2014 9th International Conference on the Quality of Information and Communications Technology

A study on the viability of formalizing Use Cases

Rui Couto, Anténio Nestor Ribeiro, José Creissac Campos
Dept. Informatics, University of Minho & HASLAB / INESC TEC
Braga, Portugal
{ruicouto, anr, jose.campos} @di.uminho.pt

Abstract—Use case scenarios are known as powerful means
for requirements specification. On the one hand, they join in
the same modeling space the expectations of the stakeholders
and the needs of the developers involved in the process. On the
other hand, they describe the desired high level functionalities.
By formalizing these descriptions we are able to extract rele-
vant informations from them. Specifically, we are interested in
identifying requirements patterns (common requirements with
typical implementation solutions) in support for a requirements
based software development approach. This paper addresses
the transformation of use case descriptions expressed in a
Controller Natural Language into an ontology expressed in the
Web Ontology Language (OWL), as well as the query process
for such information. It reports on a study aimed at validating
our approach and our tool with real users. A preliminary set of
results is discussed.

I. INTRODUCTION

In previous work [1] we have targeted our efforts at the
correctness of software systems with respect to stakeholders’
expectations. In traditional approaches [2], requirements are
specified at the beginning of the development process, and used
as guides for development. However, they are only validated
at the end of the process. Such leads to a gap between user
requirements and the software development process, which
might result in the misunderstanding of the stakeholders’
concerns. We have been working in reducing this gap, by
taking use cases as the requirements specification means and
formalizing them, which allow us to further process them.

Notably use cases are a popular method for requirements
specification. They were proposed by Jacobson [3] and later
adopted by the Object Management Group. A use case model
is composed of two parts: a graphical representation that
summarizes the user interactions with the software system
being described; and the specifications of each individual use
case. Use cases mainly represent user functionalities and, as
such, provide knowledge to derive high level information about
the software systems they describe.

Despite the inexistence of an accepted standard for use
cases specification, textual formats are usual approaches (e.g.,
as proposed by Fowler [4] or Cockburn [5]). We proposed
a new language to specify user requirements that combines
rigor with a style of writing closer to natural language. It is
concretized as a Controlled Natural Language (CNL), with a
twofold objective: first to integrate the stakeholders in the spec-
ification process; second to transform use case specifications
into other languages.

It is possible to find several works regarding the use of
ontologies in support for requirements engineering. Castafieda
et al. present a review on the uses of ontologies in requirements

978-1-4799-6133-7/14 $31.00 © 2014 IEEE
DOI 10.1109/QUATIC.2014.23

130

engineering [6]. In this context the use of ontologies tends
to address requirements specification and high level analysis
(such as elicitation, verification, etc.). Generally, the proposed
approaches do not use ontologies to further operationalize
the requirements. We propose the Web Ontology Language
(OWL) [7] both to represent use cases’ knowledge, and to
support reasoning about it (see [1] for the rational). The
expressiveness of OWL allows us to define requirements’
ontologies as well as their instances, and to perform queries
over such knowledge. The pattern inference capabilities are
provided by the Semantic Web Rule Language (SWRL) and
Simple Protocol and RDF Query Language (SPARQL). Kirasi¢
and Basch’s work presents an example of pattern inference
resorting to SWRL [8].

We have developed an approach to enable the pattern infer-
ence from use case specifications by means of an automated
process. Due to space restrictions we present only a brief
description of the process. Further details, an example and
a description of the developed tool can be found in [1]. Our
process starts with the specification of the use case descrip-
tions. To do such, we have create a Domain Specific Language
which takes the form of a CNL [9], the Restricted Use-
Case Statements (RUS) (and the corresponding meta-language,
the Restricted Use-Case Statements Template (RUST)). This
language enables the possibility to map use case descriptions
into Manchester OWL statements.

Resorting to our language it is also possible to extract
several entities, namely the individuals present in specifications
as well as their relationships. The final step required in order to
achieve an ontology, is the specification of a set of classes, to
which the individuals belong. After defining such classes (and
associate the respective individuals) the ontology is produced.
In order to gain the reasoning leverage needed for identifying
the patterns, we propose to use the inference capabilities of
an ontology (in this case the OWL) as this language allows
us to not only specify ontologies and create instances, but
also to perform queries over such knowledge. In order to
extract requirement patterns, we specify them as SPARQL
queries. These queries, when applied to the knowledge base,
will allow to extract relevant patterns. Our approach allows us
to formally describe use case scenarios, in order to perform,
for instance, knowledge inference and formal validation. In
order to support the proposed approach, we have previously
developed the Use Cases Analysis Tool (uCat). The objective
of our tool is to allow the users to input and validate the use
case specifications (in the RUS format), and to automate the
extraction of knowledge from those specifications (as an OWL
ontology).

After developing the process, it remained to test the pro-

IEEE
computer
® psouety

cess’ viability against real use cases and users. In this paper we
address the viability of our approach. Its objective is twofold.
In the one hand, we wanted to validate our language expres-
siveness capabilities, and ease of adoption and acceptance by
users. On the other hand, we wanted to analyze how our tool
performs in handling the language, and collect users’ feedback.
Above, we briefly presented the approach we are developing.
Next, we describe how we propose to validate it. Preliminary
results of this validation are also put forward.

II. STUDY

In order to assess both the proposed language (RUS) and
the developed tool, we propose a study. We started by defining
a set of questions about our language and tool. From the
questions we extracted a set of tasks (actions that the user
should perform, for instance to write a use case description)
that will answer them. Finally we propose to collected data
during and at the end of the modeling tasks.

A. Objectives

With the study, we proposed to test two topics: how our
language performs with real users, and, how the presented
tool performs at supporting the language. The objectives for
our language are: 1.1.) to provide formalism to use cases
with minimal extra costs for the user (such includes for
instance a seamless transition from natural language to RUS,
without losing the meaning or expressiveness of the original
statements; furthermore, we do not want to demand from
users a background in formal methods); 1.2.) to be able to
support the users’ specifications (our language should support
the users’ use case specifications needs, in order to make it
viable; even if not all statements are supported, the language
should at least support the most common; at the same time, we
intend to improve the specification process, by encouraging the
use of templates (or patterns), by demanding users to follow
the RUS); 1.3.) be easy enough to understand and manipulate
according to the users’ needs (if so, the users will be more
likely to adopt it).

As the tool supports our language, tool specific objectives
are somehow related, and may be elicited as: 2.1) be easy
to learn (this objective corresponds to a tool that is easy to
use, and does not requiring an extensive adaptation period; we
propose a familiar and self explanatory user interface, with
familiar terminology). 2.2) be a possible complement/substi-
tute for other tools (we want to evaluate how likely it is that
our tool will be able to complement or even substitute other
UML supporting tools, regarding the formalism it provides);
2.3) provide a good support for the language (the tool must be
able to both support and improve the usage of our language).

B. Study setup

In order to evaluate the expressiveness of the language, a
number of tasks was defined. A collection of use cases was
defined on which these tasks should be carried out (see Table
I). Each participant had a computer and a printed script of the
study, and individually performed each task. Every task was
previously explained, and then the users performed them. The
steps were performed sequentially, and all the users performed
them at the same time: 1) We have converted the use cases,

131

TABLE 1. EXCERPT OF A RUS USE CASE
[| User Input | System Response
1 user inserts name
2 system searches tournament
3 system shows tournaments
4 user selects tournament
5 system shows tournament
6 user selects remove
7 system requests confirmation
8 user provides confirmation
9 system removes tournament
10 system informs success

into RUS beforehand; we performed the translation, in order
to avoid any contact from the users with the language prior
to the test. 2) The participants were asked to interpret and
textually describe the use cases. 3) The textual descriptions
were handed to the original authors, which evaluated them. 4)
The participants were presented with the original use cases,
and asked to point out any missing information from the RUS
version.

In order to evaluated the expressiveness of the language
and the acceptance of the tool, the same users were asked
to perform the following additional steps: 5) A new scenario
describing a system’s functionality was textually shown to the
participants, which were asked to write the corresponding use
case in Natural Language (NL), following Fowler’s approach.
6) After presenting the tool and the language, the users were
asked to convert the use case into RUS, with the tool. 7) A
new scenario was presented, and the users asked to write it in
RUS, on the tool. 8) The use cases were handed to other users,
which interpreted them; each author evaluated the descriptions’
correctness. 9) A RUS entry was presented, and the users were
asked to write the corresponding RUST. In relevant tasks the
time required to perform them was measured. At the end, a
questionnaire was applied.

C. Addressing the objectives

This section relates the presented tasks with the proposed
objectives. Objective 1.1 is addressed by measuring the overall
time required by the users in order to adopt our language, and
by how correct their specifications are. In tasks 2, 3 and 4, we
measure the language acceptance, and in 6, 7 and 8 the time
required by the users. Objective 1.2 is mainly evaluated by the
reports about how the users understood our statements. Task 3
will measure how able is our language to support the use case
specifications. We evaluate objective 1.3 with two approaches.
First by measuring how valid the users’ inputs are, regarding a
provided set of RUST entries. Second by how the users were
able to manipulate RUST and the corresponding required time.

In order to evaluate objective 2.1, we propose to measure
the time spent using the tool, as well as the number of tries
required in order to successfully create a use case specification.
In objective 2.2 we propose to rely in the users’ feedback, by
asking them the likelihood to adopt the language. Objective
2.3 is measured by the capability of the users to write the
use case specification (overall number of supported statements)
and take advantage of the language’s capability (for instance,
alternatives and exceptions).

III. PRELIMINARY RESULTS

In order to achieve a first set of results, and understand
the study setup, we performed a preliminary test with five
participants. The participants were students from an Infor-
matics Engineering course, at the University of Minho. They
had obtained final grade on the 80th percentile in a previous
software engineering course. They all had previous contact
with the use cases tabular representation, as proposed by
Fowler. The participants performed the study in an isolated
environment and without interaction with each other. None
of them had previous contact either with RUS, the tool or
even our work. As for the use cases, they were written by the
participants as part of an assignment for a course.

In tasks 1, 2 and 3, we concluded that all of the users were
able to correctly describe the presented RUS. Only a minor
issue was pointed out in one of the descriptions, referring that
the context might not be clear enough. Such issue would be
solved by presenting the use case title (which was intentionally
removed). Regarding the understandability of RUS, in task
4 all the participants reported that there was no information
missing from the RUS statements. Only one of the participants
reported a missing detail. The missing information concerned
a platform specific detail. This was not found significant,
as such details are not intended to be present in use case
specifications. These results are directly related with objective
2.1. The participants were able to both understand and express
the use cases without major issues.

Tasks 5, 6 and 7 allowed us to achieve several conclusions.
First, the participants required an average of 23 seconds per
statement (s/s) when creating the use cases in NL. When
writing the same description in RUS, resorting to our language
for the first time, they required an average of 51s/s. However,
the second time writing the use cases in RUS, the participants
required an average of 44s/s (5s/s less). This is an indication
that through learning users are able to reduce the required time
to write the statements. In order to achieve further conclusions
a more extensive study is required.

In task 8 all of the descriptions matched the corresponding
use case. Only in one of the use cases a minor issue was
pointed out, but assumed as as mistake by the use case author.
This capability of the participants to convert the use case
specifications, or even write new ones in the tool is related
with task 1.1. We can conclude that only a reduced learning
time is required by the participants.

Finally, task 9 allowed us to conclude about the manipu-
lation of RUST. Users had an average of 88% correct answer,
in an average of 94 seconds to write each RUST statement.
The overall results of this task give us hints of how easy the
language was to use and manipulate, as proposed by objective
1.3.

Overall, we can draw two main conclusions. First, the
initial results suggest that the users are receptive to our ap-
proach. Also, the overhead to achieve formal use cases (either
from existing ones, or new ones) seems very low. Second,
the presented study seems to be appropriate to a large set
of participants. The users were able to perform the presented
tasks independently, and only sporadic questions were raised,
for instance about the meaning of a sentence. Such questions
allowed us to improve our tasks descriptions and write them in

132

TABLE II. QUESTIONNAIRE RESULTS (A)
| | Question (0 to 7) [Avg. |
1 Number of statements which required major 1.6
changes in order to be mapped into RUS
2 Number of statements which lost their meaning | 0.2

3 Number of unsupported statements 0

16 | Minutes spent in adjustments (to match RUS) 3.8
TABLE III. QUESTIONNAIRE RESULTS (B)
[Question (low to high) | Mode |
4 How much sense does the user interface makes 6
5 How familiar was the terminology 6, 7
6 How much the tool helps in the specification 5,6
7 How easy to use is the RUS 6
8 How easy to understand is the RUS 4
9 How much easier is RUS to understand than NL | 4, 6
10 | How easy is it to manipulate RUST 4
11 | Is NL easier to use than RUS 2
12 | Is NL easier to understand than RUS 5
13 | Likelihood to adopt RUS 6
14 | How easy is it to understand RUST 5
15 | How clear is the language 5
17 | How close to NL is RUS 3
18 | How easy was it to understand the tool 5,6
19 | How this tool is preferred over VP 6, 7
20 | How useful and adequate was the output 5
21 | How acceptable are the tools’ limitations 6
22 | How easy to use is the tool 6
23 | How much the user liked the language 6
24 | How much the user liked the tool 6

a clearer way. We concluded also that our tool is able to support
the presented tasks, while only minor bugs were pointed out,
which will be solved for a next study.

The questionnaire included questions to be answered in a
7-point Likert scale (with 0 meaning low and 7 meaning high —
see Table III). Other questions were answered with a numeric
value (see Table II).

Regarding objective 1.1, we have questions 9, 11, 12 and
17. The users’ answers show that they would like to write the
statements in RUS over NL. Questions 1, 2 and 3 are indicators
for objective 1.2. The average value of 0.6 statements raising
issues shows that the language has a good support for the
statements. Furthermore, in question 23 the users expressed
empathy with the language itself. Objective 1.3 is related with
questions 7 to 15. The reported results suggest that the users
consider the tool to be easy to understand and use, even when
compared with NL.

We consider questions 5, 18, 20, 22 to be directly related
with objective 2.1. The mode value for this question is 6, which
means a good acceptance by the users, being a hint about how
the users consider the tool easy to learn and use. Also, we
consider the results of question 24 as an indicator of acceptance
by the users. Questions 4, 19, 21 are considered directly
related with the objective 2.2. Its mode is 6, showing that
the participants are highly receptive as replacing/complement
other tools with ours. The objective 2.3 is related with the
questions 6, 20, 22. The mode values for these questions are 5
and 6, showing that overall, the participants consider the tool
able to support the language.

The questionnaire included also open questions. The first
question was “What became harder by using RUS (over NL)?”.
60% of the participants pointed out the need to convert the
statements, 20% the lack of explicit support for white spaces
in the statements, and the remaining 20% answered nothing.
However, when asked “What became easier by using RUS?”,
80% of the participants referred that the statements are overall
easier and simpler to understand. 20% pointed out also that
the statements are quicker to understand due to its simplicity,
and 20% also referred formalization capability.

The users were also asked “What did they like in the
language?”, at which 40% pointed out the language simplicity
to write the statements. The remaining 60% stated that they
liked the standardization/restriction of the format which makes
them more concise. When asked “What did they dislike in the
language?”, 80% of the users said that they disliked nothing,
while the remaining 20% referred the required learning time.

Regarding only the capability to write use cases, the users
were asked why they preferred the RUS format over tools
which allow free text format input (as for instance, Visual
Paradigm). 80% of the users referred the user interface is
simpler or more user friendly, and the remaining 20% stated
that the organization of the scenarios is better (in tabs).

The users where asked “What did they like the most in
the tool”, at which 40% answered the interface simplicity to
support the specifications. Also, 40% of the users pointed the
RUS support and verification capability. The remaining 20%
pointed the similarity to Fowler’s template. When asked what
did they disliked, 80% didn’t point any issue, and the remain-
ing 20% referred the inability to see all the three scenarios
(main, alternative and exception) in the same interface.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced our approach to formalize
use cases in OWL, and to support the identification of require-
ments patterns in these descriptions. We presented also the
study designed to validate our language and tool capabilities.
Our approach starts with the definition of a restricted natural
language for requirements specification. Such format, the RUS,
enables us to specify how user input should be expressed and
how the resulting use cases can be transformed into an OWL
ontology. The transformation rules provide us with most of
the required information to create the ontology. Resorting to
OWLs’ query engines, we are able to perform queries over the
ontology to identify requirements patterns in the use cases. A
prototype tool was developed to support the process. We have
previously illustrated our approach in [1].

Based in [1], we have presented a study to validate our
approach. The preliminary results suggest that our approach
is simple and easy to adopt, while providing formalization to
requirements. The users have shown no difficulties in adapting
to this format or even manipulating it. Regarding the tool,
we concluded that it is able to support the language and
even improve the requirements specification process. It was
easily accepted and the learning time was relatively low, as the
users were able to use it without previous learning time. The
feedback provided by the users was positive, and overall they
reported a good experience with both the tool and the language.
Generally the comments reported how the participants liked the

133

language’s simplicity and objectivity, and how the formalism
is a desired benefit.

Building on the results thus far, we plan to perform a larger
user study in order to obtain more reliable results. We are
also interested in further exploring the evaluation of the RUS
language. A possible approach would be to use a full system
specification, and map it into our format. This would enable
also the possibility to create a catalog of patterns, which we
aim too, as our approach is part of a wider project. To help in
this process, we propose to focus on a specific domain in order
to write and process the specifications. We propose to associate
the requirements patterns with architectural patterns. Then, by
extracting the requirements patterns it would be possible to
obtain hints about the final system. In order to improve our
approach, it is proposed the possibility to extract other kind of
data from the specifications, such as behavioral informations.

ACKNOWLEDGMENT

This work is partly funded by project ref. NORTE-07-0124-
FEDER-000062, co-financed by the North Portugal Regional
Operational Programme (ON.2 - O Novo Norte), under the
National Strategic Reference Framework (NSRF), through the
European Regional Development Fund (ERDF), and by na-
tional funds, through the Portuguese foundation for science and
technology (FCT). We would like to thank to the participants
which helped us in the study, namely Pedro Ferreira, Filipa
Rocha, Mariana Capelo, Henrique Pacheco and Daniel Coelho.

REFERENCES

[11 R. Couto, A. N. Ribeiro, and J. C. Campos, “Application of ontologies
in identifying requirements patterns in use cases,” in //th International
Workshop on Formal Engineering approaches to Software Components
and Architectures, ser. Fesca’14, Grenoble, France, 2014.

[2] W. W. Royce, “Managing the development of large software systems:
Concepts and techniques,” in Proceedings of the 9th International
Conference on Software Engineering, ser. ICSE ’87. Los Alamitos,

CA, USA: IEEE Computer Society Press, 1987, pp. 328-338.

I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-
Oriented Software Engineering - A Use Case Driven Approach.
Addison-Wesley, 1992.

M. Fowler, UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2003.

A. Cockburn, Writing Effective Use Cases, 1st ed. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2000.

V. Castaeda, L. Ballejos, M. L. Caliusco, and M. R. Galli, “The use of
ontologies in requirements engineering,” Global Journal of Researches
In Engineering, vol. 10, no. 6, 2010.

[3]

[4]

[5]

[6]

[7]1 D. L. McGuinness and F. van Harmelen, “OWL web ontology language
overview, W3C recommendation,” 2004, http://www.w3.org/TR/owl-
features/.

[8] D. Kirasi¢ and D. Basch, “Ontology-based design pattern recognition,”
in Proceedings of the 12th international conference on Knowledge-Based
Intelligent Information and Engineering Systems, Part I, ser. KES ’08.

Berlin, Heidelberg: Springer-Verlag, 2008, pp. 384-393.

R. Schwitter, “Controlled natural languages for knowledge representa-
tion,” in Proceedings of the 23rd International Conference on Computa-
tional Linguistics: Posters, ser. COLING ’10. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2010, pp. 1113-1121.

[9]

