in the blind prediction were 

utilised to generate a probabilistic distribution function for each random input variable considered. 

In addition, the data were used to calibrate the numerical model to the experimental data. To 

generate more realistic results, the variance in values of material properties was applied in each 

individual brick and mortar joint conducting a semi-random field finite element analysis. For this 

purpose, the two prisms were simulated in ABAQUS commercial finite element software and were 

coupled with a Latin Hypercube Sampling algorithm generated in MATLAB. Loading was applied 

in a quasi-static manner, so as to simulate the loading process that was to be adopted during the 

testing phase. 

The simulation results show that the probability distribution function for the brick 

masonry prism included a wide range of maximum loading values (between 85 and 124kN). For 

the concrete hollow prism, a range between 40 and 62kN was established. Comparing the 

experimental results to what was summarized from Class A prediction shows that the error of 

predictions of mean value for brick and hollow concrete bock prisms were just 15% and 2%, 

respectively. The RMSD for both types of prisms was just 2.2KN, which demonstrates the 

robustness of the probabilistic approach applied. The comparison also indicated that the design 

value reported to the IMC committee was safe and accurate, having observed less than the reported 

value for all experiments. All of observed results were remarkably in the range of predicted 

distribution function. The reported results were the best from the 26 participating teams.   
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