
On the Specification of a Component Repository

Nuno Rodrigues1 and Luis Barbosa2

1 Sidereus, S. A., Porto, Portugal
nfr@sidereus.pt

2 Dep. Informática, Univ. Minho, Braga, Portugal
lsb@di.uminho.pt

Abstract. The lack of a commonly accepted definition of a software
component, the proliferation of competing ‘standards’ and component
frameworks, is here to stay, raising the fundamental question in component-
based development of how to cope in practice with heterogeneity. This
paper reports on the design of a Component Repository aimed to give
at least a partial answer to the above question. The repository was fully
specified in Vdm and a working prototype is currently being used in an
industrial environment.

1 Introduction

”I’m sure this problem has already been solved” and ”probably, others would like
to (re)use my solution”, are common concerns in the everyday life of a program-
mer. Concerns that the emerging of component-based programming paradigm
aims to transform into effective programming practises. Actually, all engineer-
ing disciplines rely on standard components to design and build their artifacts
and development methodologies based on third-party assembly of components —
software engineering should not be the exception.

Although the term software component has been around for a long time,
component-based programming has become a buzzword since mid 1990’s (see,
e.g., [10, 15, 14, 9, 17]). The basic motivation is to replace conventional program-
ming by system’s construction by composition and configuration of reusable
off-the-shelf units, often regarded as ‘abstractions with plugs’. Or, quoting from
[15], ‘independently deployable unit of composition with contractually defined in-
terfaces’. The paradigm is often illustrated by the visual metaphor of a palette
of computational units, treated as black boxes, and a canvas into which they
can be dropped and plugged together through wires, corresponding to some sort
of gluing code.

However, as it happened before with object orientation, component program-
ming has grown up to popular technologies before consensual definitions and
principles, let alone formal foundations, have been put forward. In particular, it
has given rise to a number of increasingly popular technologies designed around
specific interaction paradigms — e.g., Corba and JavaBeans based on object-
like composition, JavaSpaces and TSpaces on top of shared data space mod-
els, typical of classical coordination languages, and channel based techniques

inherited from process languages, as in IWIM/Manifold or Drawin. Such
technologies also differ at the application level — e.g. acting as source-level lan-
guages extensions (such as Corba or JavaSpaces), or as connector frameworks
for dynamic (binary-level) units (as in e.g., Com and .NET).

From an engineering point of view a key issue to the success of the compo-
nent paradigm is integration. In fact, unless one restricts himself to a particular
framework or, even worse, to a specific tool within a framework, it is no easy
task to identify, select, re-use and compose heterogeneous software components
from a virtual ‘global market’ (as represented, for example, by the Internet).
The lack of a commonly accepted definition of ‘component’, the proliferation of
competing ‘standards’ and component frameworks, is here to stay, raising the
question of how to cope in practice with heterogeneity.

This paper reports on a concrete approach to a component integration prob-
lem found in the context of an european-wide industrial software development
project (the Ikf Eureka E!2235 consortium). The challenge was to build a com-
ponent repository (of both source code and interface information) able to register
and marketing all the components produced by different teams in the project.
The repository was also supposed to act as an exchange market : each user being
able not only to register its own components, but also to announce its plans to
issue specific components and even to publicise its needs and associated require-
ments in the form of collections of APIs. Although such component marketplaces
are emerging in the Web, the underlying description techniques remain rather
informal, mainly textual, plus an additional, limited, classification in terms the
intended business areas.

In a sense API, the acronym for Application Program Interface, emerged
as a keyword. But what is in an API, when the component technology used
ranges from Java and Corba code to Haskell or Wsdl? Coming back to
Szyperski’s definition above, what seems crucial to handle is the definition of
what an interface is.

Initial prospects of implementing the repository as an API database and
resorting to text-based retrieve methods for querying, soon reveal impractical
given the heterogeneity of the APIs supplied by the different project teams.
As the complexity of the individual components and the size of the repository
increases, higher levels of abstraction are required, and, for all practical purposes,
going abstract means going formal. The Vdm meta-language [5, 4] was chosen as
the common language to which different sorts of APIs were mapped. A complete,
working prototype of the repository, named CompSrc to express the idea of a
‘component source indexing space’, has been developed in the Vdm ToolBox

complemented with a dedicated web interface for easier access.

The paper is organised as follows: the CompSrc architecture and the generic
component model underlying the whole system are described in the following two
sections. Section 4 discusses some of the composition patterns automatically
detected by CompSrc; an example is briefly discussed in section 5. We conclude
with some prospect of future work in section 6.

2 The CompSrc Architecture

The CompSrc repository is built around a broad characterisation of what an
interface to component source code is, specified in the Vdm meta-language in the
early project stages. This is called, in the context of this system, the abstract API.
The component source code database is indexed by such abstract APIs which are
‘extracted’ from the actual component APIs. This is done by extractor functions
specified for the typical target languages used in the project. Such extractors
correspond to the incoming arrows in Figure 1.

In the centre of the structure diagram is the interface repository indexing the
actual component source data base. The repository supports the usual manage-
ment operations — e.g., registering, removing, updating, etc. The most relevant
feature, however, is the support of a component calculator which makes it possi-
ble to compute new services based on the automatic composition of old function-
ality, according to more or less strict interaction patterns, and, then, to build
new APIs and new components which would act as if the actual source code has
been merged. The interaction patterns available are different kinds of pipelin-
ing (linear, flattened or monadic, as described below) as well as multiplicative
and additive aggregation, corresponding to component parallel composition and
choice, respectively. The underlying component calculus is described in detail in
[2, 1]. Once a new component is built, by the calculator, the new abstract API is
registered in the system and the component ‘combined’ code is supplied, in the
form of a conditional compiling script in the .Net notation. This corresponds
to the outgoing arrows in the diagram.

3 Abstract Interfaces

The ‘quest’ for a common abstract API format started from a reverse specifica-
tion of the (static information part of) different sorts of component APIs used in
the project. These ranged from the ‘object-oriented flavour’, emphasising hier-
archical class structures, to ‘functional modules’ described by service signatures
and, eventually, datatype constraints. The formal analysis of typical API exam-
ples in Java, Corba, Microsoft Visual Basic, Haskell and Wsdl, which
is documented in [11], lead to the description of a component as an indexed
collection of services (referred to as modules in the sequel) and mirroring the
overall component architecture described in Figure 2.

Each module is, then, defined as an ordered tuple of information including
the following aspects:

1. Desc - a text description of the current module
2. INH - a set of imported modules
3. Ex - a map enumerating examples concerning the module usage
4. Func - the set of functions (fine-grain services) defined in the module
5. State - the implementation state of the module which is one of :

– Implemented - the module is implemented and ready to use

Fig. 1. Component Space Architecture

– In Implementation - the module is currently in implementation pro-
cess

– Requested - someone is interested in this module and is willing to pay
for it

– To Convert - the module is specified in a language but needs to be
implemented in a different platform

– Generated - generated by the ‘component calculator’ in CompSrc

6. Platform - the target implementation platform
7. StatDep - the static dependencies set, i.e., environment variables, runtime

environments, . . .
8. Protocols - a brief description of the communication protocols that the

module implements
9. SpecAPI - specific (platform-dependent) module data for each kind of API,

basically distinguishing purely functional interfaces from state-based ones (as
found in object-orientation)

4 Component Assembly

For each API submitted to CompSrc a corresponding abstract API (i.e., a value
of the respective Vdm datatype) is built by the (language-dependent) interface
extractors mentioned above. Such abstract APIs provide the basis for classifying,
locating and retrieving components from the underlying repository. Furthermore

Fig. 2. Structure of a Component

Fig. 3. Component DataType

they become the ‘raw material’ used by the component calculator to generate
new components.

Such generation is done in two different, but complementary, ways: aggrega-
tion and wiring.

Component aggregation is achieved by the application of a small set of oper-
ators acting on the abstract interfaces as a whole 1. In particular, they model:

– Interface restriction to a set of modules or even, within a particular module,
to a set of services.

– Additive aggregation, in which different modules coming from two different
interfaces are selected and packaged into a new one. If both interfaces are

1 see [2] for an overview of the corresponding calculus partially implemented in Comp-

Src.

Fig. 4. Module DataType

indexing actual code written in compatible implementation languages (i.e.,
related by an embedding) the code generation process is activated.

– Multiplicative aggregation, corresponding to the synchronous execution of
modules in two different components.

The wiring process, on the other hand, is based on the search for composition
possibilities among the collections of functions of a specified set of components.
Such search can be systematic, exposing all possible connections arising from a
given set of components, or user-oriented in which each possible composition is
validated or discarded by the user. In any case the problem is to identify pairs
of functions, in different components, whose range and domain match, according
to some matching criteria detailed below. Note that the collection of functions
in a component abstract API models the available fine-grain services.

As shown above in the respective specification (Fig. 4), a module records
interface information for each function in its function set. Such information
amounts basically to the signature, i.e., a type declaration of its arguments and
result. It becomes clear that a uniform specification of the datatypes used in all
components registered in CompSrc is a key issue in the design of the repository.
Therefore, when an abstract API for a submitted component is built, each ex-
tractor engine analysis the available type information to build a correspondent
abstract representation in the form of (instances of) polynomial functors. A brief
explanation is now in order.

A function
f : I −→ O

models a computational process as a transformation rule between two structures
I and O, i.e., as a recipe (a tool, a technology) to build ‘gnus’ from ‘gnats’.

Types I and O may be ‘primitive’ (i.e., defined as such at the programming
language level). Often, however, such is not the case. For example, one may
know how to produce ‘gnus’ from ‘gnats’ but not in all cases. This is expressed
by observing the output of f in a more refined context: O is replaced by 1 +O
and f is said to be a partial function. In other situations one may recognise that
there is some environmental (or context) information about ‘gnats’ that, for some
reason, should be hidden from input. It may be the case that such information
is too extensive to be supplied to f by its user, or that it is shared by other
functions as well. It might also be the case that building gnus would eventually
modify the environment, thus influencing latter production of more ‘gnus’. For
U a denotation of such context information, the signature of f becomes

f : I −→ (O × U)U

In both cases f can be typed as

f : I −→ F O

for FX = X+1 and FX = (X×U)U , respectively. Informally, F can be thought
of as a type transformer providing a shape for the output of f . Technically, F is a
functor 2 The notation used above (exponentiation and +) stand for some basic
datatype (and functor) constructors which express the ways in which ‘types’
(information, in general) can be composed. Such basic constructors are

– Cartesian product (A×B) for aggregation in the spatial axis;
– sum (A+B), for choice (i.e., aggregation in the temporal axis);
– exponentiation, or function space, (AB) for functional dependence;
– constants, like the exception type 1 or, in general, any primitive type; and
– powerset (PA) and sequences (A∗) related to non deterministic and deter-

ministic collections of data, respectively.

These constructors can be found almost directly in high-level languages (such
as, e.g., Haskell or the Vdm meta-language) and inferred in a systematic way
from other programming notations. Functors built from (and closed by) such
constructors plus functor composition are called (extended) polynomial and ex-
tensively used in the repository to record functions’ signatures.

In general, each function in the abstract API is specified as

F I → GO

where I and O are the import (respectively, export) datatypes embedded in a
behavioural context F (respectively, G) represented as a polynomial functor. For
example a non deterministic service may be modelled by a function serv : I −→
PO, where P stands for the (finite) powerset functor. Similarly a service in the
form of a partial transducer may take the form of machine : I −→ 1 + (O× I)K .
2 A concept borrowed from category theory (see e.g., [7, 8] or [3] for a computer sci-

ence perspective) capturing a uniform transformation of both ‘types’ and ‘type-
preserving’ operations.

This sort of embedding through a functor entails the need to equip CompSrc

with the ability to compare functors involved in the datatypes of function signa-
ture’s. Functor (structural) equality and functor instantiation order are achieved
by the comparison functions listed in appendices A and B.

Based on such functions the repository is able to perform different types of
‘functional’ composition, besides the obvious one between functions sharing the
domain of one with the codomain of the other. In particular the following ‘extra’
pipelining composition patterns are considered:

– Curry insensitive, which allows to perform curry or uncurry on a pair of
otherwise no composable services.

– Monadic, whenever the context information is captured by a monad (which,
as shown in [1] is often the case) 3. Monadic composition includes both
the usual Kleisli composition of monadic functions used in functional pro-
gramming, and a simpler scheme amounting to the monadic embedding of
a ‘plain’ function. Both cases are illustrated in Figure 5. Kleisli composition
of functions f and g is achieved by flattening (with the corresponding multi-
plication µ) the result of the top line composition scheme. The bottom line
scheme represents monadic embedding.

Fig. 5. Monadic Composition

3 A monad is also a concept borrowed from category theory. Computationally, it stands
for a functor, representing some sort of ‘computational effect’, equipped with an
embedding function (η : X −→ FX) to ‘see’ simple values as F-computations and a
multiplication (µ : FFX −→ FX) to ‘flatten’ computational effects (see, eg, [16])

The specification of the wiring process is based on the structural comparison
functions mentioned above to relate, up to the intended composition pattern,
functions input/output contexts.

5 An Example

The example shown in this section illustrates the identification of composable
functions in two rather different components, developed in the context of the
Ikf project, by different groups and using different technologies. This example
is fully documented in [12], to which the interested reader is referred to.

The first component is a Vdm-SL specification of a robot which manages
box storing inside a generic warehouse. The component provides functionality
to, e.g., find the best fit of a box inside the warehouse storing space, remove a
box, rearrange the warehouse in order to get the biggest amount of free space,
etc.

The second component is a web-publisher generator from any sort of infor-
mation organised as a leaf tree (i.e., a binary tree with all information stored
on the leafs), developed in Haskell. This component provides, in particular, a
function y2html to generate the Html representation of a leaf tree value.

In appendix C part of the abstract interfaces generated for CompSrc from
the sources of these two components are shown. As a remark note the type
information derived, in the second component, from the following Haskell dec-
laration:

data Y a b i = Leaf (Unit a b) | Node (Mode i, (Y a b i, Y a b i))

deriving Show

data Mode i = Hr i | Hl i | Vt i | Vb i deriving Show

data Frame i = Frame i i deriving Show

data Sheet a b i = Rect (Frame i) (Y a b i) deriving Show

Applying some of the composition test suites defined in the CompSrc leads to the
identification of several possible compositions between (the abstract interfaces of) these
two distinct modules. The repository is able, in particular, to determine, in an auto-
matic way, that the functors underlying type Space in the robot component and type
Y in the web-publisher one are structurally identical. This fact opens the possibility of
composing function y2html in the latter component with any function returning values
of type Space in the former. Such is the case, e.g., of functions freeSpace, defragment
and whichBoxes. The composition of y2html with any of these functions provides, for
free, generators of Html interfaces for the warehouse Vdm prototype.

Such wiring possibility is detected by the application of function compareFunctor
(in appendix B) whose result in the Vdm ToolBox syntax, is

{ mk_("y2html",{ "freeSpace","defragment","whichBoxes" }) }

This identifies a functional wiring scheme between y2html, on one hand, and func-
tions freeSpace, defragment and whichBoxes, on the other. It also tells that the order of
application for this interaction is y2html following freeSpace, defragment or whichBoxes.

6 Conclusions and Further Work

Software development by component assembly is most likely to become the main stream
in software engineering in the near future. This will lead to a broader understanding of
what a software component is (virtually any sort of content can be encapsulated in a
reusable entity with well-defined interfaces and able to be connected at runtime) and to
the emergence of standardised component frameworks able to integrate heterogeneous
components and deal with other such systems in a cooperative manner. The ability to
deal with ‘non native’ components has been recognised as the hallmark of the so-called
‘second-generation’ component systems [13], a step ahead of what is currently achieved
in Corba, JavaBeans or Objectspace Voyager.

The basic lesson learnt from the development of CompSrc is the potential of for-
mal, model-oriented, methods in guiding the design of such platforms. We believe this
exercise can be further extended to cope with some issues not covered in the present
version, namely, dynamic instantiation of components, location and mobility. Those
are fundamental issues for modelling distributed component frameworks.

The CompSrc prototype has been used, not only in the context of the project
in which it was originally developed, but also to organise software components arising
from a massive re-engineering effort of legacy code undertaken by the software company
to which the first author is affiliated.

Such an architectural re-engineering effort aimed to identify service components
orthogonal to the basic development layers considered in the design practice (i.e.,
database definition, middleware and GUI). For each identified component an abstract
interface, as described above, has been written and directly submitted to CompSrc

together with a .Net script to navigate in the (monolithic) legacy code (which re-
mains unchanged) and generate the actual executable code corresponding to the new
abstract API. In a subsequent stage new software products incorporating the recovered
components have been generated within CompSrc.

Future work on the the CompSrc prototype is foreseen in two main directions:

– The scaling up CompSrc to act over the web in a transparent way, instead of rely-
ing on a localised component source database, as well as making it able to produce
new component connection at runtime, is a main challenge from a technological
point of view.

– Conceptually more demanding is the addition of facilities to cope with heterogene-
ity not only at the ‘linguistic’ and component-style levels (e.g., the integration of
object and functional models), but also at the level of the interaction style (aim-
ing at the integration of, e.g., method invocation, dataflow stream processing and
event-based interaction). Some preliminary work on a similar topic is documented
in [6].

Acknowledgements.

The work reported in this paper was supported by the Ikf project (Information and
Knowledge Fusion), IKF-IPTG-CW (ComponentWare) under contract E!2235.

References

1. L. S. Barbosa. Towards a calculus of state-based software components. In Selected
Papers from the 7th Brazilian Symposium on Programming Languages (to appear
in the Jour. of Universal Computer Science), Ouro Preto, Brasil, June 2003.

2. L. S. Barbosa and J. N. Oliveira. State-based components made generic. In H. Pe-
ter Gumm, editor, Elect. Notes in Theor. Comp. Sci. (CMCS’03 - Workshop on
Coalgebraic Methods in Computer Science), volume 82.1, Warsaw, April 2003.

3. R. Bird and O. Moor. The Algebra of Programming. Series in Computer Science.
Prentice-Hall International, 1997.

4. J. Fitzgerald and P. G. Larsen. Modelling Systems: Pratical Tools and Techniques
in Software Development. Cambridge University Press, 1998.

5. Cliff B. Jones. Systematic Software Development Using Vdm. Series in Computer
Science. Prentice-Hall International, 1986.

6. K.-P. Lohr. Towards automatic mediation between heterogeneous software com-
ponents. volume 65.4. Elect. Notes in Theor. Comp. Sci., Elsevier, 2002.

7. S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate
Texts in Mathematics. Springer-Verlag, 1971.

8. C. McLarty. Elementary Categories, Elementary Toposes, volume 21 of Oxford
Logic Guides. Clarendon Press, 1992.

9. B. Meyer and C. Mingins. Component-based development: From buzz to spark.
IEEE Computer, 32(7):35–37, 1999.

10. O. Nierstrasz and L. Dami. Component-oriented software technology. In O. Nier-
strasz and D. Tsichritzis, editors, Object-Oriented Software Composition, pages
3–28. Prentice-Hall International, 1995.

11. N. Rodrigues. Abstract interfaces. Technical report, Sidereus and DI (U. Minho),
2003.

12. N. Rodrigues. Formal methods laboratory: the component repository specification.
Technical report, Univ. Minho, DI (document and repository prototype available
from nunorodrigues@di.uminho.pt), 2003.

13. K. Schmaranz. On second generation distributed component systems. Journal of
Universal Computer Science, 8(1):97–116, January 2002.

14. J.-G. Schneider and O. Nierstrasz. Components, scripts, glue. In L. Barroca,
J. Hall, and P. Hall, editors, Software Architectures - Advances and Applications,
pages 13–25. Springer-Verlag, 1999.

15. C. Szyperski. Component Software, Beyond Object-Oriented Programming.
Addison-Wesley, 1998.

16. P. Wadler. Monads for functional programming. In J. Jeuring and E. Meijer,
editors, Advanced Functional Programming. Springer Lect. Notes Comp. Sci. (925),
1995.

17. P. Wadler and K. Weihe. Component-based programming under different
paradigms. Technical report, Report on the Dagstuhl Seminar 99081, February
1999.

A CompareFunctor Function

B EqualsLessFunctor Function

C Component Source Values

Fig. 6. VDM-SL Warehouse Storing Robot DataTypes

Fig. 7. Warehouse Storing Robot

Fig. 8. Web-publisher Generator

