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The modified Wilson equation, developed in a previous publication, for the excess Gibbs energy
of aqueous polymer solutions, is extended to multicomponent mixtures. The model provides a
flexible framework to correlate and predict phase equilibria of aqueous polymer two-phase
systems. The results obtained with the model are in fair agreement with the experimental data.

Introduction

Beijerink1 was the first to report on aqueous two-
phase systems (ATPS). It took around 50 years before
these systems became popular, with the efforts of
Albertsson,2 who applied them for separation processes.
In recent years, the aqueous two-phase extraction has
gained increased attention for purification and separa-
tion purposes particularly in the biotechnology field.3
A large number of publications have been reported
concerning a wide range of applications of this method,
including the separation of macromolecules, cell or-
ganelles, and viruses.3-5

The most widely studied systems are those composed
of poly(ethylene glycol) (PEG) and dextran (Dex), or by
PEG and potassium phosphate.6 Regardless of the po-
tential, the ATPS application is limited by the high cost
of the polymers commonly used in phase separation. The
chemical costs can be as high as 74% of the total pro-
duction price.7 There are in the literature several alter-
native systems in order to overcome this drawback.8-10

Among these, the use of thermoseparating polymers
seems to be one of the most promising approaches.11-13

For the industrial success of a separation technique,
it is advantageous to have mathematical tools ac-
curately describing the thermodynamic properties of the
process-associated systems. Their predictive ability is
fundamental where experimental data is not available.
There are in the literature principally two kinds of
models describing ATPS: the osmotic virial-expansion
models and those that lay on the lattice theory.14-18

Despite the relative practical success obtained with
some of the foregoing models, they sometimes exhibit
low accuracy in simultaneously predicting the phase
diagrams of homologous ATPS (that differ only in the
polymer molecular weight), and in some cases, they
utilize different sets of model parameters to predict
homologous ATPS. There is no such general solutions
theory, and the development of new models may assist
in understanding the experimental results observed in
these complex systems. In a previous paper Xu et al.19

presented a new modified Wilson equation, to represent
the vapor-liquid equilibrium (VLE) behavior of homo-
logous aqueous polymer solutions, that incorporates

some ideas from previous models, but in which the heat
capacity is taken into account. Here we extended it to
multicomponent systems to test its ability in correlating
and predicting the LLE of polymer-polymer-water
aqueous two-phase systems.

Model Development

As usual the model development starts with the
excess Gibbs energy GE (eq 1). In this new modified
Wilson equation the excess heat capacity, cP

E, that
provides an important link between the excess enthalpy
and the excess entropy (eqs 2 and 3) is used:

The expression for the excess Gibbs energy can be
easily obtained (Xu et al.):19

The first term is called the combinatorial contribu-
tion: it is independent of temperature and accounts for
the size/shape of the molecules; the last terms both
depend on temperature and are called the residual
contribution and reflect the interactions between seg-
ments of molecules. Therefore, the model consists of a
combinatorial term Gc

E and a residual term GR
E:

The excess is defined on an asymmetric normaliza-
tion: for water the reference state is the pure liquid and
for the solutes it is a hypothetical liquid (one mole of
solution in pure water, with interactions such as in an
infinite diluted aqueous solution). The principles and
methodologies adopted for the model development are
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given in the previous paper for binary mixtures (Xu et
al.)19 The extension to multicomponent mixtures is
straightforward, the expressions for the combinatorial
and residual contributions for the excess Gibbs energy
being as follows:

where Xi ) θi, i.e., the effective mole fraction of a
segment is equal to the surface/area fraction:

ni and Ni, are the mole numbers and molecule numbers
of species i, respectively; ri are the numbers of segments
per molecule. The Φi are volume fractions; qi means
effective segment number of species i and is correlated
in the usual way,

The structural factor of the solution 2/z is defined as
the nonrandom factor R. The typical value is 0.3.20 Thus,

where τij are the interaction parameters:

and qi is rewritten as

Using standard thermodynamics, the activity coef-
ficients can be easily obtained:

The activity coefficients are calculated, according to
eqs 13a-c, in the mole fraction scale, and the variables
have the meanings already presented. The activity
coefficients of the polymers were normalized to the

reference state in ATPS. Thus, according to the non-
symmetric convention,

where ln γi
ref is the activity coefficient in the reference

state and is calculated from eq 13, in which x1 ) 1 and
xi ) 0 (i * 1), (1 stands for solvent and i * 1 for solutes).

The dependence of the interaction parameters, be-
tween water and segment of polymer and between the
segments of polymers with the temperature, are, ac-
cording to the suggestion of Wu,17 as follows:

where ε is the interaction energy between segment-
segment pairs; δ is the oriented interaction parameter
between segment-segment pairs and q is the ratio of
statistical degeneracy of two states. aij

(1) and aij
(2) can be

expressed in a similar way to aji
(1) and aji

(2) replacing the
underscripts i by j, and j by i. T0 is the reference
temperature, T0 ) 298.15 K. According to Xu et al.19 it
is assumed that a(1) and a(2) are temperature and
composition independent, and if the range of tempera-
ture is not too wide, the oriented interactions between
the i-i and j-j pairs can be neglected (δii ) 0). Thus,
aji

(2) ) aij
(2).

Results and Discussion

To calculate the polymer-polymer interaction param-
eters, the component isoactivity criterion between the
two-liquid phases is used:

where I and II represent both liquid phases. Therefore,
the liquid-liquid data from the ternary systems water/
polymer/polymer is needed to estimate the parameters.
For this purpose, LLE data measured in our laboratory9

as well as data collected from literature were used to
test the new model. The phase forming polymers studied
in this work can be divided in two categories: the
classical polymers, like poly(ethylene glycol) (PEG) and
dextran (Dex) and the polymers that have been recently
used in ATPS and which exhibit thermoseparating
properties, like PES (a water soluble starch polymer)
and random copolymers of ethylene oxide (EO) and
propylene oxide (PO) (symbolized as EOPO and Ucon).
The working equations are eqs 13a-c. For the calcula-
tions, pure substance properties are necessary, such as
the molecular weight (Mj), the segment number (rj) and
the molar volume (Vj). The Mj was set equal to the
polymer number average molecular weight (Mn). Since
the van der Waals volume of a repeated unit in PEG
molecule is very close to the double of a water molecule,
Vpeg is approximated as (2npeg + 1)Vw, where npeg is the
polymerization degree of a PEG molecule and can be
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calculated from Mpeg.18 Similarly, for EOPO, Veopo is
approximated as (5neopo + 1)Vw. For Dex, Vdex is calcu-
lated from its specific volume (υdex), υdex ) 5.96 ×
10-4m3kg-1 at 293.15 K.18 For water, rw ) 1, Vw ) 18.05
× 10-6m3mol-1 at 298.15 K.18 The same value is used
at other temperatures. Thus, r2 ) V2/V1. For PES rpes
was set equal to the polymerization degree of a PES
molecule, npes.

Since the model describes satisfactorily the VLE using
only two parameters, i.e., aji

(2) ) aij
(2) ) 0,19 in the LLE

data treatment the oriented interactions were not
accounted. Thus, it is only necessary to estimate the
parameters τij and τji, which reflect the interactions
between the polymers segments. For its calculation, the
LLE data were adjusted using the following objective
function, F, based on the isoactivity criteria, and used
by other authors for the treatment of this kind of
systems:21-23

where I and II refer to both phases, and j is the number
of tie-lines.

The modified Wilson model parameters, that reflect
the interactions between the polymer-polymer seg-
ments, were obtained using the simplex method of
Nelder and Mead.24 Only two tie-lines were used to
estimate the parameters. The other tie-lines for the
same system, as well for other systems with different
polymer molecular weight, were predicted using the
same parameters, according to the equality of the
activities of the components in both phases. This
methodology has already been successfully used in our
group to correlate and predict the LLE of polymer-salt/
water aqueous two-phase systems.25

Table 1 presents the polymer-polymer interaction
parameters for the PEG-Dex and EOPO-PES ATPS.
Table 2 summarizes the absolute deviations for the

ATPS studied, as well as the source of the experimental
data used. Figures 1 to 5 show some comparisons
between experimental and predicted phase dia-
grams.

The expressions for the calculation of δWi
R, δW and

δWmax are as follows:

where δWi
R, δW and δWmax mean the average absolute

deviation in weight percentage of component i in phase
R, the overall average absolute deviation and the
maximum absolute deviation, respectively. N is the
number of experimental data points and N1 the number
of components in the system.

From Table 2 it is possible to conclude that the
predicted results are in fair agreement with the experi-
mental data. In fact, all δW and almost all δWi

R values

Table 1. Modified Wilson Parameters for PEG-Dex and
EOPO-PES ATPS

system T(K) R23
a τ32 τ23 ref

PEG6000-Dex40 298.15 0.3 -1.104 1.557 5
PES100-EOPO(1:1) 298.15 0.3 -3.282 46.42 16

a Fixed at 0.30.

Table 2. Comparison of Predicted Results and Experimental Data for PEG-Dex and EOPO-PES ATPS

STL(f)

system T(K) δW2
T(e) δW3

T(e) δW2
B(e) δW3

B(e) δW δWmax exp. pred.

PEG6000-Dex40(a) 298.15 0.58 0.42 0.24 1.81 0.97 2.28 -0.50 -0.50
PEG8000-Dex40(a) 295.15 0.18 0.13 0.13 0.34 0.22 0.66 -0.53 -0.49
PEG10000-Dex40(a) 298.15 0.09 0.18 0.29 1.50 0.58 1.74 -0.51 -0.50
PEG20000-Dex40(a) 298.15 0.07 0.06 0.35 1.89 0.67 2.05 -0.53 -0.50
PEG10000-Dex110(a) 313.15 0.51 0.03 0.16 0.92 0.53 1.19 -0.55 -0.49
PEG6000-Dex70(a) 296.15 0.45 0.06 0.22 0.64 0.46 0.95 -0.55 -0.50
PEG6000-Dex110(a) 298.15 0.04 0.12 0.26 0.37 0.23 1.24 -0.48 -0.47
PEG6000-Dex500(a) 298.15 0.08 0.20 0.28 1.47 0.38 2.18 -0.46 -0.44
EOPO(1:1)-PES100(b) 298.15 0.61 0.47 0.63 0.62 0.61 1.94 -0.54 -0.60
EOPO(1:1)-PES200(b) 298.15 0.14 0.19 0.45 0.60 0.29 2.13 -0.48 -0.48
Ucon-PES100(c) 295.15 1.57 0.98 0.71 0.66 0.93 2.08 -0.46 -0.57

Data from: (a)(5); (b)(16); (c)(9); (d)(4). ( e)The 2 component is predominant in the top phase, i.e., PEG and EOPO, and the 3 predominates
in the bottom phase, i.e., Dex and PES. T and B mean top and bottom phase, respectively. ( f)Slope of Tie Line.

Figure 1. Phase diagram of PEG20000-Dex40 ATPS at 298.15
K. (+;+) experimental data and tie-lines; (3- - -3) predicted tie-
lines; (- - -) predicted binodal. (Predictions with the PEG-Dex
interaction parameters presented in Table 1).
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are smaller, in weight percentage, than 1.0 and δWmax
assume values lower than 2.3. Thus, the model can
predict accurately several phase diagrams in which the
polymers differ only in the molecular weight, as can also
be observed from Figure 1.

Although the Ucon and EOPO (1:1) polymers are
slightly different, (the molar ratio in EO:PO is 1:1 in
the polymer used in the correlation of the parameters,
and approximately 1.3:1 in the Ucon), the prediction
results are very satisfactory. Such fact explains the
difference between the slope of the tie line (STL) and
between the polymer concentrations experimentally
obtained and calculated with the model (Figure 2 and
Table 2).

The modified Wilson equation proves to be a powerful
tool to correlate and predict homologous ATPS, even for
systems at relatively high temperatures (Figure 3).

Regarding Figures 4 and 5, it is possible to see that
the model also predicts accurately the influence of the
molecular weight of the polymers on the phase dia-
gram: increasing the polymer molecular weight the
binodal moves towards the lower concentrations.

Conclusions

The modified Wilson equation was extended to de-
scribe the LLE in polymer/polymer/water ATPS in
multicomponent systems. The results obtained show
that the model is a powerful framework, both for
correlation and for prediction of phase diagrams of
homologous ATPS, even at relatively high temperatures.
Moreover, the data indicate that only one set of param-
eters is enough to predict homologous ATPS.
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List of Symbols

a ) interaction parameter defined in eq 15, or activity
cal. ) calculated

Figure 2. Phase diagram of Ucon-PES100 ATPS at 295.15 K.
(+;+) experimental data and binodal; (3- - -3) predicted tie-lines;
(- - -) predicted binodal.

Figure 3. Phase diagram of PEG10000-Dex110 ATPS at 313.15
K. (+;+) experimental data and tie-lines; (3- - -3) predicted tie-
lines; (- - -) predicted binodal. (Predictions with the PEG-Dex
interaction parameters presented in Table 1).

Figure 4. Influence of PEG’s molecular weight in the PEG-Dex40
ATPS diagram at 298.15 K. Experimental data for (2) PEG6000,
([) PEG10000, and (b) PEG20000. Predicted binodals for
(4- - -4) PEG6000, (]- - -]) PEG10000, and (O- - -O) PEG20000.

Figure 5. Influence of Dex’s molecular weight in the PEG6000-
Dex ATPS diagram at 298.15 K. Experimental data for (2) Dex40,
([) Dex110, and (b) Dex500. Predicted binodals for (4- - -4) Dex40,
(]- - -] Dex110, and (O- - -O) Dex500.
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cP
E ) excess heat capacity/heat capacity change of mixing

exp. ) experimental
F ) objective function
G, GE ) binary parameter, excess Gibbs energy
HE ) excess enthalpy
K ) Boltzmann constant
M, Mn ) molecular weight, number-average molecular

weight
n ) mole number of segment-segment pairs, or polymer-

ization degree
N ) number of molecules (segment-segment pairs), or

experimental data points
N1 ) number of experimental data points
P ) pressure
Pred. ) prediction
q ) effective segment number of polymer or ratio of

statistical degeneracy of two states
r ) number of segments per molecule
R ) gas constant
SE ) excess entropy
SSQ ) sum of squares
STL ) slope of tie line
T ) absolute temperature
T0 ) reference temperature, 298.15 K
V ) molar volume
W ) weight fraction
x ) mole fraction of polymer solutions
X ) effective mole fraction of segments
z ) coordination number in the lattice theory

Greek Letters

R ) nonrandom factor in the Wilson model
δ ) deviation or oriented interaction parameter between

segment-segment pairs
ε ) interaction energy between segment-segment pairs
Φ ) volume fraction
γ ) activity coefficient
θ ) surface/area fraction
τ )binary interaction parameter
ν ) specific volume
∂ ) partial derivative
∞ ) infinity

Subscripts

C ) combinatorial factor
i,j ) any species or segments
ii,ij,jj ) segment-segment pairs
R ) residual contribution
1, 2 ) solvent and polymer, respectively

Superscripts

C ) combinatorial factor
E ) notation of excess quality
R ) residual factor
ref ) reference state
(1), (2) ) notation for distinction
I, II ) any aqueous phase
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