
TTSS 2010

Stochastic Reo: a Case Study

Y.-J. Moon1, F. Arbab, A. Silva, C. Verhoef A. Stam

CWI, Amsterdam & Almende BV, Rotterdam, The Netherlands

Abstract

QoS analysis of coordinated distributed autonomous services is currently of interest in the area
of service-oriented computing and calls for new technologies and supporting tools. In previous
work, the first three authors have proposed a compositional automata model to provide semantics
for stochastic Reo, a channel based coordination language that supports the specification of QoS
values (such as request arrivals or processing rates). Furthermore, translations from this automata
model into stochastic models, such as continuous-time Markov chains (CTMCs) and interactive
Markov chains (IMCs) have also been presented.
Based on those results, we describe in this paper a case study of QoS analysis. We analyze a
certain instance of the ASK system, an industrial software system for connecting people offering
professional services to clients requiring those services. We develop a model of the ASK system
using stochastic Reo. The distributions used in this model were obtained by applying statistical
analysis techniques on the raw values that we obtained from the real logs of an actual running
ASK system. These distributions are used for the derived CTMC model for the ASK system to
analyze and to improve the performance of the system, under the assumption that the distributions
are exponentially distributed. In practice, this is not always the case. Thus, we also carry out a
simulation-based analysis by a Reo simulator that can deal with non-exponential distributions.
Compared to the analysis on the derived CTMC model, the simulation is approximation-based
analysis, but it reveals valuable insight in the behavior of the system. The outcome of both analyses
helps both the developers and the installations of the ASK system to improve the performance of
the system.

Keywords: Stochastic Reo, QoS analysis, case study, Extensible Coordination Tools

1 Introduction

The increasing complexity of software has motivated much research in order
to develop techniques for the modular development of systems. Component-
based software engineering and service-oriented computing aim at the devel-
opment of reusable software components and/or services as building blocks
that can be composed to build different applications. Research on software
composition plays a key role in this quest, as it offers flexible ways of plug-
ging components together. Connector based-languages, where channels or
connectors are used to compose components and services into a system play a
prominent role in the world of software composition. One of such languages is

1 Email: yjm@cwi.nl
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

mailto:yjm@cwi.nl

Moon, Arbab, Silva, Stam, Verhoef

Reo [2,3], which offers a model of component and service coordination, wherein
complex connectors are constructed by composing various types of primitive
connectors called channels.

QoS analysis of composed software (intensive) systems has become popular
in the last few years, with the goal of evaluating and improving performance
and resource allocation in service-oriented applications.

Stochastic Reo [13] is an extension of Reo which allows for the specification
of stochastic values for the channels (e.g., arrival and processing rates). A
compositional automata model of Stochastic Reo was proposed in [13] and
translations from this automata model to stochastic models such as CTMCs
and IMCs were presented.

In this paper we show how the theory developed in previous papers, im-
plemented as tools, can be used to model a part of a real industrial system,
perform QoS analysis, and help the developers get an insight into the system
behavior, which enables to improve the performance of the system. We model
and analyze the ASK system, a software system developed by the Dutch com-
pany Almende, which provides efficient matching between service providers
and clients. An example of the application of the ASK system consists of a
service-based system running in a call center that matches calling clients with
the appropriate representatives that can provide them with the specialized
customer service that they need.

One challenge that arises when installing particular instances of the ASK
system is how to allocate resources, which are typically scarce or expensive.
For instance, in the particular example above, the call center wants to have
an optimal distribution of its operators’ schedules in order to reduce waiting
time for the customers without increasing enormously its personnel costs. A
stochastic model of the ASK system can be used to perform analysis and
provide advice to solve such problems.

The main contributions of this paper are the following:

(i) a stochastic Reo model of the ASK system 2 . The distributions in this
model were obtained by statistical analysis of real values filtered out of
the logs of an actual running ASK system.

(ii) analysis of several interesting properties using the probabilistic model
checker PRISM [12,15] which allowed to produce suggestions for the per-
formance improvement of the ASK system. This analysis is done on a
CTMC obtained from the Reo model.

(iii) analysis of the system using a simulator which enables the study of prop-
erties involving non-exponential distributions (CTMCs can deal only with
exponential distributions).

2 Details available at http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/
CaseStudies/SimulatoronASK/Reception.

2

 http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/CaseStudies/SimulatoronASK/R eception
 http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/CaseStudies/SimulatoronASK/R eception

Moon, Arbab, Silva, Stam, Verhoef

2 Preliminaries

Overview of Reo

Reo is a channel-based coordination model wherein so-called connectors
are used to coordinate (i.e., control the communication among) components
or services exogenously (from outside of those components and services). In
Reo, complex connectors are compositionally built out of primitive channels.
Channels are atomic connectors with exactly two ends, which can be either
source or sink ends. Source ends accept data into, and sink ends dispense
data out of their respective channels. Reo allows channels to be undirected,
i.e., to have respectively two source or two sink ends.

a b

Sync

a b

LossySync

a b

FIFO1

a b

SyncDrain

Fig. 1. Some basic Reo channels

Fig. 1 shows the graphical representations of some basic channel types.
The Sync channel is a directed, unbuffered channel that synchronously reads
data items from its source end and writes them to its sink end. The LossySync
channel behaves similarly, except that it does not block if the party at the
sink end is not ready to receive data. Instead, it just loses the data item.
FIFO1 is an asynchronous channel with a buffer of size one. The SyncDrain
channel differs from the other channels in that it has two source ends (and no
sink end). If there is data available at both ends, this channel consumes (and
loses) both data items synchronously.

Channels can be joined together using nodes. A node can have one of
three types: source, sink or mixed node, depending on whether all ends that
coincide on the node are source ends, sink ends or a combination of both.
Source and sink nodes, collectively called boundary nodes, form the boundary
of a connector, allowing interaction with its environment. Source nodes act as
synchronous replicators, and sink nodes as mergers. A mixed node combines
both behaviors by atomically consuming a data item from one sink end and
replicating it to all of its source ends.

An example connector is depicted in Fig. 2. It reads a data item from a,
buffers it in a FIFO1 and writes it to c. The connector loses data items from
a if and only if the FIFO1 buffer is already full. This construct, therefore,
behaves as a connector called (overflow) LossyFIFO1.

a b c

Fig. 2. Example connector: LossyFIFO1

Stochastic Reo

Stochastic Reo is an extension of Reo where channel ends and channels
are annotated with stochastic values for data arrival rates at channel ends
and processing delay rates on channels. Such rates are, e.g., non-negative real
values that describe how the probability that an event occurs varies with time.
Fig. 3 shows the stochastic versions of the primitive Reo channels in Fig. 1.

3

Moon, Arbab, Silva, Stam, Verhoef

Here and throughout, for simplicity, we omit the node names, since they can
be inferred from the names of their respective arrival rates: for instance, γa
is the arrival rate of node a.

γa γb

γab

γa γb

γab

γaL γa γb

γab

γa

γaF

γb

γFb

Fig. 3. Stochastic Reo channels corresponding to the channels in Fig. 1

A processing delay rate represents how long it takes for a channel to per-
form a certain activity, such as data-flow. For instance, a LossySync has two
associated rates γab and γaL for, respectively, successful data-flow from node
a to node b, and losing the data item from node a. In a FIFO1 γaF represents
the delay for data-flow from its source a into the buffer, and γFb for sending
the data from the buffer to the sink b.

Arrival rates describe the time between consecutive arrivals of I/O requests
at the source and sink nodes of Reo connectors. For instance, γa and γb in
Fig. 3 are the associated arrival rates of write/take requests at the nodes a
and b.

Since arrival rates on nodes model their interaction with the environment
only, mixed nodes have no associated arrival rates. This is justified by the fact
that a mixed node delivers data items instantaneously to the source end(s) of
its connected channel(s). Hence, when joining a source with a sink node into
a mixed node, their arrival rates are discarded. A more precise description of
Stochastic Reo appears in [4,13]. A stochastic version of the LossyFIFO1 is
depicted in Fig. 4, including its arrival and processing delay rates.

γa

γbF

γc

γFcγab

γaL

Fig. 4. Stochastic LossyFIFO1

3 ASK system

The “Access Society’s Knowledge” (ASK) system [16] is an industrial software
developed by the Dutch company Almende [1], and marketed by their daugh-
ter company ASK Community Systems [5]. The ASK system is a communi-
cation software product that acts as a mediator between service consumers
and service providers, for instance, connecting rescue institutions (e.g., fire
departments) and professional volunteers. The connection established by the
ASK system is provided by mechanisms for matching users requiring infor-
mation or services with potential suppliers. For this purpose, the matching
mechanisms use the profiles and availability offered by people who provide or
require services.

The main goal of the ASK system is to do the matching in an efficient way.
To achieve that, the system collects feedback on the quality of services after
the connection. Such feedback is used to decide better connections for the sub-
sequent requests of the same type. In addition, the system uses self-learning
and self-organizing mechanisms by continuously updating to users’ preferences
and available resources. Moreover, the ASK system enables users to inform

4

Moon, Arbab, Silva, Stam, Verhoef

others about their status, their availability, and how they can be contacted
best. This information is used to select the right people for a communication
session as well as the feedback.

To offer efficient connections, the ASK system considers:

• human knowledge and skills of service providers

• time schedules of the provision of services

• communication media such as telephones, SMS, and emails

When people request a certain service from specialists or service providers,
the ASK system attempts to select the best possible service provider. This
selection is based on the rating of the knowledge and the skills of service
providers who are available at that moment. This rating, in turn, is based
on the feedback on the quality of services offered by the service providers.
The occurrences of events can follow either regular schedules or ad-hoc sched-
ules. The ASK system deals with both of these situations while satisfying the
constraints and the purposes of users’ requests.

The ASK system generally considers the telephone as a primary commu-
nication medium, but other means of communication, such as email or SMS,
are also supported. These types of media must be considered according to the
reachability and the preferences of the users. For example, people can have
more than one email address and telephone number, with different associated
usage constraints and user preferences. Such information must be indicated
in the system to allow for efficient connections.

The ASK system acts as an agent that connects service providers and ser-
vice consumers in an efficient way, handling multitudes of such connections
simultaneously at any given time. The ASK system has a hierarchical modu-
lar architecture, i.e., it consists of a number of high-level components, which
in turn consist of lower-level components, etc., running as threads. In or-
der to handle massive numbers of connections concurrently, the components
need to utilize multiple threads that provide the same functionalities. In this
setting, allocation of system resources, e.g. the number of threads, to vari-
ous components plays a critical role in the performance and responsiveness
of an installed system in its actual deployment environment (e.g., properties
of servers, available telephone lines, call traffic, available human operators,
etc.), but determining the proper resource allocations to provide a good per-
formance is far from trivial. Deriving and analyzing a stochastic model for
an installed ASK system provides valuable input and insight for improving
its performance. Among other possibilities, such a model allows system ar-
chitects and installation operators to play what-if games by changing various
resource and demand parameters and discover how a deployed system would
perform under such scenarios, in order to adjust and fine-tune the system for
cost-effective, optimal performance.

5

Moon, Arbab, Silva, Stam, Verhoef

Various methods for performance evaluation have been suggested. Rig-
orous methods require mathematical models of a system involving variables
that represent the parameters relevant to its behavior. Stochastic variables
describe random system behavior, leading to more realistic models of behavior
than their deterministic counterparts. CTMCs are frequently used to model
such systems and their features and efficient closed-form and numerical tech-
niques [18] exists for their analysis. Traditionally, such models are constructed
by human experts whose experience and insight constitute the only link be-
tween the actual system and the resulting models.

Ideally, mathematical models for the analysis of the behavior of a sys-
tem should be derived from the same (hopefully, verified correct) models used
for its design and construction. Such automation makes the derivation of
these models less error-prone, and ensures that a derived analytical model
corresponds to its respective implemented system. An expressive modeling
formalism that simultaneously reflects structural, functional, and QoS prop-
erties of a modeled system constitutes a prerequisite for this automation. Reo
serves as an example of such a formalism: (1) it provides structural model
elements whose composition reflects the composition of their counterpart sys-
tem components with architectural fidelity; (2) it allows formal verification
of functional and behavioral properties of a modeled system; (3) it supports
derivation of executable code form its models; and (4) it supports derivation
of mathematical models for the analysis of the QoS properties of systems.

A Reo model of the ASK System was developed as a case study [8] within
the context of the EU project Credo [7] for verification of its functional prop-
erties. In the work we report in this paper, we refined and augmented this
Reo model with stochastic delays extracted from actual system logs to derive
a Stochastic Reo model for the ASK System. Together with Almende, we use
this model to analyze and study the QoS properties of the ASK system in
various settings. For instance, using the approach in [13], we derive CTMC
models from the Stochastic Reo model of the interesting parts of the ASK Sys-
tem, and feed them into CTMC analysis tools, which enables us to do model
checking of the stochastic behavior of the system. We will show the analysis
of several such properties using PRISM in Section 5. The following sections
describe the architecture of the ASK system in some detail. The figures and
the descriptions we use here are based on [17].

3.1 Overview of the ASK system

The top-level architecture of the ASK System is shown in Fig. 5. Every
component in this architecture has its own internal architecture, with several
levels of hierarchical nesting. At its top-level, the ASK system consists of three
parts: a web front-end, a database, and a contact engine. The web front-end

6

Moon, Arbab, Silva, Stam, Verhoef

deals with typical domain data, such as users, groups, phone numbers, mail
address, and so on. The database stores typical domain data, together with the
feedback from users and knowledge from past experience. The contact engine
handles the communication between the system and the outside world (e.g.,
by responding to or initiating telephone calls, SMS, emails, etc.) and provides
appropriate matching and scheduling functionalities.

Fig. 5. Overview of ASK system

As mentioned above, the ASK system connects service providers and con-
sumers for incoming requests. A connection is made when appropriate partici-
pants for a certain request are found. Until its proper connection is established,
an incoming request loops through the system repeatedly as (sub-)tasks. This
feature is called Request loop and it is represented by thick arrows in the
contact engine in Fig. 5.

The contact engine consists of five components: Reception, Matcher, Ex-
ecuter, ResourceManager, and Scheduler. The Reception component deter-
mines which steps must be taken by the ASK system to fulfill a request. The
Matcher component determines proper participants for fulfilling a request.
The Executer component determines the best means of connection between
the participants. The Resource Manager component either uses the Request
loop for complicated requests or establishes direct connections between users
for trivial requests. The Scheduler component, separated from the components
within the request loop, schedules requests based on the time constraints of
the requests in the database.

7

Moon, Arbab, Silva, Stam, Verhoef

4 Modeling the ASK system

In this section, we consider the contact engine, which contains the Request
loop, and focus specifically on the Reception component. The components in
the contact engine have very similar architectures, thus, the analysis carried
out here for the Reception component can be used for the other ones, as well.

4.1 The Reception component

The Reception component consists of multiple threads, the so-called Recep-
tionMonks (RM), which handle incoming requests using two different func-
tions:

• HostessTask (HT) which converts incoming requests into tasks that will
be put into the task queue.outside of the Reception component;

• HandleRequestTask (HRT) which takes care of the communication flow,
interacts with the database, and possibly generates new requests which are
dealt with by the Matcher or the Executer component. For example, given
an incoming request, HRT may ask questions from users by playing pre-
recorded messages, obtain information such as menu item choices, account
number, etc., punched in by the users, and store this information into the
database. During this communication, new requests can be generated and
sent to other components.

Each thread runs one of these two different functions/tasks exclusively.
That is, if an RM thread runs the HT function, then it is forbidden to run
the HRT function. This implies that the Reception component needs to have
at least two threads, one for HT and the other for HRT. In general, HRT
takes more time than HT, since it actually deals with incoming tasks. Thus,
the Reception component needs more threads running HRT. For simplicity of
modeling, we assume that every thread in the Reception component has only
one function, e.g., either HT or HRT. Reflecting this simplification, Fig. 6
shows the Reception model drawn in the Eclipse Coordination Tools (ECT) [9].
This figure shows a Reception component with three RM threads, one with
only HT and the other two with only HRT.

The RMHT and the indexed RMHRTs in Fig. 6 correspond to RM threads
for a HT and HRT functions, respectively. Incoming requests are converted
into tasks by the RMHT, and the converted tasks are stored in the task
queue which is represented as a FIFO1 laid between RMHT and the indexed
RMHRTs. The converted tasks are selected and handled by the RMHRTs.
We model task selection as a non-deterministic choice at the TQOut node in
Fig. 6, which will turn into a random process once we associate the distribu-
tions of the stochastic variables that describe the actual task mix of a running
system, as extracted from its logs.

8

Moon, Arbab, Silva, Stam, Verhoef

Fig. 6. Reception component in ECT

The graphical notation ⊗ used for TQOut in Fig. 6 is an abbrevia-
tion for an exclusive router [3] whose Reo circuit is depicted on the right.

a d

b

c

This circuit delivers an incoming data item
at node a to either node b or node c,
whichever one can accept it, and non-
deterministically selects one when both can.
The non-deterministic choice is actually conducted by the merger d. Thus,
the rates for the random selection apply to the merger d.

Fig. 6 serves as a basic template model for the Reception component.
Depending on the specific properties of interest in each analysis, we adapt
and vary this basic template slightly. For example, for the analysis of the
properties of the task queue, we may substitute a LossyFIFO1 connector for
the FIFO1 channel, as shown below.

4.2 Extracting distributions from logs

A stochastic model of the ASK system requires the distributions for all ac-
tivities in the system. To obtain these distributions, we applied statistical
data-analysis techniques on the raw values extracted from the real logs of
a running ASK system. The logs contained the data of 100 incoming calls.
Those calls simultaneously resulted in 369 requests sent to the Reception com-
ponent. The trace holds exact timings of all actions performed related to each
process.

We need to determine the rates for request arrivals (RRequestIn) and pro-
cessing delay at the Reception component, reading request arrivals from the
Matcher (RmatcherRequestOut) and the Executer (Rexecuter-RequestOut).
For this purpose, after a cleanup of the raw data by removing outliers and
erroneous data, we determined the appropriate distributions, using statistical

9

Moon, Arbab, Silva, Stam, Verhoef

tests (like the chi-square goodness-of-fit test).

For the Reo model, it is not important which type of distributions we
obtain. However, to perform analysis using PRISM, which takes a CTMC
as input, only exponential distributions can be used. In the case of request
arrival rates, we may indeed assume that the inter-arrival times of the requests
are exponentially distributed. This is reasonable since incoming calls to the
ASK system are independent from each other, and the inter-arrival times are
memoryless. However, in the case of processing delay rates, we were not able
to conclude that the rates are exponentially distributed. The statistical tests
showed that we may assume that the processing times follow a log-normal
distribution.

5 QoS analysis

In this section, we show how to analyze the ASK system using both the CTMC
and Reo Simulator approach. As mentioned in the previous section, the arrival
or service times for some activities are not exponentially distributed. This
is one of the reasons to analyze the Reo model with the Reo Simulator (see
Section 5.2). The simulator was also used when we could not obtain any proper
distribution from the logs at all. In this case, we used bootstrapping [14] in
the simulator with the original data as special inputs in the simulator for the
rates.

5.1 Analysis on the derived CTMC

In this section, we analyze the ASK system to reveal some of its interesting
properties in order to both evaluate and obtain clues for improving its per-
formance. We carry out our analysis on the CTMC model derived from the
Stochastic Reo model of the ASK system. We then feed the derived CTMC
model as input to PRISM. In PRISM, properties of models are expressed
using operations such as P, S, and R operators: the P operator is used to
reason about the probability of the occurrence of a certain event; the S op-
erator is used to reason about the steady-state behavior of a model; the R
operator is used to analyze reward-based properties. In addition, labels are
used to concisely express the formulas representing the properties of a model.
Specifically, we use the following labels to express some properties later.

• num dataLoss represents the number of task-loss in the task queue.

• run represents the running status of the RMHRT thread.

In general, resources are neither infinite nor free. Thus, one needs to
balance cost-effective resource utilization against most efficient performance,
i.e., obtaining the best performance taking into account the limited resource.
In the Reception component in Fig. 6, the resources of interest include:

10

Moon, Arbab, Silva, Stam, Verhoef

(i) the minimum capacity of the task queue

(ii) the utilization and/or the performance of the RMHRT threads that han-
dle tasks

5.1.1 Task queue

As mentioned above, RMHT merely converts incoming requests into tasks, but
it does not actually handles the requests. In general, the conversion into tasks
does not take long, whereas handling a request may take considerable time.
Thus, if the task queue has a small capacity, then RMHT frequently waits as it
is blocked until task queue capacity becomes available. On the other hand, if
the task queue has a large capacity, RMHT remains idle most of the time and
some queue capacity goes to waste. Therefore, we want to determine a reason-
able size for the task queue to make the ASK system efficient. We can check
the probability of RMHT blocking by iteratively increasing the queue capacity
by 1 in subsequent runs, but this laborious approach is too time consuming.
Alternatively, we can assume that the task queue has infinite capacity and try
to find how much of it is actually used. With this task queue, we obtained
the long-run expected number of task-loss due to unavailable buffer capacity
or the unbalanced performance of RMHT and RMHRT threads. For this pur-
pose, we use the following PRISM property R{"num dataLoss"}=?[S]. The
result is shown in Fig. 5.1.2.

To mimic an infinite queue, we use a LossySync channel feeding into a
queue with a fixed capacity. This construct always accepts arriving tasks,
but arriving tasks are lost when the queue is full. We can approximate the
minimum required queue capacity out of the expected number of losing tasks

Fig. 7. Expected number of task-loss in the task queue

11

Moon, Arbab, Silva, Stam, Verhoef

Fig. 8. steady-state probability of thread in use

by this construct. Replacing the FIFO1 queue in Fig. 6 by the LossyFIFO1
connector in Fig. 4 provides such a pseudo-infinite task queue for this analysis.
According to this result, around 18.5 3 requests are lost per second in front of
the task queue. From this result, we can conclude that the minimum capacity
of the task queue needs to be 20 to guarantee no task-loss.

5.1.2 Functions
The RMHRT threads are the primary task handling processes. Thus, the per-
formance of the Reception component depends on the collective performance
of its RMHRT threads. It is interesting to learn how many RMHRT threads
are required to handle a task load, or what is the reasonable performance of
RMHRT threads that can provide a satisfactory QoS. Instead of changing the
number of RMHRT threads, here we fix their number at 2 and vary their per-
formance by changing their processing delay rates. These two threads have
the same architecture with the same performance, thus, the analysis on the
utilization is carried out on the RMHRT1 thread, the result of which can be
used for the other RMHRT thread. We first find the steady-state probability
that the RMHRT1 thread is running, expressed as S=?["run"] in PRISM.
The result, shown in Fig. 8, implies that the utilization of the RMHRT1 is
18%.

In a series of analysis experiments on this property, we varied the pro-
cessing delay rates for the RMHRT1 thread. However, the gaps between
the experiment results are not significant. For example, when we considered
the activity of the RMHRT1 as an immediate activity by setting its rate as
2,147,483,687, the steady-state probability S=?[“run”] from this rate value

3 The result 0.0185 was derived with millisecond as time unit.

12

Moon, Arbab, Silva, Stam, Verhoef

 0
 0.5

 1
 1.5

 2
 2.5

 3 0
 1

 2
 3

 4
 5

 6

 0.26
 0.28

 0.3
 0.32
 0.34
 0.36
 0.38

 0.4
 0.42
 0.44
 0.46

Thread in use

Executer delay (ms)

Sojourn at TQ (ms)

 0.26
 0.28
 0.3
 0.32
 0.34
 0.36
 0.38
 0.4
 0.42
 0.44
 0.46

Fig. 9. Steady-state probability S=?["run"]

was 14%. Compared to the huge differences between these two values, their
resulting probabilities are barely changed. This implies that improving the
performance of the RMHRT1 thread does not influence the overall perfor-
mance of the Reception component that much, which suggests the presence of
some bottlenecks in this system.

In order to figure out the bottlenecks, we experimented with the model by
varying the rates relevant to other activities in the system. Fig. 9 shows the
probability results of these experiments. The label Sojourn at TQ presents
the exit rate from the task queue. As this rate decreases, incoming requests
stay longer in the task queue, and the RMHRT threads become more idle, i.e.,
the probability of the thread utilization decreases, since the request arrive at
the thread less frequently. The graph in Fig. 9 shows this tendency when one
projects this graph onto the (Prob., Soj.) plane. This implies that increasing
Sojourn at TQ value generates higher utilization of the thread.

The label Executer delay represents the frequency that the Executer
component takes the output from the Reception component. As this rate
decreases, the threads in the Reception component need to keep their results
waiting longer and block incoming tasks. Thus, the thread becomes less idle,
i.e., the utilization of the thread increases, but their throughput becomes
low since the thread just waits without doing anything. This tendency is
also observable in the graph in Fig. 9 when one projects this graph onto the
(Prob., Exe.) plane. To obtain meaningful utilization, we must increase
Executer delay.

Based on the graph in Fig. 9, we now determine bottlenecks in this system.
In general, a small change in a bottleneck causes significant differences for the
overall performance. The graph in Fig. 9 shows an instance of this: variations
in the rates in the interval [0.1, 0.6] for both Executer delay and Sojourn

at TQ induce a big variation on the probability of utilization of the thread
(represented in the vertical axis). Thus, these two rates can be assumed to

13

Moon, Arbab, Silva, Stam, Verhoef

be bottlenecks, which limit the overall performance. In order to mitigate
these bottlenecks, we need to increase both rates at least above 0.6. However,
we cannot increase these rates enormously since their relevant resources are
neither infinite nor free. As a criterion for this increase, we can consider the
convergent disposition of this graph. Above the value 1.3 of the respective
rates, the utilization of the thread converges. Thus, we can choose the third
values of the respective rates for the best cost-effective utilization of the thread
in this system.

5.2 Simulation-based analysis

The Stochastic Reo Simulator [10,19] supports performance evaluation of Reo
models through simulation. It allows arbitrary distributions for describing
stochastic properties of channels and components. The method used by this
tool combines simulation techniques and specific stochastic automata models
to conduct automated performance analysis of both steady-state and transient
properties of the model. The Stochastic Reo Simulator tool uses the coloring
semantics [6] of Reo to properly model context-dependent behavior, i.e. to
express the availability of requests. The tool is developed as a plug-in within
the Eclipse Coordination Tools (ECT) [9,11]. Through the GUI editor of the
ECT, one can develop a model of a system as a Reo circuit in an intuitive
way, annotate the circuit with rates, and then use the simulator to get insight
into the behavior of the model.

The simulator provides information about (1) the average waiting times of
I/O requests at boundary nodes, (2) buffer utilization, (3) end-to-end delays,
and (4) channel utilization. Using this simulator on the Reception component,
we used the distributions extracted in Section 4.2. Due to space limit, we do
not show details of the use of the simulator here. We show a more detailed
description on the ECT web-page 4 . As a few examples, the properties/facts
we learned about the Reception component from the simulation include: the
task queue is used 57% of the time; it takes, on the average, 6.5 milliseconds
to handle a request; and the waiting time of I/O requests at the RRequestIn

node in Fig. 6 is, on the average, 1.7 milliseconds.

6 Discussion

In this paper, we have presented a stochastic analysis of (a deployed installa-
tion of) the ASK system. We modeled the system using Stochastic Reo, from
which we generated the CTMCs corresponding to some of the modules of the
system. This enabled us to use the probabilistic model checker PRISM to ver-
ify some properties of interest, using the concrete data extracted from the logs

4 http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/CaseStudies/SimulatoronASK

14

Moon, Arbab, Silva, Stam, Verhoef

of the running ASK installation. The results of this verification allowed us to
draw conclusions about resource allocation and how the system installation
can be adapted in order to improve its performance. CTMC models have the
limitation of supporting only exponential distributions. To overcome this lim-
itation, we also used a simulator. Even though the result from the simulation
is approximation-based analysis, we can gain insight into the aspects of the
behavior of the system that involve non-exponential distributions.

We have focused our analysis in this paper only on the Reception compo-
nent of the ASK system. However, the other components have very similar
architectures and, thus, all the techniques used in this paper can be easily
applied to them as well.

The distributions used in this case study were obtained by statistical anal-
ysis based on the real logs of an actual running ASK system. Our analysis
revealed exponential distributions for the arrivals and I/O requests. However,
rates for the processing/service times of some components were not expo-
nentially distributed. This made it necessary to do simulation for additional
analysis. We used the Reo simulator [10,19], an integrated ECT tool, which
enables the use of arbitrary distributions and predefined probabilistic behav-
iors. Using this simulator we can study a model which, for instance, has
exponentially distributed data arrivals and log-normal distributed processing
rates in some components.

In this analysis, we found two bottlenecks that were caused by (1) the low
availability of the Executer component and (2) the long sojourn time at the
task queue. In what concerns (1), we observe that we are modeling the connec-
tions between the Reception and other components (Executer and Matcher)
synchronously (that is, using Sync channels), and that the observation that
the consumption rates of the other two components become bottlenecks is not
surprising. We have experimented with replacing the Sync channels with FI-
FOs to decouple the components and remove these bottlenecks. In the process
of these experiments, we identified another bottleneck internal to the Executer
component itself. In what concerns (2), the bottleneck is caused by congestion
between the task queue and the threads. Thus, we can widen the bandwidth
of this connection to obtain better performance for the system.

In earlier initiatives to improve the performance of the ASK system, the
focus has been primarily on improving the execution times of request handling
tasks, through extensive profiling. The work presented in this paper confirms
and explains the observations from small experiments with ASK components
in isolation, carried out by Almende last year. As a consequence of this,
Almende decided to put additional effort into the optimization of queue sizes
and bandwidth between the task queue and the threads in each of the ASK
components. First attempts in this direction yield promising results.

15

Moon, Arbab, Silva, Stam, Verhoef

Acknowledgments.

The authors are thankful to Christian Krause and Oscar Kanters for their
help in using the Reo simulator.

References

[1] Almende website. http://www.almende.com.

[2] F. Arbab. Reo: a channel-based coordination model for component composition. Mathematical
Structures in Computer Science, 14(3):329–366, 2004.

[3] F. Arbab. Abstract Behavior Types: a foundation model for components and their composition.
Science of Computer Programming, 55(1-3):3–52, 2005.

[4] F. Arbab, T. Chothia, R. van der Mei, S. Meng, Y.-J. Moon, and C. Verhoef. From
Coordination to Stochastic Models of QoS. In COORDINATION, volume 5521 of Lecture
Notes in Computer Science, pages 268–287. Springer, 2009.

[5] ASK community systems website. http://www.ask-cs.com.

[6] D. Clarke, D. Costa, and F. Arbab. Connector colouring I: Synchronisation and context
dependency. Science of Computer Programming, 66(3):205–225, 2007.

[7] Credo project. http://projects.cwi.nl/credo/.

[8] F. S. de Boer, I. Grabe, M. M. Jaghoori, A. Stam, and W. Yi. Modeling and Analysis of
Thread-Pools in an Industrial Communication Platform. In Proc. ICFEM’09, volume 5885 of
Lecture Notes in Computer Science, pages 367–386. Springer, 2009.

[9] Eclipse Coordination Tools. http://reo.project.cwi.nl/.

[10] O. Kanters. QoS analysis by simulation in Reo. Master’s thesis, Vrije Universiteit, Amsterdam,
The Netherlands, 2010.

[11] C. Krause. Reconfigurable Component Connectors. PhD thesis, Universiteit Leiden, 2011.

[12] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic Symbolic Model
Checker. In Computer Performance Evaluation/TOOLS, pages 200–204, 2002.

[13] Y.-J. Moon, A. Silva, C. Krause, and F. Arbab. A Compositional Semantics for Stochastic
Reo Connectors. In FOCLASA, volume 30 of EPTCS, pages 93–107, 2010.

[14] C. Z. Mooney and R. D. Duval. Bootstrapping: a nonparametric approach to statistical
inference. Sage Publications, 1993.

[15] PRISM website. http://www.prismmodelchecker.org/.

[16] A. Stam. The ASK System and the Challenge of Distributed Knowledge Discovery. In ISoLA,
volume 17 of Communications in Computer and Information Science, pages 663–668. Springer,
2008.

[17] A. Stam, S. Klüppelholz, T. Blechmann, and J. Klein. ReASK Final Models. Technical Report
To appear, Almende, The Netherlands and Technical University of Dresden, Germany, 2009.

[18] W. J. Stewart. Introduction to the numerical solution of Markov chains. Princeton University
Press, 1994.

[19] C. Verhoef, C. Krause, O. Kanters, and R. van der Mei. Simulation-based Performance Analysis
of Channel-based Coordination Models. In COORDINATION 2011, volume 6721 of Lecture
Notes in Computer Science, pages 187–201. Springer-Verlag, 2011.

16

http://www.almende.com
http://www.ask-cs.com
http://projects.cwi.nl/credo/
http://reo.project.cwi.nl/
http://www.prismmodelchecker.org/

	Introduction
	Preliminaries
	ASK system
	Overview of the ASK system

	Modeling the ASK system
	The Reception component
	Extracting distributions from logs

	QoS analysis
	Analysis on the derived CTMC
	Simulation-based analysis

	Discussion
	References

