
A
u
th
or
’s
m
an

u
sc
ri
p
t,
p
u
b
li
sh
ed

in
W
or
k
sh
op

on
M
id
d
le
w
ar
e
fo
r
S
er
v
ic
e
O
ri
en
te
d
C
om

p
u
ti
n
g,

20
08

Dependable Distributed OSGi Environment

Miguel Matos
Universidade do Minho

mm@lsd.di.uminho.pt

António Sousa
Universidade do Minho
als@di.uminho.pt

ABSTRACT
As the concept of Service Oriented Computing matures the
need for well defined architectures and protocols to address
this trend is essential if IT is going to properly embrace SOC.
The SOC paradigm has several requirements to work prop-
erly such as service composition and cooperation in a loosely
coupled fashion, ability to adapt autonomously to environ-
mental and business changes and address concerns such as
modularity, dynamicity and proper integration between ser-
vices. The popularization of the OSGi platform its another
effort towards the SOC paradigm by issuing key aspects such
as modularity and dynamicity in its service oriented design.
However there is much room for improvement namely on
the creation of architectures and mechanisms to improve
the dependability of the overall solution by strengthening
key properties such as the availability, reliability, integrity,
safety and maintainability of the platform.

In this work we propose a middleware layer that offers
the strong modular and dynamic properties required in an
SOC environment by relying on OSGi while addressing de-
pendability concerns. The starting point to achieve this
is by instrumenting an OSGi implementation and provid-
ing means to monitor and manage it accordingly to busi-
ness and environmental requirements. By relying on group
communication facilities and some properties from the OSGi
specification we are able to migrate OSGi environments be-
tween nodes thus minimizing service delivery disruption in
the presence of faults and addressing, at the same time SLA
properties by migrating (or shutting down) services that are
consuming more resources than agreed/expected.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
D.2.11 [Software Architectures]: Domain-specific archi-
tectures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4SOC ’08, December 1, 2008, Leuven, Belgium
Copyright 2008 ACM 978-1-60558-368-6/08/12 ...$5.00.

Keywords
SOC, OSGi, Virtualization, JAVA

1. INTRODUCTION
Service Oriented Computing is gaining momentum both

in the academic and industrial worlds as can been seen from
initiatives such as Amazon Web Services [2], and the pop-
ularity of OSGi platforms [13]. In SOC the customer buys
a given service from the provider based on a Service Level
Agreement that states the available resources and guaran-
tees such as the persistence of the data stored, the depend-
ability of the service and so on.

From the service provider point of view a major issue is
strong isolation between customers and optimization of re-
sources. The isolation has to be enforced at the data domain,
that is the data of a given customer should only be accessed
by itself, and also at the performance domain, the delivered
service should not be constrained by the work being done by
other customers. The way to achieve this has been through
sand-boxing each customer in its own environment giving
it the sense that he is the only one accessing the resources
and/or services provided. This concept of virtualization is
now strongly pervasive in most IT infrastructures as systems
have to deal with many customers/users accessing the same
physical resources. This solution offers proper data isolation
as no customer/user is aware of others presence and also per-
formance isolation by allocating proper physical resources to
the virtual machines of each customer/user.

On the other hand the OSGi [13] platform is becoming
very popular and counts several independent implementa-
tions such as Apache Felix [10], Eclipse Equinox [11], and
Knopflerfish [12]. OSGi is a specification developed by ma-
jor players on the IT field initially focused on solutions for
embedded devices having a lightweight and well defined ar-
chitecture. It consists of a service oriented architecture and
its motto is ”Dynamic Module System for the JAVA Plat-
form”.

It is modular because it is designed to split a system in
partitions with well defined functionality and behavior that
can be seen as a black box that provides a given set of func-
tionalities through a well known API. This individual mod-
ules are called bundles in the OSGi terminology. By relying
on already existing components and combining them, the
effort of building a system is leveraged and due to its black
box properties adding new functionality to an existing sys-
tem could be achieved by adding a new bundle (or changing
an existing one) without disrupting the production environ-
ment.

A
u
th
or
’s
m
an

u
sc
ri
p
t,
p
u
b
li
sh
ed

in
W
or
k
sh
op

on
M
id
d
le
w
ar
e
fo
r
S
er
v
ic
e
O
ri
en
te
d
C
om

p
u
ti
n
g,

20
08

This leads us to the other key feature of OSGi: its dynamic
properties. This characteristic allows bundles to be started,
stopped, installed, uninstalled and updated in run-time with
all the low level details of those operations addressed by
the platform. This flexibility allows the architect to build a
system in a plugin-like approach where parts of the system
may be started and stopped on demand.

By relying on the service oriented principles of the OSGi
platform as a starting point we intend to instrument it to
have the notion of ’different’ customers with different service
requirements while guarantying isolation between them. To
achieve this we need an Instance Manage capable of control-
ing their life-cycle and enforce the different types of isola-
tion needed. To address SLA concerns we need a Monitoring
Module that is able to infer the state of the platform and of
each one of the customers. With that knowledge and based
on business policies the Autonomic Module shall be able to
enforce the SLA by taking adequate actions such as stopping
a bad behaved customer or migrating it to another node.
This is indeed the major novelty of this work, the ability to
migrate customers between physical nodes. The advantages
of this approach are twofold: we are able to better respond
to resource shortage on a given node by migrating the cus-
tomer to a suitable node and we can cope with node failures
by deploying the customer on an available node.

To summarize the goals of this work are the following:

1. Extend the OSGi Platform to be able to safely run
multiple customers;

2. Ability to migrate customers between nodes;

3. Ability to measure resource usage of each customer;

4. Ability to enforce SLA requirements based on business
policies.

The rest of the paper is organized as follows: in Section 2
we explain the instrumentation of the platform to support
multiple customers; in the next Section 3 we present the dif-
ferent modules that address the remaining goals and finally
we conclude on Section 4.

2. ARCHITECTURE
To accomplish the first goal, i.e, to be able to safely run

multiple costumers on the same platform we need to provide
isolation guarantees between each one of the customers and
mechanisms to dynamically start and stop them to provision
business needs. One way to accomplish this is to have one
OSGi environment instance per customer and some kind of
manager that is able to control all the OSGi instances avail-
able as we can observe in Figure 1.

Here we are just running multiple OSGi instances, each
one on its own JVM that are controlled by some kind of
external entity that we call the Instance Manager.With this
approach we clearly achieve: namespace isolation between
the customers as we are running them in separate JVMs;
filesystem isolation by using a correctly configured Securi-
tyManager, and probably performance isolation depending
on the capabilities of the underlying Operating System and
hardware. However this solution introduces much overhead
because we are running multiple JVMs and it also difficults
the task of managing the instances as we don’t have a ’di-
rect’ method of accessing each one of them, we must rely on

OS

Instance
Manager

JVM ? JVM

OSGi

JVM

OSGi

Bundle I Bundle II

Figure 1: Running multiple OSGi instances on dif-
ferent JVMs.

JVM

Instance
Manager

OSGi OSGi

Bundle I Bundle II

OS

Figure 2: Running multiple OSGi instances on the
same JVM.

communication methods like RMI, JMX, or TCP/IP con-
nections further increasing the overhead and complexity of
the solution.

It is possible to address most of these issues by bring all
those instances under the same JVM as we can see in Fig-
ure 2. The overhead of multiple JVMs is gone and the man-
agement of the instances becomes simpler as we can easily
start and stop embedded OSGi instances and maintain a
simple data structure such as a Map to know about the ex-
isting instances and invoke operations on them.

However as we want this platform to be dynamic and mod-
ular and we are already using OSGi for those properties it
makes sense to pull up the Instance Manager into the archi-
tecture stack and put it inside an OSGi environment. It is
possible to observe this in Figure 3.

While this could be seen as a bloated design it is important
to stress that it abides by the modularity and dynamic prin-
ciples of OSGi and the Instance Manager could be seen as yet
another bundle in the system. However the major advantage
of this design lies in another interesting feature. By stacking
OSGi instances on top of another OSGi environment we are
able to make those instances ’communicate’ with the un-
derlying OSGi environment. In this setting, communicate
means using services and packages provided by bundles run-
ning in the underlying OSGi environment. This design gives
us the concept of virtual OSGI instances that are crafted to
appear as normal OSGi environments to its client bundles
but are able to use services provided by the underlying OSGi
environment as it is possible to see in Figure 4.

If we compare Figures 3 and 4 it shall be possible to watch
this concept in action. Supposing that the bundle named

A
u
th
or
’s
m
an

u
sc
ri
p
t,
p
u
b
li
sh
ed

in
W
or
k
sh
op

on
M
id
d
le
w
ar
e
fo
r
S
er
v
ic
e
O
ri
en
te
d
C
om

p
u
ti
n
g,

20
08

OSGi

Instance Manager

VOSGi

Bundle
II

JVM

OS

Bundle I

Bundle
III

VOSGi

Bundle
II

Bundle
III

Figure 3: Running multiple OSGi instances inside
an OSGi environment.

OSGi

Instance Manager

VOSGi

JVM

OS

Bundle
I

Bundle
II

Bundle
III

VOSGi

Bundle
III

Figure 4: Multiple virtual OSGi instances using ser-
vices from the underlying OSGi platform.

”Bundle III” depends on the bundle named ”Bundle II” we
could on the latter design pull down ”Bundle II” to the un-
derlying OSGi environment and make the instances of ”Bun-
dle III” running in the virtual instances use it in a transpar-
ent way. By using this technique it becomes possible to
have only one instance of ”Bundle II” whose services will be
used by all the required bundles, either they are running
on the same OSGi environment or in a virtualized one and,
therefore leverage the management effort and optimize the
resource usage of the platform.

Another important advantage is that this allows us to
create virtual instances tailored to specific scenarios that
nonetheless use services provided by the underlying OSGi
framework. This is clearly a service oriented design as the
customer (the user of the virtual instance) asks for a set of
services and they are provisioned transparently by the un-
derlying OSGi administrator freeing the customer to worry
about details of that provisioning. General services, such as
the log service, are well suited to be run in such a fashion.

On the technical side this is handled by passing references
of the classloader of the underlying OSGi framework to the
virtual instances that are in this way allowed to use the
services and packages of the underlying framework. The po-
tential leak of references among classloaders is prevented by

the implementation of the framework (Apache Felix in this
case) by carefully checking accesses to the exported classes.

In our implementation the services and packages to be
exported to the virtual instances need to be explicitly indi-
cated. This information is then used in a custom classloader
that can be seen as the topmost classloader in the class-
loader’s hierarchy of the virtual instance. When searching
for a given class the virtual instance undergoes the normal
lookup process and if this fails it checks the custom class-
loader. This classloader will then verify if the requested class
has been explicitly exported, and if that holds true the re-
quest is passed to the underlying framework. By carefully
instrumenting this feature and using an analogous approach
to the services we ensure the safety of the solution i.e. no
namespace and service references can be accessed without
the explicit instruction of the administrator while provid-
ing a significant advantage in the management and resource
usage of the whole platform.

To address isolation at the filesystem and network lev-
els we rely on the SecuriryManager provided by the JAVA
platform that should be configured by the administrator ac-
cording to the business policies.

The key concepts of this architecture have been proposed
before [7], to address isolation between different providers of
digital services services to home that need to share the same
box. Here we use barely the same architecture but apply
those concepts in another environment and go further by
offering mechanisms to improve the scalability and reliability
of the solution.

3. CORE SERVICES
With the base architecture defined, we will describe in this

section the modules that provide the services necessary to
satisfy the other requirements such as the ability to enforce
business policies, migrate and monitor OSGi instances.

Each service will be provided by a different module, an
OSGi bundle, decoupled from the base architecture because
it shall be possible to turn it on and off accordingly to the
business needs. It is clear that some modules will need sup-
port from the above architecture to operate properly, namely
with the Instance Manager, but it is a good design principle
to separate this application logic from the core architecture
keeping the platform as modular as possible.

In the rest of the section we describe each one of the mod-
ules and how they are instrumented to provide the required
services.

3.1 Monitoring Module
The Monitoring Module shall be able to monitor the re-

source usage of each one of the running virtual instances and
infer the overall resource availability, either in a dynamic
way by inspecting directly the underlying operating system
or by using some predefined values set up by the adminis-
trator. In this context the essential resources to monitor are
memory usage, CPU time and possibly disk usage.

This is the least mature part of all the work developed as
there are no adequate mechanisms to measure and monitor
resource usage in the actual JVM specification [4]. This is
particular true for the memory usage as the JVM only pro-
vides means to access the overall memory usage of the entire
platform through MemoryMXBean objects. For the CPU usage
it is possible to obtain a rough measure of that value on a
per thread basis using the ThreadMxBean object. Combining

A
u
th
or
’s
m
an

u
sc
ri
p
t,
p
u
b
li
sh
ed

in
W
or
k
sh
op

on
M
id
d
le
w
ar
e
fo
r
S
er
v
ic
e
O
ri
en
te
d
C
om

p
u
ti
n
g,

20
08

this with ThreadGroup objects that allow to control several
threads at the same time we are able to measure the CPU
usage of a set of threads. In [15] the author combines that
with Aspected Oriented principles to instrument the client
bundles in a way that is possible to infer its CPU time con-
sumption.

This solution is far from optimal as it requires an offline
pre-processing of the bundle and leaves memory measure-
ment outside the metrics. However, there is a proposed Java
Specification Request 284: Resource Consumption API [4]
that will address all the issues faced by providing a com-
mon framework to measure and manage resource usage in
the JVM.

From the specification page: Software systems in many
circumstances need awareness of their resource usage. Meet-
ing performance requirements often requires the ability to
manage consumption of resources provided by the environ-
ment. Resource management is traditionally handled by op-
erating systems, but the growing need to use the Java plat-
form in the systems programming domain adds increased
pressure to equip it with resource management capabilities at
a level of abstraction that fits gracefully with the language.

This JSR will clearly fill the gap that we pointed above by
bringing awareness of resource usage to the JVM. The final
draft has been in the workings for almost a year (August,
2007) and we are waiting for a reference implementation to
start going on through this path.

3.2 Migration Module
This is the module that will be responsible to migrate the

virtual instances from one node to another either instructed
directly by the administrator or by the Autonomic Module.

This is the most challenging part of the overall design as
several issues need to be addressed namely the following:

1. Knowledge of the available nodes and its resources;

2. Node failures.

3. State migration of the virtual instances.

4. Virtual instances services localization;

To address most of these issues in a dependable way we
clearly need a group communication system (GCS) such as
jGCS [3] as we have to have knowledge of the available nodes
without relying on a centralized authority whatsoever.

Using a GCS and more particularly its membership service
we have for free the knowledge of all the available nodes, and
by exchanging messages with information about the virtual
instances running on each node, we reliably address issue
number 1.

When a notification about group membership changes is
delivered this means that a node entered/leaved the group.
In the former case there is nothing for this module to care
about. Of course a global policy of balancing virtual in-
stances among available nodes could be implemented but
this shall be a concern of the Autonomic Module. In the
case that a node leaves the system, this could be for two rea-
sons: due to a ’normal’ expected shutdown or due to a node
failure. If it is due to a normal shutdown process, the Migra-
tion Module of that node migrates the virtual instances that
need to continue providing the service to available nodes and
the platform is shutdown. In the case of a node failure the
Migration Module (of the remaining nodes) should use the

knowledge about that node to redeploy the virtual instances
among the available nodes in a decentralized way. The deci-
sion of where to redeploy the virtual instance shall take into
account its resource requirements and the resources available
on the destination node but these details will be handled by
means of policies in the Autonomic Module. Instrumenting
processes in this way we address concern number 2, about
node failures and achieve graceful degradation in a overall
setting. As we migrate instances of failed nodes to available
nodes we continue to guarantee the delivery of the services
provided by those instances despite a possible degradation of
service due to resource constraints on the remaining nodes.
The point to ’how much to degrade’, for example by refus-
ing to accept more virtual instances past a given threshold
or just swap or stop virtual instances to accommodate one
with higher priority shall also be defined through business
policies and therefore addressed by the Autonomic Module.

To address issue 3 is important to stress some points. We
assume a underlying SAN1 or distributed filesystem to en-
sure that data written by each node is accessible globally.
This is mainly to focus on the problem we are trying to solve
as replication of data at this low level is a research topic for
itself. The other important point is that the OSGi [13] speci-
fication enforces that the framework state shall be persistent
across framework reboots. Here state means the information
associated with the life-cycle of the bundles in the frame-
work, namely which ones are installed and its running state
(started, stopped, etc).

Combining the above we are able to transparently and
quickly redeploy any virtual instance because the state of the
framework is made persistent per the OSGi specification and
available network-wide by the assumption made about the
underlying storage mechanisms. The cost of this operation
is therefore comparable to a normal startup of the platform,
probably less, as we already have the basic services deployed
on the underlying framework.

However we still need to address the state transfer of
the bundles running inside the virtual instances because the
specification only address the state persistence of the frame-
work, not the state of the bundles running inside it.

Traditionally services (bundles in this case) could be ei-
ther stateless of stateful. In the former case there is no state
associated with the bundle and therefore (re)starting it on
the target instance is enough to ensure the continuation of
service delivery. In the later case we have the persistent
state accessible by the other nodes, as we assumed a SAN
mechanism, and the same procedure of (re)starting the bun-
dle on the target node could be applied. Additionally to the
persistent state stored on disk, we also need to address the
running state (context) of the bundle such as stack frames,
state of objects and threads and so on. In stateless ser-
vices, as each request contains all the necessary information
to be processed, it is common practice to resend the re-
quest until it is addressed and therefore the running context
of the bundle is not as important as in a stateful bundle.
In that case the running context is important to properly
handle subsequent (causal related) requests and it is closely
related to application semantics. If the application provides
transactional mechanisms then the client could be informed
about the outcome of the request (a typical example being
database systems) and therefore this case could be reduced

1Storage Area Network

A
u
th
or
’s
m
an

u
sc
ri
p
t,
p
u
b
li
sh
ed

in
W
or
k
sh
op

on
M
id
d
le
w
ar
e
fo
r
S
er
v
ic
e
O
ri
en
te
d
C
om

p
u
ti
n
g,

20
08 Service sC

IP addr ipC
port pC

Service SB
IP addr ipB

port pB

Service sA
IP addr ipA

port pA

Service sC
IP addr ipC

port pC

Service SB
IP addr ipB

port pB

Service sA
IP addr ipA

port pA

ipA ipB ipC

Service SE
IP addr ipE

port pE

Service sD
IP addr ipD

port pD

ipD ipE ipA

Service sA
IP addr ipA

port pA
node 1 node 2

Figure 5: Services with unique IP address and Com-
munication port.

to the stateless example as the request contains all the in-
formation to be processed without leaving the system in an
inconsistent state should the request fail. If those proper-
ties are not provided then the application should be able to
cope with and resolve inconsistencies, as there is no external
generic mechanism able to ensure this, as it is closely related
to the application semantics. In the future we intend to ad-
dress this by further instrumenting the platform to be able
to lively migrate the running context of the bundles as it
was been proposed in several approaches [14, 1, 8, 9].

With that ability we do believe that we can approach near
zero downtime of services by, for example, having the run-
ning context of the bundle replicated on other nodes and
doing instantaneous failover in case of node failures. Nat-
urally this approach has many issues to solve, namely the
costs and feasibility of strategies such as the pointed above
but the approach seems worth investigating in this scenario.

Each one of the virtual instances, and possibly some of
the services running in them, need to be accessed through
the network to be useful. An Internet available service is
characterized by its IP address and communication port.
Different services running at a single node cannot share the
same IP address and communication port, although one of
them might be shared.

Having an IP address per service although optimal may
be impractical, at least in IPv4, due to the lack of available
IP addresses. In such a scenario migrating a service from
a node to another one simply requires the node currently
holding the service to release the IP address, and the new
node to bind it to one of its network interfaces as depicted
in Figure 5.

The most common scenario would be one where several
services share a single IP address, having each one of them
a unique communication port. In this scenario, depicted in
Figure 6, migrating the IP address along with the service
may not be an option as the IP address may be in use by
other services. In such a scenario, it might be useful to
decouple the IP address from the service and use an external
service such as a fault tolerant IP virtual server (ipvs). The
ipvs will be responsible to ensure the availability of the IP
address to the Internet and redirect the service requests to
the node currently running the service. Notice that this
setting allows also to scale-up the services allowing multiple
instances of the service and use the ipvs as a load balancer.

Using one of the above strategies we address issue 4, of
service localization. It is also important to note that the IP
and Communication port could be attributed to a service

Service SE
IP addr ip3

port pE

node 2

Service sD
IP addr ip1

port pD

Ipn2

Service sA
IP addr ip1

port pA

Service sC
IP addr ipC

port pC

Service SB
IP addr ipB

port pB

Service sA
IP addr ipA

port pA

Service sC
IP addr ip2

port pC

Service SB
IP addr ip2

port pB

Service sA
IP addr ip1

port pA

ipn1

node 1

ip1 ip2 ip3

ipvs 1

ip1 ip2 ip3

ipvs 2

Service SE
IP addr ip3

port pE

Figure 6: Services with shared IP address and
unique Communication port.

provided by a bundle running inside a virtual instance or to
the instance itself depending on business needs. The former
case is useful for example to provide access to a web service,
where the later could be useful if the customer needs full
access to an OSGi platform. Additionally if the IP and
Communication port is associated with a virtual instance
we also must ensure that bundles running on that instance
could only bind to that IP address.

3.3 Autonomic Module
The Autonomic Module shall enforce the business policies

defined by the administrator. This may include stopping a
given virtual instance, giving it lower priority if it is consum-
ing more resources than agreed and swap it, if possible, to
a suitable node capable of properly address the instance re-
quirements while optimizing global resource usage. It is also
the responsibility of this module to take the proper measures
in the presence of faults to prevent service delivery disrup-
tion.

By using the Monitoring Module to build the view of
the system and the Migration Module to know about other
nodes (and eventual failures and restarts) the Autonomic
Module is able to enforce the business policies. For example
it is able to instrument the Migration Module to migrate a
given instance due to resource constraints or handle events
provided by the same module to address a node failure by
(re)deploying an instance that was running on the failed
node. In a local setting this module could be used to fine
tune a given instance or bundle by adjusting its parameters
accordingly to environmental and business changes.

This module relies on an existing framework, Serpentine [6],
which is an adaptive middleware for heterogeneous distributed
systems that is ready to run as an OSGi bundle. Although
with a simple architecture it provides interesting features
such as being stateless, having hierarchization capabilities

A
u
th
or
’s
m
an

u
sc
ri
p
t,
p
u
b
li
sh
ed

in
W
or
k
sh
op

on
M
id
d
le
w
ar
e
fo
r
S
er
v
ic
e
O
ri
en
te
d
C
om

p
u
ti
n
g,

20
08

and allowing the policies to be defined in a programmatic
approach by means of the Scripting for the Java Platform
[5]. The cascading capabilities allow instances of the module
to be composed on each other and therefore supporting dif-
ferent levels of control of the system by hiding unnecessary
or unwanted details on different hierarchies.

4. CONCLUSIONS
In this paper we proposed a software architecture capa-

ble of safely run multiple costumers in an OSGi environment
while addressing some dependability concerns. The safety of
the solution is achieved by sand-boxing each one of the cus-
tomers in its own virtual instance and therefore addressing
the different isolation concerns between them.

Nonetheless the proposed architecture aimed to be flexi-
ble to allow efficient and rational usage of resources. This
is achieved by allowing service composition between the vir-
tual instances and the underlying OSGi environment, thus
allowing it to have a single instance of base services that can
be used by each one of the virtual instances. We have also
achieved this goal using the migration module, which allows
to concentrate in a single node, several customers when they
are idle or requiring limited resources, and relocating them
in another node when they need more performance. Using
this approach we not only ensure better usage of the re-
sources available at each node, but also reduce power usage
by shutting down or hibernating nodes when they are not
needed. This can be regarded as a side effect of our imple-
mentation that, nonetheless, contributes to the reduction of
the green house effect.

Fault tolerance and scalability are also issues that must
be addressed in any SOC architecture. In our case, the pro-
posed architecture and services allow the quick recovery of
failed nodes, simply by restarting the services running in the
failed node in another(s) node(s). By using an ipvs infras-
tructure we are also able to cope easily with service migra-
tion and service scalability. We may start as many replicas
of the service as required and the ipvs infrastructure can,
to some extent, transparently perform load-balancing thus
scaling the service performance beyond the performance of
a single node.

Finally we were also able to enforce service level agree-
ments based on business policies. This allows the character-
ization of the situations where more resources are needed or
reduced, thus allowing for optimal resources usage. Allow-
ing each business to define its own SLA requirements is an
important feature as it improves the flexibility of the archi-
tecture not limiting its applicability to a single domain.

From an implementation point of view the work on the
base architecture is almost completed and we already tested
it by running multiple virtual instances that use services
from the underlying environment namely the log service, the
HTTP service and the JMX server service. The same holds
true for the Autonomic Module due to being an already
existing OSGi-enabled component. Work on the Monitor-
ing Module is stalled for technical limitations and we are
maturing the Migration Module to start testing the whole
platform. We also need to stabilize the communication in-
terfaces of each one of the components but this is happening
naturally as all the components fall in their place.

5. REFERENCES
[1] A. Acharya, M. Ranganathan, and J. Saltz. Sumatra:

a language for resource-aware mobile programs. In
Mobile Object Systems Towards the Programmable
Internet, pages 111–130. Springer-Verlag, 1997.

[2] Amazon. Amazon web services.
http://aws.amazon.com/, 1996-2008.

[3] N. Carvalho, J. Pereira, and L. Rodrigues. Towards a
generic group communication service. In On the Move
to Meaningful Internet Systems 2006: CoopIS, DOA,
GADA, and ODBASE, pages 1485–1502. Springer
Berlin / Heidelberg, 2006.

[4] G. Czajkowski. Resource consumption management
api. Technical report, Java Community Process
(JSR’284), 2007.

[5] M. Grogan. Scripting for the java platform. Technical
report, Java Community Process (JSR’223), 2006.

[6] M. Matos, A. Correia, J. Pereira, and R. Oliveira.
Serpentine: adaptive middleware for complex
heterogeneous distributed systems. In ACM
symposium on Applied computing, pages 2219–2223.
ACM, 2008.

[7] Y. Royon, S. Frénot, and F. L. Mouel. Virtualization
of service gateways in multi-provider environments. In
Component-Based Software Engineering, pages
385–392. SpringerLink, 2006.

[8] T. Sakamoto, T. Sekiguchi, and A. Yonezawa.
Bytecode transformation for portable thread
migration in java. In Second International Symposium
on Agent Systems and Applications and Fourth
International Symposium on Mobile Agents, pages
16–28. Springer-Verlag, 2000.

[9] B. Steensgaard and E. Jul. Object and native code
thread mobility among heterogeneous computers. In
ACM symposium on Operating Systems Principles,
pages 68–77. ACM, 1995.

[10] The Apache Software Foundation. Apache felix.
http://felix.apache.org/.

[11] The Eclipse Foundation. Equinox.
http://www.eclipse.org/equinox/.

[12] The Knopflerfish Project. Knopflerfish.
http://www.knopflerfish.org/.

[13] The OSGi Alliance. Osgi service platform.
http://osgi.org/osgi technology/download specs.asp,
Aug. 2005. Release 4.

[14] E. Truyen, B. Robben, B. Vanhaute, T. Coninx,
W. Joosen, and P. Verbaeten. Portable support for
transparent thread migration in java. In Second
International Symposium on Agent Systems and
Applications and Fourth International Symposium on
Mobile Agent, pages 29–43. Springer-Verlag, 2000.

[15] I. Yamasaki. Monitoring and managing resource usage
on osgi frameworks. In OSGi World Congress, 2005.

