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ARTICLE INFO ABSTRACT

Available online 14 March 2015 The possibility of using photosynthetic microorganisms, such as cyanobacteria and microalgae, for converting
light and carbon dioxide into valuable biochemical products has raised the need for new cost-efficient processes

Keywords: ensuring a constant product quality. Food, feed, biofuels, cosmetics and pharmaceutics are among the sectors that

Continuous cultivation can profit from the application of photosynthetic microorganisms.

Photobioreactor Biomass growth in a photobioreactor is a complex process influenced by multiple parameters, such as photosyn-

Ig;:;%ﬁfs;ria thetic light capture and attenuation, nutrient uptake, photobioreactor hydrodynamics and gas-liquid mass

transfer.
In order to optimize productivity while keeping a standard product quality, a permanent control of the main cul-
tivation parameters is necessary, where the continuous cultivation has shown to be the best option. However it is
of utmost importance to recognize the singularity of continuous cultivation of cyanobacteria and microalgae due
to their dependence on light availability and intensity.
In this sense, this review provides comprehensive information on recent breakthroughs and possible future
trends regarding technological and process improvements in continuous cultivation systems of microalgae and
cyanobacteria, that will directly affect cost-effectiveness and product quality standardization. An overview of
the various applications, techniques and equipment (with special emphasis on photobioreactors) in continuous
cultivation of microalgae and cyanobacteria are presented. Additionally, mathematical modeling, feasibility,
economics as well as the applicability of continuous cultivation into large-scale operation, are discussed.
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1. Introduction were the studies developed by Monod (1950) and Novick and Szilard

Photosynthetic microorganisms, especially prokaryotic cyanobacteria
and eukaryotic microalgae, are considered promising candidates
for many potential applications ranging from direct use of biomass
(e.g., aquaculture feed and food supplements), production of
high-value compounds (e.g., vitamins, pigments and polyunsaturated
fatty acids) and environmental applications (e.g., biofuel production,
CO, mitigation and waste water treatment) (Fernandes et al., 2013,
2014; Klok et al., 2013a; Markou and Nerantzis, 2013; Mata et al.,
2010; Wijffels et al., 2013). The commercial exploitation of these photo-
synthetic microorganisms raises the need for reliable, efficient and cost-
efficient processes with a constant product quality (Kwon et al., 2012).

Currently, mass production of photosynthetic microorganisms is
generally based on batch cultivation systems (Camacho et al., 1990;
Marchetti et al., 2012; Rusch and Christensen, 2003 ). However these
systems' performance is still seriously hindered by factors such as low
productivity, high harvesting costs due to low cell concentrations,
uncertain reliability and a variable product quality (Ganuza and
Izquierdo, 2007; Guedes et al., 2014; Rusch and Christensen, 2003;
Wang et al., 2013). This means that batch cultivation may not be the
best choice for mass production of microalgae and cyanobacteria
biomass (Camacho et al., 1990).

As the need for microalgae and cyanobacteria increases, continuous
production systems are attracting interest once, according to many au-
thors, these systems are the most suitable way to achieve successful
large scale production of those photosynthetic microorganisms mainly
due to higher volumetric productivities, constant product quality, re-
duction of space requirement, decrease of labor costs, lower investment
and operational costs and decrease of “unprofitable” periods (Cuaresma
et al., 2009; Gonzalez-Lopez et al., 2012; Gutierrez-Wing et al., 2012;
Rusch and Christensen, 2003; Sforza et al., 2014; Tang et al., 2012;
Zijffers et al., 2010).

This review presents the basic principles, the main advantages and
challenges, the equipment, maintenance, monitoring, control and
downstream processes associated to continuous cultivation of these
photosynthetic microorganisms. The feasibility and economic aspects,
the main applications and the future perspectives of these systems are
also addressed.

1.1. Principles of continuous cultivation

Despite the first references to a continuous cultivation technique re-
port to the 1920s (Cooney, 1979) and the first continuous cultivation of
photosynthetic microorganisms to the 1940s (Myers and Clark, 1944), it

(1950) that marked the formal initiation and application of continuous
culture. However the heyday of continuous cultivations was during the
1960s, where this technique was used very often as a tool to investigate
biochemical, ecological, genetic and physiological aspects of different
microorganisms (Hoskisson and Hobbs, 2005). The theory presented
by these authors is based in the observation that, during microorgan-
isms' growth in batch systems, substrates are depleted and products ac-
cumulate, which at a given point makes growth to cease due to limiting
substrate depletion or growth-inhibiting products accumulation. So, in
order to maintain cells' proliferation, the substrate needs to be replaced
and the inhibitory products to be removed in a continuous way, which is
basically what happens in continuous cultivations (Lee and Shen, 2004).

Generally, continuous culture can be defined as an open system in
which fresh culture medium is continuously added to the bioreactor
and the culture broth (including cells and metabolites) is also continu-
ously removed (Brethauer and Wyman, 2010; Guedes et al., 2014;
Paulova et al., 2013). Usually the volume of culture broth is kept con-
stant inside the bioreactor and the microorganisms are in a nearly un-
changed environment. This forces the microorganisms to adjust their
physiology and composition to the environmental conditions provided
and after some generations a steady-state is usually attained (Guedes
et al,, 2014). In this sense, the continuous cultivation theory makes
use of the relationship between the availability of the limiting substrate
and microbial growth. The mass balance in a bioreactor operating in
continuous mode is usually defined by:

V'dCX/dt:,uCX'V+Fin‘CXin_Fout'CXout (1)

Where V—working volume (L); dCx /dt—biomass accumulation in-
side the bioreactor (g/(L h)); u—specific growth rate (h~!) Cx—biomass
concentration (g/L) F,, Fourr —volumetric inflow and outflow (L/h).

Assuming: (i) constant flow (F = F;, = F,); (ii) constant volume;
(iii) the steady state conditions (dCx/dt = 0) (Lee et al., 2013) and tak-
ing in consideration the dilution rate definition (D = F/V), the Eq. (1)
can be simplified to:

u=D (2)

D is the reciprocal of the residence time, which is defined as the av-
erage time that a fluid element spends inside the bioreactor. Consider-
ing a constant working volume, the dilution rate can be manipulated
and the continuous mode can operate at a defined (and constant) or
variable dilution rate (Ferreira and Teixeira, 2003). Eq. (2) presumes
that the specific death rate is negligible comparing to t, which is not al-
ways true and must be taken in account (Wood et al., 2005).
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1.2. Specificities of continuous phototrophic cultures

Although they may also growth under mixotrophic and heterotro-
phic conditions, microalgae and cyanobacteria are mainly phototrophs
and almost all their cultivations are made in photoautotrophic condi-
tions. Consequently, in this review, the continuous cultivation of photo-
synthetic microorganisms (cyanobacteria and microalgae) will be
discussed, almost exclusively, in photoautotrophic conditions.

When compared to the continuous cultivations of other microorgan-
isms, continuous cultivation of microalgae and cyanobacteria is a partic-
ularly complex process, because in addition to all the factors inherent to
any microorganism cultivation (e.g., reactor hydrodynamics, substrate
consumption and product formation), it is also necessary to take into ac-
count the extra and multiple effects of light such as photosynthetic light
capture and light attenuation of the suspension (Cuaresma et al., 2011;
Molina Grima et al., 1999; Sforza et al,, 2014;). This is of utmost impor-
tance since it has been reported that biomass composition and produc-
tivity are greatly influenced by light quality (spectra of the energy
penetrating into the culture) and quantity (total amount of energy pen-
etrating into the culture) (Fernandes et al., 2014).

Unlike most microorganisms, in photosynthetic microorganisms the
relation between D, pt and productivity (u + Cx) is not straightforward.
Generally in photosynthetic microorganisms maximum growth rate
(Umax) is obtained at low cell densities and in the absence of light-
limited conditions. In the other hand high productivities occur at high
Cx and low or moderate p at light-limited conditions (Richmond,
2013). In light-limited conditions it is considered that all energy is
absorbed by the biomass during a defined small time-interval (dt).
Therefore the energy balance is given by:

V.dE=1A dt—F Cy/Ydt 3)

Where dE—energy net increase (] L~'); I—photon flux density in the
photosynthetically available range (Jm~2 h™!); A—illuminated surface
area (m?); and Y—growth yield (g/J). Considering the same conditions
asin Eq. (1), Eq. (3) can be simplified to:

DCy=TAYN (4)

In photobioreactors (PBRs) the productivity is controlled by avail-
ability of light, especially at higher scale of operation (Molina Grima
et al.,, 1999). This means that considerations about the system produc-
tivity must have in account the specific microorganism growth condi-
tions. In light-limited conditions the photosynthetic microorganisms
growth is limited by the photon flux density (I), which is related with
the biomass specific growth rate (u). Generally this is done by the
modification of Monod equation (Gobel, 1978; Lee et al., 2013), which
assumes the following form:

B = Mg 1/ (T4 K) )

Where ph,,q,—maximum specific growth rate and K;—light saturation
constant.

It is important to note that Eq. (5) is only valid for light-limited con-
ditions and not for situation where light is in excess (photo saturation).
Moreover this assumptions based in Monod equation consider that
temperature is kept constant in all (indoor and outdoor) continuous
cultivations.

As in outdoors conditions light can vary significantly it is important
to define a robust model able to predict the specific growth rate (u)
under these variable light conditions. This work has been done and
reviewed by some authors (Aiba, 1982; Banister, 1979; Molina Grima
et al., 1999) that considered the average light irradiance (I4y), which is
the light experienced by a single cell randomly moving in a PBR. These
models are normally very strain and PBR dependent and the approach
for I4y determination can go from simple to more complex estimations

(Molina Grima et al., 1994, 1999) The main difficulty associated to the
correlation between p and 4y in continuous outdoor cultivations arise
from the light variations during the day (and during the seasons of the
year) and the light attenuation inside the PBRs. This can be estimated
considering the Lambert-Beer law, the PBR design and the relative
sun position (Molina-Grima et al., 1994).

As reported previously, an important concept in continuous cultiva-
tion of photosynthetic microorganisms is the concept of optimal cell
density (OCD), which is defined as the biomass concentration that al-
lows the highest desired product or biomass productivity (Myers and
Graham, 1958; Richmond, 2013;). However, at OCD the L is not maxi-
mal, in fact, Myers and Graham (1958) reported that at OCD the p was
about one-half p,,x and four times the ,;, measured in the lowest
and highest cell concentrations, respectively.

For all the reasons abovementioned, monitoring and control of light
regime inside the cultivation system is a central process consideration
to maintain a highly productive continuous phototrophic cultivation.

The continuous outdoor production of photosynthetic microorgan-
isms is restricted by light availability during the night period, which
leads to biomass losses (due to respiration) up to 25% (Chisti, 2007).
Only the utilization of artificial lighting allows a 24 h continuous
production, but this strategy demands a significantly higher energy
input. Therefore, in general, continuous large-scale production of
photosynthetic microorganisms is only performed during daylight
(Chisti, 2007). Therefore,

in the present review, the cultivation mode (e.g., batch, continuous)
will be defined as the one performing during the light period.

Despite the importance of the light issue, in order to obtain a high
biomass/product yield and a stable product quality, a permanent control
of many other independent and mutably dependent factors is required
(Kwon et al., 2012).

Considering this, the continuous cultivation presents itself as a very
promising, but challenging, option to mass cultivation of microalgae and
cyanobacteria.

1.3. Continuous cultivation methods

The most common method used in continuous cultivation of
microalgae and cyanobacteria is the turbidostat, being the luminostat
and chemostat mainly used as research tool (Fig. 1).

In situations where: i) a constant cell density is desirable, ii) there is
the presence of inhibitory substrates, iii) slow growing microorganisms
or with complex cell cycle are present, iv) near maximum growth rate is

Pump
controller

Pump

Medium
Reservatoir

Fig. 1. Schematic representation of continuous cultivation methods. All the elements
represented with continuous line refer to chemostat; continuous and dashed lines refer
to turbidostat; continuous and dotted lines refer luminostat.
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attained or v) the cultures are unstable in chemostat mode, the best and
most common option is to use the turbidostat approach (Lee and Shen,
2004).

A good example of this situation is the cultivation of the microalga
Haematococcus lacustris, where the utilization of a fixed D in chemostat
results in a washout, because the p of H. lacustris is not constant at the
different cell cycle phases (Lee and Ding, 1994 ), making turbidostat
the best option for continuous cultivation of these cells.

The turbidostat is quite common in continuous microalgae cultiva-
tion (James and Al-Khars, 1990; Tang et al., 2012), but it is a more com-
plex and challenging technique than chemostat (Sandnes et al., 2006).

In turbidostat an automatic system composed by an optical sensor
(for sensing the turbidity) and a pump is used to maintain the turbidity
in the bioreactor (Fig. 1—elements with continuous and dashed lines).
This is usually done by adjusting the feed rate of fresh medium through
a feedback control loop (Lee and Shen, 2004; MacIntyre and Cullen,
2005).

In addition to turbidity, other growth-linked parameters such as pH,
substrate concentration, CO, consumption or O, production, can be
used as alternatives to control the continuous growth (Lee and Shen,
2004).

In order to overcome continuous changes in light conditions (e.g.,
due to the position of the sun and changes in the weather), the
luminostat (Fig. 1—elements with continuous and dotted lines) has
been proposed. In a luminostat the biomass concentration is constantly
adapted to the light conditions in order to maximize light absorption
and reducing dark volumes, which results in maximal productivity
(Richmond, 2013). In this approach the light transmission is controlled
by measuring the light intensity at the rear of the PBR (Cuaresma et al.,
2011; Takache et al.,, 2010). The utilization of luminostat technique re-
duce the effects of photosaturation and photolimitation, increasing the
photosynthetic efficiency and productivity (Cuaresma et al., 2011).

In chemostat cultures (Fig. 1—elements with continuous lines), the
limiting nutrient present in fresh medium is fed into the PBR at a
predetermined and fixed D, which according to Eq. (2) will determine
1. Due to its capacity to control ¢ and maintain an environment with a
constant chemical composition that forces the adjustment of cells’ phys-
iology, chemostat operation is widely used as a research tool to study,
for example, the effects of substrate concentration, pH or temperature
at constant specific growth rates (Grima et al., 1994; Hoskisson and
Hobbs, 2005; lehana, 1983; Klok et al., 2013a; Lee and Shen, 2004; Lee
and Soh, 1991; Pirt et al., 1980).

Other methods for continuous cultivations of photosynthetic micro-
organisms are also proposed in the literature. Barbosa et al. (2005)
proposed the acceleration-stat (A-stat) technique in which the biomass
productivity of the microalgae Dunaliella tertiolecta was optimized by
continuously changing of the dilution rate at a constant acceleration
rate. Rhee et al. (1981) proposed a cyclostat approach, in which cells
are subjected to alternating light and dark periods. The utilization of
continuous cultivation methods, other than turbidostat, is almost
restricted to laboratory use.

2. Advantages and challenges
2.1. Advantages

Due to a particular set of features, the continuous cultivation of pho-
tosynthetic microorganisms is, in many situations, a very attractive al-
ternative to the widely used batch cultures. In batch cultures the cell
composition can vary during time as cells get older and the bulk envi-
ronment changes. Oppositely, in continuous cultures the efficient con-
trol of growing environment allows to obtain a tailor-made biomass
composition at a constant and predetermined rate (Borowitzka, 1997;
Clarkson et al., 2001; Klok et al., 2013a; Palmer et al., 1975; Zhu and
Jiang, 2008). Considering the fact that irradiance, salinity or specific nu-
trients concentration (e.g., phosphorus or nitrogen) can determine cell

composition, it is possible to consistently obtain a product with reason-
ably stable characteristics by, for example, keeping a constant nutrient
concentration or cell density (Dragone et al., 2011; Fernandes et al.,
2013; Hu, 2004; Marchetti et al., 2012; Tzovenis et al., 2003). Another
strategy to influence the cell composition is through the manipulation
of average cell age. It is known that in different stages of their growth,
microalgal and cyanobacterial cells have different compositions
(Alonso et al., 2000) and being D the reciprocal of the residence time,
its value will determine the age of cells present in the PBR. Another
major advantage is the fact that growth and photosynthetic rates can
be maintained near their maximum value (at low cell densities),
which is of utmost importance when the objective is the efficient pro-
duction of growth-associated products (Agrawal et al., 1989; Posten,
2009; Wang et al., 2013).

In opposition to batch systems, in continuous cultivation cell density
can be maintained around OCD, which results in maximal biomass pro-
ductivity. At OCD the effect of light attenuation is overcome by number
of additional catalytic units (Richmond, 2013).

It has been previously reported and described (Fernandez et al.,
2012; Fernandez-Sevilla et al., 2014; Lee et al., 2013; Mata et al., 2010)
that, theoretically, and without considering the time needed to clean
and re-start a batch culture, the productivity in continuous cultivation
systems is 2.3 to 5 times higher than in batch mode. Moreover, this op-
eration mode enables the achievement of high cell densities, which be-
sides obtaining higher productivities also allow reducing harvesting
costs since continuous harvesting (e.g., continuous centrifugation) is
much more efficient than the intermittent processing of large volumes
from a batch cultivation (Borowitzka, 1999; Ganuza and Izquierdo,
2007; Zhu and Jiang, 2008). The fact that product harvesting can take
place during cultivation makes the continuous systems particularly suit-
able for processes where the production of extracellular compounds,
volatile products or autoinhibiting compounds are mainly targeted
(Lindberg et al., 2010; Niederholtmeyer et al., 2010; Sharma and Stal,
2014). Continuous processes might be also the only viable option in sit-
uations where it is necessary to operate with toxic (e.g., removal of toxic
pollutants from wastewaters) or low solubility substrates.

Other characteristics such as: reduction of space requirement due to
smaller equipment; decrease of labor costs due to a full automation of
the production process; lower investment and operational costs;
decrease of “unprofitable” periods of bioreactor operation due to a re-
duction in the downtime for cleaning and sterilization; suppression of
water loss by evaporation; and the opportunity to decrease the viscosity
of the broth whenever necessary, make continuous cultivation a very
appealing strategy for commercial or lab scale cultivation of microalgae
and cyanobacteria (Borowitzka, 1999; Brethauer and Wyman, 2010;
Kwon et al,, 2012; Marchetti et al., 2012; Paulova et al., 2013; Sharma
and Stal, 2014; Zhu and Jiang, 2008).

2.2. Challenges

Despite the mentioned advantages of continuous systems, batch
cultivation is the most common method used in the cultivation of
microalgae and cyanobacteria (Bougaran et al., 2003; Guedes et al.,
2014; Loubiére et al., 2009; Marchetti et al., 2012; Qiu 2010). The reasons
for this preference are similar to those in other industries, like the
brewing industry, where, despite the evident advantages of continuous
systems, batch systems are still preferred (Branyik et al., 2006, 2012;
Pires et al., 2014). The typically presented motives have its source in
“emotional” and techno-economic bases. The former are represented by
a resistance to change, mistrust caused by the lack of information and
the accommodation to the already implemented batch processes. The
main techno-economic reasons that contribute to this reluctance are:
the system complexity and therefore the necessary skilled labor for main-
tenance and operation (Eriksen et al., 1998; Sharma and Stal, 2014); the
need of special equipment; and a higher contamination potential, which
is the result of a much longer time of operation (in the range of months)
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with a continuous pumping of the medium (Mufioz and Guieysse, 2006;
Paulova et al., 2013; Rusch and Christensen, 2003). Regarding the con-
tamination risk, it is important to emphasize that the potential for culture
collapse due to inadvertent contaminants is not an exclusive phenome-
non of continuous cultivations, and does also occur in batch cultures
(Rusch and Christensen, 2003). Other limitations such as the inability to
provide constant natural illumination, which can restrict continuous sys-
tems to indoors; microbial attachment to walls during long cultivation
periods (thus hampering light penetration); and the possibility of sponta-
neous genetic mutations in the microbial strains in a long-term operation,
are also referred as limitations of continuous systems (Eriksen et al.,
1998; Loubiére et al., 2009; Marchetti et al., 2012; Paulova et al., 2013;
Sharma and Stal, 2014; Tsygankov et al., 1998).

2.2.1. Strategies to overcome limitations

Several strategies have been developed in order to overcome some
of the constraints addressed to continuous cultivation of photosynthetic
microorganisms. In order to control the contamination or, when possi-
ble, reduce its risk, different techniques have been tested and described
in the literature. Among these strategies the use of an in situ net in order
to control the contamination by insects, leaves or other airborne mate-
rial have been proposed by Borowitzka (2005) to be used in open-air
systems. The preference for closed PBRs and the utilization of highly se-
lective growth conditions (e.g., extreme salinities, high nutrient concen-
tration, high pH) have been proposed as strategies to avoid and control
the contamination with microorganisms (Borowitzka, 1991; Post et al.,
1983; Vonshak, 1990).

As previously demonstrated, another inherent limitation of continu-
ous cultivation is the deposition of cells in the reactor walls. To prevent
this situation several approaches, e.g., introduction of turbulence or
scraping, have been tested and described in the literature. More infor-
mation about strategies control of contamination and cell wall growth
is presented in Section 3.2.4.

To increase the process cost-effectiveness is vital to reduce the
construction and operation costs of continuous cultivation systems.
However, this reduction should not be done at the expense of produc-
tivity, purity and quality of the culture. The balance between costs and
product quality can be achieved by, for example, the utilization of
cheap materials in the construction of the PBRs (Tredici, 1999) and
the full automation of the process (Marchetti et al., 2012). The
utilization of downstream processes operating in continuous mode
(e.g., harvesting, cell rupture and product extraction) should be fully ex-
plored and optimized, since it allows a real-time monitoring and control
of the process, increasing the productivity and decreasing the invest-
ment, which are important economic advantages over typical batch
processes (Jungbauer, 2013). Other strategies to decrease the produc-
tion costs in continuous systems are discussed in detail in Section 3.5.

To overcome some of existing resistance to the implementation of
continuous cultivation it is necessary to provide representative case
studies where the advantages of continuous cultivation are clearly dem-
onstrated and combined with a rigorous and realistic techno-economic
assessment. Also, the emergence of successful continuous cultivation
projects like the Aquasearch facility, located in Hawaii that tested the
continuous-wise production of astaxanthin by Haematococcus pluvialis
in outdoor enclosed 25 m> tubular photobioreactors (Guedes et al.,
2011), can be a decisive driving force.

3. Equipment, operational and technical-economic assessment

Implementing a continuous cultivation requires certain procedures,
techniques and the acquisition of specific equipment, in order to take
full advantage of its potential.

In continuous cultures, it is crucial to know in advance the behavior of
the desired microorganism under the selected operation conditions.
Therefore, a number of small batch cultivations should be performed be-
fore starting the continuous cultivations, in order to collect information

about the best growth conditions (e.g., light, temperature, pH, growth
medium and CO, concentration), the different growth phases and their
relation with the product (e.g,, if is a growth associated product or not),
the presence of eventual inhibitors and to determine which is the limiting
substrate (among other case-specific information). The basic equipment
required for continuous cultivation of microalgae and cyanobacteria is ge-
nerically represented by a PBR, complemented by specific equipment for
continuous preparation and sterilization of medium (when required),
pumps to deliver the medium (and eventually withdraw the broth),
aeration system, monitoring sensors, controllers and equipment for
downstream processing.

3.1. Cultivation systems

Firstly, it is important to stress that all the existing cultivation sys-
tems are, occasionally with minor modifications, suitable for continuous
operation. Therefore, in this chapter a general approach to PBRs (in this
text the term photobioreactor is used for both open-air and closed sys-
tems) will be made (this subject has been extensively reviewed by
(Borowitzka, 1999; Tredici, 2004; Mata et al., 2010; Posten, 2009;
Dragone et al., 2010; Wang et al., 2012), followed by a mention to spe-
cific applications of PBRs in continuous phototrophic cultivations. The
PBR selection is one of the most crucial steps to define the feasibility
of commercial production of photosynthetic microorganisms since its
selection will influence construction and maintenance costs, system
productivity and the risk of contamination. It will also significantly in-
fluence biomass composition and will determine, for example, the oc-
currence of photoinhibition and photooxidation, the light-dark cycle
frequency, the cells' light history, and the possible accumulation of
toxic levels of oxygen in the culture (Fernandes et al., 2014; Mirén
et al., 2003).

3.1.1. Open-air systems

Typical open-air PBRs include lakes and natural ponds, circular
ponds, raceway ponds and inclined systems. These PBRs have been ex-
tensively studied in the past few years (Borowitzka, 1999; Chaumont,
1993; Dragone et al., 2010; Tredici, 2004) and they are the most wide-
spread systems for the mass cultivation of microalgae (e.g., Dunaliella,
Chlorella) and cyanobacteria (e.g., Spirulina), representing all very
large commercial systems being used (Abdulgader et al.,, 2000;
Dragone et al., 2010; Spolaore et al., 2006; Thein, 1993; Tredici, 2004).
The dissemination of these open-air systems is mostly due to operation-
al and economic factors, since they are easier and less expensive to build
and have a larger production capacity than most closed systems
(Carlsson, 2007; Dragone et al., 2010; Tredici, 2004). Although these
systems are the most widely used at industrial level, they still present
significant technical challenges such as low biomass concentration
and productivity. They are also very susceptible to contamination and
to meteorological conditions, especially fluctuations in nutrient and
cell concentrations due to evaporation and rain (Dragone et al., 2010;
Tredici, 2004). Therefore, the utilization of these PBRs is currently re-
stricted to fast growing, naturally occurring or extremophilic species
like Dunaliella (adaptable to very high salinity), Spirulina (adaptable to
high alkalinity) and Chlorella (adaptable to nutrient-rich media)
(Carlsson, 2007). Due to the high risk of contamination, combined to ex-
treme difficulty to control main variables such as biomass concentra-
tion, temperature, pH and oxygen content, open-air systems are not
considered very appropriate for continuous cultivation (Muller-feuga
et al., 1998).

3.1.2. Closed systems

In opposition to open-air systems, closed systems allow regulating
and controlling nearly all the biotechnological parameters while reducing
contamination risks, CO, losses and water evaporation. It is also easier to
obtain reproducible cultivation conditions, controllable hydrodynamics
and a more stable operation temperature (Pulz et al., 2001). Closed
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PBRs are more flexible and can be placed outdoor or indoor depending on
the product of interest, production level and local weather conditions. In
recent years research in closed PBRs has increased due to the new micro-
organisms of interest and high-value products for use in the pharmaceu-
tical and cosmetics industry that, imperatively, must grow free of
contaminants (Dragone et al,, 2010). Many different designs have been
developed, and the main categories include: i) tubular; ii) flat; and iii) col-
umn PBRs. The largest closed PBRs are tubular, like the 25 m> plant at
Mera Pharmaceuticals, Hawaii, and the 700 m? plant in Klétze, Germany
(Brennan and Owende, 2013; Dragone et al., 2010; Olaizola, 2000).
These PBR systems are relatively cheap, have a large illumination surface
area and have quite good biomass productivities. Flat PBRs have a large
surface area exposed to illumination and high densities (>80 g L™!) of
photoautotrophic cells were observed (Brennan and Owende, 2010).
Column PBRs are frequently low-cost, compact and easy to operate.
Additionally they usually provide the most efficient mixing, the highest
volumetric gas transfer rates, and the best controllable growth conditions
(Tredici, 2004). Comprehensive reviews with detailed description, advan-
tages and disadvantages and comparison of each closed PBR category can
be found elsewhere (Carvalho et al., 2006; Chaumont, 1993; Dragone
et al.,, 2010; Janssen et al., 2003; Kunjapur and Eldridge, 2010; Posten,
2009; Tredici, 2004).

3.1.3. PBRs used in continuous mode

Despite the fact that all the previously described PBRs have been, or
at least are suitable to be, used in continuous mode, most of continuous
systems are implemented in closed PBRs in order to minimize contam-
ination and increase systems' control (Rusch and Christensen, 2003). In
the last years many PBRs have been tested for the continuous cultivation
of microalgae and cyanobacteria (Table 1). The productivity and effec-
tiveness of each PBR varies between studies since these parameters de-
pend on the microorganism and the selected operational conditions. In
Table 1 are only considered studies in which PBRs with significant vol-
umes (>50 L) were tested. Through an intensive analysis of literature
it is possible to conclude that the selection of the PBR to be used in con-
tinuous cultivation (as in batch) will be the result of a detailed integrat-
ed analysis of different elements such as: i) market value and required
characteristics for the product of interest; ii) selected microorganism;
iii) contamination risk; iv) local weather conditions; v) cultivation me-
dium used; and vi) land availability. The systems used in laboratory re-
search tend to be more sophisticated, since axenic conditions and more
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complex and accurate control is required (Droop, 1966; Hoskisson and
Hobbs, 2005).

In some situations of pollutants removal from wastewater, produc-
tion of an extracellular metabolite or for the maintenance of high cell
densities inside the PBR, microalgal and cyanobacterial cells are
immobilized by adsorption to solid surfaces, mostly with the aim of im-
proving the performance of the system (De-Bashan et al., 2002; Pradhan
and Rai, 2000). The main issues in photosynthetic cells immobilization
are: i) the aggressiveness of some immobilization processes (Garbisu
et al,, 1991); ii) the low nutrient availability and light limitation due to
the presence of a carrier (Moreno-Garrido, 2008); and iii) price and me-
chanical performance of matrices (Mufioz and Guieysse, 2006). More
information about current immobilization techniques, carriers and
physiological effects on photosynthetic cells due to immobilization can
be found in an excellent review by Moreno-Garrido (2008).

3.2. Start-up and maintenance operations

In order to operate a PBR in continuous mode there are several aux-
iliary operations that need to be completed before reaching the full con-
tinuous operation. In general, it is important to define an easy and quick
start-up operation, keep sterile conditions to avoid contaminations and
avoid cell wall deposition. Continuous operation generically involves
the following steps: i) PBR cleaning and sterilization; ii) medium and
air sterilization; iii) PBR start-up; and iv) maintaining the continuous
operation.

3.2.1. PBR cleaning and sterilization

Depending on the PBR construction material (optically clear materials
like glass, acrylic, polyethylene or polyvinyl chloride), scale (laboratory,
pilot or industrial) and growth medium contamination risk (e.g., highly
selective, non-selective medium or wastewater), different procedures of
sanitation or sterilization can be adopted. Techniques such as steam ster-
ilization and autoclave are not suitable for the sterilization of most of the
PBRs due to the kind of materials used and/or their size (Behrens, 2005).
The autoclave is used for PBRs with volumes up to 10 L (Castellanos,
2013; Javanmardian and Palsson, 1992) and the in situ heat sterilization
for volumes between 10 L and 100 L (Fonseca and Teixeira, 2007). A dif-
ferent alternative is the sterilization by ozonation, however these systems
tend to be expensive (Quesnel, 1987). Sanitation, using hypochlorite so-
lution (Behrens, 2005) or peroxyacetic acid solution (Loubiére et al.,

Table 1
PBRs used for continuous cultivation of photosynthetic microorganisms.

PBR Microorganism Volume (L) Biomass productivity (gL~ 'd ™) Reference

Flat panel Nanochloropsis 440 0.27 Cheng-Wu et al. (2001)
Spirulina maxima 4 x 64 1.7 Samson and Leduy (1985)

Tubular: fence, helical type, double layer tubes. Phaeodactylum tricornutum 200 1.9 Molina Grima et al. (2001)
Scenedesmus almeriensis 10 x 3000 0.3-0.7 Acién et al. (2012)
Phaeodactylum tricornutum 75 14 Hall et al. (2003)
Porphyridium cruentum 7000 0.29-0.36 Chaumont et al. (1988)

Polyethylene sleeves Porphyridium sp. 10-70 0.18 Cohen et al. (1991)
Tetraselmis suecica 50 - Trotta (1981)

Bubble column Phaeodactylum tricornutum 60 0.3 Mirén et al. (2003)
Chlorella 200 0.10-0.26 James and Al-Khars (1990)
Nannochloropsis 200 0.032-0.095 James and Al-Khars (1990)

Airlift: split cylinder and draft tube. Haematococcus pluvialis 50 0.7 Garcia-Malea et al. (2009)
Spirulina platensis 77 - Morist et al. (2001)
Spirulina platensis 77 03 Vernerey et al. (2001)
Phaeodactylum tricornutum 60 03 Mirén et al. (2003)

Hybrid: tubular + airlift Phaeodactylum tricornutum 200 1.2 Fernandez et al. (2001)
Phaeodactylum tricornutum 50-220 0.50-2.74 Fernandez et al. (1998)
Muriellopsis sp. 55 40° Del Campo et al. (2001)
Porphyridium cruentum 220 1.76 Rebolloso Fuentes et al. (1999)
Porphyridium purpureum 50 - Baquerisse et al. (1999)
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2009) is a more practical and feasible solution. The information available
in the literature regarding PBRs sanitation/sterilization procedures is
rather scarce. In some cases it can be considered that no sterilization pro-
cedures were used, as reported in a number of situations (Reis et al.,
1996). In fact sometimes sterilization is not necessary because the culti-
vation conditions (high salinity and/or high pH) are selective enough to
keep the aseptic conditions (Borowitzka, 1991; Post et al., 1983;
Vonshak, 1990).

3.2.2. Medium and gas sterilization

In continuous cultivations, besides the sterilization of the PBR, it is
also important to sterilize the gas (mixture of air and CO,) and medium
once these are being continuously fed into the PBR. Usually gas is steril-
ized by filtration (Alonso et al., 2000; Camacho et al., 1990), while the
medium sterilization is done by one of the following methods: autoclav-
ing (Jacome-Pilco et al., 2009; Palmer et al., 1975), filtration (Alonso
et al.,, 2000; Camacho et al., 1990; Fernandez et al., 2014; Sananurak
et al.,, 2009), UV (Sananurak et al., 2009) and ozonation (Fernandez
et al,, 2014; Sananurak et al., 2009). It is common to use two or three
methods for medium sterilization in order to guarantee aseptic cultiva-
tion conditions (Fernandez et al., 2014; Sananurak et al., 2009). At pilot
and industrial scales UV and ozonation are the most common tech-
niques (Fernandez et al., 2014; Molina Grima et al., 2003; Sananurak
et al,, 2009). All the auxiliary equipment like analysers or pumps can
be kept free of contaminant microorganisms by the utilization of
prefilters (Behrens, 2005).

3.2.3. PBR start-up

After the cleaning and sterilization procedures have been applied,
the next step is the PBR's start-up. The most common start-up strategy
is the implementation of a preliminary batch culture in order to obtain
sufficient cell density (Alonso et al., 2000; Bougaran et al., 2003;
D'Souza and Kelly, 2000). The alternative method is the application of
the continuous regime immediately after inoculation, which allows a
full automation of the process from the beginning. Bougaran et al.
(2003) compared these two methods in the continuous cultivation of
Isochrysis galbana affinis Tahiti and they concluded that, in both, the
characteristics obtained in the steady-state were very similar.

3.2.4. Maintaining the continuous operation

After reaching steady-state, it is important to guarantee that the con-
ditions are kept stable in order to preserve this state, which implies the
monitoring and control of the continuous culture (for more information
please see Section 3.3), the equipment maintenance, the conservation of
aseptic conditions and prevent a significant cell wall growth/deposition.

Regarding to equipment maintenance, the continuous utilization
leads to the necessity to clean, calibrate or replace some of the equip-
ment during the operation. As an example, Lee (1995) stated that sensor
failure is one of the most common causes to false alarms in automated
system. The cell adhesion to the surface of the optical cell used in
turbidostat cultivations is a very typical problem that could limit the
normal operation of a continuous cultivation (Lee and Shen, 2004).
This requires a periodical cleaning process during the cultivation.

3.2.4.1. Dealing with contamination during continuous operation. For
keeping the aseptic conditions it is important to do the maintenance
of filtration and ozonation systems used for sterilize gas and medium.
In open ponds sometimes a physical barrier (netting) is important to
avoid contamination from unwanted living organisms and other air-
borne material (Borowitzka, 2005; Rosenberg et al.,, 2011).

When a relevant contamination is detected two main options are
possible: i) application of a technique for continuous removal of the
contaminant organism and ii) the end of continuous cultivation for
cleaning and sterilization. As the second option is the last resource, it
is important to focus on the main techniques to reduce or eliminate
the contamination in continuous microalgae and cyanobacteria

cultivation systems. A typical strategy to mitigate microbial contami-
nants is the manipulation of the dilution rate, which can result for ex-
ample in light or nutrient limitation, and ultimately result in the
predominance of the desired microorganism. The manipulation of
other variables such as pH, temperature or salinity can also promote
the growth of the desired microorganism over the contaminant. For ex-
ample, knowing that different cells present different sensitivities to
NHs, Richmond et al. (1982) minimized the contamination of Spirulina
cultures with green algae by maintaining the bicarbonate concentra-
tions above 0.2 M, the pH above 10 and operating at high cell densities.
Also Borowitzka (2005) referred the introduction of repeated pulses of
1-2 mM NH3, followed by a 30% dilution of the culture as strategy to
avoid the simultaneous growth of Spirulina and Chlorella cells. Other
strategies to control contamination are reported in the literature.
Using the combined effect of crossflow-microscreening and a short hy-
draulic time (in order to wash freely suspended cells) Wood (1987) was
able to recover the predominance of a Stigeoclonium strain. Fabregas
et al. (1986) revealed that temperatures below 15 °C can be used as so-
lution to set the predominance of Euglena and Scenedesmus over Chlorel-
la species. The manipulation of organic loads can also be used to control
contaminations since different species have different tolerance to this
parameter. For instance, Scenedesmus dominate at medium organic
loads whereas Chlamydomonas and Euglena are the most abundant spe-
cies at high organic loads (Martinez Sancho et al., 1993).

3.2.4.2. Strategies to limit cell wall growth. Microalgae/cyanobacteria cell
wall growth is one of the major problems in microalgae and
cyanobacteria cultivations because it will limit the penetration of light
and therefore the photosynthetic rate (Béchet et al., 2013). The main
techniques used to overcome this phenomenon are related to the
PBRs design. The PBR design should promote, for example, a swirling
flow, which will increase the shear stress near the wall decreasing cell
wall growth/deposition (Loubiére et al., 2009). Another approach is
the use of high liquid velocities, as can be found in the BIOCOIL PBR.
The main disadvantage of such strategies is the fact that high shear
stresses are not suitable for all photosynthetic microorganisms
(Borowitzka, 1999). Operation strategies like sporadic vigorous swirling
in the form of mechanical agitation (Brewer and Goldman, 1976) or
compressed air (Mock and Murphy, 1970), periodic draining, cleaning
and refilling the reactor (MacIntyre and Cullen, 2005) or even manual
scraping (Dunstan and Menzel, 1971) can prevent growth on the side
walls of the PBR. Anderson and Brune (1982) presented a system called
Scouring Film Reactor in which a continuously scouring film of glass
particles avoids microalgal cell growth and settling. Also Chaumont
et al. (1992)developed and patented a system to continuously clean
the inner surface of their tubular PBR using recycling balls. Tsygankov
et al. (1998) described a system where balls of polyurethane foam
were introduced into the PBR, and they continuously scrub the PBR
walls due to its continuous circulation along the PBR. Broneske et al.
(2007) patented a method that involves applying ultrasonic power
over the outside surface of PBRs by means of a sonotrode in order to re-
move the biofilm.

3.3. Monitoring and control techniques

Monitoring and control techniques are important in all the microbial
cultivation processes, but they are imperative when the continuous
mode is used, due to the necessity to maintain constant cultivation con-
ditions. Microalgae and cyanobacteria cultivation presents additional
difficulties to the monitoring and control process, due to its larger
scale (increasing the difficulties in mixing and contamination control)
and the fact that the desired product is frequently intracellular (Havlik
et al,, 2013a, 2013b). From an economic point of view, the application
of automatic monitoring and control systems will not only reduce the
operational costs by reducing labor impact and the amount of effluents,
but will also improve the product quality (Lee, 1995; Sandnes et al.,
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2006), allowing also the stable operation for long periods (in the range
of months) at minimum costs.

3.3.1. Monitoring

Monitoring the process parameters is usually performed by sensors
connected to data acquisition systems, which can be adapted from
other bioprocesses that are commercially available (Moreno et al.,
1998) or developed from scratch (Fernandez et al., 2014; Lee, 1995;
Sandnes et al., 2006).

Monitoring of microalgae and cyanobacteria cultivations have been
extensively studied and reviewed by (Havlik et al., 2013a, 2013b).
These authors divided the main parameters used to monitor the
cultivation of photosynthetic microorganisms in three classes
(Table 2): physical (light, temperature, mixing), chemical (dissolved
CO, and oxygen, pH nutrient and product concentration) and biological
(biomass composition, cell morphology, physiological state and photo-
synthetic efficiency).

Monitoring these parameters allows not only to determine impor-
tant cultivation parameters such as growth rate, photosynthetic perfor-
mance (Havlik et al., 2013a, 2013b), but also to develop biomass growth
and composition models essential for monitoring, control and for meta-
bolic, physiological or ecological characterization (Ifrim et al., 2014; J. Li
et al, 2011; Klok et al., 2013b; Mairet et al., 2011; Su et al., 2003; Y. Li
et al,, 2011) . The monitoring of biological and physicochemical vari-
ables should ideally be performed in situ and on-line, however due to
specificities and limitations associated to some techniques, off-line
monitoring is still very common (Table 2) despite the fact that is a com-
plex and time demanding approach (Alonso et al., 2000; Gouveia et al.,
2009; Moreno et al., 1998; Pistorius et al., 2009).

Other approach for on-line monitoring of biomass properties
(concentration and composition), growth rate, photosynthetic efficien-
cy and yield is the use of software sensors (Briassoulis et al., 2010;
Cérdoba-Matson et al., 2009; Ifrim et al., 2014; Jung and Lee, 2006; Li
et al., 2003; Su et al., 2003).

3.3.1.1. Software sensors for on-line monitoring. In real situations, contin-
uous, on-line and direct monitoring of certain compounds (e.g., intracel-
lular product) or biomass properties is not practical or, sometimes, even
possible. To overcome this problem, discrete measurements coupled
with mathematical models (or estimators) that describe the bioprocess
can be used (Goffaux et al., 2009). Alternatively, the mathematical
models can be associated with an indirect parameter (e.g., pH, dissolved
0, or irradiance) that is directly related to different aspects of the
bioprocess. The main advantage of this approach is that such parame-
ters are measured with a higher frequency, avoiding discrete measure-
ments and allowing an indirect monitoring and control (Ifrim et al.,
2014; Li et al., 2003; Su et al., 2003). This strategy of coupling sensors
and mathematical models is very common in many bioprocesses and
is called software sensor (Havlik et al., 2013a, 2013b; Sundstrém,
2007). The mathematical growth models of photosynthetic microor-
ganisms are more complex, since they have to consider not only the
modeling of the main growth kinetic parameters (as in the case of
other microorganisms), but also the light issues (e.g., light attenuation,
photolimitation and photosaturation). The two main approaches for
modeling the photosynthetic microorganisms growth are based in a
modified Monod equation (Baquerisse et al., 1999; Becerra-Celis et al.,
2008) or in the Droop model (Droop, 1968; Mairet et al., 2011;
Toroghi et al., 2013). The majority of the software sensors developed
for photosynthetic microorganisms are for the estimation of biomass
concentration (Havlik et al., 2013a, 2013b) using models that relate
the biomass concentration with different parameters such as: pH
(Berenguel et al., 2004; Ifrim et al., 2014), dissolved oxygen (Li et al.,
2003), local irradiance (Su et al., 2003), solar irradiation (Quinn et al.,
2011) and image analysis (Cérdoba-Matson et al., 2009; Jung and Lee,
2006). Due to their complexity and multi parameter influence, mathe-
matical models that incorporate the estimation of biomass composition
are less common, and are usually applied in situations where specific
nutritional conditions are set (Klok et al., 2013a, 2013b; Mairet et al.,
2011; Quinn et al,, 2011).

Table 2
Microalgae and cyanobacteria monitoring equipment and methods (adapted from Havlik et al. (2013a)).
Parameter Monitoring method Reference®
Sensor/technique Off-line/online
pH pH meter On-line (1-10)5,(11-13)™, (8, 11, 14— 17)b
Photon flux density Quantum sensor On-line (2, 6) (13,18)™, (15, 16, 19-21)°
Fiber optic On-line (22)°
0, 0, probe On-line (6,10)¢, (15, 16, 23)°
0, analyzer On-line (6,10)¢, (13,18)™, (23)b
CO, CO, probe On-line (12,13,17,18)™, (23)
CO; analyzer On-line (6,24)¢, (12 13, 18) (17, 23, 24)°
Biomass concentration Spectrophotometer Off-line (1,3, 6,24), (24)°
Dry weight (oven) Off-line (3,6, ) (8,15, 24, 25)
Cell counting Off-line (3,8,27), (8 26, 28)°
Optical density Sensor (NIR) On-line (29)¢, (19)®
FIA + Spectrophotometer On-line (11)°, (11)®
Software sensor On-line (12)™, (28 30-34)°
Turbidity probe On-line (35)°,(33)P
Biomass properties Fluorometry Off-line (6)<, (15, 19, 20, 26, 36)°
In situ microscope (ISM) On-line (37)°
Infrared spectroscopy Off-line (38)°
Software sensor On-line (33)°
Biomass composition (lipids, protein carbohydrates) Gas Chromatography Off-line (4,24, 39)C, (24)°
Flow citometry Off-line (40)¢
FTIR Off-line (38)°
Fluorometry Off-line (36)°
Solvent precipitation Off-line (41)¢, (41)°

Legend: NIR—near infrared; FIA—Flow injection analysis; FTIR—Fourier transform infrared; PAM—Pulse amplitude modulated.

@ References: 1—Camacho et al. (1990); 2—Meireles et al. (2008); 3—Tang et al. (2012); 4—Alonso et al. (2000); 5—Fernandez et al. (2014); 6—Livansky et al. (2006); 7—Shozen et al.
(2014); 8—Castellanos (2013); 9—Jacome—Pilco et al. (2009); 10—Scherholz and Curtis (2013); 11—Pruvostetal. (2011); 12—Masojidek et al. (2008); 13—L6pez et al. (2006); 14—Doucha
etal. (2005); 15—Cerveny et al. (2009); 16—Cuaresma et al. (2009); 17—Berenguel et al. (2004); 18—Obata et al. (2008); 19—Nedbal et al. (2008); 20—Rodolfi et al. (2009); 21—Doucha
and Livansky (2006); 22—Fernandes et al. (2014); 23—Nedbal et al. (2010); 24—Meiser et al. (2004); 25—Javanmardian and Palsson (1992); 26—Hulatt and Thomas (2011); 27—Loubiére
et al. (2009); 28—Cérdoba—Matson et al. (2009); 29—Sandnes et al. (2006); 30—Li et al. (2003); 31—Su et al. (2003); 32—Jung and Lee (2006); 33—Quinn et al. (2011); 34—Ifrim et al.
(2014); 35—Briassoulis et al. (2010); 36—White et al. (2011); 37—Havlik et al. (2013b); 38—Pistorius et al. (2009); 39—Carvalho and Malcata (2005); 40—Gouveia et al. (2009);
41—Moreno et al. (1998)—The superscript indicates the cultivation mode used during the study: Batch (b); Continuous (c); Fed-batch (fb).
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3.3.2. Control

Control of microalgae and cyanobacteria cultivation systems is
usually done using feedback or feedforward control. Feedback control
measures the process output and compares it with a reference value,
changing the input variable in order to approximate the output to the
reference (Fonseca and Teixeira, 2007). In feedforward control strate-
gies, mathematical models act as observers (or estimator) that will eval-
uate the current state, predict the result and, if necessary, implement
actions to maintain the culture in the predetermined state (Fonseca
and Teixeira, 2007; Toroghi et al., 2013). It is very common to imple-
ment feedforward control as an add-on to feedback control. In these sit-
uations, the feedforward part controls the major disturbance, and the
feedback part controls everything else that might cause the process var-
iable to deviate from its set point. In control systems there are always a
non-manipulated monitored variable (e.g., pH, biomass concentration
properties) and an independent and manipulated variable (e.g., CO, in-
jection, dilution rate, light intensity), which is the control variable
(Table 3). Usually the control of pH is a feedback control, i.e., when pH
is increased above a reference value, CO, (or acid) is added to the cul-
ture in order to decrease the pH value (Fernandez et al., 2014;
Loubiére et al., 2009). The pH control through the injection of CO, is
the most common method, mainly because it is also a source of inorgan-
ic carbon.

Generally, biomass feedback controls are applied on batch or semi-
continuous cultivation systems (Meireles et al., 2008; Sandnes et al.,
2006), while feedforward controls (that use biomass growing models)
are proposed for continuous systems (Baquerisse et al., 1999;
Becerra-Celis et al.,, 2008; Quinn et al., 2011). The main strategies for con-
trol of biomass concentration developed are feedback control based in
spectrophotometer techniques (Meireles et al., 2008; Sandnes et al.,
2006), feedforward control based in the inflow rate (Abdollahi and
Dubljevic, 2012; Becerra-Celis et al., 2008) or a joint control (feedback
and feedforward) using CO, gas flow rate accordingly with the light in-
tensity regime (Buehner et al., 2009).

Table 3
Common dependent parameters measured in the cultivation of photosynthetic microor-
ganism and corresponding control strategies.

Dependent Control variable Control type References?
parameter
pH CO, gas flow Feedback (1-10)¢, (11)™,
rate (8,9,12-15)®
Feedback&Feedforward (6), (16)°
Acid/base Feedback (17,18)¢, (19)®
control
Balanced Feedback (20)°
medium
Biomass Dilution rate Feedback (1,3,21), (22)®
concentration (22)°
Feedback&Feedforward (7)€
Light intensity ~ Feedback (21)€, (23)°
CO, & Light Feedback&Feedforward (24)°
intensity
Biomass Dilution rate * (8,24-27)¢, (8)°
composition Light intensity ~ * (27)°
Co, * (27)¢
N-limitation * (8,24)¢, (8)°

*References: 1—James and Al-Khars (1990); 2 .—Fernandez et al. (2014); 3—Loubiére et al.
(2009b); 4—Shozen et al. (2014); 5—Fuentes et al. (1999); 6—Berenguel et al. (2004);
7—Becerra-Celis et al. (2008); 8—Moreno et al. (1998); 9—Meiser et al. (2004);
10—Cuaresma et al. (2009); 11—Doucha and Livansky (2006); 12—Cerveny et al.
(2009); 13—Masojidek et al. (2008); 14—Lépez et al. (2006); 15—Li et al. (2003);
16—Buehner et al. (2009); 17—Castellanos (2013); 18—Jacome-Pilco et al. (2009);
19—Nedbal et al. (2010); 20—Scherholz and Curtis (2013); 21—Sandnes et al. (2006);
22—Meireles et al. (2008); 23—Choi et al. (2003); 24—Gouveia et al. (2009), 25—Reis
etal. (1996); 26—Alonso et al. (2000); 27—Carvalho and Malcata (2005)—The superscript
indicates the cultivation mode used during the study: Batch (b); Continuous (c); Fed-batch
(fb).

*The control variables are used to control the biomass composition but this is not made
automatically.

Model-based bioprocesses control is not yet a mature technology
being currently a fundamental research field with high potential.
Despite recent progress, there are still technological, mathematical,
engineering and biological issues to solve in the on-line monitoring
and control of photosynthetic microorganisms cultivation. Solving
these issues will be essential for developing cost-effective and reliable
processes for the continuous cultivation of these microorganisms.

3.4. Downstream processes

The manufacturing of microalgal and cyanobacterial based products,
as well as in other biotechnological processes, is divided into upstream
and downstream processing. Whereas upstream processing comprises
steps like the inoculum preparation, cultivation in the seed PBR and
the full-scale cell cultivation, downstream processing includes all the
process steps from cell harvest to the final product. Depending on the
product of interest, after the biomass recovery, several processes such
as biomass processing (e.g., drying), cell disruption, metabolite extrac-
tion from the biomass and purification of the extract product can be,
or not, performed (Jungbauer, 2013; Mir6n et al., 2003). Although
with different operational dynamics, the flow diagrams for continuous
and batch downstream processing are essentially the same.

The cost associated to the downstream processes varies with the
type of technology used and the density of cell culture but, for example,
the complete downstream process can be responsible for 60% of the
total biodiesel production cost (Kim et al., 2013; Mata et al., 2010).

The utilization of continuous downstream processes is not mandato-
ry, even when the cell cultivation is performed using a continuous
mode. In fact, in industrial plants operating in continuous mode, the
downstream processing is usually done in a given period of the day
(when the operators are in the facility), and not in a truly continuous
way. This necessity for permanent supervision associated to continuous
downstream is the main disadvantage of this strategy of continuous
processing since it increases the labor cost.

However, the utilization of downstream processes in continuous
mode, allows higher productivity and flexibility due to the possibility
to monitor and control the downstream steps in real time (Jungbauer,
2013). Additionally, it can be very useful in processes in which a toxic,
inhibitory, volatile or extracellular compound is present (Niedermeyer
et al., 2014). Continuous downstream processes could also reduce or
supress the need for a storage step, reducing costs and the risk of prod-
uct deterioration or loss of valuable properties that could occur during
storage (Jungbauer). However the suppression/presence of a storage
step is highly dependent on the selected downstream processes be-
cause, in order to eliminate this step the flowrate of downstream
units, must fit the flowrate of upstream step (cultivation) which is usu-
ally very low. Also, the capital costs can be considerably decreased using
continuous downstream processing (Jungbauer, 2013).

34.1. Harvesting

Harvesting has a very significant influence in the economic aspects
of microalgal and cyanobacterial biomass production, being responsible
for 20-30% of the total biomass production cost (Gudin and Thepenier
1986; Kim et al., 2013).

Microalgal and cyanobacterial cells recovery can be a challenging
task due its small size (3-30 um diameter), typical low cell densities
(<0.5 kg m™?) and large volumes (Molina Grima et al., 2003) Usually,
their harvesting requires one or two solid-liquid separation processes,
being the most common methods the centrifugation, filtration and sed-
imentation that can be preceded by a flocculation step (Molina Grima
et al., 2003). Microalgal and cyanobacterial cell recovery methods
have been extensively reviewed elsewhere (Chen et al, 2011;
Christenson and Sims, 2011; Grima et al.,, 2004; Kim et al., 2013;
Molina Grima et al., 2003; Shelef et al., 1984).

Regarding, specifically, to continuous photosynthetic cell separation,
filtration and centrifugation stands out as the most widely used
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techniques (Rossignol et al., 1999). Comparing the costs of these two
technologies, it is possible to conclude that filtration units are more suit-
able for small-scale systems (<2 m> d~ 1), while continuous centrifuga-
tion is a more economically attractive technology for large scale systems
(>20m> d~ 1) (Rossignol et al., 1999). If high-quality cells are required
for human consumption (e.g., Chlorella vulgaris, Spirulina) continuous
harvesting by solid ejecting or nozzle-type disk centrifuges is highly rec-
ommended, since they can be easily cleaned and sterilized (Grima et al.,
2004; Shelef et al., 1984).

In addition to the previously mentioned advantages, the utilization
of continuous harvesting techniques also allows an extended use of
the equipment. Sim et al. (1988) noticed that the utilization of the filtra-
tion system in continuous mode allowed an economic life exceeding
500 operation hours of the filter cloth. They concluded that the exces-
sive use of chemicals used for belt washes (in each batch operation)
reduced the belt life. Examples of harvesting techniques (mainly filtra-
tion, centrifugation and flocculation) used to continuously remove
microalgal and cyanobacterial cells have been described elsewhere
(Christenson and Sims, 2011; Grima et al., 2004; Heasman et al., 2000;
Lee et al., 2010; Molina Grima et al., 2003; Rossignol et al., 1999)

Alternative methods have also been tested for the continuous har-
vesting of microalgal and cyanobacterial cells. Kim et al. (2012, 2014)
harvested the microalgae Nannochloris oculata and Nannochloropsis
oceanica, respectively, using the electrolytic method, without subjecting
the cells to any kind of shear stress. Additionally, an ultrasonic continu-
ous harvesting process has been successfully tested by (Bosma et al.,
2003), in order to recover Monodus subterraneus cells. Continuous har-
vesting is, clearly, more efficient than processing a single large volume,
which is typical of batch cultivations (Ganuza and Izquierdo, 2007).
Coupled with a continuous cultivation system, the cost of a continuous
harvesting process can be even lower due the typicall higher operating
cell densities (Borowitzka, 1999).

3.4.2. Biomass processing and metabolite recovery
The product of interest will determine which steps are required and
which is the most suitable technique for each process.

3.4.2.1. Drying. The need for a dehydration or drying step can be due to
different factors such as: the necessity of a more concentrated cell
paste (harvested biomass slurry present 5-15% dry solids); the biomass
is the final product and therefore there is the need to extend the shelf-
life; and some extraction and disruption methods are more effective
in dry biomass (Belarbi et al., 2000; Grima et al., 2004; Molina Grima
et al., 2003; Shelef et al., 1984). Sun drying, spray drying, drum drying
and freeze-drying are the most widely used methods for dry microalgae
and cyanobacteria biomass, however the selection of the most suitable
method will greatly depend on the final product value and required
quality (Molina Grima et al., 2003). All these techniques are suitable
for continuous operation and their performance could be increased
due to the reduction of biomass to be processed per unit of time. The uti-
lization of continuous mode will reduce the required drying facilities/
equipment scale, thus reducing the investment and operational cost.

3.4.2.2. Cell disruption. The utilization of cell disruption methods is usu-
ally necessary to recover intracellular products. The most commonly
used methods to disrupt microalgal and cyanobacterial cells are auto-
clave, ultrasound, homogenization, and bead milling. Chemical and bio-
logical methods like organic solvents, acids, alkalis and enzymes can be
also used (Mendes-Pinto et al., 2001; Molina Grima et al., 2003; Safi
et al, 2014). As in the harvesting step, the utilization of cell disruption
techniques in continuous mode increase the process flexibility, reduce
the required equipment scale and reduce (or even suppress) the need
for a storage step.

3.4.2.3. Metabolite extraction. Recently, in order to incorporate the ex-
traction step in continuous production systems, several extraction

techniques (mainly lipid extraction) have been tested using this mode
of operation. Balasubramanian et al. (2011) tested hexane assisted by
a microwave system for a continuous lipid extraction from Scenedesmus
obliquus cells in order to reduce solvent utilization (due to an efficient
heating) and result in a more economical process. Igbal and Theegala
(2013) developed a continuous flow lipid extraction system
(from Nannochloropsis sp.), which, using conventional solvents, was
able to keep Soxhlet efficiencies while reducing the energy consump-
tion, the solvent utilization and the extraction time. The utilization of
pulsed electric fields is a very promising technique for continuous
extraction of products (mainly proteins) from microalgal and
cyanobacterial cells. The main effects of this technique are the cell dis-
ruption or the electroporation phenomena, which promotes the metab-
olite extraction. Nevertheless, the utilization of pulsed electric fields in
this photosynthetic microorganisms is not fully established (Coustets
et al., 2013; Goettel et al., 2013) and thus more research studies need
to be performed and should include scale-up and economic evaluation.

3.4.2.4. Metabolite purification. The utilization of continuous purification
processes only causes an increase in the purification efficiency step in
situations where the product is highly unstable. In this particular situa-
tion, an immediate purification is required in order to produce a high
product:impurity ratio. In all the other situations, it is preferable to per-
form the purification step in batch mode (Jungbauer, 2013).

3.5. Feasibility and economics

The evaluation of continuous photoautotrophic cultures economics'
depend on several factors, such as: i) localization, which will influence
the land, building and labor costs as well as the system productivity
(in the case of outdoor cultures); ii) the type of PBR used, which is
going to determine the investment and the maintenance costs; and iii)
the downstream process techniques; and iv) final product and its
commercial value.

Besides the lack of rigorous economic studies for large scale
microalgae and cyanobacteria biomass production (Acién et al., 2012;
Molina Grima et al., 2003), it is significant to note that several of the
technical and economic evaluations, even if based on estimations, are
performed for continuous (Acién et al., 2012; Cheng-Wu et al., 2001;
Harun et al., 2011; Jaramillo et al., 2012; Marzocchella et al., 2010;
Molina Grima et al., 2003; Powell and Hill, 2009) or semi-continuous
(J.Lietal., 2011; Y. Li et al, 2011) cultivation systems.

The available techno-economic evaluations are very diverse
(Table 4) due to distinctive economic approaches, final product, annual
production, PBR and downstream methods. These distinctive ap-
proaches and the different final products do not allow very accurate
comparisons between the different studies but give us the idea of the
relative weight of each parameter in the economic performance and
the changes that need to be implemented in order to make the process
more cost-effective.

Considering only the evaluations of pilot or large scale cultivations
units it is possible to observe from Table 4 that, depending on the final
product, there is a considerable discrepancy in the proposed annual pro-
duction. For example, the annual production of astaxanthin and
eicosapentaenoic acid (EPA) is set to a production volume that is, ap-
proximately, 200-35,000 smaller than the proposed scenarios for bio-
mass and biodiesel production, respectively.

As the two scenarios presented by Acién et al. (2012) demonstrate,
the annual production volume has a huge influence on product cost
and the relative weight of each item in the process economic perfor-
mance. These authors performed a cost analysis using the microalgae
productivity, nutrients and power consumption data obtained from a
real continuous cultivation (2 years) of the microalga Scenedesmus
almeriensis in a 30 m> (10 x 3 m?) closed tubular PBR.

For the continuous biomass production become economically feasi-
ble, the costs of the PBR (which represent 47% of major equipment costs
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Economic evaluation of continuous photoautotrophic cultivations® All prices have been converted to United States dollar ($) based on an exchange rate as the date of July 2014. Conver-
sions of Euros (€) into $ have been made based on an exchange rate of 0.75 $/€; ® open pond; © closed tubular PBR.

Microorganism Product Annual Production Product cost * Biomass cost * Reference
Scenedesmus almeriensis Biomass 38t $51.7 kg™ ! $51.7 kg™! Acién et al. (2012)

200 t $9.45 kg~ ! $9.5 kg~ !
Phaeodactylum tricornutum EPA 043t $4602 kg~ $32.2kg! Molina Grima et al. (2003)
Haematococcus pluvialis Astaxanthin 0.90 t $718 kg~! $18 kg™' J.Lietal (2011), Y. Liet al. (2011)
N/D Biodiesel 35,300 m* ® $2.6L7! N/D Davis et al. (2011a)

35,300 m® © $5.4L°" N/D

(MEC)), downstream (45% of MEC) and labor (52% operational costs)
should be reduced (Acién et al., 2012). To do so, these authors proposed
and analyzed a scale-up to a production capacity of 200 t/year with
some technological simplifications. This scale-up allowed an 82% reduc-
tion in the product cost, from 51.7 to $9.45 kg~ ' (Table 4),. Other con-
sequences of this scale-up were the reduction of relative weight of
labor (52 to 7% of operational costs) and downstream process costs
(45 to 2.2% of MEC) and an increase in PBR (47 to 94% of MEC) (Fig. 2)
and depreciation costs (43 to 78% of operational costs).

From Fig. 2 it is possible to observe that the cost of closed PBRs is in-
deed one of the major costs in large scale continuous production, which
is in accordance with other economic analysis (Harun et al., 2011). This
is probably because the benefit of closed PBRs in large scale systems is
not yet fully exploited (Davis et al., 2011; Posten, 2009) and also due
to the elevated operational costs as the energy consumption, that can
be 15 times higher than in open-air systems (Harun et al.,, 2011). Only
in the study presented by Molina Grima et al. (2003) this was not ob-
served, maybe because of the small volume of the PBRs (0.8 m>) when
compared with the volume of the PBRs proposed by the other authors.

In order to verify the influence of the used cultivation system in the
microalgal biodiesel economical feasibility, Davis et al. (2011) presented
a simulation and comparison of a closed tubular PBR and an open pond,
with the same annual production. These authors concluded that the bio-
diesel total production cost was $2.6 L™ ! in the open pond and $5.4 L ™!
in the closed tubular PBR scenario, attesting that the utilization of closed
PBRs introduces significant additional costs.

A strategy to increase the economical feasibility of microalgal and
cyanobacterial production, has been presented by Harun et al. (2011).
These authors proved that an integrated biodiesel and biogas produc-
tion facility would be technical and economical feasible because the in-
tegration of methane production systems (from microalgae biomass)
will reduce the electricity need for operating the PBR, reducing the bio-
diesel production cost in 33%. This integration was also proposed by
other authors, however, from an energy balance perspective only
when raceway pounds are applied the full system seems viable (Davis
etal, 2011; Harun et al., 2011).

Another option to reduce costs during the continuous cultivation
was suggested by Molina Grima et al. (2003). These authors claimed
that enhancing 30% the biomass productivity, during the continuous
cultivation of the microalga P. tricornutum for EPA production, through
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Acién et al. Molinaet Lietal, Davis et al. Davis et al.
(2012) al. (2003) (2011)  (2011)* (2011)**

the improvement of the PBR design could decrease the biomass produc-
tion cost in 20%. Biomass production contributes, according to Molina
Grima et al. (2003), to 40% of the cost of EPA.

It is known that downstream processes can have a very significant
impact in annual costs and that is clear in the case of EPA production
as suggested by Molina Grima et al. (2003). They verified that the recu-
peration of EPA is responsible for 60% of the annual production costs. In
this case the impact of raw materials (organic solvents) costs for pro-
ducing the crude oil and on the EPA purification by chromatography is
very high. For the total biomass production costs the main factors
were the operational (48%) and fixed capital costs (39%) in line with
other works (Acién et al,, 2012; J. Li et al., 2011; Y. Li et al,, 2011).

An interesting approach was performed by J. Liet al. (2011), Y. Liet al.
(2011) that, for the production of astaxanthin from Haematococcus, ob-
tained a production cost ($718 kg~ !) lower than the estimated
($3000 kg~!) for established facilities. Moreover, this value is also
lower than the price for synthethic astaxanthin, which is around
$1000 kg~ . The high costs of PBRs presented by J. Li et al. (2011), Y. Li
et al. (2011) (Fig. 2) are due to their hybrid system (Brennan and
Owende, 2010) that is composed by two closed PBRs that provide viable
cell for a raceway pound where microalgae are subject to severe stress
conditions (two step operation). The main aim of this hybrid system is
to optimize the astaxanthin production (Acién et al., 2012; J. Li et al.,
2011; Y. Li et al.,, 2011), however it is still operating at pilot scale and
not in fully continuous, but in a semi-continuous mode. In addition,
this system has been used in China where land and labor costs (20% of
annual costs) are significantly lower than in other regions of the world.
These authors state that if the same production unit was installed in
USA the labor would increase from $120 to $600 per kg of astaxanthin.
In this production unit presented by J. Li et al. (2011), Y. Li et al.
(2011), the downstream processes (14% of MEC) are composed by a
two-step harvesting method (sedimentation tank and centrifugation)
followed by a spray drying step. For an increased reduction in down-
stream process costs, they suggest a pre-sedimentation of microalgal
cells in the raceway pond by stopping the paddle wheel. This processing
strategy avoids the use of flocculating agents and will allow the produc-
tion of inexpensive astaxanthin with the current technology (Acién et al.,
2012;]. Lietal, 2011; Y. Liet al, 2011).

The analysis of the report published by Pienkos (2008) (supported
by Sandia National Laboratories and National Renewable Energy
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Fig. 2. Impact of PBRs (A) and downstream equipment costs (B) on total fixed (open column) and major equipment cost (filled column).
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Laboratory) demonstrates the disparities that different approaches in-
troduce in the production cost. This report compares the cost analysis
of oil production from photosynthetic microalgae only (considering
both batch and continuous processes), based on twelve different refer-
ences. Despite the fact that this report compares different approaches
to produce the same product, the range of cost presented in this report
is very wide ($0.24 L™ ! to $11.2 L™ ') with an average cost of $5.1 L™!
and a standard deviation of $7.6 L™! (Sun et al,, 2011).

These economic analyses, even if based in estimations, can be used
to detect the major factors influencing the production costs and can rep-
resent a valuable tool to identify the technical problems that need to be
solved in order to achieve economic viability of microalgal and
cyanobacteria cultivation systems in general and in continuous systems
in particular.

Despite the different economic approaches, all these studies empha-
size the need to decrease the production cost in order to make continu-
ous cultivation of photosynthetic microorganisms a feasible industrial
process.

4. Applications

After a description of the continuous cultivation principles, the ad-
vantages and challenges of its application to the cultivation of photosyn-
thetic microorganisms and the description of the equipment and
techniques involved, it is imperative to scrutinize the applications of
this mode of operation in the microalgae and cyanobacteria study and
cultivation. In this review the application of continuous cultivation
will be divided according to the intended purpose: i) as a research
tool and ii) as a production strategy.

4.1. Research tool

Among all the characteristics inherent to continuous cultivations,
the ones that justify its use as a research tool in physiological, ecological
genetic and biochemical studies (Hoskisson and Hobbs, 2005) are: i)
possibility to pre-set and control specific growth rate; i) select and con-
trol the metabolic state; iii) significant amount of cells with defined
properties possible to be obtained using a lab-scale PBR; iv) single inde-
pendent variables (e.g., pH, temperature, specific growth rate) can be
manipulated one at a time; v) possibility to choose one, or combinations
of, limiting nutrient(s) and; and vi) defined, constant and controllable
physico-chemical conditions (Cooney, 1979; Dang et al., 2012;
Fiechter, 1975; Hoskisson and Hobbs, 2005).

In an extensive overview about the continuous cultivation and its
application as a research tool, (Hoskisson and Hobbs, 2005) refers
that, after a decline, continuous cultivation recently re-emerged as a
preferential option in studies of growth, nutrient limitation and stress
responses. Several works on the effect of nutrient concentration (mac-
ronutrients such as nitrogen and phosphorus and trace metals, particu-
larly iron) in the physiology, metabolism and biochemical composition
of photototrophic microorganisms have been carried out in the last
years using continuous cultivation as a tool (Bougaran et al., 2010;
Collins et al., 2001; Dang et al., 2012; Gauthier and Turpin, 1997;
Gress et al., 2004; Hagstrom et al., 2010; Klok et al., 2013a, 2013b;
Lyck et al., 1996; Middlemiss et al., 2001; Sonier and Weger, 2010; Su
et al.,, 2012; Utkilen and Gjelme, 1995; Weger and Espie, 2000; Weger
et al,, 2002, 2006, 2009; Wirtz et al., 2010).

Besides nutrient concentration, also the influence of salt adaptation,
light quality and quantity, initial biomass concentration, turbidity, tem-
perature, culture age, and dilution rate have been studied using contin-
uous cultivation mode (Alonso et al., 2000; Blumwald and Tel-or, 1984;
Camacho et al.,, 1990; Carvalho and Malcata, 2005; Imaizumi et al., 2014;
Lamers et al., 2010; Madhyastha and Vatsala, 2007; Maeda et al., 2006;
San Pedro et al., 2013; Sassano et al., 2007; Sassano et al., 2010; Sobczuk
and Chisti, 2010; Utkilen and Gjglme, 1992). Blumwald and Tel-or
(1984) tested the influence of the salt-adaptation phenomenon in the

physiological state of the cyanobacterium Synechococcus 6311. Utkilen
and Gjeglme (1992) studied in a continuous PBR, the effects of light in-
tensity and light quality on toxin production by Microcystis aeruginosa,
while Lamers et al. (2010) using a turbidostat, tested the effect of the
same parameter on carotenoid and fatty acid metabolism of the alga
Dunaliella salina. The influence of dilution rate in the kinetics of Spirulina
platensis during continuous cultivation have been investigated by
Sassano et al. (2007), whereas Sobczuk and Chisti (2010) tested the ef-
fect of dilution rate and temperature in lipid content and fatty acid pro-
files of the microalga Choricystis minor. A turbidostat and a chemostat
were used by Maeda et al. (2006) to evaluate the effect of turbidity on
starch production by Chlamydomonas sp.

Continuous cultivation at laboratory scale can also be used as a tool
for the development and characterization of new photoautotrophic pro-
cesses, since it allows the optimization of individual process factors by
keeping all the other significant parameters constant (Czitrom, 1999;
Guedes et al., 2014). For example, S. platensis grown continuously in a
PBR was used during the design and evaluation of a process for recovery
and treatment of this cyanobacterium, to be used as food (Morist et al.,
2001).

4.2. Production strategy

To increase the feasibility of industrial processes based on the
cultivation of microalgal or cyanobacterial cells: i) the investment and
operational costs should be reduced (e.g., reducing land requirements,
increasing process automation, decreasing downstream costs); ii)
the potential of microalgae and cyanobacteria should be maximized
(e.g., optimizing productivities and/or adopting biorefinery concept);
and iii) the process and/or the product should be controllable and reli-
able (Harrison et al., 2013; Klok et al., 2013b; Wijffels et al., 2010). As
previously mentioned (Section 2.1 Advantages) the utilization of con-
tinuous cultivation allows meeting some of these needs, however the
selection of this mode of operation is most of the times due to the con-
trol and consistency of the process and product that this approach al-
lows. The application of continuous production of photosynthetic
microorganisms as a production strategy can be divided in three catego-
ries: i) removal of nutrients, organic contaminants and heavy metals
from wastewaters; ii) to be used as feed in aquaculture and; and iii) to
be used as raw material to chemicals and biofuels.

4.2.1. Wastewater treatment

The most common and widely studied application of microalgal and
cyanobacterial continuous cultivations is the removal of nutrients, or-
ganic contaminants and heavy metals from wastewaters (Table 5)
where, the utilization of these microorganisms could provide some
additional advantages like the production of high-value chemicals
(metabolites) and the production of photosynthetic oxygen required
by bacteria to biodegrade hazardous pollutants (Mufioz and Guieysse,
2006).

Depending on the wastewater composition and in the sensitivity of
the microorganisms, two different approaches can be adopted: i) well
mixed PBR with free cells and biomass recirculation in order to avoid
the toxic effect (Mufioz and Guieysse, 2006); and ii) immobilized cells
that allow a high degrees of purification and a simple process operation
(Aksu, 1998). Continuous cultivation is especially suitable for removal
of pollutants because it allows an efficient utilization and management
of mixed substrates and mixed cultures (Cooney, 1979) and the removal
of the limiting nutrients (in this case the pollutant) from the culture me-
dium (McGinn et al,, 2012). Additionally, the use of continuous cultiva-
tion process allows working with toxic substrates, since this mode of
operation reduce the inhibitory effect of toxic compounds because
cells experienced a lower toxic concentration per cell (due to higher
cell concentration) and a lower contact time between the cells and the
toxic compounds. For these reasons, McGinn et al. (2012) considered
continuous cultivation as the only feasible approach for wastewater
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Table 5
Continuous systems used for wastewater treatment.

Microorganisms Growth medium

Experimental system Reference

Chlorella sp. ¥

Scenedesmus obliquus

Chlorella vulgaris/bacterial consortium
Chlorella sorokiniana ¥

Spirulina platensis ()

Oocystis sp./Scenedesmus sp./bacterial consortium ¥
Scenedesmus incrassatulus )

Microcystis sp. ¥

Chlorella ellipsoidea P

Microcystis spp. ¥

Scenedesmus incrassatulus ¥
Phormidium bigranulatum

Chlorella sorokiniana

Municipal wastewater
Urban wastewater
Synthetic wastewater
Synthetic urine
Synthetic urine
Digested swine slurry
Chromium (VI)
Copper solution

Sodium salicylate

Chromium and cadmium (II)

Chromium (VI), cadmium (II) and copper (II)
Chromium (VI), cadmium (II) and copper (II)
Lead (II), copper (II), cadmium (II)

Coil reactor Y.Liet al. (2011)

Flat panel PBR Ruiz et al. (2013)
Stirred tank De-Bashan et al. (2002)
Flat panel Tuantet et al. (2014)
Column Yang et al. (2008)

Open pond and tubular PBR
Split cylinder airlift

Column

Erlenmeyer flask
Erlenmeyer flask
Erlenmeyer flask

Flat chambers

Stirred tank

Molinuevo-Salces et al. (2010)
Jacome-Pilco et al. (2009)
Pradhan and Rai (2000)
Aoyama and Okamura (1993)
Rai and Tripathi (2007)
Pefla-Castro et al. (2004)
Kumar et al. (2012)

Mufioz et al. (2004)

() free cells; (" immobilized cells.

treatment based in photosynthetic microorganisms. For the removal of
toxic pollutants, Chlorella and Scenedesmus sp. are typically selected due
to its fast growth and high resistance, which make them naturally dom-
inate most continuous microalgal based treatment systems (Mufioz and
Guieysse, 2006).

4.2.2. Feed for aquaculture

Cultivation of microalgae to be used as feed for larvae and juveniles
of bivalve molluscs is usually performed in batch mode (Bougaran et al.,
2003) and is considered the major bottleneck in nursery culturing of
molluscs (Fabregas et al., 1986) since it represents up to 30% of the
total cost of production (Valenzuela-Espinoza et al., 1999). Additionally,
in batch systems, the cell composition it is not constant over time.

For example, Bougaran et al. (2003 ) refer that during the cultivation
of I. galbana affinis, the cells shows higher protein content during expo-
nential phase and higher carbohydrate and lipid content during station-
ary phase. Also Marchetti et al. (2012) used the continuous cultivation
of the same microalga to determine the optimal conditions (irradiance,
temperature, pH and concentrations of nitrogen and phosphorus) in
order to maximize the productivity of this microalga, frequently used
as food for various bivalve larvae. Loubiére et al. (2009) refer that the
continuous cultivation of L affinis galbana, intended to be used as feed-
ing in a mollusk hatchery, led to a biomass production with stable qual-
ity and quantity. Using a considerable large (200 L) vertical airlift PBR,
James and Al-Khars (1990) tested at pilot scale the continuous cultiva-
tion of marine microalgae Nannochloropsis Strain MFD-2 and Chlorella
Strain MFD-1. These authors described this PBR and this mode of
operation, as very suitable for the production of these microalgae for
aquacultural purposes, since the biomass productivity (50.6 and
169.7 g m~2d~1) for Nannochloropsis Strain MFD-2 and Chlorella Strain
MEFD-1, respectively, was considerably higher than with the conven-
tional methods. Additionally, in fish production pond, the dissolved ox-
ygen concentration usually limits the system productivity. Therefore,
Drapcho and Brune (2000) tested the partitioned aquaculture system,
in which the fish productivity is maximized by increasing the oxygen
production through the continuous photoautotrophic cultivation of
microalgae. In this system the continuous microalgae cultivation is inte-
grated in the fish production system.

Consequently, continuous cultivation of photosynthetic microorgan-
isms to be used in aquaculture can be considered as a very attractive
option.

4.2.3. Chemicals and biofuels

The utilization of microalgal or cyanobacterial cells as raw material
for chemicals and biofuels is probably the most promising application
of these cells.

Continuous phototrophic cultures have been tested as a very attrac-
tive strategy for the production of high-value products such as
astaxanthin. Del Rio et al. (2005) demonstrated the feasibility of

continuous astaxanthin production through the continuous cultivation
of the microalga H. pluvialis in a bubble column PBR, achieving one of
the highest astaxanthin productivities (5.6 mgL~' d~!) found in the lit-
erature. Also, the feasibility of the continuous cultivation of H. pluvialis
for astaxanthin in a 25 m? closed tubular PBR operating in continuous
mode has been proved in the Aquasearch facility (Guedes et al., 2011;
Olaizola, 2000). The continuous production of other high-value prod-
ucts like antibiotics from the cyanobacterium Scytonema sp.
(Chetsumon et al., 1995), docosahexaenoic acid using the microalga
Schizochytrium (Ganuza and Izquierdo, 2007); P—carotene from
D. salina (Kleinegris et al., 2011) and lutein from the microalga
Muriellopsis sp. have been also successfully performed. Continuous cul-
tures have been widely tested as a strategy to maximize lipid and starch
accumulation for further biodiesel and bioethanol production. This op-
tion by continuous mode is due to the fact that, in opposition to what
happens in batch cultivations, in continuous cultivations simultaneous
microbial growth and accumulation of these storage compounds can
be achieved through the selection of a suitable dilution rate
(Falkowski and Raven, 2007; Lyck et al., 1996; Mairet et al., 2011).
Recently Wen et al. (2014) tested the effect of nitrate concentration in
lipid productivity of the microalga Chlorella pyrenoidosa, while
Sobczuk and Chisti (2010) evaluated the effect of temperature and
dilution rate in the lipid productivity of the microalga C. minor. Also,
Wang et al. (2013), studied, during the mixotrophic continuous cultiva-
tion of the microalga Chlorella protothecoides, the relationship between
nitrogen availability and lipid accumulation. Also the production of mo-
lecular hydrogen through the continuous cultivation of the cyanobacte-
rium Anabaena variabilis has been successfully tested (Markov, 1993).

4.3. Performance of phototrophic cultivations—batch vs continuous

In order to determine the most suitable cultivation mode, different
authors have performed and compared batch and continuous cultiva-
tions. It is known that microorganisms usually show higher productivity
in continuous cultivations when compared to batch (Castellanos, 2013),
however this superiority must be achieved through the utilization of
near optimal cultivation parameters, namely D. Thus, depending on
the microorganism, operational conditions and product of interest, dif-
ferent scenarios can be found in the literature (Table 6).

The comparison of continuous and batch cultivations lead to the
conclusion that, depending on the circumstances, the benefit of contin-
uous systems can be variable. For example, Cohen et al. (1991) tested an
open-air (open-pond) and a closed PBR (polyethylene sleeves hung on a
frame) in batch and continuous mode for the cultivation of the
microalga Porphyridium sp. and, in both cultivation systems, biomass
production was higher in the continuous mode. In an open-air PBR it
was obtained a biomass production of 3.9 g d~! in batch and
7.6 g d~ ! in continuous mode, while the closed PBR allowed a biomass
production of 10.2 g d=! in batch and 17.7 g d~' in continuous
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Table 6
Comparison of the performance obtained during batch and continuous cultivations of photosynthetic microorganisms.
Microorganism Productivity (gL~ 'd™") Concentration (g L™ 1) Reference
Batch Continuous Batch Continuous
Scenedesmus sp. 0.130 0.250 - - McGinn et al. (2012)
Chlorella minutissima 0.143 0.039-0.137 - - Tang et al. (2012)
Dunaliella tertiolecta 0.049 0.046-0.091 - - Tang et al. (2012)
Pavlova lutheri 0.030 0.114 0.54 0.39 Carvalho and Malcata (2005)
Nannochloropsis sp. - - 0.8-2.3 29 Zou et al. (2000)
Chlorella pyrenoidosa 0.216 0.417-0.641 22 0.55 Wen et al. (2014)
0.096° 0.124-0.144
Schizochytrium sp. 6.48-7.92 7.68 15-15.7 8.0 Ganuza and Izquierdo (2007)
1.1-1.2° 0.96"
Spirulina platensis 0.33 0.31 Vernerey et al. (2001)
Spirulina maxima - - 1.60 2.99 Samson and Leduy (1985)
@ Lipids.

b Docosahexaenoic acid.

cultivation. Chetsumon et al. (1995) compared the batch and continu-
ous production of an extracellular antibiotic secreted by the cyanobacte-
rium Scytonema sp. The results obtained by these authors, showed a
three times higher antibiotic productivity in the continuous cultivation,
when compared to the batch cultivation.

Other authors such as Zhu and Jiang (2008) and Kumar et al. (2012)
did not notice significant differences between these modes of operation
regarding the system productivity. Zhu and Jiang (2008) tested the pro-
duction of 3-carotene using continuous cultivation of the microalga
D. salina in a helix tube PBR and the biomass and 3-carotene production
was equivalent to that described for batch cultures. While Kumar et al.
(2012) used, in continuous and batch mode, the cyanobacterium
Phormidium bigranulatum to successfully remove lead (II), copper (II)
and cadmium (II) from aqueous solution. Despite high metal removal
efficiency, the results closely matched the batch system. This similarity,
combined with a very low D required, lead the authors to the conclusion
that, in this particular situation, the continuous system may not be prac-
ticable and it would be preferable to use a batch system. Using a contin-
uous cultivation system, the cyanobacterium Microcystis was cultivated
by Rai and Tripathi (2007) in the presence of chromium (VI), cadmium
(I) and copper (II), as single metal species and as mixtures of two or
three metals. The results demonstrated that Microcystis was able to
remove 24-76% of the metals but, when compared with the efficiencies
reported for batch cultures, only chromium (VI) was more efficiently
removed in the continuous system (uptake of chromate is favored by
actively growing cells). All these studies corroborate the idea that the
relative performance of batch and continuous cultivation is highly
dependent on the microorganism and its application. Therefore, before
opting for continuous or batch cultivation, a rigorous study should be
developed in order to determine the best operation mode and establish
the optimal operating conditions.

Although the continuous cultivation does not always provide signif-
icant advantages in terms of productivity and efficiency, other charac-
teristics that are intrinsic to this mode of operation (e.g., constant
product quality) continue to favor continuous systems over batch
systems.

5. Conclusions and future perspectives

The information presented in this review points out continuous cul-
tivation as the most feasible approach for industrial microalgal and
cyanobacterial biomass production. This mode of operation is the only
option that guarantees a good control over the chemical environment
ensuring a tailor-made biomass composition with constant product
quality and production rate, reduced investment and operational
costs, reduced time for cleaning and filling, smaller area requirements,
higher productivities and operating cell densities, which means reduced
harvesting costs. Despite all these advantages and although the contin-
uous cultivation of photosynthetic microorganisms is fully established

as a valuable research tool, its wider application in mass photoautotro-
phic cultivation is not a reality yet. This fact is due to some technical dif-
ficulties addressed to continuous systems but also due to some distrust
relatively to continuous processes (result of the lack of rigorous techni-
cal-economic assessments) and some resistance to abandon the,
already established, batch systems. To overcome this, it is necessary to
provide illustrative case studies where the advantages of continuous
systems are clearly demonstrated and combined with a rigorous and
realistic technical-economic assessment. Also, the emergence of suc-
cessful microalgae or cyanobacteria continuous cultivation projects
(with reliable productivity, quality and purity) will be a decisive driving
force, acting as a tool to refute some of the preconceptions about contin-
uous systems and to be used as a reference for other projects.
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