
Universidade do Minho

Escola de Engenharia

Tiago Costa Oliveira

Improving Web Authentication
with Keystroke Dynamics

Outubro de 2014

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Departamento de Informática

Tiago Costa Oliveira

Improving Web Authentication
with Keystroke Dynamics

Mestrado em Engenharia Informática

Trabalho realizado sob orientação de
Professor Doutor Henrique Manuel Dinis Santos

Outubro de 2014

Declaração

Nome
Tiago Costa Oliveira

Endereço electrónico
tiago.co@gmail.com

Telefone
966865492

Bilhete de Identidade
13246998

Título da Tese
Improving Web Authentication with Keystroke Dynamics

Orientador
Professor Doutor Henrique Manuel Dinis Santos

Ano de conclusão
2014

Designação do Mestrado
Mestrado em Engenharia Informática

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE APE-
NAS PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO
ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE.

Universidade do Minho, 31 de Outubro de 2014
Tiago Costa Oliveira

i

Resumo

O processo de autenticação é frequentemente referido como a parte mais
importante da segurança de um sistema informático. Normalmente, os uti-
lizadores identificam-se utilizando nome de utilizador e palavra-passe, mas
este mecanismo nem sempre é suficiente. Considerando serviços baseados na
web, ataques como phishing ou engenharia social podem facilmente levar ao
roubo de identidade. Para além disso, a utilização crescente de serviços de
single sign-on apresenta novos riscos e consequências deste tipo de ataques.
Nestas circunstâncias a autenticação forte é fundamental.
A autenticação forte é tipicamente implementada por meio de passos adi-
cionais de autenticação ou módulos de hardware especializado, o que não
é adequado a sistemas baseados na web. No entanto, biometrias podem ser
usadas para ultrapassar estas limitações. Mais especificamente, biometrias
comportamentais baseadas em padrões de digitação no teclado podem for-
necer um nível de segurança adicional, sem custo acrescido ou impacto na
experiência de utilização.
Este trabalho tem como objetivo avaliar a viabilidade da implementação de
autenticação forte na web usando dinâmica de digitação. Isto é conseguido
através da implementação de um protótipo sob a forma de uma aplicação
web, captura de dados de digitação e análise de vários algoritmos e métricas
de desempenho sobre os dados recolhidos.

ii

Abstract

Authentication is frequently referred as the most critical part of a computer
system security. Users commonly identify themselves using a combination
of username and password, but sometimes this is not enough. Concerning
web-based services, attacks like phishing or social engineering can easily result
in identity theft. In addition, the widespread use of single sign-on services can
seriously increase the consequences of such attacks. In these circumstances
strong authentication is mandatory.
Strong authentication is often implemented using additional authentication
steps or specialised hardware modules, which is not suitable for web-based
systems. However, biometrics can used to overcome these limitations. More
specifically, behavioural biometrics based on keyboard typing patterns can
provide an extra security layer on top of conventional authentication methods,
with no additional cost and no impact to the user experience.
This work aims to evaluate the feasibility of the implementation of strong
authentication on the web using keystroke dynamics. This is carried out
through the creation of a web application prototype, collection of a keystroke
dynamics dataset and analysis of various matching algorithms and performance
metrics on the collected data.

iii

Acknowledgements

I would like to express my sincere gratitude to Professor Henrique Santos,
for being my advisor and supporting me with great guidance and insight
through the course of this work. Also, a word of acknowledgement to the
test subjects that provided valuable and meaningful data to the keystroke
dynamics dataset; without their patience and diligent cooperation this work
would have never been done. Finally, I’m grateful to my family and Joana,
for all the love and support, and for not letting me give up on my master’s
degree.

iv

Contents

List of Figures viii

List of Tables ix

List of Acronyms x

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Research Methodology . 3
1.4 Document Structure . 3

2 Literature Review 4
2.1 Strong Authentication on the Web 4
2.2 Biometrics . 6

2.2.1 Physiological Biometrics 7
2.2.2 Behavioural Biometrics 8

2.3 Components of a Biometric System 8
2.4 Deployment on the Web . 10

2.4.1 Server Deployment . 10
2.4.2 Client Deployment . 11
2.4.3 Hybrid Deployment . 11

2.5 Performance Metrics . 11
2.6 Keystroke Dynamics . 13

2.6.1 Historical Context . 13

v

CONTENTS vi

2.6.2 Extracted Features . 14
2.6.3 Previous Studies and Results 16

3 Experimental Design 17
3.1 System Architecture . 18
3.2 Implementation . 19
3.3 Application and User Interaction 21

3.3.1 Registration . 21
3.3.2 Login . 23
3.3.3 Attack . 24

4 Experimental Results 27
4.1 Collected Data . 27
4.2 Matching Algorithms . 27
4.3 Performance Analysis . 29

4.3.1 Score Distributions and Error Rates 30
4.3.2 Comparison of Matching Algorithms 33

4.4 Template Updating . 34
4.5 Feature Vector Size . 34
4.6 Discussion of Results . 35

5 Conclusions and Future Work 37

A JavaScript Timestamp Resolution 39

B Comparison of Matching Algorithms 40

C Source Code 42

Bibliography 56

List of Figures

2.1 Knowledge-based authentication 5
2.2 Server-generated one-time password 5
2.3 Client-generated one-time password 6
2.4 Out-of-band authentication 6
2.5 Components and operation of a biometric system 10
2.6 Score distributions in a biometric system 12
2.7 Error rates and ROC curve of a biometric system 13
2.8 Relevant features in keystroke dynamics 15
2.9 Genuine and impostor input compared to the biometric template 15

3.1 Strong authentication with keystroke dynamics 18
3.2 Web application: Home page 21
3.3 Web application: Registration 22
3.4 Web application: Enrolment 22
3.5 Web application: Login (user authentication) 23
3.6 Web application: Login (matching score) 24
3.7 Web application: Attack (attacker identification) 25
3.8 Web application: Attack (enter victim’s credentials) 25
3.9 Web application: Attack (matching score) 26

4.1 EER calculation at existing and estimated points 30
4.2 Euclidean matcher: score distributions and error rates 31
4.3 Manhattan matcher: score distributions and error rates 31
4.4 Euclidean Scaled matcher: score distributions and error rates . 32

vii

LIST OF FIGURES viii

4.5 Manhattan Scaled matcher: score distributions and error rates 32
4.6 Comparison of matching algorithms: ROC and DET curves . . 33
4.7 Frequency of feature vector sizes in the captured data 35

List of Tables

2.1 Previous work on keystroke dynamics 16

3.1 Feature vector calculation based on keystroke timestamps . . . 20

4.1 Comparison of matching algorithms: EER 33
4.2 Comparison of EER, with and without template updating . . 34
4.3 Comparison of EER with different feature vector sizes 35

ix

List of Acronyms

KBA Knowledge-based Authentication

OTP One-time Password

OOB Out-of-band Authentication

HCI Human-Computer Interaction

FAR False Accept Rate

FRR False Reject Rate

TAR True Accept Rate

EER Equal Error Rate

ROC Receiver Operating Characteristic

DET Detection Error Trade-off

CER Crossover Error Rate

x

1
Introduction

1.1 Motivation

User authentication has always been a fundamental component of access
control. Nowadays, the Internet is the standard platform for communication
and a tremendous amount of sensitive data is transmitted between computer
systems. This makes the process of identity verification more important than
ever. However, basic username and password combination is used the same
way we did a decade ago.
Attacks like man-in-the-middle, phishing or social engineering can easily result
in identity theft [1]. This can lead to access to private information, exploitation
of trust relationships and other criminal activities. Furthermore, with the
widespread use of single sign-on services, where a single set of credentials
can authenticate users in multiple websites, consequences of identity theft
can be devastating [62]. Even though in most cases simple password-based
authentication will suffice, other environments like online commerce and
banking platforms can definitely benefit from strong authentication to ensure
proper protection of sensitive, private and confidential data.
Strong authentication doesn’t have a standard definition, but it generally
aims to deliver increased security beyond standard authentication methods.
It is often implemented with two-factor authentication and usually based

1

CHAPTER 1. INTRODUCTION 2

in knowledge or token-based approaches [14]. Although these methods can
effectively improve security in authentication, what is really validated are
passwords, tokens and keys. Also, user credentials can be stolen, lost, shared
or manipulated, resulting in compromised security [46, 26].
Biometrics can be used to overcome the limitations imposed by classical
solutions by allowing identity verification based on the user himself. Unfor-
tunately, authentication solutions based on biometrics may not always be
easily deployed, since most of them require specific hardware (e.g. fingerprint
reader).
Keystroke dynamics, a behavioural biometric, presents itself as a viable con-
tender to implement strong authentication on the web. It has the distinct
advantage of not requiring specific hardware, while maintaining the desir-
able properties of mainstream biometric solutions. Also, as we will explore
in this work, it can be seamlessly integrated with existing password-based
authentication.

1.2 Goals

This work aims to evaluate the viability of keystroke dynamics as a method for
implementing strong authentication on a web-based environment. It should
result in an implementation capable of enrolment and identity verification,
applying typing behaviour on top of basic username and password credentials.
Another goal of this study is to compare the performance of some classical
matching algorithms proposed by previous research. Although numerous
experiments have achieved encouraging results, there is significant variation
in the reported effectiveness, which makes it hard to assess the full potential
of keystroke dynamics as a biometric for authentication. We’ll also look at
how the number of characters and the application of adaptive techniques can
influence the performance of keystroke dynamics.
Finally, most studies on keystroke dynamics tend to use a single pass-phrase for
all users; this work’s experiment should account for individual authentication
credentials for every user, which is arguably a better representation of the
real world.

CHAPTER 1. INTRODUCTION 3

1.3 Research Methodology

The purpose of this work is to present a solution to the problem of im-
plementing strong authentication on the web, involving the specification,
implementation and performance analysis of a biometric system based on
keystroke dynamics.
A Design Science research methodology will be followed. We start by defining
the system requirements and functionality; specifying the general architecture,
design, and technical decisions. Then, a concrete implementation will be
made available to gather biometric data. Finally, using the collected data, the
system will be assessed in terms of performance and effectiveness as stated
by initial requirements, using known metrics and algorithms.

1.4 Document Structure

The remaining chapters of this document are organised as follows:

Chapter 2 presents the literature review, giving an overview of biometrics,
architecture and deployment on the web, evaluation metrics and previous
research on keystroke dynamics.

Chapter 3 outlines the experimental design, describing the architecture and
technologies used in the solution, collection of biometric data and extraction
of biometric features.

Chapter 4 covers the experimental results, outlining performance measure-
ments and comparison of some matching algorithms.

Chapter 5 draws some general conclusions about this work and presents
considerations on further research on keystroke dynamics as a method for
authentication within web applications.

2
Literature Review

2.1 Strong Authentication on the Web

Strong authentication, while not being a strictly defined procedure, is gener-
ally accepted as a process of authentication which provides validation beyond
conventional methods. Regardless of it’s fuzzy definition, strong authentica-
tion is even an official recommendation regarding payments on the Internet [7].
Typical implementations are based on some form of multi-factor authentica-
tion, carried out with a compound implementation of two or more classes of
human authentication factors [46, 44, 14, 38]:

Knowledge based. Something only known to the user and the target
machine, like a password, shared secret or PIN.

Possession based. Something held by the user, like a security token, smart
card or mobile device.

Biometric based. Something inherent to the user himself, a biological or
behavioural trait like facial features, fingerprint or keyboard typing rhythm.

When implementing strong authentication on the web, there are some dis-
tinctive factors that must be taken into account. Most notably, the entire
process is frequently performed from a remote location, using a web browser
with limited access to the user’s environment and hardware. Currently, some

4

CHAPTER 2. LITERATURE REVIEW 5

common protocols are used to carry out this implementation [37, 14, 24]:

Knowledge-based Authentication (KBA). Typically implemented with
some additional challenge-response requests, allowing the user to prove the
claimed identity based on user-specific keys. Some online banking systems use
this method to validate transactions. The interaction between user, browser
and server is illustrated in figure 2.1.

Browser Server
1

2
1

2
3 3

Figure 2.1: Knowledge-based authentication

Server-generated One-time Password (OTP). As depicted in figure 2.2,
after the usual password-based authentication, a randomised key is generated
on the server and delivered to the user via SMS or another channel other
than the web browser. The user then sends the key back to the server. This
method is also frequently used in online banking, usually in the form of an
SMS token.

Browser

Server

External
Channel

3
1 1

3

22

Figure 2.2: Server-generated one-time password

Client-generated OTP. Similar to server-generated OTP, the only differ-
ence being that the OTP is completely generated on the client side, as shown
in figure 2.3. For instance, mobile devices can incorporate individualised
cryptographic software to generate time-based or event-based keys.

CHAPTER 2. LITERATURE REVIEW 6

Browser

Server

External
Channel

3
1 1

3

2

Figure 2.3: Client-generated one-time password

Out-of-band Authentication (OOB). As presented in figure 2.4, the
second authentication factor is verified completely out of the domain of the
first (the web browser). Typical implementations include speech recognition
via voice calls or KBA via SMS on the external channel.

Browser

Server

External
Channel

1 1

22

Figure 2.4: Out-of-band authentication

As shown, current approaches mainly rely on knowledge or token-based
solutions, leaving the domain of biometrics under-explored as a method to
implement strong authentication in distributed and web-based environments.

2.2 Biometrics

A biometric system is no more than a pattern recognition system that identifies
a user based on his own characteristics. Users are mostly recognised by what
they are rather than what they know or possess. Any trait can be used as a
biometric, as long as it satisfies some requirements [16, 26, 53, 61]:

Universality. Every individual should possess the trait. The lack of univer-
sality may render a biometric modality not useful for a particular part of the
population.

Distinctiveness. The given characteristic should be sufficiently different
across individuals of the population, no two should have the exact same trait.

CHAPTER 2. LITERATURE REVIEW 7

Stability. The biometric trait should present little variation over a given
period of time with respect to the matching algorithm.
Collectability. It should be possible to collect the biometric data. Also,
collected measurements should be computationally tractable in terms of
processing and feature extraction.
Performance. The accuracy, speed or resource restrictions imposed by the
application should be met.
Acceptability. Users that will use the application should be willing to
present their biometric trait to the system. Ideally, biometric techniques
should be non-intrusive and require minimum user intervention in order to
achieve good acceptability [57].
Circumvention. The given trait should be robust enough against spoofing
and other fraudulent methods.

However, no biometric system is expected to be perfect and no requirement is
completely mandatory. Depending on the underlying biometric trait and the
specific implementation, some of these features will be more strictly met than
others. Also, the relevance of the requirements may vary depending on the
application [26]. For instance, a biometric system based on retinal scan will
be highly accurate while also suffering from low acceptability due to being
intrusive to the users [28]; yet this can be a reasonable compromise in an high
security environment.
In terms of classification, biometrics are traditionally grouped into two broad
categories: physiological and behavioural [64, 27, 61].

2.2.1 Physiological Biometrics

Physiological biometrics is the class of traits based on a person’s unique
physical characteristics. This type of biometrics is well established and
subject to the majority of research. Well known examples include fingerprint,
hand geometry, face, iris and retina. Some of these traits are incredibly
reliable, as they change very little over time; however specialised hardware is
often required to perform measurements and gather data from the associated
body structure (e.g. fingerprint reader, iris scanner).

CHAPTER 2. LITERATURE REVIEW 8

2.2.2 Behavioural Biometrics

Behavioural biometrics are the ones based on human behaviour. This type of
biometrics is usually less established, however behavioural traits present a
number of advantages over their physiological counterpart. In most cases, data
collection can be performed without specialised hardware and with minimal
or no intervention from the user, enabling cost effective and non-intrusive
solutions [64, 61, 45, 40]. While most behavioural biometrics are not as precise
as the best known physiological ones, they have been shown to be reliable
enough to implement identity verification [61]. Behavioural biometrics are
particularly useful in situations where user actions need to be monitored, as
in surveillance applications. Examples of behavioural biometrics include gait,
mouse dynamics, keystroke dynamics and handwriting.
Behavioural biometrics can be further separated into five categories [64, 61]:

Human-Computer Interaction (HCI). Based on the analysis of the
interaction with input devices such as mouse or keyboard.

Indirect HCI. Related to the low level actions of computer software, trig-
gered by unconscious user actions during system usage. These can include
kernel function calls, logs or storage activity.

Motor skills. Probably the most studied type of behavioural biometrics. It
is based on the the analysis of the user’s muscle and joint movements while
performing a given task.

Purely behavioural. This type of behavioural biometric is based on direct
behaviour evaluation, not relying on indirect measurements like muscle activity
or user movements. This can measure how strategies are employed to resolve
some tasks or the way an individual grips a tool.

2.3 Components of a Biometric System

A biometric system is usually composed by four main components [16, 4, 26]:

Sensor module. This module defines the human-machine interface in which
raw biometric data is acquired. Depending on the biometric trait being

CHAPTER 2. LITERATURE REVIEW 9

measured, different types of scanning devices can be required. Some care
should be taken with data acquisition, as noise or bad reading quality can
lead to degraded accuracy on user authentication.

Feature Extraction module. Given the raw data is acquired on the sensor
module, this module is responsible for processing and extracting a meaningful
representation that describes the underlying trait.

Matching module. In this module, extracted feature sets are compared
against those stored in a template database, using a classifier or matching
algorithm, ranging from statistical to machine learning approaches. Ultimately,
this process results in a matching score, that represents a similarity measure
between the extracted features and the ones previously stored in the database.

Decision module. Given the matching score and a decision threshold, this
module is responsible for either accepting or rejecting the claimed user identity,
based on the matching score and a predefined threshold.

Some works consider the matching and the decision modules as a single
component [28, 40], however it’s often convenient to treat them as separate
modules, for instance when dealing with multiple biometric traits [28, 54, 65].
More detailed architectural descriptions also include quality assessment and
enhancement modules [27].
User’s first contact with a biometric system is usually the enrolment phase,
which is the process of registering the user in the system. During enrolment,
biometric information is stored in a database; this information is typically
referred as the template. Subsequent usage of the biometric system makes
use of this template database to authenticate the user. Depending on the
application context, a biometric system may operate in two modes: verification
and identification [26, 28, 44]. In verification mode, the user claims an
identity (e.g. through a username) that is checked by comparison of the
captured biometric data against the templates associated with that identity.
In identification mode, the system tries to establish the user identity by
searching all users in the database for a match. For the purpose of this work,
we’ll be considering a biometric system in terms of identity verification.

CHAPTER 2. LITERATURE REVIEW 10

Figure 2.5 shows a summarised view of the four main modules and their
interaction with user input and the template database, both in enrolment
and identity verification.

Sensor
Feature

Extraction
Matcher Decision

Template
Database

Enrolment

Verification

Figure 2.5: Components and operation of a biometric system

2.4 Deployment on the Web

Concerning deployment, a web-based solution is naturally split between
client and server. Given the modular architecture of a biometric system,
we can consider some alternative configurations. Generally, deployment
strategies can be classified as Server Deployment, Client Deployment or
Hybrid Deployment [40].

2.4.1 Server Deployment

With this configuration almost everything is placed on the server side, only
the sensor module is on the client. Raw biometric data is acquired on the
client and sent to the server, where feature extraction, matching and decision
take place.
Theoretically, a server deployment strategy has the advantage that system
updates (e.g. changing the extracted features or the matching algorithm) are
only required on the server side, given that almost no functionality is on the
client. However, this is not a real advantage in a web-based system, since
the authentication client is not a static application, but a web page that is
downloaded every time the user connects to the system. This means that
client code can be updated as easily as server code. Also, this alternative has

CHAPTER 2. LITERATURE REVIEW 11

the drawback of requiring more data and more computation being handled
on the server.

2.4.2 Client Deployment

This deployment option places all the modules are on the client. Feature
extraction, matching score calculation and decision are performed on the
client side; only the template database is placed on the server.
Unless the client is some tamper resistant device (which usually is not), client
deployment may not be of much use in the context of authentication on the
web. In this scenario the decision on the identity verification is processed
on the client, which makes identity theft a trivial task. Even if the decision
module is placed on the server, the user can always tamper with matching
results before sending to the server. As referred in Huang et al. [24], the client
application should be as light as possible, since the attacker can be the client
itself.

2.4.3 Hybrid Deployment

In this deployment strategy only the sensor and feature extraction modules
are on the the client side. Feature extraction is performed on the client and
then sent to the server, which takes care of matching and decision.
Hybrid deployment is the middle ground between Server Deployment and
Client Deployment. Computational costs are more balanced between client
and server and communication overhead is lower than in server deployment,
but without compromising security.

2.5 Performance Metrics

Unlike in password-based authentication, biometrics have no perfect match;
users are authenticated or rejected depending on the degree of similarity
between the supplied biometric values and the ones stored in the template
database. Matching scores are calculated by the matching module and a score

CHAPTER 2. LITERATURE REVIEW 12

threshold is defined in order to distinguish between genuine and impostor
authentication attempts. However, as shown in figure 2.6, genuine and
impostor score distributions are not totally separated; fake identities can be
incorrectly accepted and genuine identities incorrectly rejected.

Matching score

P
r
o
b
a
b
i
l
i
t
y

Genuine
Impostor
Threshold
False Reject
False Accept

Figure 2.6: Score distributions in a biometric system

Given these properties, some performance metrics are commonly used to
evaluate the effectiveness of a biometric system [44, 16, 53, 43, 27]:

False Accept Rate (FAR). Represents the rate at which the system
incorrectly accepts an invalid match for all threshold values. At any given
threshold, it’s the percentage of invalid inputs which are incorrectly accepted
or the probability that an impostor will be accepted. It’s symmetric value is
the True Accept Rate (TAR), also commonly represented as 1-FRR.
False Reject Rate (FRR). Represents the rate at which the system incor-
rectly rejects a valid match for all threshold values. At any given threshold, it’s
the percentage of valid inputs which are incorrectly rejected or the probability
that a genuine user will be rejected.
Equal Error Rate (EER). Sometimes also referred as Crossover Error
Rate (CER), it’s the point at which FAR and FRR are the same. It can be
easily obtained from the intersection of FAR and FRR curves and it’s often
used as a single indicator of the system performance [42, 15]. In general, best
performing systems have lower EER, however this value may often not be a
region of interest when establishing a decision threshold.
Receiver Operating Characteristic (ROC). A representation of the
overall system accuracy, presenting the trade-off between FAR and TAR.

CHAPTER 2. LITERATURE REVIEW 13

This representation is usually more useful than the EER alone and a good
method of comparing different systems or different matching algorithms for
the same system. In general, a larger area under the curve describes a system
with better performance.
Detection Error Trade-off (DET). Similar to ROC, represents the trade-
off between FAR and FRR, usually plotted on a logarithmic scale. Although
containing exactly the same data, this representation can be useful in high-
lighting some details that may not be perceived form the ROC curve.

For some arbitrary score distributions, figure 2.7 shows the graphical repre-
sentation of FAR and FRR curves, the corresponding ROC curve and how
the EER point can be obtained from both representations.

Score threshold

E
r
r
o
r

r
a
t
e

FRR
FAR

FAR

1
-
F
R
R

ROC

Figure 2.7: Error rates and ROC curve of a biometric system

2.6 Keystroke Dynamics

2.6.1 Historical Context

The original concepts behind keystroke dynamics have been around since the
World War II, where messages were transmitted using Morse code. With
experience, telegraph operators developed a unique rhythm of dots and dashes
known as the “fist of the sender”. This signature was often used by military
intelligence to help distinguish allies from enemies [12]. In modern terms,
keystroke dynamics can defined as the biometric which uses the keyboard
typing behaviour to identify or authenticate an individual.

CHAPTER 2. LITERATURE REVIEW 14

Pioneering studies on the applicability of keystroke dynamics were carried out
by Forsen et al. [18] in 1977 and Gaines et al. [19] in 1980. In the first, a small
group of subjects was asked to type their own and each others’ names; their
results suggested that individuals typing their own name can be distinguished
from others typing the same name. In the later, seven subjects typed multiple
sentences (around 5000 characters in total) in two sessions; the developed
statistical classification method was able to perfectly distinguish the typing
behaviour of all subjects. Since then, a substantial amount of research has
been done in this field, presenting a wide variety of classification techniques.
Many of these were compiled and compared in survey studies composed during
the last decade, most notably the works of Peakcock et al. [42], Killourhy and
Maxion [33], Shanmugapriya and Padmavathi [58], Crawford [15], Karnan et
al. [30], Banerjee et al.[6] and Teh et al.[59].
Proposed classification algorithms range from purely statistical methods to
neural networks, pattern recognition and hybrid approaches. In terms of
data collection, studies are further separated into two broad categories: small
password-like strings (as in Forsen et al. [18]) and long free-form typing
samples (as in Gaines et al. [19]). More recently, also mobile, touch-enabled
and pressure-sensitive devices have been successfully used to implement and
augment keystroke dynamics solutions [25, 56, 3, 2].

2.6.2 Extracted Features

Typing behaviour can only be analysed when transformed into biometric
features. The calculation of these features is based on the duration of various
keystroke events of one or more keys, as presented in figure 2.8 (adapted from
Moskovitch et al. [40]):

Interval. Time between the key-up event of one key and the key-down event
of the following key. Despite the visual representation, it’s possible that the
key-down event of the second key happens before the key-up event of the first
key, resulting in a negative value.

Dwell time. Time between the key-down and key-up events of a given key
(i.e. the key press duration).

CHAPTER 2. LITERATURE REVIEW 15

Latency. Time between the key-down event of the one key and the key-up
event of the following key.

Flight time. Time between key-down events of consecutive keys.

Up to up. Time between key-up events of consecutive keys. As with interval,
this feature can have a negative value.

time

A B

Interval

A

Dwell Time

A B

Latency Flight Time

A B

Up to Up

A B

Figure 2.8: Relevant features in keystroke dynamics

Given a sequence of characters and the corresponding keystroke events, the
above-mentioned features can be extracted from all keys or key pairs (de-
pending on the feature) and combined in the form of a feature vector. Not
all features are required to be part of the feature vector; if fact a feature
vector can be composed of just one feature type. Once created, this vector is
matched against a template vector using a matching algorithm.
Figure 2.9 offers a visual representation of and hypothetical template and
genuine and impostor feature vectors. If we consider the matching algorithm to
be a distance metric and the feature vector to be a point in the n-dimensional
space (n equal to the size of the feature vector), genuine and impostor vectors
can be classified by calculating the corresponding distance to the template
vector (with smaller distance implying higher validation).

p a s s w o r d

D
w
e
l
l

t
i
m
e template

genuine
impostor

Figure 2.9: Genuine and impostor input compared to the biometric template

CHAPTER 2. LITERATURE REVIEW 16

2.6.3 Previous Studies and Results

Table 2.1 shown some previous results on keystroke dynamics. As we can see,
there are widely disparate results across studies, even when considering the
ones within the same classifier. As noted by Killourhy [32], other factors can
influence results besides the classifier. Most of keystroke dynamics evaluations
involve additional steps, like choice of users, design of typing tasks, collection
of keystroke timings and feature selection and extraction. At every step
decisions are made, which ultimately determines how a dataset is constructed
and performance is evaluated. As such, it’s very hard to compare different
studies, unless those are performed over a common dataset and other variables
are taken into account.

reference features classifier subjects
error rates (%)

FAR FRR EER

Gaines et al. [19] I Statistical 7 - - -
Joyce and Gupta [29] I Statistical 33 0.25 16.36 -

Bleha et al. [10] L Statistical 26 2.8 8.1 -
Bleha and Obaidat [9] L ANN 24 8 9 -

Obaidat and Sadoun [41] L ANN 15 0 0 -
Cho et al. [13] I + DT ANN 21 1 0 -

Revett et al. [51] DT + FT Statistical 43 - - 5.58
Araujo et al. [5] I + DT + FT Statistical 30 1.89 1.45 -

Revett et al. [52] DT + FT ANN 50 - - 4
Killourhy and Maxion [33] I + L + DT Statistical 51 - - 9.6
Killourhy and Maxion [34] L + DT Statistical 50 - - 7.2

Xi et al. [63] L Statistical 205 1.65 2.75 -
Li et al. [36] L + DT SVM 117 - - 11.83

Table 2.1: Previous work on keystroke dynamics1

1 I = interval; L = latency; DT = dwell time; FT = flight time; ANN = neural
network; SVM = support vector machine.

3
Experimental Design

In order to carry out this experiment, a biometric system was implemented
from scratch in the form of an interactive web application. This system
allows users to register, authenticate and also attack other users. At each
step, biometric data is captured and stored for further analysis with different
scenarios and matching algorithms, that will be presented in chapter 4.
Given this work’s focus on web-based authentication, behavioural biometrics
(more specifically HCI) was a natural choice for this particular purpose. Given
that web browsers usually have limited access to resources and devices from
the operating system, using conventional and largely available input devices
can simultaneously provide a seamless experience to the user and be very cost
effective in terms of implementation. As such, the implemented system was
based on keystroke dynamics, in which the user’s typing behaviour is used as
a biometric identifier.
Although some keystroke dynamics datasets are publicly available, most
of these use a single password or pass-phrase for all users [39, 20, 33, 8].
This kind of experiment has the advantage that attack data for a given user
can be derived from login data of all other users, however this is also not
representative of most real-world environments. The lack of public datasets
with differentiated credentials constitutes the motivation for building a new
system, in which users are allowed to choose their own set of credentials.

17

CHAPTER 3. EXPERIMENTAL DESIGN 18

Nonetheless, this approach also introduces new challenges, given that attack
data must be explicitly collected and variability in user credentials must be
accounted for in performance evaluation.

3.1 System Architecture

The implemented system was structured following an hybrid approach, as
described in section 2.4.3. Using this deployment configuration both data
collection and feature extraction take place on the client side. The user
provides input (username and password) via keyboard, biometric data is
recorded while the user interacts with the system, and both are sent to the
server. On the server side, authentication credentials are verified and biometric
features are matched against the biometric template. The user identity is
confirmed only if the system validates both authentication factors.
Unlike other alternatives presented in section 2.1, the user provides a single
input and biometric data is calculated on the client side according to the
user’s typing behaviour. As portrayed in figure 3.1, this is a simpler form of
interaction, completely transparent to the user, but still providing the benefits
of multi-factor authentication.

Browser Server1
1

2

Figure 3.1: Strong authentication with keystroke dynamics

From the possible features presented in section 2.6, dwell time and interval
were chosen to create a biometric representation of the user input. The
motivation for this choice is that these features are enough to characterise
the whole typing behaviour. All other features can be derived from these two,
meaning that the inclusion of more features would only introduce complexity
(a larger feature vector) without additional information. This choice is similar
to other studies, in which at most three biometric features were used.

CHAPTER 3. EXPERIMENTAL DESIGN 19

3.2 Implementation

Given the hybrid deployment approach, the system implementation has also
been partitioned between client and server. The client-side was implemented
as a web application written in HTML, CSS and JavaScript, while the server-
side was implemented in Python, using the Django framework and an SQLite
database. Special attention was taken on the implementation of the client-side
application, which was required to be functional, accessible and capable of
collecting the intended data.
Biometric data collection takes place while the user is typing the login cre-
dentials; at each key press both key-up and key-down timestamps are stored.
When the user submits the credentials a feature vector is automatically derived
from the recorded timestamps and also submitted to the server. Table 3.1
presents an example of how interval and dwell time values are calculated from
the user input. For any given set of credentials, the resulting feature vector
size is given by UL ∗ 2 + PL ∗ 2− 2, where UL is the username length and
PL is the password length.
In order to collect keystroke timestamps and calculate the corresponding
feature vector, JavaScript was a natural choice, since it’s readily available in all
modern browsers. The main concern regarding JavaScript was the resolution
of timestamp measurements. To assess the viability of a JavaScript-based
implementation a small test was performed in multiple browsers and operating
systems; the duration of random events (between 0 and 50 milliseconds) was
registered and plotted in the form of an histogram. As we can see from
appendix A, most browsers have at least a 1 millisecond resolution, while
others present a resolution of around 15 milliseconds, which is shown by the
clustering of values around multiples of 15. This disparity is in fact caused
by the clock resolution on Microsoft Windows [49, 35, 60].
Although 15 milliseconds is far from negligible, JavaScript has already been
used with success on the collection of a keystroke dynamics dataset [8].
Killourhy and Maxion [31] further investigated this matter, concluding that
compared to an high-resolution clock (200 microsecond), a standard clock
(15 millisecond) clock will result in a relative penalty of 4.2% in terms of

CHAPTER 3. EXPERIMENTAL DESIGN 20

EER. Other implementation alternatives could certainly yield better accuracy
on timestamp measurements, like building a desktop application or using
Flash or Java Servlets. However, this would also force users to install custom
browser plugins or runtime enviroments, decreasing accessibility and ultimately
hindering participation on this study. Given these findings, and for the purpose
of this work, JavaScript was considered to be the best compromise between
all the above-mentioned requirements.

key
key-down
timestamp

key-up
timestamp

feature
vector

K 1412810060936 1412810060944 8
: - - 8
D 1412810060952 1412810061016 64
: - - 56
U 1412810061072 1412810061136 64
: - - -8
S 1412810061128 1412810061216 88
: - - 120
E 1412810061336 1412810061448 112
: - - -64
R 1412810061384 1412810061488 104

K 1412810062544 1412810062608 64
: - - -8
D 1412810062600 1412810062664 64
: - - 80
S 1412810062744 1412810062840 96
: - - 96
E 1412810062936 1412810063008 72
: - - 96
C 1412810063104 1412810063192 88
: - - 144
R 1412810063336 1412810063424 88
: - - -56
E 1412810063368 1412810063480 112
: - - 48
T 1412810063528 1412810063608 80

Table 3.1: Feature vector calculation based on keystroke timestamps

CHAPTER 3. EXPERIMENTAL DESIGN 21

3.3 Application and User Interaction

As shown in figure 3.2, the client-side application allows users to either register,
login or attack other users. In every page, and as mentioned in section 3.1,
collection of biometric data, feature extraction and connection with the server
is automatically handled in the background using JavaScript. In case the
user provides an invalid input or deletes some content, text areas are reset so
biometric data can be collected from a clean state.

Figure 3.2: Web application: Home page

3.3.1 Registration

On registration, depicted in figure 3.3, users are asked to provide their chosen
credentials. The only restriction being a minimum size of four characters for
username and eight characters for password, which translates to a feature
vector size of at least 22, as described in section 3.2.
The enrolment phase (figure 3.4) is also part of the registration process, in
which users are required to enter those credentials ten more times. This
procedure allows the system to establish a biometric profile and create a
template database for each user. At each enrolment step, input is checked,
keystroke timestamps are captured and feature vectors are calculated.

CHAPTER 3. EXPERIMENTAL DESIGN 22

Figure 3.3: Web application: Registration

Figure 3.4: Web application: Enrolment

CHAPTER 3. EXPERIMENTAL DESIGN 23

3.3.2 Login

After registration, users can provide login data to the system. On the login
page, as shown in figure 3.5, the user only needs to present username and
password, like with any standard login form.
Once the login information is submitted, the server-side application checks the
provided input. In case the credentials don’t match to the registered username
and password, the user is sent back to the login page with an error message.
Otherwise the login is considered valid and the corresponding feature vector
is stored in the database.
Upon a successful login, the user is also presented with a matching score
(figure 3.6), calculated against the corresponding template database. This
score is computed using a simple matching algorithm based on the Euclidean
distance, and transformed to a percentage value, relative to empirically chosen
threshold points. The calculated score is not stored by the system; being it’s
sole purpose to provide feedback on the input and keep users engaged in the
task of providing data to the system.

Figure 3.5: Web application: Login (user authentication)

CHAPTER 3. EXPERIMENTAL DESIGN 24

Figure 3.6: Web application: Login (matching score)

3.3.3 Attack

In addition to providing login data, users can also attack other users. On the
attack page, as shown in figure 3.7, the first step is to identify the attacker.
Once the attacker is identified, the server-side application picks another user
as the victim, providing his login credentials, as shown in figure 3.8.
Attacker identification serves two main purposes: avoid that a user attacks
himself and that the same attacker is repeatedly assigned to the same victim.
In order to take these restrictions into account and to evenly distribute attacks,
two rules are considered when choosing a victim:

• From all other users that the current user has not attacked yet, pick the
one that has been attacked the least.

• If the current user has attacked all other users, pick the one that has been
attacked the least.

Once the attacker submits data to the server, credentials are checked and
the corresponding feature vector is stored as an attack vector for the victim.
As in the login page, the attacker is also presented with a matching score
(figure 3.9), computed against the victim’s template database, using the same
matching algorithm and threshold points.

CHAPTER 3. EXPERIMENTAL DESIGN 25

Figure 3.7: Web application: Attack (attacker identification)

Figure 3.8: Web application: Attack (enter victim’s credentials)

CHAPTER 3. EXPERIMENTAL DESIGN 26

Figure 3.9: Web application: Attack (matching score)

4
Experimental Results

4.1 Collected Data

Data was gathered over the course of approximately 2 months, from 31 distinct
users. Test subjects provided input to the system at their own discretion
and without supervision. Other than the 10 initial templates captured in
the enrolment phase, 402 logins and 730 attacks were collected. In terms of
demographics, participants were mainly males, university students in the area
of computer science.
Given that users used the web application at will, there was great variation
on the quantity of inputs obtained per user. Some users provided just 5 logins,
while others contributed with 20 or more. Regarding attack data, it was more
evenly distributed across users, since the attack target selection was made by
the application, as explained in section 3.3.
The collected data was anonymised and made available in JSON format, in
http://www.alunos.di.uminho.pt/~pg15384/kd.data.json.

4.2 Matching Algorithms

After collection of login and attack data, the system performance was evaluated
using four simple statistical matching algorithms, based on the Euclidean

27

http://www.alunos.di.uminho.pt/~pg15384/kd.data.json

CHAPTER 4. EXPERIMENTAL RESULTS 28

and Manhattan distance metrics and their scaled variants. These are classical
distance metrics, used as matching algorithms in previous studies on keystroke
dynamics and other biometrics [66, 10, 29, 11, 5, 55].

Euclidean matcher. This matching algorithm is the direct application of
the Euclidean distance in the n-dimensional space:

S = 1
n

√√√√ n∑
i=1

(x̄i − vi)2 (4.1)

where v is the feature vector provided to the system, x̄ is the average feature
vector from the template database of the target user, n is length of v and S

is the matching score.

Manhattan matcher. This matching algorithm is the direct application of
the Manhattan distance in the n-dimensional space:

S = 1
n

n∑
i=1
|x̄i − vi| (4.2)

where v is the feature vector provided to the system, x̄ is the average feature
vector from the template database of the target user, n is length of v and S

is the matching score.

Euclidean Scaled matcher. This matching algorithm is similar to the
Euclidean matcher; in addition each sub-distance is divided by the mean
absolute deviation of it’s corresponding feature:

S = 1
n

√√√√ n∑
i=1

(x̄i − vi)2

di

(4.3)

where v is the feature vector provided to the system, x̄ is the average feature
vector from the template database of the target user, n is length of v, d is
the mean absolute deviation vector of v and S is the matching score.

Manhattan Scaled matcher. This matching algorithm is similar to the
Manhattan matcher; in addition each sub-distance is divided by the mean

CHAPTER 4. EXPERIMENTAL RESULTS 29

absolute deviation of it’s corresponding feature:

S = 1
n

n∑
i=1

|x̄i − vi|
di

(4.4)

where v is the feature vector provided to the system, x̄ is the average feature
vector from the template database of the target user, n is length of v, d is
the mean absolute deviation vector of v and S is the matching score.

4.3 Performance Analysis

To take the variation of user’s contributions into account, score and error
distribution were first normalised for each user, and only then added together
to calculate distributions and errors for the whole system. This method
prevented the overall performance score from being biased towards the users
with most contributions. Also, in order to accommodate temporal changes in
the user’s typing behaviour a simple template update strategy was used: on
every successful login, the oldest feature vector was discarded and replaced
by the new one. This approach has also been used in other studies [23, 50].
In practice, matching scores and error rates are not continuous distributions,
so an intersection point did not always exist between FAR and FRR curves.
As shown in figure 4.1 and following the procedure described in Petrovska et
al. [43], the EER value was calculated as

EER =

F RR(t1)+F AR(t1)

2 if FRR(t1)− FAR(t1) ≤ FRR(t2)− FAR(t2)
F RR(t2)+F AR(t2)

2 otherwise
(4.5)

where

t1 = max
t∈T
{t|FAR(t) ≤ FRR(t)} , t2 = min

t∈T
{t|FAR(t) ≥ FRR(t)}

and T is the set of threshold values that was used in the calculation of score
distributions.

CHAPTER 4. EXPERIMENTAL RESULTS 30

(a) EER point exists (b) EER estimated at t1 (c) EER estimated at t2
tEER

FRR(t) FRR(t)

t1 t2 t1 t2

EER

FAR(t)

EER

FAR(t)

EER

FRR(t)

FAR(t)

Figure 4.1: EER calculation at existing and estimated points

Given that the analysed matching algorithms are fundamentally distance mea-
surements, lower scores denote higher validation. As such, score distributions
and error rates are flipped on the score axis, compared to the description
presented in section 2.5 (i.e. genuine scores on the left and impostor scores on
the right). This is however just a matter of visual representation, and makes
no difference when calculation the EER point or the ROC and DET curves.

4.3.1 Score Distributions and Error Rates

Regarding score distributions, all presented a roughly log-normal shape, with a
long tail toward less accurate scores. This characteristic has also been observed
by Montalvão and Freire [39] when analysing keystroke timing histograms.
The Euclidean matcher had an EER value of 24.9% (figure 4.2) and the
Manhattan matcher an EER of 15.7% (figure 4.3). Using these matching
algorithms, genuine and impostor score distributions presented a large area
of intersection, which consequently lead to high EER values.
By contrast, the scaled variants presented a much smaller area of intersection
between genuine and impostor scores, resulting in lower EER values. The
Euclidean Scaled matcher presented an EER of 9.6% (figure 4.4) and the
Manhattan Scaled matcher achieved the best overall performance, with an
EER of 5.4% (figure 4.5).

CHAPTER 4. EXPERIMENTAL RESULTS 31

0.00

0.05

0.10

0.15

0.20

0.25

0.30
F
r
e
q
u
e
n
c
y

Genuine
Impostor

Score
0.0

0.2

0.4

0.6

0.8

1.0

E
r
r
o
r

r
a
t
e

EER=24.9%
FRR
FAR

Figure 4.2: Euclidean matcher: score distributions and error rates

0.00

0.05

0.10

0.15

0.20

0.25

0.30

F
r
e
q
u
e
n
c
y

Genuine
Impostor

Score
0.0

0.2

0.4

0.6

0.8

1.0

E
r
r
o
r

r
a
t
e

EER=15.7% FRR
FAR

Figure 4.3: Manhattan matcher: score distributions and error rates

CHAPTER 4. EXPERIMENTAL RESULTS 32

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
F
r
e
q
u
e
n
c
y

Genuine
Impostor

Score
0.0

0.2

0.4

0.6

0.8

1.0

E
r
r
o
r

r
a
t
e

EER=9.6%
FRR
FAR

Figure 4.4: Euclidean Scaled matcher: score distributions and error rates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
r
e
q
u
e
n
c
y

Genuine
Impostor

Score
0.0

0.2

0.4

0.6

0.8

1.0

E
r
r
o
r

r
a
t
e

EER=5.4%

FRR
FAR

Figure 4.5: Manhattan Scaled matcher: score distributions and error rates

CHAPTER 4. EXPERIMENTAL RESULTS 33

4.3.2 Comparison of Matching Algorithms

The comparison between matching algorithms was done using the EER as an
overall performance indicator and the ROC and DET curves as a measurement
of the trade-off between error rates. Table 4.1 summarises this experiment’s
results in terms of EER, while figure 4.6 shows a graphical overlap between
the ROC and DET curves of the four matching algorithms. Appendix B also
presents a detailed representation of this comparison in terms of ROC and
DET curves.

matcher EER (%)

Euclidean 24.9
Manhattan 15.7
Euclidean Scaled 9.6
Manhattan Scaled 5.4

Table 4.1: Comparison of matching algorithms: EER

0.0 0.2 0.4 0.6 0.8 1.0
FAR

0.0

0.2

0.4

0.6

0.8

1.0

1
-
F
R
R

Euclidean

Manhattan

Euclidean Scaled

Manhattan Scaled

10-3 10-2 10-1 100
FAR

10-3

10-2

10-1

100

F
R
R

Figure 4.6: Comparison of matching algorithms: ROC and DET curves

CHAPTER 4. EXPERIMENTAL RESULTS 34

4.4 Template Updating

Biometric information can change over time. This can happen with any kind
of biometric trait, but it’s specially relevant in the domain of behavioural
biometrics [17, 48]. In this case, as users become more accustomed to typing
a set of credentials, their behaviour changes. To accommodate these temporal
variation and prevent ageing of the user’s biometric information, a template
update strategy was used, as described in section 4.3.
In order to evaluate the impact of template updating in the overall system
accuracy, score calculation was also performed without template updates,
relying on the 10 original samples as the user’s template information. Table 4.2
compares EER values with and without template updating.

matcher

template update
EER (%)

yes no

Euclidean 24.9 26.8
Manhattan 15.7 16.9
Euclidean Scaled 9.6 12.4
Manhattan Scaled 5.4 7.8

Table 4.2: Comparison of EER, with and without template updating

4.5 Feature Vector Size

As a side effect of allowing users to choose their own authentication credentials,
feature vectors of multiple sizes were part of the dataset, as presented in
figure 4.7. This was also an opportunity to evaluate how the size of the feature
vector can influence the system performance in terms of EER.
In order to verify how the size of the feature vector can interfere with matching
results, users were split into two groups. Discarding the 8 users with a feature
vector of size 30 (the median), 12 users with a shorter feature vector (≤ 28)
and 11 users with a longer feature vector (≥ 32) remain. Table 4.3 shows a

CHAPTER 4. EXPERIMENTAL RESULTS 35

comparison of the EER values, between the full set of users, users with short
feature vector and users with long feature vector.

22 24 26 28 30 32 34 36 38
Feature vector size

1
2
3
4
5
6
7
8

F
r
e
q
u
e
n
c
y

Figure 4.7: Frequency of feature vector sizes in the captured data

matcher

feature vector size
EER (%)

all
[22-38]

short
[22-28]

long
[32-38]

Euclidean 24.9 28.2 21.1
Manhattan 15.7 21.3 9.4
Euclidean Scaled 9.6 10.2 6.4
Manhattan Scaled 5.4 7.6 3.7

Table 4.3: Comparison of EER with different feature vector sizes

4.6 Discussion of Results

Scaled matchers achieved better performance, as expected. In these matching
algorithms, each feature is divided by a variability measure, which in turn
gives more weight to more stable features. This achieves better separation
between genuine and impostor score distributions, which translates to better
identity validation.
The Manhattan Scaled matcher achieved the best overall performance, with an
EER of 5.4%. Although not directly comparable to other studies, this result is
consistent with some previous research using statistical methods, as presented

CHAPTER 4. EXPERIMENTAL RESULTS 36

in section 2.6. In practice, this EER value means that a genuine user will be
incorrectly rejected once every 20 login attempts while an impostor will be
authenticated once every 20 successful attacks. Nonetheless, the overlap of
the DET curves also highlights that the Euclidean Scaled algorithm has a
better trade-off when the FAR is below 1.3%. In a system tailored for low
FAR, the Euclidean Scaled matcher would be preferred, in spite of presenting
a much higher EER of 9.6%. As pointed in section 2.5, the EER can be
misleading as a performance indicator.
In terms of template update, the presented results are also in line with
with previous research [21, 22, 47], in which template updating can lead to
considerable improvements in terms of detection accuracy. Regarding the size
of the feature vector, longer vectors achieved consistently lower EER values.
Finally, the fact that all these variables can greatly influence the measured
performance, further reinforces the notion that it’s very hard to compare
different studies.

5
Conclusions and Future Work

With the conclusion of this work, and regarding the original research goals,
keystroke dynamics can be considered a viable choice to implement strong
authentication on the web. We’ve shown that this technology can be integrated
on top of a tradition authentication procedure, taking advantage of user input
to seamlessly capture and classify the associated typing behaviour.
Keystroke dynamics presented some notable advantages over other alterna-
tives. No specialised hardware was needed, just a web browser supporting
JavaScript. Biometric data acquisition was completely transparent and multi-
factor authentication was effectively achieved with a single conscious action
from the user. In addition, even simple matching algorithms, as the ones used
in this study, can yield reasonable accuracy on authentication (5.4% EER
with the Scaled Manhattan matcher).
Although the proposed goals of this work were successfully met, some points
could have been improved. An assessment of the system usability should
have been done by the users that participated in the study. Furthermore,
the target population was greatly biased, mainly computer science students,
which are probably better typists than the average individual. Although more
complex, applying this study to a more diverse population would give an even
closer representation of a real environment.
In terms of future work, there are still many questions that were not addressed

37

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 38

by this work. For instance, it would be interesting to develop a complementary
study, focused on the evaluation of more sophisticated algorithms, in order
to further improve matching accuracy. Another issue to be tackled is the
collection of a much larger and more representative dataset, using the system
developed in this work, that could serve as the starting point of subsequent
studies on human typing behaviour.

A
JavaScript Timestamp Resolution

5 10 15 20 25 30 35 40 45 50
Dwell time

F
r
e
q
u
e
n
c
y

Windows: Internet Explorer

5 10 15 20 25 30 35 40 45 50
Dwell time

F
r
e
q
u
e
n
c
y

Windows: Google Chrome

5 10 15 20 25 30 35 40 45 50
Dwell time

F
r
e
q
u
e
n
c
y

Windows: Firefox

5 10 15 20 25 30 35 40 45 50
Dwell time

F
r
e
q
u
e
n
c
y

Windows: Safari

5 10 15 20 25 30 35 40 45 50
Dwell time

F
r
e
q
u
e
n
c
y

Windows: Opera

5 10 15 20 25 30 35 40 45 50
Dwell time

F
r
e
q
u
e
n
c
y

Mac OS: Google Chrome

5 10 15 20 25 30 35 40 45 50
Dwell time

F
r
e
q
u
e
n
c
y

Mac OS: Firefox

5 10 15 20 25 30 35 40 45 50
Dwell time

F
r
e
q
u
e
n
c
y

Mac OS: Opera

5 10 15 20 25 30 35 40 45 50
Dwell time

F
r
e
q
u
e
n
c
y

Mac OS: Safari

5 10 15 20 25 30 35 40 45 50
Dwell time

F
r
e
q
u
e
n
c
y

Ubuntu: Google Chrome

5 10 15 20 25 30 35 40 45 50
Dwell time

F
r
e
q
u
e
n
c
y

Ubuntu: Firefox

5 10 15 20 25 30 35 40 45 50
Dwell time

F
r
e
q
u
e
n
c
y

Ubuntu: Opera

JavaScript timestamp resolution on multiple environments

39

B
Comparison of Matching Algorithms

0.0 0.2 0.4 0.6 0.8 1.0
FAR

0.0

0.2

0.4

0.6

0.8

1.0

1
-
F
R
R

Euclidean (EER=24.9%)

Manhattan (EER=15.7%)

Euclidean Scaled (EER=9.6%)

Manhattan Scaled (EER=5.4%)

Comparison of matching algorithms (ROC)

40

APPENDIX B. COMPARISON OF MATCHING ALGORITHMS 41

10-3 10-2 10-1 100
FAR

10-3

10-2

10-1

100

F
R
R

F
A
R

=
1.

3%

Euclidean

Manhattan

Euclidean Scaled

Manhattan Scaled

Comparison of matching algorithms (DET)

C
Source Code

This appendix presents selected parts of the source code used in the implemen-
tation of matching algorithms and analysis of the collected data. Also available
in http://www.alunos.di.uminho.pt/~pg15384/kd.analysis.zip.

Listing C.1: matchers.py
1 # -*- coding: utf8 -*-
2
3 ’’’matchers.py
4 Matching algorithms.’’’
5
6 from math import sqrt, fabs
7
8
9 def template_mean(templates):

10 ’’’Calculates the mean feature vector
11 from the template database.’’’
12 nt = len(templates) # number of templates
13 nf = len(templates[0]) # number of features
14
15 mean_vector = [None] * nf
16 for i in range(nf):
17 features = [t[i] for t in templates]
18 mean_vector[i] = float(sum(features)) / nt
19
20 return mean_vector
21
22
23 def template_mad(templates):
24 ’’’Calculates the mean absolute deviation vector
25 from the user template database.’’’

42

http://www.alunos.di.uminho.pt/~pg15384/kd.analysis.zip

APPENDIX C. SOURCE CODE 43

26 nt = len(templates) # number of templates
27 nf = len(templates[0]) # number of features
28
29 mean_vector = template_mean(templates)
30 mad_vector = [None] * nf
31 for i in range(nf):
32 features = [t[i] for t in templates]
33 diff = 0.0
34 for feature in features:
35 diff += fabs(feature - mean_vector[i])
36 mad_vector[i] = diff / nt
37
38 return mad_vector
39
40
41 def euclidean(templates, feature_vector):
42 ’’’Matcher based on the Euclidean distance.’’’
43 nf = len(feature_vector) # number of features
44
45 mean_vector = template_mean(templates)
46 sqdistance = 0.0
47 for i in range(nf):
48 sqdistance += pow(mean_vector[i] - feature_vector[i], 2)
49 distance = sqrt(sqdistance)
50
51 score = distance / nf # average distance per feature
52 return score
53
54
55 def manhattan(templates, feature_vector):
56 ’’’Matcher based on the Manhattan distance.’’’
57 nf = len(feature_vector) # number of features
58
59 mean_vector = template_mean(templates)
60 distance = 0.0
61 for i in range(nf):
62 distance += fabs(mean_vector[i] - feature_vector[i])
63
64 score = distance / nf # average distance per feature
65 return score
66
67
68 def euclidean_scaled(templates, feature_vector):
69 ’’’Matcher based on the Euclidean distance.
70 Each sub-distance is multiplied by a weight
71 calculated for the corresponding feature.’’’
72 nf = len(feature_vector) # number of features

APPENDIX C. SOURCE CODE 44

73
74 weight_vector = [1.0 / mad for mad in template_mad(templates)]
75 mean_vector = template_mean(templates)
76 sqdistance = 0.0
77 for i in range(nf):
78 sub_distance = pow(mean_vector[i] - feature_vector[i], 2)
79 sqdistance += sub_distance * weight_vector[i]
80 distance = sqrt(sqdistance)
81
82 score = distance / nf # average distance per feature
83 return score
84
85
86 def manhattan_scaled(templates, feature_vector):
87 ’’’Matcher based on the Manhattan distance.
88 Each sub-distance is multiplied by a weight
89 calculated for the corresponding feature.’’’
90 nf = len(feature_vector) # number of features
91
92 weight_vector = [1.0 / mad for mad in template_mad(templates)]
93 mean_vector = template_mean(templates)
94 distance = 0.0
95 for i in range(nf):
96 sub_distance = fabs(mean_vector[i] - feature_vector[i])
97 distance += weight_vector[i] * sub_distance
98
99 score = distance / nf # average distance per feature
100 return score

Listing C.2: scores.py
1 # -*- coding: utf8 -*-
2
3 ’’’scores.py
4 Scores and EER calculation.’’’
5
6 def calculate_scores(data, matcher, template_updating=True):
7 ’’’Calculates matching scores.’’’
8 logins = []
9 attacks = []

10
11 # for each user
12 for user, user_data in data.items():
13 user_login_scores = []
14 user_attack_scores = []
15
16 # get data

APPENDIX C. SOURCE CODE 45

17 templates = user_data[’template’][:]
18 login_data = user_data[’login’]
19 attack_data = user_data[’attack’]
20
21 # calculate attack scores with initial templates
22 for attack_vector in attack_data:
23 score = matcher(templates, attack_vector)
24 user_attack_scores.append(score)
25
26 # for each user login
27 for login_vector in login_data:
28
29 # get login score
30 score = matcher(templates, login_vector)
31 user_login_scores.append(score)
32
33 if template_updating is True:
34 # update template with new login feature vector
35 templates.append(login_vector)
36 # delete the oldest template
37 del templates[0]
38
39 # get attack scores for updated template database
40 for attack_vector in attack_data:
41 score = matcher(templates, attack_vector)
42 user_attack_scores.append(score)
43
44 # calculate weights to normalize scores
45 lw = 1.0 / len(user_login_scores)
46 aw = 1.0 / len(user_attack_scores)
47
48 # add user scores and weights to the global scores
49 logins.extend([(s, lw) for s in user_login_scores])
50 attacks.extend([(s, aw) for s in user_attack_scores])
51
52 return (logins, attacks)
53
54
55 def cumsum(data):
56 ’’’ Calculate cumulative sum.
57 Auxiliary function for EER calculation.’’’
58 result = []
59 _sum = 0
60
61 for n in data:
62 _sum += n
63 result.append(_sum)

APPENDIX C. SOURCE CODE 46

64
65 return result
66
67
68 def histogram(data, weights=None, range=None, bins=100):
69 ’’’Calculate histogram.
70 Auxiliary function for EER calculation.’’’
71 result = [0.0] * bins
72 index = None
73
74 if range is None:
75 range = [min(data), max(data)]
76
77 if weights is None:
78 weights = [1.0] * len(data);
79
80 bin_size = float(range[1] - range[0]) / bins
81 value_threshold = range[0]
82
83 for value, weight in sorted(zip(data, weights)):
84 while value_threshold <= value:
85 value_threshold += bin_size
86 if index is None:
87 index = 0
88 elif index < bins - 1:
89 index += 1
90
91 if index is not None:
92 result[index] += 1.0 * weight
93
94 return result
95
96
97 def calculate_eer(data, matcher, bincount=100000, update=True):
98 ’’’Calculate EER point.’’’
99 # get login a attack score data
100 logins, attacks = calculate_scores(data, matcher, update)
101
102 # get login scores and corresponding weights
103 login_scores, login_weights = [], []
104 for login in logins:
105 login_scores.append(login[0])
106 login_weights.append(login[1])
107
108 # get attack scores and corresponding weights
109 attack_scores, attack_weights = [], []
110 for attack in attacks:

APPENDIX C. SOURCE CODE 47

111 attack_scores.append(attack[0])
112 attack_weights.append(attack[1])
113
114 # calculate common range to align bins on both histograms
115 min_score = min(min(login_scores), min(attack_scores))
116 max_score = max(max(login_scores), max(attack_scores))
117 hist_range = (min_score, max_score)
118
119 # create login and attack score distribution histograms
120 login_hist = histogram(
121 login_scores,
122 weights=login_weights,
123 range=hist_range,
124 bins=bincount,
125)
126 attack_hist = histogram(
127 attack_scores,
128 weights=attack_weights,
129 range=hist_range,
130 bins=bincount,
131)
132
133 # cumulative sums
134 login_hist_cumsum = cumsum(login_hist)
135 attack_hist_cumsum = cumsum(attack_hist)
136
137 # false reject rate
138 factor = 1.0 / attack_hist_cumsum[-1]
139 far_hist = [factor * s for s in attack_hist_cumsum]
140
141 # true accept rate (detection rate)
142 factor = 1.0 / login_hist_cumsum[-1]
143 tar_hist = [factor * s for s in login_hist_cumsum]
144 # false reject rate
145 frr_hist = [1.0 - s for s in tar_hist]
146
147 # find left threshold
148 left_index = 0
149 while left_index < bincount \
150 and far_hist[left_index] <= frr_hist[left_index]:
151 left_index += 1
152 left_index = max(0, left_index - 1)
153
154 # find right threshold
155 right_index = left_index
156 while(right_index < bincount \
157 and frr_hist[right_index] > far_hist[right_index]):

APPENDIX C. SOURCE CODE 48

158 right_index += 1
159 right_index = min(right_index, bincount - 1)
160
161 # get final result based on thresholds
162 diff_left = frr_hist[left_index] - far_hist[left_index]
163 diff_right = far_hist[right_index] - frr_hist[right_index]
164 if diff_left <= diff_right:
165 result = far_hist[left_index] + (diff_left / 2.0)
166 else:
167 result = frr_hist[left_index] + (diff_right / 2.0)
168
169 return result

Listing C.3: main.py
1 #!/usr/bin/env python
2 # -*- coding: utf8 -*-
3
4 import matchers
5 import scores
6 import json
7 import sys
8 import traceback
9

10
11 def main():
12 data = None
13 try:
14 with open(’kd.data.json’, ’r’) as jsonfile:
15 data = json.load(jsonfile)
16 except Exception:
17 traceback.print_exc(file=sys.stdout)
18 sys.exit(0)
19
20 matcher_list = [
21 matchers.euclidean,
22 matchers.manhattan,
23 matchers.euclidean_scaled,
24 matchers.manhattan_scaled,
25]
26
27 matcher_list[0].description = ’Euclidean’
28 matcher_list[1].description = ’Manhattan’
29 matcher_list[2].description = ’Euclidean Scaled’
30 matcher_list[3].description = ’Manhattan Scaled’
31
32 for matcher in matcher_list:

APPENDIX C. SOURCE CODE 49

33 print ’%16s:\t %.5f’ % (
34 matcher.description,
35 scores.calculate_eer(
36 data,
37 matcher,
38 bincount=1000000,
39 update=True)
40)
41
42
43 if __name__ == ’__main__’:
44 main()

Bibliography

[1] 2010/2011 CSI computer crime and security survey. Tech. rep. Com-
puter Security Institute, 2011.

[2] N. Ahmad, A. Szymkowiak, and P. A. Campbell. “Keystroke dynamics
in the pre-touchscreen era”. In: Front Hum Neurosci 7 (2013), p. 835.

[3] J. D. Allen. “An analysis of pressure-based keystroke dynamics algo-
rithms”. PhD thesis. Southern Methodist University, 2010.

[4] P. Ambalakat. “Security of biometric authentication systems”. In:
Proceedings of 21st Computer Science Seminar. 2005.

[5] L. C. Araujo et al. “User authentication through typing biometrics
features”. In: Signal Processing, IEEE Transactions on 53.2 (2005),
pp. 851–855.

[6] S. P. Banerjee and D. L. Woodard. “Biometric authentication and
identification using keystroke dynamics: A survey”. In: Journal of
Pattern Recognition Research 7.1 (2012), pp. 116–139.

[7] E. C. Bank. Recommendations for the security of internet payments.
Jan. 2013. url: http://www.ecb.europa.eu/press/pr/date/

2013/html/pr130131_1.en.html.

[8] L. Bello et al. “Collection and publication of a fixed text keystroke
dynamics dataset”. In: XVI Congreso Argentino de Ciencias de la
Computación. 2010.

50

http://www.ecb.europa.eu/press/pr/date/2013/html/pr130131_1.en.html
http://www.ecb.europa.eu/press/pr/date/2013/html/pr130131_1.en.html

BIBLIOGRAPHY 51

[9] S. A. Bleha and M. S. Obaidat. “Computer users verification using the
perceptron algorithm.” In: IEEE Transactions on Systems, Man, and
Cybernetics 23.3 (1993), pp. 900–902.

[10] S. Bleha, C. Slivinsky, and B. Hussien. “Computer-access security
systems using keystroke dynamics”. In: Pattern Analysis and Machine
Intelligence, IEEE Transactions on 12.12 (1990), pp. 1217–1222.

[11] G. C. Boechat, J. C. Ferreira, and E. C. Carvalho. “Using the keystrokes
dynamic for systems of personal security”. In: Transactions on engi-
neering, computing and technology. Enformatika 18.1 (2006), pp. 200–
205.

[12] J. C. Checco. “Keystroke dynamics & corporate security”. In: WSTA
Ticker (2003).

[13] S. Cho et al. “Web-based keystroke dynamics identity verification using
neural network”. In: Journal of organizational computing and electronic
commerce 10.4 (2000), pp. 295–307.

[14] D. Chou. “Strong User Authentication on the Web”. In: The Archi-
tecture Journal. 16th (Aug. 2008). url: http://msdn.microsoft.
com/en-us/library/cc838351.aspx.

[15] H. Crawford. “Keystroke dynamics: Characteristics and opportunities”.
In: Privacy Security and Trust (PST), 2010 Eighth Annual International
Conference on. IEEE. 2010, pp. 205–212.

[16] K. Delac and M. Grgic. “A survey of biometric recognition methods”.
In: Electronics in Marine. Proceedings Elmar 2004. 46th International
Symposium (2004), pp. 184–193.

[17] H. Dozono, S. Itou, and M. Nakakuni. “Comparison of the adaptive
authentication systems for behavior biometrics using the variations of
self organizing maps”. In: International Journal of Computers and
Communications 1.4 (2007), pp. 108–116.

[18] G. E. Forsen, M. R. Nelson, and R. J. Staron Jr. Personal Attributes
Authentication Techniques. Tech. rep. DTIC Document, 1977.

http://msdn.microsoft.com/en-us/library/cc838351.aspx
http://msdn.microsoft.com/en-us/library/cc838351.aspx

BIBLIOGRAPHY 52

[19] R. S. Gaines et al. Authentication by keystroke timing: Some preliminary
results. Tech. rep. DTIC Document, 1980.

[20] R. Giot, M. El-Abed, and C. Rosenberger. “Greyc keystroke: a bench-
mark for keystroke dynamics biometric systems”. In: Biometrics:
Theory, Applications, and Systems, 2009. BTAS’09. IEEE 3rd Interna-
tional Conference on. IEEE. 2009, pp. 1–6.

[21] R. Giot, B. Dorizzi, and C. Rosenberger. “Analysis of template update
strategies for keystroke dynamics”. In: Computational Intelligence in
Biometrics and Identity Management (CIBIM), 2011 IEEE Workshop
on. IEEE. 2011, pp. 21–28.

[22] R. Giot, C. Rosenberger, and B. Dorizzi. “Performance evaluation
of biometric template update”. In: arXiv preprint arXiv:1203.1502
(2012).

[23] D. Hosseinzadeh and S. Krishnan. “Gaussian mixture modeling of
keystroke patterns for biometric applications”. In: Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on
38.6 (2008), pp. 816–826.

[24] Y. Huang et al. “On the Security of Multi-Factor Authentication:
Several Instructive Examples”. In: Cognition 226 (2013), p. 42.

[25] S.-s. Hwang, S. Cho, and S. Park. “Keystroke dynamics-based authen-
tication for mobile devices”. In: Computers & Security 28.1 (2009),
pp. 85–93.

[26] A. K. Jain, P. Flynn, and A. A. Ross. Handbook of Biometrics. Springer,
2008, pp. 1, 3–8, 15, 21.

[27] A. K. Jain and S. Z. Li. Encyclopedia of biometrics. Vol. 1. Springer,
2009, pp. 62, 75, 136, 1312–1313.

[28] A. K. Jain, A. Ross, and S. Prabhakar. “An introduction to biometric
recognition”. In: IEEE Transactions on Circuits and Systems for Video
Technology 14 (2004), pp. 4–20.

[29] R. Joyce and G. Gupta. “Identity authentication based on keystroke
latencies”. In: Communications of the ACM 33.2 (1990), pp. 168–176.

BIBLIOGRAPHY 53

[30] M. Karnan, M. Akila, and N. Krishnaraj. “Biometric personal au-
thentication using keystroke dynamics: A review”. In: Applied Soft
Computing 11.2 (2011), pp. 1565–1573.

[31] K. Killourhy and R. Maxion. “The effect of clock resolution on keystroke
dynamics”. In: Recent Advances in Intrusion Detection. Springer. 2008,
pp. 331–350.

[32] K. S. Killourhy. “A Scientific Understanding of Keystroke Dynamics”.
PhD thesis. DTIC Document, 2012.

[33] K. S. Killourhy and R. A. Maxion. “Comparing anomaly-detection al-
gorithms for keystroke dynamics”. In: Dependable Systems & Networks,
2009. DSN’09. IEEE/IFIP International Conference on. IEEE. 2009,
pp. 125–134.

[34] K. Killourhy and R. Maxion. “Why did my detector do that?!” In:
Recent Advances in Intrusion Detection. Springer. 2010, pp. 256–276.

[35] M. Lam et al. “Keystroke Biometric: Data Capture Resolution Accu-
racy”. In: ().

[36] Y. Li et al. “Study on the BeiHang keystroke dynamics database”.
In: Biometrics (IJCB), 2011 International Joint Conference on. IEEE.
2011, pp. 1–5.

[37] G. Me, D. Pirro, and R. Sarrecchia. “A mobile based approach to strong
authentication on Web”. In: Computing in the Global Information
Technology, 2006. ICCGI’06. International Multi-Conference on. IEEE.
2006, pp. 67–67.

[38] A. Moini and A. M. Madni. “Leveraging biometrics for user authentica-
tion in online learning: A systems perspective”. In: Systems Journal,
IEEE 3.4 (2009), pp. 469–476.

[39] J. R. Montalvão Filho and E. O. Freire. “On the equalization of
keystroke timing histograms”. In: Pattern Recognition Letters 27.13
(2006), pp. 1440–1446.

BIBLIOGRAPHY 54

[40] R. Moskovitch et al. “Identity theft, computers and behavioral bio-
metrics”. In: 2009 IEEE International Conference on Intelligence and
Security Informatics. IEEE, 2009, pp. 155–160.

[41] M. S. Obaidat and B. Sadoun. “Verification of computer users using
keystroke dynamics”. In: Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on 27.2 (1997), pp. 261–269.

[42] A. Peacock, X. Ke, and M. Wilkerson. “Typing patterns: A key to user
identification”. In: Security & Privacy, IEEE 2.5 (2004), pp. 40–47.

[43] D. Petrovska-Delacrâetaz, G. Chollet, and B. Dorizzi. Guide to bio-
metric reference systems and performance evaluation. Springer, 2009,
p. 366.

[44] S. Prabhakar, S. Pankanti, and A. K. Jain. “Biometric recognition:
security and privacy concerns”. In: IEEE Security Privacy Magazine
(2003), pp. 33–42.

[45] S. Raj and A. Santhosh. “A Behavioral Biometric Approach Based on
Standardized Resolution in Mouse Dynamics”. In: IJCSNS Interna-
tional Journal of Computer Science and Network Security 9.4 (2009),
pp. 370–377.

[46] N. K. Ratha, J. H. Connell, and R. M. Bolle. “Enhancing security and
privacy in biometrics-based authentication systems”. In: IBM Systems
Journal 40.3 (2001), pp. 614–634.

[47] A. Rattani. “Adaptive biometric system based on template update
procedures”. PhD thesis. University of Cagliari, Italy, 2010.

[48] A. Rattani et al. “Template update methods in adaptive biometric
systems: a critical review”. In: Advances in Biometrics. Springer, 2009,
pp. 847–856.

[49] J. Resig. Accuracy of JavaScript Time. Nov. 2008. url: http:

//ejohn.org/blog/accuracy-of-javascript-time/.

[50] K. Revett. “A bioinformatics based approach to user authentication via
keystroke dynamics”. In: International Journal of Control, Automation
and Systems 7.1 (2009), pp. 7–15.

http://ejohn.org/blog/accuracy-of-javascript-time/
http://ejohn.org/blog/accuracy-of-javascript-time/

BIBLIOGRAPHY 55

[51] K. Revett, S. T. de Magalhães, and H. M. Santos. “Enhancing login
security through the use of keystroke input dynamics”. In: Advances in
Biometrics. Springer, 2005, pp. 661–667.

[52] K. Revett et al. “A machine learning approach to keystroke dynamics
based user authentication”. In: International Journal of Electronic
Security and Digital Forensics 1.1 (2007), pp. 55–70.

[53] A. A. Ross, K. Nandakumar, and A. K. Jain. Handbook of multibiomet-
rics. Vol. 6. Springer, 2006, p. 19.

[54] A. Ross and A. K. Jain. “Multimodal biometrics: An overview”. In: Pro-
ceedings of 12th European Signal Processing Conference. 2004, pp. 1221–
1224.

[55] M. Rybnik, M. Tabedzki, and K. Saeed. “A keystroke dynamics based
system for user identification”. In: Computer Information Systems
and Industrial Management Applications, 2008. CISIM’08. 7th. IEEE.
2008, pp. 225–230.

[56] H. Saevanee and P. Bhattarakosol. “Authenticating user using keystroke
dynamics and finger pressure”. In: Consumer Communications and
Networking Conference, 2009. CCNC 2009. 6th IEEE. IEEE. 2009,
pp. 1–2.

[57] H. M. D. Santos. “What is Wrong with Biometrics?” In: Hakin9 IT
Security Magazine 12/2012 (2012).

[58] D. Shanmugapriya and G. Padmavathi. “A survey of biometric keystroke
dynamics: Approaches, security and challenges”. In: International
Journal of Computer Science and Information Security (2009).

[59] P. S. Teh, A. B. J. Teoh, and S. Yue. “A survey of keystroke dynamics
biometrics”. In: The Scientific World Journal 2013 (2013).

[60] Timers, Timer Resolution, and Development of Efficient Code. June
2010. url: http://www.microsoft.com/whdc/system/pnppwr/
powermgmt/Timer-Resolution.mspx.

http://www.microsoft.com/whdc/system/pnppwr/powermgmt/Timer-Resolution.mspx
http://www.microsoft.com/whdc/system/pnppwr/powermgmt/Timer-Resolution.mspx

BIBLIOGRAPHY 56

[61] L. Wang and X. Geng. Behavioral Biometrics for Human Identification:
Intelligent Applications. Information Science Reference-Imprint of: IGI
Publishing, 2010, pp. 1–3.

[62] R. Wang, S. Chen, and X. Wang. “Signing Me onto Your Accounts
through Facebook and Google: a Traffic-Guided Security Study of
Commercially Deployed Single-Sign-On Web Services”. In: 2012 IEEE
Symposium on Security and Privacy (2012).

[63] K. Xi, Y. Tang, and J. Hu. “Correlation keystroke verification scheme
for user access control in cloud computing environment”. In: The
Computer Journal (2011), bxr064.

[64] R. V. Yampolskiy and V. Govindaraju. “Behavioural biometrics: a
survey and classification”. In: International Journal of Biometrics 1.1
(2008), pp. 81–113.

[65] Y. Yan and Y. J. Zhang. “Multimodal Biometrics Fusion Using Corre-
lation Filter Bank”. In: ICPR 2008. 19th International Conference on
Pattern Recognition. IEEE, 2008, pp. 1–4.

[66] J. R. Young and R. W. Hammon. “Method and apparatus for verifying
an individual’s identity”. US Patent 4,805,222. Feb. 1989.

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Goals
	Research Methodology
	Document Structure

	Literature Review
	Strong Authentication on the Web
	Biometrics
	Physiological Biometrics
	Behavioural Biometrics

	Components of a Biometric System
	Deployment on the Web
	Server Deployment
	Client Deployment
	Hybrid Deployment

	Performance Metrics
	Keystroke Dynamics
	Historical Context
	Extracted Features
	Previous Studies and Results

	Experimental Design
	System Architecture
	Implementation
	Application and User Interaction
	Registration
	Login
	Attack

	Experimental Results
	Collected Data
	Matching Algorithms
	Performance Analysis
	Score Distributions and Error Rates
	Comparison of Matching Algorithms

	Template Updating
	Feature Vector Size
	Discussion of Results

	Conclusions and Future Work
	JavaScript Timestamp Resolution
	Comparison of Matching Algorithms
	Source Code
	Bibliography

