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Abstract 

The yeast Saccharomyces cerevisiae is one of the microorganisms with increased use at 

industrial, academic and scientific level. The easy growth in any culture medium, as well as the 

complete sequencing of its genome, are two of the main interesting factors, making this 

microorganism one of the most important worldwide. 

The morphological analysis of yeast using optical microscopy is a research area of great interest. 

Over the last decades, significant advances have been made in digital image processing as well 

in the analysis of microscopic images of cells. In this context, the development of specific 

software such as ImageJ is of particular interest since it is free access and open source. 

The main goal of this work was to develop a computer program, in the form of an extension 

module (plugin), in order to add certain features to ImageJ software. For this purpose, 

programming and processing methods were applied for a more reliable evaluation of cell and 

finally implemented as an ImageJ plugin. The plugin code was carried out using the Java 

programming language, since certain required functions were not present in the main program 

source code. Results presented as .xls file included the identification of cells, as well as counting 

and cataloguing after images processing and analysis. The features developed in this work 

allowed the user to process and analyse different microscopic images of S. cerevisiae cells. 

Finally, the plugin code was tested using multiple images of S. cerevisiae. The final version has 

shown high efficiency in S. cerevisiae culture images with different exposure times. Nevertheless, 

the plugin code was able to detect almost all cells in the images and classify them as large, 

normal, small and bud. 
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Resumo 

A levedura Saccharomyces cerevisiae é um dos microrganismos com maior utilização a nível 

industrial, académico e científico. A facilidade de crescimento em qualquer meio de cultura, 

assim como a completa sequenciação do seu genoma, são dois dos principais fatores que 

tornam este microrganismo dos mais importantes no mundo. 

A análise morfológica de leveduras é uma das áreas. Nas últimas décadas, foram feitos avanços 

significativos no processamento de imagens digitais, bem como na análise de imagens 

microscópicas de células. Neste contexto, o desenvolvimento de software específico, tal como o 

ImageJ é de particular importância, uma vez que é de acesso livre e possui implementação livre 

e aberta (open source). 

Este trabalho teve como principal objectivo o desenvolvimento de um programa de computador 

na forma de módulo de extensão (plugin) com a finalidade de adicionar determinadas 

funcionalidades ao software ImageJ. Para permitir ao utilizador do ImageJ uma avaliação 

fidedigna de imagens de células obtidas por microscopia, foram aplicados diversos métodos de 

processamento. O código do plugin foi desenvolvido utilizando a linguagem de programação 

Java, uma vez que certas funções exigidas não estavam presentes no código fonte do programa. 

Os resultados apresentados como tipo de arquivo .xls incluíram a identificação de células, bem 

como a contagem e catalogação após o processamento e análise de imagens. As 

funcionalidades desenvolvidas durante a execução deste trabalho permitem ao utilizador 

processar e analisar diferentes imagens de células de S. cerevisiae obtidas por microscopia. 

O código do plugin foi testado utilizando várias imagens de S. cerevisiae. A versão final revelou 

uma elevada eficiência na caracterização de imagens de culturas de S. cerevisiae com diferentes 

tempos de exposição. Foi ainda possível detetar quase todas as células presentes nas imagens e 

classificá-las como grandes, normais, pequenas e germinadas.  
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1. Introduction 

This chapter aims to contextualize the reader to the subject of this work. Also the overall 

objectives of the dissertation are presented, as well as an outline of how the chapters are 

organized. 

1.1. Motivation 

The yeast Saccharomyces cerevisiae is one of the most important microorganisms employed in 

industry. S. cerevisiae size and shape distributions are affected by growth rate, mutation, and 

environmental conditions (composition, temperature, pressure, presence of oxidant agents, etc). 

S. cerevisiae cells have a round morphology with a size that may vary between 4 and 10 

micrometers in diameter. Also have a division process known as budding. Budding is a form of 

asexual reproduction in which the original cell divides into “mother” and “daughter” cells. This 

project intends to classify S. cerevisiae morphology using microscopy and image analysis. 

Image analysis is the process of extracting useful data directly from images by a computer or 

other device. Applications of image analysis are found in several areas of science and industry. A 

specialized image processing program using ImageJ will be developed to count cells and 

determine size fractions of various groups (small, large, budding).  

ImageJ is a public domain Java image processing program [1]. Wayne Rasband, the core author 

of the program, designed it with an open architecture that provides extensibility via add-on 

programs written in Java (plugins) or in ImageJ´s programming language (macros). An ImageJ 

user has the four essential freedoms defined by Richard Stallman in 1986: 

• The freedom to run the program, for any purpose. 

• The freedom to study how the program works, and change it to make it do what you 

wish. 

• The freedom to redistribute copies so you can help your neighbour. 

• The freedom to improve the program, and release your improvements to the public, so 

that the whole community benefits. 

1.2. Objectives 

The main goal of this work is to program a Java plugin for ImageJ in such a way that: 

http://en.wikipedia.org/wiki/Micrometre
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• Various groups of cell sizes and budding cells are counted automatically; 

• The true cell size shall be estimated in order to group the cells into the right size group; 

• Budding cells have to be distinguished from overlapping cells and should not be 

separated into mother and bud; 

• As yeast cells do not appear with a clear black contrast in the microscope images, 

probably a custom shape recognition algorithm has to be created; 

• Cell morphological parameters, as well cell counting and cataloguing should be returned 

as results; 

• Background noise should not cause artefacts; 

• Error handling routine: Information to the user, if the image cannot be analysed. What is 

the reason? E.g.: Wrong magnification, dirty objective, too few/many cells, etc. 

1.3. Dissertation structure 

This dissertation is organized into six chapters. These are oriented to present the collected 

information during the investigation of the state of the art of the main topics underlying the 

dissertation and to present all steps taken for the development of an efficient plugin for 

processing and analysis of S. Cerevisiae images. 

In Chapter 1, it is intended to guide the reader to the subject of this work, presenting the context 

and motivations to perform this work. The general objectives of the dissertation are also 

described. 

Chapter 2 constitutes a literature review on the main themes of this work. A short description of 

Saccharomyces cerevisiae microorganism is performed, covering general aspects relating to its 

industrial applicability history, cell cycle and morphological aspects. Concepts of image 

processing and analysis are also given. Both sets of image analysis and processing techniques 

are distinguished with some examples of the most used and known methods. Moreover, the 

process of acquisition and sensing is also displayed in more detail as well as some work 

performed on the processing and analysis of S. cerevisiae microscopic images.  

Next, the software for image processing – ImageJ – is described in Chapter 3 showing some 

processing techniques included in the program. It is also described in more detail the cell 

counting process program presented in the program. In addition, the program API classes and 

some examples of plugins coding are presented. 
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The methodologies and algorithms implemented in this work are presented in Chapter 4. It is 

explained the progress of the plugin code mainly the evaluation of the methods included. Also, 

the program body, referred as the Main Pipeline, is described and justified. 

Chapter 5 presents and discusses the evolution of the image processing techniques and the 

experiments performed to obtain the final code version. Also, results of manual and automatic 

classification and counting of S. cerevisiae cells are compared. 

Finally, Chapter 6 contains the most relevant conclusions as well as some perspectives for 

further work. 
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2. Context 

In this chapter, the theoretical concepts which will serve as basis for the execution of this work 

are presented. 

A brief description of global aspects of the yeast Saccharomyces cerevisiae focusing on aspects 

of their life cycle and morphology is given. First, a history context will be introduced followed by 

the description of it cell cycle presenting some of the processes occurring in the cell that leads to 

its division and duplication (replication). Next, some aspects concerning S. cerevisiae cells 

morphology will be presented, focusing on all aspects and shapes that this unicellular organism 

may adopt during their division phase (budding).Then the concept of image processing and 

analysis is presented. A brief introduction to digital images acquisition and sensing system will be 

taken. Subsequently, image processing and analysis techniques will be distinguished and some 

examples are presented. A short presentation of some practical cases of image analysis of S. 

cerevisiae cells is also presented. 

2.1. Saccharomyces cerevisiae 

Saccharomyces cerevisiae is a well-known, non-pathogenic, unicellular yeast (diameter usually 

vary between 4 and 10 µm).  Its use dates back to ancient times which appear associated with 

processes like vinification, brewing and baking in ancient Egypt, Sumeria, Babylonia and Georgia. 

It is of main knowledge that its first appearance dates back to 1680 when van Leeuwenhoek 

using his primitive microscope saw yeast flocs fermenting wort [2]. However, it is only in the 19th 

century that it is associated with the alcoholic fermentation. Then, the name Saccharomyces 

cerevisiae is assigned due to its connection with beer production. The genre name, derived from 

Latinized Greek, means “sugar fungus” and cerevisiae means beer in Latin. 

Due to their unique advantages like being single celled; can be easily cultured; have capacity to 

grown readily in any type of bioreactor; having, more lately, its genome completely sequenced 

and etc, S. cerevisiae has received increasing attention since the early days of laboratory 

research. During the last 60 years, this yeast became one of the most studied organisms in the 

world, where its genetics, molecular biology, and metabolism have been studied extensively, as 

well its “cousin”, the bacteria Escherichia coli. Nowadays, this biological system is one of the 

preferentially election for molecular biotechnologists for high yield and quality of the final product. 
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One of these tasks is the synthesis of functioning recombinant proteins, by engineered S. 

cerevisiae cells as expression systems.  In other cases, the genetically modified yeast itself is the 

desired product [3]. Furthermore, yeast is probably the most widely used unicellular eukaryotic 

organism in large-scale production of chemicals, pharmaceuticals, proteins, alcoholic beverages 

and bread [4]. 

2.1.1. Cell cycle 

One of the most interesting aspects of S. cerevisiae life cycle is perhaps its ability to alternate 

between eukaryotic haploid (16 chromosomes) and eukaryotic diploid (32 chromosomes). But 

first, is also important to refer the two existing different types of haploid cells, denominated by a 

and α mating types. The difference between cell types is found only at the genetic material level, 

where at certain sites of the genome (MAT locus) can be inserted silent genes (genes of the 

genome which are not expressed) a and α. When located in the MAT locus, the function of these 

genes is to regulate the production of the major contributor for the mating process, the proteins 

factor a and factor α. These hormones bind to cells of opposite mating and promote changes in 

their cell surface so that fusion can take place. These different mating types of cells show 

primitive aspects of sexual differentiation. Furthermore, S. Cerevisiae cells can switch between a 

and α type through a reversible mechanism known as cassette mechanism [5]. 

When two different haploid cells merge through the process called matting, new combinations of 

chromosomes are produced by genetic recombination yielding a diploid cell of a/α type, which 

are incapable of mating with other cells. Mating of haploid cells yields diploid cells and meiosis of 

diploid cells produces a structure called ascus with four haploid products within, the gametes. 

Digestion of the ascus releases the four haploid meiotic products (ascospores) which, after 

germination, become haploid yeast cells again [4]–[6]. 

As well as many species of fungus and most of the microorganisms, in addition to the 

undifferentiated sexual reproduction, yeasts also reproduce asexually. All cell types (a, α and a/ 

α) are capable of proliferating by mitosis. According to Herskowitz [6] given sufficient nutrients, 

the number of yeast cells doubles at approximately 100 minutes. During the cell cycle, the 

genetic material of the mother cell is duplicated and distributed by each mother cell and 

daughter. Unlike the classical process of cellular division in which a cell enlarges and divides by 

cell fission, yeast grows through a process referred to as budding. In this case, a daughter cell 

appears as a protuberance (bud) grows in the mother cell wall. Usually the mother cell is greater 
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than the daughter cell, and this need to increase in size in order to start the process of 

duplication of chromosomes. At some point, when the bud reaches a certain size, the previously 

replicated genetic material migrates to the daughter cell. After that, the disconnection of the bud 

from its mother cell takes place producing a characteristic bud scar on the wall of each cell [7]. 

Chant and Pringle [8] state that the site where the bud appears is different between haploid and 

diploid cells. In the first case, the formation of new buds follow an axial pattern, while in the 

second case both cell poles are potential bud sites. Another study aimed at identifying 

nonessentials genes involved in bipolar budding [9]. Through the analysis of bud scars on 127 

mutants of yeast, three types of phenotypes were identified: unipolar, axial-like, and random. 

The life cycle of eukaryotic cells is usually divided into four phases: first gap phase (G1 phase), 

synthesis phase (S phase), mitosis phase (M) and second gap phase (G2 phase) (Figure 2.1 

[10]). If left without nutrients the proliferation is abandoned at G1 phase resuming growth when 

nutrients become available again [6], [11].  

2.1.2. Morphology 

Many of the existing studies on S. cerevisiae fall into the mechanisms of how cells morphology is 

regulated and protein localization [9], [11]–[14]. Researchers had focused their interest in know 

specific morphologic characteristics of cells such as cell size, roundness, bud neck, and position. 

In the past, these studies were made by manually analysing images from microscopy. Nowadays, 

the reduction of these activities time is one of the main reasons for developing programs which 

automatically acquire information from images of microorganism’s cells. 

Yu et al. [15] designed and developed a classification algorithm that is able to distinguish the 

 

 

Figure 2.1. Schematic diagram for cell morphological changes used in cell cycle description (S phase: plaque 

duplication; G2 phase: nuclear migration; M phase: nuclear division; G1 phase: bud detachment) [10]. 
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yeast cells in different phases of the cell cycle through image analysis. After a set of operations, 

the classifier distinguished between non budding cells, small bud and large bud cells which were 

associated to cell cycle phases G1, S and G2/M, respectively. 

Saito et al. [16] presented the S. cerevisiae Morphological Database (SCMD), providing data 

related to yeast cells morphology in different stages of the cell cycle and information about the 

location of nuclear DNA and actin (http://yeast.gi.k.u-tokyo.ac.jp/datamine/). The authors 

developed a program for automatic image analysis [17] and analysed thousands of micrographs 

of yeast mutant cells and results were stored at SCMD. In addition, the database allowed the 

user to find similar yeast mutants in a particular number of morphological features, through a 

query search. The cell shape parameters recognized by the program were: long axis length; 

mother cell and bud roundness (long axis length / short axis length), bud neck position angle, 

bud growth direction angle, and the fitness value that showed how the cell line fits to the ellipse. 

The program was also able to quantify more 501 morphological parameters. 

The Phenomics of yeast Mutants (PhenoM) is another database similar to SCMD [18]. In this 

database, morphological quantitative data acquired from 78194 morphological images of 

different yeast mutants are stored. In addition, characteristics obtained from other studies (bud 

size, cell area, roundness and etc), temperature data, cellular components of 775 yeast mutants, 

as well as other 865 morphological parameters are also presented. The database also provided 

several data-mining tools including a module for phenotypic comparison between mutant strains 

and a Gene Ontology module for functional enrichment analysis of gene sets showing similar 

morphological changes. 

The Yeast Resource Center Public Image Repository (YRC PIR) is a large database of S. 

cerevisiae and Schizosaccharomyces pombe cell images (http://images.yeastrc.org) depicting 

the subcellular localization and colocalization of proteins [19]. The user can select one or more of 

1259833 stored TIFF (Tagged Image File Format) images, by searching the data according to a 

set of experimental options, such as: data source; number of channels; number of z-sections; 

number of time-series; objective; binning; image size, and also according to a set of biological 

options, namely: proteins of interest and selected strain of the available species. 

One of the most important aspects of yeast cell morphology is perhaps the size of the bud. 

Usually, a distinction is made according to bud size groups, including: no bud; small bud; 

medium bud and large bud. Each one of the categories may be associated to a range of possible 

mother and bud cell sizes ratio values. Another set of parameters important to mention is the cell 
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shape parameters. Figure 2.2 displays some of these features. It should be noted that all these 

parameters do not take into account the three-dimensional plane of the cells and that sometimes 

another possible morphological configuration could be presented. These configurations, such as 

elongated cells, mother cells with more than one bud, fusing haploid cells during the mating 

process as well the presence of diploid buds during a specific process, are called complexed 

cells. Complexed cells may appear in certain conditions of stress. Furthermore, Zalewski and 

Buchholz [20] categorized the cells of yeast in four distinct groups according to the morphology: 

(1) proportion of single cells with bud, (2) complexed cells with two or more cells of identical size, 

(3) single cells with large vacuole, and (4) dead cells, indicating the culture growth phase and the 

nutrient richness of the medium. 

2.2. Image processing and analysis 

Image analysis and processing is the extraction of quantitative and qualitative information from 

images by appropriate techniques.   

An image can be viewed as a set of distributed data in a lattice or array, with positions defined by 

a set of elements from the Cartesian plane (Figure 2.3 [21]). Thus, the data values could be 

described as a two-dimensional function, f (x, y), where x and y, coordinates of the Cartesian 

plane, assume integer values from 0 to N - 1 and M - 1, respectively, in images with size N × M. 

 

 

Figure 2.2. Cell shape measurements of Saccharomyces cerevisiae cells (adapted) [16], [18]. 
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Occasionally, images may be squares, making so, M equal to N. Another frequently used 

nomenclature is the given spaces generated by the intersection of rows and columns of a matrix. 

In this case, i and j represents the row and column numbers, respectively, within the same range 

of integer values, in a similar way, of the previous example. Each element composing this matrix, 

grid or lattice if preferred, is named by picture element, image element, pixel or pel, being pixel 

the best known denomination [21]. Data values, f, is a discrete representation of the intensity or 

amount of visible light (or any other radiation in the electromagnetic spectrum) reflected (or 

transmitted) by an object. High intensities are typically translated into a high, or near the 

maximum values, whereas is usually to translate low intensities into low, or near the minimum 

values. It should be noted that due to the reflective nature of the objects (the light is not totally 

reflect or absorbed by any physical object) as well as to image sensing and acquisition processes 

(described with more detail in the next chapter), the quantization does not distinguish between 

different colours of the visible spectrum (this is another area of image processing), but the 

intensity of the monochromatic light. Thus, the quantization of light can be achieved from a range 

of values, where white is represented by the maximum value and black represented by the 

minimum value, or vice versa. All intermediate values of this scale represent variations of the 

 

 0      y      m -1 

0 f(0, 0)            f(0, m-1) 

              

              

              

              

x       f(x,y)       

              

              

              

              

n -1 f(n-1, 0)            f(n-1,m-1) 

 

Figure 2.3. Mathematical notation for a digital image (adapted) [21]. 
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monochromatic intensity. The most common scale used in this process is the grayscale. The 

intermediate values of the grayscale represent different intensities of gray – gray levels. Due to 

hardware considerations, the number of levels (L ) of the grayscale for quantifying the intensity is 

limited, taking integer values in the order of powers of 2: 

𝐿𝐿 = 2𝑘𝑘  (2.1)                             

The number of bits required to store a digital picture is: 

𝑏𝑏 = 𝑀𝑀 × 𝑁𝑁 × 𝑘𝑘    (2.2)                                                        

As may be seen from equation 2.2, the number of bits required for storing a digital image is 

proportional to k. Therefore, it is common to refer to images with 2k gray levels as a "k-bit 

image". For example, the most popular types of images, 8, 16 and 32-bit, are images with 256, 

65536 and 4294967296 gray levels, respectively. From this point of view, it becomes obvious 

the relationship between the size of the grayscale and the memory needed for storage. The 

image size, M × N, which best known and most used designation is spatial resolution, also 

influence the number of memory bits required to allocate an image [22]. 

The collection of significant information from images becomes a little more elucidated after being 

provided a detailed description of the concepts related to the composition of the image. With 

informatics background, an image is visualized as an array of integers, and the application of 

basic algorithms for array manipulation is a common practice. However, image processing and 

analysis needs several techniques available with the assistance of computer programs. Thus, it is 

possible to extract qualitative and quantitative information from images using mathematical 

theorems ranging from the most simple to the most complex. The results of applying these sets 

of techniques are commonly divided into quantitative and qualitative. For example, the groups of 

techniques, whose results are images, are classified as image processing techniques. Whereas in 

groups of techniques that extract information from the images by "making sense", similarly to 

what happens with the human eye shape, are classified as image analysis techniques. This 

definition was adopted by Gonzalez & Woods [22] which divided the sets of image manipulation 

operations, according to the type of result returned by them. 

2.2.1. Image sensing and acquisition 

An image recording device responsible for acquiring digital images for the purpose of 

computational processing is also referred to as image digitizer. In most cases, a camera is 

commonly used for image acquisition. 
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The principle of acquiring digital images is applicable to all different types of digitizers. A source 

of electromagnetic radiation continuously brightens a scene or object and is reflected (or 

transmitted such as in X-rays) and captured by a sensing material, responsible for transforming 

the intensity of incoming light into voltage. In the case of digital cameras, the sensor is in reality 

predominantly a set of sensors arranged in the form of a 2-D array. The output waveform is the 

response of the sensors and a digital quantity is obtained by digitizing its response. The signal 

produced by each sensor of the camera leads to the formation of an array of picture elements 

with values directly proportional to the intensity of light passing through the lens [23]. This 

involves two processes: sampling and quantization. Digitizing the coordinate values of each one 

of the sensors is called sampling while digitizing the amplitude values of the voltage waveform is 

called quantization. 

Visible light, as well as any other radiation of the electromagnetic spectrum, vary continuously in 

terms of wavelength and frequency values, never ending abruptly in a band and starting in 

another. For example, in this way the sensed data contained in the output waveform could be 

represented in a graph f (x, y) versus x whose function is continuous, except perhaps in the 

coordinates corresponding to peripheral regions or boundaries of objects. Notice that the value of 

a coordinate of the Cartesian plane is set to 1 to make it possible to do a graphical 

representation of a row of the image of the scanned object. Equally spaced samples are collected 

along the coordinate varying then the value of the other variable. Such proceeding is called 

sampling. Sampling limitations are imposed by the number of sensors and by the number of 

variations of the fixed coordinate [22]. The resultant continuous value of the sampling process is 

associated to a discrete level of the color scale used. For example, in 8-bit images the value of 

light intensity is equally divided into 32 to 32 between the ranges from 0 to 255, corresponding 

to each one of these ranges of values, different intensities of gray of the grayscale. The process of 

discretization of the values of brightness is called quantization. 

Figure 2.5 shows an example of the pixel values distribution in the first line of a picture of a cell 

colony. The original image is shown in Figure 2.4. In this case the values are already discretized 

(after quantization) within a range of values between 0 and 255 (8-bit). However, the curve of the 

continuous function is easily perceptible. It is noted that the peak values of the function 

corresponding to white dots in the image represent cells. The variability in the intensity of the 

peaks demonstrates the perceptibility of the cells in the image. The higher the peaks are the 
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more noticeable are the cells in the picture due to the contrast with the background, being this 

perceptibility reduced as the peaks size decreases. 

2.2.2. Image processing techniques 

The main objective of processing techniques resides essentially in obtaining an image by 

modifying or transforming an original image by the action of specific operators. These operators 

(T ) are applied directly on the values of certain pixels, f (x, y), resulting in a new pixel value with 

 

Figure 2.4. Cell colony image (available at http://imagej.nih.gov/ij/images). 

 

 

 

 

 

Figure 2.5. Plot of the first line (0 ≤ x ≤ 406 and y = 0) of a cell colony picture. The values, discretized to have a 

range corresponding to 8-bit images, demonstrate a good approximation of what would be the function curve for the 

values with continuous amplitude. 
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position coordinates x and y: 

𝑔𝑔(𝑥𝑥,𝑦𝑦) = 𝑇𝑇[𝑓𝑓(𝑥𝑥,𝑦𝑦)]  (2.3),                                         

or also on the values of pixels of entire regions including whether or not the value of the target 

picture element, f. The shape and size of these areas may be diverse, ranging from the most 

direct, vertical, horizontal or diagonal neighbors, to a set of neighboring elements with radius of a 

specified number of times of the central member, and may assume the most varied formats, 

including square, round, diamond, elongated, etc. 

For example, a processing operation that aims to enhance images with high amounts of dark 

pixels whose areas of interest are the clearest ones is creating the negative image. The negative 

transformation of an image is easily translated by the following expression: 

𝑔𝑔(𝑥𝑥,𝑦𝑦) = 𝐿𝐿 − 1 − 𝑓𝑓(𝑥𝑥,𝑦𝑦)  (2.4),                                             

whereas stated earlier, L is the level of grayscale image. Reversing the intensity levels of an 

image is the same as the equivalent of producing a photographic negative. In Figure 2.6 is shown 

how this operation applied to all the picture elements of the cell colony causes an increase in the 

ease of cells viewing.  

This type of operation is included in the group of operations that aims the image enhancement. 

There are other operations whose quality results vary according with the definition given by the 

user. Several methodologies such as power-law and log transformations, histograms processing, 

 

 

Figure 2.6. Image of a cell colony (left picture) and their negative transformation (right picture) (available at 

http://imagej.nih.gov/ij/images). The transformation was possible using the Image Inverter plugin from software 

ImageJ. 
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filters, and also the combination of different enhancement methods can be found. Subsequently, 

image improvement thorough pre-processing techniques, it is common practice before separating 

objects from the background making image segmentation. 

Image enhancement techniques arise frequently associated with tasks such as automated cell 

counting, cell size and morphology characterization, determination of cell content, determination 

and quantification of protein localization and many others [24]–[30]. 

Filters improve images through the application of changes on groups of pixels. These are efficient 

computational methods that have the aim of reducing the level of "noise" and to emphasize 

edges in images. Filters provide an improvement to visual interpretation of images and can be a 

precursor to subsequent digital processing techniques such as segmentation [21]. The filtering 

process consists essentially to move, pixel by pixel, the centre of a "mask" of variable size 

(usually 3 × 3 pixel region) changing the value of the centre pixel according to a relationship 

between the values of the remaining pixels covered by the mask. Within this type of process there 

are different filters. Smoothing filters are primarily used for noise reduction and blurring while 

sharpening filters are used with the goal of highlight fine detail in an image to enhance detail that 

was been blurred. In general, filtering of an image of size M × N with a filter mask of size m × n 

is given by the expression: 

𝑔𝑔(𝑥𝑥,𝑦𝑦) = ∑ ∑ 𝑤𝑤(𝑠𝑠, 𝑡𝑡)𝑓𝑓(𝑥𝑥 + 𝑠𝑠,𝑦𝑦 + 𝑡𝑡)𝑏𝑏
𝑡𝑡=−𝑏𝑏

𝑎𝑎
𝑠𝑠=−𝑎𝑎  (2.5), 

where a = (m - 1) / 2, b = (n - 1) / 2, w (s, t) is a filter coefficient for the corresponding mask 

pixels coordinates s, t.  In order to achieve a completely filtered image it is necessary to apply eq. 

2.5 to each one of the pixels of the image. Two considerations must be taken when the centre of 

the mask reaches a pixel in the image border. One of them, called padding, is to add replicated 

rows and columns, or with pixel values of 0, while the other consists in prevents the filter to 

advance to outside the image. 

Segmentation or thresholding is the separation of pixels in a given range of values from other 

pixels with a specific range of values, different from the previous one. In practice, segmentation is 

the separation of regions of pixels corresponding to objects or part of objects of interest from the 

rest of the image. Each pixel of the image is allocated to one of these regions or categories. 

Thresholding can be a very effective method of measuring disjunctive and complex 

characteristics of an image. However, it could make wrong assignments of pixels to distinguish 

and separate an area of interest. Thus, segmentation is typically considered a critical step in 

image analysis. 



Context 

16 

Segmentation is a process usually preceded of the image binarization. Pixels values below a 

certain value or range of values are set equal to zero, while the pixels values above assume the 

maximum grayscale value. Thus, the image becomes represented by white and black pixels. 

Another type of thresholding result is highlighted as selected area which falls into a determined 

range of pixel value. In this case, two limit values are selected. 

Figure 2.7 shows the results of the cell colony image segmentation as well as the results of 

filtering the original image followed by its segmentation. A median filter with radius of 2 pixels 

(Fig. 2.7c) was applied to the original image, where a slight reduction of background noise as 

well as some general image blurring is observed. This can be visualized by the image 

 

 

Figure 2.7. Binarization of the cell colony image without filtering and after filtering. Figure 2.7a is the original cell 

colony image. Figure 2.7b is the result of thresholding the image of Figure 2.7a at pixel value 171. The image of 

Figure 2.7c is the result of applying a 3x3 median filter to the image of Figure 2.7a. The image of Figure 2.7d is the 

result of thresholding the image of Figure 2.7c at pixel value 171. All filter and threshold operations were performed 

with the support of the software ImageJ (available at [1]). 
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segmentation after the thresholding at pixel value of 171. More visible black spots can be 

observed in Figure 2.7b when compared to Figure 2.7d. This shows that the filter applied had an 

effect of image blur resulting in a cleansing of the image noise and also of some cells. This is 

also corroborated by the analysis of the histograms of the pixels distribution. 

In this manner, it is shown that the filter caused a decrease of the maximum value assigned to a 

pixel, and a decrease in the average of pixel values. 

2.2.3. Image analysis techniques 

Image analysis is a field of digital image manipulation that differs from image processing. The 

purpose of image analysis is to emulate human vision, including learning and be able to make 

decisions based on vision inputs [22]. This technique is also associated with a high level of digital 

imaging computerized processes. The level of processing involves the "making sense" of a 

recognized set of objects where cognitive functions normally associated with vision are applied. 

While the human vision system collects information in a qualitative way, image analysis extracts 

quantitative information from the data sets assembled in images. 

It can be stated that this group of techniques have, or could have, images as inputs, but whose 

outputs are attributes of images and not images as what happens with the application of image 

processing techniques. Usually, image analysis techniques are applied to images resulting from 

processing techniques. The most common image analysis techniques are morphological analysis, 

measurements, recognition, representation and description. Segmentation could also be included 

in this group of techniques. As stated earlier, segmentation results in image partition into its 

objects or constituents. The recognition based on objects segmentation, like assigning a label 

(e.g. cells) to objects, could be included in the group of image analysis techniques. 

Morphological analysis relies commonly on the geometric aspects of an object. The parameters 

related to objects morphology are diameter, area, number, perimeter length, width, eccentricity, 

roundness, extension, convexity, solidity and compactness [31], fitting perfectly in the area of 

microscopic images analysis of yeast cells, or any other microorganism.  

Besides the most basic mathematical morphological operations, such as translation, reflection, 

complement and difference, three types of operations characterize the morphological analysis 

technique: operations for size and shape, operations for connectivity and operations for texture 

[21]. The morphological analysis described in this chapter is applicable to binary images, usually 

derived from thresholding. 
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Operations for size and shape are the most direct and easiest morphological operations to use 

and are related with the properties, local shapes and sizes of objects in images. The components 

of the images are affected by how the structural elements of this technique, usually disks or 

squares are accommodated. Afterwards, several morphological operators are briefly described: 

dilation, erosion, opening, closing, hit-or-miss transform, boundary extraction, region filling and 

connected components. 

Dilation is the operation in which object boundaries are expanded according to a structural 

element. The central pixel of the structural element, generally smaller in number of pixels, cycles 

through all pixels of the target object resulting in a wider object. This increase in size is related to 

the number of pixels of the structural element which exceeds the limits of the target object when 

the center pixel reaches the edge of the target object. 

Erosion is the opposite of dilation. This technique causes a contraction of the boundaries of an 

object in a similar manner to the dilation process. In this case, the object is "reduced" according 

to the shape and size of the structural element. Once the limit of this element reaches the 

boundary of the object, the pixels between the object boundary and the central pixel of the 

structural element “drop out” from the constitution of the object. Once the center of the 

structural element to pass through all the pixels of the target object that would result in a 

contraction limits. 

Opening and closing are intrinsic to dilation and erosion techniques. The result of opening is the 

same as the result of erosion followed by dilation of an object, causing smoothed contours, 

broken narrows isthmuses and eliminated small islands and sharp peaks. In an analogous way, 

the result of closing is the same result of dilation followed by erosion of an object, causing 

smoothed contours, breaks and fused narrowed longed thin gulfs and eliminated small holes. 

Hit-or-miss transform is an iterative morphological shape detection tool. Actually, this operation 

involves a number of basic operations such as erosion, complement, intersection and difference. 

After a number of iterations where each of these techniques is implemented according to a 

specific mathematical equation, the final result includes the coordinates of the object of interest 

in the image. 

Boundary extraction is a technique which returns a region of pixels corresponding to the 

boundary of an object of interest. The quality of the resulting boundary is related to the shape of 

the structural element since the result of this operation is equal to the difference between the 

original object and the same object after erosion. 



Image processing and analysis 

19 

Region filling is the filling of a boundary defined region, given a point in the same region. 

The connected components allow determining the number of connected pixels of a particular 

region. It is important to notice that the type of connection is based on a square structural 

element, e.g., they are considered connected to a certain pixel all the eight pixels that are around 

it (8-connectivity). 

The techniques that constitute the group of morphological analysis operations for connectivity of 

objects are thinning, thickening, skeletons and pruning. This set of operations considers the 

connectivity between objects unlike the operations described above which only interact with the 

“local” size and not the global size of objects. For example, it could be important to know not 

only if an object is only connected but also with its topology, particularly with properties such as 

how many branches and hole it contains [21]. Thinning. is an iterative process based in the hit-

or-miss transform technique, but which characteristic structural element rotates 90 degrees, after 

each iteration. The final result is a thinner object than the original but whose connectivity is 

preserved. Thickening is the morphological dual of thinning. It is similar to the thinning process 

applied to the object background. Actually, the process begins with a pixel inverting and the final 

result is achieved by another inversion. 

2.2.4. Image analysis of S. cerevisiae cells 

Segmentation and classification procedures have been gaining large importance in the 

characterization of S. cerevisiae cells. The characterization of yeasts has been considered quit 

relevant for many chemical processes. 

The determination of yeast population size distribution and kinetics is a relevant aspect on the 

characterization of yeast cultures at live operation. A fully automation of this process can avoid 

for instance several of sampling for image scanning or manual recognition of the ellipsoid shape 

of the cells, as well as minor and major half axes [30]. Zalewski and Buchholz [20] developed a 

fully-automated system for sampling and analysis of S. cerevisiae in order to control their growth. 

After processing the samples through a purpose-built system, a scanned image was submitted to 

a process of image analysis. This program was composed of a sequence of steps, which in 

addition to the classical cell count, estimated the physiological conditions of the yeast culture. 

The principal steps of the program after sampling were color filtering, contour treatment, object 

recognition, classification and analysis. 
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Subsequently, to improve the segmentation process an image analysis for yeast cells was 

developed was developed [26]. It was found that the performance of bioreactors and other 

chemical processes were greatly influenced by the morphological character of the cells. 

Therefore, the authors developed a method capable of segmenting yeast cells based on a 

Watersheed Transformation and in a tree representation called the Tree of Critical Lakes 

preserving cell contour. Yet Chen et al. [32] used a machine learning approach to automatically 

find cell contours in the graphical model representation. The authors developed an automatic 

image analysis of yeasts for the purpose of recognizing protein localization. The system was 

trained and tested for features selection by a support vector machine classifier. The automated 

method provided an objective, quantitative and repeatable assignment of protein locations 

applied to new collections of yeast images. 

Taking into account that yeast cell morphology has an impact on fermentations productivity, 

image analysis techniques have been developed for morphological characterization [30]–[35]. 

Various groups presented computational tools for automatic analysis of microscopic fluorescent 

images of budding yeast. Miroshita et al. developed an image analysis program for cell 

morphology characterization of gene-deletion strains [13]. However, the algorithm required the 

cell membrane to be stained with a fluorescent dye. The open-source software Cell-ID [14], on 

the other hand, used bright field images for cell recognition. The actual image analysis methods 

used have not yet been published. 

A good cell contours identification can lead to an effective morphological parameters 

quantification as well as the proteins subcellular localization from fluorescent date [36]. Logg et 

al. developed a fast method for cell contours recognition. This method exhibited great 

performance for pictures of yeast cells not too clustered. 

Many advances have been made in the field of image analysis of cells for morphological 

characterization. Yu et al. [15] developed an automatic processing algorithm for microscopic 

images classification of yeast cells in the microfluidic channel. The image quality was improved 

and the background noise removed through an enhancement process. Then, a segmentation 

algorithm converted the images into a binary matrix containing the shape of the cells. The 

morphological characteristics – compactness and cell axis ratio – capable of classifying between 

non budding, small and large buds were extracted by methods of extracting features. Finally, a 

self-learning classifier distinguished the four types of cells morphologies. Three machine learning 



Image processing and analysis 

21 

methods for classification were tested being them, k'th nearest neighbors (kNN), linear-kernel 

support vector machine (SVM) and Mahalanobis distance classification. 

More recently, Doncic et al. [28] presented an algorithm with a fully automated segmentation and 

tracking of budding yeast cells within growing colonies. The algorithm was developed carrying out 

considerable amounts of thresholds, leading the outcome of the entire set of thresholds to be 

used to perform a final robust segmentation. Each threshold divided the image area into two 

types: putative "cell" and "no-cell" areas. Then, with the aid of one watershed algorithm, 

Ferdinand Meyer watershed algorithm via the MATLAB function [37], the separation of the two 

putative areas in various regions was performed. In practice, this was achieved by computing the 

distance transform of the complement of binary image defined above and assigning minus infinity 

to each pixel that does not belong to any object. Thus, a "topographic map" was created for the 

object to which the watershed algorithm could be applied. To determine whether a region is part 

of the cell or not, score each region as 1 (cell) if it meets certain criteria relating to their area. 

Otherwise, score the region as 0 (no-cell). This process was applied to all sub-regions. Finally, a 

composite image was created whose pixel values depends on the number of times the cell was 

found (value 1) after watershed segmentation. 
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3. ImageJ 

Until a short time ago, image processing and analysis were only possible through expensive 

commercial tools, or through software packages developed by those who needed it. Moreover, 

the acquisition and save of digital pictures to an image processing system (e.g. personal 

computers) has never been as commonplace as it is today. The ubiquity of digital technology has 

made it digital images part of numerous areas from astronomy to microscopy passing by 

medicine. In fact, with the increasing flow of acquisition and circulation of digital images, new 

powerful software packages has been raised, enabling the regular user to manipulate and 

process digital images as a professional. 

In this context, finer distinctions of certain concepts related to digital images processing 

performance appeared, among them image processing and image editing [38]. Image editing is 

the set of processes for manipulation of images by regular users with the help of programs such 

as Photoshop or Paint. Image processing is the conception, design, development, and 

improvement of digital images performed by specific groups of people such as scientists or 

engineers. As previously mentioned, image analysis comprises all the techniques with the 

purpose of extracting meaningful information about picture contents. 

ImageJ is a software package containing many of the techniques listed in the above mentioned 

concepts. It is able to compute areas and statistics of pixel values, measure distances or even 

create histograms and line profile plots. Moreover, it includes the most basic image processing 

techniques such as: background subtraction, brightness & contrast adjustment, image type 

conversion, smoothing, sharpening, filtering, and binarization. It also features other basic 

manipulations such as geometric transformations (scaling, zooming, rotation, etc.). It can display, 

edit, analyze, process, save and print 8–bit, 16–bit and 32–bit images. It can read many image 

formats including TIFF, GIF, JPEG, BMP, DICOM, FITS and ‘raw’. It supports ‘stacks’ (and 

hyperstacks), a series of images that share a single window. It is multithreaded, so time-

consuming operations such as image file reading can be performed in parallel with other 

operations [39]. 

This program is a public domain (meaning that its source code is openly available and its use is 

license-free) Java image processing and analysis program inspired by NIH Image (developed at 

the U.S. National Institutes of Health and available on the Internet at http://rsb.info.nih.gov/nih-
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image/) for the Macintosh. It runs, either as an online applet or as a downloadable application, 

on any computer with a Java 1.5 or later virtual machine. Downloadable distributions are 

available for Windows, Mac OSX and Linux at http://imagej.nih.gov/ij/index.html. Also, ImageJ 

was designed with an open architecture that provides extensibility via Java plugins. Custom 

acquisition, analysis and processing plugins can be developed using ImageJ’s built in editor and 

Java compiler. User-written plugins make it possible to solve almost any image processing or 

analysis problem. 

The following chapters are intended to make a simple presentation of the ImageJ software. Their 

menu commands will be presented as well its features will be briefly explained. Its principal 

commands, such as Particle Anlayzer or Subctract Background will be discussed with a little 

more detail. The main classes and its methods of ImageJ´s API will be presented, taking into 

account the usefulness they had in the preparation of this work, continuing to focus the form of 

how they are applied in Java. Finally, a brief introduction to coding plugins in Java for ImageJ will 

be performed. For more information about menu commands or building plugins it is possible to 

consult the documentation available at http://imagej.nih.gov/ij/developer/. 

3.1. Image processing with ImageJ 

Similar to the most of the existing programs, ImageJ provides to users a graphical interface 

containing a bar with commands menus. Actually, the program main window is not much more 

than a bar with the Menu Commands plus a Toolbar, Status Bar and Progress Bar (Figure 3.1). 

Additional windows are opened to show images, histograms, plots, results, etc. The toolbar 

(squares with figures in the main window) contains the basic tools to make the following 

selections: 

1. Rectangular and Rounded Rectangular; 

2. Oval, Elliptical and Brush; 

3. Polygon; 

4. Freehand; 

5. Straight, Segmented, Freehand Arrow Line; 

6. Angle; 

7. Point and Multi-point. 

Besides these tools, it also has seven free slots to select any of the +60 tools and +15 toolsets 

available on the website ImageJ. The menu bar is constituted by eight menus. The File menu 
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contains the basic operations (opening, saving, creating new images) where most of them are 

self-explanatory. Then, the Edit menu contains operations for edition and drawing as well as 

global configurations. The following menu, Image, has operations for image modification and 

conversion including geometric transformations. The Process menu includes all kinds of image 

processing operations, while the Analyze menu has statistical measurements, histogram and 

profile plotting, among other operations related to image analysis. The Plugins menu contains 

commands for creating, editing and managing add-ons, as well the lists of all installed macros, 

scripts and plugins. Finally, Window and Help menus feature the selection and management of 

windows, and the documentation and version information, respectively. 

With this menu bar short description, it is possible to conclude that the most important and/or 

most used menus for image analysis and processing are Image, Process and Analyze menus 

(Analyze Particles mainly). For this reason, next is presented a more detailed description of the 

main content present in each of them. 

3.1.1. Image menu 

The Image menu is divided into several sub-menus, some of which are: Type, Adjust, Color, 

Stacks, Hyperstacks, Crop, Duplicate, Rename, Scale, Transform, Zoom, Overlay and Lookup 

Tables.  

The sub menu Type determines the type of the active image or converts to another type. Image 

types supported by ImageJ are 8-bit, 16-bit, 32-bit, 8-bit color, RGB color, RGB stack and HSB 

stack. Any tentative to run an unsupported conversion causes a dialog box to be displayed that 

lists possible conversions. 

The Adjust submenu contains commands that adjust brightness/contrast, adjust threshold levels, 

window leveling, color balance, image size and canvas size. The Brightness/Contrast... 

command allows the user to change the brightness and contrast of the active image. When the 

 

Figure 3.1. The ImageJ main window (version 1.48k). 
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command button is selected, a window opens where it’s possible to view the distribution 

histogram of the active image pixel values. A diagonal line crosses the histogram indicating how 

the pixels values are mapped to 8-bit (0-255) display values. The two values below the graph 

indicate the minimum and maximum values of the displayed pixels. Below the histogram, four 

sliders allow the user to interactively change the minimum and maximum value of pixels as well 

as the brightness and contrast of the active image. Threshold allows the user to automatically or 

interactively set an upper and/or a lower limit to target areas of interest or background of 

grayscales images. This tool presents a graphical representation of upper and lower sliders 

enabling to manual adjust the thresholding window across the range of values. There is given to 

users the possibility to choose between displays the threshold values in red, black (with a white 

background) and green (pixels below threshold). Also, there are 16 different methods of 

automatic threshold. The Auto button automatically sets the threshold levels based on an 

analysis of the histogram of the current image or selection. Apply sets thresholded pixels to black 

and all other pixels to white. However if Process > Binary > Options > Black Background is 

checked, the thresholded pixels are set to white and all other pixels to black. Reset disables 

thresholding and updates the histogram. 

The Color submenu contains several commands that allow the user to manipulate color images. 

The ImageJ is able to handle three types of color images: Pseudocolor images, RGB images and 

composite images. Pseudocolor images are images with a single gray channel (8, 16 or 32-bit) 

which is associated with a color via a lookup table (LUT). A LUT may be viewed as a table of gray 

values with matching values of red, green and blue in a way that the gray values are presented as 

colorized pixels. RGB images are color images that have 256 values in the Red, Green and Blue 

channels. Hence, these images are 24-bit (22x8). Like the RGB images, composite images are 

formed by channels of pixel values. However, each channel is separated from the other and can 

be switched on and off, allowing the visualization of the channels separately. Each channel can 

be 8, 16 or 32-bit and run on any LUT. Furthermore, more than three channels can be kept 

together or separately. Returning to sub-menu Color, the command Convert Stack to RGB 

converts up to 2 or 3 slice of a stack in an RGB image, assuming that each of slices has 8 or 16-

bit grayscales and sorted into R, G and B. Convert to Composite converts an RGB image or a 

stack with 2-7 slices into a composite color stack. The separation of R, G and B components of 

an RGB image into three 8-bit grayscale images is possible via the RGB Split command. The 
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opposite is possible through the RGB Merge command, where 1, 2 or 3 8-bit grayscales images 

are merged in an RGB image. 

The Stacks submenu contains a set of commands that allows various manipulations of image 

stacks. Image stacks are images displayed in a single window, being desirable that these images 

are spatially or temporally related, wherein that all images must have the same size and bit 

depth. The constituent images of a stack are called slices. Many of the existing commands in 

ImageJ have the option of processing all the slices in a stack. Stacks submenu already has the 

basic commands for manipulating slices in stacks, such as Add Slice, Delete Slice, Next Slice, 

Previous Slice and Set Slice... all of them with self-explanatory names. The commands Images to 

Stack and Stack to Images create a stack of all images that are displayed in separate windows 

and vice versa. All other commands of this submenu are related to hyperstacks, virtualstacks and 

3D animations. 

Crop and Duplicate functions allows cutting or duplicating, respectively, of an image or stack 

based on the current rectangular selection. Rename allows the user to change the title of an 

active image or stack. The Scale submenu opens a dialog box allowing the user to resize or to 

scale at its discretion an image or a selected area. The Transform submenu contains commands 

that enable the user to apply geometric transformations on an image or a stack of images. It is 

possible to flip horizontally and vertically, rotate a specific number of degrees in any direction, 

translate in a specified number of pixels the image in the x and y directions, and to reduce the 

size of an image. It is also possible to control how the current image is displayed through the 

Zoom submenu. Finally, The Lookup Tables submenu contains a selection of color lookup tables 

that can be applied to grayscale images to produce Pseudocolor Images. 

3.1.2. Process menu 

The Process menu has the following image processing techniques: Smooth and Sharpen, Find 

Edges and Maxima, Enhance Contrast, Noise, Shadows, Binary, Filters, Bach, Image Calculator 

and Subtract Background.  

Smooth is actually a filtering function via an average filter with a 3×3 mask, which blurs an image 

or a selected area. Filtering is a concept explained with more detail in section 2.2.3. Sharpen is a 

command to a processing technique that accentuates and enhances detail of an image, 

particularly the edges of objects. However, the noise enhancement is considered a drawback. 
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The filter Find Edges uses a Sobel edge detector to highlight sharp changes in intensity in the 

active image or selection. 

On the other hand, the Noise submenu contains commands to add or remove noise from 

images. The Shadows submenu has a group of commands which produce a shadow effect in 

image objects, with a light appearing from a corresponding direction to the command name. 

The Make Binary command converts one image in black and white in a similar way to that 

described in section 2.2.3. Furthermore, Binary submenu is constituted by commands for 

morphological analyses of binary images, such as those described in section 2.2.4. Watershed 

segmentation is a relevant operation present in this submenu. This operation is an automatic 

mode to separate or cut objects or particles that touch each other and which are not supposed to 

be together. 

The Filters submenu contains several filters differing from each other essentially by the method 

applied: Convolution, Gaussian, Median, Mean, and Unsharp. Unsharp Mask command sharpens 

and enhances image objects edges by subtracting a blurred version of the image (the unsharp 

mask) from the original. The Unsharp mask is created by Gaussian blurring the original image. 

The Gaussian blur filter radius is a parameter which must be defined. Increasing the Gaussian 

blur radius sigma will increase the contrast. The Unsharp mask is multiplied by the Mask Weight 

parameter, where higher values mean additional edge enhancement. The Mask Weight 

determines the strength of filtering. 

Image Calculator performs arithmetic operations like addition, subtraction, multiply, divide, etc, 

between two images. 

Subtract Background is a process useful for images with high background, but even images with 

lower background may benefit from the subtraction of background. The process is based on the 

"rolling ball" concept in which a ball with a given radius roll over the bottom surface of a three-

dimensional grayscale 2D image. Figure 3.2c and Figure 3.2d are cross segments of the yellow 

line in Figure 3.2a (available at http://imagej.nih.gov/ij/images) and Figure 3.2b, respectively. 

The graphs are profiles of pixel values ranging from 0 to 406 of the line number 200 of each one 

of the figures. The role of the "rolling ball" is to cause a smoothing in pixel values, as shown by 

the change that took place between the plots of Figures 3.2c and 3.2d. Figures 3.2a and 3.2b 

shows the effect of the passage of a rolling ball with 50 pixels of radius over the image surface. In 

this type of process, it is important that the rolling ball radius is as large as the radius of the 

largest object present in the image. For that reason, rolling balls with very small radius will cause 
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greater subtraction than rolling balls with larger radius. The ability to choose to make the 

subtraction of dark backgrounds with lighter objects and choose to create background (not 

subtract), e.g. the output of the process would be the background itself rather than the image 

with the background subtracted is another feature present in this application of ImageJ. It is also 

given to the user the possibility making a preview of the process effect in the image without being 

permanently altered. This tool has two additional options: Sliding Paraboloid replaces the rolling 

ball with a paraboloid that has the same curvature at the apex as a ball of that radius. This option 

typically produces more reliable corrections since the rolling ball, a legacy algorithm, is prone to 

edge artifacts. For calculating the background (rolling the Subtract Background ball), images are 

filtered with an average filter (3 x 3 pixels). With Disable Smoothing the unmodified image data 

are used for creating the background. 

The analysis measurements which allow the user to determine areas, average, minimum and 

maximum areas of interest previously defined, for example by threading, are other tools present 

in the Process menu. 

 

 

Figure 3.2. Background subtraction of the cell colony image. Figure 3.2a is the original cell colony image (available at 

http://imagej.nih.gov/ij/images). Figure 3.2b results from the background subtraction of Figure 3.2a, with a rolling 

ball with 50 pixels of radius. The profile of Figure 3.2c is the plot of the yellow segment in the image of Figure 3.2a. 

The profile of Figure 3.2d is the plot of the yellow segment in the image of Figure 3.2b. 

 

 



ImageJ 

30 

3.2. Object counting with ImageJ 

A particular feature of ImageJ is the possibility of counting objects, such as for example 

fluorescent cells from 2D images. Although automatic counting is a program application of 

greater interest for its speed and ease of execution, manual counting also has some features that 

make it relevant to mention. The automatic counting is interesting, especially in the presence of a 

large amount of objects, but may be less accurate than manual counting. To count objects 

manually, the Cell Counter plugin, available on the homepage of ImageJ 

(http://imagej.nih.gov/ij/plugins/cell-counter.html) is needed. 

Before the automatic counting of objects in an image (e.g. in cell colony image), it should be 

applied in the image a set of processes, to make the count more reliable. The background 

subtraction is one of these processes. This process results in a higher evidence of the objects of 

interest, increasing the gap between background pixels and objects of interest pixels. 

Prior to automatic counting, thresholding is a fundamental procedure. The purpose of this 

process is the image binarization thus specifying what signal must be included in the analysis 

based on the intensity of the pixels. A manual adjustment with the sliders may be required to 

decrease the overlap as much as possible, but is also possible to trust in the automatic 

adjustment provided by the software. In this case, it is of great importance that all areas of 

interest are included with or without overlap. The final result is a binarized image which the white 

areas (pixel value 0) has no interest for the count. 

Even the most careful threshold can place two objects or more together, particularly if they are 

nearby or overlapping. One operation to fix this is “cut” these objects with the watershed tool. 

However, this process is not completely perfect. The comparison of the final result with the 

original image to assess the accuracy of the watershed algorithm is always imperative. 

Finally, the image is followed by the automatic counting with Analyze Particles… tool. A control 

menu window of the particle analysis function is opened, where could be encountered some 

particularities that might be included in the final result set (Figure 3.3). The type of objects is the 

most important among them. It is important to notice that a prior image scaling is required. In 

the first line of the control menu showed in Figure 3.3, is allowed to specify the range of the size 

of objects to be counted. This is particularly interesting since it allows to bright noise pixels that 

have not been eliminated in previous process to not be included in the counting. It’s also possible 

to set which objects are included in the counting based on its circularity. This is possible by 
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varying the range of circularity, where the minimum extent (0) corresponds to a straight line and 

the maximum measure (1) corresponds to a perfect circle. If this range is defined then all types 

of objects are counted. The Show menu allows specifying which image (or overlay) should be 

displayed after analysis. One is Outlines where an 8-bit image is generated containing the 

numbered outlines of the measured objects. Other is Masks where the filled outlines of the 

measured objects are displayed. The combination of the outlines results with the original image, 

in order to create an overlay after applying the correct conversions of images, is possible via the 

Image Calculator command available in the Process menu. Other options presentation of results 

include: "display of results" which lists information of each counted object in extra results that 

can be saved and opened in MS Excel window; "summarize" that shows the summary results 

such as total number of objects counted in a window apart which can be saved in Excel; among 

others such as "exclude edges" that will make the objects that touch the image boundary are not 

counted. 

A particularity of ImageJ is the possibility of applying operations to selected areas or regions of an 

image. The Analyze Particles operation becoming is truly useful in counting objects of different 

colors in RGB images. This feature allows the differentiation of different types of objects and 

provides count results of different types. 

To illustrate possible differences between objects counting without any image enhancement and 

with different combinations of operations described, Table 3.1 shows the results of several cell 

counts in a cell colony image. Test 1 are the results of the cell counting after auto-thresholding 

 

 

Figure 3.3. Analyze Particles window for particle counting operation of a thresholded image or 8-bit binary image. 
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(at pixel value 171) of the original image. In Test 2 are presented the results with background 

subtraction after passage of a "rolling ball" with a radius of 50 pixels. In this case, the auto-

thresholding was applied at pixel value of 202. The results of Test 3 are related to the prior 

procedures, however, with the application of the watershed algorithm. The following results (Test 

4 and 5) are identical to the previous two procedures with a background subtraction by the 

application of 2 pixels radius "rolling ball" and an auto-threshold at pixel value 223. All tests were 

performed for a circularity of objects ranging from 0 to 1 and from a range of sizes from 0 to 

infinity. 

3.3. Writing ImageJ plugins 

Since it was introduced in 1997, ImageJ has been successively grown by developing short add-on 

programs that provide new functionality to the core program. These additional files can be 

incorporated into the program in the form of plugins, macros or scripts. It can be written in Java 

or ImageJ's macro programming language and after being recorded to ImageJ plugins folder it 

can be accessed through the Plugins menu at the Menu Commands. These loadable code 

modules turned the simple program for image processing ImageJ on a framework that anyone 

can use to develop their own imaging solutions. Today are available +500 plugins, +300 macros 

and +20 scripts. Another way to extend ImageJ is using specific programs such plugins and 

imaging capabilities, e.g. technically through the use of a library of imaging methods. 

The extension of ImageJ through plugins is a much more powerful, flexible and faster concept 

than with macros and scripts. Actually, most of the menu commands of the core program are 

implemented by plugins. Moreover, implementing with plugins brings some advantages like 

having full access to ImageJ and Java APIs, and since ImageJ´s plugins are written in Java 

programming language (.java source files) which is a richer language with extensive 

documentation, and compiled to .class files [40]. These files are listed in the ImageJ/plugins/ 

 

Table 3.1. Object counting example results.  

Test Count 
 Total Area  Average Size  Area  
 pixels pixels % 

1 710  10979  15.463  6.628  
2 690  10126  14.675  6.113  
3 710  10079  14.196  6.085  
4 881  8120  9.217  4.902  
5 893  8094  9.064  4.886  
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folder and must have at least one underscore in their name. The acquisition, analysis and 

processing of plugins can be made using ImageJ's built in editor and Java compiler. Knowing the 

ImageJ API is extremely important to write plugins. ImageJ documentation can be found at 

http://rsb.info.nih.gov/ij/docs, including links to further documentation. Furthermore, at 

http://developer.imagej.net/ides can be accessed instructions for setting up the development 

environment (command line, Eclipse, Netbeans, IntelliJ IDEA) for ImageJ resources. 

3.3.1. Compiling and running plugins 

After developing a plugin, it is possible to compile and run it from ImageJ. For this, it is necessary 

first to copy the java file with the source code to the folder named Plugins, or one of its 

subfolders in the directory of ImageJ installation. If the Java runtime environment includes an 

installed Java compiler it is possible to compile and run plugins inside ImageJ. So, to do this, 

select the Plugins > Compile and Run... menu, which opens a dialog box that lets the user select 

a java file that will be compiled in a .class file. The plugin will run normally. If compiled 

successfully, go to Help > Refresh Menus or (better) restart ImageJ. If the plugin has an 

underscore “_” in the name, it will appear in the Plugins menu (or submenu). 

Additionally, ImageJ has an integrated editor that allows code modification and editing, as well as 

compile and run plugins. For this, the command Plugins > New... shows a dialog box that allows 

the user to choose a name for the new plugin, while the command Plugins> Edit... shows a file 

open dialog to open a selected plugin in a text editor. 

3.3.2. ImageJ API 

To program plugins, a brief knowledge of ImageJ´s general class structure is required. The most 

important classes for the development of plugins are listed and described briefly below. 

Furthermore, ImageJ class diagram is available in Figure 3.4. 

ImageJ – This class is an extension of the functionality of Java's Advanced Windowing Toolkit 

(AWT) for the implementation of user interface and presentation of image data. Hence, is the 

main class of ImageJ application, containing the main entry point of the program and the main 

window of ImageJ. 

ImagePlus – ImagePlus is a Java object (java.lang.Object) which represents an image via a set of 

variables such as a class ImageProcessor which contains the pixel data array of the 2D image 

and some basic methods to manipulate it. Other variables are image types represented by 
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declared constants, as for example COLOR_256 to represent a 8-bit color image; COLOR_RGB 

representing a color RGB image; GRAY16, GRAY32 and GRAY8 images for 16-bit, 32-bit and 8-bit 

grayscale, respectively. Other variables, which can be accessed by get methods, also represent 

other important characteristics of images, as well as Width and Height. 

To display images, ImageJ uses a class called ImageWindow, an extension of the class Frame 

from AWT. To build an object of the class ImagePlus, one of the following constructors may be 

used: 

ImagePlus () – default constructor which creates an empty ImagePlus object and does no 

initialization; 

ImagePlus (java.lang.String pathOrURL) – an image constructor from the 

 

 

Figure 3.4. ImageJ class diagram. 
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load the same image through a specific path or URL; 

ImagePlus (java.lang.String title, ImageProcessor ip) – 

contructor from a ImageProcessor and a title for the ImageWindow that shows the image; 

ImagePlus (java.lang.String title, ImageStack stack) – 

constructor of a new ImagePlus from a stack of images. 

In addition to the get methods mentioned above, getWidth and getHeight, this class has many 

more basic manipulation methods. Below are described some of the most important: 

int getBitDepth ()- returns the image bit depth, e.g. the type of picture that 

represents, being 8, 16, 24 or 32, for 8-bit, 16-bit, RGB, or 32-bit, respectively; 

ImageProcessor getProcessor ()-returns a reference to the current 

ImageProcessor; 

void show () – opens a window and displays the image of this ImagePlus; 

void setTitle (java.lang.String title) – sets the image name;  

void setProcessor (ImageProcessor ip) – restores the ImageProcessor by a 

specific other and updates the display; 

void close () – closes this image and sets is ImageProcessor to null; 

ImagePlus duplicate () – returns a copy (clone) of this ImagePlus. 

ImageProcessor – this class is actually an abstract superclass for subclasses that process the 

four data types (byte, short, float and RGB): ByteProcessor used for 8-bit and color images; 

ShortProcessor used for 16-bit grayscale images; ColorProcessor for 32-bit integer images, RGB 

or 8-bit per channel; and FloatProcessor used for 32-bit floating point images.  

 A ImageProcessor has the pixel data of a 2D image as a set of basic methods to manipulate it: 

int getAutoThreshold () – returns the pixel value (threshold) that can be used to 

split the image into objects and background; 

void threshold (int level) – sets the pixels with a value less than or equal to the 

level with value 0 and the others with value 255;  

void invertLut () – inverts the values of the LUT of this image; 

ImageProcessor convertToRGB () – returns an RGB version of this image as a 

ColorProcessor; 

ImageProcessor resize (int dstWidth, int dstHeight) – creates a 

new ImageProcessor containing a copy of the current with the width and height changed; 
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void invert () – inverts the pixel values of the image or selection; 

ImageProcessor duplicate () – returns a duplicate of this image; 

getPixels () - returns a reference to the byte array containing this image's pixel data. 

Opener – This is a class to open TIFF, DICOM, FITS, JPEG, BMP or GIF images through a file 

selected through a dialog box, or a path. Calls the plugin HandleExtraFileTypes if the file type is 

not recognized. It is composed of a set of static variables of type int to represent each recognized 

image types. It has a constructor Opener (). From the set of methods that it possesses, the 

following are worthy of mention: 

ImagePlus openImage (java.lang.String path) - attempts to open the 

specified file as a TIFF, BMP, DICOM, FITS, GIF or JPEG as a ImagePlus; 

ImagePlus openImage (java.lang.String directory, 

java.lang.String name) – try to open a TIFF, BMP, DICOM, FITS, GIF or JPEG file 

specified by the directory and name as an ImagePlus. 

DirectoryChooser – This class shows a dialog box allowing the user to select a directory. It has 

only one featured method that returns a String with the name of the directory chosen by the user. 

The constructor requires only a String as a parameter and displays a dialog box using the 

specified title. 

Analyzer – This Java language object implements the interfaces Measurements and PlugInFilter, 

which means that implements the ImageJ commands Analyze / Measurements and Analyze / 

Set Measurements. It features a simple constructor by default, the Analyzer (), and 

another that constructs a new Analyzer using an object of class ImagePlus using the current 

measurements and default ResultsTable – Analyzer (ImagePlus imp). Finally, the 

constructor Analyzer (ImagePlus imp, int measurements, 

ResultsTable rt) constructs a Analyzer from a given ImagePlus image, measurements 

and ResultsTable. These measurements are static final int belonging to the field values in the 

Measurements interface. They represent the 26 measurements possible to select through the 

Analyze < Set Measurements command and among them we can find some more important 

such as AREA, CIRCULARITY, ELLIPSE and PERIMETER. AREA, as the name suggests, 

represents the area of a selection in square pixels, or pre-calibrated square units through the 

Analyze < Set Scale command. PERIMETER is the perimeter of the outer edge of a specific 

selection. ELLIPSE represents the ellipse that best fits a selection using the Major, Minor and 

Angle measures. The first two represent the major and minor axis of the ellipse, respectively, 
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while ANGLE is the angle between the major axis of the ellipse and the line parallel to the X-axis 

of the image. CIRCULARITY calculates and displays a set of shape descriptors, including 

Circularity, Aspect ratio, Roundness and Solidity. Circularity (Circ) is given by the following 

equation: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. = 4 × 𝜋𝜋 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 2 (3.1) 

If the result of the equation 3.1 is 1, it indicates a perfect circle. As a result approaches to 0, this 

means that the shape elongates. The Aspect Ratio (AR) of the ellipse that fits the object is 

calculated by the equation 3.2: 

𝐴𝐴𝐴𝐴 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

 (3.2) 

Roundness (Round.) is calculated by the inverse of AR or with recourse to equation 3.3: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. = 4 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝜋𝜋×𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 2 (3.3) 

Solidity is the result of dividing the Area by the Convex Area, where this latter is the area resulting 

from the application of the Convex Hull command. 

ParticleAnalyzer – This class also uses the PlugInFilter and Measurements interfaces. It is the 

implemented representation in Java of the ImageJ Analyze Particles command. 

An object of this class is defined by a set of state variables, where the most important from the 

point of view of this dissertation are an instance of the class Analyzer and other instance of the 

class ResultsTable, which in turn represents the tables Results and Summary returned by this 

command. Other variables of relative importance are the integers that when counted activate the 

following functions: EXCLUDE_EDGE_PARTICLES defines that the particles touching the edge of 

the image are not accounted for; SHOW_MASKS shows an image containing the binary masks of 

the measured particles; SHOW_NONE shows no picture with the outlines of the measured 

particles; SHOW_OUTLINES shows an image with the outlines of the measured particles; 

SHOW_RESULTS shows the results with measurements selected on the class Measurements; 

DISPLAY_SUMMARY shows in another table the results of particle counts, total area, mean 

particle size and other parameters defined on the object Measurements. 

The construction of an instance of this class is possible with empty constructor 

ParticleAnalyzer () and the ParticleAnalyzer (int options, int 

measuremts, ResultsTable rt, double minSize, double 

maxSize, double minCirc, double maxCirc). The value of options is 

determined by the sum of all variables values of integer type from ParticleAnalyzer class, thus 
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defining what the desired parameters in the final result. As the value options, the measurements 

value defines the measures appearing in the resulting table. The result table rt passed as 

parameter in the constructor, could be an empty table and receives the values of the taken 

measurements. If this table is already initialized, the measurements are appended to the original 

table. The values minSize, maxSize, minCirc and maxCirc define respectively the minimum and 

maximum values of size and circularity of detected particles. 

Among the methods implemented in this class, three of them are highlighted below: 

boolean Analyze (ImagePlus imp) – performs particle analyze on the specified 

image; 

ImagePlus getOutputImage () – returns the "Outlines", "Masks", "Ellipses" or 

"Count Masks" image, or null if "Nothing" is selected in the Measurements class; 

void setHideOutputImage (Boolean hideOutputImage) – if true does 

not displays the image selected in Measurements class.  

ResultsTable – This class represents the table that stores the measurement results as columns 

of values. 

The state variables represent each possible measurement that can be displayed, from AREA, 

AREA_FRACTION, and CIRCULARITY among others, as well as some representative of the state 

of the table, such as COLUMN_IN_USE, TABLE_FULL or COLUMN_NOT_FOUND.  

The constructor for this class is a simple empty constructor ResultsTable () that 

generates a ResultsTable with a counter = 0, no columns and with a precision of decimal places 

equal to 3. It has a large number of methods that permit access, modification, and different 

types of table management. Among these, the most prominent are: 

float [] getColumn (int column) – returns a copy of the column as a float 

array with the values in the column with index passed as a parameter, or null if the column is 

empty;  

int getColumnIndex (java.lang.String heading) – returns the index of 

the first column with the name passed as a parameter; 

java.lang.String getStringValue (int column, int row) – returns 

the String value of the column and row with indices passed as parameter, where these indices 

cannot be less than zero or greater than the number of columns and rows, respectively; 

java.lang.String getStringValue (java.lang.String column, 

int row) - returns the String value of the column with name passed as a parameter and the 
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line with index passed as a parameter, where this index cannot be less than zero or greater than 

the number of lines; 

void setValue (int column, int row, double value) – puts the 

value passed as parameter in the column and row with indices passes as parameter, where the 

index values must be greater than zero and less than or equal to the number of columns and 

rows, respectively; 

void setValue (java.lang.String column, int row, double 

value) – puts the value passed as a parameter in the column with the given name and row 

with the given index, where the index value must be greater than zero and less than or equal to 

the number of lines; 

void setPrecision (int decimalPlaces) – select the number of decimal 

places, passed as parameter, of the values presented in ResultsTable; 

void show (java.lang.String windowTitle) – shows ResultsTable 

contents in a window with title specified by the passed parameter, or update an existing results 

window; 

void showRowNumbers (boolean showNumbers) – if the parameter is true, 

the line numbers are displayed;    

void reset () – deletes the entire contents of the ResultsTable. 

ImageStack – This class represents the expandable array of images that ImageJ provides to store 

as images stacks multiple images of the same size. For this very reason and beyond the default 

constructor – ImageStack () – to create a new empty stack is necessary to pass as 

constructor parameters the width and height values of the stack – ImageStack (int 

width, int height). In addition, it is possible a priori to set the number of possible 

images to store in a new stack – ImageStack (int width, int height, int 

size). Besides the constructors presented, the class ImageStack also has methods to create 

new stacks: 

ImageStack createEmptyStack () – returns an empty stack image with the same 

resolution and color table of the opened image; 

void setStack (java.lang.String title, ImageStack stack) – 

sets a newly created ImageStack as a stack of an ImagePlus. 

To add and remove images from a stack the following methods should be selected: 
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void addSlice (java.lang.String sliceLabel, ImageProcessor 

ip) – add an image represented by the class ImageProcessor to the end of the stack; 

void addSlice (java.lang.String sliceLabel, ImageProcessor 

ip, int n) – add an image represented by the class ImageProcessor to the stack following 

slice n; 

void deleteLastSlice () – eliminate the last slice of the stack; 

void deleteSlice (int n) – eliminate a specific slice, where n ranges from 1 to the 

number of slices in the stack. 

IJ – This is a class that contains many very useful utility static methods. Requiring no 

constructor, just being imported from ImageJ API, this class allows almost everything to be done, 

from the invocation of menu commands, macros and plugins, through its methods. To access all 

menu commands there are two possible methods: 

static void doCommand (java.lang.String command) – executes a 

menu command, and proceed immediately without waiting for the command to be executed; 

static void run (java.lang.String command) – executes a command 

and continues as soon as the command has finished; 

static void run (java.lang.String command, java.lang.String 

options) – executes a command, passing additional options as a parameter; 

static void run (ImagePlus imp, java.lang.String command, 

java.lang.String options) – executes a command on an image by passing 

additional options as parameter. 

Among all these methods, it is the latter that has significant advantages. Although, it does not 

have the advantage of not blocking while the query is executed as with the doCommand method, 

it has the advantage of running the command on a specific image. The fact that the image is 

represented by ImagePlus class does not imply it to be opened, making the method lightweight at 

visual and memory level. Moreover, this way opens up the possibility of implementing plugins 

that it is not necessary that images are visually available, as we shall see later on. 

3.3.3. Types of Plugins 

The plugin coding for ImageJ comprises implementing classes, e.g., for each plugin a new class 

is created. This only implies that each plugin is implemented by a single class, not excluding the 

fact that this class has other classes implemented in its own or imported. The use of classes of 
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the ImageJ API is achieved through their imports according as they are organized into packages. 

Thus, any ImageJ plugin code starts with the proper imports of the classes from ImageJ API or 

Java libraries which it uses. More details about Java libraries and their imports are available at 

http://docs.oracle.com/javase/7/docs/api/. Among the most common classes in ImageJ 

plugins, the imports that usually appear are: 

import ij.*; 

import ij.gui.*; 

import ij.io.*; 

import ij.measure.*; 

import.ij.plugin.*; 

import.ij.process.*; 

import java.io.*; 

import java.util.*; 

The asterisk (*) at the end of each import is substituted by the name of the class that the 

programmer wants to use, or else, all the classes contained in the respective package will be 

accessible. For example, any image to process must inevitably be represented by ImagePlus and 

ImageProcessor classes. For this, the necessary imports would be as follows: 

import.ij.ImagePlus; 

import.ij.process.ImageProcessor; 

A final mandatory import must be performed concerning the type of plugin required. Basically 

there are two types of plugins: without images as input, implemented by the interface PlugIn; and 

with images as input, implemented by the interface PlugInFilter. After deciding the type of plugin 

to encode, one or other of the following imports must be made: 

import ij.plugin.PlugIn; 

import ij.plugin.filter.PlugInFilter; 

These two interfaces apply a considerable number of classes. As stated in the API documentation 

to developers, plugins for receiving images or Windows displaying should be implemented by the 

interface PlugIn, while plugins that process images should be implemented by the interface 

PluginInFilter. Nevertheless, classes implemented by these two interfaces are not exclusive, being 

the developer free to use a class from one or another interface regarding the type of plugin. 

Images must be represented by the ImagePlus or ImageProcessor class for plugins 

implementation. 
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The interface PlugIn comprises only one method - void run (java.lang.String 

arg). This method is invoked when the plugin is started. “arg” is the argument specified for 

this plugin in the file IJ_Props.txt. This configuration file is available at 

http://imagej.nih.gov/ij/developer/. The interface PlugInFilter also has a run () method, but 

however it is passed as a parameter an instance of the class ImageProcessor, referring to the 

image that will be processed by the plugin - void run (ImageProcessor ip). The 

processor can directly be modified, or a new image or processor could be based on its data, 

leaving intact the original image. Unlike the run () method of the PlugIn interface, it has no 

String argument, which may be passed in the method int setup 

(java.lang.String arg, ImagePlus imp). This method runs once the plugin 

is started or when the filter is loaded. “arg”, which may be blank, is the argument specified for 

this plugin in IJ_Props.txt or in the plugins.config file of a jar archive containing the plugin. “imp” 

is the currently active image. This method should return a flag word that specifies the filters 

capabilities. For Plugin-filters specifying the FINAL_PROCESSING flag, the setup method will be 

called again, this time with arg = "final" after all other processing is done. 

This method sets up the plugin filter for use. The String arg has the same function as in the run 

method of the PlugIn interface. The programmer does not have to care for the argument imp—

this is handled by ImageJ and the currently active image is passed. The setup method returns a 

flag word that represents the filters capabilities (e.g. which types of images it can handle). In the 

method’s code, the image argument is stored in the instance variable, and the capability flag of 

the filter plugin is returned. The following capability flags are defined in PlugInFilter: 

static int CONVERT_TO_FLOAT – set this flag to have the ImageProcessor that is 

passed to the run() method converted to a FloatProcessor; 

static int DOES_16 – Set this flag if the filter handles 16-bit images; 

static int DOES_32 – Set this flag if the filter handles float images; 

static int DOES_8C – Set this flag if the filter handles 8-bit indexed color images; 

static int DOES_8G – Set this flag if the filter handles 8-bit grayscale images; 

static int DOES_ALL – Set this flag if the filter handles all types of images; 

static int DOES_RGB – Set this flag if the filter handles RGB images; 

static int DOES_STACKS – Set this flag if the filter wants its run() method to be 

called for all the slices in a stack; 

http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#CONVERT_TO_FLOAT
http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#DOES_16
http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#DOES_32
http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#DOES_8C
http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#DOES_8G
http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#DOES_ALL
http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#DOES_RGB
http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#DOES_STACKS
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static int DONE – Set this flag if the filter does not want its run method called; 

static int FINAL_PROCESSING – Set this flag if the setup method of the filter 

should be called again after the calls to the run (ip) have finished; 

static int KEEP_THRESHOLD – Set this flag to keep the invisible binary threshold 

from being reset; 

static int NO_CHANGES – Set this flag if the filter makes no changes to the pixel data 

and does not require undo; 

static int NO_IMAGE_REQUIRED – Set this flag if the filter does not require that an 

image be open; 

static int NO_UNDO – Set this flag if the filter does not require undo; 

static int PARALLELIZE_IMAGES – Set this flag if images may be processed in 

parallel threads; 

static int PARALLELIZE_STACKS – Set this flag if the slices of a stack may be 

processed in parallel threads ; 

static int ROI_REQUIRED – Set this flag if the filter requires an ROI; 

static int SNAPSHOT – Set this flag if the filter requires a snapshot (copy of the pixels 

array); 

static int STACK_REQUIRED – Set this flag if the filter requires a stack; 

static int SUPPORTS_MASKING – Set this flag if the filter wants ImageJ, for non-

rectangular ROIs, to restore that part of the image that's inside the bounding rectangle but 

outside of the ROI. 

3.3.4. Coding new plugins 

Presented the two types of plugins it remains to describe the implementation of each one in Java 

code.  

The first code is for a plugin that implements the interface PlugInFilter and calculates the number 

of pixels in a ROI selection of an image showing the result in a message window. For that, a 

mask is created through the method getMask () for irregular ROI's. The count of pixels with 

value equal to 255 is made through the mask histogram. The result is returned in a window 

through the command IJ.showMessage (java.lang.String msg). The filter of 

http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#DONE
http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#FINAL_PROCESSING
http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#KEEP_THRESHOLD
http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#NO_CHANGES
http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#NO_IMAGE_REQUIRED
http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#NO_UNDO
http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#PARALLELIZE_IMAGES
http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#PARALLELIZE_STACKS
http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#ROI_REQUIRED
http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#SNAPSHOT
http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#STACK_REQUIRED
http://imagej.nih.gov/ij/developer/api/ij/plugin/filter/PlugInFilter.html#SUPPORTS_MASKING
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this plugin accepts all kinds of images and requires the presence of ROI selections, so the 

DOES_ALL and ROI_REQUIRED flags are selected in the setup method. 

import ij.IJ;  

import ij.ImagePlus; 

import ij.plugin.filter.PlugInFilter; 

import ij.process.ImageProcessor; 

public class Mask_area implements PlugInFilter { 

 public int setup(String arg, ImagePlus imp) { 

  return DOES_ALL+ROI_REQUIRED;  

 } 

 public void run(ImageProcessor ip) { 

  ImageProcessor mask = ip.getMask();  

  int area = mask.getHistogram()[255];  

  IJ.showMessage(String.valueOf(area) + "\n");  

 } 

} 

The second Java code is for a plugin that implements the interface PlugIn and counts the 

number of pixels of an image. An ImagePlus instance is created through the path of the directory 

of the image. Then, the number of pixels of the image is returned by combining the methods 

getProcessor (), from ImagePlus class, and getPixelCount () from 

ImageProcessor class. The final value is displayed in a window. 

import ij.IJ;  

import ij.ImagePlus; 

import ij.plugin.PlugIn; 

public class Image_area implements PlugIn { 

 public void run(String arg) { 

  String path = "C:\\pathExample\\roi.tif"; 

  ImagePlus image = new ImagePlus(path);  

  int area = image.getProcessor().getPixelCount();

   IJ.showMessage(String.valueOf(area) + "\n");  

 } 

} 

Despite the similar operations performed by the two codes, only in the first one is necessary that 

an image is opened. The operation performed can be accomplished by loading a previously 
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stored ROI. However, becomes more pleasant to perform interactively and directly onto an open 

image, allowing the user to manually make a selection. In the second code, the user only needs 

to indicate the directory and name of the image to be analyzed or to select the folder images 

through a dialog box. These reasons lead to the choice between types of plugins presented here, 

which will make the plugin more efficient both in terms of programming and user-program 

interface level. 
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4. Methodology and algorithms 

Building a plugin for ImageJ to collect and process microscopic images of Saccharomyces 

cerevisiae cultures is not a trivial process by itself. Based on this, methodologies have been 

developed to improve the efficiency of the algorithm included in the plugin as well as the user-

program interface. This chapter presents all steps taken to develop a final version of the plugin 

called ScerevisiCounter.  

Since ImageJ core program consists of plugins implemented in the informatics language Java, 

the Eclipse IDE SDK, version 4.2.1, build id M20120914-1800, was used for the development of 

ScerevisiCounter. Furthermore, it was necessary to setting up Eclipse to create and debug 

plugins for ImageJ. For this, it was created a Java Project named IJ with default output folder set 

to IJ / bin. Finally, it was copied to the source folder a ij folder and subfolders withdrawal from 

the official webpage of ImageJ (http://rsb.info.nih.gov/ij/download/src/). The extracted version 

of ImageJ source code was the 1.48f. All experiments were performed on a PC with 2.13 GHz 

Intel(R) Core(TM) i3 CPU, 4GB RAM, running Windows 7 Home Premium (SP1), 

4.1. ScerevisiCounter´s Main Pipeline 

The plugin ScerevisiCounter consists of a set of processes from choosing the directory of the 

image or images to be processed and to display the final result. To determine which processes 

would be part of the plugin code, a series of plugins were created in order to test and try the full 

potential offered by the ImageJ API. In the next sections, the implementation of the plugin as well 

as the proposed solutions and features for some drawbacks are presented.  

4.1.1. Opening images 

As previously discussed, there are two main types of plugins: requiring images as input (opened 

images) implemented by the interface PlugIn, and requiring images as input, implemented by the 

interface PluginFilter. One of the first issues that emerged was what kind of actions the user 

would need to take to indicate the image he wants to analyze. The possibility of the plugin 

simultaneously process more than one image at time arises, being a more attractive option from 

user´s point of view. 
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In the case of ScerevisiCounter implemented by the interface PluginFilter, the user needs to open 

previously the images to analyze, through one of the possible commands existing in the File 

menu of the program interface. So, right from the start this solution was not attractive, remaining 

the hypothesis implemented by the interface PlugIn. 

The ImageJ´s API contains an IJ class which has implemented some very useful static methods 

(Chapter 3.3.2). One of them, IJ.open (), opens a dialog box that allows the user to select and 

open an image. From here, the image would easily associated to the class ImagePlus through the 

method getCurrentImage () from the WindowManager class. The open () method is the simplest 

existing for these purposes, and cannot open more than one image, unless the plugin has a prior 

information on the number of images that the user wants to open. Another possibility of this 

command is to pass as parameter a String denominating the directory and image name. 

Similarly, the ImagePlus class has a constructor that creates an instance of this class passing as 

parameter the path of image location. None of these hypotheses solve by itself the question of 

access to multiple images, unless the number of images to open is known in advance.  

Via a dialog box of the class DirectoryChooser or by calling the method IJ.getDirectory (String 

title), enables the user to select a folder containing the image or images to be analyzed. A String 

with the path of the folder could be passed as parameter in the constructor of the class File 

(java.io.File) creating an instance of File and converting the String path in an abstract path. 

Through the method list (), an array of Strings naming the files and directories in the directory 

denoted by the abstract path name is returned. From here, the number of images in the directory 

would be easily obtained and through a cycle would be generated instances of the class 

ImagePlus with the directory and image titles saving as parameters for the constructors. 

4.1.2. Methodologies configuration 

The counting and classification of S. cerevisiae cells were the main objectives for the 

development of this plugin. ImageJ Analyze Particles is a key command, where the command is 

implemented in ImageJ´s API by the class ParticleAnalyzer, and giving quantities of particles in 

black and white images. It counts and measure particles in thresholded or binarized images, and 

one of these two methods, Threshold and Binaryze, or even both, would also have to be present 

in the ScerevisiCounter code. 

The chosen command for images binarization was the AutoThreshold, which automatically uses 

the default method to set the threshold levels based on the analysis of the image histogram. This 
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selection appeared to be the most reasonable since the threshold level greatly varies from image 

to image. The threshold method, from ImageProcessor class, was used passing as a parameter 

the integer resulting from the method getAutoThreshold, from the same class.  

The effect caused by this command can be seen in Figure 4.1. Figure 4.1a shows an 8-bit image 

of two yeast cells submitted to an auto threshold resulting in a binary image (Figure 4.1b), where 

the clearer edges of the original image are in black. After binarization, the resulting image was 

subjected to a particles analysis. This analysis resulted in a mask (Figure 4.1c) where the interior 

of the particles of the original image (Figure 4.1b) were filled with black being the rest 

represented with white. Another option can be an image where the particles of the binary image 

are numbered (Figure 4.1d). According to the desired results, as can be seen with more detail in 

the following chapter, the Analyze Particles command should include the options exclude edge 

particles, show masks and show outlines. The ParticleAnalyzer minimum and maximum area 

limits of the detected particles were 50 and 6000 pixels, respectively. The measurements 

selected to appear in the final results were area, ellipse, circularity, perimeter and centroid of the 

 

                           

         

Figure 4.1. Particle analysis of a microscopic picture of yeast cells. Figure 4.1a is an 8-bit picture of two yeast cells. 

The image in Figure 4.1b is the result from auto thresholding the image from Figure 4.1a.Figures 4.1c and 4.1d are 

the mask and outlines resulting from the particle analysis of the image from Figure 4.1b, respectively. 
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particles. 

Despite the minimum and maximum particle size is given in pixels, it was desirable that the final 

results were given in actual sizes. Given the small sizes of S. cerevisiae cells, micrometer (µm) 

was the unit selected for the particles measurement. In this case it was necessary to calibrate the 

images so that the width of one pixel (or height since it were square pixels) corresponded to 

0.160 µm. In case of areas 1 pixel corresponds to 0.160 x 0.160 µm2. 

Given the possibility to process more than one image simultaneously, one of the potential desired 

final results would be to display the outlines of the detected particles superimposed on the 

original images processed by the plugin. To avoid the large number of windows opened by the 

plugin in end of each analyzed image, an instance of the class ImageStack was created to 

accommodate all the images. The height and width were passed as parameters in the class 

constructor to accommodate at least the major analyzed image. From then on, all images would 

be included in the stack without generating a compilation error. 

This set of commands form the basis of ScerevisiCounter Main Pipeline. All other commands or 

methods that could be added to the code were subjected, as described in the following chapters, 

to a more detailed study in order improve the plugin performance. In a simplified view, and given 

the pipeline presented until this point of this report, the plugin has a general algorithm with the 

following structure: 

Stack – ImageStack class instance  

Path – images folder String directory 

List – array of titles 

FOR (each Title in List) 

 Image := instance of the class ImagePlus (Path, Title) 

 AutoThreshold (Image) 

 ParticleAnalyzer (Image)  

 Calibrate (Image) 

  Add Image to Stack  

Return Stack 

4.1.3. Type of results 

ScerevisiCounter proposes to count and classify S. cerevisiae cells in microscopy images. It was 

previously stated that the counting task is easily achieved by the Analyze Particles command 
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already implemented in ImageJ software. However, based on cells morphology four types were 

defined: small, normal, large and bud cells. 

The first three are easily classified by the size of their areas. For this, twenty microscopic images 

of yeast cells were analyzed and the data for the area, centroid, ellipse and circularity were 

collected. Each group of data for each cell was associated with a manual classification of bud cell 

or non-bud cell. The values for the areas of small, normal and large cells were determined based 

on the areas of the non-bud cells. Given the sample size, it was adopted an equal distribution of 

sizes, where the value of the first tercile corresponds to the limit between small and normal cells, 

and the limit value between normal and large cells, determined in a similar way, corresponds to 

the second tercile of the areas data. The classification of bud cells was determined by the 

analysis of the area, ellipse, centroid and circularity values. 

The ImageJ´s Analyze Particles tool has the option to show a result table whose contents can be 

specified from a range of measurements already presented in Chapter 3.2. It would be 

interesting to include in this table the cells areas and respective classification. Being the Results 

Table displayed at the end, it would be interesting, as well, to present the title of the image which 

each respective cell belongs. The class of objects ResultsTable from ImageJ API has all the 

necessary methods to add a Group column and an Image column, with the classification 

assigned to each cell and it respective image title. To this table was assigned the name of 

"Results of" + folder name, where this folder is the folder with the analyzed images. 

The cells count results were presented as a table including the cell count per group of cells, a 

total number of cells per image, a total number of cells in each group for all images and a total of 

cells detected on all images. Again, the class ResultsTable served to manipulate the Summary 

Table coming from the Analyzer, to include any desired information relating to the cell count. To 

this table was assigned the name of "Summary of" + folder name. 

Finally, after the classification and measurement of each cell in each image, a correspondence 

between the values shown in Results Table and each cell present in each image was missing. For 

this, the numeric identifier at the beginning of each line of the Results Table, being independent 

of the analyzed images, could serve to solve this demand. For this purpose, it was necessary to 

overlap each cell in each image by the corresponding number given to the respective 

measurements in the Results Table. For this, the outlines from particle analysis were 

superimposed on each image from the final stack, preserving and maintaining the original 

images untouched and adding a corresponding number to each cell. 
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The process of delimiting the outlines of the cells in the final images is achieved by performing 

the following set of instructions, being this process called by Drawing Outlines: 

options = ParticleAnalyzer.EXCLUDE_EDGE_PARTICLES + 

ParticleAnalyzer.SHOW_OUTLINES;  

particleAnalyzer.analyze(image); 

ImagePlus outlines = particleAnalyzer.getOutputImage(); 

ImageProcessor outlinesProcessor = outlines.getProcessor(); 

outlinesProcessor.invertLut(); 

outlines.setProcessor(outlinesProcessor); 

IJ.run(outlines, "Blue", ""); 

outlinesProcessor = outlines.getProcessor(); 

outlinesProcessor.invertLut(); 

outlinesProcessor = outlinesProcessor.convertToRGB(); 

ImagePlus image = open.openImage(path, imageTitle); 

ImageProcessor ImageProcessor = 

image.getProcessor().convertToRGB(); 

image = new ImagePlus(imageTitle, ImageProcessor); 

 

 

Figure 4.2. Microscopic image (200 ms of exposure time) of a group of S. cerevisiae cells. One of the cells is cut by 

the edge of the picture and one of the visible spheres is not counted as a cell due to the reduced size, both of which 

are not accounted by ScerevisiCounter plugin.  
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ImageCalculator ic = new ImageCalculator(); 

ImagePlus final = ic.run("Add create", image, outlines); 

ImageStack.addSlice(imp3.getTitle(),imp3.getProcessor()); 

After the application of the Particle Analyzer to a specific image, the resulting outlines are 

instantiated as objects of the class ImagePlus and the class ImageProcessor, through the method 

getOutPutImage () of the class ParticleAnalyzer and the method getProcessor () from the class 

ImagePlus. The LUT of this image should be inverted so that the application of a blue LUT has an 

effect on the image background, remaining the particles edges in white. This image should be re-

inverted and converted to RGB so that the edges become at the color of the LUT (blue) while the 

background is converted to white. Finally, the resulting image is added to an instance of the 

original image, and finally added to the final stack of images. 

Figure 4.2 and 4.3 shows two original images where the ScerevisiCounter plugin was applied. 

The final processed images provided by the plugin are shown in Figures 4.4 and 4.5. In these 

Figures it is possible to observe the same cells from the original images numbered and delimited 

by a blue outline. The numerations are able to identify the corresponding measurements and 

classifications of each cell (Figure 4.6). It is also possible to create a detailed counting of the 

 

 

Figure 4.3. Microscopic image (200 ms of exposure time) of a group of S. cerevisiae cells. Two cells may be 

considered as buds due to the protuberance in its edge. 
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number of cells present in each image and the number of cells per group and these results are 

presented in Figure 4.7. Image1 and image2, are related to the original images from Figures 4.2 

and 4.3, respectively. 

The Main Pipeline for the ScerevisiCounter plugin is now shown combining the methods 

described in the previous chapters with the results described in this chapter. In the following 

chapters, methods and algorithms added to the plugin in order to make it effective counting and 

detecting all the cells in the images of yeast as well as detecting bud cells are discussed. 

4.2. Methodology optimization 

So far, it was introduced, explained and justified the Main Pipeline of the plugin ScerevisiCounter 

for the processing and analysis of S. cerevisiae images. As seen, the pipeline consists in a 

selection of images to be processed followed by a cycle in which is assigned a threshold level to 

each image and a particle analysis of the thresholded image. At the end, two tables are 

generated, one with the cell by cell measurements and classifications results and another with 

the summary results consisting in an accounting of cells per group and per image. Furthermore, 

any images that have been processed are presented with the outlines drawn on the detected 

 

 

Figure 4.4. Image 1 of 2 from the stack returned after processing the images of Figures 4.2 and 4.3 with the 

ScerevisiCounter plugin. This image refers to the image in Figure 4.2. It can be verified that all the cells were 

enumerated and properly marked by a blue outline, except the cell cropped by the edge of the image and near the 

lower left corner of the image. Small particles or debris were not processed. 
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cells, as well as an identification number per cell. 

However, this set of methodologies can be considered insufficient for a reliable quantification and 

qualification of S. cerevisiae cells. Figure 4.8 shows the effect of applying an automatic threshold, 

followed by an analysis of particles with sizes above 200 pixels and circularity between 0 and 1, 

and finally the application of the Drawing Outlines. Regarding Figure 4.8b, and despite the 

detection of all cells, a poor image analysis was performed. The main disadvantage of the 

present processing methodology is the incorrect distinction between touching cells and bud cells. 

Due to the unsuccessful classification of S. cerevisiae cells, in the present work the addition of 

pre-processing methods to obtain the maximum efficiency from the Main Pipeline was required. 

In the following sections, the experiments performed to determine which and how the 

combination of image processing methods whose result gives a more effective analysis by the 

Main Pipeline are presented. Although this work is very dependent on the tested images, thus 

requiring a large number of images, the experiments were carried out on the image of Figure 4.9. 

This image acquired with an exposure time of 178.1 ms, 400x of magnification and dark field 

contrast was a good example as it features a large number of cells, including bud cells, isolated 

cells, cells in group and high number of debris. It is also advanced that since the evolution of the 

 

 

Figure 4.5. Image 2 of 2 from the stack returned after processing the images of Figures 4.2 and 4.3 with the 

ScerevisiCounter plugin. This image refers to the image of Figure 4.3. All cells were properly enumerated and 

marked by a blue outline. The numbering was done synchronously with the numbering of the picture 1 of 2 of the 

final stack. 
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experiments depended on a general analysis of the results of the experiments already performed, 

it is possible to immediately state that the latest described experiments were those programmed 

in function of the previous experiments results on the image in Figure 4.9. The image of Figure 

4.10 shows the resulting mask from a manual analysis of the image of Figure 4.9. 

4.2.1. Processes 

The methods used for pre-processing images of S. cerevisiae cells are present in the ImageJ 

menu commands and are available in ImageJ API. Among all, the Subtract Background received 

special attention due to the wide range of options and features that allow a visual enhancement 

of the edges of the cells. The Unsharp Mask tool also allowed the cells edges brightening. The 

tools established for the pre-processing optimization of cell cultures images were performed as 

follows: 

 

 

Figure 4.6. Results Table of the analysis of two images of S. cerevisiae cells, image1 and image2. Each table row 

corresponds to the measurements of each cell present in the images. First column is the cell identifier. Second 

column is for the cells areas, in square micrometers. In column Group is the classification given by the plugin to 

each cell.   
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• Subtract Background; 

• Unsharp Mask; 

• Split Channels; 

• Enhance Contrast (saturated= 0.35); 

• Convert to 32 bit. 

Despite the small number of processes, it is important to notice that the Split Channels process 

(Split Blue, Split Red, Split Green) and considering that all are always tested simultaneously, 

there are 5040 possible combinations (factorial 7) of these methods. For this reason, the set of 

experiments was gradually programmed depending on the obtained results.  

Both Subtract Background and Unsharp Mask commands were implemented in the code using 

the method run (ImagePlus image, String commands, String options) from the class IJ 

implemented in ImageJ´s source code, previously installed in Eclipse. The instance image from 

the class ImagePlus passed as parameter was referred to Figure 4.9. The String commands 

passed as parameters were “Subtract Background…” and “Unsharp Mask…” intuitively for the 

commands Subtract Background and Unsharp Mask. In the first case, the String options included 

 

 

Figure 4.7. Summary Table of two images, image1 and image2, analyzed by the plugin ScerevisiCounter. For each 

image is discriminated the number of cells per group. The total number of cells per image and per group is also 

presented.  
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one of the following Strings “”, “ sliding”, “ disable” and “ sliding disable”, preceded by the 

String “rolling =” plus String rol, where rol defined the Subtract Background rolling ball radius. In 

the second case, the String options was defined by the set of Strings "radius =" plus radius plus 

"mask =" plus mask, where radius and mask were Strings defining the radius and weight of the 

Unsharp Mask tool mask, respectively. 

The command 32-bit from the submenu Type… from ImageJ menu Image, was implemented 

using the class Convert from IJ API, passing as parameter an instance of the class ImagePlus. 

After creating an instance of this class, the method convertToGray32 () allowed the conversion of 

the RGB image to a signed 32-bit grayscale image. 

The conversion of RGB images into 8-bit grayscales images containing the blue, green and red 

components of the original, was programmed by creating a method private ArrayList 

<ByteProcessor> splitChannels (ImagePlus image), with an ImagePlus instance as input 

parameter whose result was an array with the respective three byteprocessors. The method 

consisted in a cycle that run all the pixels of the RGB image and returned an array of bytes for 

 

   

Figure 4.8. Processing an image of S. cerevisiae cells by a pipeline constituted by an auto threshold; followed by an 

analysis of particles larger than 200 pixels and circularity between 0 and 1; finished by the Drawing Outlines process. 

Figure 4.8b is a result of the described processing on the image of Figure 4.8a. As can be seen, a poor detection of 

the cells took place mainly in cells with touching edges. 

 
a 

 

 
b 
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the corresponding values of red, green and blue. Subsequently, the bytePocessors were built 

from these arrays with width and height equal to the original image.  

Enhance Constrast was also implemented using the method run () of the class IJ. The String 

commands was "Enhance Contrast" and the String options was "saturated = 0.35", since the 

percentage of pixels allowed to became saturated was 0.35%.  

4.2.2. Image Process Optimization 

All experiments were programmed in Java code and carried out using the IDE Eclipse SDK, as if 

it were ImageJ´s plugins. The Main Pipeline was slightly modified so that the results would 

include an image Mask and a Results Table with the area of each detected particle. Coupled with 

the Results Table, it was also returned the percentage of the true area relative to the area, 

manually determined, of the mask of the Figure 4.10. This parameter was used for comparison 

with the total areas returned in each experiment. The percentage of True Area was calculated 

using the following equation: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒  

× 100 (4.1) 

 

 

Figure 4.9. Image used for the methodology optimization experiments. It is a microscopic image of a culture of S. 

cerevisiae cells. It was taken with exposure time of 178.1 ms, 400x of magnification and dark field contrast  
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The Positive Pixels were the number of pixels with value equal to 255 (black pixels) of the 

resulting masks from the experiments, where the corresponding pixel in the Manual Mask must 

had the same value (black pixel as well). The Manual Area is the number of pixels with value 

equal to 255 in the mask manual determined (Figure 4.10). 

Other data included the results were: 

• Negative Pixels – difference between the number of black pixels of the resulting mask 

and the positive pixels ; 

• Black Pixels – resulting mask pixels with value equal to 255; 

• White Pixels – resulting mask pixels with value equal to 0. 

Based on this methodology the user is able to determine the proportion of correct cells area 

(True Area), the detected area outside the borders of the area manually determined (Extra Area) 

and the percentage of resulting mask undetected area given by the Manual Area (Missing Area): 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

× 100 (4.2) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 −𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

× 100 (4.3) 

 

 

Figure 4.10. Manual determined mask of the image in Figure 4.9. Black pixels have value equal to 255 and white 

pixels have values equal 0. The black areas correspond to the cell true cell areas. 
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Thus, the Main Pipeline for the optimization methodologies was represented by the following 

algorithmic structure: 

ManualMask – instance of the class ImagePlus to represent 

the mask in Figure 4.10 

Path – String with the directory of the folder with the 

image in Figure 4.9 

Title – String with name of the image in Figure 4.9 

Image := instance of the class ImagePlus (Path, Title) 

Methods (Image) 

AutoThreshold (Image) 

ParticleAnalyzer (Image)  

Return Image Mask, Results Table 

The exclusive difference of this algorithm from each experiment was solely based on the step 

methods (image) (Table 4.1).This step divided the experiments into two different groups: Group 1 

and Group 2. These two groups were selected based on the different options used in the tools 

Subtract Background and Unsharp Mask.  

Thereby, in each experiment of the Group 1 it was tested a Subtract Background rolling ball 

radius with values included in a range between 1 to 30 pixels. When the Unsharp Mask tool was 

used, the radius and weight of the mask were 5 pixels and 0.90, respectively. The configuration 

of each experiment (test) of this group is detailed in Table 4.2. 

In Group 2, the Unsharp Mask tool had a radius with values between 1 and 20 pixels. For each 

value of radius tested, a range of mask weight between 0.1 and 0.9 was also tested. In the 6 

experiments of this group, the radius of the rolling ball of the Subtract Background tool was 1, 2, 

3, 10, 20 and 30 pixels, respectively. 

 

Table 4.1. Constitution of the experiments based on the groups.  

Method Group 1 Group 2 

1 Subtract Background Split Grenn 
2 Convert to 32 bit Subtract Background 
3 Enhance Contrast Unsharp Mask 1 
4 Split Grenn - 
5 Split Red - 
6 Split Blue - 
7 Unsharp Mask  - 
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All the experiments of the two groups were performed in quadruplicate in order to test all 

possible combinations of Sliding Paraboloid and Disable Smoothing options of the Subtract 

Background tool. Only particles with areas greater than 300 pixels were detected by the Particle 

Analyzer in all experiments. 

4.2.3. Refining methodologies 

Refinement methodologies have been added to the Main Pipeline of the plugin ScerevisiCounter. 

These methodologies were implemented after the study of cells that were not properly processed. 

Figure 4.11 shows two cases where the correct detection is particularly difficult. After most of the 

test process methodologies were applied, the auto threshold resulted in a cell having an open 

edge (Figure 4.11b) generating a non-detection by the Particle Analyzer, and in a cell with a 

Table 4.2. Configuration of Group 1 experiments.  

Order M_001 M_002 M_003 M_004 M_005 M_006 M_007 M_008 M_009 

1st 1 2 1 2 4 4 6 6 5 
2nd 2 1 3 1 2 2 2 2 2 
3rd   2 3 1 1 1 1 1 
4th      3  3  
5th          

 

 

Table 4.2. Configuration of Group 1 experiments (continuation). 

Order M_010 M_011 M_012 M_013 M_014 M_015 M_016 M_017 M_018 

1st 5 3 4 4 4 4 3 4 4 
2nd 2 4 3 1 1 3 4 7 7 
3rd 1 1 1 3 3 1 1 1 3 
4th 3    7 7 7 3 1 
5th        7 7 

 

 

Table 4.2. Configuration of Group 1 experiments (continuation).  

Order M_019 M_020 M_021 M_022 M_023 M_024 M_025 M_026 M_027 

1st 3 7 7 3 7 4 4 3 4 
2nd 4 4 4 7 3 7 7 4 1 
3rd 7 1 3 4 4 1 3 7 7 
4th 1 3 1 1 1 3 1 1  
5th 7         
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septum that should not exist (Figure 4.11e) as this bud cell will be considered by the Analyzer as 

two joined cells. 

One way to solve this, at least for the image used in the optimization experiments (Figure 4.9), 

was to found the experiments that these cells were correctly detected and then incorporate those 

experiments into the Main Pipeline. However, this approach did not ensure an increased 

efficiency for others cells in other pictures, since the edges defining the cell varies from cell to 

cell. The image used in these experiments does not represent a global sample for all examples of 

cells. Furthermore, the inclusion of so many methodologies on the Main Pipeline would 

substantially increase the runtime of the plugin. 

Another possible solution would be to find the optimal threshold level that would return the 

desired edges for each cell. However this approach has proved to be rather trivial since the 

threshold values greatly vary depending on the image, the cell, and the processing method 

applied. 

Based on this hypothesis, a method that would apply at any point of the set of processing 

methods, a limited number of thresholds with different levels was created. Subsequently, the 

Particle Analyzer would be applied to each one of the resulting image of these limited number of 

thresholds and each Analyzer resulting mask superimposed in a final mask, using for that a 

 

                 

 

Figure 4.11. Effect of the method thresholdRange on two images of cells. Figures 4.11a and 4.11d are the ROI of 

the original image. Figures 4.11b and 4.11e are the resulting masks from the application of the Main Pipeline of the 

plugin ScerevisiCounter on the images of Figures 4.11a and 4.11d, respectively. Figures 4.11c and 4.11f are the 

resulting masks from the application of the Main Pipeline of the plugin ScerevisiCounter with the method 

thresholdRange included in it configuration. 

 a b c 
d e f 
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method designed for this purpose with the class ImageCalculator. This method, private 

ImagePlus thresholdRange (ImageProcessor imageProcessor, 

int tresAmplitude, int autoTres, int tresStep, String 

imageTitle) has as input parameters, the integer value used to auto threshold the image 

(autoTres), the integer value (tresStep) defining the increment to the threshold level after each 

iteration of the loop with limits defined by the integer tresAmplitude. This cycle began with a 

threshold value equal to the difference between autoTres and tresAmplitude and ended when the 

threshold value was equal, and not greater, than the sum of the previous two variables, and in 

this way, the tresAmplitude and tresStep defined number of iterations of each cycle. If the 

difference or the sum of autoTres with tresAmplitude was less than 20 or greater than 250, the 

cycle limits would set to 20 and 250, respectively.  

4.3. Debugging 

The program test phase demonstrated the existence of peculiar situations. All occurrences were 

verified and revised, and all solutions are presented in this section.  

The first action that the plugin ScerevisiCounter has after the user select it in the ImageJ Plugins 

menu command is the selection of the folder that contains the image or images to be analyzed. 

For this, a dialog box for folders and files browsing is opened. However, if the option to "Cancel" 

instead of "Select" is choose, a java.lang.NullPointerException at java.io.File <init> (File.java: 

251) is executed. The String path created by the method getDirectory inherent to the instance of 

the class DirectoryChooser of ij.io API, is null with the cancellation of the operation, and the 

instantiation of the class File throws a NullPointerException because the String pathname is null. 

The solution for this problem was to test the condition of the String pathname to null before the 

instantiation of the class File, and return if it is true, stopping the plugin without any exception is 

thrown. 

Once the directory of the folder with the images is selected and the pathname assigned to the 

String path, a list with the names of all files within that folder is created. To make the program 

without attaching all types of files to this list, it was necessary to verify if the files have extension 

TIFF, PNG, JPEG or RAW before adding their names to the list of Strings. Moreover, if it were 

returned a null list, a dialog box with the following message is shown: “there are no images with 

TIFF, PNG, RAW or JPEG extensions”. 
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It was also essential to verify the process before the splitChannels method was called. In this 

case, for the method not return one java.lang.ClassCastException, it was necessary to verify if the 

analyzed image was RGB color. Otherwise an error message is returned with the following 

message: “RGB image required”. 

Depending on the ImageJ version installed on the computer, by default, the "Dark background" 

option of the Threshold command can or cannot be selected. In the present case, a method was 

created to invert the image LUT depending on the ImageJ version, in order to the rest of the 

implemented code be compatible with the Threshold result. 

Finally, due to the large number of images that the plugin can process, a statement showing that 

the plugin is actually working was introduced. This statement was implemented as a Progress 

Bar that appears in the ImageJ main window. 
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5. Results and discussion 

The optimizing experiments (Group 1 and Group 2) of the set of all methodologies presented in 

the plugin code was performed using only one image (N-Hefe_400x_dark Field_1 – Image 1) 

(Figure 4.9). Subsequently, the next set of images (Table 5.1 image 2 to 7) was also tested using 

the methodologies of the experiments of Group 2. Due to differences in the exposure time 

(between 300 and 1200 ms) during images acquisition, the final results were quite different. 

However, it was found that the processing methodologies were better applied to images with 

400x total magnification and dark field contrast.  

In the following sections all results leading to the development of the final version of the plugin 

ScerevisiCounter Main Pipeline are presented and discussed. First, the results of the optimization 

experiments for processing methodologies are shown. Next, the boundaries determination results 

and the classification of small, normal, large cells are discussed. The classification of cells along 

the classification of bud cells is also explained. After comparing manual and automatic counting 

and classification results, the final version of the plugin ScerevisiCounter is presented, with a 

more detailed explanation of the parameters and steps involved in the image processing and 

analyzing methods assembled to the plugin code. 

The final version of the plugin ScerevisiCounter was achieved after analyzing and processing 

multiple microscopic images of the yeast S. cerevisiae. Table 5.1 shows all the images used to 

test the final version of the plugin. 

5.1. Methodology optimization results 

The optimization of the methods present in the processing methodology included in the 

ScerevisiCounter code was divided into two groups of experiments (Group 1 and Group 2). The 

nomenclature used to identify each group of experiments was performed according to Table 4.2 

for the experiments of Group 1. The configuration of all experiments was repeated four times, 

once for each combination of Sliding Paraboloid and Disable Smoothing options of the Subtract 

Background tool. To solve the naming problem, an identifier of each option was added to the 

experience title, in the form of an underscore (_) followed by the numeric identifier: 

1 – No options; 

2 – Sliding Paraboloid option; 
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3 – Disable Smoothing option;  

4 – Sliding Paraboloid plus Disable Smoothing options. 

It should be noticed that all experiments results were comparable, despite the difference between 

the configurations and options defined. For the same image, each methodology present in each 

experiment generated the same result. 

5.1.1. Group 1 experiments – Subtract Background study 

In Group 1, it was proposed to study the effect of varying the size of the rolling ball radius of the 

Subtract Background tool in different combinations of methods (Table 4.2). Table 5.2 shows the 

results of this set of experiments for the four possible combinations of Sliding Paraboloid and 

Disable Smoothing of the Subtract Background method. Using 30 values of rolling ball radius 

tested, the maximum area as well as its correspondent rolling ball radius were found. The area 

values presented in Table 5.2 are related to the True Area whenever was close to 100 %. The last 

column contains the area values obtained in each experiment without the Subtract Background 

method. The area vs rolling ball radius from Group 1 experiments can be found in Appendix A 

(Figure A.1 – A.27).   

In some cases, the resulting area values corresponded to True Areas far below 100, showing a 

large amount of pixels outside the manually defined area (see mask of Figure 4.10). For that 

reason, some caution is recommended for the analysis of the Figures presented in Appendix A 

and the areas presented in Table 5.2, since they are the maximum references in these 

experiences. For instance, in experience M_007_2, the maximum obtained area was equal to 

840 pixels. However, as may be conferred by the mask in Figure 5.1, the experience M_007_2 

Table 5.1. S. cerevisiae images title and receiving date.  

Image Number Date received  Image Number Date received 

N-Hefe_400x_dark-field_1 1 21-March   N Hefe 200ms 11 21-July 
P hefe 800ms DF 400 2 20-May  N Hefe 250ms 12 21-July 

P hefe 1200ms DF 400 3 20-May   Bild_227 13 21-August 
N_Yeast 400x DF 300ms 4 16-June  Bild_229 14 21-August 
N_Yeast 400x DF 500ms 5 16-June  Bild_281 15 21-August 
N_Yeast 400x DF 700ms 6 16-June  Bild_289 16 21-August 
N_Yeast 400x DF 1000ms 7 16-June   1B  1_100 17 27-August 

N Hefe 100ms 8 21-July  1CV1 1_10 18 27-August 
N Hefe 150ms 9 21-July  1N  1_100 19 27-August 

N Hefe 200ms 2 10 21-July  1P  1_100 10 27-August 
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with Subtract Background rolling ball radius equal to 12 pixels, resulted in a mask with 235555 

Black Pixels, being this area mostly outside to the manually determined red borders (borders of 

the mask in Figure 4.10). The mask in Figure 5.1 resulted from a set of methodologies 

configured in the following way: the blue channel image was converted to 32-bit, and the Subtract 

Background method was set with a rolling ball radius of 12 pixels with an active Disable 

Smoothing option. Then, the auto threshold was applied, and, as previously stated in Chapter 3, 

the threshold level chosen by the AutoThreshold is based on the distribution histogram of the 

pixel values for a 8, 16 or 32-bit grayscale image. The reason for the low True Area value was 

related to the automatic threshold applied after the processing methodology. Usually, for this 

image, the percentile of thresholded pixels without Unsharp Mask is higher than 90 %. In this 

 

Table 5.2. Group 1 experiments maximum results (/pixels). 

Test Area_1 
Rolling 

Ball 
Radius_1 

Area _2 
Rolling 

Ball 
Radius_2 

Area _3 
Rolling 

Ball 
Radius_3 

Area _4 
Rolling 

Ball 
Radius_4 

Area 

M_001 36751 3 35834 3 37136 6 35332 2 23676 
M_002 36985 6 34925 5 39138 3 35405 1 23676 
M_003 37497 4 35932 2 35932 5 35196 2 21152 
M_004 36985 6 34925 5 39138 3 35405 1 23676 
M_005 39822 7 38415 10 39059 6 38097 4 35604 
M_006 39822 7 38415 10 39059 6 38097 4 35604 
M_007 31046 11 840 29 34744 5 32310 1 0 
M_008 31046 11 840 29 34744 5 32310 1 0 
M_009 30364 16 30463 10 31488 6 28790 9 9521 
M_010 30364 16 30463 10 31488 6 29578 12 9521 
M_011 39305 1 38981 1 39217 4 37645 2 29530 
M_012 39671 2 38748 3 38649 8 38260 4 35604 
M_013 39671 2 38748 3 38568 9 38260 4 35604 
M_014 42413 3 42433 2 41662 5 41134 1 38586 
M_015 42413 3 42433 2 41662 5 41134 1 38586 
M_016 41951 3 41145 1 40917 5 39636 1 37911 
M_017 41494 3 40716 1 40881 3 40679 1 40648 
M_018 41494 3 40716 1 40881 3 40679 1 40648 
M_019 39131 6 38697 1 2172 2 0 Na 45884 
M_020 41171 10 40575 2 41144 6 41188 3 38586 
M_021 41171 10 40575 2 41144 6 41188 3 38586 
M_022 38952 10 37869 1 38550 6 38990 3 37911 
M_023 41171 10 40575 2 41144 6 41188 3 38586 
M_024 41171 10 40575 2 41144 6 41188 3 38586 
M_025 41171 10 40575 2 41144 6 41188 3 38586 
M_026 38952 10 37869 1 38550 6 38990 3 37911 
M_027 42413 3 42433 2 41662 5 41134 1 38586 
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case, the AutoTheshold defined a threshold level where less than 90 % of the pixels were 

thresholded. 

Analyzing the results shown in Table 5.2 is concluded that it is necessary to include in the image 

pre-processing a linearization of the background. In all experiments, except in rare situations, 

where a substantial reduction of the detected area was verified, the introduction of the Subtract 

Background in the Main Pipeline causes an increase in the maximum area. In experience 

M_019, the area shown is acceptably higher than the maximum areas obtained in the same 

experiments with background subtraction. However, this area has a low True Area (84%), as 

demonstrated by the resulting mask (Figure 5.2), thus making invalid the comparison with the 

other results from the same experiment.  

Analyzing the results of the experiments with background subtraction included in the pipeline 

(Table 5.2 and Figures A.1 – A.27), it is possible to verify the occurrence of 247 results with True 

Areas with percentage lower than 95% and results with undetected area (Table 5.3). Taking into 

account that the True Area value is strongly dependent on the total detected area, e.g., this value 

 

 

Figure 5.1. Experiment M_007_2 resulting mask. The Subtract Background rolling ball radius was equal 12 pixels. 

The red borders are for the area manually determined. 
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is very sensitive to oscillations of the total detected area value, a visual analysis of all the 

obtained results was taken, in order to find situations of significant pixels areas outside the 

manually defined edges. In this way, it was stated that a True Area value below 95 percent is an 

optimal indicator for to identify the cases of false considerably large areas. 

Of the 247 cases presented in Table 5.3, the experiments M_005 to M_008 with active Sliding 

Paraboloid option and the experiments M_019_1 to M_019_3 were the only cases where the 

below 95 % True Areas not resulted from experiments with rolling ball starting from 1 pixel to the 

value given in the respective cell in same table. In these cases, only one of the intermediate 

radius values, of the tested range of values starting at 1 pixel, did not resulted in a True Area with 

percentage less than 95 %. Supported in these observations, it can be said that regardless of the 

used methodologies, a greater Subtract Background rolling ball radius will result in a higher 

incidence of correct results, e.g., there will be more certainty in obtaining correct results when 

using greater rolling ball radius values. 

However, the analysis of the graphs in Figures A.1 – A.27 shows a slight reduction in detected 

 

 

Figure 5.2. Experiment M_019, without background subtraction, resulting mask. The red borders are for the 

manually determined area. 
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area with the increase of radius. In experiments M_001, M_002, M_003, M_004, M_005, 

M_006, M_014, M_015, M_016, M_026 and M_027, low radius values generated larger area 

values. In experiments M_007, M_008, M_009 and M_010 the maximum values of detected 

area were verified in tests with intermediate radius values. Above and below these values, a 

gradual decrease in results values was verified. In these cases, the red and blue channels were 

processed, indicating that the intermediate values of radius were ideal for detecting the correct 

maximum area. In experiments M_011 and M_025, the radius variation did not cause significant 

fluctuations in the detected area, only noticing occasional cases of lower area for lower radius 

and some descended steps of area as the radius increases. 

Some experiments, despite the difference in methodologies configuration presented equal results 

for the same rolling ball radius and Sliding Paraboloid and Disable Smoothing options of the 

 

Table 5.3. Number of True Areas with percentage below 95% of detected area. 

Test _1 _2 _3 _4 

M_001 0 0 0 0 
M_002 5 4 0 0 
M_003 0 0 0 0 
M_004 5 4 0 0 
M_005 5 6 0 0 
M_006 5 6 0 0 
M_007 10 26 0 0 
M_008 10 26 0 0 
M_009 3 5 0 0 
M_010 3 5 0 0 
M_011 0 0 0 0 
M_012 0 0 0 0 
M_013 0 0 0 0 
M_014 0 0 0 0 
M_015 0 0 0 0 
M_016 0 0 0 0 
M_017 0 0 1 0 
M_018 0 0 1 0 
M_019 20 29 29 30 
M_020 0 0 1 0 
M_021 0 0 1 0 
M_022 1 0 1 0 
M_023 0 0 1 0 
M_024 0 0 1 0 
M_025 0 0 1 0 
M_026 1 0 1 0 
M_027 0 0 0 0 
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Subtract Background method. The methods set in experiment M_004 is the same in experiment 

M_002 with the exception that the later one has the Enhance Contrast (0.35%) tool included in 

its methodologies pipeline. The same is applied to the experiments M_005 and M_006; M_007 

and M_008; M_009 and M_010; M_012 and M_013; M_014, M_015 and M_027; M_017 and 

M_018; M_020 and M_021; M_023, M_024 and M_025. However, the results of these 

experiments are the same demonstrating that the contrast enhancement does not modify the 

final results. Despite this, experiments with equal methodology configurations, but with different 

Enhance Contrast positions had different final results. This was verified in experiments M_001 

and M_003; M_011, M_012 and M_013; M_015 and M_016; M_017, M_018 and M_019; 

M_022 and M_023; M_024, M_025 and M_026, where the Enhance Contrast tool was situated 

in the first position of one of these experiment configurations. This showed that somehow this 

method changes the pixels values when being the first applied method. Another possibility is that 

when this method is applied to a grayscale image, the image is visually changed, but not the 

pixel values. This reason caused the same results in the experiments first described. Most of 

these experiments showing differences in the results, demonstrated that the use of contrast 

enhancement before the image type conversion from RGB to grayscale, causes a decrease in the 

detected area value. 

The Split Channel tool divides the channels of an RGB image into three 8-bit grayscale images. 

The naming Split Green, Split Blue and Split Red were used when the resulting image of the Split 

Channels image was for the green, blue and red channel, respectively. The Convert 32 method 

converts any image into a 32-bit grayscale image. The experiments M_002 and M_005 to 

M_013 were set up to compare the use of Convert 32 with each one of the Split methods. 

Besides these, it was also planned a few extra experiments to support the results of the main 

experiments. For a rolling ball radius equal to 10, the M_005_1 to M_005_4, M_007_1 to 

M_007_4 and M_009_1 to M_009_4 experiments were repeated with and without Convert 32 

method. The extra experiments without Convert 32 received an identical naming as the original 

experiments but with a "32" at the end of its name. The results of these experiments were also 

compared with the results of experiment M_002 under the same conditions, thereby seeking to 

test the effect of the processing with each one of the referred methods with each separately and 

together. The detected area values are shown in Table 5.4. Taking off the experiment M_007 in 

which were not obtained valid results for the two first cases of possible combinations of Subtract 

Background options, in general, there were not significant differences between the results for 
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different combinations of Disable Smoothing and Sliding Paraboloid in the same experiments. 

Generally, it can be assumed that processing the green channel of an RGB image rather than the 

other channels, with or without Convert 32, resulted in larger areas. Through the use of the 

Convert 32 together with Split Channels did not significantly change this trend, where the best 

results were obtained in the methodologies with the processing method Split Green. With the 

exception of using the Sliding Paraboloid option, the experiment M_005_32 results were slightly 

better than the results of the experiment M_005. Despite the slight improvement of detected 

area, this was not reflected in an increase in detected cells, and only in a slightly increased area 

of the already detected cells. In this way and by Table 5.2 analysis, it can be seen that the largest 

areas were obtained in experiments M_012 and M_013. Therefore, the methodology with Split 

Green without Convert 32 was adopted for the following experiments. 

Different positions of the Unsharp Mask tool in the pipeline methods were tested in experiments 

M_014 to M_027. In the experiments M_014 to M_016 were tested different configurations 

(different position of the Enhance Contrast tool in the pipeline) with the Unsharp Mask method in 

the last position of pipeline methods, just after the Subtract Background. The experiments 

M_017 to M_019 had identical settings to the previous experiments, but with an additional 

Unsharp Mask immediately after the Split Green. In experiments M_020 to M_023, the effect of 

an Unsharp Mask prior to the Split Green was tested. In the experiments M_024 to M_026 it was 

sought to determine the performance of the same settings, but with the Unsharp Mask after the 

Split Green. 

Of the sets of experiments above described, removing the ones with Enhance Contrast in the 

beginning of its configuration, the values in Table 5.2 shows that the maximum results did not 

have significantly differences between them. Taking the lower and higher maximum results of this 

set of experiments, obtained in experience M_020_2 (or M_021_2) and M_027_2, respectively, 

Table 5.4. Results from different combinations of Convert 32 and Split Channels. 

Test _1 _2 _3 _4 

M_002 34586 34475 34560 34360 
M_005 38259 38415 38180 37432 

M_005_32 38704 37774 38313 37508 
M_007 0 0 31091 31608 

M_007_32 30261 29494 30330 31538 
M_009 29152 30463 29756 28461 

M_009_32 26823 28924 29715 28585 
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it is possible to confirm that the difference between these areas is 1858 pixels. As this difference 

is not calculated over the same pixel position in both masks, it is also necessary to take into 

account the number of detected cells, and both the differences between the masks obtained in 

these experiments. In the left mask of Figure 5.3, it is possible to confirm that the maximum 

detected area in experience M_020_2, and not in experience M_027_2, had an extra cell (420 

extra pixels), while in the right mask of the same figure, the maximum detected area in 

experience M_027_2, and not in experience M_020_2, has more area and two extra cells (2268 

extra pixels). With this, it can be stated that the use of an adequate rolling ball radius, a larger 

area will be detected when using an Unsharp Mask at the end of the methodologies 

configuration. However, the use of methodology which detects a larger area, does not guarantee 

the detection of cells which are detected by methodologies configurations that generate lower 

areas. Besides this, the inclusion of at least one Unsharp Mask method in the configuration is 

relevant. 

The difference between the higher result of the experiments without Unsharp Mask, obtained in 

experience M_005_1, and the higher result of the experiments with Unsharp Mask, obtained in 

experience M_027_2, was 2611 pixels (see Table 5.2). As can be seen by analyzing Figure 5.4, 

the inclusion of this method leads to an improvement in the detected area as well as the 

detection of another cell. As can be seen, most of the difference found between the two methods 

results is verified when the inclusion of the Unsharp Mask method is taken.  

From all the Group 1 experiments maximum valid areas obtained, excepting the null verified on 

experience M_019_4, the minimums were 30364, 840, 2172 and 28790 pixels in the 

experiments M_009_1 (rol = 16), M_007_2 (rol = 29), M_019_3 (rol = 2) and M_009_4 (rol = 

9), respectively. The overlapping of the masks, related to these results, yields a mask with a 

counting of 56 cells with a total area equal to 33494 pixels (Figure 5.5). The resulting mask of 

Figure 5.5 shows that the blue and red channels image processing from methodologies M_007 

and M_009, plus green channel processing with contrast enhancement at the configuration 

beginning and two Unsharp Mask methods from experience M_019 generates masks far from 

the expectations. The combination of the “best” configuration of these experiments failed to 

detect 5 cells and 17289 pixels. Similarly, for different combinations of Sliding Paraboloid and 

Disable Smoothing options, the largest valid areas obtained were 42413, 42433, 41662 and 

41188 pixels in the experiments M_027_1 (rol = 3), M_027_2 (rol = 2), M_027_3 (rol = 5) and 

M_023_4 (rol = 3), respectively. The addition of each of these masks resulted in the mask 
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shown in Figure 5.6. This mask has an area of 43576 pixels and 64 cells. As can be seen, the 

area shown is almost entirely contained in the manually area defined for this picture, whose 

edges are drawn in red. The difference in the number of cells detected between the mask of the 

overlapping masks and the mask handily defined is due to the fact that the manual mask has 

more bud cells than the overlapping mask. This causes that one counted bud cell in the manual 

mask to be counted as two separated cells in the overlapping mask. Furthermore, the 

overlapping mask has a very good fit to the manual defined edges, where of the 43576 pixels of 

the overlapping mask, only 77 pixels outsides the red borders, and only 7154 pixels are missing 

for an adjustment 100% effective.  

 

Figure 5.3. Left image is the resulting mask from the difference (420 pixels) between the masks of the higher results 

from M_020_2 and M_027_2 experiments, respectively. Right image is the resulting mask from the difference 

(2268 pixels) between the masks of the higher results from M_027_2 and M_020_2 experiments, respectively. 

 

 

 

Figure 5.4. Left image is the resulting mask from the difference (2678 pixels) between the masks of the higher 

results from M_027_2 and M_005_1, experiments, respectively. Right image is the resulting mask from the 

difference (54 pixels) between the masks of the higher results from M_005_1 and M_027_2, experiments, 

respectively. 
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5.1.2. Group 2 experiments – Unsharp mask study 

Given the results obtained in the Group 1 experiments, the Group 2 experiments were 

programmed. Since the largest areas were obtained in experiment M_027, the Group 2 

experiments intended to verify the effect of the Unsharp Mask options in the results. Thereby for 

each possible combination of Sliding Paraboloid and Disable Smoothing, as well as to a rolling 

radius of the ball rolling radius of the Subtract Background method equal to 1, 2, 3, 10, 20 and 

30 pixels, the experiments M_028 to M_033 were planned. In each one of them it was tested an 

Unsharp Mask radius mask between 1 and 20 pixels, and for each one of these values was 

tested each possible mask weights, between 0.1 and 0.9, totalizing 4320 experiments. Similarly 

to the results of M_027, the Group 2 experiments did not generated areas with True Area less 

than 95%, which is an indicator that all tested options are secure to generate valid areas. 

Figures B.1 – B.20, C.1 – C.20, D.1 – D.20, E.1 – E.20, F.1 – F.20 and G.1 – G.20 (Appendix B 

to G) have the graphics area (/ pixels) vs mask weight for each tested mask radius and for each 

combination of Sliding Paraboloid and Disable Smoothing. In each graph is also present a line 

 

 

Figure 5.5. Result of the overlapping of the masks obtained in experiments M_009_1 (rol = 16), M_007_2 (rol = 

29), M_019_3 (rol = 2) and M_009_4 (rol = 9). The red borders delimit are for the valid area defined manually. 
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representative of the area value for the respective experience without the Unsharp Mask method. 

Thus, in each Group 2 experiment without the Unsharp Mask tool in its pipeline, is obtained a 

valid area (in pixels) equal to: 

 

M_028_1 – 34876; M_028_2 – 36863; M_028_3 – 36507; M_028_4 – 37714; 

M_029_1 – 39671; M_029_2 – 29236; M_029_3 – 30631; M_029_4 – 37224; 

M_030_1 – 36626; M_030_2 – 38748; M_030_3 – 16981; M_030_4 – 36704; 

M_031_1 – 38704; M_031_2 – 37774; M_031_3 – 38313; M_031_4 – 37508; 

M_032_1 – 37507; M_032_2 – 37084; M_032_3 – 36512; M_032_4 – 37190; 

M_033_1 – 37200; M_033_2 – 38000; M_033_3 – 36159; M_033_4 – 36374. 

 

Because not all utilized mask radius and weight options generated a higher amount of valid area 

than the same experience without the Unsharp Mask tool, adding this line in the graphs allows 

identifying which settings generated a detected area increase. This increase, although not 

 

 

Figure 5.6. Result of the overlapping of the masks obtained in experiments M_027_1 (rol=3), M_027_2 (rol=2), 

M_027_3 (rol=5) and M_023_4 (rol=3). The red borders delimit are for the valid area defined manually. 
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significant in some cases, in others it can mean the difference between detect and not detect 

various cells. As an example, the left images on Figures 5.7 and 5.8 show the masks generated 

by the experiments M_030_2 and M_032_2, respectively, for a mask radius and weight equal to 

4 pixels and 0.9, and 7 pixels and 0.9, respectively. The right images on the same figures show 

the resulting masks of the same experiments without Unsharp Mask. Again, the borders of the 

Manual Area were drawn in red. These masks show that between using or not using Unsharp 

Mask had differences in the resulting areas equal to 3920 pixels in Figure 5.7 and 2754 pixels in 

Figure 5.8, meaning the detection failure of several cells. Despite this, the observed difference of 

2830 pixels between the areas of these two experiments with Unsharp Mask (M_032_2 and 

M_030_2) showed no differences between the total detected cells, only differences in which cells 

were detected and in the area “quality” of the detected cells. 

Tables H.1 – H.24 (Appendix H) contains informative support on Group 2 experiments results 

whose areas were larger than the areas obtained in the same experiments without Unsharp Mask 

(area without Unsharp). For each mask radius are shown which and how many weights 

generated area values above area without Unsharp (columns Mask weights and Total, 

respectively), the average value of the areas above area without Unsharp (column Area mean) 

and the difference between this average and the area without Unsharp (column Difference), the 

value of the largest area obtained (column Max area) and the respective mask weight used in the 

experience which generated the largest area (column Mask weight). 

The values gathered in Table 5.5 intended to make a support to information contained in tables 

and figures of Appendices from B to H. The total number (n ) and frequency (f ) of mask weights 

 

 

Figure 5.7. Left image is the mask resulting from experiment M_030_2 with a mask radius and weight equal to 4 

pixels and 0.9, respectively (42668 pixels). Right image is the mask resulting from M_030_2 experiment without the 

Unsharp Mask tool (38748 pixels). 
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that generated values of area above the area without Unsharp were included, for each used mask 

radius. As can be seen, the experiments with no active Sliding Paraboloid and Disable Smoothing 

options (_1) were those that, less frequently generated areas with values above the value of the 

area without Unsharp. Of the 1080 experiments, the results were positive in only 452 (41.85 %). 

This low efficiency, for a methodology with an Unsharp Mask method in its configuration, is 

mainly due to experiments M_028_1 and M_029_1, where only seven results of these 

experiments were positive. To a mask weight equal to 0.1 and a mask radius equal to 1 and 5 to 

9 in test M_028_1, the resulted area were increased only 290, 62, 17, 5, 1 and 1 pixels, while 

for a mask weight equal to 0.1 and a mask radius equal to 1 in test M_029_1, the resulted area 

were increased only 266 pixels (Table H.1 and H.5). The low efficiency, caused by the results of 

experiments M_028_1 and M_029_1, is balanced with the increase in the rolling ball radius 

value of the Subtract Background method. For each mask radius in experiments M_032_1 and 

M_033_1, average values of 7.5 were verified for the number of mask weights that generated 

areas above the area without Unsharp. As can be seen in the graph of Figure 5.9, only 

experiments M_030_1 to M_033_1 had acceptable average area values above the area without 

Unsharp. For radius mask values above 2 pixels, these four experiments showed reasonable 

means, presenting a small decrease in the average quality for radius mask highest values in 

experiments with Subtract Background rolling ball radius equal 20 and 30 pixels. Finally, it can 

be stated that most of the largest areas observed in these experiments number _1, were 

generated in a configuration with an Unsharp Mask with a mask weight equal to 0.9. 

Nevertheless, the increase of radius mask value decreases the bests mask weight values to 

 

 

Figure 5.8. Left image is the mask resulting from experiment M_032_2 with a mask radius and weight equal to 7 

pixels 0.9, respectively (39838 pixels Right image is the mask resulting from M_032_2, experiment without the 

Unsharp Mask tool (37084 pixels). 
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between 0.6 and 0.8 (Tables H.1, H.5, H.9, H.13, H.17 and H.21). 

In experiments _2, the Sliding Paraboloid option together with the Unsharp Mask method worked 

as a catalyst to increase the detected area. Of the 1080 experiments, 841 (77.87 %) resulted in 

an increase in the detected area, regarding the detected area of the same methodology without 

the unsharp filter. For any tested rolling ball radius of the Subtract Background, were high values 

of detected area for mask radius between 2 and 12 pixels (Table 5.5). However, analyzing Tables 

H.2, H.6, H.10, H.14, H.18 and H.22, it is verified that in all experiments, except in M_028_2 

and M_030_2, there were an increase of all detected area for 90 % of all used mask weight 

values. The decrease of this frequency to 80 %, is practically due to the low profit occurred in 

experiments M_028_2 and M_030_2 wherein for any tested mask radius mask, only 50 % of the 

mask weight values were responsible for an increase of the detected area. The maximum areas 

observed in these experiments are significantly higher than those observed in experiments _1, 

but like these first, the weights that generate the maximum areas were mainly equal to 0.9. 

Despite the low averages observed in experience M_029_2, especially for low mask radius 

values, this experience was the one that generated greater increases in detected areas (Table 

Table 5.5. Frequencies of mask weight values that generate an increase in the detected area. 

 Radius  _1 _2 _3 _4 Total 
 pixels  n f n f n f n f n f 
 1  23 0.43 37 0.69 40 0.74 40 0.74 140 64.81 
 2  25 0.46 44 0.81 42 0.78 47 0.87 158 73.15 
 3  26 0.48 44 0.81 44 0.81 47 0.87 161 74.54 
 4  26 0.48 44 0.81 45 0.83 49 0.91 164 75.93 
 5  29 0.54 45 0.83 45 0.83 48 0.89 167 77.31 
 6  30 0.56 44 0.81 40 0.74 48 0.89 162 75.00 
 7  27 0.50 44 0.81 40 0.74 48 0.89 159 73.61 
 8  24 0.44 45 0.83 38 0.70 45 0.83 152 70.37 
 9  28 0.52 44 0.81 37 0.69 44 0.81 153 70.83 
 10  24 0.44 45 0.83 38 0.70 48 0.89 155 71.76 
 11  23 0.43 45 0.83 37 0.69 43 0.80 148 68.52 
 12  21 0.39 44 0.81 37 0.69 42 0.78 144 66.67 
 13  22 0.41 43 0.80 37 0.69 44 0.81 146 67.59 
 14  18 0.33 40 0.74 36 0.67 40 0.74 134 62.04 
 15  17 0.31 40 0.74 32 0.59 39 0.72 128 59.26 
 16  17 0.31 41 0.76 32 0.59 40 0.74 130 60.19 
 17  17 0.31 39 0.72 32 0.59 39 0.72 127 58.80 
 18  18 0.33 38 0.70 32 0.59 40 0.74 128 59.26 
 19  19 0.35 38 0.70 33 0.61 39 0.72 129 59.72 
 20  18 0.33 37 0.69 33 0.61 39 0.72 127 58.80 
 Total  452 0.42 841 0.78 750 0.69 869 0.80 – – 
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H.6). This fact is due to the very low area detected in the same experiment without unsharp 

(29236 pixels), but yet the maximum area values were obtained within the range of the other 

experiments, for mask radius values mainly between 4 and 9 pixels. 

The performance of the experiments with the Disable Smoothing option of the Subtract 

Background active, regarding the frequency of detected area increasing face the detected area in 

the same methodologies without unsharp filter, as in the experiments _2, were higher comparing 

to experiments _1. However, comparing with the performance of experiments with an active 

Sliding Paraboloid option, these experiments had a lower rate of area increase. This frequency 

reduction is observed mainly for higher mask radius values, because for the first five mask 

radius, these two sets of experiments, _2 and _3, had similar frequencies. Furthermore, in 

experiments M_028_3, M_029_3 and M_031_3, the number of mask weights which resulted in 

an increase in the detected areas, similarly to experiments _1, was greatly reduced. Opposing 

this, the experiment M_030_3 (rolling ball radius equal to 3 pixels) had an increase of detected 

face area face the area without Unsharp, for any used mask radius and weight (Tables H.3, H.7, 

H.11, H.15, H.19 and H.23). In this experiment the differences between the average area and 

the area without Unsharp were larger, reaching values of 19000 pixels, mainly, because the 

value of the detected area without Unsharp is very low (16981 pixels). Despite the increase of 

these large values of detected area, the averages were the lowest among the other experiment 

_3, for any mask radius tested (Figure 5.11). In these experiments, the highest average and the 

highest maximum areas were obtained in the three experiments with larger radius of rolling ball 

of the Subtract Background. These maximum values were observed for a mask radius equal to 2 

– 4 pixels and for high mask weights, 0.8 and 0.9.  

The highest frequency of mask weight values, which generated largest areas than the area 

without Unsharp, were observed in the experiments with the two options, Sliding Paraboloid and 

Disable Smoothing, active. For any tested mask radius, were more mask weight values that 

generated an increase in the detected area than in the other Group 2 experiments (Table 5.5) 

area. Apart from experiment M_028_4, for any value of used mask radius in other experiments 

there was a profit in 7 to 9, of the 9 possible mask weight values (Tables H.4, H.8, H.12, H.16, 

H.20 and H.24). As can be seen in the graph of Figure 5.12, areas larger than the respective 

area without Unsharp were detected in these experiments for any value of radius mask. In all 

experiments, the mean areas were consistently higher, noting a slight decrease with the 

increasing of the radius mask value. Once again, mask radius values between 2 and 7 pixels 
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resulted in higher averages, while higher maximum areas were obtained for any of the tested 

rolling ball radius. Likewise, mask weights between 0.7 and 0.9 resulted in largest detected 

areas. 

In Table 5.6, the maximum area values obtained in each Group 2 experiment are presented. For 

each maximum area it is indicated the mask radius and weight of used in the Unsharp Mask tool 

options. Excepting the experiments M_028_1, M029_1, M_028_3, M_29_3 M_030_3, all 

areas have maximum values above 42000 pixels. Mask radius and weight values equal to 2 – 5 

pixels and 0.9, respectively, were used in these experiments. The experiments with higher rolling 

ball radius were those that resulted in larger maximum area values. In particular, the experience 

M_031 (rol = 10 pixels) yielded very positive results for any combination of the options Sliding 

Paraboloid and Disable Smoothing. 

 

Figure 5.9. Average area values (/ pixels), of the areas higher than the area resulted from the same experiment 

without unsharp filter, for each mask radius (/ pixels) in the experiments _1. 
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Figure 5.10. Average area values (/ pixels), of the areas higher than the area resulted from the same experiment 

without unsharp filter, for each mask radius (/ pixels) in the experiments _2. 
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5.1.3. Other images Group 2 experiments 

As previously mentioned, Group 1 and Group 2 experiments were performed using image N-

Hefe_400x_dark-Field_1 (Image 1). This image captured with an exposure time near to 200 ms 

contains S. cerevisiae cells magnified 400x over a dark field background. For this image, it was 

determined that the methodologies which yield larger areas and a greater number of cells were 

represented by the experiments M_031_1 and M_031_2, with mask radius and weight equal to 

3 pixels and 0.9, respectively. Two other tests that resulted in considerable large detected areas 

were the M_031_3 and M_030_4 experiments, both with a masks radius and a weight equal to 

2 pixels and 0.9, respectively. Nevertheless, as can be seen in Figure 5.13, each one of these 

tests did not detect all the cells present at the respective original picture. The masks resulting 

 

Figure 5.11. Average area values (/ pixels), of the areas higher than the area resulted from the same experiment 

without unsharp filter, for each mask radius (/ pixels) in the experiments _3. 
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Figure 5.12. Average area values (/ pixels), of the areas higher than the area resulted from the same experiment 

without unsharp filter, for each mask radius (/ pixels) in the experiments _4. 
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from these tests shown that, missing cells in one test were detected in another test, and vice 

versa. However, the overlapping of the masks of these tests resulted in a mask (Figure 5.14) in 

which all cells of the original image are present. 

It should be mentioned that the image processing methods may not result in an analysis 100 % 

effective, where always some cells will not be detected. The achievement of each possible 

processing methodology for an image takes time, being impracticable the realization of all 

different processing methodologies on an image, and subsequent joining of the resulting masks. 

In order to get a higher precision in which methods result in larger areas and greater number of 

detected cells, the Group 2 experiments were carried out in six more images of yeast cultures; 

Image 2 to Image 7 (Figure I.2 – I.7 in Appendix I). Those images have the same characteristics 

of N-Hefe_400x_dark-field_1. The main difference is at the brightness level, which is caused by 

different exposure times that the camera took to capture the images. Indeed the first two images 

are identical but with different contrasts caused by different exposure times. The same is true for 

Table 5.6. Group 2 experiments maximum areas.  

Test 
 Max area  Mask radius  

Mask weight 
 pixels  pixels  

M_028_1  35166  1  0.1 
M_028_2  42759  4  0.9 
M_028_3  36951  9  0.3 
M_028_4  42790  3  0.9 
M_029_1  39937  1  0.1 
M_029_2  42433  5  0.9 
M_029_3  41603  3  0.4 
M_029_4  42771  2  0.9 
M_030_1  42413  5  0.9 
M_030_2  42668  4  0.9 
M_030_3  41376  3  0.9 
M_030_4  42931  2  0.9 
M_031_1  43018  3  0.9 
M_031_2  43021  3  0.9 
M_031_3  42760  2  0.9 
M_031_4  42766  2  0.9 
M_032_1  42603  3  0.9 
M_032_2  42716  3  0.9 
M_032_3  42554  2  0.9 
M_032_4  42627  2  0.9 
M_033_1  42524  3  0.9 
M_033_2  42671  3  0.9 
M_033_3  42522  2  0.9 
M_033_4  42619  2  0.9 
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the following four images. In these images, all cells except a few, are in the same positions only 

differing its brightness feature.  

The results for the maximum areas observed in all the experiments of the Group 2 for the new 

images are presented in Tables 5.7 – 5.9. Due to the greater number of cells as well as the 

contrast presented by the cells for different exposure times, the maximum results show a much 

larger variability than the results for the first image. Therefore, is more reliable to choose the 

methods that return better results for this group of images. A quick analysis at these pictures 

maximum results, it appears that most of them were achieved in experiments with rolling ball 

radius equal to 10, 20 and 30 pixels. It can also be noted that the ideal mask weight was equal 

to 0.9 for low mask radius values, reinforcing the observations made in the experiments with the 

first image.  

For Image 2, the methodologies that resulted in larger areas were the present in the 

configuration of experiments M_031_2, for a mask radius and weight equal to 3 pixels and 0.9, 

 

 

Figure 5.13. Resulting masks from experiments M_031_1 and M_031_2, both with radius mask and weight equal 

to 3 pixels and 0.9, respectively (top left to right), and resulting masks from experiments M_031_3 and M_030_4, 

both with radius mask and weight equal to 2 pixels and 0.9, respectively (bottom left to right). 



Methodology optimization results 

87 

respectively, and, M_031_4, M_032_1 and M_032_3 for a mask radius and weight equal to 2 

pixels and 0.9, respectively (Table 5.7). The sum of the masks obtained in these tests results in 

the mask of Figure J.1 (Appendix J), whose area is equal to 150073 pixels and the total number 

of detected cells is 220. However if adding the masks obtained in the methodologies with better 

performances for the Image 1, the experiments M_031_1 and M_031_2, for a mask radius and 

weight equal to 3 pixels and 0.9, respectively, and the experiments M_031_3 and M_030_4, for 

a mask radius and weight equal to 2 pixels and 0.9, respectively, it is generated a mask (Figure 

J.2 - Appendix J) whose combined area of 155457 pixels is for 226 particles detected. Yet, 

analyzing with detail the masks of Figures J.1 and J.2 it is possible to see that some cells still not 

detected, and cells present in one mask and missing in another mask, and vice versa. Thereby, 

the mask of Figure J.3 (Appendix J) was the result of the overlapping of the mask of Figures J.1 

and J.3, and have a total area of 157241 pixels and 228 detected cells. 

Analyzing the tests that resulted in larger areas for the Image 3, it is possible to verify that they 

had lower values of rolling ball radius than in the previous cases. This may be due to the higher 

 

 

Figure 5.14. Resulting mask from the overlapping of the resulting masks from experiments M_031_1 and 

M_031_2, both with radius mask and weight equal to 3 pixels and 0.9, respectively, and the resulting masks from 

experiments M_031_3 and M_030_4, both with radius mask and weight equal to 2 pixels and 0.9, respectively. 
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brightness presented by the particles of this image. Seeing this, the methods that resulted in 

larger areas were present in the experiments M_031_1, M_030_2, M_031_3 and M_029_4, for 

a mask radius and weight, in all of them, equal to 2 pixels and 0.9, respectively. Applying the 

same workout described in the previous paragraph for the image Image 2 the junction of the 

resulting masks from the methodologies that originated maximum areas for this image, results in 

a mask with 228 detected cells and a total area of 152218 pixels (Figure J.4). In the case of the 

junction of the resulting masks of the application, in Image 3 (P hefe 1200ms DF 400), of the 

best methodologies for Image 1 (N-Hefe_400x_dark Field_1), the resulting mask would have 8 

more detected cells and a total area of 155978 pixels (Figure J.5). The sum of these two masks 

results in a mask having the same number of cells as the previous mask, but with an area of 

157029 pixels (Figure J.6).  

Table 5.7. Image 2 and Image 3 maximum areas.  

 P hefe 800ms DF 400 P hefe 1200ms DF 400 

Test  
Max 
area  

Mask 
radius  Mask 

weight 
 

Max 
area  

Mask 
radius  

Mask 
weight 

 pixels  pixels   pixels  pixels   
M_028_1  108547  1  0.10  118526  16  0.90 
M_028_2  124051  5  0.90  146969  3  0.90 
M_028_3  61238  1  0.10  96847  1  0.10 
M_028_4  129149  5  0.90  147368  2  0.90 
M_029_1  97787  20  0.90  136184  16  0.90 
M_029_2  137529  4  0.90  149459  2  0.90 
M_029_3  94660  20  0.90  138017  14  0.90 
M_029_4  136942  3  0.90  149690  2  0.90 
M_030_1  113111  11  0.90  143016  4  0.90 
M_030_2  139597  3  0.90  150637  2  0.90 
M_030_3  113385  12  0.90  145078  3  0.90 
M_030_4  138710  3  0.90  149234  2  0.90 
M_031_1  133328  3  0.90  148966  2  0.90 
M_031_2  140207  3  0.90  144060  2  0.90 
M_031_3  134200  3  0.90  149829  2  0.90 
M_031_4  140171  2  0.90  142302  2  0.90 
M_032_1  138584  2  0.90  145199  2  0.90 
M_032_2  134688  2  0.90  134378  2  0.90 
M_032_3  138904  2  0.90  143721  2  0.90 
M_032_4  132723  2  0.90  132756  2  0.90 
M_033_1  129028  2  0.90  130524  2  0.90 
M_033_2  129490  3  0.90  129157  3  0.90 
M_033_3  128045  2  0.90  128825  2  0.90 
M_033_4  129438  3  0.90  128356  3  0.90 
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Of the six new tested images, the Image 4 (N_Yeast 400x DF 300ms), is the most similar to 

Image 1, much due to the similarity in exposure times. As can be seen by the obtained 

maximums, the methodologies with Subtract Background rolling ball radius equal to 10, 20 and 

30 pixels resulted in larger areas, all obtained with mask radius between 2 and 3 pixels, and 

mask weights equal to 0.9. Due to the lower contrast of the cells, the less aggressive Subtract 

Background options (_2 and _4) also returned acceptable maximums for lower rolling ball 

radius, namely, 2 and 3 pixels. This time the sum of the resulting masks of the methods that 

returned larger areas, M_031_2, M_033_1, M_033_3 and M_033_4 (all with mask radius and 

weight equal to 2 pixels and 0.9) resulted in a not much different mask of the mask resulted from 

the sum of the masks of best methods for the Image 1 (Figure J.7 and J.8). Both masks account 

for 157 detected cells and total areas of 106083 and 107001 pixels. Again, the combination of 

these two masks resulted in an improvement in the total number of detected cells, but this time 

Table 5.8. Image 4 and Image 5 maximum areas.  

 N_Yeast 400x DF 300ms N_Yeast 400x DF 500ms 

Test  
Max 
area  

Mask 
radius  Mask 

weight 
 

Max 
area  

Mask 
radius  

Mask 
weight 

 pixels  pixels   pixels  pixels   
M_028_1  89571  1  0.10  78537  6  0.50 
M_028_2  93827  5  0.90  90837  3  0.90 
M_028_3  82932  4  0.40  74953  3  0.20 
M_028_4  98948  4  0.90  92102  3  0.90 
M_029_1  82600  13  0.90  73171  19  0.90 
M_029_2  101908  3  0.90  96474  4  0.90 
M_029_3  78558  19  0.90  68836  20  0.90 
M_029_4  101491  3  0.90  98084  4  0.90 
M_030_1  91788  5  0.90  85628  12  0.90 
M_030_2  103198  3  0.90  98392  4  0.90 
M_030_3  91789  6  0.90  84914  11  0.90 
M_030_4  101477  3  0.90  97809  3  0.90 
M_031_1  102560  2  0.90  96969  3  0.90 
M_031_2  104378  2  0.90  100311  3  0.90 
M_031_3  103179  2  0.90  96722  3  0.90 
M_031_4  103794  2  0.90  99604  2  0.90 
M_032_1  104043  2  0.90  99052  2  0.90 
M_032_2  103563  2  0.90  100486  2  0.90 
M_032_3  103203  2  0.90  99029  2  0.90 
M_032_4  103122  2  0.90  99603  2  0.90 
M_033_1  104642  2  0.90  99096  2  0.90 
M_033_2  103513  2  0.90  99463  2  0.90 
M_033_3  104284  2  0.90  98043  2  0.90 
M_033_4  104483  2  0.90  99181  2  0.90 
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only one more cell was detected, and an increase of 875 pixels of detected area was observed 

(Figure J.9).  

Just as the previous image, the Image 5, mainly due to the shorter exposure time taken to 

capture it, has maximum areas in experiments with higher rolling ball radius and in experiments 

with smaller rolling ball radius but with the less aggressive, at least for low contrast images, 

Subtract Background options (Table 5.8). The maximum areas were observed in the experiments 

M_031_4, M_032_2, M_032_3 and M_033_1, all with mask radius and weights equal to 2 

pixels and 0.9, respectively. The overlap of the masks obtained in these experiments resulted in 

the mask of Figure J.10. It has 158 cells with a total area of 104190 pixels. The overlap of the 

masks resulted from the experiments M_033_1, M_033_2, M_033_3 and M_032_4, with the 

mask radius and weights which originated the best mask for the first image generated the mask 

in Figure J.11. In it are present 160 cells with a total area of 107003 pixels. The junction of the 

Table 5.9. Image 6 and Image 7 maximum areas.  

 N_Yeast 400x DF 700ms N_Yeast 400x DF 1000ms 

Test  
Max 
area  

Mask 
radius  Mask 

weight 
 

Max 
area  

Mask 
radius  

Mask 
weight 

 pixels  pixels   pixels  pixels   
M_028_1  79985  3  0.20  74920  1  0.10 
M_028_2  89281  4  0.90  88347  4  0.90 
M_028_3  48498  2  0.30  42692  2  0.30 
M_028_4  92659  4  0.90  88475  3  0.90 
M_029_1  72258  17  0.90  69272  20  0.90 
M_029_2  96717  5  0.90  97045  4  0.90 
M_029_3  68882  20  0.90  65169  9  0.90 
M_029_4  98456  4  0.90  95566  4  0.90 
M_030_1  84791  11  0.90  80612  6  0.90 
M_030_2  99984  4  0.90  97076  3  0.90 
M_030_3  83423  5  0.90  78917  6  0.90 
M_030_4  100850  4  0.90  98442  4  0.90 
M_031_1  96928  3  0.90  95113  3  0.90 
M_031_2  100965  2  0.90  98690  3  0.90 
M_031_3  96124  3  0.90  95381  3  0.90 
M_031_4  100082  2  0.90  97585  2  0.90 
M_032_1  100077  2  0.90  96372  2  0.90 
M_032_2  96664  2  0.90  96873  2  0.90 
M_032_3  99755  2  0.90  96662  2  0.90 
M_032_4  96814  2  0.90  95060  2  0.90 
M_033_1  94612  2  0.90  92289  2  0.90 
M_033_3  92471  2  0.90  91577  2  0.90 
M_033_4  94023  2  0.90  91681  2  0.90 
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masks of Figures J.10 and J.11 resulted in the mask of Figure J.12. With this final mask it is 

possible to conclude that the mask of Figure J.11 is the main responsible for the improvement in 

cell number and area value, since the number of final cells is equal to the number of cells in 

Figure J.11, with a small increase of 347 pixels in the total area. 

Finally, the analysis of Image 6 and Image 7 (N_Yeast 400x DF 700ms and N_Yeast 400x DF 

1000ms), resulted in masks with maximum areas on the same experiments, particularly 

M_032_1, M_031_ 2 and M_032_3, for a mask radius and weight and equal to 2 pixels and 

0.9, respectively, and M_030_4 for a mask radius and weight and equal to 4 and 0.9, 

respectively (Table 5.9). The overlap of these masks resulted in the images of Figures J.13 and 

J.16, respectively for Image 6 and Image 7. These masks contain a number of cells equal to 163 

and 159, respectively, and a total area equal to 106310 and 104602, respectively. Similarly, the 

masks in Figures J.14 and J.17 resulted from joining the masks from the experiments with these 

two images with the methodologies which give higher areas in Image 1. With the given masks, it 

can be seen that even though the number of cells between Figures J.13 and J.14 remain 

unchanged, all detected cells are not the same, existing an increase in the final area of 1121 

pixels, between the mask of Figure J.13 and the mask of Figure J.14. In the case of Figures J.16 

and J.17, it is verified an increase in cell number from 159 to 160 cells and an increase in the 

total area from 104602 to 106177 pixels. The overlapping of the masks from Figures J.13 and 

J.16 with the masks of Figures J.4 and J.17, respectively, it is obtained the masks of Figures 

J.15 and J.18, respectively. These two final masks contain a number of cells equal to 165 and 

163 and a total area equal to 109333 and 108224 pixels, respectively. 

5.2. Final Version 

As can be seen, the previous short exercise intended to show that the inclusion of different 

methods in the plugin code may not always be completely effective in detecting all the cells 

present in an image. Given the results obtained with the realization of all experiments, it can be 

stated that for dark-field contrast yeast images with 400x magnification and exposure time 

between 150 and 300 ms, it becomes essential to use methodologies that contain an Unsharp 

Mask method with mask radius between 2 and 3 pixels and mask weight equal to 0.9. It was 

also verified that for images taken with exposure time above the last mentioned range, the use of 

higher rolling ball radius regarding a more efficient cell and area detection is the most 

appropriate. 
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Since most of the received images were captured with exposure times above mentioned, it was 

decided to include in the Main Pipeline the processing methods used in the experiments 

M_030_1, M_030_2, M_030_3 and M_030_4 with and without unsharp filter. In case using 

Unsharp Mask, it was decided to use mask radius equal to 2 and 3 pixels, and mask weight 

equal to 0.9. With these methods included in the plugin code, for each analyzed image, it will be 

generated 12 masks which should be overlapped in a final mask through the Image Calculator 

method. To test this first final version (Version 1) of the Main Pipeline, all images used in the 

experiments were analyzed: Image 1 to Image 7, plus a new set of images: Image 8 to Image 12 

(Appendix I). The resulting masks and the respective manually defined borders (red edges) of the 

Manual Area can be viewed in Figures K.1 – K.12 (Appendix K). 

The same images were tested with a second version of the Main Pipeline (Version 2). This time 

the Version 2 includes the methods of the Version 1, with the addition of methods from 

experiments M_030_3 and M_030_4 with the inclusion of the Split Red method instead of Split 

Green method. Just as in the first version, the method Unsharp Mask options were 2 and 3 pixels 

of mask radius and 0.9 of mask weight. E.g., with this version, 4 masks resulting from the red 

channel processing are added to the other 12 masks resulting from Version 1 methodologies. 

The masks resulting from the processing with the Version 2 methodologies, of the 

abovementioned images together with it manually defined red borders are in Figures K.13 – K.24 

(Appendix K). 

Finally, the analysis of the same images with the inclusion of the refinement methodology 

ImagePlus thresholdRange (ImageProcessor ImageProcessor, int tresAmplitude, int autoTres, int 

tresStep, String imageTitle) at the end of each one of the 16 sets of methods used in Version 2 

was performed with the Version 3. In the configurations without Unsharp Mask, values of 

autoTres and tresStep equal to 10 and 2, respectively, were used. In the configurations with 

Unsharp Mask and Split Green, values of autoTres and tresStep equal to 20 and 4, respectively 

were used, and for the configurations with Unsharp Mask and Split Red, values of 6 and 2 were 

used for autoTres and tresStep, respectively. The masks generated by experiments with Version 3 

are shown in Figures K.25 – K.36. The values of autoTres and tresStep shown until now, were 

chosen in order to guarantee a certain safety in cell images thresholding. Very high values of 

autoTres could imply a threshold upper bound which would eliminate edges between together 

cells, leading to an inadequate joining of two cells as a bud cell. Likewise, very low values of 

autoTres could imply a threshold lower limit which would cause the appearance of particles not 
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desirable to be detected, as can be seen in Figure 5.1. The selection of tresStep values was 

made taking into account the collection of various masks, resulting from the application of multi 

thresholds with different threshold levels, taking careful to not make a plugin run process too 

"heavy". The decision to use multiple threshold levels between the upper and lower limits defined 

by the tresAmplitude variable was due to the intention to soften the edges, thereby increasing the 

detected area. The using of the upper and lower values alone as threshold levels might imply the 

opening or extreme widening of the cells edges, resulting in incorrect cell detection.  

In the images of Figure 5.15, a detailed example of the result of the implementation of Version 2 

and Version 3 to various particles present in some tested images. As can be seen with the 

transformation of the left masks, resulted from the application of Version 2, in the right masks, 

resulted from the applications of Version 3, the threshold levels variation had a smoothing effect 

in some cells area borders. This effect caused the total detected area in multiple images to 

increase substantially. It also allowed an improved bud cells classification, whereas with Version 

3, two detected cells by Version 2 that should be a bud cell, could be detected as a bud cell. This 

is all possible to verify with the values of cell counting and area size in pixels shown in Table 

5.10. For all analyzed images there was an increase in the total detected area with the 

application of the final versions of the plugin, e.g. from Version 1 to Version 3 were an 

improvement in the area detection. Regarding this, in most cases there was a slight increase in 

the number of detected cells. In some cases there was a decrease in the number of detected 

cells. This was mainly due to the case described above, and exemplified with some particles of 

the masks in Figure 5.15. The combination of two detected cells in a cell bud was slightly 

common with the variation of the final versions application. 

5.3. Boundaries determination 

The classification of cells detected by the plugin was made after the analysis of the cells present 

in 20 microscopic images of S. cerevisiae cultures (Figure I.1 – I.20 in Appendix I). Applying the 

methodologies of the final version of the plugin ScerevisiCounter, ImageJ available variables, like 

area, ellipse, centroid and circularity, were collected, namely the data respective to Area, Major,

Minor, Circularity, Roundness and X and Y coordinates. After the collection of the data about cell 

morphology, a manual classification of the 2603 detected cells in non-bud and bud was taken. 

This manual classification was based only on the observation of the borders of the detected cells. 

Thus, the particles which had a circular or ellipsoid geometry were classified as non-buds, being 
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the remainder classified as buds. Completed this task, it was verified the existence of 2453 non-

bud cells and 147 bud cells.  

For the cell classification in large, normal and small, the data relating to the areas size of the 

cells manually classified as non-buds were sufficient. From an area size analysis it was found that 

the lowest and highest observed areas had a value equal to 2.56 and 45.98 µm2, respectively. 

These two values are strongly influenced by the minimum and maximum values defined to be the 

limits of the size of the particles detected the Particle Analyzer. The area values limiting the 

classification between small, normal or large cells were determined by the quantiles 33 % and 66 

% of the areas values. So the limit between small and normal cells was determined to be equal to 

13.41 µm2 (quantile 33 %), while the limit of classification between normal cells and large cells 

was determined as being equal to 19.35 µm2 (quantile 66 %). 

As for the bud cells classification, the Major/Minor (or Aspect Ratio) was a good classifier 

parameter. For an AR value higher than 1.65, from the 2603 detected cells, only 2 were not 

manually considered as non-buds.  While, from the 147 manually considered as bud cells, only 7 

had AR values lower or equal to 1.65. The morphological data showed that smallest area of these 

seven cells was equal to 19.30 µm2, while the highest circularity and roundness values of the 

 

         

         

Figure 5.15. Resulting masks from applying two different ScerevisiCounter final versions to three sets of cells. The 

masks above are the result of the implementation of Version 2, while the masks below are the result of applying the 

Version 3. The images above correspond to the same images directly below these. The red manually defined borders 

are also visible. 
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same cells were equal to 0.65 and 0.82, respectively. Introducing this classification system, bud 

cells have values of AR higher than 1.65, at least 7 cells that would be expected to be classified 

as buds, would be classified as non-buds. Therefore, following this classification, a verification of 

the cell type was introduced. Of these cells, already classified as buds, small, normal or large 

with the above proposed system, those which had areas greater than 19.29 µm2, and circularity 

Table 5.10. Final versions results on cell counting and area detection.  

Image Version Count 
 Total area  
 pixels  

N-Hefe_400x_dark-field_1 1 
1 63  44858  
2 59  45640  
3 59  46040  

P hefe 800ms DF 400 2 
1 235  159748  
2 241  171250  
3 240  175021  

P hefe 1200ms DF 400 3 
1 244  159840  
2 243  161607  
3 244  163992  

N_Yeast 400x DF 300ms 4 
1 162  108976  
2 162  112622  
3 163  114583  

N_Yeast 400x DF 500ms 5 
1 166  109576  
2 164  113036  
3 165  115005  

N_Yeast 400x DF 700ms 6 
1 167  109614  
2 167  114033  
3 168  116210  

N_Yeast 400x DF 1000ms 7 
1 165  108666  
2 166  114382  
3 165  116186  

N Hefe 100ms 8 
1 41  27446  
2 56  34880  
3 56  35318  

N Hefe 150ms 9 
1 57  34219  
2 57  34329  
3 57  34720  

N Hefe 200ms 2 10 
1 60  35184  
2 63  36873  
3 63  37375  

N Hefe 200ms 11 
1 56  32491  
2 56  32662  
3 58  33785  

N Hefe 250ms 12 
1 56  31989  
2 57  32858  
3 57  33362  
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and roundness values lower than 0.66 and 0.83, respectively, would be reclassified as bud cells. 

Thus, those 7 bud cells with AR < 1.65 would be correctly reclassified as bud cells.  

However, following the classification system above described, 13 non-bud cells that had been 

correctly classified as non-buds, would be wrongly reclassified as buds. In order to reduce this 

high number of normal cells wrongly reclassified as bud cells, it was decided to lower the values 

of circularity and roundness. With this action, only 2 cells, of those 7 with AR lower than 1.65, 

would not be reclassified as buds. Thereby, for areas greater than 19.29 µm2, and circularity and 

roundness values lower than 0.64 and 0.74, respectively, only 1 cell correctly classified as non-

bud was wrongly classified as bud. 

In addition to this system, a re-classification of bud cells was also added according to the 

proximity between large and small cells. So, if a large or a small cell presented a distance lower 

than 6 µm to another small or large cell, respectively, it would be proceeded the removal of a 

large cell and a small cell and the adding of a bud cell to the final total counting. The calculation 

of the distance between two cells was carried out by using the X and Y coordinates and the 

following equation: 

𝑑𝑑 = �(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦1 − 𝑦𝑦2)2 (5.1), 

where x1, x2, y1 and y2 are the X and Y Cartesian coordinates of a cell 1 and a cell 2.  

Therefore, the classification system inserted in the final version was structured as follows: 

FOR EACH cell 

 IF cell (Major) > 1.65 * cell (Minor) AND cell (Area) 

>= 11.78 

 THEN cell = bud cell 

 IF cell (Area) > 19.35 

 THEN cell = large cell 

 IF cell (Area) > 13.41 AND cell (Area) <= 19.35 

 THEN cell = normal cell 

 IF cell (Area) <= 13.41 

 THEN cell = small cell 

 FOR EACH cell 

 IF cell != bud 

  IF cell (Circularity) < 0.64 AND cell (Roundness) 

< 0.74 AND cell (Area) > 19.29 

  THEN cell = bud
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5.4. Manual and automatic counting 

Included the classification systems in the plugin final version, a small test with the images of 

Figures I.13 – I.16 (Appendix I) was set up. For this, with the aid of others, a manual counting of 

bud and total cells was been made, for comparison with the counts taken by ScerevisiCounter.  

The total cells and bud cells counts, automatically and manually done, for the 4 pictures chosen, 

are in Table 5.11. Generally, the plugin efficiency detecting bud cells was inferior to the manual 

counting. This efficiency is heavily compensated by the higher accounting of bud cells in 

Bild_229 (Image 14). However, in general it can be said that the accounting of total cells by the 

plugin was very similar to the manual counting. 

Deciding whether, if two cells are mother and daughter cells or just two non-bud cells together, it 

is sometimes difficult to take, and visually deciding this may result differently from the decision 

taken by the algorithm inserted the plugin. This algorithm is quite efficient when the septum that 

separates the two cells is weak, or poorly defined, causing the detected area to cover this 

division, making the cell to be easily counted as bud. A large cell usually means that enough 

carbohydrates were stored and likely to start a new bud cycle. Small cells are usually one product 

of S. cerevisiae cell cycle, and are common to be identified as the daughter cells that had just 

separated from the mother cell. Sometimes the septum that separates a mother cell from a 

daughter cell is difficult to "break" and for this reason it was introduced in the algorithm the 

reclassification of very close large and small cells as a bud cell. 

Generally the implemented classification system counted cells fairly well. In almost all the images 

were fewer bud cells detected by the plugin than manually. The total bud cell count is balanced 

in the second image, Bild_229, wherein the automatically detected bud cells were the double 

from the manual counted. In this image are present many more cells than in the other images. 

Moreover, many groups of cells are also visible together. This may have influenced the manual 

counting. 

Table 5.11. Automatic vs manual cell count.  

Picture 
Manual  ScerevisiCounter  

Bud cells  Total cells Bud cells  Total cells 
Bild_227 13 12 106 11 105 
Bild_229 14 16 198 31 184 
Bild_281 15 44 135 37 146 
Bild_289 16 42 91 36 95 

Total 114 530 115 530 
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6. Conclusions and further work 

In this dissertation, the implementation of a Java language code that emulates some ImageJ 

commands (organized and/or modified) to investigate Saccharomyces cerevisiae cells from 

microscopy was successfully performed.  

Images containing groups of different cells size and budding cells were counted automatically 

through a set of pre-processing methods specifically implemented for the improvement of 

particles recognition and analysis. The ScerevisiCounter was able to identify budding cells and 

individual cells, as well as to discriminate cells depending on their size (small, normal, large). The 

classification of bud cells, in addition to the morphological parameters chosen for this task, was 

also based on the distance between the large and small cells types, where an exemplary of each 

of these cells types may be classified as a bud, thereby increasing the bud cells count closest to 

the real number. 

The plugin also provided the area results in square micrometer, to classify each cell identified 

into a group, and to count the cells presented in each image. At the same time, the code 

included in the plugin was able to separate budding cells based on septum detection and to 

select only one cell when overlapping cells were present. Whenever one cell was covered by 

another cell, the binarization process was quite difficult for edges detection, resulting in two cells. 

It was found quite relevant to remove some particles from all images provided by the background 

noise. Thus, particles with lower and higher area than cells were removed. The plugin was also 

able to provide a morphological analysis where area, circularity, roundness and aspect ratio were 

selected as the main parameters. Cells were correctly classified in non-bud and bud with an 

efficiency of 99.8 %. 

The code included in the plugin has no specific algorithm for the distinction of overlapping cells 

from bud cells. Despite this, he is able to perform this task quite accurately since the detection of 

bud cells rely mostly on breaking the septum that separates the mother cell from the daughter 

cell. It was assumed that this boundary, at least for most cases, is less defined, or with a lower 

contrast than the rest of the cells edges, being easily included, unlike the rest of the outer edges, 

in the cells area after image processing and binarization. In the case of overlapping cells, if the 

cell that is behind is totally eclipsed by the front cell then the plugin will easily count one cell. If 

the cell that is behind is partially eclipsed, then the edges of the two cells would be hardly broken 
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by the binarization, resulting in the detection of two separate cells. However, the classification 

based on the proximity between cells could make an addition to bud cells case these two 

overlapping and partially eclipsed back cell were small and large cells. 

During the development of the ScerevisiCounter, it was found that depending on the image, 

masks resulting from different processing methods were added to the final mask image, which 

was quite close to the original image. The ScerevisiCounter plugin automatically selected the 

threshold levels from each image for processing and it was found that the red channel was quite 

relevant in the processing step. To improve the plugin performance, two main processing 

methods were studied: Subtract Background and Unsharp Mask. The number of processing 

methodologies was minimized due to the previous knowledge of the type of images. The counting 

and classification process in the ScerevisiCounter plugin provided reliable results when compared 

to a visual examination of each image. 

In conclusion, the plugin code developed during this dissertation can be found as an alternative 

method to manual cell counting and to distinguish normal from bud cells in S. cerevisiae 

cultures. Furthermore, the ScerevisiCounter is able to display the final results in tables which are 

easily converted to Excel files, including the classification assigned to each cell and the actual 

areas of each one. 

For further work, it important to notice that depending on the type of images to analyze, the 

application of different methodologies will improve the final mask image presenting cell counts 

and detected area as close as possible to the original image. To improve the performance of a 

specific plugin will require a number of methodologies added that can be minimized knowing a 

priori the most effective methods.  
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Appendix A – Group 1 Results 

 

Figure A.1. M_001 results. 

 

 

 

Figure A.2. M_002 results. 

 

 

 

Figure A.3. M_003 results. 
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Figure A.4. M_004 results. 

 

 

 

Figure A.5. M_005 results. 

 

 

 

Figure A.6. M_006 results. 
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Figure A.7. M_007 results. 

 

 

 

Figure A.8. M_008 results. 

 

 

 

Figure A.9. M_009 results. 
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Figure A.10. M_010 results. 

 

 

 

Figure A.11. M_011 results. 

 

 

 

Figure A.12. M_012 results. 
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Figure A.13. M_013 results. 

 

 

 

Figure A.14. M_014 results. 

 

 

 

Figure A.15. M_015 results. 
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Figure A.16. M_016 results. 

 

 

 

Figure A.17. M_017 results. 

 

 

 

Figure A.18. M_018 results. 
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Figure A.19. M_019 results. 

 

 

 

Figure A.20. M_020 results. 

 

 

 

Figure A.21. M_021 results. 
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Figure A.22. M_022 results. 

 

 

 

Figure A.23. M_023 results. 

 

 

 

Figure A.24. M_024 results. 
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Figure A.25. M_025 results. 

 

 

 

Figure A.26. M_026 results. 

 

 

 

Figure A.27. M_027 results. 
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Appendix B – Group 2 Results 1 

 

Figure B.1. M_028 area results. Unsharp Mask radius equal to 1 pixel. 

 

Figure B.2. M_028 area results. Unsharp Mask radius equal to 2 pixels. 

 

Figure B.3. M_028 area results. Unsharp Mask radius equal to 3 pixels. 
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Figure B.4. M_028 area results. Unsharp Mask radius equal to 4 pixels. 

 

 

Figure B.5. M_028 area results. Unsharp Mask radius equal to 5 pixels. 

 

 

Figure B.6. M_028 area results. Unsharp Mask radius equal to 6 pixels. 
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Figure B.7. M_028 area results. Unsharp Mask radius equal to 7 pixels. 

 

 

Figure B.8. M_028 area results. Unsharp Mask radius equal to 8 pixels. 

 

 

Figure B.9. M_028 area results. Unsharp Mask radius equal to 9 pixels. 
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Figure B.10. M_028 area results. Unsharp Mask radius equal to 10 pixels. 

 

 

Figure B.11. M_028 area results. Unsharp Mask radius equal to 11 pixels. 

 

 

Figure B.12. M_028 area results. Unsharp Mask radius equal to 12 pixels. 
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Figure B.13. M_028 area results. Unsharp Mask radius equal to 13 pixels. 

 

 

Figure B.14. M_028 area results. Unsharp Mask radius equal to 14 pixels. 

 

 

Figure B.15. M_028 area results. Unsharp Mask radius equal to 15 pixels. 
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Figure B.16. M_028 area results. Unsharp Mask radius equal to 16 pixels. 

 

 

Figure B.17. M_028 area results. Unsharp Mask radius equal to 17 pixels. 

 

 

Figure B.18. M_028 area results. Unsharp Mask radius equal to 18 pixels. 
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Figure B.19. M_028 area results. Unsharp Mask radius equal to 19 pixels. 

 

 

Figure B.20. M_028 area results. Unsharp Mask radius equal to 20 pixels. 
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Appendix C – Group 2 Results 2 

 

Figure C.1. M_029 area results. Unsharp Mask radius equal to 1 pixels. 

 

 

Figure C.2. M_029 area results. Unsharp Mask radius equal to 2 pixels. 

 

 

Figure C.3. M_029 area results. Unsharp Mask radius equal to 3 pixels. 
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Figure C.4. M_029 area results. Unsharp Mask radius equal to 4 pixels. 

 

 

 

Figure C.5. M_029 area results. Unsharp Mask radius equal to 5 pixels. 

 

 

 

Figure C.6. M_029 area results. Unsharp Mask radius equal to 6 pixels. 
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Figure C.7. M_029 area results. Unsharp Mask radius equal to 7 pixels. 

 

 

 

Figure C.8. M_029 area results. Unsharp Mask radius equal to 8 pixels. 

 

 

 

Figure C.9. M_029 area results. Unsharp Mask radius equal to 9 pixels. 
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Figure C.10. M_029 area results. Unsharp Mask radius equal to 10 pixels. 

 

 

 

Figure C.11. M_029 area results. Unsharp Mask radius equal to 11 pixels. 

 

 

 

Figure C.12. M_029 area results. Unsharp Mask radius equal to 12 pixels. 
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Figure C.13. M_029 area results. Unsharp Mask radius equal to 13 pixels. 

 

 

 

Figure C.14. M_029 area results. Unsharp Mask radius equal to 14 pixels. 

 

 

 

Figure C.15. M_029 area results. Unsharp Mask radius equal to 15 pixels. 
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Figure C.16. M_029 area results. Unsharp Mask radius equal to 16 pixels. 

 

 

 

Figure C.17. M_029 area results. Unsharp Mask radius equal to 17 pixels. 

 

 

 

Figure C.18. M_029 area results. Unsharp Mask radius equal to 18 pixels. 
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Figure C.19. M_029 area results. Unsharp Mask radius equal to 19 pixels. 

 

 

 

Figure C.20. M_029 area results. Unsharp Mask radius equal to 20 pixels. 
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Appendix D – Group 2 Results 3 

 

Figure D.1. M_030 area results. Unsharp Mask radius equal to 1 pixels. 

 

 

Figure D.2. M_030 area results. Unsharp Mask radius equal to 2 pixels. 

 

 

Figure D.3. M_030 area results. Unsharp Mask radius equal to 3 pixels. 
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Figure D.4. M_030 area results. Unsharp Mask radius equal to 4 pixels. 

 

 

 

Figure D.5. M_030 area results. Unsharp Mask radius equal to 5 pixels. 

 

 

 

Figure D.6. M_030 area results. Unsharp Mask radius equal to 6 pixels. 
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Figure D.7. M_030 area results. Unsharp Mask radius equal to 7 pixels. 

 

 

 

Figure D.8. M_030 area results. Unsharp Mask radius equal to 8 pixels. 

 

 

 

Figure D.9. M_030 area results. Unsharp Mask radius equal to 9 pixels. 
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Figure D.10. M_030 area results. Unsharp Mask radius equal to 10 pixels. 

 

 

 

Figure D.11. M_030 area results. Unsharp Mask radius equal to 11 pixels. 

 

 

 

Figure D.12. M_030 area results. Unsharp Mask radius equal to 12 pixels. 
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Figure D.13. M_030 area results. Unsharp Mask radius equal to 13 pixels. 

 

 

 

Figure D.14. M_030 area results. Unsharp Mask radius equal to 14 pixels. 

 

 

 

Figure D.15. M_030 area results. Unsharp Mask radius equal to 15 pixels. 
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Figure D.16. M_030 area results. Unsharp Mask radius equal to 16 pixels. 

 

 

 

Figure D.17. M_030 area results. Unsharp Mask radius equal to 17 pixels. 

 

 

 

Figure D.18. M_030 area results. Unsharp Mask radius equal to 18 pixels. 
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Figure D.19. M_030 area results. Unsharp Mask radius equal to 19 pixels. 

 

 

 

Figure D.20. M_030 area results. Unsharp Mask radius equal to 20 pixels. 
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Appendix E – Group 2 Results 4 

 

Figure E.1. M_031 area results. Unsharp Mask radius equal to 1 pixels. 

 

 

Figure E.2. M_031 area results. Unsharp Mask radius equal to 1 pixels. 

 

 

Figure E.3. M_031 area results. Unsharp Mask radius equal to 3 pixels. 
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Figure E.4. M_031 area results. Unsharp Mask radius equal to 4 pixels. 

 

 

 

Figure E.5. M_031 area results. Unsharp Mask radius equal to 5 pixels. 

 

 

 

Figure E.6. M_031 area results. Unsharp Mask radius equal to 6 pixels. 
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Figure E.7. M_031 area results. Unsharp Mask radius equal to 7 pixels. 

 

 

 

Figure E.8. M_031 area results. Unsharp Mask radius equal to 8 pixels. 

 

 

 

Figure E.9. M_031 area results. Unsharp Mask radius equal to 9 pixels. 
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Figure E.10. M_031 area results. Unsharp Mask radius equal to 10 pixels. 

 

 

 

Figure E.11. M_031 area results. Unsharp Mask radius equal to 11 pixels. 

 

 

 

Figure E.12. M_031 area results. Unsharp Mask radius equal to 12 pixels. 
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Figure E.13. M_031 area results. Unsharp Mask radius equal to 13 pixels. 

 

 

 

Figure E.14. M_031 area results. Unsharp Mask radius equal to 14 pixels. 

 

 

 

Figure E.15. M_031 area results. Unsharp Mask radius equal to 15 pixels. 
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Figure E.16. M_031 area results. Unsharp Mask radius equal to 16 pixels. 

 

 

 

Figure E.17. M_031 area results. Unsharp Mask radius equal to 17 pixels. 

 

 

 

Figure E.18. M_031 area results. Unsharp Mask radius equal to 18 pixels. 
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Figure E.19. M_031 area results. Unsharp Mask radius equal to 19 pixels. 

 

 

 

Figure E.20. M_031 area results. Unsharp Mask radius equal to 20 pixels. 
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Appendix F – Group 2 Results 5 

 

Figure F.1. M_032 area results. Unsharp Mask radius equal to 1 pixels. 

 

 

Figure F.2. M_032 area results. Unsharp Mask radius equal to 2 pixels. 

 

 

Figure F.3. M_032 area results. Unsharp Mask radius equal to 3 pixels. 
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Figure F.3. M_032 area results. Unsharp Mask radius equal to 4 pixels. 

 

 

 

Figure F.5. M_032 area results. Unsharp Mask radius equal to 5 pixels. 

 

 

 

Figure F.6. M_032 area results. Unsharp Mask radius equal to 6 pixels. 
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Figure F.7. M_032 area results. Unsharp Mask radius equal to 7 pixels. 

 

 

 

Figure F.8. M_032 area results. Unsharp Mask radius equal to 8 pixels. 

 

 

 

Figure F.9. M_031 area results. Unsharp Mask radius equal to 9 pixels. 
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Figure F.10. M_032 area results. Unsharp Mask radius equal to 10 pixels. 

 

 

 

Figure F.11. M_032 area results. Unsharp Mask radius equal to 11 pixels. 

 

 

 

Figure F.12. M_032 area results. Unsharp Mask radius equal to 12 pixels. 
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Figure F.13. M_032 area results. Unsharp Mask radius equal to 11 pixels. 

 

 

 

Figure F.14. M_032 area results. Unsharp Mask radius equal to 14 pixels. 

 

 

 

Figure F.15. M_032 area results. Unsharp Mask radius equal to 15 pixels. 
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Figure F.16. M_032 area results. Unsharp Mask radius equal to 16 pixels. 

 

 

 

Figure F.17. M_032 area results. Unsharp Mask radius equal to 17 pixels. 

 

 

 

Figure F.18. M_032 area results. Unsharp Mask radius equal to 18 pixels. 
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Figure F.19. M_032 area results. Unsharp Mask radius equal to 19 pixels. 

 

 

 

Figure F.20. M_032 area results. Unsharp Mask radius equal to 20 pixels. 
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Appendix G – Group 2 Results 6 

 

Figure G.1. M_033 area results. Unsharp Mask radius equal to 1 pixels. 

 

 

Figure G.2. M_033 area results. Unsharp Mask radius equal to 2 pixels. 

 

 

Figure G.3. M_033 area results. Unsharp Mask radius equal to 3 pixels. 
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Figure G.4. M_033 area results. Unsharp Mask radius equal to 4 pixels. 

 

 

 

Figure G.5. M_033 area results. Unsharp Mask radius equal to 5 pixels. 

 

 

 

Figure G.6. M_033 area results. Unsharp Mask radius equal to 6 pixels. 
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Figure G.7. M_033 area results. Unsharp Mask radius equal to 7 pixels. 

 

 

 

Figure G.8. M_033 area results. Unsharp Mask radius equal to 8 pixels. 

 

 

 

Figure G.9. M_033 area results. Unsharp Mask radius equal to 9 pixels. 
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Figure G.10. M_033 area results. Unsharp Mask radius equal to 10 pixels. 

 

 

 

Figure G.11. M_033 area results. Unsharp Mask radius equal to 11 pixels. 

 

 

 

Figure G.12. M_033 area results. Unsharp Mask radius equal to 10 pixels. 
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Figure G.13. M_033 area results. Unsharp Mask radius equal to 13 pixels. 

 

 

 

Figure G.14. M_033 area results. Unsharp Mask radius equal to 14 pixels. 

 

 

 

Figure G.15. M_033 area results. Unsharp Mask radius equal to 15 pixels. 
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Figure G.16. M_033 area results. Unsharp Mask radius equal to 16 pixels. 

 

 

 

Figure G.17. M_033 area results. Unsharp Mask radius equal to 17 pixels. 

 

 

 

Figure G.18. M_033 area results. Unsharp Mask radius equal to 18 pixels. 
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Figure G.19. M_033 area results. Unsharp Mask radius equal to 19 pixels. 

 

 

 

Figure G.20. M_033 area results. Unsharp Mask radius equal to 20 pixels. 
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Appendix H – Group 2 table results 

 

 

 

 

 

Table H.1. M_028_1 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 1  35166.0   290.0   35166  0.1 

 2  - 0  NaN   NaN   34202  - 

 3  - 0  NaN   NaN   34150  - 

 4  - 0  NaN   NaN   34938  - 

 5  0.1 1  34938.0   62.0   34938  0.1 

 6  0.1 1  34893.0   17.0   34893  0.1 

 7  0.1 1  34881.0   5.0   34881  0.1 

 8  0.1 1  34877.0   1.0   34877  0.1 

 9  0.1 1  34877.0   1.0   34877  0.1 

 10  - 0  NaN   NaN   34876  - 

 11  - 0  NaN   NaN   34876  - 

 12  - 0  NaN   NaN   34876  - 

 13  - 0  NaN   NaN   34876  - 

 14  - 0  NaN   NaN   34876  - 

 15  - 0  NaN   NaN   34876  - 

 16  - 0  NaN   NaN   34876  - 

 17  - 0  NaN   NaN   34876  - 

 18  - 0  NaN   NaN   34876  - 

 19  - 0  NaN   NaN   34876  - 

 20  - 0  NaN   NaN   34876  - 
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Table H.2. M_028_2 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 to 0.5 5  38286.2   1423.2   39399  0.5 

 2  0.1 to 0.4 and 0.9 5  39001.8   2138.8   40321  0.4 

 3  0.1 to 0.4 and 0.9 5  39407.6   2544.6   41117  0.9 

 4  0.1 to 0.4 and 0.9 5  39679.2   2816.2   42759  0.9 

 5  0.1 to 0.3 and 0.9 4  39423.8   2560.8   42294  0.9 

 6  0.1 to 0.3 and 0.9 4  39251.8   2388.8   41900  0.9 

 7  0.1, 0.2 and 0.9 3  39018.0   2155.0   41589  0.9 

 8  0.1, 0.2, 0.8 and 0.9 4  38510.8   1647.8   41048  0.9 

 9  0.1, 0.2, 0.8 and 0.9 4  38293.5   1430.5   40676  0.9 

 10  0.1, 0.2, 0.8 and 0.9 4  38018.5   1155.5   40046  0.9 

 11  0.1, 0.2, 0.8 and 0.9 4  37963.5   1100.5   39949  0.9 

 12  0.1, 0.2, 0.8 and 0.9 4  37912.3   1049.3   39852  0.9 

 13  0.1, 0.2, 0.8 and 0.9 4  38141.0   1278.0   39744  0.9 

 14  0.1, 0.2, 0.8 and 0.9 4  38315.0   1452.0   39686  0.9 

 15  0.1, 0.2, 0.8 and 0.9 4  38561.8   1698.8   39873  0.8 

 16  0.1, 0.2, 0.8 and 0.9 4  38521.3   1658.3   39814  0.8 

 17  0.1, 0.2, 0.8 and 0.9 4  38479.0   1616.0   39761  0.8 

 18  0.1, 0.2, 0.8 and 0.9 4  38439.3   1576.3   39710  0.8 

 19  0.1, 0.2, 0.8 and 0.9 4  38693.8   1830.8   40487  0.9 

 20  0.1, 0.2, 0.8 and 0.9 4  38662.8   1799.8   40421  0.9 

 

Table H.3. M_028_3 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 1  36568.0   61.0   36568  0.1 

 2  0.1 1  36554.0   47.0   36554  0.1 

 3  0.1 and 0.2 2  36553.0   46.0   36578  0.2 

 4  0.1 and 0.2 2  36535.5   28.5   36557  0.2 

 5  0.1 and 0.2 2  36524.0   17.0   36538  0.2 

 6  0.2 1  36522.0   15.0   36522  0.2 

 7  0.2 1  36516.0   9.0   36516  0.2 

 8  0.2 1  36511.0   4.0   36511  0.2 

 9  0.2 and 0.3 2  36730.0   223.0   36951  0.3 

 10  0.3 1  36949.0   442.0   36949  0.3 

 11  0.3 and 0.4 2  36942.0   435.0   36948  0.3 

 12  0.3 and 0.4 2  36939.0   432.0   36946  0.3 

 13  0.3 and 0.4 2  36934.0   427.0   36944  0.3 

 14  0.3 and 0.4 2  36927.5   420.5   36940  0.3 

 15  0.3 and 0.4 2  36749.0   242.0   36939  0.3 

 16  0.3 and 0.4 2  36740.5   233.5   36933  0.3 

 17  0.3 and 0.4 2  36736.0   229.0   36927  0.3 

 18  0.3 to 0.5 2  36801.7   294.7   36946  0.5 

 19  0.3 to 0.5 2  36681.3   174.3   36942  0.5 

 20  0.3 to 0.5 2  36677.0   170.0   36936  0.5 
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Table H.4. M_028_4 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 1  37963.0   249.0   37963  0.1 

 2  0.1 and 0.9 2  37976.5   262.5   38149  0.1 

 3  0.1 and 0.9 2  40440.0   2726.0   42790  0.9 

 4  0.1 and 0.7 to 0.9 4  38961.0   1247.0   41781  0.9 

 5  0.1, 0.8 and 0.9 3  39618.0   1904.0   41134  0.9 

 6  0.1, 0.8 and 0.9 3  39541.0   1827.0   40304  0.8 

 7  0.1, 0.8 and 0.9 3  39268.7   1554.6   40000  0.8 

 8  0.7 to 0.9 3  38971.0   1257.0   39723  0.8 

 9  0.8 and 0.9 2  39110.0   1396.0   39490  0.8 

 10  0.7 to 0.9 3  39117.7   1403.7   39726  0.9 

 11  0.7 to 0.9 3  38943.3   1229.3   39509  0.9 

 12  0.7 to 0.9 3  38669.7   955.7   39024  0.8 

 13  0.7 to 0.9 3  38535.3   821.3   38875  0.8 

 14  0.7 to 0.9 3  38410.7   696.7   38763  0.8 

 15  0.7 to 0.9 3  38223.0   509.0   38437  0.8 

 16  0.1 and 0.7 to 0.9 4  38072.5   358.5   38299  0.8 

 17  0.1, 0.8 and 0.9 3  37991.0   277.0   38091  0.9 

 18  0.1 and 0.7 to 0.9 4  38202.0   488.0   38681  0.7 

 19  0.1 and 0.7 2  38299.5   585.5   38624  0.7 

 20  0.1 and 0.7 2  38238.5   524.5   38509  0.7 

 

Table H.5. M_029_1 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 1  39937.0   266.0   39937  0.1 

 2  - 0  NaN   NaN   26229  - 

 3  - 0  NaN   NaN   34118  - 

 4  - 0  NaN   NaN   37176  - 

 5  - 0  NaN   NaN   38379  - 

 6  - 0  NaN   NaN   38154  - 

 7  - 0  NaN   NaN   38008  - 

 8  - 0  NaN   NaN   37869  - 

 9  - 0  NaN   NaN   38485  - 

 10  - 0  NaN   NaN   39024  - 

 11  - 0  NaN   NaN   38765  - 

 12  - 0  NaN   NaN   38711  - 

 13  - 0  NaN   NaN   38985  - 

 14  - 0  NaN   NaN   38923  - 

 15  - 0  NaN   NaN   38896  - 

 16  - 0  NaN   NaN   38523  - 

 17  - 0  NaN   NaN   38479  - 

 18  - 0  NaN   NaN   36182  - 

 19  - 0  NaN   NaN   36154  - 

 20  - 0  NaN   NaN   36119  - 
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Table H.6. M_029_2 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 to 0.8 8  34693.1   5457.1   37510  0.3 

 2  0.1 to 0.9 9  36316.4   7080.4   39223  0.9 

 3  0.1 to 0.9 9  36752.4   7516.4   40285  0.9 

 4  0.1 to 0.9 9  37778.9   8542.9   41932  0.9 

 5  0.1 to 0.9 9  37806.6   8570.6   42433  0.9 

 6  0.1 to 0.9 9  37885.9   8649.9   41998  0.9 

 7  0.1 to 0.9 9  37967.8   8731.8   41598  0.9 

 8  0.1 to 0.9 9  37977.6   8741.6   41271  0.9 

 9  0.1 to 0.9 9  38044.3   8808.3   41010  0.9 

 10  0.1 to 0.9 9  37950.6   8714.6   40645  0.9 

 11  0.1 to 0.9 9  37893.2   8657.2   40478  0.9 

 12  0.1 to 0.9 9  38058.9   8822.9   40044  0.9 

 13  0.1 to 0.9 9  38121.0   8885.0   40443  0.8 

 14  0.1 to 0.9 9  38076.7   8840.7   40343  0.8 

 15  0.1 to 0.9 9  38025.2   8789.2   40236  0.8 

 16  0.1 to 0.9 9  38085.0   8849.0   40161  0.8 

 17  0.1 to 0.9 9  38173.0   8937.0   41215  0.8 

 18  0.1 to 0.9 9  38111.1   8875.1   40954  0.8 

 19  0.1 to 0.9 9  38069.3   8833.3   40883  0.8 

 20  0.1 to 0.9 9  38034.1   8798.1   40811  0.8 

 

Table H.7. M_029_3 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 to 0.6 6  36413.7   5782.7   38725  0.6 

 2  0.1 to 0.4 and 0.9 6  37185.2   6554.2   41076  0.9 

 3  0.1 to 0.4 and 0.9 6  37936.4   7305.4   41603  0.9 

 4  0.1 to 0.3 and 0.9 7  37398.5   6767.5   40956  0.9 

 5  0.1 to 0.3 and 0.9 7  37627.0   6996.0   40713  0.8 

 6  0.1, 0.3 and 0.9 3  37204.0   6573.0   40601  0.9 

 7  0.1, 0.3 and 0.9 3  37239.0   6608.0   40501  0.7 

 8  0.1, 0.3 and 0.9 3  37608.7   6977.7   40348  0.8 

 9  0.1, 0.3 and 0.9 3  37430.0   6799.0   40312  0.8 

 10  0.1, 0.3 and 0.9 3  37883.0   7252.0   40261  0.7 

 11  0.1, 0.3 and 0.9 3  37840.0   7209.0   40220  0.8 

 12  0.1, 0.3 and 0.9 3  38208.3   7577.3   40183  0.8 

 13  0.1, 0.3 and 0.9 3  38161.7   7530.7   40122  0.8 

 14  0.1, 0.3 and 0.9 3  37876.3   7245.3   39690  0.8 

 15  0.1, 0.3 and 0.9 3  37680.0   7049.0   39501  0.8 

 16  0.1, 0.3 and 0.9 3  37862.7   7231.7   40191  0.8 

 17  0.1, 0.3 and 0.9 3  37691.7   7060.7   40144  0.8 

 18  0.1, 0.3 and 0.9 3  37572.3   6941.3   40046  0.5 

 19  0.1, 0.3 and 0.9 3  37467.7   6836.7   39952  0.7 

 20  0.1, 0.3 and 0.9 3  37267.0   6636.0   39908  0.7 
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Table H.8. M_029_4 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1,0.2 and 0.4 to 0.6 5  37888.8   664.8   38292  0.6 

 2  0.1 to 0.9 9  38513.3   1289.3   42771  0.9 

 3  0.1 to 0.9 9  38787.6   1563.6   42106  0.9 

 4  0.1 to 0.9 9  39161.4   1937.4   40918  0.9 

 5  0.1 to 0.9 9  38899.6   1675.6   40207  0.8 

 6  0.1 to 0.9 9  38797.8   1573.8   39807  0.9 

 7  0.1 to 0.9 9  38634.2   1410.2   40079  0.7 

 8  0.1 to 0.9 9  38617.4   1393.4   40074  0.8 

 9  0.1 to 0.9 9  38554.9   1330.9   39659  0.8 

 10  0.1 to 0.9 9  38468.9   1244.9   39475  0.7 

 11  0.1 to 0.9 9  38426.6   1202.6   40346  0.8 

 12  0.1 to 0.8 8  38450.5   1226.5   40150  0.8 

 13  0.1 to 0.9 9  38441.3   1217.3   39975  0.8 

 14  0.1 to 0.9 9  38281.3   1057.3   39214  0.8 

 15  0.1 to 0.8 8  38312.9   1088.9   39069  0.8 

 16  0.1 to 0.8 8  38215.9   991.9   38925  0.8 

 17  0.1 to 0.8 8  38084.6   860.6   38738  0.8 

 18  0.1 to 0.8 8  38087.3   863.3   38871  0.5 

 19  0.1 to 0.8 8  38160.9   936.9   39171  0.7 

 20  0.1 to 0.8 8  38321.9   1097.9   39056  0.7 

 

Table H.9. M_030_1 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 and 0.2 2  36757.0   131.0   36844  0.2 

 2  0.1 1  36792.0   166.0   36792  0.1 

 3  0.1 and 0.9 2  37900.5   1274.5   38934  0.9 

 4  0.1 and 0.9 2  39444.5   2818.5   42086  0.9 

 5  0.1, 0.8 and 0.9 3  38693.7   2067.7   42413  0.9 

 6  0.8 and 0.9 2  39689.5   3063.5   42026  0.9 

 7  0.8 and 0.9 2  39974.0   3348.0   41694  0.9 

 8  0.8 and 0.9 2  40319.0   3693.0   41469  0.9 

 9  0.1, 0.8 and 0.9 3  39020.0   2394.0   41272  0.9 

 10  0.1, 0.8 and 0.9 3  38814.0   2188.0   40772  0.9 

 11  0.1, 0.8 and 0.9 3  38408.7   1782.7   39657  0.9 

 12  0.1, 0.8 and 0.9 3  38340.7   1714.7   39537  0.9 

 13  0.1, 0.8 and 0.9 3  38670.0   2044.0   39823  0.8 

 14  0.1, 0.8 and 0.9 3  38617.7   1991.7   39762  0.8 

 15  0.1, 0.8 and 0.9 3  38312.9   1088.9   39069  0.8 

 16  0.1, 0.8 and 0.9 3  38215.9   991.9   38925  0.8 

 17  0.1, 0.8 and 0.9 3  38084.6   860.6   38738  0.8 

 18  0.1, 0.8 and 0.9 3  38087.3   863.3   38871  0.5 

 19  0.1, 0.8 and 0.9 3  38160.9   936.9   39171  0.7 

 20  0.1, 0.8 and 0.9 3  38321.9   1097.9   39056  0.7 
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Table H.10. M_030_2 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 1  38967.0   219.0   38967  0.1 

 2  0.1, 0.4 and 0.9 3  39235.3   487.3   39714  0.9 

 3  0.1, 0.8 and 0.9 3  40306.7   1558.7   41207  0.9 

 4  0.1, 0.8 and 0.9 3  40982.3   2234.3   42668  0.9 

 5  0.1, 0.2 and 0.7 to 0.9 5  40338.0   1590.0   42081  0.9 

 6  0.1 and 0.7 to 0.9 4  40219.3   1471.3   41555  0.9 

 7  0.1, 0.2 and 0.7 to 0.9 5  40016.0   1268.0   41102  0.9 

 8  0.1, 0.2 and 0.7 to 0.9 5  39932.2   1184.2   40633  0.8 

 9  0.1 and 0.7 to 0.9 4  39912.8   1164.8   40418  0.8 

 10  0.1, 0.2 and 0.7 to 0.9 5  39803.6   1055.6   41382  0.8 

 11  0.1, 0.2 and 0.7 to 0.9 5  39589.0   841.0   41214  0.8 

 12  0.1, 0.2 and 0.6 to 0.9 6  39500.2   752.2   41087  0.8 

 13  0.1, 0.2 and 0.6 to 0.9 6  39450.2   702.2   40781  0.8 

 14  0.1, 0.7 and 0.8 3  39788.7   1040.7   40682  0.8 

 15  0.1, 0.7 and 0.8 3  39586.3   838.3   40548  0.8 

 16  0.1, 0.2, 0.7 and 0.8 4  39527.0   779.0   40423  0.8 

 17  0.1, 0.2, 0.7 and 0.8 4  39471.8   723.8   40315  0.8 

 18  0.1, 0.2, 0.7 and 0.8 4  39423.3   675.3   40217  0.8 

 19  0.1, 0.2, 0.7 and 0.8 4  39383.5   635.5   40152  0.8 

 20  0.1, 0.2 and 0.6 to 0.8 5  39320.6   1097.9   40076  0.8 

 

Table H.11. M_030_3 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 to 0.9 9  30025.0   13044.0   36274  0.4 

 2  0.1 to 0.9 9  32148.7   15167.7   38250  0.9 

 3  0.1 to 0.9 9  33770.2   16789.2   41376  0.9 

 4  0.1 to 0.9 9  34010.2   17029.2   40739  0.9 

 5  0.1 to 0.9 9  34468.7   17487.7   41036  0.9 

 6  0.1 to 0.9 9  34723.9   17742.9   40602  0.9 

 7  0.1 to 0.9 9  34980.6   17999.6   40241  0.9 

 8  0.1 to 0.9 9  34983.1   18002.1   39969  0.9 

 9  0.1 to 0.9 9  35056.0   18075.0   39765  0.8 

 10  0.1 to 0.9 9  36513.0   19532.0   39654  0.8 

 11  0.1 to 0.9 9  36519.3   19538.3   39900  0.9 

 12  0.1 to 0.9 9  36560.6   19579.6   39734  0.9 

 13  0.1 to 0.9 9  36514.0   19533.0   39583  0.9 

 14  0.1 to 0.9 9  36512.7   19531.7   39379  0.9 

 15  0.1 to 0.9 9  36466.2   19485.2   39247  0.9 

 16  0.1 to 0.9 9  36413.4   19432.4   39085  0.8 

 17  0.1 to 0.9 9  36367.2   19386.2   39006  0.8 

 18  0.1 to 0.9 9  36455.6   19474.6   38935  0.8 

 19  0.1 to 0.9 9  36429.3   19448.3   38872  0.8 

 20  0.1 to 0.9 9  36549.1   19568.1   38541  0.9 
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Table H.12. M_030_4 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 to 0.7 7  37801.4   1097.4   39348  0.6 

 2  0.1 to 0.9 9  38840.9   2136.9   42931  0.9 

 3  0.1 to 0.9 9  39264.7   2560.7   42355  0.9 

 4  0.1 to 0.9 9  39081.4   2377.4   41130  0.9 

 5  0.1 to 0.9 9  38828.6   2124.6   40466  0.7 

 6  0.1 to 0.9 9  38945.8   2241.8   40541  0.8 

 7  0.1 to 0.9 9  38853.3   2149.3   39971  0.8 

 8  0.1 to 0.9 9  38669.2   1965.2   39631  0.8 

 9  0.1 to 0.9 9  38439.1   1735.1   39375  0.8 

 10  0.1 to 0.9 9  38408.0   1704.0   40227  0.8 

 11  0.1 to 0.8 8  38461.6   1757.6   39969  0.8 

 12  0.1 to 0.8 8  38439.0   1735.0   39605  0.7 

 13  0.1 to 0.8 8  38304.4   1600.4   39484  0.7 

 14  0.1 to 0.8 8  38246.9   1542.9   39331  0.7 

 15  0.1 to 0.8 8  38266.8   1562.8   39195  0.7 

 16  0.1 to 0.8 8  38189.9   1485.9   39077  0.7 

 17  0.1 to 0.8 8  38075.5   1371.5   38752  0.6 

 18  0.1 to 0.8 8  37970.6   1266.6   38648  0.6 

 19  0.1 to 0.8 8  37861.1   1157.1   38555  0.6 

 20  0.1 to 0.8 8  37806.6   1102.6   38488  0.6 

 

Table H.13. M_031_1 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1, 0.4 and 0.5 3  38862.3   158.3   38989  0.1 

 2  0.1 to 0.5 and 0.9 6  39539.8   835.8   41230  0.9 

 3  0.2 to 0.4 and 0.7 to 0.9 6  40373.7   1669.7   43018  0.9 

 4  0.2, 0.3, 0.5, 0.7 to 0.9 6  40337.7   1633.7   41639  0.8 

 5  0.2, 0.3, 0.5 to 0.9 7  40083.3   1379.3   42208  0.8 

 6  0.1 to 0.9 9  39510.9   806.9   41740  0.8 

 7  0.2, 0.4, 0.6 to 0.9 6  39535.5   831.5   41282  0.8 

 8  0.2, 0.6 to 0.9 5  39610.0   906.0   40898  0.8 

 9  0.2, 0.4 to 0.8 6  39425.2   721.2   40402  0.8 

 10  0.2, 0.5 to 0.8 5  39377.6   673.6   40154  0.8 

 11  0.4 to 0.8 5  39278.4   574.4   39955  0.8 

 12  0.4, 0.5, 0.7 and 0.8 4  39231.5   527.5   39729  0.8 

 13  0.1, 0.2, 0.5, 0.7 and 0.8 5  39000.8   296.8   39469  0.7 

 14  0.1, 0.7 and 0.8 3  39067.0   363.0   39347  0.7 

 15  0.1 and 0.7 2  39147.5   443.5   39214  0.7 

 16  0.1 and 0.7 2  39080.0   376.0   39087  0.7 

 17  0.1 and 0.7 2  39575.0   871.0   40099  0.7 

 18  0.1, 0.6 and 0.7 3  39327.7   623.7   39967  0.7 

 19  0.1, 0.3, 0.6 and 0.7 4  39063.8   359.8   39541  0.7 

 20  0.1, 0.3, 0.6 and 0.7 4  39222.0   518.0   39691  0.6 
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Table H.14. M_031_2 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 to 0.7 7  38438.7   664.7   38984  0.5 

 2  0.1 to 0.9 9  39055.0   1281.0   40133  0.9 

 3  0.1 to 0.9 9  40070.8   2296.8   43021  0.9 

 4  0.1 to 0.9 9  39923.3   2149.3   42170  0.9 

 5  0.1 to 0.9 9  39892.7   2118.7   41369  0.9 

 6  0.1 to 0.9 9  39763.8   1989.8   40470  0.8 

 7  0.1 to 0.9 9  39668.6   1894.6   41211  0.8 

 8  0.1 to 0.9 9  39502.2   1728.2   40825  0.8 

 9  0.1 to 0.9 9  39378.2   1604.2   40293  0.8 

 10  0.1 to 0.9 9  39283.7   1509.7   40048  0.8 

 11  0.1 to 0.9 9  39107.6   1333.6   39789  0.8 

 12  0.1 to 0.9 9  38986.2   1212.2   39543  0.4 

 13  0.1 to 0.8 8  39016.0   1242.0   39522  0.5 

 14  0.1 to 0.8 8  38927.1   1153.1   39397  0.5 

 15  0.1 to 0.8 8  38824.5   1050.5   39314  0.5 

 16  0.1 to 0.8 8  38714.8   940.8   39236  0.5 

 17  0.1 to 0.8 8  38611.4   837.4   39270  0.4 

 18  0.1 to 0.7 7  38640.1   866.1   39220  0.4 

 19  0.1 to 0.7 7  38708.0   934.0   39476  0.6 

 20  0.1 to 0.7 7  38628.1   854.1   39403  0.6 

 

Table H.15. M_031_3 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 to 0.5 and 0.7 6  38788.5   475.5   39323  0.7 

 2  0.1 to 0.6, 0.8 and 0.9 8  39769.6   1456.6   42760  0.9 

 3  0.1 to 0.9 9  39983.9   1670.9   41887  0.9 

 4  0.1 to 0.9 9  39574.9   1261.9   41482  0.8 

 5  0.1 to 0.9 9  39485.8   1172.8   42025  0.8 

 6  0.1 to 0.9 9  39320.1   1007.1   41512  0.8 

 7  0.1 to 0.9 9  39207.1   894.1   41073  0.8 

 8  0.1, 0.2, 0.4 to 0.8 7  39414.7   1101.7   40701  0.8 

 9  0.1, 0.2, 0.4 to 0.8 7  39193.1   880.1   40158  0.8 

 10  0.1, 0.2, 0.4 to 0.8 7  39068.1   755.1   39942  0.8 

 11  0.1, 0.2, 0.4 to 0.8 7  38926.9   613.9   39697  0.8 

 12  0.1, 0.2, 0.4 to 0.8 7  38871.9   558.9   39352  0.6 

 13  0.1, 0.2, 0.4 to 0.8 7  38786.6   473.6   39235  0.6 

 14  0.1, 0.2, 0.5 to 0.8 6  38931.7   618.7   40154  0.7 

 15  0.1, 0.2 , 0.6 and 0.7 4  39120.5   807.5   39933  0.7 

 16  0.1, 0.2 , 0.6 and 0.7 4  38965.0   652.0   39475  0.7 

 17  0.1, 0.2 , 0.6 and 0.7 4  38929.5   616.5   39326  0.7 

 18  0.1, 0.2 , 0.6 and 0.7 4  38872.8   559.8   39216  0.7 

 19  0.1 to 0.3, 0.6 and 0.7 5  38956.8   643.8   39339  0.6 

 20  0.1 to 0.3, 0.6 and 0.7 5  38901.0   588.0   39242  0.6 
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Table H.16. M_031_4 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 to 0.9 9  38336.1   828.1   39507  0.7 

 2  0.1 to 0.9 9  39557.4   2049.4   42766  0.9 

 3  0.1 to 0.9 9  39786.6   2278.6   41632  0.9 

 4  0.1 to 0.9 9  39558.9   2050.9   41228  0.8 

 5  0.1 to 0.9 9  39257.6   1749.6   40451  0.8 

 6  0.1 to 0.9 9  39115.6   1607.6   41054  0.8 

 7  0.1 to 0.9 9  38919.9   1411.9   40516  0.8 

 8  0.1 to 0.8 8  38818.3   1310.3   40136  0.8 

 9  0.1 to 0.8 8  38680.9   1172.9   39788  0.8 

 10  0.1 to 0.9 9  38463.2   955.2   39449  0.8 

 11  0.1, 0.3 to 0.8 7  38454.9   946.9   38920  0.7 

 12  0.1, 0.3 to 0.8 7  38492.3   984.3   39441  0.6 

 13  0.1 to 0.8 8  38393.3   885.3   39287  0.6 

 14  0.1, 0.3 to 0.7 6  38341.2   833.2   39159  0.6 

 15  0.1, 0.3 to 0.7 6  38248.3   740.3   39028  0.6 

 16  0.1, 0.3 to 0.7 6  38311.8   803.8   38979  0.6 

 17  0.1, 0.3 to 0.7 6  38237.2   729.2   38833  0.6 

 18  0.1, 0.3 to 0.7 6  38095.2   587.2   38690  0.6 

 19  0.1 to 0.7 7  38058.1   550.1   38589  0.6 

 20  0.1 to 0.7 7  37923.0   415.0   38285  0.2 

 

Table H.17. M_032_1 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1, 0.2, 0.4 to 0.9 8  38442.9   935.9   39404  0.7 

 2  0.1 to 0.9 9  39620.7   2113.7   42383  0.9 

 3  0.1 to 0.9 9  39881.8   2374.8   42603  0.9 

 4  0.1 to 0.9 9  39668.1   2161.1   41695  0.9 

 5  0.1 to 0.9 9  39444.6   1937.6   41689  0.8 

 6  0.1 to 0.9 9  39341.1   1834.1   40958  0.8 

 7  0.1 to 0.9 9  39105.8   1598.8   40463  0.8 

 8  0.1 and 0.3 to 0.9 8  38993.9   1486.9   40075  0.8 

 9  0.1 to 0.9 9  38543.0   1036.0   39362  0.8 

 10  0.1 and 0.3 to 0.9 8  38498.6   991.6   39100  0.7 

 11  0.1 and 0.3 to 0.8 7  38378.4   871.4   38822  0.7 

 12  0.1 and 0.3 to 0.8 7  38443.0   936.0   39365  0.6 

 13  0.1 and 0.3 to 0.8 7  38327.3   820.3   39203  0.6 

 14  0.1 and 0.3 to 0.7 6  38267.0   760.0   39047  0.6 

 15  0.1 and 0.3 to 0.7 6  38171.5   664.5   38877  0.6 

 16  0.1 and 0.3 to 0.7 6  38291.0   784.0   38839  0.6 

 17  0.1 and 0.3 to 0.7 6  38102.7   595.7   38710  0.6 

 18  0.1 and 0.3 to 0.7 6  38028.0   521.0   38577  0.6 

 19  0.1 and 0.3 to 0.7 6  37893.7   386.7   38152  0.6 

 20  0.1 and 0.4 to 0.7 6  37886.6   379.6   38074  0.4 
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Table H.18. M_032_2 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 to 0.8 8  38416.3   1332.3   39991  0.7 

 2  0.1 to 0.9 9  39559.8   2475.8   41106  0.9 

 3  0.1 to 0.9 9  40129.2   3045.2   42716  0.9 

 4  0.1 to 0.9 9  39990.3   2906.3   41833  0.9 

 5  0.1 to 0.9 9  39625.3   2541.3   40780  0.8 

 6  0.1 to 0.9 9  39541.7   2457.7   41333  0.8 

 7  0.1 to 0.9 9  39271.4   2187.4   40701  0.8 

 8  0.1 to 0.9 9  39199.4   2115.4   40287  0.8 

 9  0.1 to 0.9 9  38960.4   1876.4   39985  0.8 

 10  0.1 to 0.9 9  38813.1   1729.1   39701  0.8 

 11  0.1 to 0.9 9  38563.7   1479.7   39249  0.7 

 12  0.1 to 0.8 8  38529.3   1445.3   39062  0.7 

 13  0.1 to 0.8 8  38462.6   1378.6   38936  0.7 

 14  0.1 to 0.8 8  38359.9   1275.9   38781  0.4 

 15  0.1 to 0.8 8  38282.5   1198.5   38759  0.5 

 16  0.1 to 0.8 8  38278.3   1194.3   39324  0.6 

 17  0.1 to 0.7 7  38202.0   1118.0   38580  0.5 

 18  0.1 to 0.7 7  38257.6   1173.6   39181  0.6 

 19  0.1 to 0.7 7  38169.6   1085.6   39071  0.6 

 20  0.1 to 0.6 6  38233.8   1149.8   38952  0.6 

 

Table H.19. M_032_3 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 to 0.9 9  38544.6   2032.6   40386  0.8 

 2  0.1 to 0.9 9  39789.0   3277.0   42554  0.9 

 3  0.1 to 0.9 9  39837.9   3325.9   41792  0.8 

 4  0.1 to 0.9 9  39435.9   2923.9   41043  0.8 

 5  0.1 to 0.9 9  39274.1   2762.1   41365  0.8 

 6  0.1 to 0.9 9  39088.7   2576.7   40789  0.8 

 7  0.1 to 0.9 9  38738.8   2226.8   40255  0.8 

 8  0.1 to 0.9 9  38590.6   2078.6   39809  0.6 

 9  0.1 to 0.8 8  38664.3   2152.3   39561  0.6 

 10  0.1 to 0.9 9  38565.9   2053.9   39508  0.5 

 11  0.1 to 0.8 8  38487.6   1975.6   39441  0.5 

 12  0.1 to 0.8 8  38609.3   2097.3   39432  0.7 

 13  0.1 to 0.8 8  38445.8   1933.8   39151  0.5 

 14  0.1 to 0.8 8  38291.0   1779.0   39131  0.5 

 15  0.1 to 0.7 7  38410.6   1898.6   39032  0.5 

 16  0.1 to 0.7 7  38225.7   1713.7   38941  0.4 

 17  0.1 to 0.7 7  38042.0   1530.0   38810  0.5 

 18  0.1 to 0.7 7  37922.4   1410.4   38710  0.5 

 19  0.1 to 0.7 7  37831.3   1319.3   38601  0.5 

 20  0.1 to 0.7 7  37654.9   1142.9   38323  0.4 
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Table H.20. M_032_4 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 to 0.9 9  38383.3   1193.3   39998  0.7 

 2  0.1 to 0.9 9  39684.8   2494.8   42627  0.9 

 3  0.1 to 0.9 9  39656.6   2466.6   41483  0.9 

 4  0.1 to 0.9 9  39428.7   2238.7   41076  0.8 

 5  0.1 to 0.9 9  39263.7   2073.7   41417  0.8 

 6  0.1 to 0.9 9  39073.4   1883.4   40852  0.8 

 7  0.1 to 0.9 9  38762.1   1572.1   40324  0.8 

 8  0.1 to 0.8 8  38717.0   1527.0   39984  0.8 

 9  0.1 to 0.8 8  38631.0   1441.0   39656  0.6 

 10  0.1 to 0.9 9  38346.3   1156.3   39456  0.6 

 11  0.1 to 0.8 8  38479.8   1289.8   39777  0.7 

 12  0.1 to 0.8 8  38363.1   1173.1   39556  0.7 

 13  0.1 to 0.8 8  38197.0   1007.0   39123  0.7 

 14  0.1 to 0.7 7  38487.9   1297.9   39205  0.5 

 15  0.1 to 0.7 7  38255.6   1065.6   38767  0.7 

 16  0.1 to 0.7 7  38137.3   947.3   39088  0.5 

 17  0.1 to 0.7 7  37995.6   805.6   38969  0.5 

 18  0.1 to 0.7 7  38029.0   839.0   38865  0.5 

 19  0.1 to 0.7 7  37967.1   777.1   38770  0.5 

 20  0.1 to 0.7 7  37996.4   806.4   38667  0.5 

 

Table H.21. M_033_1 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 to 0.8 8  38443.3   1243.3   40181  0.7 

 2  0.1 to 0.9 9  39646.3   2446.3   41905  0.9 

 3  0.1 to 0.9 9  39722.1   2522.1   42524  0.9 

 4  0.1 to 0.9 9  39547.8   2347.8   41643  0.9 

 5  0.1 to 0.9 9  39340.2   2140.2   41663  0.8 

 6  0.1 to 0.9 9  39304.0   2104.0   40856  0.8 

 7  0.1 to 0.9 9  38890.0   1690.0   40345  0.8 

 8  0.1 and 0.3 to 0.9 8  38787.2   1587.2   39967  0.8 

 9  0.1 to 0.9 9  38376.3   1176.3   39240  0.8 

 10  0.1 and 0.3 to 0.9 8  38171.2   971.2   38993  0.7 

 11  0.1 and 0.3 to 0.9 8  38527.1   1327.1   39842  0.7 

 12  0.1 and 0.3 to 0.8 7  38418.4   1218.4   39591  0.7 

 13  0.1 and 0.3 to 0.8 7  38262.8   1062.8   39093  0.7 

 14  0.1 and 0.3 to 0.7 6  38152.6   952.6   38928  0.6 

 15  0.1 and 0.3 to 0.7 6  38208.3   1008.3   38802  0.7 

 16  0.1 and 0.3 to 0.7 6  38058.3   858.3   38602  0.6 

 17  0.1 and 0.3 to 0.7 6  37917.0   717.0   38194  0.2 

 18  0.1 and 0.3 to 0.7 6  37861.6   661.6   38134  0.6 

 19  0.1 and 0.3 to 0.7 6  37756.9   556.9   38086  0.2 

 20  0.1 and 0.4 to 0.7 5  37837.7   637.7   38813  0.5 
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Table H.22. M_033_2 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 to 0.8 8  38619.1   619.1   39847  0.7 

 2  0.1 to 0.9 9  39848.0   1848.0   41054  0.9 

 3  0.1 to 0.9 9  40130.7   2130.7   42671  0.9 

 4  0.1 to 0.9 9  39938.6   1938.6   41783  0.9 

 5  0.1 to 0.9 9  39900.5   1900.5   41828  0.8 

 6  0.1 to 0.9 9  39459.9   1459.9   41261  0.8 

 7  0.1 to 0.9 9  39534.5   1534.5   40572  0.8 

 8  0.1 to 0.9 9  39267.0   1267.0   40171  0.8 

 9  0.1 to 0.9 9  39121.3   1121.3   39860  0.8 

 10  0.1 to 0.9 9  39011.7   1011.7   39263  0.7 

 11  0.1 to 0.9 9  38791.7   791.7   39058  0.7 

 12  0.1 to 0.8 8  38736.0   736.0   39590  0.6 

 13  0.1 to 0.8 8  38626.7   626.7   39472  0.6 

 14  0.1 to 0.8 8  38662.7   662.7   39327  0.6 

 15  0.1 to 0.8 8  38589.5   589.5   39284  0.6 

 16  0.1 to 0.8 8  38505.3   505.3   39159  0.6 

 17  0.1 to 0.7 7  38575.5   575.5   39062  0.6 

 18  0.1 to 0.7 7  38480.8   480.8   38886  0.6 

 19  0.1 to 0.7 7  38364.2   364.2   38769  0.6 

 20  0.1 to 0.6 6  38388.3   388.3   38677  0.6 

 

Table H.23. M_033_3 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 to 0.9 9  38245.6   2086.6   40119  0.8 

 2  0.1 to 0.9 9  39555.6   3396.6   42522  0.9 

 3  0.1 to 0.9 9  39358.6   3199.6   41393  0.9 

 4  0.1 to 0.9 9  39318.2   3159.2   41941  0.8 

 5  0.1 to 0.9 9  39006.4   2847.4   41286  0.8 

 6  0.1 to 0.9 9  38813.6   2654.6   40680  0.8 

 7  0.1 to 0.9 9  38480.0   2321.0   40200  0.8 

 8  0.1 to 0.9 9  38224.4   2065.4   39499  0.8 

 9  0.1 to 0.8 8  38438.9   2279.9   40090  0.7 

 10  0.1 to 0.9 9  38201.9   2042.9   39762  0.7 

 11  0.1 to 0.8 8  38188.6   2029.6   39563  0.7 

 12  0.1 to 0.8 8  38156.5   1997.5   39042  0.7 

 13  0.1 to 0.8 8  37965.3   1806.3   39035  0.5 

 14  0.1 to 0.8 8  37898.1   1739.1   38908  0.5 

 15  0.1 to 0.7 7  37938.9   1779.9   38770  0.5 

 16  0.1 to 0.7 7  37800.1   1641.1   38751  0.5 

 17  0.1 to 0.7 7  37752.4   1593.4   38380  0.4 

 18  0.1 to 0.7 7  37655.6   1496.6   38307  0.4 

 19  0.1 to 0.7 7  37519.7   1360.7   38226  0.4 

 20  0.1 to 0.7 7  37416.1   1257.1   38152  0.4 
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Table H.24. M_033_4 results. 

 Radius  
Mask weights Total 

 Mean   Difference   Max area  
Mask weight 

 pixels   pixels   pixels   pixels  

 1  0.1 to 0.9 9  38449.6   2075.6   40964  0.8 

 2  0.1 to 0.9 9  39675.0   3301.0   42619  0.9 

 3  0.1 to 0.9 9  39554.8   3180.8   41419  0.9 

 4  0.1 to 0.9 9  39333.8   2959.8   40857  0.8 

 5  0.1 to 0.9 9  39135.2   2761.2   41339  0.8 

 6  0.1 to 0.9 9  38936.7   2562.7   40774  0.8 

 7  0.1 to 0.9 9  38624.3   2250.3   40285  0.8 

 8  0.1 to 0.8 8  38403.2   2029.2   39904  0.8 

 9  0.1 to 0.8 8  38641.1   2267.1   39522  0.6 

 10  0.1 to 0.9 9  38308.8   1934.8   39937  0.7 

 11  0.1 to 0.8 8  38483.5   2109.5   39653  0.7 

 12  0.1 to 0.8 8  38213.6   1839.6   39473  0.7 

 13  0.1 to 0.8 8  38013.5   1639.5   38977  0.7 

 14  0.1 to 0.7 7  38179.5   1805.5   39116  0.5 

 15  0.1 to 0.7 7  38238.4   1864.4   39015  0.5 

 16  0.1 to 0.7 7  37993.7   1619.7   38867  0.5 

 17  0.1 to 0.7 7  38013.6   1639.6   38775  0.5 

 18  0.1 to 0.7 7  37896.0   1522.0   38679  0.5 

 19  0.1 to 0.7 7  37641.7   1267.7   38382  0.5 

 20  0.1 to 0.7 7  37739.1   1365.1   38427  0.4 
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Appendix I – Sacharomyces cerevisiae pictures 

 

 

 

 

 

 

 

 

Figure I.1. N-Hefe_400x_dark-field_1 (Image 1 ). 
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Figure I.2. P hefe 800ms DF 400 (Image 2 ). 

 

 

Figure I.3. P hefe 1200ms DF 400 (Image 3 ). 
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Figure I.4. N_Yeast 400x DF 300ms (Image 4 ). 

 

 

Figure I.5. N_Yeast 400x DF 500ms (Image 5 ). 
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Figure I.6. N_Yeast 400x DF 700ms (Image 6 ). 

 

 

Figure I.7. N_Yeast 400x DF 1000ms (Image 7 ). 
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Figure I.8. N Hefe 100ms (Image 8 ). 

 

 

Figure I.9. N Hefe 150ms (Image 9 ). 
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Figure I.10. N Hefe 200ms 2 (Image 10 ). 

 

 

Figure I.11. N Hefe 200ms (Image 11 ). 
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Figure I.12. N Hefe 250ms (Image 12 ). 

 

 

Figure I.13. Bild_227 (Image 13 ). 
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Figure I.14. Bild_229 (Image 14 ). 

 

 

Figure I.15. Bild_281 (Image 15 ). 
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Figure I.16. Bild_289 (Image 16 ). 

 

 

Figure I.17. 1B  1_100 (Image 17 ). 
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Figure I.18. 1CV1 1_10 (Image 18 ). 

 

 

Figure I.19. 1N  1_100 (Image 19 ). 
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Figure I.20. 1P  1_100 (Image 20 ). 
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Appendix J – Other images Group 2 results 

 

 

 

 

 

 

 

Figure J.1. Resulting mask from the sum of masks from experiments M_032_1, M_032_3 and M_031_4 with mask 

radius and weight equal to 2 pixels and 0.9, respectively, and experiment M_031_2, with mask radius and weight 

equal to 3 pixels and 0.9, respectively. All experiments were performed with Image 2. 
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Figure J.2. Resulting mask from the sum of masks from experiments M_031_1 and M_031_2, with mask radius 

and weight equal to 3 pixels and 0.9, respectively, and experiments M_031_3 and M_030_4, with mask radius and 

weight equal to 2 pixels and 0.9, respectively. All experiments were performed with Image 2. 

 

 

Figure J.3. Resulting mask from the sum of the masks in Figures J.1 and J.2. 

 

 



Appendix J 

191 

 

Figure J.4. Resulting mask from the sum of masks from experiments M_029_4, M_030_2, M_031_1 and 

M_031_3, with mask radius and weight equal to 2 pixels and 0.9, respectively. All experiences were performed with 

Image 3. 

 

 

Figure J.5. Resulting mask from the sum of masks from experiments M_031_1 and M_031_2, with mask radius 

and weight equal to 3 pixels and 0.9, respectively, and experiments M_031_3 and M_030_4, with mask radius and 

weight equal to 2 pixels and 0.9, respectively. All experiments were performed with Image 3. 
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Figure J.6. Resulting mask from the sum of the masks in Figures J.4 and J.5. 

 

 

 

 

Figure J.7. Resulting mask from the sum of masks from experiments M_033_1, M_033_3, M_033_4 and 

M_031_2, with mask radius and weight equal to 2 pixels and 0.9, respectively. All experiments were performed with 

Image 4. 
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Figure J.8. Resulting mask from the sum of masks from experiments M_031_1 and M_031_2, with mask radius 

and weight equal to 3 pixels and 0.9, respectively, and experiments M_031_3 and M_030_4, with mask radius and 

weight equal to 2 pixels and 0.9, respectively. All experiments were performed with Image 4. 

 

 

Figure J.9. Resulting mask from the sum of the masks in Figures J.7 and J.8. 
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Figure J.10. Resulting mask from the sum of masks from experiments M_033_1, M_032_2, M_032_3 and 

M_031_4, with mask radius and weight equal to 2 pixels and 0.9, respectively. All experiments were performed with 

Image 5. 

 

 

Figure J.11. Resulting mask from the sum of masks from experiments M_031_1 and M_031_2, with mask radius 

and weight equal to 3 pixels and 0.9, respectively, and experiments M_031_3 and M_030_4, with mask radius and 

weight equal to 2 pixels and 0.9, respectively. All experiments were performed with Image 5. 
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Figure J.12. Resulting mask from the sum of the masks in Figures J.10 and J.11. 

 

 

 

 

Figure J.13. Resulting mask from the sum of masks from experiments M_032_1, M_031_2 and M_032_3, with 

mask radius and weight equal to 2 pixels and 0.9, respectively, and experiment M_030_4, with mask radius and 

weight equal to 4 pixels and 0.9, respectively. All experiments were performed with Image 6. 
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Figure J.14. Resulting mask from the sum of masks from experiments M_031_1 and M_031_2, with mask radius 

and weight equal to 3 pixels and 0.9, respectively, and experiments M_031_3 and M_030_4, with mask radius and 

weight equal to 2 pixels and 0.9, respectively. All experiments were performed with Image 6. 

 

 

Figure J.15. Resulting mask from the sum of the masks in Figures J.13 and J.14. 
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Figure J.16. Resulting mask from the sum of masks from experiments M_032_1, M_031_2 and M_032_3, with 

mask radius and weight equal to 2 pixels and 0.9, respectively, and experiment M_030_4, with mask radius and 

weight equal to 4 pixels and 0.9, respectively. All experiments were performed with Image 7. 

. 

 

Figure J.17. Resulting mask from the sum of masks from experiments M_031_1 and M_031_2, with mask radius 

and weight equal to 3 pixels and 0.9, respectively, and experiments M_031_3 and M_030_4, with mask radius and 

weight equal to 2 pixels and 0.9, respectively. All experiments were performed with Image 7. 
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Figure J.18. Resulting mask from the sum of the masks in Figures J.16 and J.17. 
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