
Cut Formulae and Logic Programming

Luis Pinto
�

luis�dcs�st�and�ac�uk
Computer Science Division
University of St Andrews

Scotland

Abstract� In this paper we present a mechanism to de�ne names for
proof�witnesses of formulae and thus to use Gentzen�s cut�rule in logic
programming� We consider a program to be a set of logical formulae
together with a list of such de�nitions� Occurrences of the de�ned names
guide the proof�search by indicating when an instance of the cut�rule
should be attempted� By using the cut�rule there are proofs that can be
made dramatically shorter� We explain how this idea of using the cut�rule
can be applied to the logic of hereditary Harrop formulae�

� Introduction

The computation mechanisms both for logic and for functional program�
ming are searches for cut�free proofs� First� in pure logic programming
the achievement of a goal G w�r�t� a program P can be seen� as the
search for a proof in Gentzen�s intuitionistic sequent calculus LJ �Gen����
of the sequent P � G� that by Gentzen�s cut�elimination theorem can be
cut�free �Bee���� �Mil�	�
 a ��term found as a witness to a proof contains
among other things the answer substitution� Second� the conventional
view of functional programming� as in �Tho���� is that one constructs
a sequence of de�nitions and an expression to be evaluated
 the eval�
uation of the expression is done by replacing the de�nienda by their
de�nientia and subsequent normalisation� By the Curry�Howard corres�
pondence between types and propositions� the evaluation of expressions
in functional programming corresponds to the normalisation of proofs in
Gentzen�s natural deduction system NJ� So� both processes yield cut�free
proofs� using 
cut�free� �rst in the sequent calculus sense and second in
the natural deduction sense�
� Supported by JNICT �Portugal� grant BD��	
�����IA and by ESPRIT grant BRA


�
 �GENTZEN��

� This view is contrary to the one expressed in �GLT���� where a program is a set of
sequents and the achievement of a goal w�r�t� a program is the search for a proof
using instances of the sequents in the program as proper axioms and the cut�rule as
the only inference rule� The latter approach does not generalise when we allow for
non�Horn formulae in the program�



From a type�theoretic point of view �ML���� �Tho���� in logic program�
ming we give a speci�cation �goal formula� and we want to �nd an object
meeting that speci�cation� and in functional programming we give a spe�
ci�cation �type� and an object �the expression to be evaluated� meeting
the speci�cation and we want to transform the object into another object
in normal form meeting the speci�cation�

If we were to allow the cut�rule in proof�search some formulae would
have much shorter proofs� For example� in �Boo��� it is shown that there
are formulae whose shortest cut�free proofs are exponentially longer than
their shortest proofs using instances of the cut�rule� The problem of using
the cut�rule is to decide when and how the cut�rule should be applied
 in
other words� what are the adequate lemmas to use in proving a theorem�
The lemmas are usually established based on experience� In programming�
we do not expect to establish lemmas during the proof�search� Instead
we expect the programmer to know what lemmas may be useful and
de�ne names for the proofs of these lemmas� Then� during the search for
a proof of a formula we can use these formulae previously established
without having to prove them several times� As a result of proof�search
in this framework we can obtain proofs with instances of the cut�rule
 if
required cut�elimination can be applied� Although we allow for instances
of the cut�rule during the search for a proof� proof�search can still be
e�cient since the application of the cut�rule only needs to be attempted
in particular circumstances� to be described in full below� Brie�y� the cut�
rule is attempted if there is an occurrence of a de�ned name in the goal
in which case the type of the de�ned name is used as cut formula�

In our system we have two layers of typed objects� On one layer the
objects are ��terms with constants and their types are the simple types
of Church�s theory of types� On the other layer the objects are proof�
witnesses and their types are logical formulae� Terms may occur both in
proof�witnesses and logical formulae but occurrences of proof�witnesses
in the logical formulae are not allowed�

This paper is organized as follows� We start by introducing the un�
derlying language of typed ��calculus with constants and by presenting
the calculus LJa for intuitionistic logic with proof�witnesses annotating
the formulae� Next� we describe the idea of using de�nitions to control
the proof�search and we apply this idea to the logic of hereditary Harrop
formulae� An example of how this technique may be used to �nd shorter
proofs follows� Finally we mention other related works and present some
concluding remarks�



� Logical Preliminaries

We will introduce the underlying language of typed ��calculus with con�
stants based on �Mil�	�� Let us consider a type system with a set S of
primitive types� We assume the symbol o� the type of propositions� to be
a member of S� The set of types is the closure of S under the formation of
function types� The constructor of function types is denoted by � and it
associates to the right� The symbols �� ��� ��� are used to denote arbitrary
types� Any type � can be written as �� � ���� �n � ��� where �� is a
primitive type� In the particular case where n � 	 the type � is just ���

We assume there is a set C of typed constants of and a set X of
denumerably many variables of each type� We also assume there is a set A�
whose members we call parameters� with denumerably many parameters
of each type� We use a� a�� a�� ��� as parameters� A signature � is a set�
whose elements are either constants or parameters� We often display the
members of a signature as pairs s � � � where s is either a constant
or a parameter and � is its type� Terms are built up from constants�
parameters and variables by application and abstraction over variables as
usual� subject to the type rules� For example� if x is a variable of type � �
a is a parameter of type � and c is a constant of type � � � � � then
�x�cax is a term of type � � � � An atomic formula A is a term of the
form pt����tn� where p is a constant of type �� � ��� � �n � o
 A is a
�rst�order atomic formula if ��� ���� �n are primitive types di�erent from o�
�Logical� formulae are built up from atomic formulae by using the logical
constants � � o � o � o� � � o � o � o� �� o � o � o� and for every
type � � �� � �� � o�� o and �� � �� � o�� o� We use the in�x notation
t� � t�� t� � t�� t� � t� to display �t�t���t�t��� t�t� respectively� and we
display formulae of the form �� ��x�t������x�t� as �x�� t��x�� t respectively�

As usual� an occurrence of a symbol s within a term can be classi�ed
as either bound if s occurs in the scope of �s or free otherwise� A term
is closed if it contains no free variable occurrences� We use �t��x�t to
indicate the term obtained from t by replacing the free occurrences of the
variable x by the term t� changing bound variable names to avoid variable
capture� We de�ne ������convertibility as usual and we identify terms
that are ��convertible� Normally we abbreviate ������convertibility by
��convertibility� A term is in normal form if it contains no occurrences
of �� or ��redexes� For every term t� t has a unique normal form that we
write �norm�t��

Let � be a signature� A ��term is a term all of whose symbols occur�
ring freely are members of �
 in other words� a ��term is a closed term
all of whose constants and parameters are in �� A ��formula is a formula
all of whose nonlogical constants occurring freely are members of ��



Let U be a denumerable set� whose members W�W��W�� ��� we call
dummies� Let R be a denumerable set� whose members r� r�� r�� ��� we call
abstract realisers�

The set w of proof�witnesses is inductively de�ned as follows�

w ��� 	�w j 	�w j hw�wi j inl w j inrw j r j whenwww j ww j �r�w
j ht� wi j wt j �a�w j let r � w in w j let a � 	�r in w jW�

where r ranges over R� a ranges over A� W ranges over U and t ranges
over closed terms� We use w�w�� w�� ��� to write proof�witnesses�

An occurrence of a parameter a in a proof�witness is free if it is not
in the scope of �a or let a
 it is bound otherwise� Let � be a signature�
A proof�witness w is a ��proof�witness if all its constants are in � and if
all the parameters occurring freely in w are also in ��

A sequent is a quadruple �

 � w � F � where

�� � is a signature

�� 
 is a �nite set of pairs r� � F�� ���� rn � Fn� where r�� ���� rn are distinct

abstract realisers and F�� ���� Fn are ��formulae

�� w is a ��proof�witness

�� F is a ��formula�

The set 
 is called the antecedent of the sequent and the formula F is
called the succedent of the sequent� Informally we read a sequent as� the
term w witnesses the provability of the goal F w�r�t� the set of assumptions

 over signature ��

Figure � presents the sequent calculus LJa for intuitionistic logic over
typed ��terms with proof�witnesses annotating the formulae�

Theorem �� Let �

 � w � G be a provable sequent in LJa� Then there
is a proof�witness w� s�t� the sequent �

 � w� � G has a proof with no
instances of the cut�rule�

Proof� By induction on the structure of the proof of the sequent
�

 � w � G and the size of the cut formula as usual� ut

A uniform proof� as de�ned in �MNPS���� is a proof in which each
occurrence of a sequent whose succedent is nonatomic is the conclusion
of the rule that introduces its top�level connective�

� Proof�Search Using the Cut�Rule

By Theorem �� if we avoid using the cut�rule of LJa we can still prove
all the sequents we could prove before� However� there are then proofs



���� r � A� r � A
axiom

�� r� � A�r� � B�� � w � C

�� r � A �B�� � let r� � ��r in let r� � ��r in w � C
� �

��� � w� � A ��� � w� � B

��� � hw�� w�i � A �B
� �

��� � w � A

��� � inl w � A �B
� ��

��� � w � B

��� � inr w � A �B
� ��

���� r� � A� w� � C ���� r� � B � w� � C

���� r � A �B � when r��r��w����r��w�� � C
� �

���� r � A � B � w� � A ���� r � A � B� r� � B � w� � C

���� r � A � B � let r� � rw� in w� � C
��

�� r � A�� � w � B

��� � �r�w � A � B
��

��� � w � �t�x�A

��� � ht�wi � �x��A
� �

� � fa � �g� r� � �a�x�A�� � w � B

�� r � �x��A�� � let a � ��r in let r� � ��r in w � B
� �

�� r� � �t�x�A�r � �x��A�� � w � B

�� r � �x��A�� � let r� � rt in w � B
� �

� � fa � �g� � � w � �a�x�A

��� � �a�w � �x��A
� �

��� � w � B �� r � B�� � w� � A

��� � let r � w in w� � A
cut

�� r� � A
�

�� ���� rn � A�n � w � A�

�� r� � A�� ���� rn � An � w � A
�conv

Provisos�

�� in the axiom� A is an atomic formula�

� in � � and � �� r� and r� are new abstract realisers�
�� in ��� r� is a new abstract realiser�
	� in � �� t is a ��term of type � �
�� in � �� a is a new parameter�
�� in � �� a is a new parameter and r� is a new abstract realiser�

� in � �� t is a ��term of type � and r� is a new abstract realiser�
�� in cut� r does not occur in � �
�� in �conv� A��� ����A

�

n�A
� are ��convertible to A�� ����An�A respectively�

Fig� �� The calculus LJa�



that will be exponentially longer than if they were built up by using the
cut�rule� The problem of using the cut�rule is that it does not preserve the
subformula property since the cut formula� the formula B in the cut�rule
of LJa� might not occur in the conclusion sequent and so� proof�search is
di�cult�

Usually in logic programming a program is a set or a list of logical
formulae� In our approach we consider a program to be a set of logical
formulae together with a list of de�nitions� The names being de�ned in
the list of de�nitions will guide the search for a proof since they will be
responsible for triggering instances of the cut�rule� The cut�rule is applied
only in case there is an occurrence of a de�ned name in the goal formula�
In this case the cut�rule is applied and the cut formula is the type of the
de�ned name� Below� we explain how this idea of using the cut�rule can be
applied to the logic of �rst�order hereditary Harrop formulae� for which
uniform proofs are complete as shown in �MNPS���� and thus e�cient
proof�search strategies can be devised�

The� set H of �rst�order hereditary Harrop formulae� is inductively
de�ned by�

H ��� A j H �H j G � A j �x��H
G ��� A j G� G j G � G j �x��G j H � G j �x��G�

where the meta�variable A ranges over the set of �rst�order atomic for�
mulae and � ranges over the set of primitive types di�erent from o� We
de�ne the set I of I�formulae as�

I ��� A j I � I j I � A j �x��I�

where the meta�variable A ranges over the set of �rst�order atomic for�
mulae and � ranges over the set of primitive types di�erent from o� The
set of I�formulae is the intersection of the sets of H� and G�formulae� A
formula is called a C�ut��formula if it has the form

�f���� ����fn��nI�

where ��� ���� �n are arbitrary types and I is an I�formula�
Let � be a signature� The set of �H�formulae is the set of all ��

formulae that are also H�formulae� Likewise we de�ne the sets of �G�
formulae and �C�formulae�

� The letter H is used to denote hereditary Harrop formulae rather than D because
we use below the letter D to denote sets of de�ned names�

� First�order hereditary Harrop formulae� as de�ned in �MNPS���� are formulae in
��normal form� here we also consider formulae in non���normal form�



Let D be a set� whose members d� d�� d�� ��� we call de�ned names� We
extend the de�nition of ��proof�witnesses by allowing proof�witnesses to
be built up also from de�ned names� i�e�

w ��� 	�w j 	�w j hw�wi j inl w j inrw j s j whenwww j ww j �r�w
j ht� wi j wt j �a�w j let s � w in w j let a � 	�s in w jW�

where s ranges over R� D�
A proof�witness of a C�formula has the form ht�� ht�� ���htn� wi���ii� If we

de�ne a name d for such proof�witness the expressions 	�d�
	��	�d�� ���� 	��	

n��
� d�� denote the terms t�� t�� ���� tn respectively� where

	n��
�

represents n � � applications of 	�� We de�ne a set E of typed
expressions of the form�

�	�d�
��� �	��	�d��

��� �	��	��	�d���
��� ����

where d ranges over D and ��� ��� ��� ���� range over types� We rede�ne the
set of ��terms to be also allowed to be built up from expressions e� in E �
which are considered to be ��terms of type � � Let D� be a subset of D�
The set of �D��terms is the set of ��terms� all of whose de�ned names
are in D�� For example� if d 	 D� and �	�d���� 	 E and c � � 	 � then
�	�d�

���c is a �D��term of type � � Likewise we de�ne �D��formulae�
�D�H�formulae� �D�G�formulae and �D�C�formulae�

Let � be a signature and let D� be a set of de�ned names� We de�ne
two new sets w� and w� of proof�witnesses
 roughly speaking� w��proof�
witnesses will be used to annotate formulae in the program and the w��
proof�witnesses will be used to annotate goal�formulae� The set w� of
�D��w��proof�witnesses and the set w� of �D��w��proof�witnesses are
inductively de�ned as follows�

w� ��� w� j hw�� w�i j inl w� j inrw� j �r�w� j ht� w�i
j �a�w� j let d � w� in w� j W�

w� ��� 	�w
� j 	�w� j r j w�w� j w�t j d�

where r ranges over R� a ranges over A� W ranges over dummies� d
ranges over D� and t ranges over �D��terms� We use w�w�� w�� ��� to write
w��proof�witnesses and w�� � w

�

� � ��� to write w��proof�witnesses�
Let � be a signature� d a de�ned name� D� a set of de�ned names not

containing d� w a �D��w��proof�witness and C a �D�C�formula� Then
d �def w � C is called a de�nition� with de�niendum d� de�niens w and
type C�

A�D��term t is well�typed w�r�t� a list of de�nitions � if t is a�D��term
and for all expressions of the form �	��	

n��
� d���n occurring in t there is a



de�nition d �def w � �x���� ����xn��nC in �� Likewise we de�ne the property
of being well�typed w�r�t� a list of de�nitions for �D��formulae� �D��
w� and �D��w� proof�witnesses� �D�H�formulae� �D�G�formulae and
�D�C�formulae� A list of de�nitions � is well�formed w�r�t� a signature
� if the assertion 

 hi �wfld � can be proved by using the inference rules
in Fig� ��

D��� �wfld hi
axiom

D� � fdg���d �def w � C �wfld �
�

D��� �wfld d �def w � C���

The second rule has the following provisos attached�

�� d �	 D��

� w is a well�typed �D��w��proof�witness w�r�t� ��
�� C is a well�typed �D�C�formula w�r�t� ��

Fig� �� The rules for �wfld�

We de�ne a new concept of sequent � as follows� a sequent is a
quintuple �
�

 � w � F � where

�� � is a signature

�� � is a well�formed list of de�nitions w�r�t�� and D� is the set of names

being de�ned in �

�� 
 is a set of the form w� � F�� ���� wn � Fn� where w�� ���� wn are well�

typed �D��w��proof�witnesses w�r�t� � and F�� ���� Fn are either well�
typed �D�H� or �D�C�formulae w�r�t� �


�� w is a well�typed �D��w��proof�witness w�r�t� �

�� F is either a well�typed �D�G� or �D�C�formula w�r�t� ��

We call �
�

 a basis�
Let the sequent calculus HHcut be de�ned by the inference rules of

Fig� ��

Theorem �� All proofs in HHcut are uniform proofs�

Proof� Observe that the only rules that can be applied to non�atomic
succedent sequents are right introduction rules� ut

� We refer to the sequents de�ned in the previous section by LJa sequents�



������ w�� � A� w�� � A
axiom

������w
�

� � H�� ��w
�

� � H�� � � w � A

����w�� � H� �H�� � � w � A
� �

����� � w� � G� ����� � w� � G�

����� � hw�� w�i � G� �G�

� �

����� � w � G�

����� � inl w � G� �G�

� ��
����� � w � G�

����� � inr w � G� �G�

� ��

���� r � H�� � w � G

����� � �r�w � H � G
��

������ w�� � G � A� w� � G ���� ��w�� � G � A�w�� w� � A� w � A�

������ w�� � G � A� w � A�

��

���� � � w � �t�x�B

����� � ht�wi � �x��B
� �

������w
�

� � ����w
�

� �
��x�C�� � w � A

����w�� � �x��C�� � w � A
� �

� � fa � �g���� � w � �a�x�G

����� � �a�w � �x��G
� �

����w�� t � �t�x�H�w
�

� � �x��H�� � w � A

����w�� � �x��H�� � w � A
� �

����d � C�� � w� � A

����� � let d � w in w� � A
cut

����w�� � H �

�� ����w
�

n � H �

n � w � A�

����w�� � H�� ����w
�

n � Hn � w � A
�conv

Provisos�

�� The meta�variables A�A��A
� range over atomic formulae� the meta�variables

G�G��G� range over G�formulae� the meta�variables H�H�� ����Hn�H
�

�� ���H
�

n range
over H�formulae� B is either a G�formula or a C�formula and C ranges over C�
formulae�


� in ��� r is a new abstract realiser�
�� in � � and � �� t is a ��term of type � �
	� in � �� a is a new parameter�
�� in � �� w�� is of the form ���������d������
�� in cut� the de�nition d �def w � C is a member of ��

� in �conv� H�� ����Hn�A are ��convertible to H �

�� ����H
�

n�A
� respectively�

Fig� �� The calculus HHcut�



The inference rules of Fig� � de�ne for bases the property of being
well�formed� we say that a basis �
�

 is well�formed if the assertion
�wfb �
�

 is provable�

�wfb �� hi��
axiom

�wfb ����� �HHcut ����� � w � C

�wfb ����d �def w � C��

Fig� �� Inference rules of �wfb�

Theorem �� Let �
�

 � w � G be a sequent where �
�

 is a well�
formed basis and let 
 be of the form r� � H�� ���� rn � Hn� where r�� ���� rn
are distinct abstract realisers in R and H�� ���� Hn are �H�formulae� If
�HHcut �
�

 � w � G then there is a proof�witness w� s�t�
�LJa �

 � � w� � G

�� where 
 �� G� result from 
�G respectively by re�
placing all de�nienda by their de�nientia�

Proof� A sketch of the proof goes as follows� Let p be a proof of
�
�

 � w � G� Then a proof p� of �

 � � w� � G

� can be built up
by following the structure of the proof p� and by changing the proof�
witnesses accordingly� For example� let

�
�

� d � C � w� � A

�
�

 � let d � w� in w� � A
cut

be an instance of the cut�rule in p� By induction hypothesis we know how
to obtain a proof of �

 � � w� � C

� from the proof of well�formedness
of the basis �
�

 and a proof of �

 �� r � C� � w� � A

�� where r is
a new abstract realiser and 
 �� C��A� result from 
 �C�A respectively
by replacing all de�nienda by their de�nientia� Then this instance of the
cut�rule in p originates an instance

�

 � � w� � C
� �

 �� r � C� � w� � A

�

�

 � � let r � w� in w� � A
�

cut

of the cut�rule in p�� ut

Theorem �� Let �
�

 � w � G be a sequent where �
�

 is a well�
formed basis� If �HHcut �
�

 � w � G then there is a proof�witness w�

s�t� �HHcut �
 hi

 �� w� � G
�� where 
 �� G� result from 
�G respectively



by replacing all de�nienda by their de�nientia� in other words the cut�rule
is admissible�

Proof� Observe that if there is a proof of�
�� d �def w � C���

 � w� � G
where there are no applications of the cut�rule with de�nition d �def w � C
then�
�����

 � � w� � G is a provable sequent ofHHcut� where���� 
 �

result from ��� 
 respectively by replacing all de�nienda by their de�ni�
entia� Then the proof follows by induction on the structure of the proof of
�HHcut �
�

 � w � G and from the proof of well�formedness of�
�

 �

ut

Let � be a signature� Let P be a set of �H�formulae H�� ���� Hn� Let

 be the set containing the pairs r� � H�� ���� rn � Hn� where r�� ���� rn
are distinct abstract realisers in R� Let � be a list of de�nitions� The
pair h��Pi is a program if �
�

 is a well�formed basis� Assume h��Pi
is a program� Assume also that G is a G�formula and �
�

 � W � G
is a sequent� where W is a dummy� Achievement of the goal G w�r�t�
the program h��Pi corresponds to a search for a proof of the sequent
�
�

 � W � G in the calculus HHcut� During the search for a proof
of this sequent the proof�witness W is instantiated� If the proof�search
is successful W is instantiated with a proof�witness where dummies do
not occur� From this proof�witness one can extract� among various other
things� the instantiation for the existentially quanti�ed variables occur�
ring in G�

Theorem�� Let � be a signature and 
 the set containing the pairs
r� � H�� ���� rn � Hn� where r�� ���� rn are distinct abstract realisers in
R and H�� ���� Hn are �H�formulae� Let G be a �G�formula� Then� if
�

 � w � G is provable in LJa then there is a proof�witness w� s�t�
�
 hi

 � w� � G is provable in HHcut�

Proof� The proof follows from the observations that �i� we only need to
consider cut�free proofs of �

 � w � G
 �ii� all LJa sequents occurring
in the proof of �

 � w � G contain only H�formulae in the antecedent
and a G�formula in the succedent
 �iii� all the LJa rules � �� ��� � �
can be permuted above the LJa rules � ��� �� ��� � � and � �� ut

For any provable sequent of HHcut we can �nd one of its proofs by
applying the following search strategy� If the goal formula is not atomic we
apply right introduction rules until the goal becomes atomic� When the
goal formula is atomic there might be several rules that can be applied�
If there is a de�ned name d occurring in the goal and there is a de�nition
d �def w � C in the list of de�nitions we apply the cut�rule and we mark



this de�nition as used so that no other applications of the cut�rule are
attempted with this de�nition� We keep applying the cut�rule until no
further applications are possible� Next� we apply �� until no further
applications of �� are possible� At this point all the formulae in the
antecedent are H�formulae so we proceed by backchaining as usual� i�e�
roughly speaking we proceed by breaking up the conjunctions on the left
and by unifying the goal formula with the heads of program formulae
starting with the formulae that were originated from cut formulae�

� Example

The example presented below is based on an example given in �Boo��� to
show that cut�free proofs may be exponentially longer than proofs using
instances of the cut�rule�

Let � be a primitive type� Let � be the signature

f� � �� c � � � � � �� L � � � og�

Informally� we can interpret � as the set of natural numbers and c as the
addition of two natural numbers� Let 
 be the set containing only the
following pairs�

r� � L��
r� � �x���x����x����L�c�cxx��x�� � L�cx�cx�x�����
r� � �x�� �Lx � L�cx����

Let x� t be vectors of variables and terms respectively� say of size n� Let
� �� represent n applications of the rule � �� Let H �H � be abbreviations
for �x�G � A��� G � A� respectively and let r be an abstract realiser� Let
� be the basis �
�

� r � H � Let the notation ��w� � H�� ���� wn � Hn

signify �
�

� r � H�w� � H�� ���� wn � Hn� Then the rule � P stands for
the sequence of inferences shown in Fig� ��

	�rt � �t�x�H � � w� � �t�x�G 	� �t�x�H �� rtw� � �t�x�A
� � rtw� � A

axiom

	� rt � �t�x�H � � rtw� � A
��

	 � rtw� � A
� ��

Fig� �� The sequence of inferences � P �

Consider we want to prove in LJa the goal L���x�cx�c�������x�cx�c�������
w�r�t� the program 
 using a uniform proof� Figure � shows a uniform



proof of this goal together with the instantiations of the dummy proof�
witnesses� After performing all substitutions� we obtain for the dummy

� � � � W� � L�
axiom

� � � � W� � L�c���
� P

� � � � W� � L�c�c�����

� � � � W� � L�c��c����
� P

� P

� � � � W� � L�c�c��c������
� P

� � � � W� � L�c�c�c��c��������
� P

� � � � W� � L�c�c��c�����c����
� P

� � � � W� � L���x�cx�c�����c��c�����
�conv

� � � � W� � L���x�cx�c�������x�cx�c�������
�conv

The instantiations for the dummy proof�witnesses are�

W� 
� r��c��c������W�� W� 
� r��c�c��c������W�� W� 
� r��c��c����W��

W� 
� r����W� � W� 
� r��c���W�� W� 
� r��W��

W� 
� r��

Fig� �� A uniform proof�

proof�witness W� the proof�witness

r��c��c�������r��c�c��c�������r��c��c�����r�����r��c����r��r�������

In this proof the sequence of inferences shown in Fig� �� for appropriate
instantiations of �� occurs twice� If we had used the cut�rule with cut for�
mula �x���Lx � L�cx�c����� we would have needed to prove the sequence
of inferences in Fig� � only once� We will now show how to construct a
proof of this goal using instances of the cut�rule as we explained before�

� � � � W� � L


� � � � W� � L�c
��
� P

� � � � W� � L�c�c
����
� P

� � � � W� � L�c
�c����
� P

The instantiations for the dummy proof�witnesses are�

W� 
� r�
��W�� W� 
� r��c
��W�� W� 
� r�
W��

Fig� �� A sequence of inferences repeated in the proof of Fig� �

Let � be the list whose only member is the de�nition



�� �def h�x�cx�c���� �a��r��r�a���r��ca���r�ar���i
� �f �����x���Lx � L�fx���

A proof of the well�formedness of the basis �
�

 can be obtained by
combining the axiom �wfb �
 hi

 with the proof presented in Fig� �� By
using the de�ned name �� we rewrite the goal
L���x�cx�c�������x�cx�c������� into L�	��� �	��� ���� where for brevity
we drop the types in E�expressions� Now we show how to construct a
proof of the sequent �
�

 � W � L�	� �� �	� �� ���� where W is a
dummy proof�witness� by applying the proof�strategy described in the
previous section� The occurrence of the de�ned name �� in the atomic
goal triggers an instance of the cut�rule with its type being the cut formula
to be used� We look up the list of de�ned names and we �nd the type
�f �����x�� �Lx � L�fx�� for the name ��� We apply the cut�rule and we
have now to prove the sequent�

�i� �
�
 �� � �f �����x� �Lx � L�fx��� 
 � W� � L�	� �� �	� �� ����

As a consequence of applying the cut�rule the proof�witness W is instan�
tiated with

let �� � h�x�cx�c���� �a��r��r�a���r��ca���r�ar���i in W��

� � fa � �g� hi� r� � La� � � r� � La
axiom

� � fa � �g� hi�r� � La� � � r�ar� � L�ca��
� P

� � fa � �g� hi� r� � La� � � r��ca���r�ar�� � L�c�ca����
� P

� � fa � �g� hi� r� � La� � � r�a���r��ca���r�ar��� � L�ca�c����
� P

� � fa � �g� hi� r� � La� � � r�a���r��ca���r�ar��� � L���x�cx�c����a�
�conv

� � fa � �g� hi�� � �r��r�a���r��ca���r�ar��� � La � L���x�cx�c����a�
�

�� hi�� � �a��r��r�a���r��ca���r�ar��� � �x�� �Lx � L���x�cx�c����x��
� �

�� hi�� � h�x�cx�c���� �a��r� �r�a���r��ca���r�ar���i � �f �����x�� �Lx � L�fx��
� �

Fig� �� A proof of well�formedness of ����� �

Figure � shows a proof of the sequent �i� together with the instantiations
of the dummy proof�witnesses generated during the search for the proof�
In this proof� we start by replacing in the cut formula the symbol f by
the term 	���� Then we use the cut formula twice to simplify the goal
and we are left with an axiom sequent�



�������� � �x�� �Lx � L��� �� x���� � W� � L�
axiom

�������� � �x�� �Lx � L��� �� x��� � � W� � L��� �� ��
� P

�������� � �x�� �Lx � L��� �� x��� � � W� � L��� �� ��� �� ���
� P

������ � �f �����x�� �Lx � L�fx��� � � W� � L��� �� ��� �� ���
� �

The instantiations for the dummy proof�witnesses are�

W� 
� �� �� ��� �� ��W�� W� 
� �� �� �W�� W� 
� r��

Fig� 	� A proof of �i��

Replacing all the dummy proof�witnesses by their instantiations we
obtain for the initial goal L�	� �� �	� �� ��� the proof�witness

let �� � h�x�cx�c���� �a��r��r�a���r��ca���r�ar���i
in 	� �� �	� �� ��	� �� �r����

One of the consequences of the Curry�Howard correspondence between
types and propositions is the relation between normalisation and cut�
elimination� For if we normalise the proof�witness we obtained for the
goal L�	� �� �	� �� ��� we obtain the term

r��c��c�������r��c�c��c�������r��c��c�����r�����r��c����r��r�������

which is a witness for a cut�free proof of L���x�cx�c������x�cx�c��������
In fact this proof�witness is the same as the proof�witness we obtained
for the uniform proof of Fig� ��

� Related and Future Work

The typed logic programming language �Prolog �NM��� is based on the
logic of higher�order hereditary Harrop formulae for which uniform proofs
are complete� as shown in �MNPS���� It supports modular programming�
abstract data types and higher�order functions and predicates� We showed
how to extend the logic of �rst�order hereditary Harrop formulae to have
de�nitions of names to control the applications of the cut�rule� We intend
to look at the possibility of having non�hereditary Harrop formulae in a
program provided they are paired with a proof�witness that would guide
the application of left introduction rules� In fact this problem arises if we
try to extend the set of formulae we allowed as cut formulae in the setting
of �rst�order hereditary Harrop formulae�

Two di�erent views of logic programming based on the system of
dependent types LF �HHP��� are given in �Pfe��� and in �Pym�	��



Elf �Pfe���� �Pfe��� is a logic programming language based on types
through the propositions�as�types correspondence� Achieving a goal �type�
G w�r�t� a program �context� 
 corresponds to a search for a closed object
M of type G� where the language is determined by a signature � such
that 
 �� M � G is provable in a natural deduction formulation of LF�
The answer to a query is not only a substitution for the free variables
but a term of query type� Elf has two sorts of incompleteness w�r�t� LF�
one due to the use of a depth��rst search and the other caused by the
undecidability of uni�cation for the de�nitional equality ��� used in LF�
As in our work� in Elf computation corresponds to a search for an object
of query type� but whereas in our case we search for a proof in a sequent
calculus� Elf searches for a natural deduction proof� A major di�erence
between Elf and our work is that in Elf a program is solely a list of type
assignments to variables
 in our proposal a program is also allowed to
contain de�nitions� where a new variable is introduced as a name for an
expression of a certain type�

In �Pym�	�� �PW��� logic programming is seen as a search for a proof
of the sequent 
 ��� �� A���� where � is a signature determining a
language
 ��� is a list of indeterminates
 
 is a context assigning types
that may have occurrences of the indeterminates in ��� to variables and A
is a type that may have occurrences of indeterminates in ���� The result
of a successful search is a mapping 
 from indeterminates to terms such
that there is a term M for which 
 ���
 �� M � A���
 is provable in LF�
The resulting mapping being what one normally calls answer substitution
in logic programming� Although proof�search is carried out in a sequent
calculus that allows cut�elimination a search for a proof does not involve
uses of the cut�rule�

A Curry�Howard correspondence between a fragment of propositional
intuitionistic sequent calculus and a programming language� where evalu�
ation in the programming language corresponds to cut�elimination in the
sequent calculus� is presented in �Wad���� Evaluation in this program�
ming language is di�erent from evaluation in the programming language
obtained by composing a translation of sequent calculus into natural
deduction with the Curry�Howard correspondence between natural de�
duction and ��calculus� In our work term assignment is done through this
composition of a translation of sequent calculus into natural deduction
with the Curry�Howard correspondence� In future work we intend to use
a term assignment similar to the one described in �Wad��� and investigate
what di�erent evaluation mechanisms can be obtained from di�erent
algorithms to perform cut�elimination�

In �PW��� it is suggested that in logic programming the achievement



of a goal w�r�t� a program can be usefully divided into two phases� the
�rst being proof�search and the second being answer extraction� This idea
was considered for cut�free systems� In fact the same idea can be applied
to systems with cut�rule� For example� the two phases might be �i� the
search for a proof�witness of a goal in a system with the cut�rule
 �ii�
the extraction of all the terms used to replace existentially quanti�ed
variables in the goal and subsequent normalisation of these terms� thus
avoiding the normalisation of the entire proof�witness�

An analysis of logic programs as types in the sense of the Curry�
Howard correspondence is given in �Lip���� A logic program is transformed
into an equational speci�cation over the term model by exploiting a
uniformity in the predicates and parameters in the program� A program
is written as a realisability goal and there is a search for a function that
returns a proof�witness for every choice of parameters� This mechanism
of synthesising functions can be seen as a way of generating automatic�
ally cut formulae� For it should be possible to employ the idea of using
de�nitions to guide the proof�search by de�ning names for the synthesised
functions�

Deliverables �MB��� are proof�witnesses hf� wi of formulae of the form
�x���������nF � where ��� ���� �n are primitive types di�erent from o and F
is a formula� In �MB��� it is argued that deliverables are the products
a software house should deliver to its customers� i�e� a program f and a
proof w that the program meets the original speci�cation F � Elsewhere
�Pin� we exploit the idea of using de�nitions to control the applications
of the cut�rule to give a proof�theoretic semantics to integrate logic and
functional programming by de�ning names for deliverables�

The language LeFun� as presented in �AKN���� is a programming
language that integrates logic and functional programming� In this lan�
guage a program is a list of logical formulae together with a list of
de�nitions� A de�nition in LeFun has the form name �def ��term� thus
leaving out the speci�cation the ��term satis�es as well as a proof�witness
for that� The computation mechanism is called residuation� which is
a mechanism to delay uni�cation until the arguments of functions are
fully instantiated� In forthcoming work we expect to make precise the
relation of LeFun with the proof�theoretic semantics to integrate logic
and functional programming based on the idea of using names to guide
the proof�search�

� Conclusions

There are proofs that can be exponentially shorter if they are allowed to
use the cut�rule� The problem of automating proof�search in a calculus



with a cut�rule is that we may apply the cut�rule to any sequent and
once we have decided to apply the cut�rule we still have the freedom
of applying the cut�rule with any formula as cut formula� Our idea of
using de�nitions to guide the proof�search restricts the cut�rule in such a
way that its application is allowed only in case there is a de�ned name
occurring in the goal formula� and in this case we only attempt the cut�
rule with the type of the de�ned name as cut formula� Thus� we can have a
goal�directed proof�search that in some cases will �nd proofs exponentially
shorter than we would �nd with a cut�free search procedure�

References

�AKN��� H� Ait�Kaci and R� Nasr� Integrating logic and functional programming�
Lisp and Symbolic Computation� 
������� �����

�Bee��� M� Beeson� Some applications of Gentzen�s proof theory in automated de�
duction� In P� Schroeder�Heister� editor� Extensions of Logic Programming�
international workshop� T�ubingen� ����� proceedings� volume 	
� of LNCS�
pages �������� Springer�Verlag� �����

�Boo�	� G� Boolos� Don�t eliminate cut� Journal of Philosophical Logic� ����
���
��
���	�

�Gen��� G� Gentzen� Investigations into logical deduction� In M� Szabo� editor� The
Collected Papers of Gerhard Gentzen� pages ������� North�Holland� �����

�GLT��� J�Y� Girard� Y� Lafont� and P� Taylor� Proofs and Types� Cambridge
University Press� �����

�HHP�
� R� Harper� F� Honsell� and G� Plotkin� A framework for de�ning logics�
In Proc� Second Annual Symposium on Logic in Computer Science� pages
��	�
�	� IEEE� ���
�

�Lip�
� J� Lipton� Relating logic programming and propositions�as�types� a logical
compilation� In Proc� of the Workshop on Types for Proofs and Programs�

B�astad� Sweden� ���
�

�MB��� J� McKinna and R� Burstall� Deliverables� a categorical approach to pro�
gram development in type theory� In A� Borzyszkowski and S� Sokolowski�
editors� Mathematical Foundations of Computer Science ����� volume 
��
of LNCS� pages �
��
� Springer�Verlag� �����

�Mil��� D� Miller� Abstractions in logic programming� In P� Odifreddi� editor� Logic
and Computer Science� pages �
������ Academic Press� �����

�ML�	� P� Martin�L�of� Intuitionistic Type Theory� Bibliopolis� Napoli� ���	�

�MNPS��� D� Miller� G� Nadathur� F� Pfenning� and A� Scedrov� Uniform proofs as
a foundation for logic programming� Annals of Pure and Applied Logic�
����
����
� �����

�NM��� G� Nadathur and D� Miller� An overview of �Prolog� In Proc� Fifth

Internat� Logic Programming Conference� Seattle� pages �����

� MIT
Press� �����

�Pfe��� F� Pfenning� Logic programming in the LF logical framework� In G� Huet
and G� Plotkin� editors� Logical Frameworks� pages �	������ Cambridge
University Press� �����



�Pfe�
� F� Pfenning� Dependent types in logic programming� In F� Pfenning� editor�
Types in Logic Programming� chapter ��� pages 
������� MIT� ���
�

�Pin� L� Pinto� Proof�theoretic semantics and integration of logic and functional
programming� �in preparation��

�PW��� D� Pym and L� Wallen� Proof�search in the �	�calculus� In G� Huet
and G� Plotkin� editors� Logical Frameworks� pages �����	�� Cambridge
University Press� �����

�PW�
� D� Pym and L� Wallen� Logic programming via proof�valued computations�
In K� Broda� editor� Proc� �th UK Conf� on Logic Programming� London�

���	� Springer� �
�
�Pym��� D� Pym� Proofs� search and computation in general logic� PhD thesis�

University of Edinburgh� �����
�Tho��� S� Thompson� Type Theory and Functional Programming� Addison�Wesley�

�����
�Wad��� P� Wadler� A Curry�Howard isomorphism for sequent calculus� Preprint�

University of Glasgow� December �����

This article was processed using the LATEX macro package with LLNCS style


