
A
u
th
or
’s
m
an

u
sc
ri
p
t,
p
u
b
li
sh
ed

in
S
y
m
p
os
iu
m

on
A
p
p
li
ed

C
om

p
u
ti
n
g,

20
08

Serpentine: Adaptive Middleware for Complex
Heterogeneous Distributed Systems

M. Matos
U. Minho

A. Correia Jr.
U. Minho

J. Pereira
U. Minho

R. Oliveira
U. Minho

ABSTRACT
Adaptation of system parameters is acknowledged as a re-
quirement to scalable and dependable distributed systems.
Unfortunately, adaptation cannot be effective when provided
solely by individual system components as the correct deci-
sion is often tied to the composition itself and the system
as a whole. In fact, proper adaption is a cross-cutting is-
sue: Diagnostic and feedback operations must target multi-
ple components and do it at different abstraction levels.

We address this problem with the Serpentine middle-
ware platform. By relying on the industry standard JMX
as a service interface, it can monitor and operate on a wide
range of distributed middleware and application components.
By building on a JMX-enabled OSGi runtime, Serpentine
is able to control the life-cycle of components themselves.
The scriptable stateless server and cascading architecture
allow for increased dependability and flexibility.

1. INTRODUCTION
The pervasiveness of computer systems and applications

in daily lives is making computer dependability an issue of
increasing relevance for the common citizen. Current ap-
plications tend also to be highly modular, composable and
heterogeneous, leading to a steep increase of their complex-
ity. This poses a great challenge to those that build them,
often by integrating multiple cooperating services, but also
to those who manage them daily and is in itself a menace
to system dependability: It is hard to exclude human er-
ror while ensuring reaction to adversity within an adequate
time-frame. Multiple studies have found human error to be
comparable to hardware malfunction as a cause of down-
time.

This challenge can be tackled in a cost effective way by
mimicking the way the autonomic nervous system works in
the human body, constantly adapting vital signals in order
to reflect body needs in a decentralized fashion. Likewise,
one should be able to build computer systems that adapt
to changing needs and environment conditions without op-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

erator intervention [13]. Besides reducing the likelihood of
human error, this should increase dependability by allowing
faster response to different fault scenarios.

In this paper, we propose a middleware component, Ser-
pentine, capable of addressing those issues by adapting the
underlying system/service to changes in the production en-
vironment and/or user requirements without requiring the
human intervention of a system administrator. The control
techniques used are established and well known [12] allowing
simple reactive control as well as feedback loop systems that
constantly probe the state of the running services and apply
pre-defined policies found adequate to the current environ-
ment and needs.

The strengths of Serpentine are the manifold. First,
the fundamental design aspect of Serpentine is its state-
lessness which allows for seamless recovery after a manage-
ment node failure or a broken connection because all the
knowledge about a managed element can be rebuilt.

The choice of the Java Management eXtensions (JMX)
standard [14] as the interface to managed elements provides
direct and seamless support for a large number of middle-
ware and application components built on the Java plat-
form. To support the management logic Serpentine, uses
the recent Java scripting engine [11] which provides a com-
mon framework for the execution of a multitude of scripting
languages such as JavaScript, Python or Ruby. This tech-
nology provides an increased flexibility allowing Serpen-
tine to transparently execute arbitrary scripts that define
the policies to which the managed element must abide.

Furthermore, scripts can export information and oper-
ations themselves as JMX Managed Beans (MBeans). As
these exported objects are just seen as common MBeans, it
is possible to use another instance of Serpentine to mon-
itor and actuate on them thus obtaining a cascading hier-
archical setup. This hierarchical architecture is key both
to build large and complex systems, but also as component
wrappers when native semantics is not entirely adequate.

Finally, by relying on an JMX-enabled OSGi runtime [18],
Serpentine can control component life-cycle as part of the
adaptation process, thus being able to deploy, move, and
undeploy software components.

The rest of the paper is structured as follows. Section 2 in-
troduces the Serpentine architecture. Section 3 illustrates
its usage with a concrete example. Section 4 compares the
Serpentine approach with previous related work. Finally,
Section 5 concludes the paper.

A
u
th
or
’s
m
an

u
sc
ri
p
t,
p
u
b
li
sh
ed

in
S
y
m
p
os
iu
m

on
A
p
p
li
ed

C
om

p
u
ti
n
g,

20
08

Connection Layer

Management Layer

Java Management Extensions

JSR-223

Running application(s)

Exported aggregated results

Scripts

MBeanMBean

MBean

Figure 1: Architecture overview.

2. ARCHITECTURE
An overview of the Serpentine system architecture is

presented in Figure 2. It is possible to observe three major
components: The management targets, e.g. JMX-enabled
application and middleware components; the core of Ser-
pentine itself; and finally the pluggable policy scripts con-
taining the rules to be applied. It also shows where the two
key technologies come into play.

In the next section we describe the Serpentine stack
in a bottom-up approach going from the lower tier of the
communication with the targets to the logic and semantics
necessary to write the scripts.

2.1 Management Targets and JMX
Management targets are required to be JMX-enabled. Java

Management eXtensions (JMX) [14] provides standard in-
terfaces and protocols to monitor and manage applications
based on the Java platform. In short, JMX builds on Java
Beans technology and allows the implementer of a software
module to easily expose (read-only or read-write) attributes,
operations and events. These features are grouped and ex-
posed as Managed Beans, or MBeans for short.

The main advantage of this approach is that general pur-
pose monitoring and management tools can use standardized
introspection capabilities to learn the exposed interface and
then interact with it. JMX is now a standard feature of all
major Java middleware components. As an example, JBoss
offers an extensive representation of the container state and
configuration parameters using JMX. The Java runtime it-
self extensively supports JMX. In fact, JMX-enabled compo-
nents integrate in the wider enterprise IT ecosystem by eas-
ing interoperation with other standards such as SNMP [17]
and Web Services [15].

2.2 Connection Layer
The next layer up in the stack is the Connection Layer.

Its responsibility is to maintain a pool of MBean proxies for
usage by the Management Layer.

In detail, for each configured target, a connection is estab-
lished and associated with an object that will be available to

the next layer allowing it to read and change the state of the
underlying application. A target may have several exported
MBeans and each one may be accessed multiple times at nay
given time thus the pool is responsible for maintaining only
one connection to each target and forwarding all requests
through it. Considering that the requests are normally very
small (in size) this is important to minimize resources used
by JMX connections and thus the impact on managed tar-
gets and the overall overhead of Serpentine.

The Connection Layer must also behave properly when
the managed target is unavailable either due to a network
problem, because the service was explicitly turned off or for
some other reason. This is accomplished by checking the
connection(s) as soon as a script is run and flagging an in-
ternal variable as appropriate. The script can check this
variable and decide either to continue its execution or to
stop (until the next execution). This of course does not pre-
vent the case in which a connection failure occurs after the
aforementioned check is done, thus bullet-proof scripts must
always check the return values of its invocations because this
layer will always return something to the upper one, either
a value gathered from the MBean or a default value for that
invocation (normally null).

With that approach the details and state of the connec-
tion are completely hidden from the Management Layer (and
from the scripts) allowing it to assume that the monitored
service is always up and running.

2.3 Management Layer
The Management Layer defines policies by loading and

running user configuration scripts. Each script in Serpen-
tine is a unique, self-contained entity that will define poli-
cies to manage/monitor an arbitrary number of MBeans.
Serpentine will export an MBean for each running script
with arbitrary operations and attributes, thus further ex-
panding applicability scenarios.

2.3.1 Loading the scripts
Each script is treated individually by Serpentine and

so each one must specify a set of properties that will allow
Serpentine to properly handle them. Those properties
are currently:

• the address(es) of the machine(s) to connect to;

• the JMX URL of the MBeans to manage in the above
machines;

• the amount of time that will elapse before the script
is re-executed.

and must be specified in every script in the form of a com-
mentary on the scripting language being used. With this
metadata Serpentine will create the connection(s) to the
desired machine(s) (if possible), inject the MBean(s) into
the script environment and schedule it for execution appro-
priately. Additionally two more objects are injected into
the script, one is the dynamic MBean used to store arbi-
trary operations and attributes, the other is a simple object
containing helper methods to use within the script. More
details on the metadata can be found in Section 3 and in
particular in Figure 3.

After this preliminary step the script is pre-compiled, if
supported by the script engine implementation, and stored
internally by the script engine thus avoiding to reparse it

A
u
th
or
’s
m
an

u
sc
ri
p
t,
p
u
b
li
sh
ed

in
S
y
m
p
os
iu
m

on
A
p
p
li
ed

C
om

p
u
ti
n
g,

20
08

before each execution and allowing for faster execution due
to the fact that it is stored as Java classes or scripting lan-
guage opcodes depending on the underlying implementation
of the scripting engine.

Although the scripts may run many times during the en-
tire life-cycle of Serpentine this step in only done once.
All the information collected here is kept internally by Ser-
pentine permitting a substantial increase in performance.

2.3.2 Running the scripts
After the script is properly set up it is time to run it. By

default any loaded script will run forever (assuming that it
is syntactical correct) unless explicitly killed by the admin-
istrator.

As said before, Serpentine supports multiple scripts run-
ning at any given time. To avoid conflicts between scripts
each one will run in a unique thread. Because the scripts will
run periodically and that period would normally be much
longer that their running time, Serpentine will try to op-
timize resources by avoiding to run more than one script at
a time.

2.3.3 Exported MBean and Cascading
Each script can store key/value pairs that will be auto-

matically available as attributes along with its getter and
setter methods in a JMX MBean. The exported operations
will also be seen as standard JMX invocations by other com-
ponents thus providing all the features needed to have an hi-
erarchical cascading setup. It is interesting to note that the
operation is defined in the script and will be called transpar-
ently from within the script when invoked in the exported
MBean.

With this capabilities Serpentine can act as an aggrega-
tor, collecting information from various systems and resum-
ing it in its exported MBean. Additionally it could export
some operations to control the state of those systems but
with the benefit of hiding how this control is enforced in the
local scope. Thus it is possible to hide complex systems with
complex policies under an instance of Serpentine that only
presents to the outer world a few methods and attributes
achieving true hierarchization capabilities.

2.4 Life-cycle Tools
The OSGi Service Platform [18] specification is an open,

reference architecture to deploy, manage and deliver services
in a coordinated and transparent manner. Its framework
provides a general-purpose Java environment that supports
the deployment of extensible and downloadable applications
known as bundles. An OSGi-compliant implementation is
capable of managing the bundles and its dependencies and
control their life-cycle.

Serpentine builds on OSGi for two different purposes.
First, it is able to run as an OSGi bundle and can thus be
deployed remotely and in a fully automated fashion. Sec-
ond, by using a JMX interface to the Apache Felix OSGi
runtime, it can deploy and control arbitrary system com-
ponents packaged as bundles, i.e. by user scripts and in
reaction to monitoring events. That allows services to be
started, stopped, installed and uninstalled at user demand
or, with the adequate policies, according to the environment.

3. CASE STUDY
This section considers a realistic scenario to illustrate our

system and its capabilities. Serpentine has been used suc-
cessfully within the GORDA project [10], to monitor and
control a cluster of replicated databases.

Roughly speaking, the GORDA project fosters database
replication as a means to address the challenges of integra-
tion, performance and cost in current database systems un-
derlying the information society. To achieve such goals, it
proposes to standardize an architecture, a set of interfaces
and sparks their usage.

This architecture has four main components: a load bal-
ancer, an augmented database with reflective interfaces [7],
a replication engine [4] named ESCADA and a distributed
management service.

The load balancer is responsible for spreading clients among
replicas. ESCADA is a replication engine that uses group-
based protocols [16]. Besides, it is also a JMX-enabled appli-
cation and exports, among other things, database statistics
that are used to achieve decisions on the life-cycle of the
cluster based on desired policies as we shall explain.

The resulting distributed is then managed by Serpen-
tine. In particular, it controls the life-cycle of all compo-
nents by installing, upgrading, starting, stopping and paus-
ing them when requested.

3.1 Scenario description
In this scenario, we have four machines each one with

Apache Felix, ESCADA, and a database (e.g. PostgreSQL-
G [2], Derby-G [1]), constituting a replica. Then we want by
means of Serpentine to enforce the following policies:

• at least two replicas are running;

• if one or more replicas are overloaded then start a new
replica (database);

• if one or more replicas are idle then stop them.

Additionally, Serpentine must also export an aggregated
set of statistics about the replicas in order to be pretty-
printed by another component used in-house: an adapted
version of JManage [3]. In this case, these results are a sim-
ple arithmetic mean.

The life-cycle of the ESCADA engine is controlled using
the start and stop operations of the Felix JMX enabled
shell. All the handling of the replicas is of exclusive respon-
sibility of the ESCADA engine and thus Serpentine does
not need to have concerns about recovery and consistency
when invoking the aforementioned operations.

When the ESCADA is up and running, Serpentine starts
gathering statistics periodically and adapting the overall
system taking into account the state of each replica. The
scripting language chosen was in this case JavaScript.

The first step is to write the metadata as stated in Sec-
tion 2.3.1. A small snippet of the metadata for this scenario
is shown in Figure 3.

The first line instructs Serpentine to establish a connec-
tion with the specified machines (i.e. replica). The next one
indicates that the MBean TabUI:name=jmxshell exported
by the machine s1 defined in the first line will be accessible
from the script as an object named shell1. The last line
indicates that the script will run every 60 second. The other
machines and MBeans should be specified in the same way
but we will left that out to save space.

A
u
th
or
’s
m
an

u
sc
ri
p
t,
p
u
b
li
sh
ed

in
S
y
m
p
os
iu
m

on
A
p
p
li
ed

C
om

p
u
ti
n
g,

20
08

Figure 2: GORDA architecture overview.

//Machine 192.168.180.81:1100/coreShell s1

//MBean TabUI:name=jmxshell s1 shell1

//Period 60000

Figure 3: Script metadata.

The next step is to write the management logic necessary
to enforce the desired policies. This is accomplished by de-
termining the global state of the system and then adapting
its components (replicas) accordingly.

The global state is determined by traversing all the ma-
chines and adjusting some variables that reflect the running
system as a whole These variables are show in Figure 4.

Each variable represents a property of the overall system
and the machineState variable, in particular, represents the
state of each replica that can take one of the following values:

• 0 when the machine is disconnected/unreachable,

• 1 when the machine is in its normal state,

• 2 when the machine is idle,

• 3 when the machine is overloaded.

The other variable worth mentioning is machinesToStart

and represents the number of machines Serpentine must
(try to) start/stop in order to enforce the policy. Next we
write the script logic to which the system must abide.

In Figure 5 is the portion of code responsible for building
the overview of the system by consulting each machine and
defining its state according to the values aforementioned.
This is done in the getStatus() function by checking the
connection status and getting the relevant attributes if con-
nected. Additional checks are done to ensure the integrity
of the read values by using the getValue() function and
rechecking the state when exiting. Some low level func-
tions like attachEscada() or getValue() are omitted be-
cause they are not relevant for the presentation of our case
study.

After having a global overview of the system it is very sim-
ple to enforce the desired policies by calling the adequate ac-
tions on a per machine basis attending to the global state of
the system. As seen in Figure 6 each machine state is tested

maxConnsPerReplica = 20;

machinesAvailable = 4;

var machinesToStart = 0, machinesUp = 0, machinesIdle = 0;

var totStarted = 0, totError = 0, totSuccess = 0;

var machineState = new Array(machinesAvailable);

Figure 4: Global variables.

//gets the state of a replica and adjust the global

//variables as appropriate

function getStatus(index){

var sensor = attachEscada(index);

if (sensor == null) return ;

if (sensor.connected()) {

//get statistics from the database

totStarted += getValue(sensor.getAttrib("StartedMessages"));

totError += getValue(sensor.getAttrib("ErrorMessages"));

totSuccess += getValue(sensor.getAttrib("SuccessfulMessages"));

machineState[index] = getState(sensor.getAttrib("Connections"));

//this condition is to prevent errors in the situation that

//the machine may be disconnected while executing this function

if (machineState > 0) {

machinesUp++;

}

}

else { machineState[index] = 0; }

}

//sets overview of system by consulting each machine

for(i = 0; i < 4 ; i++) {

getStatus(i);

}

Figure 5: Building the overview of the system.

against the global state and if appropriate it is stopped or
started.

Finally, in Figure 7, the gathered statistics are resumed
using simple arithmetic mean for each relevant value and
stored into the exported MBean for use by JManage.

Although some details have been suppressed due to lack
of space, this case study demonstrates the usage of Ser-
pentine in real environment. As expected this approach
simplifies and reduces the management concerns and efforts
needed to keep the running system healthy just by writing
a simple management script.

4. RELATED WORK
The automated management of configuration parameters

using a JMX interface and scripts has been already pro-
posed [9] by adding scripting to the standard interactive
JMX console, the jconsole. Such simplistic approaches fail
however to cope with complex large-scale systems, as they
do not control the life-cycle of system components and are
restricted to a single managed component at each specific
time. They are also strictly client approaches, thus preclud-
ing complex cascaded deployments.

The JADE system [5] is also able to control component
life-cycle by building on an Fractal component model run-
time [6].The architecture however is less flexible than Ser-
pentine’s, since it requires a stateful central server which
cannot be restarted or even temporarily disconnected. This
has a major impact in the availability of the service. Fur-
thermore, diagnostics and actions are performed using a
custom protocol, thus reducing its applicability. Finally,
adaptation rules are not scriptable and thus more hardly
changeable by end-users.

Serpentine abstracts policies using an action-policy ap-
proach. Action-policies are defined in a way that specifies
which actions to take in a given state typically using a if-
then clause. In a more abstract level are goal-policies that

A
u
th
or
’s
m
an

u
sc
ri
p
t,
p
u
b
li
sh
ed

in
S
y
m
p
os
iu
m

on
A
p
p
li
ed

C
om

p
u
ti
n
g,

20
08

//start or stops machines as needed

for(i = 0; i < 4 ; i++) {

if (machinesToStart > 0) {

//machine is down and no machines are idle

if ((machineState[i] == 0) && (machinesIdle == 0)) {

start(i);

}

}

//guarantee that at least two machines are left running

if ((machinesToStart < 0) && (machinesUp >=2)) {

//machine is idle and isn’t needed

if (machineState[i] == 2) {

stop(i);

}

}

}

Figure 6: Enforcing of the required policies.

//calculate overall system statistics based on gathered data

var startMean = 0, errorMean = 0, successMean = 0;

if (machinesUp > 0) {

startMean = totStarted / machinesUp;

errorMean = totError / machinesUp;

successMean = totSuccess / machinesUp;

}

//retrieve the hashtable from the exported MBean

table = state.getAttrib("table");

//update it

table.put("startMessages",startMean);

table.put("errorMessages",errorMean);

table.put("successMessages",successMean);

//and send it to the Mbean

state.setAttrib("table",table);

Figure 7: Computing and exporting summary statis-
tics.

by observing the running system and with a set of high-level
goals can infer the actions to take to achieve those goals,[8].
This has not been considered in Serpentine yet, which so
far has emphasized the architectural aspects, interoperabil-
ity, and configuration by end-users in a familiar scripting
language.

5. CONCLUSIONS
In this paper we have proposed a simple architecture for

adaptive management middleware. This architecture builds
on the standard JMX interfaces that are already available in
a large number of middleware and application components
making it easily deployable on virtually any Java system.
Adaptation is done through established control techniques
and its rules defined using a variety of well known scripting
languages thus minimizing the learning curve. Finally, it
uses a JMX-enabled but otherwise standard OSGi runtime
to manage component life-cycle. Serpentine is stateless,
it’s meant to be used without any redundancy concerns as
its recovery, in case of failure, is almost instantaneous. It
does not therefore hinder the dependability of the managed
system.

Finally, the Serpentine middleware is here illustrated us-
ing a real example in the context of the GORDA[10] project.

6. REFERENCES
[1] Implementation of the gorda interface in apache derby.

http://gorda.di.uminho.pt/community/derbyg/.

[2] Implementation of the gorda interface in postgresql.
http://gorda.di.uminho.pt/community/pgsqlg/.

[3] JManage: Open source application management.
http://jmanage.org.

[4] ESCADA Replication Server.
http://sourceforge.net/projects/escada/, 2007.

[5] S. Bouchenak, N. D. Palma, D. Hagimont,
S. Krakowiak, and C. Taton. Autonomic management
of internet services: Experience with self-optimization.
In Third International Conference on Autonomic
Computing (ICAC 2006), 2006.

[6] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani. The FRACTAL component model
and its support in java. Software Practice and
Experience, 36(11-12):1257–1284, 2006.

[7] N. Carvalho, A. C. Jr., J. Pereira, L. Rodrigues,
R. Oliveira, and S. Guedes. On the use of a reflective
architecture to augment Database Management
Systems. In Journal of Universal Computer Science,
2007.

[8] Y. Diao, J. Hellerstein, S. Parekh, and J. Bigus.
Managing web server performance with AutoTune
agents. IBM Systems Journal, 42(1):136–149, 2003.

[9] D. Fuchs. A BeanShell plugin for JConsole, 2006.

[10] GORDA Consortium. GORDA: Open Replication of
Databases. http://gorda.di.uminho.pt/, Oct. 2004.

[11] M. Grogan. Scripting for the Java Platform. Technical
report, Java Community Process (JSR-223), 2006.

[12] C. Karamanolis, M. Karlsson, and X. Zhu. Designing
controllable computer systems. In HOTOS’05:
Proceedings of the 10th conference on Hot Topics in
Operating Systems, pages 9–9, Berkeley, CA, USA,
2005. USENIX Association.

[13] J. Kephart and D. Chess. The Vision of Autonomic
Computing. IEEE Computer, 36:41–50, 2003.

[14] E. McManus. Java Management Extensions. Technical
report, Java Community Process (JSR-003), 2006.

[15] E. McManus. Web Services Connector for Java
Management Extensions Agents. Technical report,
Java Community Process (JSR-262), 2007.

[16] F. Pedone, R. Guerraoui, and A. Schiper. The
Database State Machine Approach. In Journal of
Distributed and Parallel Databases and Technology,
2003.

[17] Sun Microsystems. Java dynamic management kit.
http://java.sun.com/products/jdmk/index.jsp, 2007.

[18] The OSGi Alliance. OSGi service platform — core
specification.
http://osgi.org/osgi technology/download specs.asp,
Aug. 2005. Release 4.

