

Universidade do Minho Escola de Engenharia

Maria Inês de Castro Lima

Avaliação do PCN em pavimentos aeroportuários

Universidade do Minho Escola de Engenharia

Maria Inês de Castro Lima

Avaliação do PCN em pavimentos aeroportuários

Dissertação de Mestrado Mestrado Integrado em Engenharia Civil

Trabalho efetuado sob a orientação do Professor Doutor Jorge Carvalho Pais e da Professora Doutora Ana Cristina Freire

Dedico este trabalho aos meus pais, João e Elvira, que colocaram os estudos como a principal prioridade na minha vida e acreditam no meu sucesso. E claro, não podia esquecer a pessoa que amo de igual forma, a minha irmã, Sara, que sempre me deu amor, carinho, admiração e respeito.

Agradecimentos

Este trabalho só foi possível com o apoio e colaboração de diferentes pessoas às quais gostaria de manifestar os meus mais profundos e sinceros agradecimentos e reconhecimento pela ajuda concedida no decurso da sua elaboração, em particular:

Ao Professor Doutor Jorge Carvalho Pais, Professor da Universidade do Minho, orientador científico, pela possibilidade de desenvolver este tema sob sua excelente orientação e interesse demonstrado ao longo da realização desta dissertação, pelas valiosas sugestões, pelo incentivo e alento, pela leitura crítica do original e pela amizade e disponibilidade sempre demonstradas.

Ao Eng.º Rui Ramos, Diretor de Curso de Engenharia Civil da Universidade do Minho, por todos os momentos passados, pela forma como fez com que confiasse nos meus ideais e pelo crescimento pessoal e profissional que me ensinou.

À Eng.^a Ana Cristina Freire, Investigadora do LNEC, pela disponibilidade demonstrada, pelos conhecimentos técnicos e informação que me disponibilizou.

À Eng.^a Vânia Marecos, Bolseira de Doutoramento do LNEC, pela disponibilidade permanente, empenho, preciosa ajuda e disponibilização de elementos essenciais para a elaboração do caso de estudo prático.

A Eng.^a Simone Fontul, Investigadora do LNEC, pela receção calorosa com que me recebeu, pela apresentação das instalações e de todos os funcionários do LNEC, assim como toda a sua alegria contagiante e disponibilidade demonstrada.

Ao Eng.º Pedro Domingos, Investigador do LNEC, pela disponibilização da sua dissertação e do programa ELSYPAV, sem si não seria possível terminar o trabalho proposto para as semanas de estágio no LNEC.

Quero agradecer a todos os funcionários em geral do LNEC por toda a boa disposição, alegria e empenho para a boa integração no estágio lá realizado.

Ao Professor Doutor Manuel Minhoto, Professor do Instituto Politécnico de Bragança, pela disponibilidade, informações transmitidas acerca das características do Aeródromo de

Bragança e simpatia em me receber no Instituto Politécnico de Bragança, na apresentação de todas as instalações deste e no Aeroporto de Bragança para a realização do trabalho de campo.

Ao Eng.º Carlos Fernandes Palha do Laboratório de Pavimentos Rodoviários da Universidade do Minho, pela colaboração na disponibilização do equipamento e material necessário para o ensaio com o defletómetro de impacto, sem ele uma componente da dissertação não poderia ter sido aplicada.

Ao Eng.º Mike Roginski, Engenheiro Aeronáutico, autor de várias publicações acerca do programa COMFAA, pela colaboração na disponibilização de documentos que dispunha acerca do programa COMFAA.

E finalmente à minha família: aos meus pais, pelo seu amor, apoio emocional e económico, motivação e paciência durante estes seis longos anos, nos quais sempre confiaram em mim. Há minha irmã e ao seu namorado Luís, que além de amigos, são as pessoas que melhor me conhecem, muito obrigado pelo incentivo, apoio, paciência, compreensão e amor demonstrados em todos os momentos.

"Nenhuma descoberta foi feita jamais sem um palpite ousado."

Isaac Newton

Resumo

A crescente utilização de aeródromos e aeroportos por aviões com maiores dimensões e pesos obriga a que os sistemas de classificação das pistas, caminhos de circulação e plataformas de estacionamento tenham a sua capacidade de carga bem definida de modo a conhecer os aviões que aí podem circular e estacionar. Esta capacidade de carga tem sido referida através de um parâmetro denominado de PCN, resultado da terminologia inglesa Pavement Capacity Number, o qual é obtido através de normas ou procedimentos existentes.

Assim, esta dissertação de mestrado tem como objetivo apresentar de forma resumida as normas e procedimentos existentes para a avaliação do PCN, e através de uma aplicação prática explicar a sua aplicação, tendo-se estudado o método proposto pela FAA (Federal Aviation Administration), o qual recorre ao programa de cálculo COMFAA e ao método derivado da metodologia empírico-mecanicista de dimensionamento de pavimentos.

Quanto à utilização do programa COMFAA, método que tem por base o procedimento de dimensionamento de pavimentos baseado no CBR, são referidos os passos para a determinação do PCN e do ACN (Aircraft Classification Number) enquanto no método empírico-mecanicista são apresentados os modelos de comportamento considerados e o procedimento de cálculo do PCN.

A aplicação prática destes métodos é realizada para o caso do Aeródromo de Bragança, onde se realizaram ensaios de capacidade de carga, os quais permitiram a obtenção de dados tanto para o programa COMFAA como para o método empírico-mecanicista.

Os resultados de PCN obtidos pelos dois métodos são comparados de modo a avaliar o efeito que os vários critérios de dimensionamento têm na quantificação deste parâmetro.

PALAVRAS-CHAVE:

- Pavimentos aeroportuários;
- Avaliação estrutural;
- Programa de cálculo COMFAA;
- Classificação PCN.

Abstract

Due to the increasing use of aerodromes and airports by airplanes with dimensions and weights also growing, the classification systems of runway, taxiways and aprons must have a load capacity well defined so airplanes are allowed to use it. This load capacity has been defined by PCN parameter (Pavement Capacity Number) conceded by standards or procedures, already existent.

Hence, the primordial objective of the present dissertation is to resume the standards and procedures used for PCN evaluation by a practical use, studying FAA (Federal Aviation Administration) method, which uses the COMFAA software and empirical-mechanistic method utilized in pavement design.

About the COMFAA software, it is important to mention that the procedure uses the CBR method for the calculation for PCN and ACN (Aircraft Classification Number) while for the empirical-mechanistic method the behaviour models and the PCN calculation procedures are presented.

Load capacity testing was realized in Bragança Airport, allowing the achievement of data for COMFAA and empirical-mechanistic.

Finally, the results of PCN obtained with the two methods are compared so that the effect of the various design criteria on the quantification of PCN, are possible to evaluate.

KEYWORDS

- Airport Pavements;
- Evaluation structural;
- COMFAA computer program;
- PCN classification.

Х

1.	INT	RODUÇÃO1
1.	1.	Enquadramento1
1.	2.	Objetivo2
1.	3.	Estrutura da dissertação3
Cap	ítulo	2
2.	PRO	CEDIMENTOS DE AVALIAÇÃO DO PCN5
2.	1.	Método ACN-PCN5
2.	2.	Determinação do ACN6
	2.2.	1. Introdução6
	2.2.	2. Aplicação7
2.	3.	Determinação do PCN7
	2.3.	1. Introdução7
	2.3.	2. Procedimentos para notificação do PCN8
2.4.	Méte	odo da FAA utilizando o programa de cálculo COMFAA11
	2.4.	1. Tráfego anual e propriedades do pavimento11
	2.4.	2. Cálculo do PCN14
2.5.	Méte	odo empírico-mecanicista17
	2.5.	1. Módulos de deformabilidade17
	2.5.	2. Valor do PCN
	2.5.	3. Exemplo de aplicação do método empírico-mecanicista
2.6.	Con	clusão
Cap	ítulo	3
3.	API	JCAÇÃO DOS MÉTODOS DE CÁLCULO DO PCN51
3.	1. A	eródromo de Bragança51
3.	2. M	étodo empírico-mecanicista
	3.2.	1. Ensaio de carga com defletómetro de impacto55

3.2.2. Zonamento do pavimento	56
3.2.3. Caracterização estrutural do pavimento	58
3.2.4. Classificação PCN	63
3.3. Cálculo do PCN utilizando o programa COMFAA	67
3.3.1. Avaliação da espessura	72
3.3.2. Cálculo do PCN	75
Capítulo 4	
4. CONCLUSÃO	87
Capítulo 5	
5. REFERÊNCIAS BIBLIOGRÁFICAS	89
Capítulo 6	
5. ANEXO	91
Tabelas do ACN	91

FIGURA 2.1 - FATORES DE EQUIVALÊNCIA DOS PAVIMENTOS (DEBORD, 2012)	13
FIGURA 2.2 - FOLHA DE CÁLCULO EXCEL PARA CÁLCULO DA ESPESSURA DO PAVIMENTO	
(DEBORD, 2012)	14
FIGURA 2.3 - INTRODUÇÃO DO MÓDULO DE REAÇÃO E DA ESPESSURA EM AVALIAÇÃO	
(DEBORD, 2012)	15
FIGURA 2.4 - SAÍDA DE RESULTADOS DO PROGRAMA COMFAA	15
FIGURA 2.5 - DADOS DO TRÁFEGO	16
FIGURA 2.6 - RESULTADOS DO PROGRAMA COMFAA	17
FIGURA 2.8 - ASPETO DAS ANTENAS DO RADAR DE PROSPEÇÃO DO LNEC EM POSIÇÃO DE	
ENSAIO	19
FIGURA 2.9 - PRINCÍPIO DE FUNCIONAMENTO DO RADAR DE PROSPEÇÃO NUM ENSAIO EM	
PAVIMENTO FLEXÍVEL [ADAPTADO DE (FONTUL, 2004))	20
FIGURA 2.10 - ALINHAMENTOS DE ENSAIO COM O DEFLETÓMETRO DE IMPACTO	24
FIGURA 2.11 - DEFLEXÕES NORMALIZADAS NA PISTA NO ALINHAMENTO 20W SENTIDO S-N	25
FIGURA 2.12 - DEFLEXÕES NORMALIZADAS NA PISTA NO ALINHAMENTO 10W SENTIDO S-N	26
FIGURA 2.13 - DEFLEXÕES NORMALIZADAS NA PISTA NO ALINHAMENTO 4W SENTIDO S-N	26
FIGURA 2.14 - DEFLEXÕES NORMALIZADAS NA PISTA NO ALINHAMENTO 0W SENTIDO S-N	27
FIGURA 2.15 - DEFLEXÕES NORMALIZADAS NA PISTA NO ALINHAMENTO 4E SENTIDO S-N	27
FIGURA 2.16 - DEFLEXÕES NORMALIZADAS NA PISTA NO ALINHAMENTO 10E SENTIDO S-N	28
FIGURA 2.17 - DEFLEXÕES NORMALIZADAS NA PISTA NO ALINHAMENTO 20E SENTIDO S-N	28
FIGURA 2.18 – DIFERENÇAS ACUMULADAS NA PISTA NO ALINHAMENTO 20W SENTIDO S-N	29
FIGURA 2.19 - DIFERENÇAS ACUMULADAS NA PISTA NO ALINHAMENTO 10W SENTIDO S-N	30
FIGURA 2.20 - DIFERENÇAS ACUMULADAS NA PISTA NO ALINHAMENTO 4W SENTIDO S-N	30
FIGURA 2.21 - DIFERENÇAS ACUMULADAS NA PISTA NO ALINHAMENTO 0W SENTIDO S-N	31
FIGURA 2.22 - DIFERENÇAS ACUMULADAS NA PISTA NO ALINHAMENTO 4E SENTIDO S-N	31
FIGURA 2.23 - DIFERENÇAS ACUMULADAS NA PISTA NO ALINHAMENTO 10E SENTIDO S-N	32
FIGURA 2.24 - DIFERENÇAS ACUMULADAS NA PISTA NO ALINHAMENTO 20E SENTIDO S-N	32
FIGURA 2.25 - DEFLETOGRAMAS MÉDIOS DA ZONA 1	33
FIGURA 2.26 - DEFLETOGRAMAS MÉDIOS DA ZONA 2	34
FIGURA 2.27 - DEFLETOGRAMAS MÉDIOS DA ZONA 3	34
FIGURA 2.28 - DEFLETOGRAMAS MÉDIOS DA ZONA 4	35
FIGURA 2.29 - DEFLETOGRAMAS MÉDIOS DA ZONA 5	35
FIGURA 2.30 - ZONAS ESTRUTURAIS HOMOGÉNEAS NA PISTA	36
FIGURA 2.31 - DADOS DE ENTRADA NO PROGRAMA JPAVBACK	41
FIGURA 2.32 - MODELAÇÃO DO ALINHAMENTO CENTRAL 4W RECORRENDO AO PROGRAMA	
JPAVBACK	43

FIGURA 3.1 - VISTA DO AERÓDROMO DE BRAGANÇA	51
FIGURA 3.2 - LOCALIZAÇÃO DO AERÓDROMO DE BRAGANÇA	52
FIGURA 3.3 - SEÇÃO DO PAVIMENTO DA PISTA EXISTENTE (LALYRE, 2012)	54
FIGURA 3.4 - ALINHAMENTO DE ENSAIO COM O DEFLETÓMETRO DE IMPACTO	55
FIGURA 3.5 - DEFLEXÕES NORMALIZADAS NO PAVIMENTO NOS ENSAIOS DE CARGA	56
FIGURA 3.6 - GRÁFICO DAS DIFERENÇAS ACUMULADAS D (1)	57
FIGURA 3.7 - ZONAS ESTRUTURAIS HOMOGÉNEAS NA PISTA	57
FIGURA 3.8 - MODELAÇÃO DA ZONA HOMOGÉNEA 1	59
FIGURA 3.9 - MODELAÇÃO DA ZONA HOMOGÉNEA 2	60
FIGURA 3.10 - MODELAÇÃO DA ZONA HOMOGÉNEA 3	60
FIGURA 3.11 - MODELAÇÃO DA ZONA HOMOGÉNEA 4	61
FIGURA 3.12 - MODELAÇÃO DA ZONA HOMOGÉNEA 5	61
FIGURA 3.13 - TEMPERATURA MÉDIA ANUAL	62
FIGURA 3.14 - PROGRAMA JPAV	65
FIGURA 3.15 - DORNIER 228 (ENC24)	69
FIGURA 3.16 - ATR 42-300 (ENC24)	70
FIGURA 3.17 - PIPER SENECA (ENC24)	70
FIGURA 3.18 - CESSNA 172 (ENC24)	71
FIGURA 3.19 - MORANE SAULNIER 893 (ENC24)	71
FIGURA 3.20 - FATORES DE EQUIVALÊNCIA DOS PAVIMENTOS FLEXÍVEIS	73
FIGURA 3.21 - FOLHA EXCEL PARA CÁLCULO DA CAMADA DO PAVIMENTO EQUIVALENTE	75
FIGURA 3.22 - INTRODUÇÃO DO NOME DO AVIÃO	77
FIGURA 3.23 - INTRODUÇÃO DO PESO BRUTO	78
FIGURA 3.24 - INTRODUÇÃO DA PERCENTAGEM DO PESO BRUTO	78
FIGURA 3.25 - INTRODUÇÃO DO NÚMERO DE ENGRENAGENS PRINCIPAIS	79
FIGURA 3.26 - INTRODUÇÃO DA PRESSÃO DOS PNEUS	79
FIGURA 3.27 - INTRODUÇÃO DO CICLO DE PASSAGEM DO TRÁFEGO	80
FIGURA 3.28 - INTRODUÇÃO DAS SAÍDAS ANUAIS	80
FIGURA 3.29 - INTRODUÇÃO DO VALOR DO CBR	81
FIGURA 3.30 - INTRODUÇÃO DA ESPESSURA EQUIVALENTE	82
FIGURA 3.31 - SELEÇÃO DO BOTÃO "BATCH"	83
FIGURA 3.32 - SELEÇÃO DO BOTÃO "PCN FLEXIBLE BATCH"	83
FIGURA 3.33 - SELEÇÃO DO BOTÃO "DETAILS"	84
FIGURA 3.34 - RESULTADOS DE SAÍDA DO PROGRAMA COMFAA	85

	,				
FICUDA 4.1 CADTA DO	AEDODDOMO	MUNICIDAL		(I ALVDE)	0012) 00
FIGURA 4.1 - CARTA DU	AEKUDKUMU	MUNICIPAL	DE DRAGANCA	(LAL KE, 2	.012)
			- 3	()	,

TABELA 2.1 - CONDIÇÕES PARA PAVIMENTOS RÍGIDOS PARA CÁLCULO DO PCN (INAC, 2	2012)8
TABELA 2.2 - CONDIÇÕES PARA PAVIMENTOS FLEXÍVEIS PARA CÁLCULO DO PCN (INAC	C, 2012) 9
TABELA 2.3 - CÓDIGOS DA PRESSÃO DOS PNEUS PARA O RELATÓRIO DO PCN (AC 150/53	35-5A,
2006)	9
TABELA 2.4 - TIPO DE PAVIMENTO	
TABELA 2.5 - TRÁFEGO ANUAL	11
TABELA 2.6 - PROPRIEDADES DO PAVIMENTO DA PISTA (PAVIMENTO RÍGIDO)	12
TABELA 2.7 - ZONAMENTOS DOS ALINHAMENTOS LATERAIS	
TABELA 2.8 - ZONAMENTOS DOS ALINHAMENTOS CENTRAIS	
TABELA 2.9 - ESPESSURA BETUMINOSA	
TABELA 2.10 - MODELOS ESTRUTURAIS	
TABELA 2.11 - MÓDULOS DE DEFORMABILIDADE DA CAMADA BETUMINOSA PARA A	
TEMPERATURA DE CÁLCULO	45
TABELA 2.12 - VALORES MÁXIMO DAS EXTENSÕES DE TRAÇÃO E DE COMPRESSÃO	47
TABELA 2.13 - CLASSES DE RESISTÊNCIA DA FUNDAÇÃO	
TABELA 2.14 - CATEGORIA DA FUNDAÇÃO DE CADA ALINHAMENTO	
TABELA 2.15 - PCN DOS PAVIMENTOS	

TABELA 3.1 - TRÁFEGO DO AERÓDROMO (ENC24)	53
TABELA 3.2 - CARACTERIZAÇÃO DAS DEFLEXÕES DAS ZONAS HOMOGÉNEAS	58
TABELA 3.3 - MODELOS DE COMPORTAMENTO DO PAVIMENTO	62
TABELA 3.4 - MÓDULOS DE DEFORMABILIDADE DAS CAMADAS BETUMINOSAS PARA A	
TEMPERATURA DE CÁLCULO	63
TABELA 3.5 - VALORES DO RAIO PARA A DETERMINAÇÃO DAS EXTENSÕES NO JPAV	65
TABELA 3.6 - EXTENSÕES PARA O PCN DAS ZONAS HOMOGÉNEAS	66
TABELA 3.7 - CLASSE DE RESISTÊNCIA DA FUNDAÇÃO	66
TABELA 3.8 - CATEGORIA DA FUNDAÇÃO	66
TABELA 3.9 - PCN DO PAVIMENTO	67
TABELA 3.10 - ESTIMAÇÃO DO CBR NO MÉTODO EMPÍRICO-MECANICISTA	68
TABELA 3.11 - PROPRIEDADES DO PAVIMENTO	68
TABELA 3.12 - REFERÊNCIA DA ESPESSURA DO PAVIMENTO FLEXÍVEL PELA FAA (DEBORD	١,
2012)	72
TABELA 3.13 - SAÍDAS ANUAIS	76
TABELA 3.14 - PRESSÃO DOS PNEUS (AIR31)	76
TABELA 3.15 - CARACTERÍSTICAS INTRODUZIDAS NO COMFAA	76

1. INTRODUÇÃO

1.1. Enquadramento

Este trabalho intitulado "Avaliação do PCN em pavimentos aeroportuários" refere-se à dissertação de mestrado no âmbito do curso de Mestrado Integrado em Engenharia Civil, enquadrada no Perfil de Planeamento e Infraestruturas dos Transportes. Este tema surge como consequência do autor pretender desenvolver os seus conhecimentos na área das infraestruturas aeroportuárias, tendo optado pela avaliação do PCN, um parâmetro importante para a classificação dos pavimentos aeroportuários.

Os temas sobre pavimentos aeroportuários não têm sido abordados com tanta facilidade como os relativos a pavimentos rodoviários, pelo que a oportunidade de realizar esta dissertação permite maior divulgação da temática aeroportuária.

A abordagem deste tema com mais profundidade, permitiu aprender e investigar os conhecimentos nesta área, tão específica como são os pavimentos aeroportuários, levando o autor a concluir da importante carência das administrações dos aeroportos, principalmente dos mais pequenos, na componente técnica dos pavimentos.

Sabendo os requisitos normativos internacionais necessários para a determinação do PCN, é importante criar princípios e documentos claros e precisos que sirvam de apoio a esta determinação, pelo que este trabalho pretende contribuir para esse fim.

Focando no tema da dissertação, nomeadamente dos pavimentos em aeródromos e aeroportos, a Organização da Aviação Civil Internacional (ICAO) criou um grupo de estudo para desenvolver um método internacional de forma a descrever as características do pavimento. Estes, adotaram o Número de Classificação do Avião - Método da Classificação Numérica do Pavimento (ACN-PCN).

É possível distinguir as duas siglas que dão nome ao método ACN- PCN. O ACN (Número de Classificação do Avião) é o efeito de um avião em diferentes pavimentos com um único

número, que varia de acordo com o peso e a configuração do avião (por exemplo, pressão dos pneus, geometria do trem de aterragem, etc), tipo de pavimento, e a capacidade de carga da fundação, para 10000 recobrimentos. Por outro lado, o PCN (Número Classificação do Pavimento) pode definir-se como a capacidade de carga de um pavimento, expressa por um único número, sem especificar um avião particular ou informações detalhadas acerca da estrutura do pavimento.

Sem suma, ACN é um número que expressa o efeito relativo de um avião com uma determinada configuração em uma estrutura de pavimento, e PCN é um número que expressa a capacidade de carga de um pavimento para operações sem que ocorram restrições.

Relativamente ao sistema do ACN-PCN, este está estruturado de modo a que o pavimento com um determinado valor de PCN pode suportar um avião com um valor de ACN igual ou inferior do valor do PCN do pavimento. Isso é possível porque os valores do ACN e do PCN são calculados usando a mesma base técnica.

Para um pavimento em particular, a determinação do PCN pode basear-se em dois procedimentos, utilizando: i) o método do avião; ou ii) o método de avaliação técnica. Os procedimentos da ICAO permitem aos estados membros saber como determinar os valores do PCN, determinados com base nos procedimentos de avaliação de pavimentos.

1.2. Objetivo

Esta dissertação tem como objetivo principal apresentar a metodologia de cálculo do PCN dos pavimentos flexíveis aeroportuários baseados no método empírico da Federal Aviation Administration (FAA).

Como objetivo específico, a dissertação pretende determinar o PCN através do método da FAA e ao método empírico-mecanicista para o caso do Aeródromo Municipal de Bragança.

1.3. Estrutura da dissertação

Esta dissertação está estruturada em 4 capítulos, sendo que no presente capítulo apresenta-se o tema em estudo, o objetivo geral e específico, e a estrutura do trabalho.

O capítulo 2 tem como objetivo, apresentar e descrever a determinação do PCN com base no método da FAA e no método empírico-mecanicista para pavimentos aeroportuários.

No Capítulo 3 efetua-se a apresentação do caso de estudo desta dissertação, o Aeródromo Municipal de Bragança, com a sua histórica e caracterização do pavimento na situação atual. Seguidamente demonstra-se a aplicação do método FAA e a utilização do método empíricomecanicista, com os procedimentos estudados no Laboratório Nacional de Engenharia Civil (LNEC). São ainda apresentados os resultados obtidos em todas as fases, discutindo e comparando esses mesmos resultados.

No capítulo 4 faz-se a conclusão desta dissertação, com a discussão dos resultados analisados e apresenta-se as conclusões obtidas ao longo do desenvolvimento deste estudo.

2. PROCEDIMENTOS DE AVALIAÇÃO DO PCN

2.1. Método ACN-PCN

O Método ACN-PCN, do inglês "*Aircraft Classification Number*" e "*Pavement Classification Number*", surgiu em 1977, formulado por um grupo de estudo da Organização de Aviação Civil Internacional (ICAO) com a finalidade de elaborar um método simples para registar a resistência dos pavimentos (Fonseca, 2013).

Antes da apresentação do método importa definir o significado técnico das siglas que lhe dão a designação. Assim,

- ACN: efeito de um avião num pavimento representado através de um único número, que varia de acordo com o peso e configuração do avião, tipo de pavimento e a capacidade de carga da fundação;
- PCN: número que indica a resistência de um pavimento para poder ser utilizado sem restrições por aviões com ACN menor que o PCN da pista.

O sistema ACN-PCN é estruturado de maneira que um pavimento com um determinado valor de PCN seja capaz de suportar, sem restrições um avião que tenha um valor de ACN inferior ou igual ao valor do PCN do pavimento (ANAC, 2008).

As condições de aplicação da metodologia ACN-PCN são as seguintes:

- A metodologia aplica-se nos aeroportos com pavimentos cuja capacidade de carga, ou cujas carga dos aviões que o solicitam, sejam superiores a 5700 kg;
- No caso mencionado anteriormente devem ser ponderados os dois valores seguintes, relativos aos aviões:
 - O valor máximo da carga permitido;
 - O valor máximo da pressão de enchimento dos pneus admitido.

O objetivo do método ACN-PCN é a difusão de dados sobre a resistência dos pavimentos de forma que a Administração Aeroportuária Local (AAL) possa avaliar a possibilidade de utilização do pavimento para um determinado tipo de avião.

Na norma AC 150/5335-5A estão especificados todos os conceitos e especificações referentes ao sistema ACN-PCN. O PCN encontra-se definido em português no Decreto-Lei nº 186/2007 e no documento Aerodrome Design Manual – Part 3 da ICAO.

O método de ACN-PCN não é um método de avaliação, pois a documentação do ICAO deixa muito claro que o PCN é simplesmente o ACN do avião mais prejudicial que pode usar o pavimento de forma regular (Lalyre, 2012).

2.2. Determinação do ACN

2.2.1. Introdução

Para determinação do ACN, utilizam-se dois modelos matemáticos (ANAC, 2008):

- Para pavimentos rígidos utiliza-se a solução de *Westergaard*, baseada numa placa elástica carregada sobre uma sub-base de *Winkler* (caso de carga interior), assumindo uma tensão de trabalho para o betão de 2,75 MPa;
- Para pavimentos flexíveis é usado o método do Índice de Suporte Californiano (CBR), que emprega a solução de *Boussinesq*, baseada nos esforços e deslocamentos num semiespaço isotrópico e homogêneo.

Para facilitar a determinação do ACN, a Administração da Aviação Civil (FAA) desenvolveu o *software* COMFAA que calcula os valores de ACN a partir das especificações da ICAO. Apesar de esse *software* ser útil na determinação do ACN, cabe ao fabricante fornecer os valores oficiais de ACN dos aviões (Fonseca, 2013). Além do ACN, o programa COMFAA determina também os valores de PCN de cada avião em estudo.

2.2.2. Aplicação

Dado que um avião opera em diversas condições de massa e centro de gravidade, nos cálculos do ACN adotam-se as seguintes convenções:

- O ACN máximo dum avião calcula-se com a massa e centro de gravidade que provocam a carga máxima do trem de aterragem principal sobre o pavimento; geralmente, trata-se da máxima carga sobre a plataforma. Para este caso, considera-se que os pneus do avião têm a pressão de enchimento que está de acordo com a recomendação dos fabricantes;
- O fabricante do avião deve fornecer o valor oficial do ACN, de acordo com informações detalhadas sobre as características operacionais do avião;

Existem inúmeras tabelas de onde é possível retirar o valor do ACN dos aviões. Este aparece em função da massa do avião, da pressão dos pneus e da categoria do solo de fundação. Um exemplo dessas tabelas encontram-se no Anexo 1.

2.3. Determinação do PCN

2.3.1. Introdução

A avaliação do PCN dos pavimentos aeroportuários é uma obrigação das autoridades aeronáuticas de cada país.

De acordo com a norma AC 150/5335-5A da FAA existem dois métodos para calcular o valor numérico do PCN, sendo um baseado na experiência com aviões que operam usualmente no pavimento e outro que se baseia em avaliação técnica (ANAC, 2008).

O método experimental é um procedimento simples onde os valores de ACN de todos os aviões usualmente autorizados a utilizar o pavimento são determinados e o maior destes valores é notificado como o valor do PCN do pavimento. Este método é fácil de ser aplicado e não necessita de conhecimento detalhado da estrutura do pavimento (ANAC, 2008).

No método da avaliação técnica são usados os mesmos princípios usados para projeto de pavimentos, sendo determinado o valor numérico do PCN a partir da obtenção da carga máxima

admissível que o pavimento suporta (ANAC, 2008). Obtida a carga admissível, a determinação do valor do PCN torna-se um processo simples de aquisição do ACN do avião que apresenta a carga admissível, tomando-se este valor como o PCN do pavimento.

A ICAO não especifica a metodologia que deve ser utilizada para a definição do PCN. Cabe aos estados ou às autoridades aeroportuárias determinarem o PCN utilizando o método preferido (Alexandre, 2008).

2.3.2. Procedimentos para notificação do PCN

O PCN é expresso num código de cinco parte, descrevendo o pavimento em causa (Lalyre, 2012), onde o significado de cada parte corresponde ao:

- Valor numérico do PCN;
- Tipo de pavimento;
- Categoria de resistência da fundação;
- Pressão máxima permitida nos pneus;
- Método de avaliação utilizado.

O valor numérico do PCN deve ser apresentado em números inteiros, arredondando-se as frações para o inteiro mais próximo.

Existem tabelas de referências com os valores das quatro categorias do solo de fundação, para pavimentos flexíveis e rígidos. Estas quatro categorias definem-se de acordo como o tipo de pavimento, como se verifica na Tabela 2.1 e Tabela 2.2. A fundação dos pavimentos é caracterizada através do CBR no caso de pavimentos flexíveis e pelo módulo de reação (k) no caso de pavimentos rígidos.

Tabela 2.1 - Condições para	a pavimentos rígidos para	a cálculo do PCN (INAC, 2012)
-----------------------------	---------------------------	-------------------------------

Categoria da resistência da fundação	Capacidade de suporte da fundação (k) – Valor em psi (MN/m ³)	Intervalo de valores de k em psi (MN/m³)	Código de designação
Alta	552,6 (150)	k > 442 (120)	А
Média	294,7 (80)	$221 < k < 442 \ (60 < k < 120)$	В
Baixa	147,4 (40)	92 < k < 221 (25 < k < 60)	С
Muito Baixa	73,7 (20)	k < 92 (25)	D

Categoria da resistência da fundação	CBR - Valor tipo	Intervalo de valores do CBR	Código de designação
Alta	15	CBR > 13	А
Média	10	8 < CBR < 13	В
Baixa	6	4 < CBR < 8	С
Muito Baixa	3	CBR < 4	D

Tabela 2.2 - Condições para pavimentos flexíveis para cálculo do PCN (INAC, 2012)

A categoria de um avião equivalente é apresentado através da pressão dos pneus, em vez do tipo de pavimento. Contudo, em aplicação, a pressão difere substancialmente para pavimentos flexíveis e rígidos.

O sistema PCN usa quatro categorias para notificação da pressão admissível de pneus, estando estas apresentadas na Tabela 2.3.

Tabela 2.3	- Códigos	da pressão dos	s pneus par	a o relatório de	o PCN (AC	150/5335-5A, 2006)
	0	1	1 1			

Categoria de pressão de enchimento dos pneus	Código de designação	Pressão
Alta	W	Sem limite
Média	Х	Pressão limitada a 218 psi (1,5 MPa)
Baixa	Y	Pressão limitada a 145 psi (1,0 MPa)
Muito Baixa	Z	Pressão limitada a 73 psi (0,5 MPa)

Para pavimentos rígidos, a pressão dos pneus tem pouco efeito. Os pavimentos rígidos são capazes de absorver altas pressões de pneus, sendo classificados normalmente com o código W (ANAC, 2008).

O valor numérico do PCN é uma indicação relativa da resistência de um pavimento em termos de uma carga, a uma pressão de pneus normalizada (1,25 MPa) (ANAC, 2008) e quatro categorias de resistência da fundação (Tabela 2.3).

Além da pressão dos pneus e das categorias de resistência da fundação, o pavimento é considerado em dois tipos: pavimentos flexíveis e pavimentos rígidos, com a designação demonstrada na Tabela 2.4.

Tipo de pavimento	Código de designação
Flexível	F
Rígido	R

Tabela 2.4 - Tipo de pavimento

Diferentes combinações de tipos de pavimentos podem resultar em um pavimento complexo que se classifica entre um pavimento flexível e um pavimento rígido, sendo chamado de pavimento composto. Este tipo de pavimento também deve ser codificado como flexível e a sua notificação de PCN deve apresentar uma observação informando que se trata de construção composta (ANAC, 2008).

O sistema PCN reconhece dois métodos de avaliação de pavimento. Se a avaliação resulta do resultado de um estudo técnico, o método de avaliação deve ser codificado com a letra T. Se a avaliação é baseada na experiência com aviões que operam usualmente no pavimento, o método de avaliação deve ser codificado com a letra U (ANAC, 2008).

De forma a explicar melhor os códigos associados ao PCN, um PCN cujo código seja 45/F/B/X/T corresponde a um pavimento com capacidade de carga de valor numérico 45, de um pavimento flexível (F), cuja fundação é de categoria média, com valores de CBR entre os 8 e os 13 (B), com pressão máxima de enchimento de pneus admissível igual a 1,5 MPa (X) e cuja avaliação foi técnica (T).

Depois de apresentada a codificação associada ao PCN, torna-se necessário conhecer os passos para determinar o PCN através da norma AC 150/5335-5A que tempemplam:

- 1. Identificar as propriedades do pavimento;
- 2. Determinar a composição do tráfego;
- 3. Calcular a espessura equivalente e identificar o avião individualmente;
- 4. A maior espessura equivalente identifica o avião crítico;
- 5. Converter o tráfego para tráfego de avião crítico equivalente;
- 6. Determinar o peso máximo operacional permitido pelo avião crítico;
- 7. Determinar o ACN do avião crítico no seu peso operacional máximo permitido;
- 8. Referir o PCN com o ACN obtido no passo 7.

2.4. Método da FAA utilizando o programa de cálculo COMFAA

Nesta parte da dissertação será apresentado um exemplo do cálculo do PCN recorrendo ao programa de cálculo COMFAA, para um pavimento rígido, sendo que para os pavimentos flexíveis, o procedimento é explicado no Capítulo 3. O exemplo utiliza os dados apresentados no artigo "Calculating PCN using the FAA Method" elaborado por DeBord (2012).

O aeroporto em estudo tem duas pistas, onde uma é constituída por pavimento flexível e outra por pavimento rígido. Ambas as pistas possuem o mesmo tráfego e ano de construção.

2.4.1. Tráfego anual e propriedades do pavimento

O tráfego médio anual existente para o caso de estudo que se apresenta encontra-se na Tabela 2.5. Na pista com pavimento rígido passa 60% do tráfego e na pista com o pavimento flexível passa os restantes 40% do tráfego.

	Tine de trem de	Doutidos módios	Tipo de		
Tipo de avião	Tipo de trem de	Partidas medias	pavimento		
-	aterragem	anuais	Rígido	Flexível	
B747-400ER	2D/2D2	3800	2280	1520	
B747-8	2D/2D3	300	180	120	
B787-8	2D	6800	4080	2720	
B717	D	6100	3660	2440	
B727-200	D	200	120	80	
B737 (300/400/500)	D	22000	13200	8800	
B737 (700/800)	D	26000	15600	10400	
B757-200	2D	41000	24600	16400	
B767-300ER	2D	7800	4680	3120	
B777-300ER	3D	3300	1980	1320	
MD-11ER	2D/D1	1200	720	480	
MD-83	D	700	420	280	
A319	D	12000	7200	4800	
A320	D	19000	11400	7600	
A321	D	5500	3300	2200	

Tabela 2.5 - Tráfego anual

Tipo de avião	Tipo de trem de	Partidas médias	Tipo de pavimento		
	aterragem	anuais	Rígido	Flexível	
A300/310	2D	2100	1260	840	
A340-200	2D	800	480	320	
A380-800	2D/3D2	500	300	200	

Para se determinar o valor do PCN, é importante ter acesso às propriedades mais relevantes da pista. Para uma melhor análise do pavimento rígido, estas propriedades encontram-se na Tabela 2.6. Nesta tabela encontram-se também as unidades e códigos denominados pela FAA 5010 em relação ao tipo de pavimento utilizado na pista.

Tabela 2.6 - Propriedades do pavimento da pista (pavimento rígido)

Data de construção	2011	
Pavimento Rígido (Betão de cimento)	17 in.	P-501
Camada de base	6 in.	P-306
Módulo de elasticidade da camada betuminosa	4000000 psi	
Módulo de rotura	700 psi	
Módulo de reação do terreno de fundação - k	193 pci	
Valor efetivo do módulo de reação k	310 pci	Código B
Vida útil restante (anos)	20	
Classificação FAA 5010	D220; DT400; DDT800	

Sabendo a espessura e constituição do pavimento, verifica-se a necessidade de ajustar os fatores de equivalência do pavimento existente, para um pavimento equivalente com constituição recomendada. Estes fatores de equivalência encontram-se na Figura 2.1.

Structural Item	Description	Range Convert to P-209	Recommended Convert to P-209	Range Convert to P-154	Recommended Convert to P-154
P-501	Portland Cement Concrete (PCC)				
P-401	Plant Mix Bituminous Pavements (HMA)	1.2 to 1.6	1.6	1.7 to 2.3	2.3
P-403	Plant Mix Bituminous Pavements (HMA)	1.2 to 1.6	1.6	1.7 to 2.3	2.3
P-306	Econocrete Subbase Course (ESC)	1.2 to 1.6	1.2	1.6 to 2.3	1.6
P-304	Cement Treated Base Course (CTB)	1.2 to 1.6	1.2	1.6 to 2.3	1.6
P-212	Shell Base Course				
P-213	Sand-Clay Base Course				
P-220	Caliche Base Course				
P-209	Crushed Aggregate Base Course	1.0	1.0	1.2 to 1.6	1.4
P-208	Aggregate Base Course	1.0	1.0	1.0 to 1.5	1.2
P-211	Lime Rock Base Course	1.0	1.0	1.0 to 1.5	1.2
P-301	Soil-Cement Base Course	n/a		1.0 to 1.5	1.2
P-154	Subbase Course	n/a		1.0	1.0
P-501	Portland Cement Concrete (PCC)	Range Conv	ert to P-401 2.2 to 2	.5, Recommen	ided 2.5

Figura 2.1 - Fatores de equivalência dos pavimentos (DeBord, 2012)

No caso do pavimento rígido apresentar camadas de base e/ou sub-base, estas são consideradas no programa COMFAA como englobadas na camada de fundação, uma vez que o programa COMFAA trabalha com apenas uma camada de pavimento sobre a fundação.

Na Figura 2.2 apresenta-se a folha de cálculo EXCEL anexa ao programa COMFAA, na qual observa-se a introdução das espessuras do pavimento existente (coluna E) com os fatores de equivalência P-501, P-306, correspondentes ao tipo de material que o constitui (coluna D). Nesta mesma coluna insere-se também o valor módulo de rotura (Linha 6) e o valor do módulo de reação (k) (Linha 15).

C) 🖬 🤊 -	(u +) +	12-6Draftco	mfaa_supportVari	iableP	Rrefere	ence	.xls	Compa	atibility Mode] - Micr	os		x
	Home	Insert	Page Layout	Formulas	Data	Rev	iew	N	'iew	Get Started	Acrob	at 🔞 –	-	×
	D1	+	() fx	Existing Rigid F	aver	nent L	aye	rs						¥
		A	B		_	E	F	G	Н	1		J		F
1	Reference Guie Apper	danee AC 1 ndiz A-2 Ri	150/6336-6B gid	Existing Rigid	Eni: La	sting ager		т	Layer hicknes	s,				Г
3	Pavemen	tStructure	Items	Pavement Lagers ENTER P-401	Thie	kness		ſ	in.	improved)	k-value			
4	4 Figure Az-r		Overlag(s)		0.0	in.	٦ I	<u>17.0</u>						
5				ENTER P-501	Ō	17.0	In.	J						
6				ENTER P-501 Flex. Strength	÷	700	psi			Foundation - Marin	k-value			
_				ENTER P-401	-			r		Improved	k-value			
7	Figure A2 recommends	2-6, howev maximum	combined	and/or P-403		0.0	in.	ŀ		Belo				
8	thickness of 12 to be consis	inches for stent with t	these layers	ENTER P-306		6.0	in.	1	0.3	310	1			
9	10 00 0001313	i Fi		ENTER P-304	Ō	0.0	in.	J						
10	Upper Graph maximum 14 in	ohes for a	A2-b, Use onsistenoy.	ENTER P-209	÷	0.0	in.	3	0.0	<u>No Impro</u>	venent			
н	Lower Grash	in Figure (02-5 E04	ENTER P-208 and/or P-211	÷	0.0		5						
	recommends maximum combined													
12	thickness of 14 to be consis	inches for tent with t	these layers he figure.	ENTER P-301		0.0	in.	זו	0.0	<u>No Impro</u>	vement	Format		
13			-	ENTER P-154		0.0	in.	J				Chart		
15				ENTER Subgrade k	÷.	193			6.0	310) Ea	shulant Course	-+	
16	COMEAA Evalu	uation Crit	teria	🕲 Enaid				0	<u>.</u>	000000000	100	1000000		
17		auonen						5	<u>133</u>		133		33	
19	Effective k-val	ue = 310	Ib/in^3	Enter Project Detai						P-501 flex strength =	1633	P-601 flex strength =	33	İ
20	Evaluation Thi	ckness t	= 17.0 in.	AC 150/5315-5B Rigid P Effective subgrade have	'averne Iualie 24	nt Examp Ill poi telel	le 1.	_10 - ⊒		700 psl	162	700 pel.	22	
21	Evaluation Str	ength = 7	'00 psi.	thickness is 17 inches, o	oncrete	e modulus	s of	្លូវ15 គ្						
22	· · ·	I DON C	- DIDAN	rupture is 700 psi. Fruny takiway, and iyel is obrain	ay has a ned bef	a parallel ore depai	ture.	5 E 20 -		P.YE		stabilized k=		
23	recommende		des: K/B/W	The pavement life is esti	imated	to be 20 g	ears.	ef -		<u> </u>			<u> 2223</u>	
								820		Subgrade k= 193		Subgrade k= 193		
24								30						
25			Save Data	Airport LOC JO				35						
26	CONTRACTION OF A CONTRACT			Esample 1A	Pa	15/30	10		1					
14	Use	r / Lave	r Equivalency	k Value / Data	Parse	/ Fle	exible	e Cha	rt / R	igid Chart 📝	Fd (m		•	
Rea	dy								Œ	0 1 75%	Θ	- Ū - I	-+	

Figura 2.2 - Folha de cálculo EXCEL para cálculo da espessura do pavimento (DeBord, 2012)

2.4.2. Cálculo do PCN

Tal como referido anteriormente, o programa COMFAA funciona unicamente para uma camada de pavimento sobre a fundação, pelo que as camadas de base e/ou sub-base têm de ser convertidas no módulo de reação eficaz (k) da fundação. Retira-se este módulo de reação da folha de cálculo EXCEL como "Effective k-value" (Figura 2.2) e entra no programa COMFAA como k (Figura 2.3).

Inseridas todas as características dos aviões, introduz-se o valor do módulo de reação ("Effective k") e a espessura em avaliação (espessura equivalente) que se retira da folha de

cálculo EXCEL ("Slab Thickness"). Observa-se a introdução destas características na Figura 2.3.

Figura 2.3 - Introdução do módulo de reação e da espessura em avaliação (DeBord, 2012)

Preenchidos todos os campos necessários seleciona-se o botão "Batch", e pressiona-se no botão "PCN Rigd Batch". Continuamente, em "Details" são apresentados os resultados.

Inicialmente, como resultados apresentam-se as características do pavimento e do tráfego, juntamente com a categoria da fundação (Figura 2.4).

Figura 2.4 - Saída de resultados do programa COMFAA

Seguidamente, apresenta-se os dados de tráfego (Figura 2.5).

Nos dados de tráfego, apresentam-se as espessuras 6D, que são espessuras calculadas individualmente para cada um dos modelos do avião, de acordo com a norma AC150/5320-6D. Estes números não têm qualquer relação com o cálculo PCN e somente são expostos para comparar com a espessura existente. No entanto, espera-se que cada um destes valores seja menor que a espessura existente para um pavimento adequadamente concebido (DeBord, 2012).

🖲 ic	AO ACN Computation, De	stailed Outp	ut						
Unit Conversions Show Ext File Single Aiscraft ACN Other Calculation Modes Conversions Alpha Ext File Flexible © Rigid © PCN © ACN Batch © Thickness © Life © MGW								<u>B</u> ack	
Save PCN Output to a Text File									
Res	ulte Table 1 Toput To	Peso bru	to Pr	essão	dos pneu	15		\ \	^
No	. Aircraft Name	Gross Weight	Percent Gross Wt	Tire Press	Annual Deps	20-yr Coverages	6D Thick	Espessuras 6D	
1 2 3 4 5 6 7 8 9 10	B747-400ER B747-8 B787-8 B717-200 HGW B727-200 Basic B737-300/400/500 B737-700/800 B757-200 B757-200 B767-300 ER B777-300 ER HD11ER	913,000 978,000 503,500 122,000 185,200 150,500 174,700 256,000 413,000 777,000 633,000	93.60 94.69 91.28 94.42 96.00 93.82 93.56 91.18 92.40 92.40 92.44 77.54	230.0 218.0 228.0 164.0 148.0 185.0 205.0 183.0 200.0 221.0 200.0	2,280 180 4,080 3,660 120 13,200 15,600 24,600 4,680 1,980 720	12,465 1,017 21,268 20,601 826 74,840 87,703 123,813 25,623 10,115 3,912	13.00 12.78 14.53 11.78 11.94 14.05 15.32 11.67 13.10 13.09 12.79		
12 13 14 15 16 17 18 19	10033 A319-100 opt A320 Twin opt A321-100 std A300-B4 STD A340-200 opt A380-800 Body A380-800 Wing	161,000 150,800 172,800 181,200 365,700 \$15,600 1,234,500 1,234,500	94.76 91.40 92.00 95.60 94.00 79.98 57.08 38.05	195.0 200.1 208.9 197.3 216.1 191.4 218.0 218.0	420 7,200 11,400 3,300 1,260 480 300 300	2,456 36,771 61,440 19,011 6,911 4,890 1,412 1,570	12.40 13.08 14.70 14.14 12.03 11.28 11.20 12.23		

Figura 2.5 - Dados do tráfego

Na Figura 2.6, encontram-se os resultados do PCN, sendo o PCN do pavimento o maior valor verificado para o conjunto de aviões que compõem o tráfego, neste caso o PCN é de 97, correspondendo ao avião B777-300 ER.

O valor do ACN é de 16,92 o qual corresponde ao maior valor de todo o tráfego em estudo. Este ACN corresponde ao avião B777-300 ER.
Procedimentos de avaliação do PCN

ICAO ACN Computation, Detailed Output											
Unit Show Conversions Alpha	Show Single Ain	craft ACN ble @ Rigid	Other Calculation Mo PCN C ACN	des Batch	⊂ Thickness ⊂ Life ⊂ MGW	Back					
			Save PCN Out	put to a 1	ext File						
Pesuits Table 2. PCN Values Valores de PCN											
No. Aircraft Name	Critical Aircraft Total Equiv. Covs.	Thickness for Total Equiv. Covs.	Maximum Allowable Gross Weight	PCN on B(295)	ACN Thick at Max. Allowable CDF Gross Weight						
1 B747-400ER 2 B747-8 3 B787-8 4 B717-200 HGW 5 B727-200 Basic 6 B737-300/400/500 7 B737-700/800 8 B757-200 9 D767-300 ER 10 B777-300 ER 11 HD11ER 12 HD83 13 A319-100 opt 14 A320 Twin opt 15 A321-100 std 16 A300-B4 STD 17 A340-200 opt 18 A380-800 Body 19 A380-800 Wing	193,219 102,889 137,995 >5,000,000 334,431 1,197,207 249,830 >5,000,000 1,381,665 422,155 227,101 316,515 2,300,365 374,142 203,750 1,449,570 3,613,310 1,804,677 313,513	16.22 16.19 16.20 16.35 16.24 16.28 16.29 16.25 16.22 16.22 16.22 16.21 16.22 16.22 16.22 16.22 16.22 16.31 16.22 16.32 16.30 16.24	981,407 1,051,668 543,365 131,129 202,173 163,900 191,439 269,860 444,107 038,196 683,714 175,400 163,557 180,000 197,888 391,686 561,002 1,333,041 1,336,239 Tetal	77.3 83.8 79.7 39.0 58.6 49.3 57.7 39.6 57.7 39.6 57.7 97.1 77.5 56.8 44.0 54.4 59.1 63.2 54.1 76.2 54.1	0.0265 15.24 0.0041 15.81 0.0634 15.45 0.0008 11.21 0.0010 13.40 0.0257 12.37 0.1443 13.31 0.0003 11.17 0.0076 13.93 0.0098 16.92 0.0098 16.92 0.0071 15.25 0.0032 13.21 0.0066 11.04 0.0675 12.95 0.0384 13.45 0.0020 13.88 0.0006 12.92 0.0003 15.14 0.0021 14.08						

Figura 2.6 - Resultados do programa COMFAA

2.5. Método empírico-mecanicista

2.5.1. Módulos de deformabilidade

Para a determinação dos módulos de deformabilidade, todos os ensaios efetuam-se nos pavimentos ao longo de alinhamentos paralelos à linha central destes, que devem coincidir com os alinhamentos definidos nos ensaios de defletómetro de impacto. Inicialmente, normalizam-se as deflexões para uma determinada força de pico através da aplicação da equação (2.1):

$$D_n = D_m \times \frac{F_p}{F_m} \tag{2.1}$$

Onde,

D_n: Deflexão normalizada;

D_m: Deflexão medida;

F_p: Força padrão;

F_m: Força medida.

Após a normalização dos valores de deflexão, procede-se a um zonamento com base na observação direta do gráfico das deflexões obtidas ao longo do trecho de estudo e no método das diferenças acumuladas proposto pela AASHTO (Alves, 2007).

Para todas as deflexões medidas, deve determinar-se em quantas zonas o pavimento pode ser dividido em subtrechos homogéneos. Esta subdivisão obtém-se através do método de cálculo das diferenças acumuladas.

Para cada uma das zonas consideradas determina-se os valores das médias e desvios padrão obtidos para as deflexões normalizadas, com base nos quais deve selecionar-se um ou mais locais cujo comportamento estrutural se considera representativo de cada uma das zonas do pavimento em estudo. Os locais selecionados dizem respeito a pontos onde se obtém deflexões, D_i, que se encontram próximas dos valores correspondentes ao percentil 85% (2.2) do conjunto das deflexões medidas em cada zona, dados por:

$$D_i^{85} = M_l + 1,04 \times \sigma_i \tag{2.2}$$

Onde,

M1: Valor médio das deflexões correspondentes ao transdutor número i;

σ_i: Desvio padrão.

Seguidamente, utiliza-se os resultados obtidos pelo radar de prospeção. Deve-se executar os ensaios com radar de prospeção, tal como no defletómetro de impacto, ao longo de alinhamentos paralelos à linha central do respetivo pavimento. Após a análise destes resultados, define-se a espessura da camada betuminosa.

Tendo por base os resultados obtidos nos pontos representativos de cada zona do ensaio de carga com defletómetro de impacto e do conhecimento da constituição e espessura das camadas do pavimento, admite-se os módulos de deformabilidade das suas camadas, com recurso à retro-análise do pavimento.

O radar de prospeção (Figura 2.7) é um equipamento que permite estimar em contínuo as espessuras das várias camadas que perfazem a estrutura do pavimento. A grande vantagem deste tipo de equipamento é o facto de permitir, através de um método não destrutivo, obter informação em contínuo sobre a constituição do pavimento.

O radar de prospeção por ser composto por dois pares de antenas suspensas, que emitem ondas eletromagnéticas, por exemplo com frequências de 1,0 GHz e de 1,8 GHz. As antenas com uma maior frequência têm uma melhor resolução, no entanto a onda emitida tem uma profundidade de penetração menor.

Figura 2.7 - Aspeto das antenas do radar de prospeção do LNEC em posição de ensaio

Em cada par de antenas, uma das antenas funciona como emissor e a outra como recetor. Na Figura 2.8 apresenta-se um esquema que traduz o princípio do ensaio com o radar de prospeção. As ondas eletromagnéticas propagam-se verticalmente através das camadas do pavimento, e uma parte é refletida sempre que a onda encontra uma interface entre camadas adjacentes, sendo essa reflexão registada pela antena que serve de recetor.

Figura 2.8 - Princípio de funcionamento do radar de prospeção num ensaio em pavimento flexível [adaptado de (Fontul, 2004))

A velocidade de propagação das ondas eletromagnéticas depende fundamentalmente da constante dielétrica dos materiais (E). A partir do tempo de percurso (t) e da velocidade destas ondas (v) de uma determinada camada do pavimento, pode determinar-se a espessura (h) dessa camada da seguinte forma (2.3) (Alves, 2007):

$$h = v \times \frac{t}{2} \tag{2.3}$$

Onde:

$$v = \frac{c}{\sqrt{\varepsilon_r}}$$

 $c = 3 \times 10^8 m/s$: Velocidade da luz no vácuo;

 \mathcal{E}_r : Constante dielétrica relativa que tem em conta a combinação dos vários materiais da camada e as condições hídricas (Fontul, 2004).

Admitindo determinados valores típicos para as velocidades de propagação das ondas, ou para as constantes dielétricas dos materiais das camadas, com base no intervalo de tempo decorrido entre a emissão das ondas e a receção das ondas refletidas, é possível determinar as profundidades a que se encontram as diversas interfaces que delimitam as camadas do pavimento. A partir dos resultados obtidos ao longo de um determinado trecho, é possível determinar desde logo a localização de zonas com estruturas de pavimento distintas. No entanto, com vista à determinação das espessuras das camadas, os resultados obtidos com o radar devem ser posteriormente calibrados com base em resultados de sondagens, uma vez que a constante dielétrica de cada tipo de material pode exibir uma gama de valores relativamente larga, dependendo de fatores como o seu teor em água ou o estado de compacidade (Fontul, 2004).

As condições de temperatura na realização do ensaio de carga com o defletómetro de impacto nem sempre são as condições representativas do comportamento estrutural do pavimento ao longo do ano, tendo-se assim de proceder à correção dos módulos de deformabilidade.

Os módulos de deformabilidade das misturas betuminosas variam consideravelmente com a temperatura a que estas camadas se encontram no momento em que se realiza o ensaio. Assim, procede-se à correção dos módulos estimados para as camadas betuminosas tendo em conta a temperatura de cálculo destas camadas, determinada de acordo com a metodologia preconizada pela Shell (SHELL, 1978).

Tendo em vista a determinação da temperatura de cálculo utiliza-se os valores das temperaturas médias mensais do ar na região em estudo, publicados pelo Instituto Nacional de Meteorologia e Geofísica (Serviço Metereológico Nacional, 1970).

Assim, a correção dos módulos de deformabilidade das camadas betuminosas para a temperatura de cálculo efetua-se através da expressão (2.4) (Antunes, 1993):

$$E_t^{MB} = (1,635 - 0,0317 \times t_{med}) \times E_{20^{\circ}C}^{MB}$$
(2.4)

Onde,

 E_t^{MB} : Módulo de deformabilidade da mistura betuminosa (MPa);

t_{med}: Temperatura média da mistura betuminosa (°C);

 $E_{20^{\circ}C}^{MB}$: Módulo de deformabilidade da mistura betuminosa para a temperatura de referência de 20°C (MPa).

2.5.2. Valor do PCN

Depois de determinar os módulos de deformabilidade corrigidos para a temperatura de cálculo, determina-se o valor da carga máxima admissível.

Para determinar o valor da carga máxima admissível avalia-se os valores das extensões verificadas no pavimento com o programa ELSYPAV/JPav, tendo em conta os critérios de dimensionamento aplicáveis aos pavimentos em estudo.

Este dimensionamento é feito através da limitação do fendilhamento por fadiga das camadas betuminosas através do uso do critério preconizado pela Shell (SHELL, 1978), (2.5):

$$\mathcal{E}_b = (0.856 \times V_b + 1.08) \times E^{-0.36} \times N^{-0.2}$$
(2.5)

Onde,

V_b: percentagem volumétrica de betume;

E: módulo de deformabilidade da mistura betuminosa, em Pascal (Pa);

 \mathcal{E}_b e *N*: representam respetivamente a extensão máxima de tração induzida na camada e o correspondente número admissível de aplicações da carga que a induz.

A contribuição da fundação para a formação de deformações permanentes excessivas é dada por Chou (2.6):

$$\mathcal{E}_s = 0,00539 \times N^{-0,1436} \tag{2.6}$$

Onde,

 E_s : extensão vertical de compressão no topo da camada do solo de fundação;

N: correspondente número de passagens admissível.

A classificação da resistência da fundação é realizada com base nos resultados obtidos para os módulos de deformabilidade do solo de fundação por retro-análise, adotando-se a expressão preconizada pela Shell (SHELL, 1978), para estimar o CBR da fundação em função do módulo de deformabilidade dos solos, E (2.7):

$E \approx 10 \times CBR$

(2.7)

Os valores de PCN devem calcular-se para cada uma das zonas dos pavimentos. De referir que todos os valores de PCN apresentados correspondem à carga máxima admissível do pavimento para 10000 recobrimentos.

2.5.3. Exemplo de aplicação do método empírico-mecanicista

Nesta parte da dissertação apresenta-se os resultados do estudo realizado no LNEC para a caracterização estrutural de um pavimento aeroportuário, com a determinação da sua capacidade de carga e respetiva classificação ACN-PCN, recorrendo ao método empírico-mecanicista.

Para a determinação do PCN analisam-se os resultados do ensaio da capacidade de carga realizados com defletómetro de impacto e ensaios de avaliação da espessura das camadas do pavimento recorrendo ao georadar.

Para a caracterização estrutural dos pavimentos e a respetiva classificação ACN-PCN adota-se a metodologia de análise estrutural composta por:

- 1ª Fase: Ensaios de carga e medição da temperatura;
- 2ª Fase: Análise estrutural dos pavimentos e classificação ACN-PCN.

Para o presente caso de estudo, e dado que a 1^a fase já tinha sido realizada, apenas foi desenvolvida a 2^a fase, onde se obteve os resultados tal como a sua análise.

Os pavimentos dos espaços operacionais no Aeroporto em estudo delimitam-se em três grupos:

- Pista;
- Caminhos de circulação;
- Plataformas de estacionamento.

No presente estudo analisa-se os ensaios realizados na pista, em pavimento flexível, constituída por a camada de sub-base em betão pobre, uma camada de base em macadame betuminoso e camada de regularização e desgaste em betão betuminoso. O comprimento total da pista é de 2480 m com largura de 45 m entre bermas.

Analisam-se os elementos disponíveis sobre a constituição do pavimento em estudo, onde se inclui os resultados dos ensaios com radar de prospeção.

Uma vez estabelecida a constituição dos pavimentos de cada uma das zonas definidas, estabelecem-se os modelos de resposta desses pavimentos, tendo como referência os pontos cujas deflexões medidas com defletómetro de impacto se aproximam dos valores correspondentes ao percentil 85% do conjunto das deflexões medidas nessa zona, que considera-se representativos dos respetivos comportamentos estruturais.

Seguidamente, apresenta-se as metodologias adotadas e os resultados obtidos no estabelecimento dos modelos de resposta para os pavimentos da pista em estudo.

Resultados dos ensaios de carga

Nesta parte do trabalho expõe-se e analisa-se os resultados obtidos nos ensaios de carga através do defletómetro de impacto realizados de acordo com a metodologia apresentada em 2.5.1 e 2.5.2.

Os ensaios realizam-se em sete alinhamentos longitudinais, paralelos ao eixo da pista distanciados de 20 m, 10 m e 4 m do eixo da pista e coincidentes com este de acordo com o esquema apresentado na Figura 2.9.

Figura 2.9 - Alinhamentos de ensaio com o defletómetro de impacto

O valor nominal da força de impacto induzida na superfície do pavimento foi de 150 kN, tendose utilizado uma placa de carga com 0,45 m de diâmetro. Em cada ensaio mede-se nove deflexões decorrentes da força de impacto, em pontos situados a 0 m; 0,30 m; 0,45 m; 0,60 m; 0,90 m; 1,20 m; 1,50 m; 1,80 m e 2,10 m (que correspondem respetivamente às deflexões designadas por D₁, D₂, D₃, D₄, D₅, D₆, D₇, D₈ e D₉), contados a partir do centro da placa de carga.

Normalização das deflexões

Nos gráficos seguintes (Figura 2.10, Figura 2.11, Figura 2.12, **Erro! A origem da referência não foi encontrada.**, Figura 2.14, Figura 2.15 e Figura 2.16) apresenta-se os resultados obtidos nos ensaios realizados, isto é, as deflexões para cada alinhamento, normalizadas para a força de pico de 150 kN.

Figura 2.10 - Deflexões normalizadas na pista no alinhamento 20W sentido S-N

Figura 2.11 - Deflexões normalizadas na pista no alinhamento 10W sentido S-N

Figura 2.12 - Deflexões normalizadas na pista no alinhamento 4W sentido S-N

Figura 2.13 - Deflexões normalizadas na pista no alinhamento OW sentido S-N

Figura 2.14 - Deflexões normalizadas na pista no alinhamento 4E sentido S-N

Figura 2.15 - Deflexões normalizadas na pista no alinhamento 10E sentido S-N

Figura 2.16 - Deflexões normalizadas na pista no alinhamento 20E sentido S-N

Zonamento

Após a normalização dos valores de deflexão, procede-se a um zonamento com base na observação direta do gráfico das deflexões obtidas ao longo do trecho de estudo e no método das diferenças acumuladas proposto pela AASHTO (AASHTO,1961).

Este método permite a divisão em zonas de comportamento estrutural homogéneo, correspondentes a zonas de diferentes capacidades de carga, e consiste no cálculo, para cada ponto situado à distância x do início do trecho, da diferença (Zx) entre a área acumulada sob o gráfico deflexões/distância (Ax) e a área acumulada correspondente ao valor médio das deflexões em todo o trecho (\overline{Ax}): $Zx = Ax - \overline{Ax}$ (Antunes, 1993).

Figura 2.17 – Diferenças acumuladas na pista no alinhamento 20W sentido S-N

Figura 2.18 - Diferenças acumuladas na pista no alinhamento 10W sentido S-N

Figura 2.19 - Diferenças acumuladas na pista no alinhamento 4W sentido S-N

Figura 2.20 - Diferenças acumuladas na pista no alinhamento OW sentido S-N

Figura 2.21 - Diferenças acumuladas na pista no alinhamento 4E sentido S-N

Figura 2.22 - Diferenças acumuladas na pista no alinhamento 10E sentido S-N

Figura 2.23 - Diferenças acumuladas na pista no alinhamento 20E sentido S-N

O gráfico de Zx em função da distância, muda de declive nos pontos em que existe mudança de comportamento (fronteira) permitindo efetuar a divisão do trecho de estudo em zonas (sub-trechos) (Alves, 2007).

Numa primeira abordagem, (de uma forma mais generalista) foram definidas 5 zonas (Zona 1: 0 - 400 m; Zona 2: 400 - 675 m; Zona 3: 700 - 1250 m; Zona 4: 1275 - 2050 m; Zona 5: 2100 - 2450 m), e determinam-se os respetivos valores médios (Figura 2.24, Figura 2.25, Figura 2.26,

Figura 2.27 e Figura 2.28) e o desvio-padrão para cada alinhamento, para uma melhor compreensão das zonas definidas.

Seguidamente determina-se o percentil 85 (2.10) das deflexões obtidas para cada zona, e considera-se que a deformada representativa da zona correspondente a uma probabilidade das deflexões serem excedidas é inferior a 15% (Alves, 2007):

$$D = \overline{D} + 1,04\sigma_D \tag{2.10}$$

Onde:

 \overline{D} : Valor médio de deflexão da zona;

 σ_D : Valor do desvio-padrão.

Figura 2.24 - Defletogramas médios da zona 1

Figura 2.25 - Defletogramas médios da zona 2

Figura 2.26 - Defletogramas médios da zona 3

Figura 2.27 - Defletogramas médios da zona 4

Figura 2.28 - Defletogramas médios da zona 5

Verifica-se que para as zonas que se considerou dos alinhamentos centrais ainda existia alguma variação das deflexões que resultava numa heterogeneidade dentro de cada zona, pelo que optase, por realizar uma subdivisão em zonas mais homogéneas.

Assim, reúne-se os alinhamentos laterais (20W, 10W, 10E e 20E), onde foram mantidas as zonas consideradas, tendo-se agrupado para os alinhamentos centrais (4W, 0W e 0E) onde se define as novas zonas (num total de 11), com as distâncias: 0 - 100 m; 125 - 400 m; 425 - 675 m; 700 - 975 m; 1000 - 1200 m; 1225 - 1375 m; 1400 - 1575m; 1625 - 1800 m; 1825 - 1975 m; 2000 - 2175 m e 2200 - 2450 m (Figura 2.29).

Figura 2.29 - Zonas estruturais homogéneas na pista

Seguidamente apresenta-se (Tabela 2.7 e Tabela 2.8) os valores máximos, mínimos, o desviopadrão, a média e o percentil 85 para cada zona e alinhamento de cada conjunto de alinhamentos que se considera.

Zonas	Deflexões	D (1)	D (2)	D (3)	D (4)	D (5)	D (6)	D (7)	D (8)	D (9)
	Máximo	250	201	186	174	151	132	110	95	82
	Mínimo	146	113	105	100	91	83	74	67	61
Zona 1	Media	192	154	144	135	120	107	92	81	71
	Desvio Padrão	31	25	23	21	17	14	11	9	7
	Percentil 85	225	180	168	157	138	121	104	90	79
	Máximo	436	342	316	284	234	195	177	157	141
	Mínimo	178	150	141	132	118	105	90	79	69
Zona 2	Media	245	208	197	185	165	146	127	111	97
	Desvio Padrão	59	46	42	38	31	26	22	20	18
	Percentil 85	306	255	241	224	197	173	151	132	115
	Máximo	317	238	227	212	189	165	143	129	116
Zona 3	Mínimo	116	83	71	62	48	39	29	23	19
	Media	203	164	154	144	126	110	93	79	68
	Desvio Padrão	41	34	34	33	31	29	26	24	22
	Percentil 85	246	200	190	178	158	140	120	104	91
	Máximo	458	400	372	339	284	241	203	175	153
	Mínimo	155	116	107	100	86	72	59	48	38
Zona 4	Media	256	211	197	184	160	139	118	101	87
	Desvio Padrão	76	68	64	59	50	43	37	32	28
	Percentil 85	335	282	264	245	212	184	156	135	116
	Máximo	289	232	211	191	157	130	104	90	79
	Mínimo	137	98	88	81	72	58	45	36	28
Zona 5	Media	178	141	130	121	106	92	77	67	58
Zona 5	Desvio Padrão	33	35	33	30	25	21	19	17	15
	Percentil 85	212	177	164	152	132	114	97	84	73

Tabela 2.7 - Zonamentos dos Alinhamentos Laterais

Zonas	Deflexões	D (1)	D (2)	D (3)	D (4)	D (5)	D (6)	D (7)	D (8)	D (9)
	Máximo	255	166	156	145	127	110	93	81	71
	Mínimo	174	118	109	102	92	83	73	65	56
Zona 1	Media	212	146	135	126	112	98	84	74	65
	Desvio Padrão	28	17	15	14	11	9	8	7	6
	Percentil 85	241	164	151	141	124	108	92	80	71
-	Máximo	357	277	257	233	191	155	126	109	94
	Mínimo	179	124	115	109	99	89	79	72	64
Zona 2	Media	259	193	180	168	147	128	108	94	81
	Desvio Padrão	56	41	36	31	23	17	13	11	9
	Percentil 85	317	235	218	201	171	146	122	105	90
	Máximo	524	382	342	302	265	232	197	166	138
	Mínimo	248	198	190	183	169	151	130	114	94
Zona 3	Media	338	270	254	238	209	183	156	134	116
	Desvio Padrão	72	47	41	35	28	23	18	15	13
	Percentil 85	413	319	297	275	239	206	175	151	129
	Máximo	307	260	246	230	202	175	150	133	122
	Mínimo	164	95	87	80	70	59	50	40	31
Zona 4	Media	220	171	161	151	133	115	98	83	72
	Desvio Padrão	36	39	38	37	34	32	29	26	24
	Percentil 85	257	212	201	189	168	148	128	111	97
	Máximo	384	343	330	314	279	244	207	175	147
	Mínimo	152	119	111	103	89	76	61	51	42
Zona 5	Media	238	196	185	174	153	133	112	96	82
	Desvio Padrão	73	62	60	58	54	48	43	37	32
	Percentil 85	313	260	248	234	209	183	157	135	116
	Máximo	601	477	428	374	296	236	185	151	129
	Mínimo	241	215	204	193	164	138	114	95	79
Zona 6	Media	349	287	269	249	215	184	155	131	111
	Desvio Padrão	104	76	65	55	39	30	22	17	14
	Percentil 85	457	365	337	306	256	215	177	148	126
	Máximo	516	406	371	345	300	268	237	209	185
	Mínimo	241	193	171	151	122	99	80	66	56
Zona 7	Media	357	302	282	259	218	183	150	125	103
	Desvio Padrão	85	78	75	69	60	52	46	40	35
	Percentil 85	445	384	360	331	281	238	198	166	140
	Máximo	765	601	529	459	387	321	263	216	181
Zona 9	Mínimo	365	314	302	285	244	208	172	144	116
Zona 8	Media	476	400	373	342	291	245	204	171	143
	Desvio Padrão	113	89	76	62	48	37	30	25	22
	Percentil 85	594	493	451	406	341	284	234	197	165

Tabela 2.8 - Zonamentos dos Alinhamentos Centrais

Capítulo 2 Procedimentos de avaliação do PCN

	Deflexões	D (1)	D (2)	D (3)	D (4)	D (5)	D (6)	D (7)	D (8)	D (9)
	Máximo	459	373	331	286	230	184	145	119	99
Zona 9	Mínimo	259	210	193	174	142	115	89	70	55
Zona 9	Media	352	289	265	237	192	154	122	98	80
	Desvio Padrão	66	53	47	40	31	24	20	17	15
	Percentil 85	420	344	314	279	224	179	142	116	96
	Máximo	330	283	270	254	224	197	170	147	126
	Mínimo	168	138	125	113	86	67	50	40	29
Zona 10	Media	227	182	168	152	126	105	84	68	56
	Desvio Padrão	49	45	44	43	40	36	33	30	27
	Percentil 85	278	229	214	197	168	142	118	100	84
	Máximo	288	227	209	188	156	130	109	98	87
	Mínimo	150	98	88	84	76	68	59	52	46
Zona 11	Media	209	155	143	134	117	102	86	74	64
Zona 11	Desvio Padrão	38	34	32	28	22	18	15	13	12
	Percentil 85	248	191	177	163	140	121	101	88	76

Resultados do radar de prospeção

Os ensaios com radar de prospeção realizam-se ao longo dos mesmos alinhamentos onde se realizam os ensaios com o defletómetro de impacto, utilizando antenas de 1,0 GHz e 1,8 GHz.

Os ficheiros obtidos nos ensaios com o radar de prospeção necessitam de ser analisados por sub-trechos, já que o pavimento em estudo apresentava uma constituição e geometria heterogénea.

Após a análise do ficheiro de dados, define-se a espessura da camada betuminosa para cada um dos pontos representativos (Tabela 2.9).

Pont	to Esco	olhido					De	eflexõ	es				
Alinhamento		Distância	Tipo	D (1)	D (2)	D (3)	D (4)	D (5)	D (6)	D (7)	D (8)	D (9)	Espessura da camada betuminosa (cm
	4 W	25	P85	226	166	156	145	127	110	93	80	71	65
	4 W	175	P88	304	236	220	205	176	151	125	106	90	56
Centrais	4 E	525	P85	390	313	294	273	239	208	175	150	128	52
	4 W	925	P85	256	222	209	197	174	151	128	110	93	53
	4 E	1125	P85	335	269	257	244	221	197	172	150	130	58
	0W	1350	P85	413	351	330	305	259	218	178	146	118	50
	4 W	1475	P85	455	388	361	326	266	215	172	136	110	54
	4 W	1675	P85	516	428	399	365	314	268	226	193	165	54
	4 E	1875	P85	410	342	314	282	226	178	137	107	83	47
	0W	2100	P85	287	248	232	212	179	148	120	99	82	48
	4 W	2325	P85	252	189	177	163	138	116	95	79	68	66
	10E	50	P85	223	167	154	146	132	119	103	91	81	64
	20E	575	P85	259	226	216	204	183	163	142	123	106	54
Laterais	20W	1100	P85	249	203	192	179	158	139	117	101	87	58
	10W	1775	P85	332	285	268	247	213	183	155	133	113	55
	10W	2375	P85	193	150	142	135	124	112	99	88	78	71

Tabela 2.9 - Espessura betuminosa

Modelos de resposta estrutural

A partir dos resultados dos ensaios de carga e com o apoio dos resultados determinados pelo radar de prospeção, estabelecem-se modelos de comportamento estrutural para cada zona definida do trecho em estudo. O principal objetivo consiste em determinar os módulos de deformabilidade das camadas tendo em conta as deformadas obtidas nos ensaios com o defletómetro de impacto.

Conhecidas as espessura e constituição das camadas, utiliza-se um modelo estrutural para o pavimento. Faz-se várias iterações e determina-se qual o conjunto de módulos de deformabilidade das camadas que conduz a uma deformada calculada tão próxima quanto possível da deformada medida *in situ* no ensaio representativo dessa zona, ou seja, o local de ensaio correspondente ao percentil 85.

A determinação dos módulos de deformabilidade das camadas do pavimento efetua-se através do programa de cálculo automático JPavBack.

O programa tem como modelo base o modelo de *Burmister*, que considera que o pavimento é composto por um conjunto de camadas horizontais, contínuas, homogéneas, isotrópicas e elásticas-lineares, assentes sobre um meio semi-infinito, e que na superfície do conjunto de camadas atua uma carga vertical uniformemente distribuída numa área circular.

Para usar o programa de cálculo automático JPavBack necessita-se definir dados referentes a três características: a carga aplicada na superfície do pavimento, as camadas do pavimento e a posição onde se pretende determinar a deflexão devida à carga.

A carga aplicada e a posição de determinação das deflexões mantêm-se inalteráveis para todas as zonas do trecho em estudo. A carga vertical aplicada corresponde à força padrão de 150 kN, utilizada nos ensaios com o defletómetro de impacto, com um raio de distribuição da carga de 0,225 m (Figura 2.30).

Figura 2.30 - Dados de entrada no programa JPavBack

Os pontos onde se pretende determinar a deflexão devido à aplicação da carga circular de 150 kN correspondem à posição dos sensores do ensaio de carga, distribuídos linearmente pela superfície do pavimento.

Para a definição do modelo de comportamento estrutural, adota-se coeficientes de Poisson de 0,35 para as misturas betuminosas, fundação e camada semi-infinita. Na camada de base adotase um coeficiente de Poisson de 0,30.

Importa referir que, com o objetivo de aproximar a modelação o mais possível da realidade, divide-se a fundação numa camada superior e numa camada inferior de espessura semi-infinita com características de camada rígida, ou seja com um módulo de deformabilidade significativamente superior à primeira.

Na análise em estudo considera-se as seguintes quatro camadas: uma camada de misturas betuminosas; uma camada de betão pobre; e duas camadas para a fundação.

Após várias iterações define-se os módulos de deformabilidade para cada ponto representativo de cada zona dos alinhamentos centrais e alinhamentos laterais que minimizam o erro entre a deformada do defletómetro de impacto e a deformada calculada.

Para este erro (RMS (*Root Mean Square*)), adota-se o limite máximo de 10%, sendo dado pela raiz quadrada dos valores médios dos quadrados das diferenças entre as deflexões medidas e calculadas divididas pelos valores médios (Domingos, 2007).

$$RMS(\%) = \left(\sqrt{\frac{1}{n} \times \sum_{i=1}^{n} \left(\frac{d_{ci} - d_{mi}}{d_{mi}}\right)^{2}}\right) \times 100$$
(2.11)

Onde:

n: Número total de sismómetros utilizados;

dci: Deflexão calculada no sismómetro i;

dmi: Deflexão medida no sismómetro i.

A título de exemplo, apresenta-se os cálculos para o alinhamento central 4W a 175 m (Figura 2.31).

PavBack - Computer program for backanalysis of road pavements - Version 1.1	
Problem title	
Sensors' information	
1 2 3 4 5 6 7 8 Distance to load centre (m) 0 0.3 0.45 0.6 0.9 1.2 1.5 1.8 Measured deflections (E-6 m) 304.11 236.31 220.35 205.40 176.48 150.56 124.63 105.69 Calculated deflections (E-6 m) 283.8 242 223 207.8 179.7 154 131 111.1 Error (E-6 m) -14.4 5.6 2.6 2.4 3.2 3.4 6.3 5.4 Error (%) -4.8 2.3 1.1 1.1 1.8 2.2 5 5.1	9 2.1 0.3x 0.3x 83.74 94 4.2 4.6
Pavement constitution	Pavement deflection
Layer Thickness (m) Stiffness (MPa) Poisson ratio 1 0.56 4 5500 4 0.35 1 2 0.1 4 1000 4 0.00 0.35 1 3 0.6 4 90 4 0.00 0.35 1 4 4 200 4 0.00 0.35 1 5 4 4 0.00 0.35 1 6 4 4 0.00 0.35 1 7 4 4 0.00 0.35 1 8 4 4 0.00 1 1 9 4 4 0.00 1 1 10 4 4 4 0.00 1	Distance (m) 0 0.3 0.5 0.9 1.2 1.5 1.8 2.1 2.4 90 100 100 100 100 100 100 100
Load definition Load magnitude (kN) 150 40 kN 65 kN Plate Radius (m) 0.225 0.15 m 0.225 m	Exit

Figura 2.31 - Modelação do alinhamento central 4W recorrendo ao programa JPavBack

Encontra-se na Tabela 2.10 os modelos estruturais de todas as zonas indicando o módulo de deformabilidade (E), o coeficiente de Poisson (v), a espessura da camada (h) e a temperatura ambiente (T).

		Mi	istura b	etumin	osa	B	etão Pol	bre	Solo	de Fun	dação
Zona	ì	E (MPa)	А	(m) h	T (°C)	E (MPa)	А	h (m)	E (MPa)	А	(m) h
	1	5500	0,35	0,65	14,50	1000	0,30	0,10	120	0,35	0,60
	2	5500	0,35	0,56	14,90	1000	0,30	0,10	90	0,35	0,60
al	3	4000	0,35	0,52	14,90	1000	0,30	0,10	70	0,35	0,60
entr	4	6700	0,35	0,53	13,50	1000	0,30	0,10	90	0,35	0,60
Ű	5	5000	0,35	0,58	14,60	1000	0,30	0,10	65	0,35	0,60
ento	6	4000	0,35	0,50	14,80	1000	0,30	0,10	70	0,35	0,60
amo	7	2500	0,35	0,54	13,70	1000	0,30	0,10	70	0,35	0,60
inh	8	3000	0,35	0,54	13,80	1000	0,30	0,10	50	0,35	0,60
AI	9	3000	0,35	0,47	14,60	1000	0,30	0,10	90	0,35	0,60
	10	6000	0,35	0,48	15,20	1000	0,30	0,10	100	0,35	0,60
	11	4800	0,35	0,66	14,10	1000	0,30	0,10	80	0,35	0,60
0	1	7500	0,35	0,64	15,30	1000	0,30	0,10	100	0,35	0,60
lent al	2	9000	0,35	0,54	12,50	1000	0,30	0,10	60	0,35	0,60
nam	3	9000	0,35	0,58	13,60	1000	0,30	0,10	90	0,35	0,60
linł L ²	4	5500	0,35	0,55	12,40	1000	0,30	0,10	80	0,35	0,60
V	5	8000	0,35	0,71	12,10	1000	0,30	0,10	100	0,35	0,60

Tabela 2.10 - Modelos estruturais

Os módulos de deformabilidade apresentados na Tabela 2.10 referem-se às condições em que se realiza os ensaios de carga com defletómetro de impacto, que não são necessariamente as condições representativas do comportamento estrutural dos pavimentos ao longo do ano. Com efeito, os módulos de deformabilidade das misturas betuminosas variam consideravelmente com a temperatura a que estas camadas se encontram. Assim, procede-se à correção dos módulos estimados para as camadas betuminosas tendo em conta a temperatura de cálculo destas camadas, determinada de acordo com a metodologia preconizada pela SHELL (SHELL, 1978).

Tal como já referido, para a determinação da temperatura de cálculo utilizam-se os valores das temperaturas médias mensais do ar na região em estudo.

A correção dos módulos de deformabilidade das camadas betuminosas para a temperatura de cálculo efetua-se através da expressão (2.12) (Antunes, 1993):

$$E_t^{MB} = (1,635 - 0,0317 \times t_{med}) \times E_{20\ ^{\circ}C}^{MB}$$
(2.12)

Onde:

 E_t^{MB} : Módulo de deformabilidade das misturas betuminosas (MPa);

t_{med}: Temperatura média das misturas betuminosas (°C);

 $E_{20\ C}^{MB}$: Módulo de deformabilidade das misturas betuminosas para a temperatura de referência de 20°C (MPa).

Sabe-se que os ensaios de carga realizaram-se em período noturno, então, admite-se que não existem gradientes térmicos consideráveis no interior das camadas betuminosas, e que a temperatura média das camadas é igual à temperatura medida à superfície.

Com estas considerações, calcula-se e os módulos de deformabilidade corrigidos para as temperaturas de cálculo. Estes resultados encontram-se na Tabela 2.11.

Tabela 2.11 - Módulos de deformabilidade da camada betuminosa para a temperatura de cálculo

					Mistu	ra betuminos	a
Alinh	amento	Distância (m)	Zona	T _{ensaio} (°C)	Eensaio (MPa)	T _{cálculo} (°C)	E _{20°C} (MPa)
	4 W	25	AC 1	14,50	5500	20	4700
	4 W	175	AC 2	14,90	5500	20	4750
al	4 E	525	AC 3	14,90	4000	20	3450
antr	4 W	925	AC 4	13,50	6700	20	5600
) Ce	4 E	1125	AC 5	14.60	5000	20	4300
amento	0W	1350	AC 6	14,80	4000	20	3450
	4 W	1475	AC 7	13,70	2500	20	2100
linh	4 W	1675	AC 8	13,80	3000	20	2550
AI	4 E	1875	AC 9	14,60	3000	20	2600
	0W	2100	AC 10	15,20	6000	20	5250
	4 W	2325	AC 11	14,10	4800	20	4050
0	10E	50	AL 1	15,30	7500	20	6600
ient al	20E	575	AL 2	12,50	9000	20	7300
nam ater	20W	1100	AL 3	13,60	9000	20	7500
linł Lź	10W	1775	AL 4	12,40	5500	20	4500
Y	10W	2375	AL 5	12,10	8000	20	6400

Carga máxima admissível

Para determinar o valor da carga máxima admissível avaliam-se os valores das extensões verificadas no pavimento com o programa ELSYPAV tendo em conta os critérios de dimensionamento aplicáveis aos pavimentos em estudo.

Os estados limite de ruína geralmente considerados no dimensionamento de pavimentos flexíveis são:

- Fendilhamento por fadiga das camadas betuminosas;
- Deformações permanentes excessivas devidas à fundação do pavimento.

Para o presente caso de estudo adota-se os critérios de dimensionamento às deformações permanentes desenvolvidos por Chou (Chou, 1982) através da observação de pavimentos aeroportuários, visando a limitação da contribuição do solo de fundação para a formação de deformações permanentes excessivas de acordo com (2.13):

$$\mathcal{E}_{n} = 0.00539 \times N^{-0.1436} \tag{2.13}$$

Onde,

 \mathcal{E}_{v} : Extensão vertical máxima de compressão no topo do solo de fundação;

N: Número máximo admissível movimentos.

A limitação do fendilhamento por fadiga das camadas betuminosas avalia-se de acordo com o critério de dimensionamento apresentado pela Shell (2.14):

$$\mathcal{E}_t = (0.856 \times V_b + 1.08) \times E_m^{-0.36} \times N^{-0.2}$$
(2.14)

Onde,

 \mathcal{E}_t : Extensão horizontal máxima de tração na base da camada betuminosa;

N: Número máximo admissível de passagens de eixos;

Vb: Percentagem volumétrica de betume na mistura betuminosa (%);

E_m: Módulo de deformabilidade da mistura betuminosa (Pa).

Na Tabela 2.12 apresenta-se os valores máximos de extensão horizontal de tração (ε_t) e de extensão vertical de compressão máxima (ε_z) correspondentes aos valores limite de PCN de cada zona.

De notar que os valores da Tabela 2.12, foram limitados a um PCN de 150, sendo que em algumas zonas este valor poderia ser maior.

Alinhamentos	Zona	PCN	Extensões ϵ_t	Limite ε_t	Extensões ϵ_z	Limite ϵ_z
	1	150	186	504	824	1436
	2	150	240	502	1150	1436
	3	120	288	563	1390	1436
	4	150	232	473	1140	1436
al	5	150	262	520	1310	1436
entr	6	115	294	563	1420	1436
Ŭ	7	90	294	673	1420	1436
	8	90	282	628	1370	1436
	9	100	311	623	1430	1436
	10	150	266	484	1290	1436
	11	150	211	531	1080	1436
	1	150	158	446	751	1436
al	2	150	202	430	1160	1436
ater	3	150	170	426	846	1436
Γ	4	150	263	512	1260	1436
	5	150	139	451	650	1436

Tabela 2.12 - Valores máximo das extensões de tração e de compressão

Classe de resistência da fundação

A classificação da fundação dos pavimentos realiza-se de acordo com o estabelecido pela ICAO para efeitos de classificação ACN-PCN, conforme indica-se na Tabela 2.13.

Cla	sses da fundação	Pavimentos flexíveis	Pavimentos rígidos
Α	Elevada	$CBR \ge 13$	$k \ge 120$
B	Média	8 < CBR < 13	60 < k < 120
С	Baixa	$4 < CBR \le 8$	$25 < k \le 60$
D	Muito Baixa	$CBR \le 4$	$k \le 25$

Tabela 2.13 - Classes de resistência da fundação

Para os pavimentos flexíveis, a classificação da resistência da fundação realiza-se com base nos resultados obtidos para os módulos de deformabilidade do solo de fundação por retro-análise, adota-se a expressão preconizada pela Shell (SHELL, 1978), para estimar o CBR da fundação em função do módulo de deformabilidade dos solos, E (2.15):

$$E(MPa) \cong 10 \times CBR \tag{2.15}$$

Na Tabela 2.14 expõe-se as categorias da fundação dos pavimentos flexíveis, tendo em atenção os módulos de deformabilidade obtidos na retro-análise.

Zonas		Solo de Fundação, E (MPa)	CBR Estimado	Classificação	
	1	120	12	В	
	2	90	9	В	
	Fundação, E (MPa) 1 120 2 90 3 70 4 90 5 65 6 70 7 70 8 50 9 90 10 100	7	С		
	4	90	9	В	
	5	65	6.5	С	
Alinhamento Central	6	70	7	С	
	7	70	7	С	
	8	50	5	С	
	9	90	9	В	
	10	100	10	В	
	11	80	8	С	
	1	100	10	В	
	2	60	6	С	
Alinhamento Lateral	3	90	9	В	
Latera	4	80	8	C	
	5	100	10	В	

Tabela 2.14 - Categoria da fundação de cada alinhamento

PCN dos pavimentos

Os valores de PCN determinados para cada uma das zonas dos pavimentos em estudo a partir dos resultados obtidos para a carga máxima admissível correspondente a 10000 recobrimentos, encontram-se na Tabela 2.15.

Zonas		érico do PCN	Pavimento		Categoria da	Fundação	Pressão dos Pneus		Modo de avaliação		CN
		Valor Nume	Tipo	Designação	Estimativo do CBR	Designação	Nome	Designação	Nome	Designação	Ā
	1	150	Flexível	F	12	В	Ilimitado	W	Técnica	Т	150/F/B/W/T
	2	150	Flexível	F	9	В	Ilimitado	W	Técnica	Т	150/F/B/W/T
ais	3	120	Flexível	F	7	С	Ilimitado	W	Técnica	Т	120/F/C/W/T
utr	4	150	Flexível	F	9	В	Ilimitado	W	Técnica	Т	150/F/B/W/T
ŭ	5	150	Flexível	F	6,5	С	Ilimitado	W	Técnica	Т	150/F/C/W/T
ntos	6	115	Flexível	F	7	С	Ilimitado	W	Técnica	Т	115/F/C/W/T
Imei	7	90	Flexível	F	7	С	Ilimitado	W	Técnica	Т	90/F/C/W/T
nha	8	90	Flexível	F	5	С	Ilimitado	W	Técnica	Т	90/F/C/W/T
Ali	9	100	Flexível	F	9	В	Ilimitado	W	Técnica	Т	100/F/B/W/T
	10	150	Flexível	F	10	В	Ilimitado	W	Técnica	Т	150/F/B/W/T
	11	150	Flexível	F	8	С	Ilimitado	W	Técnica	Т	150/F/B/W/T
SC	1	150	Flexível	F	10	В	Ilimitado	W	Técnica	Т	150/F/B/W/T
ento ais	2	150	Flexível	F	6	С	Ilimitado	W	Técnica	Т	150/F/C/W/T
inhame Latera	3	150	Flexível	F	9	В	Ilimitado	W	Técnica	Т	150/F/B/W/T
	4	150	Flexível	F	8	С	Ilimitado	W	Técnica	Т	150/F/C/W/T
Ν	5	150	Flexível	F	10	В	Ilimitado	W	Técnica	Т	150/F/B/W/T

Tabela 2.15 - PCN dos pavimentos

2.6. Conclusão

Com a realização deste capítulo pode observar-se que são necessários inúmeros passos antes da determinação do valor do PCN. Este pode realizar-se através de dois métodos distintos, sendo que ambos tem características próprias.

Relativamente à determinação do PCN através do programa de cálculo COMFAA, têm de se ter em especial atenção ao cálculo da espessura equivalente, pois têm de se ajustar os fatores de equivalência denominados pela FAA 5010.

Outro aspeto importante a ter em conta neste método é a criação de aviões no programa COMFAA. Esta criação apresenta pesquisa e cálculos, nomeadamente do peso bruto do avião, o número de engrenagens principais, saídas anuais, CBR, entre outos, pois alguns não se encontram na base de dados.

Comparativamente à determinação do PCN através do método empírico-mecanicista, têm de se ter em especial atenção ao cálculo do módulo de deformabilidade das camadas que deve apresentar um erro inferior a 10%.

Este método tem em conta as deflexões normalizadas, o módulo de deformabilidade da camada betuminosa ajustada à temperatura anual da região em estudo, a determinação do CBR e a caracterização do PCN de acordo com o valor numérico, tipo de pavimento, a designação do CBR, da pressão dos pneus e do modelo de avaliação.

3. APLICAÇÃO DOS MÉTODOS DE CÁLCULO DO PCN

Nesta fase da dissertação aplicam-se os métodos de avaliação do ACN-PCN que se apresentaram no capítulo anterior ao caso do Aeródromo de Bragança.

Para este caso de estudo analisam-se os resultados obtidos dos ensaios realizados na pista (ensaios com defletómetro de impacto e medição da temperatura), sendo que para a constituição do pavimento foram utilizados dados fornecidos pelo aeródromo.

A seguir é feita uma apresentação geral do aeródromo quanto à sua evolução, localização geográfica, tráfego e clima da região, seguindo-se a apresentação dos resultados da realização do estudo, e cálculo do PCN.

3.1. Aeródromo de Bragança

Tal como referido anteriormente, o Aeródromo de Bragança (Figura 3.1) foi o aeródromo escolhido para o estudo de caso desta dissertação.

Figura 3.1 - Vista do Aeródromo de Bragança

O aeródromo situa-se em Bragança, a uma distância de 10 km a Nordeste da capital de distrito, tal como indicado na Figura 3.2.

Figura 3.2 - Localização do aeródromo de Bragança

Segundo o Plano Diretor Municipal (PDM) de Bragança, este foi construído entre os anos de 1965 e 1972 pela Câmara Municipal de Bragança.

Entre 1972 e 1975, a Direção Geral de Aeronáutica Civil (DGAC) prosseguiu para a construção de uma primeira fase no campo de voos. Ao fim desta fase, o aeródromo já era constituído por:

- Uma pista de 1200 m de comprimento;
- Uma plataforma de 80×60 m;
- Um caminho de circulação.

Com o passar dos anos e para uma melhoria da infraestrutura, realizaram-se várias ações com o intuito de ampliar e aperfeiçoar os serviços prestados e a sua capacidade.

Em 1976 foi aprovado o primeiro Plano Diretor do Aeroporto de Bragança.
Posteriormente, em 1989, foi instalada a iluminação noturna que permitia operar de noite, embora esta instalação só tenha sido certificada pela Força Aérea Portuguesa em Janeiro de 2003. Para utilizar o Aeroporto fora do seu período de abertura (desde o pôr-do-sol até ao amanhecer) é necessária uma autorização especial pois, devido à pouca frequência de utilização neste período, não existe um controlador na torre de forma permanente.

Mais tarde, entre 1997 e 1998, o pavimento da pista foi reforçado com uma camada de 5 cm de betão betuminoso.

Em 2000 a GIBB Portugal desenvolveu o documento "Revisão do Plano Diretor de Desenvolvimento", no qual se incluía o "Projeto de Ampliação da Pista".

Em 2005, a pista foi ampliada no seu comprimento em 500 m para Sul, ficando assim uma pista com um comprimento total de 1700 m. Neste mesmo ano, também se construíram bermas laterais pavimentadas de 7,5 m em todo o seu comprimento.

Atualmente a pista, toda ela pavimentada, tem um comprimento total de 1700 m, 30 m de largura (15 m para cada lado do eixo) com bermas resistentes de 7,5 m em todo o seu comprimento, adequada para aviões até ao tipo B. O caminho de circulação que liga a pista de voo à única plataforma de estacionamento, tem uma largura de 15 m, tendo esta última capacidade para estacionar quatro aviões do tipo B.

Segundo o PDM de Bragança, a capacidade do atual terminal é de 18 passageiros em hora de ponta, com um nível de serviço D, segundo a classificação da IATA (Associação Internacional de Transportes Aéreos), que equivale a um nível de qualidade adequado.

O tráfego do aeródromo é constituído pela frota de aviões apresentada na Tabela 3.1.

Modelo	% Saídas anuais	Peso (lbs)	Velocidade (kts)
Dornier 228	30,8	12566	231
ATR 42-300	7,7	36817	265
Piper Seneca	15,4	4751	204
Cessna 172	15,4	2454	163
Morane Saulnier 893	30,8	1698	135

Tabela 3.1 - Tráfego do aeródromo (Enc24)

A pista inicialmente existente era formada por um pavimento flexível constituído por duas camadas sobre a fundação, a camada de base e a camada betuminosa. A camada de base é

constituída por material agregado, com 300 milímetros de espessura e a camada betuminosa tinha 50 mm de espessura. A ampliação da pista foi realizada desde os 1200 m até aos 1700 m, e a espessura da camada betuminosa (superficial) foi aumentada com 50 mm obtendo-se um total de 100 mm, como pode ser visto na secção transversal do pavimento existente na Figura 3.3 (Lalyre, 2012).

Figura 3.3 - Seção do pavimento da pista existente (Lalyre, 2012)

Para modelação do comportamento do pavimento define-se os coeficientes de Poisson seguintes: 0,30 para a camada de misturas betuminosas, 0,35 para a camada granular e camada de fundação.

3.2. Método empírico-mecanicista

Tendo em vista a caracterização estrutural do pavimento da pista de voo do Aeródromo de Bragança, através do método empírico-mecanicista, realizam-se trabalhos experimentais que compreenderam ensaios de carga com defletómetro de impacto e a medição de temperatura. A análise dos resultados obtidos resulta em modelos de resposta para o pavimento, em particular na determinação da sua capacidade de carga, que permite a classificação PCN do pavimento.

3.2.1. Ensaio de carga com defletómetro de impacto

Como referido anteriormente, executam-se os ensaios de carga com defletómetro de impacto na pista. Estes ensaios realizam-se no dia 17 de junho de 2014, em período diurno, perante condições climatéricas que permitiram que a camada betuminosa do pavimento tivesse um comportamento elástico linear.

Para cada ponto de ensaio aplicaram-se 3 níveis de carga com vista à sua normalização para a carga de 65 kN, induzida sobre uma placa de carga com diâmetro de 0,15 m. Para cada ensaio mede-se nove deflexões decorrentes da força de impacto, em pontos situados a 0 m; 0,30 m; 0,45 m; 0,60 m; 0,90 m; 1,20 m; 1,50 m; 1,80 m e 2,10 m do centro da placa (que correspondem respetivamente às deflexões designadas por D₁, D₂, D₃, D₄, D₅, D₆, D₇, D₈ e D₉).

Os ensaios efetuam-se com o defletómetro de impacto ao longo de um alinhamento longitudinal paralelos à respetiva linha central (Figura 3.4), feito de Norte para Sul.

Figura 3.4 - Alinhamento de ensaio com o defletómetro de impacto

Durante os ensaios de carga mede-se as temperaturas do ar (T_{Ar}) e da superfície do pavimento (T_{Sup}) . Elabora-se ainda medições da temperatura no pavimento às profundidades de 2,5 cm, 9,5 cm e 10,0 cm.

De seguida (Figura 3.5) encontram-se os resultados dos ensaios de carga normalizados para uma força de impacto de 65 kN.

Figura 3.5 - Deflexões normalizadas no pavimento nos ensaios de carga

3.2.2. Zonamento do pavimento

Os gráficos de evolução das deflexões normalizadas para uma força de 65 kN possibilitam a definição de zonas de comportamentos estruturais distintos (Figura 3.6). Para cada uma das zonas consideradas determina-se os valores das médias, desvios padrão e percentil 85 obtidos para as deflexões normalizadas.

Através do método das diferenças acumuladas considera-se uma subdivisão do pavimento em cinco zonas homogéneas, como se verifica na Figura 3.7. Na Tabela 3.2 apresenta-se um resumo das zonas homogéneas do pavimento.

Figura 3.6 - Gráfico das diferenças acumuladas D (1)

Figura 3.7 - Zonas estruturais homogéneas na pista

Deflexão	D (1)	D (2)	D (3)	D (4)	D (5)	D (6)	D (7)	D (8)	D (9)
Zona					1				
Média	1081	639	418	265	105	53	40	33	28
Desvio-padrão	71	32	27	23	14	7	5	5	5
Percentil 85	1155	672	447	290	119	60	45	38	33
Zona					2				
Média	914	598	425	297	142	77	52	40	32
Desvio-padrão	94	61	50	39	25	15	9	8	6
Percentil 85	1012	661	477	337	168	93	61	48	38
Zona					3				
Média	848	525	358	231	90	38	21	16	14
Desvio-padrão	97	70	60	48	29	17	11	7	5
Percentil 85	948	598	420	281	121	55	32	23	19
Zona					4				
Média	989	572	372	241	105	61	47	39	34
Desvio-padrão	173	73	37	19	13	18	18	15	13
Percentil 86	1169	649	411	261	119	80	65	55	47
Zona					5				
Média	931	499	302	175	54	23	16	15	13
Desvio-padrão	95	48	54	51	36	17	10	6	5
Percentil 87	1031	549	358	228	91	41	26	21	18

Tabela 3.2 - Caracterização das deflexões das zonas homogéneas

3.2.3. Caracterização estrutural do pavimento

Tendo por base os resultados obtidos nos pontos representativos de cada zona do ensaio de carga com defletómetro de impacto e do conhecimento da constituição e espessura das camadas do pavimento, obtém-se os módulos de deformabilidade das camadas constituintes do pavimento, com recurso ao programa de cálculo automático JPavBack. Para tal, utiliza-se um processo iterativo tendo em vista a determinação do conjunto de módulos de deformabilidade das camadas que conduz a uma deformada calculada com o programa JPavBack tão próxima quanto possível do conjunto de deflexões medidas no ensaio (retro-análise).

De forma a determinar os módulos de deformabilidade para cada zona teve-se atenção, se o erro entre a deformada do defletómetro de impacto e a deformada calculada era inferior a 10%.

De seguida apresenta-se a modelação realizada com o programa onde se verifica o bom ajuste entre as deflexões medidas e calculadas (Figura 3.8, Figura 3.9, Figura 3.10, Figura 3.11 e Figura 3.12).

Problem title						
		Sensors' information	n		-	
Distance to load centre Measured deflections (Calculated deflections Error (E-6 m) Error (%)	1 2 (m) 0 0.3 E-6 m) 1111.75 673 E-6 m) 1105.8 623.6 -6 -49.5 -7.4	3 4 5 0.45 0.6 0.9 444.99 286.07 118.87 405.1 262.2 117.3 -39.9 -23.9 -1.6 -9 -8.4 -1.4	6 7 1.2 1.5 61.97 44.04 3 63.2 43.4 1.2 7 1.9 -1.6	8 9 1.8 21 0.3x 7.90 32.45 3 35.7 31.8 3 -2.3 .7 6.1 2.2	<u>0.3x </u>	
	Pavement con	stitution		Pa	vement deflection	
Layer Thickness	Stiffness (MPa)	Poisso ratio	n		Distance (m)	
1 0.1	↓ 2900	••••••••••••••••••••••••••••••••••••	.30	0 0.3 0.6	0.9 1.2 1.5 1.8 2.1	
2 0.3	3 🚺 🕨 95	••••••••••••••••••••••••••••••••••••	.35			
3 0.4	50	· · · · · · · · · ·	.35			
4	4 > 240	· · · · · · · · · · · · · · · · · · ·	.35	400 -		
5		▲ ▶ ○○○		600 -		
6				800 -		
7				1000 -	Messured	
8					Calcillates	
9					Calculate	
10				L		
Load definition						
Load magnitude (kN)	65 40	<n 65="" kn<="" td=""><td></td><td></td><td>Exit</td></n>			Exit	

Figura 3.8 - Modelação da zona homogénea 1

5. JPavBack - Computer program for backanalysis of road pavements - Version 1.1	×
Problem title	
Sensors' information	
1 2 3 4 5 6 7	8 9
Distance to load centre (m) 0 0.3 0.45 0.6 0.9 1.2 1.5	1.8 2.1 0.3x 0.3x
Measured deflections (E-6 m) 985.19 641.53 455.62 318.25 157.95 91.58 64.50	50.81 40.77
Calculated deflections (E-6 m) 1019.7 602.8 422 299.8 159.5 93.2 62.1	47.5 40.3
Error (E-6 m) 34.5 -38.8 -33.7 -18.5 1.5 1.6 -2.5	-3.45
Error (%) 3.5 -6.1 -7.4 -5.9 .9 1.7 -3.9	-6.7 -1.3
Pavement constitution	Pavement deflection
Layer Thickness Stiffness Poisson	Distance (m)
	0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2
3 0.4 () 40 () 6 C C 0.35	200 -
4 ↓ 190 ↓ € С С 0.35	400 -
	600 -
	800-
	1000 Messured
	Coltuisted
9 () () () () () () () () () () () () ()	Calculate
Load definition	
Load magnitude (kN) 65 40 kN 65 kN	1
Plate Radius (m) 0.15 0.15 m 0.225 m	Exit

Figura 3.9 - Modelação da zona homogénea 2

Figura 3.10 - Modelação da zona homogénea 3

PavBack - Computer program for backanalysis of road pavements - Version 1.1	
Problem title	
Sensors' information	
1 2 3 4 5 6 7 Distance to load centre (m) 0 0.3 0.45 0.6 0.9 1.2 1.5 Measured deflections (E+6 m) 1132.91 649.31 419.73 266.87 1132.22 66.42 53.77 4 Calculated deflections (E+6 m) 1128.8 604.2 380.8 243.5 116 72.1 54.8 Error (E+6 m) 4.2 445.2 -33 4-23 2.7 5.6 1 Error (%) 4 7 -9.3 4.8 2.3 8.4 1.8 7	8 9 1.8 2.1 0.3x 0.3x 47.78 42.19 46.1 40.4 -1.7 -1.8 -3.6 4.3
Pavement constitution	Pavement deflection
Layer Thickness (MPa) Stiffness (MPa) Poisson ratio 1 0.1 4 2500 4 6 0.30 2 0.3 4 4 70 4 6 0.35 3 0.4 4 70 4 6 0.35 4 4 4 200 4 6 0.35 5 4 4 4 6 0.35 6 4 4 4 6 0.35 7 4 4 4 6 0.35 8 4 4 4 6 0.35 9 4 4 4 6 0.35 10 4 4 6 0.35	Calculate
Load definition	
Load magnitude (kN) 65 40 kN 65 kN Plate Radius (m) 0.15 0.15 m 0.225 m	Exit

Figura 3.11 - Modelação da zona homogénea 4

Figura 3.12 - Modelação da zona homogénea 5

Obteve-se assim, os modelos de resposta para as zonas homogéneas (Tabela 3.3), a qual indica os valores dos módulos (E), espessuras (h) e os coeficientes de Poisson (v).

ia	Misturas betuminosas			betuminosas Camada Granulada			Solo de Fundação			
Distânc (m)	E (MPa)	v	h (m)	T _{Ensaio} (°C)	E (MPa)	v	h (m)	E (MPa)	v	h (m)
576	2900	0,30	0,10	16,40	95	0,35	0,30	50	0,35	0,40
777	2800	0,30	0,10	16,40	155	0,35	0,30	40	0,35	0,40
1000	3300	0,30	0,10	16,40	105	0,35	0,30	60	0,35	0,70
1432	2500	0,30	0,10	16,40	87	0,35	0,30	70	0,35	0,40
1530	2700	0,30	0,10	16,40	87	0,35	0,30	80	0,35	0,50

Tabela 3.3 - Modelos de comportamento do pavimento

Para uma correção dos módulos de deformabilidade devido à temperatura, usa-se os valores das temperaturas médias mensais do ar na região do Bragança (Figura 3.13), publicados pela Fundação Manuel dos Santos (IPMA/MAMAOT) tendo-se obtido um valor de cálculo para a temperatura anual do ar nessa região, igual a 14,6°C.

Figura 3.13 - Temperatura média anual

A essa temperatura do ar corresponde uma temperatura de cálculo das camadas betuminosas da ordem de 19,14°C, tendo em atenção as espessuras das camadas dos pavimentos em estudo.

A correção dos módulos de deformabilidade das camadas betuminosas para a temperatura de cálculo efetua-se através da expressão (3.1) (Antunes, 1993):

$$E_t^{MB} = (1,635 - 0,0317 \times t_{med}) \times E_{20^{\circ}C}^{MB}$$
(3.1)

Onde,

 E_t^{MB} : Módulo de deformabilidade da mistura betuminosa (MPa);

t_{med}: Temperatura média da mistura betuminosa (°C);

 $E_{20^{\circ}C}^{MB}$: Módulo de deformabilidade da mistura betuminosa, para a temperatura de referência de 20°C (MPa).

Na Tabela 3.4 apresenta-se os módulos de deformabilidade corrigidos para as temperaturas de cálculo para a pista.

Tabela 3.4 - Módulos de deformabilidade das camadas betuminosas para a temperatura de

Distância (m)	т (9С)	Mistura betuminosa				
Distancia (III)	Lensaio (C)	Eensaio (MPa)	$T_{cálculo}(^{o}C)$	$E_{c\acute{a}lculo}\left(MPa\right)$		
576	19,1	2900	14,6	2825		
777	19,1	2800	14,6	2725		
1000	19,1	3300	14,6	3210		
1432	19,1	2500	14,6	2435		
1530	19,1	2700	14,6	2630		

Em relação aos efeitos hídricos no comportamento do solo de fundação, estes não se consideraram necessário efetuar correções pois, o ensaio executa-se em períodos de precipitação, pelo que se admite que se estava numa situação desfavorável.

3.2.4. Classificação PCN

Para determinar a classificação PCN do pavimento utilizam-se os critérios de dimensionamento apresentados no capítulo anterior, nomeadamente a limitação do fendilhamento por fadiga das

camadas betuminosas e a contribuição da fundação para a formação de deformações permanentes, de acordo com as expressões a seguir apresentadas.

Limitação do fendilhamento por fadiga das camadas betuminosas:

Utiliza-se o critério preconizado pela Shell (1978), dado pela fórmula (3.2):

$$\mathcal{E}_b = (0,856 \times V_b + 1,08) \times E^{-0,36} \times N^{-0,2}$$
(3.2)

Onde,

 \mathcal{E}_b : extensão máxima de tração induzida na camada;

 V_b : percentagem volumétrica de betume;

E: módulo de deformabilidade da mistura betuminosa;

N: número de passagens admissível.

Limitação da contribuição da fundação para a formação de deformações permanentes excessivas:

Para verificação desta deformação, adota-se o critério estabelecido por Chou (1982) para pavimentos de aeroportos, dado pela expressão (3.3):

$$\mathcal{E}_s = 0,00539 \times N^{-0,1436} \tag{3.3}$$

Onde,

 \mathcal{E}_s : extensão vertical de compressão no topo da camada do solo de fundação;

N: correspondente número de passagens admissível.

Na Tabela 3.6 apresenta-se os valores máximos das extensões horizontais de tração (ε_t) e de extensão vertical de compressão máxima (ε_z) correspondentes aos valores limites de PCN, determina-se estas extensões através da utilização do programa JPav (Figura 3.14).

Figura 3.14 - Programa JPav

Para que seja possível retirar os valores das extensões do JPav, necessita-se determinar o raio de acordo com o valor do PCN em estudo (Tabela 3.5).

De seguida, apresenta-se as fórmulas utilizadas para calcular a carga P (3.4) e o raio (3.5).

$$Carga P = \frac{Valor \ do \ PCN \times 9,8}{2} \tag{3.4}$$

$$Raio = \sqrt{\frac{Carga P}{\pi \times 1250}}$$
(3.5)

Tabela 3.5 - Valores do raio para a determinação das extensões no JPav

PCN	Carga P (kN)	Raio (m)
5	24,50	0,079
6	29,40	0,087
7	34,30	0,093
8	39,20	0,100
9	44,10	0,106
10	49,00	0,112

Distância (m)	PCN	Extensões _{Et}	Limite ε_t	Extensões ϵ_z	Limite ϵ_z
576	6	547	605	793	1436
777	9	608	613	1227	1436
1000	7	540	578	761	1436
1432	6	614	638	659	1436
1530	6	596	629	594	1436

Tabela 3.6 - Extensões para o PCN das zonas homogéneas

A classificação da fundação do pavimento realiza-se de acordo com o instituído pelo ICAO para realizações de classificação ACN-PCN (Tabela 3.7).

Cla	sse de fundação	Pavimento flexível (%)
Α	Elevada	$CBR \ge 13$
В	Média	8 < CBR < 13
С	Baixa	$4 < CBR \le 8$
D	Muito baixa	$CBR \le 4$

Tabela 3.7 - Classe de resistência da fundação

A classificação da resistência da fundação realiza-se com base nos resultados obtidos para os módulos de deformabilidade do solo de fundação por retro-análise, adotando-se a expressão preconizada pela Shell (1978), para estimar o CBR da fundação em função do módulo de deformabilidade dos solos, E (3.6):

$$E \approx 10 \times CBR \tag{3.6}$$

Na Tabela 3.8 apresenta-se a categoria da fundação para o pavimento, tendo em atenção os módulos de deformabilidade obtidos na retro-análise.

Solo de Fundação, E (MPa)	CBR Estimado (%)	Classificação
50	5	С
40	4	С
60	6	С
70	7	С
80	8	В

Tabela 3.8 - Categoria da fundação

Na Tabela 3.9 expõem-se os valores do PCN calculados para o pavimento da pista. De notar ainda que os valores apresentados correspondem à carga máxima admissível que pode efetuar 10000 passagens, como referido anteriormente.

	Pavimento		Categoria da Fundação		Pressão dos Pneus		Modo de avaliação		
Valor Numérico do PCN	Tipo	Designação	Estimativa do CBR	Designação	Nome	Designação	Nome	Designação	PCN
6	Flexível	F	5	С	Ilimitado	W	Técnica	Т	6/F/C/W/T
9	Flexível	F	4	С	Ilimitado	W	Técnica	Т	9/F/C/W/T
7	Flexível	F	6	С	Ilimitado	W	Técnica	Т	7/F/C/W/T
6	Flexível	F	7	С	Ilimitado	W	Técnica	Т	6/F/C/W/T
6	Flexível	F	8	В	Ilimitado	W	Técnica	Т	6/F/B/W/T

Tabela 3.9 - PCN do pavimento

Tendo-se verificado que o valor numérico mínimo do PCN das zonas homogéneas é de 6 então, concluir-se que o PCN da pista é representado por 6/F/B/W/T, isto é, com capacidade de carga de valor numérico 6, de um pavimento flexível (F), cuja fundação é de categoria media, com valores de CBR entre os 8 e os 13 (B), sem limitação da pressão dos pneus (W), calculado recorrendo à avaliação técnica (T).

3.3. Cálculo do PCN utilizando o programa COMFAA

Nesta secção será apresentada a caracterização estrutural do pavimento e a respetiva classificação PCN usando o programa de cálculo COMFAA.

Para este estudo adota-se um CBR de 6 (Classe C), uma vez que corresponde ao valor médio obtido do módulo de deformabilidade da fundação resultante da retro-análise realizada na aplicação do método empírico-mecanicista, tal como se observa na

Tabela 3.10.

Solo de Fundação, E (MPa)	CBR Estimado (%)	Classificação
50	5	С
40	4	С
60	6	С
70	7	С
80	8	В

Tabela	3.10 -	Estimação	do	CBR	no	método	emi	pírico-	-mecan	icista
I ubblu	5.10	Loundquo	uu	CDI	no	metodo	UIII		meeum	ioistu

A vida útil restante será de 20 anos e tal como referido anteriormente, a pista é classificada como pavimento flexível, de modo que existe uma serie de procedimento a ter em conta para este tipo de pavimento.

As características mais importantes para a análise da pista encontram-se definidas na Tabela 3.11. Esta contém as características que importam traduzir para o valor do PCN tendo por base os valores contidos na classificação da FAA 5010.

Outro aspeto a ter em conta são as unidades, uma vez que se utiliza o programa COMFAA em polegadas, daí ser necessário transformar todas as camadas em polegadas, sabendo que uma polegada corresponde a 2,54 cm.

Data de construção	1972
Camada betuminosa	10 cm / 3,937 in.
Camada granular	30 cm / 11,811 in.
CBR	6
Vida útil restante (anos)	20
Classificação FAA 5010	S ou SW

Tabela 3.11 - Propriedades do pavimento

Relativamente às classificações das FAA, as quais são publicadas no Diretório do Aeródromo (AFD) ou no Registo Mestre do Aeródromo (FAA Form 5010), acredita-se ter por base o seguinte padrão do avião:

- S ou SW: Roda Única;
- D ou DW: Roda dupla;
- DT ou DTW: Duas rodas Tandem;

DDT ou DDTW: Roda Tandem dupla.

Para que se consiga elaborar uma avaliação relativamente aproximada da classificação utilizada pela FAA 5010 (pois os aviões que opera no Aeródromo de Bragança, não constam na lista da FAA) foi necessário faz corresponder cada avião ao tipo de padrão, isto é ao tipo de engrenagem que utiliza.

Relativamente aos aviões que utilizam a pista de voo, estima-se que todos pertencem ao grupo S ou SW, como se observa na Figura 3.15, Figura 3.16, Figura 3.17, Figura 3.18 e Figura 3.19.

Figura 3.15 - Dornier 228 (Enc24)

Figura 3.16 - ATR 42-300 (Enc24)

Figura 3.17 - Piper Seneca (Enc24)

Figura 3.18 - Cessna 172 (Enc24)

Figura 3.19 - Morane Saulnier 893 (Enc24)

3.3.1. Avaliação da espessura

A espessura equivalente a utilizar no programa COMFAA é obtida através de uma folha de cálculo EXCEL, assumindo a espessura mínima da camada betuminosa e da camada granular, e para a fundação uma espessura variável.

Quando não existe mistura de tráfego com quatro ou mais rodas no trem de aterragem principal, como é o caso em estudo, a camada estrutural mínima para a camada betuminosa é de 3 polegadas e para a camada de base (material granular de alta qualidade) a espessura é de 6 polegadas (DeBord, 2012).

Deste modo, a secção de referência do pavimento a modelar no programa é a indicada na Tabela 3.12.

Tabela 3.12 - Referência da espessura do pavimento flexível pela FAA (DeBord, 2012)

Camada estrutural	Menos de quatro rodas (in.)				
Camada betuminosa (P-401)	3				
Material granular de alta qualidade (P-209)	6				

Sabendo a espessura do pavimento, necessita-se ajustar os fatores de equivalência recomendados. Estes fatores de equivalência encontram-se na Figura 3.20.

Structural Item	Description	Range Convert to P-209	Recommended Convert to P-209	Range Convert to P-154	Recommended Convert to P-154
P-501	Portland Cement Concrete (PCC)				
P-401	Plant Mix Bituminous Pavements (HMA)	1.2 to 1.6	1.6	1.7 to 2.3	2.3
P-403	Plant Mix Bituminous Pavements (HMA)	1.2 to 1.6	1.6	1.7 to 2.3	2.3
P-306	Econocrete Subbase Course (ESC)	1.2 to 1.6	1.2	1.6 to 2.3	1.6
P-304	Cement Treated Base Course (CTB)	1.2 to 1.6	1.2	1.6 to 2.3	1.6
P-212	Shell Base Course				
P-213	Sand-Clay Base Course				
P-220	Caliche Base Course				
P-209	Crushed Aggregate Base Course	1.0	1.0	1.2 to 1.6	1.4
P-208	Aggregate Base Course	1.0	1.0	1.0 to 1.5	1.2
P-211	Lime Rock Base Course	1.0	1.0	1.0 to 1.5	1.2
P-301	Soil-Cement Base Course	n/a		1.0 to 1.5	1.2
P-154	Subbase Course	n/a		1.0	1.0
P-501	Portland Cement Concrete (PCC)	Range Conv	rert to P-401 2.2 to 2	2.5, Recommen	nded 2.5

Figura 3.20 - Fatores de equivalência dos pavimentos flexíveis

Os fatores de equivalência substituem os valores individuais de cada camada, pois estes são afetados pela qualidade do material. Nesta seleção deve ter-se em consideração a espessura total do pavimento e a espessura de cada camada individualmente.

Para determinação destes fatores de equivalência, supõe-se que a camada betuminosa é constituída por mistura betuminosa (P-401) e a camada de base é constituída por agregado britado (P-209).

A Figura 3.21 apresenta a folha de cálculo EXCEL, onde se demonstra o procedimento de cálculo da espessura equivalente.

A camada de P-401 (camada betuminosa constituída por mistura betuminosa) na célula G6 é convertida para P-209 (camada de base é constituída por agregado britado). Da mesma forma,

a camada do P-209 (camada de base é constituída por agregado britado) em G9 célula é convertida para P-154 (camada de sub-base).

- 4	A	В	D	E	F	G H	
2	Reference Guidance AC 150/5335-5	B Appendi	I A-2		Existing	Existing	
4	Flexible Payement	Fig. A2-2 Convert to	Conver	t to	Flexible	Layer	
5	Structure Items	P-209	P-15	4	Lavers	Ibickness	
6	P-401	1.5 - 1.6	1	1.0	P-401	3.9 in.	
7	P-306	13 × 1.4		1.8 5	P-306	0.0 is.	
8	P-304	1.4 1.5 T 1.4	12	1.0 1	P-304	0.0 in.	
э	P-209	1.0	1 1.1 T	1.4 5	P-209	11.8 is.	
10	P-208	1.0	1 4.4 -	1.0 1	P-208	0.0 in.	
11	P-301	ala	1.3 -	1.0 2	P-301	0.0 is.	
12	P-154	nda 🚮	-	1.0 1	P-154	0.0 in.	
13			E Airs	naft GW > 10	10kip7	Tatal	
14	Equivalent Thickness, mm			Sub	grade CBR	6.0	
15	P-401	3.0		• lab			
16	P-209	6.0		engian			
17	<u>P-154</u>	<u>10.2</u>	0	MeGric	Clear	Zero	
18	Tala	15.2			Data	Data	
19	COMFAA Parameters for						
20	Evaluation thickness t = 19.2 in.				Save	Format	
21	Evaluation CBR = 6.0				Lata	Chart	
22	Recommended PCN Codes: F/C/X Airport Loc_ID Payement ID						
23					LAX	5-23	
24	ENTER Reference Section Requirem	ents			Project Det	ails	
25	P-401 reference t	3.00	in.		Parimento	flexível. CBr	
26	P-209 reference t	6.00	in.	_	aebeb inches.	ase de 11,8 A vida do	
					pavimento	é de 20 anos	

Capítulo 3 Aplicação dos métodos de cálculo do PCN

Figura 3.21 - Folha EXCEL para cálculo da camada do pavimento equivalente

3.3.2. Cálculo do PCN

Para o cálculo do PCN no software COMFAA, começa-se por inserir um novo avião, pois os aviões utilizados no Aeródromo de Bragança, não se encontram na base de dados deste.

Para criar um avião necessita-se das características como:

- Peso bruto do avião;
- Percentagem do peso bruto do avião;
- Número máximo de rodas por engrenagem;
- Número máximo de engrenagem por avião;
- Pressão dos pneus;
- Passagem para o ciclo de tráfego;
- Saídas anuais.

De acordo com as caraterísticas da Tabela 3.1, e tendo especial atenção aos aviões existentes na base de dados do programa COMFAA, necessita-se de alguns ajustes tendo em conta o seu peso, dado que serão criados ficheiros com o nome dos aviões que utilizam a pista do Aeroporto de Bragança.

Assim, utilizam-se os valores constantes na Tabela 3.14, Tabela 3.15 para a definição dos aviões. Relativamente às partidas anuais sabe-se que existem 1483 operações anuais (SENER), e conhece-se a percentagem de saídas anuais de cada avião (Tabela 3.1) portanto, pode-se calcular as saídas anuais (Tabela 3.13).

Calcula-se também a pressão dos pneus, como se observa na Tabela 3.14. As restantes características introduzidas no programa de cálculo COMFAA, encontra-se na Tabela 3.15.

Tipo de avião	% de saídas anuais	Partidas Anuais
Dornier 228	30,8	457
ATR 42-300	7,7	114
Piper Seneca	15,4	228
Cessna 172	15,4	228
Morane Saulnier 893	30,8	457

Tabela 3.13 - Saídas anuais

Tabela 3.14 - Pressão dos pneus (Air31)

Tipo de avião	Pressão (MPa)	Pressão (psi)
Dornier 228	0,98	142,14
ATR 42-800	0,72	104,43
Piper Seneca	0,38	55,11
Cessna 172	0,19	27,56
Morane Saulnier 893	0,15	21,76

Tabela 3.15 - Características introduzidas no COMFAA

Tipo de avião	Dornier 228	ATR 42- 300	Piper Seneca	Cessna 172	Morane Saulnier 893
Peso bruto (lbs)	12,5	40	5	2	2
% Peso bruto	100	100	100	100	100
Nº de engrenagens principais	2	2	2	2	2
Nº de rodas das engrenagens principais	1	1	1	1	1
Pressão (psi)	142,14	104,43	55,11	30	30
Alfa utilizado	0	0	0	0	0

Tipo de avião	Dornier 228	ATR 42- 300	Piper Seneca	Cessna 172	Morane Saulnier 893
Ciclo da passagem de tráfego	2	2	2	2	2
Saídas anuais	457	114	228	228	457
"Flex 20yr Cors"	1	713	699	599	1
"Rig 20yr Cors"	1	713	699	599	1
"Rígid Cutoff (time rrs)"	3	3	3	3	3
"Concrete Flex. Str (psi)"	650	650	650	650	650

Como se verifica, os valores da pressão dos pneus (Tabela 3.14) difere dos da Tabela 3.15 porque o programa de cálculo COMFAA não permite introduzir pressões tão reduzidas com as do avião tipo Cessna 172 e Morane Saulnier 893, pelo que opta-se por um valor relativamente aproximado.

Da Figura 3.22 até à Figura 3.28, observa-se os passos da introdução dos valores no programa COMFAA para o avião Dornier 228, sendo os restantes colocados da mesma forma.

Figura 3.22 - Introdução do nome do avião

OMFAA 3.0, August 26, 2011	1 - C:\Users\ines\Desktop\Disse	ertação\Progra	ma\Dornier 228.Ext	ARE A	ARE IN	
	X = -1.0 in		Y = 1.6 in		Edit Wheels	
Aircraft Group Generic Airbus	M 100-1	lain Gear	Footprint		Add	<u>R</u> emove
Boeing McDonnell Douglas Other Commercial	90-				Select	Move
General Aviation Military External Library Library Aircraft Dornier 228	Changing Aircraft G The default value of this aircraft is 12 C 50 N 40 12	iross Load	OK Cancel		Library Funct Load Ext File Add Aircraft Open Aircr Miscellaneou Details	ions Save Ext File Remove Aircraft aft Window s Functions Egit
	10-				Help	About
	Ď	Ć Subgrade	B Á Category		Detions Batch	PCA Thick PLA MGW
	Gross Weight (lbs)	12	Computational Mode		j muwatt	unent covs.
	% GW on Main Gears No. Main Gears Wheels on Main Gear Tire Pressure (psi)	75.00 2 1 300.0	PCN Flexible Batch	PCN Ba	Rigid Itch	MORE >>>
	Alpha Used Pass/Traffic Cycle (P/TC) Annual Departures Flex 20vr Covs. P/C = 21.6	0.000 1.00 457 422	SG CBR Flext, in ACN	Flex k, lbs/	'in^3 Rigt, i	n ACN Rig
Critical Aircraft	Rig 20yr Covs, P/C = 21.6 Rigid Cutoff (times rrs) Concrete Flex. Str. (psi)	422 3.00 650.0	0.00 Evaluation Thickness =	0.0) Stress =	
				,	,	

Figura 3.23 - Introdução do peso bruto

Figura 3.24 - Introdução da percentagem do peso bruto

	X = -3.3 in		Y = -1.3 in	Edit Wheels
Aircraft Group eneric		Main Gea	ır Footprint	<u>A</u> dd <u>R</u> emove
irbus oeing IcDonnell Douglas ther Commercial	90- Changing Number	er of Main Gea		Seject <u>M</u> ove
Library Average	70 The current numb	er of main aft is 2.	ОК	Library Functions Load Ext File File
ornier 228	60 Enter a new value in the range: Cancel			Add Remove Aircraft Aircraft
	N AG: Click Cancel at ar	ny time to retain	the old value.	Open Aircraft Window
	2			Miscellaneous Functions
	30			Details Exit
	20- 10-			Help About
				Options
	Ď	ċ	B Á	🗌 Batch 📄 PCA Thio
		Subgrad	le Category	Metric PLA MbA
		40		☐ MGW at Current covs.
	% GW on Main Gears	75.00	Lomputational Mode	
	No. Main Gears	2	PCN Elevible	PCN Bigid
	Wheels on Main Gear	1	Rateb	Rateb MURE >>>
	Tire Pressure (psi)	300.0		Datch
	Alpha Used	0.000		
	Dage /Traffie Cuele (D/TC) 1.00	SG CBR Flext, in ACN Fle	ĸk,lbs/in^3 Rigt,in ACN Rig
	Fass/fiame Lycle (F/TC		Lange	
	Annual Departures	457		
Critical Aircraft	Annual Departures Flex 20yr Covs, P/C = 21	457 .6 422		
Critical Aircraft	Annual Departures Flex 20yr Covs, P/C = 21 Rig 20yr Covs, P/C = 21	457 .6 422 .6 422	0.00	0.0

Figura 3.25 - Introdução do número de engrenagens principais

Figura 3.26 - Introdução da pressão dos pneus

	X = 1.7 in	Y = 3.6 in	Edit Wheels
Aircraft Group		Main Gear Footprint	<u>A</u> dd <u>R</u> emove
urbus loeing IcDonnell Douglas Uther Commercial	90 Changing Pass to	Traffic Cycle Ratio (P/TC)	Select <u>M</u> ove
McDonnell Douglas Other Commercial General Aviation Military External Library Library Aircraft Dornier 228	80 Enter a value for til Ratio (P/TC) in the Action (P/TC) values shou to the operational except when perto based on traffic. 70 P/TC values shou to the operational except when perto based on traffic. 80 Parallel taxiway wi Central taxiway wi Central taxiway wi Click Cancel at an [2] 20 Click Cancel at an [2]	e Pass to Traffic Cycle OK range: 0.0 to 10.0. OK id be selected according conditions given below iming a sensitivity analysis Cancel C	Library Functions Load Ext File Save Ext File Aircraft Aircraft Aircraft Open Aircraft Window Miscellaneous Functions Details Exit Help About Options Batch PCA Thic
	Gross Weight (Ibs)	12 Computational Mode	MGW at Current covs.
	% GW on Main Gears No. Main Gears Wheels on Main Gear Tire Pressure (psi)	75.00 2 PCN Flexible 1 Batch 125.0 PCN Flexible	PCN Rigid Batch
	Alpha Used Pass/Traffic Cycle (P/TC Annual Departures	0.000 1.00 457 56 CBR Flext, in A	ACN Flex k, lbs/in^3 Rig t, in ACN Rig
Critical Aircraft	Flex 20yr Covs, P/C = 13. Rig 20yr Covs, P/C = 13. Rigid Cutoff (times rrs)	9 654 9 654 3.00 0.00	0.0

Figura 3.27 - Introdução do ciclo de passagem do tráfego

Figura 3.28 - Introdução das saídas anuais

Depois de introduzidos todas as características do avião, introduz-se o valor do CBR (Figura 3.29) e o valor da espessura em avaliação que foi retirada da folha de cálculo EXCEL (Figura 3.30).

Figura 3.29 - Introdução do valor do CBR

	X = -11.3 in	Y = -	1.5 in	Edit Wheels	Edit Wheels	
Aircraft Group Generic	I	Main Gear Footp	rint	Add	<u>R</u> emove	
Airbus Boeing McDonnell Douglas Other Commercial	90-		_	Select	Move	
General Aviation	Changing Furthert	This lange	X	- Libraru Euro	ctions	
Military	80 Changing Evaluati	on Thickness		Load Ext	Save Ext	
External Library	70 Enter a value for e	valuation thickness in the ra	nne ov	File	File	
Library Aircraft			UK		l Deserve	
ATH 42-300 Cessna 172	60 0.10 in to 260.00 in	n.	Cancel	Add	Aircraft	
Morane Saulnier 893	Click Cancel at an	, time to retain the old value.				
Piper Seneca Dornier 229	N			Open Air	craft Window	
Jumiei 220	40 19.2					
				Miscellaneo	ous Functions	
	30-			<u>D</u> etails	E <u>x</u> it	
	20-					
	20			Help	About	
	10-					
				Options		
	Ď	Ć B	Á	Batch	PCA Thic	
		Subgrade Category	(Metric		
				_ MG₩ at	Current covs.	
	Gross Weight (lbs)	40 Compu	utational Mode			
	No. Main Gears	2	CN Flovible	PCN Rigid	1	
	Wheels on Main Gear	1	Patab	Patab	MORE >>>	
	Tire Pressure (psi)	104.9	Datch	Datch]	
	Alpha Used	0.000				
	Pass/Traffic Cycle (P/TC)	2.00 SG C	BR Flext, in ACN	Flex k, lbs/in^3 Rig t,	in ACN Rig	
	Annual Departures	114				
Critical Aircraft	Flex 20yr Covs, P/C = 6.2	4 731				
Shilour Aircruit	Hig 20yr Covs, P/C = 6.2	4 /31	00	0.0		
	Distant Cashe (Chimana and)	LO 00 b				

Figura 3.30 - Introdução da espessura equivalente

Colocados todos os aviões, seleciona-se o botão "Batch" (Figura 3.31), e pressiona-se no botão "PCN Flexible Batch" (Figura 3.32).

	X = -2.3 in		Y = 2.9 in		E dit Milesele	
Aircraft Group					Eult wheels	
Generic		fain Gea	r Footprint		Add	<u>R</u> emove
Airbus	100-					
Boeing					Select	Move
McDonnell Douglas Other Commercial	90-					
General Aviation	00				- Library Fund	tions
Military	00-				Load Ext	Save Ext
External Library	70-				File	File
Library Aircraft		_				Dense l
Morane Saulnier 893 Cessna 172	60-				Add	Aircraft
Piper Seneca	A					
ATR 42-300	U 50-				Open Airc	raft Window
Dornier 228	40-	<u> </u>				
		<u> </u>			Miscellaneo	us Functions
	30-				Details	Exit
	20-					.
	10-				neip	About
					Ontions	
		ė				
	U U	Subgrad	B A		Batch	PLA Thick
		Jubgrau	e category			
	Gross Weight (lbs)	2	Computational Mode		mu n al	Current COTS.
	% GW on Main Gears	95.00				
	No. Main Gears	2	PCN Flexible	PCN	l Rigid 🛛	MOBE >>>
	Wheels on Main Gear	1	Batch	B	atch	
	Tire Pressure (psi)	125.0				
	Alpha Used	0.000		EI I P	r 40 p: -	ACH D:
	Pass/Traffic Cycle (P/TC)	2.00	Sta LBH Flext, in AUN	riex k, lbs	zin 3 Rigt,	IN AUN HIG
]	Annual Departures	457				
Critical Aircraft	Flex 20yr Lovs, P/C = 31.	U 589 U 500				
	Rigid Cutoff (times rrs)	2 00	6.00	0	n	
~	Concrete Elev Str. (osi)	5.00				
	CONCICIC LICK. JU. [USI]	030.0	Evaluation Lbickness =	34.20	Stress	-

Figura 3.31 - Seleção do botão "Batch"

Figura 3.32 - Seleção do botão "PCN Flexible Batch"

Selecionado o botão "Details" (Figura 3.33), apresentam-se os resultados do cálculo do PCN.

Figura 3.33 - Seleção do botão "Details"

Inicialmente, as características do pavimento e do tráfego são apresentadas como resultados de saída, juntamente com a categoria de fundação. Seguidamente, aparecem os dados do tráfego de entrada como se observa na Figura 3.34.

Observando os resultados de saída (Figura 3.34) verifica-se que a maioria dos aviões que utiliza o Aeroporto de Bragança possuem um PCN de 4, mas existe um avião (ATR 42-300) que pode ser considerado o mais gravoso com um PCN de 28.

PCN Results Flexible 04-Nov-2014	18;45;12 - Bloco de notas					1		
Ficheiro Editar Formatar Ver Ajuda								
This file name = PCN Results Flexible 04-Nov-2014 18;45;12.txt Library file name = C:\Users\ines\Desktop\Dados do COMFAA\Morane Saulnier 893.Ext								
Evaluation pavement type is flexible and design procedure is CBR Alpha Values are those approved by the ICAO in 2007.								
CBR = 6.00 (Subgrade Category is C) Evaluation pavement thickness = 19.20 in Pass to Traffic Cycle (PtoTC) Ratio = 2.00 Maximum number of wheels per gear = 1 Maximum number of gears per aircraft = 2								
No aircraft have 4 or more wheels per gear. The FAA recommends a reference section assuming 3 inches of HMA and 6 inches of crushed aggregate for equivalent thickness calculations. Dados do tráfego de entrada								
Results Table 1. Input Tr No. Aircraft Name	affic Data Gross Percent Weight Gross W	Tire It Press	Annual Deps	20-yr Coverages	6D Thick			
1 ATR 42-300 2 Cessna 172 3 Morane Saulnier 893 4 Piper Seneca 5 Dornier 228	40 000 100.00 2 000 100.00 2 000 100.00 5 000 100.00 12 500 100.00	104.9 30.0 30.0 55.1 142.1	114 228 457 228 457	731 615 1 233 717 1 415	14.88 2.48 2.67 4.86 9.06			
Results Table 2. PCN Valu	es				Valor	es do PCN		
Ai No. Aircraft Name	Critical T rcraft Total f Equiv. Covs. Eq	hickness or Total uiv. Covs.	Maximum Allowable Gross Weigh	PCN nt A(15)	at Indicat B(10) C	ed Code (6) D(3)	CDF	
1 ATR 42-300 2 Cessna 172 3 Morane Saulnier 893 4 Piper Seneca 5 Dornier 228	731 >5,000,000 >5,000,000 >5,000,000 >5,000,000	14.88 6.32 6.32 12.17 18.71	66 635 18 437 18 437 12 450 13 158	23.7 1.8 1.8 2.6 5.5	26.4 2 2.8 2.8 3.4 5.7	27.7 29.0 4.4 6.4 4.4 6.4 4.4 5.0 5.7 5.8 OLAT CDF =	0.0455 0.0000 0.0000 0.0000 0.0000 0.0000 0.0455	
Results Table 3. Flexible ACN at Indicated Gross Weight and Strength Valores do ACN No. Aircraft Name Gross % GW on Tire Weight Main Gear Pressure A(15) B(10) C(6) D(3)								
1 ATR 42-300 2 Cessna 172 3 Morane Saulnier 893 4 Piper Seneca 5 Dornier 228	40 100.0 2 100.0 2 100.0 5 100.0 12 100.0	104.9 104.9 10 10 10 10 10 10 10 10 10 10 142.1	14.2 0.2 0.2 1.0 5.2	15.9 0.3 0.3 0.4 5.4 1.4 5.4	5 17.4 5 0.7 5 0.7 8 2.0 4 5.5			

Figura 3.34 - Resultados de saída do programa COMFAA

Sabendo que o PCN é avaliado tendo em conta o ACN do avião crítico, então poder-se-á concluir que o avião crítico é o ATR 42-300, pois é o que apresenta um valor de ACN maior (16,6).

Deste modo, a notificação do PCN, tendo em conta os códigos associados ao valor do PCN, será 28/F/B/Y/U corresponde a um pavimento com capacidade de carga de valor numérico 28, de um pavimento flexível (F), cuja fundação é de categoria media, com valores de CBR entre os 8 e os 13 (B), com pressão máxima de enchimento de pneus admissível igual a 104,43 psi (Y) e cuja avaliação é baseada na experiência com aviões que operam usualmente no pavimento (U).

4. CONCLUSÃO

Esta dissertação iniciou-se com um enquadramento do tema, no qual se explica o significado do Número de Classificação do Avião (ACN) e do Número Classificação Numérica do Pavimento (PCN). Estes conceitos são de muita importância, pois sem o seu entendimento torna-se difícil compreender o trabalho realizado.

De seguida explicou-se de uma forma genérica a metodologia do cálculo do PCN, que consiste no objetivo principal desta dissertação.

A metodologia do cálculo do PCN pode ser realizada através de dois métodos, como se observou no Capítulo 2 e 3 desta dissertação. O primeiro método, método da FAA, utilizando o programa de cálculo COMFAA, que tem como dados de saída não só o valor numérico do PCN, mas também do ACN, tendo em conta os aviões que operam no aeroporto. O segundo método é formado pelo método empírico-mecanicista de dimensionamento/avaliação de pavimentos que permite o cálculo do PCN, independentemente do avião.

Relativamente ao método da FAA utilizando o programa de cálculo COMFAA, este consiste na determinação da espessura equivalente de forma a ajustar o pavimento existente aos fatores de equivalência designados pela FAA. De seguida introduz-se todos os dados necessários no programa COMFAA e ele exibe como dados de saída os valores do PCN e do ACN.

O método empírico-mecanicista necessita de ensaios como o defletómetro de impacto e a medição da temperatura. Através destes ensaios é possível determinar as deflexões normalizadas, o módulo de deformabilidade do pavimento e o valor do CBR. Através da medição de temperatura é possível retirar o módulo de deformabilidade da camada betuminosa ajustada à temperatura anual da região em estudo.

Ambos os métodos foram aplicados ao Aeroporto de Bragança, sendo possível retirar o valor do PCN. De acordo com o método empírico-mecanicista, obteve-se um PCN máximo de 9 enquanto na utilização do método da FAA adquiriu-se um PCN de 28.

Estes valores encontram-se bastante diferentes, pois o método empírico-mecanicista é independente do avião, enquanto o método da FAA calcula o PCN de todos os aviões em estudo.

Verificando a carta do Aeródromo Municipal de Bragança, pode concluir-se que o valor numérico do PCN reportado é de 19, valor dentro do intervalo obtido.

Figura 4.1 - Carta do Aeródromo Municipal de Bragança (Lalyre, 2012)
5. REFERÊNCIAS BIBLIOGRÁFICAS

AASHTO 1961. The AASHO Road Test: History and Description of the Project. s.l.. Highway Research Board's Special Report 61A, 1961.

AC 150/5335-5A 2006. *Standardized Method of Reporting Airport Pavement Strength - PCN.* 2006.

Alves, T. S. F. 2007. Metodologias de Auscutação de Pavimentos Rodoviáros, Aplicação Prática do Radar de Prospecção e do Defletómetro de Impacto. Lisboa, Instituto Superior Técnico, 2007.

Alexandre L. J. 2008. *Determinação do PCN e Projeto de Reforço do Pátio Militar da Base* Aérea de Salvador (BASV). 2008.

ANAC 2008. Resistênica de Pavimentos dos Aeródromos. Brasilia, 2008

Antunes, M. L. 1993. Avaliação da capacidade de carga de pavimentos utilizando ensaios dinâmicos. Tese de Doutoramento, Lisboa, 1993.

Chou, Y. T. 1982. *Structural Behaviour of Flexible Airfield Pavements.* Trondheim, Norway : Proceedings of the Bearing Capacity of Roads and Airfield, 1982.

DeBord, K. 2012. Calculating PCN using the FAA Method. 2012.

Domingos, P. 2007. *Reforço de Paviementos Rigídos: Modelação do Comportamento Estrutural.* Lisboa : Universidade Técnica de Lisboa, Instituto Superior Técnico, 2007.

Enc24. Enciclopédia de Aeronaves. *flugzeuginfo.net*. [Online] Agosto 2014, 24. [Cited: Outubro 31, 2014.] http://www.flugzeuginfo.net/.

Fonseca, P. J. R. 2013. Análise Comparativa de Dimensionamneto de Pavimento Flexível aeropotuário pelos Métodos Mecanicista e Empiríco da Federal Aviation Administration (FAA). Fortaleza, 2013.

Fontul, S. 2004. *Structural Evaluation of Flexible Pavements Using Non-Destructive.* s.l. : Dissertation developed at Laboratório Nacional de Engenharia Civil, submitted the Universidade de Coimbra for the Degree of Doctor of Philosophy in Civil, 2004.

ICAO. 1983. Aerodrome Design Manual – Part3 – Pavements. 1983.

INAC I. P. 2012, Regulamento sobre a classificação da capacidade de carga de pavimentos aeronáuticos através da utilização da metodologia ACN/PCN. Ministério da Economia e d Emprego, 2012.

IPMA/MAMAOT. *Base de Dados Portugal Contemporâneo*. [Online] [Cited: Julho 23, 2014.] http://www.pordata.pt/Portugal/Temperatura+media+do+ar+(media+anual)-1067.

Lalyre, M. C. G. 2012. Bragança Regional Airport Master Plan Evaluation - Geometrical and Structural Characteristics. Bragança : s.n., 2012.

Serviço Metereológico Nacional. 1970. *O Clima de Portugal*. Lisboa : Fascículo XIII, 2^a, 1970.

SHELL. 1978. Shell Pavement Design Manual – Asphalt Pavements and Overlays for Road Traffic. London, UK : Shell International Petroleum Company, 1978.

6. ANEXO

Tabelas do ACN

			Flex	ible Paven CE	ient Su BR	bgrades	Rigid Pavement Subgrades k (MPa/m)			
			High	Medium	Low	Vr Low	High	Medium	Low	Ult Low
	Weight	Tire Pressure	A	B	С	D	A	B	С	D
Aircraft	Max/Min (kN)	(MPa)	15	10	6	3	150	80	40	20
A340-200	2706	1.42	62	67	78	106	53	62	73	85
	1697		35	37	41	53	33	34	39	45
A340-300	2559	1.32	56	61	70	96	47	54	65	76
	1706		34	36	40	52	32	33	38	44
A340-300	2706	1.42	62	68	79	107	54	62	74	86
	1765		37	39	44	57	34	36	42	48
A340-500 600	3590	1.42	70	76	90	121	60	70	83	97
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1750	1.22	29	31	34	42	29	28	32	37
A380-800	5514	1.47	71	79	99	136	53	61	76	94
(6 Wheel Main Gear	r) 2758		29	31	35	48	25	26	29	34
A380-800	5514	1.47	62	68	80	108	55	64	76	88
(4 Wheel Wing Gea	r) 2758		27	28	31	39	25	26	30	35
Antonov AN- 24	207	0.42	6	8	11	13	8	9	11	11
	130		4	5	6	7	5	5	6	7
Antonov AN-124-10	0 3844	1.03	51	60	77	107	35	48	73	100
	2000		20	23	27	40	17	18	23	32
Antonov AN-225	5884	1.13	63	75	95	132	45	61	89	125
	4500		41	48	62	88	30	39	55	75
ATR 42	182	0.72	9	10	11	13	10	11	12	12
(Aerospatiale)	110		5	5	6	7	6	6	7	7
ATR 72	211	0.79	11	12	14	15	13	14	14	15
(Aerospatiale)	125		6	6	7	8	7	7	8	8
Aurora (CP-140)	600	1.31	35	38	42	45	41	43	45	46
(P-3 Orion)	275		14	14	16	18	16	17	18	19
B-52 (Bomber)	2170	1.65	80	86	97	116	103	114	126	136
	1500		49	53	60	72	62	70	77	85
B1-B Bomber	2123	1.65	77	87	102	121	77	90	102	113
(Rockwell)	1400		43	47	57	72	43	50	58	65

			Flex	ible Pavem	bgrades	Rigid Pavement Subgrades				
				CE		k (MPa/m)				
			High	Medium	Low	Vr Low	High	Medium	Low	Ult Low
	Weight	Tire Pressure	A	В	С	D	A	B	с	D
Aircraft	Max/Min (kN)	(MPa)	15	10	6	3	150	80	40	20
Beech Queen Air 6	5, 40	0.33	_				_	_	_	_
70, ou selles	25		_				_	_	_	_
Bombardler BD-700	432	1.21	26	28	30	32	30	31	32	33
(Global Express)	220		11	12	13	15	13	14	15	15
O 444D Cindifier	1553		50	60				64	70	70
(Lookbood)	600	1.01	15	46	10	24	31	46	10	20
(Lockneed)	000		15	10	10	24	14	10	19	22
C-17A	2602	0.95	54	61	73	94	54	49	57	71
(Globernaster III)	2000		38	42	50	65	41	38	40	48
C-EA Colory	3421	0.73	27	30	75	45	25	28	22	30
(Lookbood)	1500	0.75	10		10	40	10	20	10	13
(Lockneed)	1500		10		12	15	10		12	13
C123K Provider	267	0.69	20	22	24	25	21	21	22	22
(Fairchild/Republic)	180		13	15	16	17	14	14	15	15
Canadair CL-215, 4	15 196	0.55	12	15	17	18	14	14	15	15
	130		8	10	11	12	9	10	10	10
Canadair CL-41A	49	0.37	_				_	_	_	_
(CT-114 Tutor)	24		_				_	_	_	_
Canadair Regional	236	1.12	13	14	16	17	16	16	17	18
Jet - 100, 200 Srs	135		7	7	8	9	8	9	9	9
Canadair Regional	335	1.24	18	19	21	24	21	22	23	24
Jet - 700 Series	195	1.24	10	10	11	13	11	12	12	13
Canadair Regional	367	1.24	20	21	24	26	23	25	26	27
Jet - 900, ER Srs	215		11	11	12	14	12	13	14	14
Courses 11/15		0.35								
(Cessna 114D	10	0.35	_				_	_	_	_
(Commander)	10		_				_	_	_	_
Cessna 152	8	0.20	_				_	_	_	_
	5		_				_	_	_	_
Cessna 172	11	0.19	_				-	_	_	-
(Skyhawk)	7		-				-	-	_	-
Cessna 180	13	0.21	_				_	_	_	_
(Skywagon)	8		_				_	_	_	_

			Flex	ible Paven	tent Sui	bgrades	Rigid Pavement Subgrades k (MPa/m)				
				C	3R						
			High	Medium	Low	Vr Low	High	Medium	Low	Ult Low	
	Weight	Tire Pressure	A	В	с	D	A	В	с	D	
Aircraft	Max/Min (kN)	(MPa)	15	10	6	3	150	80	40	20	
DHS-2 Conair Fired	at 116	0.62	8	10	10	11	9	9	10	10	
	80		6	7	7	8	6	6	7	7	
Domier 228 Series	63	0.90	5	6	6	6	6	6	6	6	
	56		5	5	5	5	5	5	5	5	
Domler 328 Jet	155	1.13	8	8	10	11	10	10	11	11	
	93		4	5	5	6	5	6	6	6	
Domler 328-110	138	0.80	7	7	8	10	8	8	9	9	
(Turboprop)	90		4	4	5	6	5	5	5	6	
Domier SA227, Met	ro 74	0.73	3	4	4	5	4	5	5	5	
Merlin, Expediter	56		2	3	3	4	3	3	4	4	
Douglas A-26 Invader	er 120	0.48	7	8	10	11	8	9	9	9	
	90		5	6	7	8	6	6	7	7	
Douglas B-26 Invade	er 156	0.48	9	11	13	14	10	11	11	12	
	105		6	7	9	9	7	7	8	8	
Embraer EMB-110	59	0.62	4	5	5	5	5	5	5	5	
(Bandelrante)	56		4	5	5	5	4	4	5	5	
Embraer EMB-120	119	0.76	5	6	7	8	7	7	7	8	
(Brasilia)	71		3	3	4	4	4	4	4	4	
Embraer ERJ-145	217	0.90	12	13	15	16	14	15	15	16	
	110		5	6	6	7	6	7	7	7	
Fokker 100	452	0.94	25	27	31	33	28	30	32	33	
	243		12	13	14	16	13	14	15	16	
Fokker 50	205	0.59	9	11	13	14	11	12	13	13	
	125		5	6	7	8	6	7	7	8	
Fokker 60	226	0.62	10	13	14	16	13	14	14	15	
	131		5	6	7	9	6	7	8	8	

	Weight	Tire Pressure	Flex	ible Paven CE	bgrades	Rig	Rigid Pavement Subgrades k (MPa/m)				
Aircraft			High A	h Medium B	Low C	Vr Low D	High A	Medium B	Low C	Ult Low D	
	Max/Min (kN)	(MPa)	15	10	6	3	150	80	40	20	
MD-81	628	1.14	36	38	43	46	41	43	45	47	
	350		18	19	21	24	20	21	23	24	
MD-82	670	1.14	39	41	46	49	43	46	48	50	
	350		18	18	20	24	20	21	22	24	
MD-83	716	1.14	42	45	50	53	47	50	52	54	
	355		18	19	21	24	20	22	23	24	
MD-87	628	1.14	36	38	43	46	41	43	45	47	
	335		17	18	20	23	19	20	22	23	
MD-88	670	1.14	39	41	46	50	44	46	48	50	
	350		18	19	21	24	20	21	23	24	
MD-90-30	699	1.14	41	43	48	52	46	48	50	52	
	392		20	21	24	27	23	24	26	27	
MD-90-30ER	739	1.14	44	47	52	55	49	52	54	56	
	392		20	21	24	27	23	24	26	27	
MD-90-50, 55	772	1.14	46	50	54	57	52	54	57	58	
	410		22	22	25	29	24	26	27	28	
Mitsubishi MU-2 Sr	5 52	0.48	_				_	_	_	_	
	32		_				_	_	_	_	
Piper Aerostar	29	0.48	_				_	_	_	_	
	20		_				_	_	_	_	
Piper Apache	21	0.29	_				_	_	_	_	
	13		_				_	_	_	_	
Piper Archer II, III	12	0.17	_				_	_	_	_	
	7		_		_		_	_	_	_	
Piper Arrow III, IV	14	0.21	_				_	_	_	_	
	6		_				_	_	_	_	
Piper Aztec	30	0.42	-				_	_	_	-	
	10		_	_	_						

				ible Paven	ent Su	bgrades	Rigid Pavement Subgrades				
				CE	3R		k (MPa/m)				
			High	Medium	Low	Vr Low	High	Medium	Low	Ult Low	
	Weight	Tire Pressure	A	В	С	D	A	B	с	D	
Aircraft	Max/Min (kN)	(MPa)	15	10	6	3	150	80	40	20	
Piper Commanche	21	0.29	_				_	_	_	_	
	13		_				_	-	_	_	
Piper Cub	8	0.13	_				_	_	_	_	
(& Super Cub)	5		_				_	_	_	_	
Piper Dakota	14	0.17	_				_	_	_	_	
	8		_				_	_	_	_	
Piper Malibu,	21	0.35	_				_	_	_	-	
Mirage, Meridian	14		_			_	_	_	_	_	
Piper Mojave	33	0.42	_				_	_	_	_	
	23		_				_	_	_	_	
Piper Navajo	29	0.42	_				-	_	_	_	
	10		_				_	_	_	_	
Piper Saratoga	16	0.38	_				_	_	_	_	
	10		_				_	_	_	_	
Piper Saratoga II	16	0.27	_				_	_	_	_	
			_			_	_	_	_	_	
Piper Seminole	17 11	0.25	_				_	_	_	_	
-											
Piper Seneca III, V	14	0.36	_		_	_	_	_	_	_	
Piper Warrior II, III	11	0.17	_				_	_	_	_	
	7		_				_	_	_	_	
Saab 2000	226	0.69	11	13	14	16	13	14	15	15	
	136		6	7	7	9	7	8	8	9	
Saab 340 A, B	131	0.82	6	7	8	9	7	8	8	9	
	81		4	4	4	5	4	5	5	5	
Shorts 330	102	0.55	6	8	9	9	7	8	8	8	
	66		4	5	6	6	5	5	5	5	