
Lu��s Paulo Peixoto dos Santos

Application Level RunTime Load Management:

A Bayesian Approach

Tese submetida �a Escola de Engenharia da Universidade do Minho

para a obten�c~ao do grau de Doutor em Inform�atica

(�Area de Especializa�c~ao em Engenharia de Computadores)

Universidade do Minho

Escola de Engenharia

Departamento de Inform�atica

Braga | February, 2001

Lu��s Paulo Peixoto dos Santos

Application Level RunTime Load Management:

A Bayesian Approach

Tese submetida �a Escola de Engenharia da Universidade do Minho
para a obten�c~ao do grau de Doutor em Inform�atica,

�Area de Especializa�c~ao em Engenharia de Computadores

Disserta�c~ao realizada sob a orienta�c~ao do
Prof. Doutor Alberto Jos�e Gon�calves de Carvalho Proen�ca,
Professor Catedr�atico do Departamento de Inform�atica da

Escola de Engenharia da Universidade do Minho

Universidade do Minho

Escola de Engenharia

Departamento de Inform�atica

Braga | February, 2001

�E autorizada a reprodu�c~ao integral desta tese, apenas para efeitos de investiga�c~ao,

mediante declara�c~ao escrita do interessado, que a tal se compromete.

T��tulo: Application Level RunTime Load Management: A Bayesian Approach

Autor: Lu��s Paulo Peixoto dos Santos

Tese de Doutoramento em Inform�atica, Especialidade em Engenharia de Computadores,

Departamento de Inform�atica, Escola de Engenharia, Universidade do Minho

Candidatura a Doutoramento aceite pelo Conselho Cient���co da Escola de Engenharia da

Universidade do Minho em 08 de Fevereiro de 1995

Orientador: Alberto Jos�e Gon�calves de Carvalho Proen�ca

Conclus~ao: Fevereiro de 2001

c 2001

"Senhor,

posto que o capit~ao-mor desta vossa frota e assim os outros capit~aes es-

crevam a Vossa Alteza a nova do achamento desta vossa terra nova, que se ora

nesta navega�c~ao achou, n~ao deixarei tamb�em de dar disso minha conta a Vossa

Alteza, assim como em melhor puder, ainda que para o bem contar e falar o

saiba pior que todos fazer. Mas tome Vossa Alteza a minha ignorância por boa

vontade, a qual, bem certo, creia que por afremosentar nem afear haja aqui de

pôr mais do que aquilo que vi e me pareceu. Da marinhagem e singraduras do

caminho n~ao darei aqui conta a Vossa Alteza, [...]"

Carta do Achamento do Brasil

Pêro Vaz de Caminha

1 de Maio de 1500

i

ii

Acknowledgements1

A work such as a PhD thesis can not be done without the contribution of many persons

besides myself. Although I try, in the next few lines, to express my gratitude to all of

those that contributed to this thesis, I am certain that some will be forgotten; to these I

sincerely apologise.

First of all, I would like to thank Prof. Alberto Proen�ca, who supervised my research. His

suggestions de�nitely contributed to the �nal quality of this work, and his guidance was

invaluable in writing the thesis.

Many people at the Departamento de Inform�atica, Universidade do Minho, contributed to

this thesis, either in direct or indirect ways. I want to thank specially to my colleagues at

the Grupo de Engenharia de Computadores, namely, Eng. Jo~ao Lu��s Sobral, Prof. Jo~ao

Miguel Fernandes, Eng. Ant�onio Esteves and Prof. Ant�onio Pina, for their company and

countless fruitful discussions.

I must also thank my family, particularly, my mother, my father and my sister, who

believed in my ability to successfully complete this thesis and helped me with their love

and encouragement.

And last, but not the least, I want to thank Cristina, for being always there, even in the

most diÆcult moments. I have to apologise for the many hours and weekends I could not

pay her the attention she deserves.

Braga, February, 2001

1This work has been partially supported by The Funda�c~ao para a Ciência e Tecnologia, grant PRAXIS
XXI 2/2.1/TIT/1557/95.

iii

iv

Abstract

A�ordable parallel computing on distributed shared systems requires novel approaches to

manage the runtime load distribution, since current algorithms fall below expectations.

The eÆcient execution of irregular parallel applications, on dynamically shared computing

clusters, has an unpredictable dynamic behaviour, due both to the application require-

ments and to the available system's resources. This thesis addresses the explicit inclusion

of the uncertainty an application level scheduling agent has about the environment, on its

internal model of the world and on its decision making mechanism. Bayesian decision net-

works are introduced and a generic framework is proposed for application level scheduling,

where a probabilistic inference algorithm helps the scheduler to eÆciently make decisions

with improved predictions, based on available incomplete and aged measured data. An

application level performance model and associated metrics (performance, environment

and overheads) are proposed to obtain application and system behaviour estimates, to in-

clude in the scheduling agent's model and to help the evaluation. To verify that this novel

approach improves the overall application execution time and the scheduling eÆciency,

a parallel ray tracer was developed as a message passing irregular data parallel applica-

tion, and an execution model prototype was built to run on a seven time{shared nodes

computing cluster, with dynamically variable synthetic workloads. To assess the e�ec-

tiveness of the load management, the stochastic scheduler was evaluated rendering several

complex scenes, and compared with three reference scheduling strategies: a uniform work

distribution, a demand driven work allocation and a sensor based deterministic scheduling

strategy. The evaluation results show considerable performance improvements over blind

strategies, and stress the decision network based scheduler improvements over the sensor

based deterministic approach of identical complexity.

v

vi

Resumo

A computa�c~ao paralela em sistemas distribu��dos partilhados exige novas abordagens ao

problema da gest~ao da carga computacional, uma vez que os algoritmos existentes �cam

aqu�em das expectativas. A execu�c~ao e�ciente de aplica�c~oes paralelas irregulares em clus-

ters de computadores partilhados dinamicamente exibe um comportamento imprevis��vel,

devido �a variabilidade dos requisitos da aplica�c~ao e da disponibilidade dos recursos do sis-

tema. Esta tese investiga as vantagens de incluir explicitamente no modelo de execu�c~ao de

um escalonador ao n��vel da aplica�c~ao a incerteza que este tem sobre o estado do ambiente

em cada instante. Prop~oe{se um mecanismo de decis~ao baseado em redes de decis~ao de

Bayes, complementado por uma estrutura gen�erica para estas redes, vocacionada para o es-

calonamento ao n��vel da aplica�c~ao; a utiliza�c~ao de um algoritmo de inferência probabil��stica

permite ao escalonador tomar decis~oes mais e�cazes, baseadas em previs~oes estoc�asticas

das consequências destas decis~oes, geradas a partir de informa�c~ao incompleta e desactu-

alizada sobre o estado do ambiente. �E proposto um modelo de desempenho da aplica�c~ao

e respectivas m�etricas, que permite prever o comportamento da aplica�c~ao e do sistema

distribu��do; estas m�etricas s~ao utilizadas quer no mecanismo de decis~ao do escalonador,

quer para avaliar o desempenho do mesmo. Para veri�car se esta abordagem contribui

para melhorar o tempo de execu�c~ao das aplica�c~oes e a e�ciência do escalonador, foi de-

senvolvido um ray tracer paralelo, representativo de uma classe de aplica�c~oes baseada em

passagem de mensagens com paralelismo no dom��nio dos dados e comportamento irregular.

Este prot�otipo foi executado num cluster com sete nodos partilhados no tempo e submeti-

dos a v�arios padr~oes sint�eticos de cargas de trabalho dinâmicas. Para avaliar a e�c�acia da

gest~ao de carga proposta, o desempenho do escalonador estoc�astico foi comparado com três

escalonadores de referência: uma distribui�c~ao est�atica e uniforme da carga, uma estrat�egia

orientada ao pedido e uma pol��tica de escalonamento determin��stica baseada em sensores.

Os resultados obtidos demonstram que estrat�egias dinâmicas baseadas em sensores obtêm

grandes melhorias de desempenho sobre estrat�egias que n~ao usam informa�c~ao sobre o es-

tado do ambiente, e real�cam as vantagens do escalonador estoc�astico relativamente a um

escalonador determin��stico com um n��vel de complexidade equivalente.

vii

viii

Preface

A PhD thesis must be a rigorous and original work, which contributes to extend or clarify

the scienti�c knowledge on a given area. Hence, it is a scienti�c work and must adhere to

a set of recommendations proposed by the scienti�c method.

Knowledge can be de�ned as intellectual and internal models that man creates to repre-

sent reality. These models enable the classi�cation and organisation of the phenomenons

observed in Nature. Scienti�c knowledge distinguishes itself from other kinds of knowledge

by trying to classify these phenomenons based on explicative principles and by trying to

achieve two ideals: rationality and objectivity.

The rationality ideal requires that all scienti�c theories are coherent among themselves,

and do not contradict each others. This is referred to as the syntactic truth. The objec-

tivity ideal requires that scienti�c theories, as theoretic models representing reality, do so

with �delity and accuracy. This is referred to as the semantic truth. Objectivity requires

the possibility of experimentally testing all theories and hypothesis, as well as the possi-

bility of a critical and intersubjective assessment by the scienti�c community, as a defense

mechanism against the researcher subjective beliefs and expectations (pragmatic truth).

In order to produce scienti�c knowledge, the researcher must adhere to a set of recom-

mendations proposed by the scienti�c method. However, the scienti�c method is not a

set of magic and normative rules that guarantee that by applying them accurate and ab-

solute scienti�c knowledge is produced. In fact, if these rules were magic they could not

be referred to as scienti�c, and scienti�c knowledge is never absolute, rather it constantly

maintains its hypothetical nature, and must be revised whenever new data becomes avail-

able. The scienti�c method is a critical way of producing knowledge, consisting on the

formulation of well founded hypothesis, on the possibility of experimentally testing them

and on submitting the results to the assessment of the scienti�c community. The correct

scienti�c attitude is that which is critical of all results and established theories [4, 90]. The

scienti�c method consists on three phases:

Problem's identi�cation and delimitation | To begin its work, the researcher must

clearly identify and delimitate the problem being tackled. It must be expressed as an

interrogative statement, which questions the possible relations that may exist among

ix

at least two known variables. Hence, the problem's delimitation de�nes the limits

of the doubt, and contains in itself clues about the relations that may exist in its

answer. If the problem is not adequately delimitated, it may be impossible to tackle.

Hypothesis formulation | The hypothesis is formulated by the researcher as an un-

equivocal statement, free of ambiguities. The hypothesis is a proposal for the prob-

lem's solution, or explanation of the question being tackled, and depends on the

conjectures made by the researcher, given all the knowledge available. It serves as a

guide for all the experimental work.

Experimentation and results' analysis | After proposing possible and plausible an-

swers to the problem, the researcher must plan and carry out experimentations that

allow him to confront the hypothesis with real data. The experimentation submits

the hypothesis to a systematic and severe critique, in order to assess its correspon-

dence with facts | semantic truth. However, an hypothesis is an universal statement,

while an experimentation's result is a singular fact, or statement. It can not, there-

fore, conclusively prove that the hypothesis is true. It can only either conclusively

prove that it is false, or corroborate it. Hence, an hypothesis can either be rejected or

corroborated, but it can never be conclusively con�rmed in the positive sense. The

scienti�c knowledge always maintains its hypothetical nature.

These phases determined the structure of this thesis. Part I identi�es and delimitates the

problem being tackled, puts forward an hypothesis to solve this problem and presents the

knowledge and related work required to both understand the problem and formulate the

hypothesis. Part II presents the experimentations performed in order to either reject or

corroborate this hypothesis.

Unfortunately, I did not have such an understanding of the scienti�c method when this

work �rst started. Therefore, my working method did not always followed the most correct

path in the right order. It slowly converged to this systematic way of proceeding, as I was

learning how to carry out a scienti�c work. On the other hand, maybe this was not so

unfortunate. In fact, more than learning about scheduling, I can say that I learned about

the process of producing scienti�c knowledge.

Since there are no normative rules in the scienti�c method, the problem's identi�cation

and delimitation, the hypothesis's formulation and the experimentation planning require

a lot of imagination and motivation from the researcher. These requirements are better

satis�ed if the working environment promotes the discussion and exchange of ideas among

researchers. In the environment where this research took place, the discussion of ideas

and presentation of the researchers' work could be more actively pursued. There are no

organised discussion forums to debate ongoing research, which often leads to solitary work

that could otherwise be richer and more motivating.

x

Contents

1 Introduction 1

I Problem's Identi�cation and Hypothesis Formulation 5

2 Load Management: Research Goals 9

2.1 The Load Management Problem . 10

2.1.1 De�nition . 10

2.1.2 Objectives and Constraints . 12

2.2 Application Level Scheduling . 13

2.3 Static vs. Dynamic Policies . 15

2.4 Incompleteness of Information and Uncertainty 18

2.4.1 Handling Uncertain Knowledge . 20

2.4.2 Related Work . 21

2.5 Summary . 22

3 Load Management: Basic Concepts 25

3.1 Degree of Balancing . 26

3.2 Level of Complexity . 26

3.3 Static versus Dynamic Policies . 28

3.4 Deterministic versus Stochastic Strategies 31

3.5 Centralised versus Distributed Approaches 32

xi

3.6 Scheduling Policy Components . 34

3.6.1 Information Policy . 35

3.6.2 Transfer Policy . 38

3.6.3 Selection Policy . 39

3.6.4 Location Policy . 41

3.7 Load Management Evaluation . 41

3.7.1 Performance and EÆciency . 42

3.7.2 Cost Analysis . 43

3.7.3 Scalability . 45

3.7.4 Stability . 46

3.8 Summary . 48

4 Load Management: Algorithms 51

4.1 Classi�cation of Scheduling Algorithms . 52

4.1.1 Decision Base � Migration Space 52

4.1.2 Casavant's Taxonomy . 53

4.1.3 Families of Strategies . 54

4.1.4 Load, Action and Solution Model 56

4.1.5 The ESR Classi�cation Scheme . 57

4.1.6 Selection of a Classi�cation Scheme 59

4.2 Scheduling Policies . 61

4.2.1 Centralised Algorithms . 61

4.2.2 Nearest{Neighbour Algorithms . 62

4.2.3 Random Location Algorithm . 64

4.2.4 Probing and Bidding . 65

4.2.5 Flexible Load Sharing Algorithm 68

4.2.6 Distributed Clustering Algorithms 68

xii

4.2.7 Stochastic Learning Automata . 69

4.2.8 Physics Based Models . 70

4.2.9 Economy Based Models . 71

4.3 Distributed Job Management Systems . 72

4.4 Summary . 74

5 Handling Uncertainty 77

5.1 Notation . 78

5.2 Beliefs Expressed as Probabilities . 79

5.3 Probabilistic Models . 80

5.3.1 The Joint Distribution . 80

5.3.2 Local Structure and Conditional Independence 82

5.3.3 Causality . 85

5.4 Bayesian Networks . 85

5.4.1 Conditional Independence and d{separation 87

5.4.2 Probabilistic Inference . 88

5.4.3 Bayes' Rule . 89

5.4.4 Pearl's Probabilistic Inference Algorithm 90

5.4.5 Sensor Model . 91

5.5 Making Decisions . 92

5.5.1 Preferences and Utilities . 92

5.5.2 Decision Networks . 94

5.6 Knowledge Engineering . 95

5.6.1 Determine the Scope of the Problem 96

5.6.2 Identify Direct Dependencies . 96

5.6.3 Assign Probabilities . 96

5.6.4 Assign Utilities . 98

xiii

5.6.5 Model Re�nement and Sensitivity Analysis 98

5.7 Applying Decision Networks to a Dynamic Scheduler 99

5.7.1 Generic Structure . 99

5.7.2 The Decision Making Process . 104

5.8 Summary . 104

II Hypothesis' Veri�cation 107

6 Methodology 111

6.1 The Distributed System . 111

6.2 Selection of a Case Study . 113

6.3 The Problem's ESR Classi�cation . 115

6.4 Performance Modelling . 116

6.4.1 Performance Metrics . 116

6.4.2 Environment Metrics . 116

6.4.3 Scheduling Overhead Metrics . 117

6.5 Reference Scheduling Strategies . 120

6.5.1 Uniform Work Distribution . 121

6.5.2 Demand{Driven Work Allocation 122

6.5.3 Sensor Based Deterministic Strategy 122

6.5.4 Decision Network Based Strategy 124

6.6 Synthetic Background Workload . 125

6.7 Summary . 129

7 Ray Tracing: a Case Study 131

7.1 Ray Tracing Algorithm . 132

7.2 Illumination Model . 135

7.2.1 Local Illumination Model . 135

xiv

7.2.2 Global Illumination Model . 139

7.2.3 Ray Tracing Rendering Equation 140

7.3 Some Ray Tracing De�ciencies . 141

7.4 Acceleration Techniques . 142

7.5 Parallel Ray Tracing . 144

7.6 PaRT { Parallel Ray Tracer . 146

7.6.1 PaRT's Architecture . 147

7.7 Summary . 149

8 Experimental Results 151

8.1 Experimental Data Sets . 151

8.2 Estimating the Tasks' Requirements . 152

8.3 Performance Modelling . 159

8.3.1 Performance Metrics . 159

8.3.2 Environment metrics . 159

8.3.3 Scheduling Overhead Metrics . 161

8.4 Reference Scheduling Strategies . 163

8.4.1 Sensor Based Deterministic Strategy 164

8.5 Decision Network Based Strategy . 168

8.5.1 Laying out the Network's Topology 169

8.5.2 Assign Probabilities . 176

8.5.3 Assign Utilities . 185

8.5.4 Sensitivity Analysis . 185

8.6 Results' Analysis . 189

8.6.1 Dedicated Mode . 191

8.6.2 Background Workload . 196

8.6.3 Using Previous Knowledge about the Background Workload 199

xv

8.6.4 Discussion . 203

8.7 Summary . 205

9 Conclusions 207

9.1 Discussion . 207

9.2 Future Work . 210

Appendices 213

A Glossary 215

A.1 Decision Theory . 215

A.2 Load Management . 218

B Propagation Rules for Bayesian Networks 225

B.1 Notation . 225

B.2 Propagation Rules for Chains . 227

B.3 Propagation Rules for Trees . 228

B.4 Propagation Rules for Polytrees . 231

B.5 An Example: The Burglary Alarm . 233

B.5.1 The Probabilistic Model . 233

B.5.2 Inference Algorithm without Evidence 235

B.5.3 Belief Distribution with Evidence 236

C PaRT 2.1 : User's Manual 239

C.1 Introduction . 239

C.2 Illumination Model . 240

C.2.1 Rendering Equation . 241

C.3 Supported Primitives . 242

C.4 Neutral File Format . 242

xvi

C.5 PaRT 2.1 Extensions to the Neutral File Format 246

C.6 PaRT 2.1 Usage . 247

C.6.1 Installation and Requirements . 247

C.6.2 Usage . 248

D Results 251

Bibliography 261

Index 277

xvii

xviii

List of Figures

2.1 The scheduling problem . 10

2.2 An agent that perceives its environment and acts upon it 11

4.1 Decision base � Migration space . 53

4.2 Casavant's hierarchical partial taxonomy 54

5.1 A simple Bayesian network . 87

5.2 A simple Bayesian network . 87

5.3 The burglary alarm's Bayesian network . 89

5.4 Thermometer sensor model . 91

5.5 Extended sensor model . 92

5.6 Divorcing fA1; A2g from fA3; A4g . 97

5.7 A generic structure for a scheduling decision network 100

5.8 The system sharing level versus the application regularity space 103

5.9 The decision making process . 105

6.1 Three di�erent distributed system's architectures 112

6.2 Background workload: the system sharing level versus the application reg-

ularity space . 126

6.3 Computing throughput variation with di�erent synthetic background work-

loads . 128

7.1 Primary and shadow rays . 133

7.2 Shadow rays and occlusion . 134

xix

7.3 Primary (V), Shadow (L), Reected (R) and Transmitted (T) rays 134

7.4 Di�use reection . 136

7.5 Specular reection . 138

7.6 Snell's Law . 140

7.7 PaRT's architecture . 147

8.1 SPD scenes { balls3, balls3c, balls4pv, teapot9 153

8.2 Execution time distribution { balls3, balls3c, balls4pv, teapot9 155

8.3 Balls3c: Estimated versus actual execution time 158

8.4 Teapot9: improvements with extended information policy 169

8.5 Ray tracing: the system sharing level versus the application regularity space 170

8.6 Bayesian network { the intersection rate sensor model 171

8.7 Decision network { the resources' capacity block 173

8.8 Decision network { the tasks' requirements block 174

8.9 The complete decision network . 175

8.10 InfoIr's belief distribution given Ir = Medium 178

8.11 InfoFW's belief distribution given FW = Forn1 181

8.12 NewBalance's belief distribution given FWRatio=aMHigherb 186

8.13 NewBalance's belief distribution given FWRatio=aHigherb 187

8.14 Sensitivity analysis . 191

8.15 Execution time with di�erent scheduling strategies 193

8.16 Performance improvements with di�erent scheduling strategies 194

8.17 Performance improvement of DN relative to det 195

8.18 TTidle% and TTdata% with det and DN scheduling strategies 196

8.19 Execution time with di�erent background workloads (7 nodes) 197

8.20 Performance improvement with di�erent background workloads (7 nodes) . 198

8.21 Performance improvement of DN relative to det (7 nodes). 199

xx

8.22 Teapot9: performance improvement with heavy background workload . . . 199

8.23 TTidle% and TTdata% with det and DN scheduling strategies and di�erent

background workloads . 200

8.24 Performance improvements with adaptive stochastic approach 202

8.25 Performance improvements relative to demand driven with 7 nodes 203

9.1 The decision network approach e�ectiveness 209

B.1 A Bayesian network with a chain topology 228

B.2 Structure of an individual node on a chain network 228

B.3 A Bayesian network with a tree topology 229

B.4 Structure of an individual node on a tree network 231

B.5 A Bayesian network with a polytree topology 231

B.6 The burglary alarm's Bayesian network . 234

xxi

xxii

List of Tables

3.1 Direct costs induced by the scheduler . 44

3.2 Direct costs distribution across the scheduling policy components 45

4.1 The ESR Scheduling Problem Classi�cation Attributes 58

4.2 The ESR Scheduling Strategies Classi�cation Attributes 60

4.3 Criteria for DJMS's evaluation . 75

5.1 The joint probability distribution: an example 81

5.2 Burglary Alarm Example: CPT(AjB;E) 83

5.3 Burglary Alarm Example: P(B) and P(E) 84

5.4 Burglary Alarm Example: P(A;B;E) . 84

6.1 Application space divided according to application's characteristics 114

6.2 The Scheduling Strategies' ESR classi�cation 125

6.3 Synthetic background workloads . 127

7.1 Material's properties . 141

8.1 Scenes' main characteristics . 152

8.2 Comparison of arithmetic and exponentially weighed averages with di�erent �161

8.3 Intersection rate sensor model | CPT(InfoIrjAgeIr; Ir) 179

8.4 CPT(IrRatiojIra; Irb) . 180

8.5 Foreground workload sensor model | CPT(InfoFW jAgeFW;FW) . . . 181

8.6 CPT(FWRatiojFWa; FWb) . 182

xxiii

8.7 CPT(NBjFWRatio = aEqualb; IrRatio; T ransfer) 184

8.8 CPT(FWRatiojFWa; FWb) . 188

8.9 CPT(InfoIrjAgeIr; Ir; IrS) | sensitivity analysis 190

8.10 CPT(InfoFW jAgeFW;FW;FWS) | sensitivity analysis 192

B.1 Burglary Alarm Example: P(B) and P(E) 234

B.2 Burglary Alarm Example: CPT(AjB;E) 234

B.3 Burglary Alarm Example: CPT(N1jA) and CPT(N2jA) 235

C.1 Set of parameters describing the material properties 241

D.1 Columns's Labels . 251

D.2 Balls3: dedicated mode results . 252

D.3 Balls3c: dedicated mode results . 253

D.4 Teapot9: dedicated mode results . 254

D.5 Balls4pv: dedicated mode results . 255

D.6 Balls3: results with di�erent background workloads (7 nodes) 256

D.7 Balls3c: results with di�erent background workloads (7 nodes) 257

D.8 Teapot9: results with di�erent background workloads (7 nodes) 258

D.9 Balls4pv: results with di�erent background workloads (7 nodes) 259

xxiv

Chapter 1

Introduction

Parallel computing on distributed systems is becoming increasingly popular with a�ordable

cluster computers and the exploitation of unused cycle times on interconnected worksta-

tions. There are many goals targeted by this computing paradigm: reduce applications'

turnaround time, maximise throughput, increase system's utilisation or reliability, etc.

These systems o�er a theoretical processing power that is the sum of the capacity of the

individual resources. However, in order to obtain a performance close to this theoretical

limit, the workload must be e�ectively distributed over the available resources, to exploit

and pro�t from their multiplicity [22]. Ensuring a good correspondence between the work-

load's structure | both code and data | and the characteristics of the distributed system

is known as the load management, or scheduling, problem.

The complexity of each particular scheduling problem depends on the complexity of the

environment, both the workload and the computing system, upon which the scheduler is

required to act. The applications may exhibit either predictable or unpredictable com-

putational requirements and data access patterns. Predictable behaviours simplify the

scheduler's job, since resources can be allocated to parallel tasks based on accurate data.

However, many applications do not exhibit a predictable behaviour, and the scheduler's

decisions must be made based on inaccurate predictions of the workload's future require-

ments. These predictions are usually a function of the workload recent past behaviour.

The distributed computing system may also exhibit an unpredictable behaviour. This is

specially true when systems are shared among several users and applications. The scheduler

can not predict the exact overall workload submitted to the distributed system, and this

workload can change frequently as a consequence of the users' activities. The performance

of the distributed system resources, as perceived by the application, varies in time, as

a result of several applications competing for the same set of resources. To satisfy its

performance requirements, the scheduler must correctly orchestrate the distribution of the

dynamically varying workload on the distributed system's resources.

1

2 CHAPTER 1. INTRODUCTION

This thesis addresses the problem of e�ectively and eÆciently scheduling applications on

shared distributed computing systems, particularly when the applications exhibit unpre-

dictable computing requirements and data access patterns.

The pertinence of the scheduling problem grows as the complexity of the distributed sys-

tems increases. With the advent of the Internet and other global computing infrastructures

and services | such as the Grid [50] | the distributed systems' size and heterogeneity are

increasing dramatically, both at the resources' level and the range of services o�ered. Fur-

thermore, the resources' availability in these computing environments changes with time

in unpredictable ways, rendering the scheduler's task even more diÆcult. The scheduler's

role is crucial in such systems, where, in addition to raw performance, cost and ownership

must be taken into account, among other issues [32]. Although the present work does not

address such complex distributed systems, some of the results presented may be used as

preliminary work and helpful hints for such cases.

Optimally scheduling a workload on a distributed system is known to be a NP{complete

problem in the general case [19, 37]. One of the reasons why the scheduling problem

can not be optimally solved is the environment's limited measurability: both the applica-

tion's requirements and the environment's workload can not be accurately predicted. The

scheduler has to make decisions based on inaccurate information. Since the environment's

complexity is high, the scheduler must use a simpli�ed internal execution model of the

world for its decision making mechanism. This simpli�ed model summarises the objects

and relationships holding on the real world, neglecting some of them. Furthermore, some

of the environment's relevant aspects are inaccessible, in the sense that it is too expensive,

or even impossible, to get exact and updated information about them. Therefore, it is not

possible neither to have an exact, accurate and updated knowledge about the global state

of the environment at any given instant, nor to make exact predictions about near future

behaviour. The scheduler is required to decide and act under conditions of uncertainty

about past, present and future system's states and workload pro�les.

The problem tackled by this thesis is: should the scheduling agent explicitly include the

uncertainty it has about the environment on its internal model of the world and on its

decision making mechanism, in order to more tightly meet its performance requirements?

The problem of handling uncertainty on computational models of real world problems is

usually solved by representing certainty, or belief, on a given proposition, or event, using

probabilistic values and by combining beliefs on a set of propositions using probabilis-

tic theory. Preferences among the outcomes of the alternative decisions available to the

decision making agent are usually represented using utilities. Decision theory combines

probabilities and utilities to evaluate alternative actions. One of the tools proposed by

decision theory for rational decision making are decision networks, also called inuence di-

agrams [69, 127, 143]. Decision networks require a probabilistic model of the world, where

3

direct causal relationships and probabilistic conditional independences among the model's

variables are encoded in the network's topology. With the use of additional decision and

utility variables, decision networks provide coherent prescriptions for rational decision mak-

ing under uncertainty. Decision networks allow the inclusion, on the reasoning process, of

the uncertainty about the environment's current state and about the consequences of the

scheduling agent's selected actions, i.e., the environment's next state after each scheduling

event. Furthermore, they provide an automated process of computing the expected utility

of each action, therefore enabling rational decision making by selecting the action which

maximises expected utility.

The hypothesis put forward by this thesis is: decision networks, if applied to the scheduling

agent's execution model and decision making mechanism, may improve its e�ectiveness and

help to overcome the problems caused by uncertainty.

The use of decision networks to dynamically schedule a parallel application among the

nodes of a distributed shared system is an original approach and the main contribution of

this thesis; the author has no knowledge of any related work where decision networks have

been applied to solve this type of problem.

To limit the scope of this research, the problem was restricted to application level schedul-

ing of divisible workloads in distributed shared systems, aiming to minimise the overall

application execution time. The evaluation results were obtained on a multi{user cluster

of seven workstations, interconnected by a high performance Myrinet network. Application

level scheduling is performed by the application itself, in order to meet its own performance

goals, while in competition with other applications that may be sharing the same set of re-

sources. These are referred to as background workload. Divisible loads are those which can

be divided into any number of segments of any fractional size, for example, by using data

domain decomposition. The actual experiments were conducted using a parallel ray tracer

as a case study. Image space decomposition is used, therefore the workload is arbitrarily

divisible down to the �nest grain of rendering a single pixel.

To verify the hypothesis suitability to solve the problem being tackled, the decision network

based scheduler was submitted to a set of experimental tests and confronted with other

alternative decision making mechanisms, referred to as reference scheduling strategies. The

most relevant scheduling strategies focus their e�orts in dynamic, runtime tasks migrations,

rather than trying to generate an improved initial partitioning of workload among the

processing nodes. This is mainly due to the high variability in capacity exhibited by typical

shared systems. Their e�ectiveness, understood as the level of performance achieved, is

studied and compared. Since this application level scheduler's performance goal is to

minimise execution time, the performance metric used to compare the various schedulers'

e�ectiveness on a parallel ray tracer is the time required to render some prede�ned sample

scenes. The schedulers' eÆciency, which reects the scheduling overheads imposed upon

4 CHAPTER 1. INTRODUCTION

the distributed system, is also measured and compared. These overheads are classi�ed

as either direct or indirect overheads, depending on whether they result directly from the

scheduler's activity or are indirect consequences of the scheduler's decisions.

The main goal of this thesis is to verify if decision networks can be successfully applied to

the scheduler's decision making mechanism, improving its e�ectiveness by overcoming the

problems associated with uncertainty about the environment's global state at each instant.

This work makes the following contributions to the scienti�c knowledge about the schedul-

ing problem:

� proposes a generic Bayesian decision network structure, to dynamically schedule ap-

plications on distributed shared systems (chapter 5);

� suggests a performance model, oriented to application level scheduling on distributed

shared systems, to assess both the scheduler's e�ectiveness and eÆciency (chapter

6);

� proposes an execution model for a particular case study | parallel ray tracing |

and experimentally validates it (chapter 8).

This thesis is structured in two parts. Part I presents the main research goals pursued by

this work, describes and clari�es the main concepts related to scheduling on distributed

systems, introduces the reader to the scheduling algorithms most commonly found on the

literature and describes decision networks. Part II presents the methodology adopted to

submit the hypothesis to experimental tests, describes the ray tracer used as a case study,

presents the experiments actually performed and analyses their results. Finally, chapter

9 extracts some conclusions from the results and suggests directions for future work. The

appendices include a glossary of the most relevant terminology, a detailed description of

the probabilistic inference mechanism used by the stochastic schedulers, a users' manual

of the ray tracer developed throughout this work and an extensive list of all experimental

results.

Although this thesis was carefully read several times to eliminate all orthographic and

grammar errors, this goal may not have been fully accomplished.

Part I

Problem's Identi�cation and

Hypothesis Formulation

5

Part I

This part presents the reasoning that led to the identi�cation of the problem tackled by this

thesis and to the formulation of the corresponding hypothesis. The global scienti�c knowl-

edge, required to better understand the scheduling problem, is systematically presented,

as well as the theoretical foundations of decision networks, which allowed the formulation

of the hypothesis.

Chapter 2 discusses the issues that motivated the work developed throughout this thesis.

Uncertainty and incompleteness of information are identi�ed as the main reasons why an

application level scheduler operating on a shared distributed system may fail to ful�ll its

performance goals.

Chapter 3 introduces some fundamental concepts related to load management, and presents

an analysis of the overheads associated with scheduling. A thorough understanding of the

structure of scheduling overheads is essential in order to design an e�ective and eÆcient

scheduler.

Chapter 4 reviews some scheduling policies found on the specialised literature, discusses

some fundamental attributes that a systematic classi�cation scheme must exhibit and se-

lects one such scheme to use throughout this thesis.

Chapter 5 presents probabilities as a mean to express partial beliefs on propositions, intro-

duces probabilistic models and decision networks, describes the steps required to assemble

a coherent and computable decision basis and suggests a generic structure for a decision

network applied to the scheduling problem.

7

8

Chapter 2

Load Management: Research Goals

Contents

2.1 The Load Management Problem 10

2.2 Application Level Scheduling 13

2.3 Static vs. Dynamic Policies . 15

2.4 Incompleteness of Information and Uncertainty 18

2.5 Summary . 22

Parallel or distributed systems are composed of a multiplicity of heterogeneous resources,

which cooperate to solve one or more computational jobs. In such systems, a parallel appli-

cation component (hereby designated as task) may be waiting for service at one resource,

while other resources are idle [9, 102]. This idle{while{waiting condition suggests that the

capabilities of such systems may be more eÆciently exploited by adequately mapping the

tasks onto the available resources. This mapping, which can be either static or dynamic,

is the load manager's role.

Hwang and Xu [73] identify four sources of overhead for parallel applications, namely,

parallelism management, communication, synchronisation and load imbalance overheads.

The load imbalance overhead is incurred when some resources are idle, while others are

busy. The load manager is responsible for minimising this overhead, while keeping other

overheads (e.g. communication) within acceptable levels [37]. The major goal of load

management, however, is not to equalise the loads on the nodes of a parallel or distributed

computing system, but to optimise some set of prede�ned performance goals [11, 178].

This chapter discusses the issues that motivated the work developed throughout this the-

sis. The load management problem is characterised as a scheduling problem, and some

fundamental requirements and constraints imposed upon an application level scheduler

operating on a shared distributed system are identi�ed.

9

10 CHAPTER 2. LOAD MANAGEMENT: RESEARCH GOALS

2.1 The Load Management Problem

2.1.1 De�nition

The problem of mapping a set of tasks onto a set of resources is a scheduling problem.

Scheduling resources on a parallel or distributed system is a two{dimensional scheduling

problem [9, 25, 172]. Local, or intranode, scheduling is concerned with scheduling within

a single node. It occurs at various sub{levels, such as through the memory hierarchy, at

the device and functional level, and among processors when the node is a multiprocessor

system. Global, or internode, scheduling is a level above this, and is concerned with

scheduling among nodes [124]. This thesis addresses global scheduling, assuming that local

scheduling is performed by each node's operating system.

The scheduling problem has �ve components: the tasks (or relevant events related to them),

the distributed system, the performance requirements, the schedule and the scheduler. The

tasks' events, system's characteristics and performance requirements are the input to the

scheduler, or load manager, and the mapping, or schedule, is its output.

�
�

�
�

-Scheduler Schedule

HHHHHHHHj

Distributed
System

Environment

-Events (tasks)

��
��

��
��*

Performance
Requirements

Figure 2.1: The scheduling problem

The distributed system related input refers to all system's characteristics that impact on

the schedule, such as the available resources' absolute capabilities and current state. The

events are messages related to the workload. These inform the scheduler of the arrival of

new tasks, removal of old ones or just report a task's current state.

The distributed system and the workload, together, constitute the environment upon which

the scheduler must act to achieve its performance requirements. In order to improve their

e�ectiveness, most schedulers maintain some internal representation of the environment's

current state, which is updated whenever new information about the distributed system

or workload reaches the scheduler. This information is referred to as the environment's

metrics. These metrics, which are acquired through the scheduler's sensors, determine the

set of the environment's particular aspects that can be perceived, or measured, by the

2.1. THE LOAD MANAGEMENT PROBLEM 11

scheduler. The range of available metrics and their accuracy are strongly correlated with

the scheduler's e�ectiveness.

The requirements specify which goals the scheduler must pursue. These can include

throughput maximisation, execution time minimisation, etc. (section 2.1.2).

The schedule is the actual mapping of tasks onto resources, as generated by the scheduler.

It may either be an ordered list of pairs (tasks, resources) generated before execution time,

if all tasks and systems' characteristics are previously known, or be dynamically generated

at runtime by a set of rules. These rules specify correcting actions that redistribute tasks

over the system such that some requirement is more tightly met (section 2.3). The set of

actions available to the scheduler constitute the scheduler's e�ectual capabilities.

The scheduler is responsible for generating the schedule, based on what it knows about the

environment's current state and on its performance requirements. To be able to achieve

these requirements, the scheduler must have an internal execution model of the world, that

adequately represents the distributed system and the workload's most relevant aspects and

respective interrelationships. This execution model is used to generate estimates of future

behaviours that are used as inputs to the scheduler's decision making mechanism. Being

a computational representation of a real world problem, the execution model must be a

simpli�cation of the objects and relations that hold on the universe being considered. This

simpli�cation may result in inaccuracies on the generated estimates, that must be properly

handled by the scheduler, so that its e�ectiveness does not get compromised.

The scheduler receives as input information about the system's characteristics and current

state, and information about the workload. Based on this information and on its internal

execution model, which represent everything the scheduler knows about the environment,

it must select, at each instant, the best action to take in order to meet its performance

requirements. According to this statement, the scheduler is an autonomous agent, which

perceives the surrounding environment through its sensors and acts upon it through its

e�ectors [176].

ACTION

STATE

AGENT

PERCEPTION

ENVIRONMENT
SENSORS

EFFECTORS

Figure 2.2: An agent that perceives its environment and acts upon it

In this context, autonomous means that the agent determines its behaviour and can act

12 CHAPTER 2. LOAD MANAGEMENT: RESEARCH GOALS

without the intervention of other systems. This concept can be further extended if the

scheduling agent's behaviour depends, at least partially, on its previous experience, i.e., if

it exhibits some learning capacity.

If the agent tries to achieve its performance objectives by selecting the most adequate action

for each environmental state, then it can be classi�ed as an intelligent agent. This does not

mean that the agent is omniscient and never fails. Rather, it means that the agent operates

with exibility and rationality, by choosing the action that will, with higher probability,

optimise its performance, given the agent's e�ectual capabilities and the information it has

about the environment.

This thesis addresses global scheduling of parallel applications, where tasks' requirements

and arrival rates, the distributed system's current state and the scheduler correcting ac-

tions' consequences, or outcomes, may not be clearly known.

2.1.2 Objectives and Constraints

Distributed systems' schedulers exhibit a range of di�erent performance goals. Those most

usually found on the literature [11, 139, 178] are:

� maximisation of system's throughput;

� minimisation of a single parallel application's execution time (application's turn-

around time or makespan);

� predictability of tasks' response times (e.g. real{time systems);

� system's reliability (e.g. fault{tolerance);

� minimisation of resources' idle time.

Much work has been developed on the context of scheduling real{time systems [134, 166,

167, 168]. One bene�cial e�ect of load management is that it makes tasks' response times

more predictable by approximating them to the mean response time, i.e., the standard

deviation is reduced. In real{time systems this increase in predictability is more important

than reducing the mean response time [182].

This thesis addresses minimisation of a single parallel application's execution time, running

on a distributed shared system. Many distributed systems are simultaneously shared by

many users and respective applications. These compete for the same set of resources,

each seeking to achieve its own performance goals. Schedulers running on these shared

systems schedule the execution of concurrent tasks on resources whose performance varies

2.2. APPLICATION LEVEL SCHEDULING 13

dynamically due to the presence of various applications that share the same resources

[14, 42, 43, 155] (section 2.2).

Many schedulers consider only problems where the tasks' requirements and data access

patterns are known in advance. However, in the general case, these parameters are unknown

by the scheduler. Most of the work presented on the literature also considers tasks to be

independent of each others. However, this is not the case for many real applications.

The scheduler must minimise both load imbalance and communication overheads [37]. A

general purpose load manager should consider the following constraints [96]:

� no a priori knowledge about incoming tasks' requirements and data access patterns;

� no assumption about tasks' independency;

� no assumptions about the underlying network (topology, homogeneity, size, etc.).

The present work deals with problems with unknown tasks' requirements and data access

patterns, and further extends these constraints by assuming that the environment's state

might also not be clearly known. Gathering information about the exact current environ-

ment's state and generating accurate estimates about the workload's behaviour may be

prohibitively expensive, or even impossible. The scheduler has to make decisions based on

incomplete, or out{of{date, information.

2.2 Application Level Scheduling

Most distributed systems are simultaneously shared by many users and respective appli-

cations. These compete for the same set of resources, each seeking to achieve its own

performance goals. This sharing introduces challenging resource management problems

that are beyond state of the art in a variety of areas [50]. Applications on these shared

systems schedule the execution of concurrent tasks on resources whose performance varies

dynamically due to the presence of other applications competing for the same resources

[14, 155]. This inherent variability on the resources' capacities, caused by the variable load

imposed by several users, may impact on the application's performance in dynamic and

unpredictable ways. These applications must adapt to changes in resources availability in

order to meet their performance requirements [50].

A good understanding of the interplay between the application and the variable multi{user

computing system is essential to achieve an e�ective schedule. By placing the scheduling

agent at the application level, rather than at system level,the application programmer can

incorporate on the scheduler some of his/her knowledge about the application behaviour

and requirements [14, 124].

14 CHAPTER 2. LOAD MANAGEMENT: RESEARCH GOALS

The present work is concerned with application level scheduling, de�ned as scheduling

performed by the application itself in order to meet its own performance objectives, while

in competition with any other applications that may be sharing the same distributed system

[14, 19]. Application level scheduling is the opposite of system level scheduling, where a

single scheduler controls all resources and applications, and makes all allocation decisions.

A system level scheduler, however, can also be present to enforce administrative policies

imposed upon the distributed system. This higher level scheduler allocates resources to

applications based on a set of attributes, like the number of requested nodes, exclusive or

shared CPU access, amount of memory, availability of peripheral devices, etc., and on the

organisation's policies. Applications' execution may be postponed and processed in batch,

whenever the requested resources become available. System level schedulers, often referred

to as Distributed Job Management Systems (DJMS) (section 4.3), are usually concerned

with system's throughput and reliability, rather than with application's execution time.

The application level scheduler's role is to eÆciently manage the resources made available

by the DJMS.

E�ective application level scheduling involves the integration of application{speci�c and

system{speci�c data, and it depends on the dynamic interactions between the application

and the computing system. The scheduler, embedded within each application, must e�ec-

tively combine the data it receives about the distributed system and the tasks' states in

order to meet its performance requirements.

Berman et al. [14] identify four fundamental application level scheduling requirements:

� E�ective scheduling requires both application and system speci�c data

{ the quality of the generated schedules is highly correlated with the knowledge it

has about the system's characteristics and the structure and requirements of the

application.

� Dynamic information is required to determine the environment's state {

using updated environment's state data, the scheduler can detect load imbalances and

act to more eÆciently exploit the available resources. Static scheduling policies may

be inadequate on shared distributed systems, namely when the system's state and

global workload vary widely during execution time due to the other users' activities.

� E�ective scheduling requires both application and system performance

prediction { prediction provides the basis for e�ective scheduling. The scheduler

makes its decisions based on predictions about the tasks's requirements and the

resources' capacities on the near future. Accurate prediction can be diÆcult, since

the system's state and the application requirements vary in forms that are beyond

the scheduler's control. To make predictions the scheduler must have some model of

the application and system's behaviour. This model needs to accurately represent

2.3. STATIC VS. DYNAMIC POLICIES 15

the dynamic performance variation of the application on the underlying resources

in a way that allows the scheduler to adapt application execution to the current

system's state. Simple execution models can make the prediction task easier, but

may fail to provide accurate predictions. A tradeo� must be found between the

model's complexity and the quality of the predictions it provides.

� All resources can be evaluated strictly in terms of the performance they

deliver to the application { from the application's perspective each resource is

evaluated in terms of how much it bene�ts the application's execution. If the comput-

ing system is shared among several applications, some resources, e.g. processors, are

probably time{shared by these applications. Since only a fraction of each resource's

performance can be allocated to each application, the application level scheduler

must evaluate each resource in terms of the resource's capacity it uses.

2.3 Static vs. Dynamic Policies

The degree of exibility the scheduler must exhibit depends on how demanding are its

performance requirements and on the complexity of the environment it is supposed to

manage. Russel, Norvig and Weiss [143, 176] suggest that environments can be classi�ed

according to the following properties:

Accessible vs. Inaccessible { an environment is accessible if the agent's sensors give

it complete, accurate and updated information about the environment's state; if the

sensors do not provide enough information to completely determine the environment's

state, then it is classi�ed as inaccessible, or partially observable; this is related to the

environment's measurability, which can be de�ned as a function of the total set of

information available to the agent's sensors and the cost of acquiring this information;

Deterministic vs. Non{Deterministic { an environment is deterministic if its next

state is completely determined by its current state and the agent's selected action;

on a deterministic environment each action has a single guaranteed e�ect, which is

known by the agent; on a non{deterministic environment the same action, performed

twice on apparently identical circumstances, may appear to have entirely di�erent

e�ects, and in particular, may fail to have the desired e�ect;

Static vs. Dynamic { a static environment remains unchanged except by e�ect of ac-

tions triggered by the agent; if the environment changes in ways beyond the agent's

control, due to other processes operating on it, then the environment is dynamic.

The environments where a scheduling agent is required to act are, usually, inaccessible,

non{deterministic and dynamic.

16 CHAPTER 2. LOAD MANAGEMENT: RESEARCH GOALS

Inaccessible: the environment may be so complex that the scheduler can not consider

all the relevant aspects on its internal execution model of the world. Some of the

entities and relations holding on the environment must be neglected or summarised,

so that a manageable execution model is obtained. This simpli�cation in representa-

tion hinders the scheduler from having a complete image of the environment's state.

Furthermore, the information available to the agent is inaccurate because it is ex-

pensive, or even impossible, to acquire with great precision. Also this information

is often outdated, because the environment is continuously changing | information

aging.

Non{deterministic: the environment changes while the agent is deliberating and its

selected actions are being performed. The scheduler can not be completely sure of

its actions' consequences. If an environment is inaccessible, it may appear to be

non{deterministic, since the agent can not keep track of its inaccessible aspects.

Dynamic: on a shared distributed system many applications are launched by several users,

and exhibit varying and irregular workload and communication patterns. Further-

more, these applications are allowed to start and to terminate at any instant. This

is well beyond the scheduler's control, as it depends on the work performed by the

resources it is managing and on the users' activity. It is due to this property that the

distributed system's resources deliver a variable performance to each application, re-

quiring the application level scheduling agent to regularly measure the environment's

current state.

A distributed shared system exhibits an unpredictable dynamic behaviour, caused by a

large number of activities launched by several users, that the scheduler can neither antic-

ipate nor control and that it is unable to characterise completely. Applications may have

variable runtime requirements that the scheduler can not predict accurately, no matter

how complex is its internal execution model. This suggests that, on such conditions, where

both the application and the computing system exhibit dynamically varying behaviours,

the scheduler must regularly update the image it has about the environment's current

state.

Scheduling policies can be broadly classi�ed as static or dynamic (section 3.3). Static

policies generate the schedule before execution time, based on the system's properties and

on the tasks' requirements. Dynamic policies, on the other hand, generate the schedule at

runtime, using a set of rules to specify correcting actions that redistribute the workload over

the system. They have the potential to outperform static policies by exploiting uctuations

in the system's state [1, 72, 105, 106]. Among dynamic policies three di�erent approaches

can be distinguished:

� those that do not consider the environment's state at each instant, deciding as if they

2.3. STATIC VS. DYNAMIC POLICIES 17

were blind;

� those that use environment's state information as input to their set of rules, hoping

to make better decisions;

� those that go a step beyond, by using environment's state inputs to modify either

its rules' parameters or the rules themselves, i.e., the scheduling agent's execution

model is modi�ed in runtime in order to better represent the external world; these

are usually classi�ed as adaptive policies.

Static and blind dynamic scheduling strategies seem inadequate for shared systems, since

variations on the environment's behaviour are ignored. Strategies that regularly measure

the environment's state seem more adequate, since they enable the scheduling agent to

react to uctuations on the environment's behaviour. These are referred to as sensor based

dynamic scheduling strategies, since the agent gathers data about the environment's state

through its sensors. It has been shown that adaptive policies provide good performance

when the system state changes widely during execution time [24, 160, 182] and that di�erent

load management policies are best suited to handle di�erent workload patterns [12, 29, 181].

This suggests that in order to achieve its performance requirements and deal e�ectively

with the environment's properties, the scheduling agent must use an highly dynamic, or

even an adaptive, decision making policy.

Becker and Waldmann [12] identify three opportunities for adaptive scheduling:

Correction of pro�le and load predictions { sophisticated approaches enable the ex-

ploitation of applications workload pro�le predictions. The challenge for the sched-

uler is to generate or improve predictions about near future workload pro�les. By

comparing the expected to the real system behaviour, the exactness and importance

of these predictions can be evaluated and corrected.

Determination of di�use factors in the execution model { dynamic decision mak-

ing and information management incur overheads at runtime, therefore they must

be based on simple execution models. Important side e�ects are often neglected or

the correlations between the considered items and the desired results are not strong

enough. Using feedback the scheduler can increase its knowledge about the system's

behaviour and correct its initial world's execution model.

Control of the relationship between overhead and pro�t { dynamic scheduling in-

curs parallelismmanagement, communication and computation overheads [73]. Adap-

tive approaches must minimise the e�orts for scheduling and automatically optimise

the relationship between cost and bene�t.

18 CHAPTER 2. LOAD MANAGEMENT: RESEARCH GOALS

2.4 Incompleteness of Information and Uncertainty

To meet its performance requirements, a sensor based adaptive or dynamic scheduler must

collect a reasonable amount of information about the system's state and workload pro�le,

and must have an internal execution model, that adequately represents the most relevant

entities and respective interrelationships holding on the environment being considered.

Using the available information and the execution model, the scheduling agent generates

estimates about future system's behaviour, that are then used for decision making. The

e�ectiveness of the decision making mechanism, depends on the amount and accuracy of

the information, or knowledge, accumulated, and on the correctness of the execution model.

However, the scheduling agent is often uncertain about several aspects of the environment.

This may happen due to the environment's complexity, which prevents the design of an

accurate execution model, or due to the environment's limited measurability. In general,

uncertainty and incompleteness of information has three main theoretical reasons [143]:

Theoretical ignorance { there is no complete theory for the problem being solved which

describes all the relevant aspects that should be accounted for. Therefore, the agent's

designer does not know all the entities and relationships that should be included on

the execution model, so that it could predict exactly future system behaviours.

Laziness { the environment may be so complex, that there are too much di�erent factors

inuencing the system's behaviour; it is neither feasible nor eÆcient to account for all

of them. The agent has to make its decisions based on a simpler internal model of the

world. Any computational representation of a real world problem must be a simpli�-

cation of the objects and relations that hold on the universe being considered. Many

of these objects and relations must be neglected or summarised so that a manageable

execution model is obtained. This inescapable incompleteness in representation leads

to unavoidable uncertainties about the state of the world and the consequences of

actions [69].

Practical ignorance { since the environment is inaccessible and only partially measur-

able, the knowledge available to the decision maker is inaccurate. It is too expensive,

or even impossible, to collect exact information about all factors considered in the

execution model. Also, since the environment is dynamic, the information gets ob-

solete, because the system's state is continuously changing. This is usually referred

to as information aging.

In the particular case of scheduling a parallel application on a distributed shared system,

uncertainty arises from four main sources:

2.4. INCOMPLETENESS OF INFORMATION AND UNCERTAINTY 19

� the environment's complexity requires that some simpli�cations be included in the

execution model, either by neglecting or summarising some of the environment's

characteristics; therefore, the model does not provide exact and accurate predictions

of the environment's near future behaviour; the environment can be classi�ed as non{

deterministic, since the scheduler can not predict the consequences of its actions; this

is a consequence of laziness and theoretical ignorance;

� the workload pro�le and system's behaviour are unpredictable, both due to the appli-

cation's characteristics and to the background workload imposed upon the distributed

shared system by other users;

� it is too expensive, or even impossible, to get exact and accurate information about

the system's state, i.e., the environment is not totally measurable and can be classi�ed

as inaccessible or partially{observable; this is a consequence of practical ignorance;

� the image the scheduler has about the environment's state gets obsolete with time

due to the environment's dynamics [19, p. 535]; this is known as information aging

and is also a consequence of practical ignorance.

Hence, at each instant the scheduling agent is uncertain about:

� the environment's exact current state;

� the accuracy of its predictions about the environment's near future behaviour;

� the outcome of its actions and, consequently, which is the most adequate action to

take in order to meet its performance goals.

Uncertainty about both the current environment's state and the exact consequences of

actions prevents the scheduler from exhibiting an omniscient behaviour. Furthermore,

the scheduler must be prepared for the possibility of failure, due to actions that do not

achieve the intended result. In order to meet its performance requirements, the scheduling

agent must be able to deal e�ectively with this uncertainty about past, present and future

system's states and workload pro�les.

The problem studied throughout this thesis is: should the scheduling agent explicitly include

the uncertainty and incompleteness of information it has about the environment on its

internal model of the world and on its decision making mechanism, in order to more tightly

meet its performance requirements?

20 CHAPTER 2. LOAD MANAGEMENT: RESEARCH GOALS

2.4.1 Handling Uncertain Knowledge

The problem of explicitly handling uncertainty on computational models of real world

problems has been tackled by arti�cial intelligence researchers following quite di�erent

approaches. The most common approach, currently, is to represent certainty (or belief)

on a given statement (or event) using probabilistic values, and combine beliefs on a set of

statements using probability theory. However, a few years ago, probabilistic models were

considered inappropriate to represent real world problems, due to the exponential number

of probabilities required to quantify the joint distribution, i.e., all possible combinations of

the events being considered. As a result, a variety of alternatives were proposed. Examples

of such alternatives are default reasoning, certainty factors on rule{based expert systems,

Dempster-Shafer theory to represent ignorance and fuzzy logic to represent vagueness [127,

143]. The fully probabilistic approach has regained acceptance since the late 1980s, with

the realization that modularity has to be introduced in the probabilistic model, allowing

a large and complex problem to be split up into small, manageable sub{problems. This is

achieved by imposing meaningful simplifying conditional independence assumptions among

the model's variables [31]. These developments led to the discovery of powerful and eÆcient

tools and algorithms to represent, reason and learn about probabilistic models (chapter 5).

One of such tools are decision networks. These allow the scheduling agent to enter in the

model the evidence it has about some of the environment's aspects (evidence obtained

through the agent's sensors), and infer the probability distribution over the environment's

current state. This is a stochastic process, since the environment's state is not determin-

istically determined, rather the probability of the environment being in each of all the

possible states is inferred. Then, for each possible action, the probability distribution of

the environment's next state is inferred and the expected utility for that action is com-

puted. The agent must then select the action which maximises the expected utility. The

major advantages of decision networks is that they allow the inclusion on the reasoning

process of the uncertainty about the sensor's readings, about the way the environment's

entities interact, about the environment's current state and about the way this changes by

e�ect of the agent's actions. And, most importantly, they provide an automatic process

of computing the expected utility of each action, by weighing the probability that each

next state occurs with the utility that state has for the agent, therefore enabling rational

decision making by selecting the action which maximises expected utility.

The hypothesis put forward by this thesis is that: decision networks, if applied to the

scheduling agent's execution model and decision making mechanism, may improve its ef-

fectiveness and help overcome the problems caused by uncertainty.

2.4. INCOMPLETENESS OF INFORMATION AND UNCERTAINTY 21

2.4.2 Related Work

On the context of load management, uncertainty has been explicitly taken into considera-

tion by several researchers. The most common approach is to probabilistically model some

of the environment's aspects.

Many authors propose approaches based on a stochastic learning automata [96, 150, 166,

183] (section 4.2.7). The suitability of each possible action, given the environment's current

state, is encoded as a bidimensional stochastic matrix. This matrix's numeric values are

learned using a reward{penalty reinforcement learning scheme [170]. However, only the

scheduling agent's beliefs on the suitability of each action, for each environmental state,

are probabilistically modelled. The environment's states are represented by deterministic

quantities. Also, all the experiments presented on the specialised literature, view the jobs

being scheduled as atomic entities, without any interdependencies among them.

Stankovic [165] proposes a scheduling strategy based on Bayesian decision theory. This

strategy is suitable for non{deterministic, inaccessible and dynamic environments, and in-

cludes some of the mathematical tools used throughout this thesis. The environment's

true state is modelled by a random variable �, and the scheduler's sensors readings are

modelled by a random variable Z. Bayes' rule is then used to compute the probability

distribution over the environment's current state given the observations, P(�jZ). The

probabilities needed to perform this computation, P(�) and P(Zj�), are dynamically up-

dated at runtime. The most adequate action can then be selected, using the principle

of Maximum Expected Utility and the stochastic state transition model, which computes

the belief distribution over the environment's next state for each possible action, given the

belief distribution over the current state, P(�jZ). The author shows that Bayesian decision

theory is an e�ective tool for decision making under conditions of imperfect knowledge and

that it can be successfully applied to the scheduling problem. However, the probabilistic

model used is very simple (only two random variables), essentially because the mathemat-

ical tools required to eÆciently handle complex probabilistic models were not known at

that time (1985).

Schopf, Berman et al. [152, 153, 154, 155, 156] propose an application level scheduler based

on a stochastic structural execution model. The application performance is decomposed

according to the application's structure, i.e., into interacting component models that corre-

spond to sub{tasks. Each of the model's variables can be either deterministic or stochastic.

Deterministic quantities are represented by a single point value, whereas stochastic quanti-

ties can take a range of possible values, represented as intervals, histograms or probability

distributions. The authors argue that stochastic modelling is more adequate in shared

distributed systems, since both the resources capacities and the applications requirements

vary with time. The proposed scheduler uses normal probability distributions to model the

22 CHAPTER 2. LOAD MANAGEMENT: RESEARCH GOALS

environment's most relevant aspects. Using stochastic variables to model the environment,

results on stochastic behaviour estimates. This particular scheduler uses this model to

increase Quality of Service guarantees, by assigning tasks to those resources that exhibit

lower variance, i.e., whose performance exhibits less dispersion around the average value.

Although the environment's state can be stochastically modelled, no attempt is made to

extend this approach to the modelling of the scheduler's actions outcomes.

2.5 Summary

Load imbalance is one source of overheads for parallel applications, since the capabilities

of the available system's resources are not fully exploited. The load manager's role is to

reduce this overhead, by adequately mapping tasks onto the available resources. This is a

scheduling problem.

Uncertainty and incompleteness of information were identi�ed as the main reasons why an

application level scheduling agent, operating on a shared distributed system, may fail to

achieve its performance goals.

Uncertainty arises from four main sources:

1. the environment's complexity is high, therefore the scheduler's internal execution

model must be a simpli�cation of the objects and relationships that hold on the real

world;

2. some of the environment's relevant aspects are inaccessible, in the sense that it is too

expensive, or even impossible, for the scheduler to get exact and updated information

about them;

3. since the environment is non{deterministic, the scheduling agent can not be com-

pletely sure of its actions outcomes;

4. the environment is dynamic, i.e., it changes while the scheduling agent is deliberating

on which action to take, and it changes by the e�ect of processes that are not under

the scheduler's control; the information the scheduler has about the environment's

current state gets obsolete as a result of the environment's dynamics.

In order to meet its performance requirements the scheduling agent must be able to deal ef-

fectively with this uncertainty about past, present and future system's states and workload

pro�les. The most common approach to reason with uncertain knowledge is to probabilis-

tically model the uncertain quantities.

2.5. SUMMARY 23

This thesis studies the suitability of some probabilistic tools to increase the e�ectiveness

of application level scheduling on distributed shared systems, where the scheduling agent

may be uncertain about the environment's current state and about the outcome of the

actions it selects.

24 CHAPTER 2. LOAD MANAGEMENT: RESEARCH GOALS

Chapter 3

Load Management: Basic Concepts

Contents

3.1 Degree of Balancing . 26

3.2 Level of Complexity . 26

3.3 Static versus Dynamic Policies 28

3.4 Deterministic versus Stochastic Strategies 31

3.5 Centralised versus Distributed Approaches 32

3.6 Scheduling Policy Components 34

3.7 Load Management Evaluation 41

3.8 Summary . 48

The design of an e�ective scheduler requires the programmer to make a set of decisions,

related to the scheduler's architecture and to the organisation of its various components.

These decisions depend on the scheduler's performance goals and on the characteristics of

the particular environment being managed.

In order to increase the scheduler's performance, the programmer must have a thorough

understanding of the structure of the overheads induced by the scheduling agent, the

reasons why these overheads exist and the potential bene�ts associated with them.

This chapter discusses some basic concepts involved in the design of an e�ective scheduler.

Section 3.7 distinguishes between the scheduler's performance and eÆciency, de�ning this

last one as a measure of the scheduling overheads. An analysis of these overheads structure

is presented. Scalability and stability are de�ned and identi�ed as two desirable scheduling

properties.

25

26 CHAPTER 3. LOAD MANAGEMENT: BASIC CONCEPTS

3.1 Degree of Balancing

The load balancing approach to load management consists in equalising the workload

assigned to all system's resources [24]. The main concern of algorithms following this

approach, is to reduce the standard deviation of some metric related to the amount of work

allocated to each resource. On an heterogeneous system, the level of workload distribution

can be weighed by the resources' relative processing capacities.

Load sharing, on the other hand, attempts to keep all resources busy, as long as there

is work to be performed, independently of the amount of work actually assigned to each

resource, minimising the idle{while{waiting condition.

These two approaches represent di�erent degrees of balancing, from the weakest degree of

load sharing to the strongest degree of global load balancing [42, 179]. It has been shown

that load balancing can potentially reduce the mean and standard deviation of tasks'

response times, but since it requires higher transfer rates, the higher overhead incurred

may outweigh this potential performance improvement [39, 160]. Tight load balancing can

be a source of instability, since useless work transfers can be initiated by the scheduler,

in order to keep the amount of allocated work equalised among resources, even though no

additional bene�ts are gained with these transfers. The particular case of cyclic useless

transfers of tasks among processing nodes, is referred to as processor trashing (section

3.7.4).

In the context of application level scheduling on distributed shared systems, the fraction

of each resource's capacity that is allocated to each application can vary signi�cantly and

frequently during execution time. Keeping the workload distribution constantly balanced

can constitute a non{pro�table source of overheads. A load sharing approach, where the

scheduling agent decides whether or not to transfer work among resources by weighing the

expected bene�ts with the overheads incurred with these transfers, seems more adequate.

This kind of assessment is usually referred to as pro�tability determination.

3.2 Level of Complexity

One important issue is to determine what is the appropriate level of complexity for the

load management policy. It has been claimed that relatively simple policies can provide

substantial performance gains, while more complex ones are not likely to o�er much further

improvements [25, 39, 182]. Complex policies rely on detailed information about system's

state and workload's behaviour. Not only is this information expensive to gather, but also

some quantities cannot be precisely known, regardless of the e�ort expended. Furthermore,

complex policies are bound to have complex negotiation policies among nodes, which may

3.2. LEVEL OF COMPLEXITY 27

increase communication costs. The �nal concern is the potential for instability. Complex

policies may react to small imbalances among resources, causing a form of processor thrash-

ing, in which all nodes spend all their time transferring tasks. Less complex policies tend

to react more slowly to changes in the system's state and are, therefore, less susceptible to

such instability. Eager [39] claims that:

� extremely simple load distribution yields dramatic performance improvement rela-

tively to the no load{sharing case;

� complex policies, which try to make the best choice, do not o�er much further im-

provements.

The experiments performed by the above cited author do not consider tasks interdepen-

dencies and were performed on small, homogeneous and dedicated distributed systems.

Parallel tasks often exhibit data dependencies that, if not taken into account, may hinder

the scheduler from achieving its performance goals. The distributed system's size and het-

erogeneity may require complex scheduling policies. However, the potential for unstable

behaviour increases with the system's size, heterogeneity and with the scheduling policy

complexity. Special care must be taken, therefore, to ensure that potential overheads as-

sociated with instability, information collection and sophisticated decision making do not

overwhelm the bene�ts obtained with a more complex load management.

Becker [10, 12] proposes an hierarchical approach to load management which operates

with a rather sophisticated policy. This policy considers not only processing demands

and processor load, but also data aÆnity and data communication costs. He argues that

sophisticated load management is more e�ective than simply assigning tasks to the least

loaded node. However, he concludes that complex load management is worthwhile as long

as it can keep in time with information collection and decision making. Slight congestions

can completely destroy the pro�ts of costly strategies and must be avoided. A strategy with

adaptable complexity is proposed, which reduces its complexity if the scheduler becomes

heavily loaded and/or unable to make the required decisions in time.

The complexity of an application level scheduler's policy is determined by the richness of

the execution model it uses. A shared distributed system is, usually, a complex environ-

ment (section 2.3), with the total workload allocated to each resource varying signi�cantly

with time, due to the activity of several users. If the application being scheduled exhibits

an irregular and unpredictable pattern of resources' requirements, then a relatively com-

plex execution model is probably required to allow the scheduler to meet its performance

requirements.

28 CHAPTER 3. LOAD MANAGEMENT: BASIC CONCEPTS

3.3 Static versus Dynamic Policies

Scheduling policies can be broadly classi�ed as static or dynamic [33]. Static policies

generate the schedule before execution time, based on the system's properties and on

the tasks' requirements. This is also called the mapping problem, because a mapping

function must be de�ned, which assigns tasks to resources before the execution begins

[1, 19, 24, 85, 109]. This approach can be e�ective when the workload can be suÆciently

well characterised before the actual execution, but it fails to adjust to uctuations on the

environment's behaviour. Dynamic policies, on the other hand, generate the schedule at

runtime, using a set of rules to specify correcting actions that redistribute workload over

the system.

To solve the mapping problem a mapping function must be de�ned which assigns each task

to a processor before runtime. The distributed system is represented by an undirected graph

Gp(P,L), where P and L are the set of processors and interconnection links, respectively.

The parallel program is represented by a Task Interaction Graph (TIG), Gn(V,E), where

V is the set of tasks and E is the set of edges representing interactions among the tasks.

The TIG vertices are labelled with weighs that represent the tasks' estimated computation

costs and the edges are labelled with weighs that represent the amounts of communication

involved among tasks. The mapping problem is solved by a function f : V ! P , which

associates each task i with an unique processor q = f(i) [157]. The optimal solution for the

mapping problem is known to be NP{complete [19, 37], meaning that no computationally

tractable (polynomial time) algorithm exists for evaluating an optimal mapping for the

general case. Instead of searching the entire solution space, one has to be satis�ed with

a sub{optimal solution. The factors that determine whether this approach is worthy of

pursuit include:

� the availability of an objective function to evaluate a solution;

� the time required to evaluate this function.

Senar et al. [157] propose two cost functions which can be used as objective functions:

minimax { the cost incurred by each processor q under a certain mapping is due to

computation and communication of all tasks i : f(i) = q mapped onto it,

cost(f ,q) =
X

i:f(i)=q

wi +
X

i:f(i)=q;j:f(j)6=q

ci;j

wi being task i's computational weigh, ci;j denoting the communication weigh for the

edge that joins tasks i and j. Communication among tasks mapped onto the same

3.3. STATIC VERSUS DYNAMIC POLICIES 29

processor is modelled as having no cost. The objective function is to minimise the

maximum cost across all processors,

Obj(f) = min(max
8q

(cost(f ,q)))

summed { this functions tries to minimise the load imbalance cost while keeping the

amount of communication to a minimum:

cost(f) =
X
8q

(
X

i:f(i)=q

jwi �W j+
X

i:f(i)=q;j:f(j) 6=q

ci;j)

W =
P

8i
wi

N
being the average computational weight for all N processors.

Obj(f) = min(cost(f))

The authors use the minimax model because it assumes that communications can occur

independently and in parallel on the system's several communication links. With the

summed model all communications are assumed to occur sequentially, which could be

preferable for systems where the processors are connected by one single communication

link (ethernet{like systems). Both models, however, consider that a processor is either

computing or communicating, but not doing both simultaneously.

Senar et al. do not discuss how to estimate the parameters wi and ci;j. Schopf and

Berman [155] propose a static approach where these parameters are stochastically modelled,

following normal distributions. Their goal is to increase Quality of Service guarantees in

shared environments, by assigning tasks to resources that exhibit lower variance (section

2.4.2).

A common approach to sub{optimal mapping is the use of heuristics. Heuristic schedulers

make use of special parameters which a�ect the system's performance in indirect ways.

These parameters are usually very simple to calculate, although it may not be possible

to prove that a �rst{order relationship exists between the mechanism employed and the

desired result. One possible approach is presented by Casavant [24] and Monien [117]. The

goal is to minimise congestion (number of logical channels mapped onto each physical link)

and dilation (number of physical links one logical channel has to traverse, i.e., physical

distance between two logical neighbours) and equalise the workload among all processors.

Two strategies are possible:

� place processes that are able to execute concurrently on di�erent processors, in order

to maximise the degree of parallelism;

� place tasks that communicate frequently on the same processor, to increase locality.

30 CHAPTER 3. LOAD MANAGEMENT: BASIC CONCEPTS

These two strategies conict with each other and the solution involves tradeo�s. However,

some domain decomposition techniques have been developed, like the recursive bisection

and its variants [16, 49], which try to identify groups of tasks with identical computational

and communication requirements and map them onto the nodes. Other techniques have

been studied to map some often used graphs onto the most common network topologies

[37, 116, 117, 140].

Dynamic policies generate the schedule at run time, using a set of rules to specify correcting

actions that redistribute workload over the system. Among dynamic policies three di�erent

approaches can be distinguished:

� those that do not consider the environment's state at each instant, deciding as if they

were blind;

� those that use environment's state information as input to their set of rules, hoping

to make better decisions;

� those that go a step beyond, by using environment's state inputs to modify either their

rules' parameters or the rules themselves; the scheduling agent's execution model is

modi�ed in runtime in order to better represent the external world; these are usually

classi�ed as adaptive policies.

Most dynamic policies use environment's state information to make load distribution de-

cisions, so they have the potential to outperform static policies by improving the quality

of their decisions. These are referred to as sensor based dynamic scheduling strategies,

since the agent gathers data about the environment's state through its sensors. Dynamic

load distribution policies improve performance by exploiting short{term uctuations in the

environment's state [1, 106]. Since they must collect state information, they incur more

overhead than their static counterparts, but this overhead is often well spent.

Adaptive policies adapt their activities by dynamically changing their parameters, or even

their algorithms, to suit the changing environment's state [51, 52, 183]. Whereas a dynamic

policy takes system{state inputs into account when making its decisions, an adaptive pol-

icy takes these inputs into account to modify either its parameters or the scheduling policy

itself. The performance of scheduling policies is very sensible to their parameters, which

suggests that adaptive load distribution may be able to provide good performance when the

environment's state changes signi�cantly [24, 160, 182]. It has been shown that di�erent

load management algorithms are best suited to di�erent classes of applications [12, 181],

which further suggests that in order to be e�ective over a wide range of workload charac-

teristics, the scheduler must dynamically adapt itself to the current workload pro�le.

An application level scheduler, operating on a shared distributed system, must use a dy-

namic, or even adaptive, scheduling policy, in order to deal eÆciently with the dynamic

3.4. DETERMINISTIC VERSUS STOCHASTIC STRATEGIES 31

characteristics of such environments (sections 2.2 and 2.3).

3.4 Deterministic versus Stochastic Strategies

Scheduling strategies can be classi�ed as deterministic or stochastic according to the rules

governing its decisions [179]. Deterministic methods act according to a set of rules that

use single values, or deterministic values, to parameterise the scheduler's execution model.

Stochastic methods decide using some probabilistic mechanism, in an attempt to max-

imise, with high probability, their performance goals. These methods often use stochastic

execution models which must be parameterised with stochastic values, or probability dis-

tributions, rather than deterministic values. Stochastic values are specially adequate to

quantify environment's characteristics that may vary with time and/or whose exact value

can not be precisely known. Instead of quantifying these variables with exact, single{point

values, a probability is assigned to each of their possible values [14, 153, 155, 156].

Ryou and Juang [144] argue that deterministic algorithms consistently outperform their

stochastic counterparts, but they only consider probabilistic approaches that do not use

environment's state information. Loh et al. [105] claim that stochastic models are more

realistic, since they can capture an application's time varying characteristics.

Some well known stochastic strategies are random allocation and the Stochastic Learn-

ing Automata (sections 4.2.3 and 4.2.7). Stankovic [165] proposes a scheduler based on

Bayesian decision theory, which learns its stochastic parameters during execution time and

successfully manages the load of a small distributed system (section 2.4.2). Schopf, Berman

et al. [152, 153, 154, 155, 156] propose an application level scheduler based on a stochastic

structural execution model. They argue that stochastic modelling is more adequate than

deterministic modelling, when the environment's state changes with time in ways that are

beyond the scheduler's control. This is the case with application level scheduling in shared

distributed systems.

Simulated annealing is a stochastic physical optimisation method which can be used to

solve the load management problem. It simulates the random movements of a collection

of vibrating atoms in a cooling process. The goal is to arrive to an optimally low energy

con�guration of the atoms at some low temperature. When applied to load management

a con�guration corresponds to a state of the system and the �nal con�guration to the

�nal result of applying the scheduler, hopefully a balanced state with respect to workload

distribution [179].

As stated in chapter 2, a stochastic model of the environment may be more adequate

than a deterministic one, when the distributed system's state may change with time and

the application's near future behaviour can not be accurately predicted. Moreover, if the

32 CHAPTER 3. LOAD MANAGEMENT: BASIC CONCEPTS

outcomes of the actions available to the scheduler are not exactly known, then these can

also be stochastically modelled. This is the approach taken throughout this thesis.

3.5 Centralised versus Distributed Approaches

Scheduling policies may be centralised, distributed or some hybrid form of both. Cen-

tralised approaches employ a single agent for state information collection and decision

making. Becker and Zedelmayr [13] claim that centralised approaches are optimal, from a

logical point of view, for several reasons:

� state information is coherent at the central agent and does not need to be replicated

among the system's nodes, causing additional message traÆc; allowing each node

to maintain a local image of the environment's state, usually results in di�erences

among the nodes' images, due to di�erent information ages;

� global knowledge about the entire parallel system's state as well as about the progress

and interrelationships of the application's tasks can be exploited, avoiding counter-

productive decisions that would arise from di�erent partial information and thus

achieving coherence between the various decisions [75].

Distributed approaches divide the information management and decision making among

the system's nodes, usually employing one agent per node. Each agent keeps information

about its state and the states of some set of its neighbours. This approach is scalable

because increasing the number of nodes does not increase the amount of information each

node has to handle. The main disadvantages of distributed approaches are that each

scheduling agent has only a partial view of the entire environment, and di�erent agents

might have di�erent views of the environment's state due to information aging. This can

lead to contradictory decisions which increase the overheads.

Although some authors claim that centralised policies achieve better results, are simpler

and more e�ective than distributed ones [182], and scale with system's size [171], the great

majority agrees that a load management policy must have some degree of distribution in

order to avoid bottlenecks and thus be scalable [41, 92, 107, 125, 160, 178]. Central load

management has no logical drawbacks, but it is not scalable as it will cause processing

and communication overheads to grow with system's activity and size. Above some limit,

centralised approaches can no longer improve the overall throughput.

Scheduling implies at least two activities which require communication among the dis-

tributed system's nodes: environment's state information gathering and task transfers. If

each node is required to interact with all other nodes, then it will have to use collective

3.5. CENTRALISED VERSUS DISTRIBUTED APPROACHES 33

communication mechanisms | such as broadcast and global gathering | which are not

scalable and create intolerable overheads and congestion in large systems.

To reduce the potential for both this communication bottleneck and processing time de-

lays at the central agent, many approaches partition the system into sets of nodes called

domains. A node only exchanges information and tasks with members of its domain. In

some cases, each node's domain is restricted to its physical or logical neighbours and is

static during all the execution time. These are called nearest{neighbour algorithms. These

have a less stringent requirement on the spread of local workload around the system than

global algorithms, therefore they are scalable with system's size. Nearest{neighbour algo-

rithms are iterative in nature, in the sense that successively imposing local load distribution

inside each domain, makes progress towards a global uniform load distribution, since do-

mains overlap [179, 180]. One disadvantage of these schemes, is that they are usually slow

in distributing load across domains when a sub{region of the system becomes suddenly

overloaded (formation of hot regions with an excessive load causes the congestion problem

[158]) [108, 117, 151].

Ryou and Suen [144, 169] propose an approach which does not consider physical neighbour-

hood, but reduces the number of nodes to which a given node must send load information

updates. This set of nodes is referred to as the processor's sending set. Using balanced

sending sets, the number of load information messages is minimised and load distribu-

tion can occur between any pair of nodes, either through direct negotiation or through an

arbitrator node which has knowledge about the loads of those nodes.

Shin and Chang [158] propose a method based on static domains (referred to as buddy

sets) and preferred lists. Each processor's preferred list indicates with which nodes it

will exchange load information and tasks. Each node must select underloaded nodes to

exchange tasks with, respecting its preferred list's order. The nodes appear in the various

preferred lists in di�erent order (although trying to maintain physical distance order),

reducing, therefore, the probability of two, or more, overloaded nodes selecting the same

underloaded node and overowing it with task transfers (coordination problem).

An alternative approach is to apply a centralised load management policy inside each

domain. Tight load management e�orts are provided within the domains, while less inter-

action and task transfers are performed among them. This is usually called a distributed

clustering approach (section 4.2.6) [10, 11, 12, 13, 125]. This clustering may be continued

hierarchically with clusters of clusters, or scheduling among clusters may be performed

between direct neighbours only. Hierarchical clustering tends to impose more overhead on

higher level managers, while interaction with neighbours requires two di�erent load man-

agement policies and shows counter{productive decisions similar to completely distributed

schemes, although at a smaller scale. It has been shown that clustering approaches are a

good compromise, since they are able to exploit some advantages of centralised strategies

34 CHAPTER 3. LOAD MANAGEMENT: BASIC CONCEPTS

and nevertheless are scalable.

The domains' sizes must be carefully selected. If these are too large, they will su�er

from the same problems as centralised schemes. If they are too small, then the problems

associated with distributed schemes will arise. One obvious solution is to dynamically

adapt the domains' sizes. If a given cluster's scheduling agent becomes heavily loaded,

unable to make decisions in reasonable time, then this cluster might be splitted into two or

more clusters, each with a smaller number of elements. On the other hand, if a scheduler

becomes underloaded, it can search among its neighbours for a suitable partner with whom

it can merge, forming a larger cluster. Splitting the clusters when the system load is high

carries some computational and communication overheads, which consume these resources

exactly when they are most needed. Therefore, some alternatives should also be considered.

One such alternative is for the scheduler to switch to a simpler and faster strategy, if the

increase in the system's activity is supposedly of short duration. It switches back to the

full strategy as soon as the congestion is handled, or the cluster is splitted if it turns out

to be a long lasting situation. On the other hand, merging clusters is done when these are

lightly loaded, therefore the resources consumed by this operation should not be critical.

The selection of a centralised, distributed or hybrid architecture for the scheduler, should

depend on the scheduler's goals and on the system's size and overall activity. If the sys-

tem's reliability is a main concern, then centralised architectures must be avoided, since

the central scheduling agent's failure can compromise the entire system's performance. If

the scheduler is required to scale with system's size and/or activity, then a distributed

architecture should be preferred, since centralised approaches can compromise the sched-

uler's eÆciency. Nevertheless, centralised approaches are very e�ective for small distributed

systems, due to the central agent global and unique view of the environment's state.

3.6 Scheduling Policy Components

Scheduling policies are often described in terms of four sub{policies, or components, and

the transfer mechanism used to move tasks around the distributed system [160]:

� information policy { set of rules to decide when, from where (which resource or

application's task) and what information must be collected about the environment's

state;

� transfer policy { set of rules to determine whether a given resource is in a suitable

state to participate on a workload transfer;

� location policy { set of rules to identify the various partners enrolled on a given

action, e.g., workload transfer;

3.6. SCHEDULING POLICY COMPONENTS 35

� selection policy { set of rules to decide which work must be transferred among the

partners identi�ed by the location policy.

3.6.1 Information Policy

The usefulness of a scheduling policy is highly dependent on the quality of load measure-

ment and prediction [175]. The information policy determines when, where and what,

information must be collected, through the scheduling agent's sensors, about the sys-

tem's resources current workload and tasks' workload pro�les. Information policies can

be broadly classi�ed into three types, although hybrid versions of these may exist:

� Demand{driven policies, which imply that an agent collects information about the

environment's state only when it needs that information for decision making. In-

formation collecting is, therefore, triggered by another sub{policy. The mechanisms

for demand{driven information collection are probing or bidding. Under the probing

method (section 4.2.4) a node willing to participate in a workload transfer selects

another node and checks whether or not it can participate in this workload redis-

tribution. If not, the process is repeated until a suitable partner is found or the

number of probes exceeds the probe limit. Though Eager et al. [39] claimed that

the performance of this policy is insensitive to the probe limit's value, other authors

claim that it is an essential parameter [158, 182]. It has been shown that small probe

limits are appropriate [39]. Under the bidding method (section 4.2.4) a request for

bids is sent to a group of nodes (eventually broadcasted) and bids are received from

those willing to participate in the transfer. Bids are then evaluated to choose a suit-

able partner1[25, 158, 166, 167]. These methods do not use any history information

regarding past scheduling decisions or other nodes' states, hence they do not incur

any overhead maintaining this information. However, information has to be collected

whenever a task is to be transferred, which introduces additional delays in completing

these tasks.

� Periodic policies, which collect information periodically. A �xed overhead is imposed

upon the system because environment's state information is collected and maintained,

regardless of whether this information is used or not. However, there is no probing

delay whenever a decision has to be made. The image maintained of the environ-

ment's state may not correspond to the current environment's state due to delays

in the communication network and to the periodic nature of information collection.

This phenomenon is usually called information aging, and is closely related to the

period with which information is collected. However, collecting information more

frequently increases the overheads imposed upon the system by the scheduler and

1This is the location policy's responsibility

36 CHAPTER 3. LOAD MANAGEMENT: BASIC CONCEPTS

there is always the delay associated with the communication network. Also, with

distributed policies, the image that a scheduling agent has about the system's state

may be di�erent from agent to agent. This may lead to complex location policies.

� State{change driven policies, which collect information about the resources' state

whenever it changes. Most state{controlled algorithms classify a resource's state as

one of n possible states, depending on its actual load (L) and a number of thresholds.

A 3{state policy can be speci�ed as [93, 106, 121, 178]:

L < T1 Underloaded node

T1 < L < T2 Mediumloaded node

L > T2 Overloaded node

Various combinations of these di�erent information policies are possible. An information

policy might be periodic, but a node willing to participate in a task transfer might poll the

best candidate to con�rm that its current state still corresponds to the local image.

A dynamic scheduling agent must have a set of sensors, referred to as the agent's sensorial

apparatus, by means of which it acquires information about the environment's state. In

computing systems, these sensors are usually based on static instrumentation, i.e., they

are composed of a set of software instructions inserted into the application's code [21].

The design of a sensor must carefully balance the overhead and changes induced on the

environment's behaviour by the sensor itself (level of intrusion), with the accuracy and

relevance of the quantity being measured. Excessive instrumentation may perturb the sys-

tem, and even change the events' order among the di�erent tasks of a parallel application,

while reduced instrumentation can compromise the measurements' accuracy. Sensors can

be classi�ed as either event{driven or time{driven [132]. Event{driven sensors are activated

by the occurrence of particular events, while time{driven sensors are based on sampling,

i.e., they are activated at �xed time intervals. Demand{driven and state{change driven

information policies use event{driven sensors, whereas periodic policies use time{driven

sensors.

A key issue is to identify suitable metrics which adequately describe a resource's current

load. Such metrics are generically referred to as load metrics (section 6.4). A good load

metric should [46, 121, 160]:

� correlate well with task response times, since it is used to predict the performance of

a task if it is executed at some particular resource;

� be usable to predict the load in the near future, since the response time of a task will

be a�ected more by the future load than by the present load;

� be relatively stable; short uctuations in the load should be discounted;

3.6. SCHEDULING POLICY COMPONENTS 37

� be relatively cheap to compute.

A number of load metrics have been presented in the literature: CPU queue length, CPU

utilisation, normalised response time, I/O queue length, memory utilisation, context{

switch rate, system call rate, etc.[46, 96]. It has been observed that a task at a node

is likely to demand services from a number of resources (e.g. CPU, memory, disks), there-

fore it might be important to de�ne load not only as a single resource in a node, but as a

collection of resources. Ferrari [46] proposed a linear combination of resource queue lengths

as a load metric. If an incoming task requires sj seconds from resource rj and the queue

length of that resource is qj then the load metric, as perceived by that job, is

l =
NX
j=1

(sj � qj)

N being the number of di�erent resources. This load index is task dependent as it takes

into consideration each task's demands. However, the assumption that task's demands are

known in advance is too strong in most cases. Ferrari studied also another load metric,

based on a linear combination of the various resources' queue lengths. His results showed

that the performance di�erences among the cases where metrics based on the CPU queue

length alone were used, and those where I/O and memory contention were also considered,

are not signi�cant, suggesting that the CPU is the predominant resource in their hosts.

Kunz [96] got similar results doing experiences with both one{dimensional load metrics

(CPU queue length, available memory, context switch rate, etc.) and linear combinations

of these. These results and those of [7, 121, 183] suggest that CPU queue length is one of the

most adequate load metrics and that its value is not required to be very accurate. Ferrari

[46] used exponentially smoothed average CPU queue length over a time window, instead

of instantaneous queue length, to eliminate high{frequencies components of the rapidly

changing load, which may be regarded as noise. Care should be taken when choosing the

time window, because if it is too long past loads will be emphasised and performance may

become worse. The optimum averaging interval is clearly dependent upon the dynamics of

the workload.

Since an application level scheduler is designed by the application programmer itself, two

di�erent approaches may be taken when selecting the load metrics: these can be either

application{independent or application{dependent. Application{independent load metrics

have just been discussed, and they refer to system's characteristics, such as each resource's

waiting queue length. Application{dependent load metrics convey more information about

each resource's performance on application speci�c tasks. On image processing applica-

tions, for instance, each node's load can be characterised by the number of pixels processed

by unit of time. If a node's background workload, imposed by other applications sharing

the same set of resources, increases, then the rate at which it processes image pixels must

decrease. To avoid dependencies among the load metric's actual values and the particular

38 CHAPTER 3. LOAD MANAGEMENT: BASIC CONCEPTS

image sub{region being processed by each node, image templates, equal on all nodes, can

be used to compute the load metric, instead of using the actual image. This approach will,

however, impose an additional overhead, since computing the load metric does not directly

contribute to �nish the task in hand. The bene�ts of using an application{dependent load

metric must be carefully weighed with the overheads of computing it.

3.6.2 Transfer Policy

The transfer policy determines whether a resource is in a suitable state to participate in

a workload transfer, either as a sender or a receiver. Most transfer policies are either

threshold{based or relative. Threshold policies classify a resource as a sender if its load

metric exceeds a threshold Ts or as a receiver if it falls below a threshold Tr [106, 160].

The choice of these thresholds is fundamental for the algorithm's performance. Clearly,

the best threshold values depend on the environment's load and the task transfer cost.

At low loads and/or low transfer costs, thresholds should favour task transfers; at high

loads and/or high transfer costs remote execution should be avoided. Although Eager [39]

states that the optimal threshold is not very sensitive to the environment's load, several

techniques were studied which eÆciently and in runtime adapt the threshold to the system's

load [12, 34, 133].

Relative transfer policies take as input the di�erence among a resource's load and that of

its neighbours. Resources are considered able to participate in a transfer, if their loads

di�er by more than some threshold Æ. They may then transfer some �xed number of tasks

or a fraction of the load di�erence [25, 94, 108, 117, 151, 160, 180].

Any transfer policy should strive to minimise remote execution activities in the system

(task transfers). When the system is heavily loaded, much higher transfer delays than

the average may be expected, which can severely degrade performance. Only a small

percentage of the tasks needs to be remotely executed in order to achieve e�ective load

management [92].

The transfer policy may be either periodic or event{triggered. The algorithm may period-

ically check if the resource's state quali�es it as a candidate for a workload transfer or not.

However, the great majority of the policies proposed in the literature are event{triggered.

If a resource's state changes, then a task transfer may be possible. The transfer policy

might also be triggered because the node is polled by another one to check its suitability

to act either as a receiver or a sender on a task transfer.

Task transfers may be sender{initiated, receiver{initiated or symmetrically{initiated. With

sender{initiated policies (also known as source{initiated) resources with extra work must

search for a suitable receiver; with receiver{initiated policies (also designated as server{

3.6. SCHEDULING POLICY COMPONENTS 39

initiated) underloaded resources take the initiative looking for suitable senders; with sym-

metrically{initiated policies both senders and receivers may initiate task transfers. Sender{

initiated algorithms may be ine�ective at high system loads, since most of the resources

are senders, hence it is unlikely that the majority of them will ever �nd a suitable receiver.

Even worst, they might overow some of the potential receivers with too much tasks. Even

if the potential receivers are allowed to reject additional work sent to them, more control

messages are being introduced and useless work is being performed in a system already

highly loaded. Under sender{initiated policies the burden of initiating the activity is taken

by an already overloaded resource. Under receiver{initiated policies this overhead is placed

on the underloaded nodes, which seems to be more adequate. However, if the system is

lightly loaded these policies will fail to �nd a suitable sender. How many times, or for

so long, should a receiver try to �nd this sender? It can suspend its activity after some

threshold (or timeout), but then it will fail to detect future overloaded resources, unless

its activity is periodically reinitiated: a disadvantage of receiver{initiated algorithms is

that the receiver is not aware that other resources became potential senders, neither these

senders can notify it. An alternative approach is to allow receivers to place reservations

on other resources, which will later transfer work if they are still receivers. A further

disadvantage is that a request for work may arrive to an overloaded resource when it is

executing all its tasks, forcing a preemptive task migration, which is expensive (selection

policy). However, receiver initiated policies have the advantage of automatically turning

themselves o� when the system load is high (there are no receivers), decreasing the number

of control messages [39, 92, 121, 160, 171, 182].

Symmetrically{initiated algorithms have the advantages and disadvantages of both sender{

and receiver{initiated algorithms. A symmetrically initiated adaptive algorithm is pro-

posed by Shivaratri [160], which switches its behaviour between sender and receiver initi-

ated transfers according to the environment's load (section 4.2.4).

3.6.3 Selection Policy

Once a decision is made to enroll a given resource on a workload transfer as a sender, a

selection policy must select the task (or tasks) to be transferred.

A workload transfer may be either preemptive or non{preemptive. Preemptive transfers

involve transferring partially executed tasks. This is expensive since it requires collect-

ing a process' execution state, changing all its communication channels, etc. Although

many authors do not even consider preemptive transfers [171, 182], others claim to do it

with success. Scheurer [151] presents a tool which does preemptive process migration in

a Transputer network with very good results; Bozyigit et al. [17] developed the LBDCS

system, which performs preemptive process migration and load balancing on a Linux net-

40 CHAPTER 3. LOAD MANAGEMENT: BASIC CONCEPTS

work. Balter [7] uses a preemptive migration strategy whose selection policy is based on

UNIX process lifetime distributions on an academic environment. However, the processes

considered are completely independent of each others. Non{preemptive task transfers in-

volve only tasks that have not began execution and hence do not require transferring the

task's execution state. A resource may be overloaded and yet have no tasks available

for non{preemptive transfer if it is polled by a receiver. When performing preemptive

task transfers, the scheduler can use dynamically generated information about a task's

behaviour to reallocate it to a di�erent resource. Using only non{preemptive transfers this

is not possible, although dynamically gathered information may be used to allocate future

similar tasks. Non{preemptive task transfers are sometimes designated as task placements

or one{time assignments. However, one{time assignments usually refer to tasks that once

assigned to one resource can no longer be migrated once again, independently of whether

or not its execution has began.

When a parallel application entails applying the same algorithm to large numbers of data

points, this data set can be partitioned and assigned to several processors, in order to

be processed in the shortest possible time | data domain decomposition. This kind of

computational loads can be classi�ed based on its divisibility property. If the data set can

be divided into any number of segments of any desired fractional size, then it is referred

to as an arbitrarily divisible load. If there is a limit to the load's degree of divisibility, then

it may be classi�ed as modularly divisible [15]. A scheduler dealing with divisible loads,

may decide the division of a task whose processing has already began. It just splits the

task onto two or more sub{tasks, by partitioning the task's data set.

A selection policy should take several factors into consideration [7, 160, 175]:

� task transfer overheads must be minimised; non{preemptive transfers and small tasks

(small amount of information) carry less overhead;

� the transferred task's execution time should be enough to justify the cost of the

transfer; even if tasks' execution time is unknown, it should be possible to classify

them as short or long lived tasks, and consider only the latter ones for migration; Zhou

[182] has shown that some classi�cation errors might be tolerated, since scheduling

algorithms are quite robust with regard to this parameter;

� the number of location{dependent resources needed by the selected task should be

minimal; these resources include speci�c data, i/o devices (display, keyboard, disks),

etc.

3.7. LOAD MANAGEMENT EVALUATION 41

3.6.4 Location Policy

The location policy selects a suitable workload transfer partner, usually using information

about the resources' states. It must avoid ooding an underloaded resource with tasks

(coordination problem), which can happen when one resource is simultaneously selected

as a target by several scheduling agents. Some policies try to �nd the best partner among

the domain, while others just look for an adequate partner. The random location policy

(section 4.2.3) selects a random partner without using any information about the target's

state. Surprisingly good results can be achieved with this policy [39]. Some location policies

use probabilistic schemes instead of deterministic ones. Probabilistic schemes distribute

tasks according to a set of probability distributions (section 4.2.7).

Mehra [111, 113] proposes an approach which uses one comparator neural network per

resource. These learn to predict the speedup of an incoming task, using only the resource's

utilisation patterns observed prior to the task's arrival. The lack of job speci�c information

is overcome by learning to compare the relative speedup of di�erent resources with respect

to the same task, rather than attempting to predict absolute speedup. The numerous

parameters of this dynamic approach are tuned using a genetic algorithm. Neural networks

are trained using an o�{line learning system.

The location policy may deal with some restrictions when searching for a destination

resource. These restrictions may include resource requirements, tasks' precedences [11],

task interrelationships and data locality [163]. Data locality addresses the fact that tasks

require certain data items, which may have to be fetched from remote locations [12, 27, 139].

3.7 Load Management Evaluation

The load manager, or scheduler, dynamically generates a mapping, or schedule, in order to

satisfy its performance goals. To generate and apply this schedule, the load manager itself

consumes the resources it is managing. To evaluate a scheduling agent's design it is not

enough to evaluate the quality of its decisions, but it is also necessary to take into account

the resources consumed by the agent itself.

The design of an eÆcient scheduler requires a careful analysis of the costs involved. Only

with a thorough understanding of the scheduler's cost structure, the reasons why these

costs exist and the potential bene�ts associated with them, can the programmer intervene

on the scheduler's design in order to make it more eÆcient. A set of metrics is required to

measure the scheduling costs and the scheduler's performance; this set of metrics is referred

to as the performance model.

42 CHAPTER 3. LOAD MANAGEMENT: BASIC CONCEPTS

3.7.1 Performance and EÆciency

Since the scheduling agent also consumes the resources whose utilisation it is trying to

optimise, the scheduler itself imposes additional overheads upon the environment. These

are referred to as scheduling overheads. These overheads may hinder the scheduler from

achieving its performance goals. Scheduling overheads must, therefore, be kept under

acceptable levels, so that they do not overcome the bene�ts achieved with the scheduler's

activity. The scheduling agent measures these overheads by using a set of scheduling

overhead metrics.

The scheduler's performance goals degree of achievement is referred to as the scheduler's

performance, or e�ectiveness. This is closely related to the quality of its decisions, and

can be described as the application's satisfaction with how well the scheduler manages the

resources in question. The e�ectiveness of the scheduler's decisions can only be evaluated

by using suitable performance metrics.

EÆciency is a measure of the scheduling overheads. It is related to the application's

satisfaction in terms of how costly it is to be serviced by the scheduler and to the level of

intrusion that it imposes on the system.

The desirable scheduler's behaviour is that which has the highest level of performance, while

incurring the least overhead [37]. A scheduler with high performance and poor eÆciency,

i.e., high overheads, is preferable to one which is more eÆcient but achieves less perfor-

mance. The scheduler's main objective is to ful�l its performance requirements. Evaluation

of performance and eÆciency is very diÆcult due to their inherent entanglement. Imposing

low overheads might prevent the scheduler from meeting its performance objectives due

to improper decision making, whereas imposing too much overheads will lead to the same

undesired �nal result, since too much resources are dedicated to the managing function. In

order to correctly balance these two factors the scheduler must perform, either explicitly or

implicitly, a pro�tability determination analysis [175, 178], which estimates the potential

gain obtainable with a given action and weighs it against the overheads associated with

that action.

The scheduler's evaluation must be done in terms of the level of performance achievement,

rather than using some second{order metrics. An example of such metric is the standard

deviation of CPU time across all nodes, used to evaluate some load balancing schedulers

[29, 30, 120]. The performance objective is, usually, to reduce execution time, not to balance

the system's load. A well balanced system, presenting low standard deviation, may have

a longer execution time than an unbalanced one, due to the overheads imposed by the

scheduler. Although second{order metrics may be important indicators of the scheduler's

behaviour, the designer can not forget which are its real performance objectives.

3.7. LOAD MANAGEMENT EVALUATION 43

3.7.2 Cost Analysis

The design of an eÆcient scheduler requires a careful analysis of the costs involved, the

reasons why these costs exist and what are the potential bene�ts associated with them.

The costs induced by the scheduler depend on the environment where it operates and on its

performance objectives. On a distributed computing system, scheduling overheads usually

include CPU time, memory space and communication bandwidth.

Some scheduling overheads represent the resources the scheduler consumes, since they result

directly from the scheduler's activity. These are referred to as direct costs (table 3.1). They

depend on the scheduler's strategy complexity and on the frequency with which it triggers

its various mechanisms.

By understanding how direct costs are distributed across the scheduling policy components,

the programmer can optimise the scheduler's algorithm, in order to increase its eÆciency.

Table 3.2 presents the distribution of direct costs over these components.

Besides direct costs, there are also indirect costs. These are consequences of the sched-

uler's selected actions. By changing the resources allocated to the application's tasks, the

scheduling agent modi�es both the application's course of action and the pattern of re-

sources' utilisation. These changes on the environment's behaviour may cause additional

overheads that reduce the scheduler's eÆciency.

Indirect costs depend on the application and distributed system being managed. Three

di�erent kinds of indirect costs occur for many applications, in distributed memory parallel

systems:

work replication { when a task is transferred among nodes there is the possibility that

some work has to be done by all nodes involved in the task migration; this is usually

true in data parallel applications, where splitting a data region into several sub{

regions can require that values associated with the regions' boundaries be computed

at all nodes;

resources' idle times { even though the scheduler tries to minimise the resources' idle

times, there are several reasons why it may fail to keep all resources busy during the

whole execution time; it may, for instance, fail to �nd a suitable partner for a task

transfer, or it may decide not to transfer additional work to an idle node, because this

migration's overheads would be larger than the respective bene�ts; above all, it may

make decisions that increase the resources' idle times due to errors in its execution

model or due to poor accuracy on the environment's metrics;

remote data access overheads { the tasks' migrations decided by the scheduler might

increase the amount of remote data required by the tasks, by reducing data locality.

44 CHAPTER 3. LOAD MANAGEMENT: BASIC CONCEPTS

Scheduling activity Comments

These metrics are the scheduler's environment inputs. The
means used to compute them constitute the scheduling agent's
sensory apparatus.

Bene�ts { the more accurate and diverse these metrics are, the
Estimation of the more knowledge is available about the environment's state, hence
environment's the more potential for good decision making.
metrics

Costs { this consumes both CPU time, required to compute the
metrics, and communication bandwidth, since some metrics may
be related to the network subsystem.

In a distributed system the environment's metrics are computed
across the whole system and must be communicated to the
scheduler. The scheduler itself may be distributed and exchange
state information among its components.

Information Bene�ts { related to the estimation of the environment's metrics.
messages

Costs { communication bandwidth and CPU time. Many
distributed systems { hardware and software { require messages
to be packed/unpacked and eventually routed by the computing
nodes, which may consume CPU time.

Depending on the protocol used by the scheduler, it may need to
exchange control messages among its various components and the

Control messages processes it is managing.

Costs { communication bandwidth and CPU time.

Based on what it knows about the environment's state and on its
performance requirements, the scheduler must select the best
action to take at each instant.

Selection of the
most adequate Bene�ts { the better the quality of the decision making process,
action the higher the degree of performance achievement.

Costs { CPU time.

After selecting which action to take, the scheduler must execute it.
The set of available actions constitute the scheduler's e�ectual
capabilities. This set depends on the scheduler's design, but it
may include: do nothing, workload transfer, change the scheduling

Execution of the policy, collect more information about the environment's state.
selected actions

Costs { most actions require the engagement of one or more
nodes' CPUs. They may also consume communication
bandwidth, since the scheduler must communicate with the
appropriate nodes and work might be transferred among them.

Table 3.1: Direct costs induced by the scheduler

3.7. LOAD MANAGEMENT EVALUATION 45

Sub{policy Role Direct Costs

Information Metrics estimation CPU time
policy Information messages Communication bandwidth
Transfer Selection of the CPU time
policy most adequate action
Location Selection of the CPU time
policy most adequate action
Selection Selection of the CPU time
policy most adequate action
Transfer Execution of the CPU time
mechanism selected actions Communication bandwidth

Table 3.2: Direct costs distribution across the scheduling policy components

Indirect costs may prevent the scheduler from achieving its performance objectives, and

should, therefore, be taken into account on the decision making process. Indirect costs

are related to the quality of the decisions made by the scheduling agent. An high level of

indirect costs, that exceeds the bene�ts attained with the selected actions, suggests that

the scheduler is not making the correct decisions.

3.7.3 Scalability

Scalability can be de�ned as a system's ability to achieve a performance which is pro-

portional to its hardware and software resources' capabilities. According to Hwang [73],

a computer system is scalable if it can scale up (improve its resources) to accommodate

ever increasing performance and functionality requirements and/or scale down (decrease

its resources) to reduce costs.

There are various dimensions of scalability, including:

size scalability { refers to adding more hardware resources, such as processors, memory,

disks, etc.

software scalability { improvement of some software component, such as operating sys-

tem, compiler, etc.

technology scalability { achieved by using next{generation components.

A scheduler is scalable if it is able to achieve its performance objectives as the system's re-

sources scale. The scheduler's eÆciency must be kept constant as the system size increases,

i.e., it should be independent of system size [92, 125, 171].

46 CHAPTER 3. LOAD MANAGEMENT: BASIC CONCEPTS

Unfortunately, the overheads of managing a parallel system increase with its size. An

application's speedup does not increase linearly with the system's resources capabilities,

instead it tends to saturate [49]. It is common, however, to scale the problem's size with the

system's size to keep a constant eÆciency [64]. The isoeÆciency function [60] studies the

rate at which the problem's size must increase to keep a constant eÆciency. This function

is a very powerful tool to perform scalability analysis and has been applied to the load

management problem [95]. The rate at which the problem's size is required to grow with

respect to the number of processors to keep a constant eÆciency depends on the problem

being solved, the algorithm used and the machine where the application is implemented.

The isoeÆciency function captures the characteristics of an algorithm/architecture combi-

nation in a single expression, allowing the evaluation of a particular system for a range of

problem and system sizes.

3.7.4 Stability

Stability is the scheduler's ability to detect when the e�ects of further actions (which

consume the resources being scheduled) will not improve the environment's state. A stable

algorithm will return the environment to a state of equilibrium after a perturbation from

this equilibrium and, in the absence of further input, ceases to take actions which cause

changes in environment's state in �nite time [25]. In the context of load management, a

perturbation is caused by a sudden change in the environment's behaviour, due either to

the arrival or removal of tasks or background workload, or to modi�cations on the tasks'

activity, which may cause imbalances among the nodes' loads. Instability relates to the

amount of schedulable resources being consumed by the scheduler, while the environment's

state is changing, but not moving towards a more stable state.

According to the queueing theoretic perspective, when the tasks' long{term arrival rate

is greater than the rate at which the system can perform work, the CPU queues grow

unbounded; such a system is unstable. This is the case when the sum of the load due to

external work arrival and the load due to the overhead imposed by the scheduler becomes

higher than the system's service capacity [25, 92, 93, 125, 133, 160, 166]. However, the

scheduler should be robust enough to deal with such a condition for a �nite period of time.

The scheduler's e�ectiveness is measured, in most cases, by task average response time.

So a stable system can be de�ned as one whose task response time is bounded for any

reasonable excitation (input) [166]. The problem is, bounded by what? Simply saying

that task response time should not go to in�nity, only covers a limited situation where

the system enters a 100% thrashing state. Establishing a practical bound is rather diÆ-

cult, since a degradation of response time is expected as the system's load increases. In

reality, the task response time is, usually, a non{linear function of the system's load. Ad-

3.7. LOAD MANAGEMENT EVALUATION 47

ditionally, there are requirements which are speci�c to the policy and to the environment

being managed. It is quite easy to debate stability using vague terms, such as "too much

task movement", "bounded response time", "don't over or under react". But quantifying

these terms is dependent on the scheduler designer's subjective view of what constitutes

reasonable behaviour. Stankovic [166] argues that a stability de�nition should include:

� a requirement for boundness;

� a list of requirements for the generic issues of scheduling algorithms;

� a list of requirements for stability issues speci�c of the particular scheduling policy

being used;

� a list of requirements for stability issues induced by the environment.

The author claims that scheduling algorithms need speci�c mechanisms to handle all the

stability requirements and the many special cases that can occur under the diverse envi-

ronment's conditions, as opposed to only tuning the algorithm's parameters. A common

mistake when designing such algorithms is to focus on �ne tuning the equilibrium decisions.

However, the actual dynamic environment in which the algorithm is required to operate

may di�er from this equilibrium state.

Casavant [25] identi�es four sources of instability and their e�ects on the environment's

behaviour:

intolerance instability { if the algorithm reacts to small imbalances in load distribution,

it may enter a state where tasks are continuously transferred among a given set of

nodes to correct small load di�erences | processor thrashing. To avoid this type of

instability, the de�nition of optimal load distribution may be relaxed, allowing the

system to tolerate small imbalances.

overresponse instability { this is caused by an attempt to respond too fast to local

imbalance conditions. When an imbalance is detected, the system tries to transfer a

large proportion of work to achieve an optimal load distribution as soon as possible.

This may increase dramatically the number of transfers, causing instability, and

therefore decreasing the scheduler's performance. In fact, the author argues that an

increase in load movement is always accompanied by an increase in load distribution

variance and, hence, in poor performance.

high load instability { the scheduler's activity is related to the total amount of load

present in the system at any given instant. As the load increases, the opportunity for

load imbalances and to overreactions becomes greater. This may lead to instability.

In a system with low level of load, the opportunity to create large imbalances is not

48 CHAPTER 3. LOAD MANAGEMENT: BASIC CONCEPTS

present, and this kind of instability is avoided. As the amount of load increases,

a corresponding decrease in system performance might be expected. However, the

decrease in performance is not proportional to the increase of load. This statistic

supports the belief that under conditions of heavy system load, the scheduler may

do more harm than good with respect to system performance.

invalid assumption instability { it results when the load distribution algorithm violates

certain assumptions made by the designer. It may happen, for example, if the system

was designed to run on a certain environment and it is actually running on one with

di�erent characteristics.

It is generally accepted that activities related to remote execution should be restricted to a

small percentage of the system's activity, otherwise the system might be unstable [92, 182].

Kremien and Kramer [92] propose two measures to evaluate a scheduler's stability:

% of remote execution { related to the number of task transfers decided by the sched-

uler. This �gure must be minimised;

hit{ratio { the ratio of successful decisions. A successful decision is one which contributes

to achieve the scheduler's performance goal. An unsuccessful decision results in

useless information exchange and/or task movement. The hit{ratio is measured as

the ratio of successful decisions to the total number of decisions. This ratio must be

maximised.

Computing the hit{ratio requires the identi�cation of all the right and wrong decisions

made by the scheduler. This may be somewhat diÆcult and leads to what is known as the

credit{assignment problem [115, 170]: how to distribute credit for success among the many

decisions that have been involved in producing it?

3.8 Summary

In order to design an e�ective application level scheduler, the application programmer must

take into account a number of basic concepts, which are discussed throughout this chapter.

An application level scheduler managing a distributed shared system should employ a

dynamic scheduling policy, in order to exploit uctuations on the environment's behaviour.

Furthermore, its execution model must be relatively complex, in order to deal with these

environment's inherent complexity.

Scheduling policies can be described in terms of four sub{policies | information, transfer,

selection and location policies | each establishing a set of rules for the various scheduling

3.8. SUMMARY 49

activities. The selection of the appropriate load metrics, handled by the information policy,

is of crucial importance in determining the scheduler's e�ectiveness. These must accurately

predict the near future workload in each resource. Application level schedulers can use

application{dependent load metrics, which convey more information about each resource's

performance on application speci�c tasks than application independent metrics.

Since the scheduler itself consumes the resources it is managing, it must be evaluated by

the relation between the performance obtained with its decisions and the costs with which

that performance is achieved. The desirable system's behaviour is that which has the

highest level of performance, while incurring the least overhead. Scheduling overheads can

be divided into direct and indirect costs. Direct costs are related to the resources con-

sumed by the scheduler's activity, while indirect costs are consequences of the scheduler's

selected actions. Scheduling overheads, both direct and indirect, are identi�ed. A thorough

understanding of these costs is essential to enable the design of an e�ective and eÆcient

scheduler.

50 CHAPTER 3. LOAD MANAGEMENT: BASIC CONCEPTS

Chapter 4

Load Management: Algorithms

Contents

4.1 Classi�cation of Scheduling Algorithms 52

4.2 Scheduling Policies . 61

4.3 Distributed Job Management Systems 72

4.4 Summary . 74

A wide range of di�erent scheduling policies can be found on the specialised literature.

These exhibit very di�erent performance requirements and are targeted towards di�erent

environments. Even though most of these policies do not address the problem of uncer-

tainty, it is useful to have a global view of some of the proposals that have been made

to solve the scheduling problem, in order to better understand it. This chapter presents

an overview of some of the most well known scheduling policies, enhancing some of their

features, whenever these are specially relevant to the current work.

A systematic classi�cation scheme is required to enable the comparison of di�erent schedul-

ing policies. This classi�cation scheme must facilitate the organisation of the policies' main

properties, and must clearly distinguish the algorithm's main features from its low{level

implementation details. Section 4.1 presents several classi�cation schemes and justi�es the

selection of one of them.

In the last few years some packages, usually referred to as Distributed Job Management

Systems (DJMS), have appeared, whose role is to schedule distributed systems' resources

at the system level, ensuring high throughput, reliability, transparency and enforcing the

distributed system's owner usage rules. Although the present work is focused on application

level scheduling, these higher level schedulers have to deal with some similar concerns, like

uncertainty about the system's state. This suggests that some of the ideas discussed

throughout this thesis can also be applied to the DJMS scheduler. Section 4.3 briey

discusses some issues related to Distributed Job Management Systems.

51

52 CHAPTER 4. LOAD MANAGEMENT: ALGORITHMS

4.1 Classi�cation of Scheduling Algorithms

Many di�erent scheduling algorithms are described in the specialised literature. Most of

these descriptions, however, are not systematic, consisting in a mixture of text, drawings,

pseudo{code and inconsistent terminology. It is quite hard to distinguish the algorithm's

main features and properties from the low{level implementation details. One's ability

to evaluate and compare the various algorithms is severely impaired by the absence of a

common reference framework. Many authors claim that a systematic classi�cation scheme

is needed.

The goal of developing a classi�cation scheme is to increase and organise overall knowledge

about a class of problems. There are at least four properties that a classi�cation scheme

should exhibit [9]:

1. to identify the problem's most signi�cant characteristics;

2. to clearly show the relationships among problems; one problem's solution may indi-

cate the solution to a related problem;

3. expandability and contractibility, which allow important properties of the problem

to be focused on and unimportant details to be ignored;

4. to clearly separate the problem's speci�cation from a particular solution.

The concepts used to classify the algorithms are also useful for analysis purposes and to

design new scheduling algorithms in a methodical way.

4.1.1 Decision Base � Migration Space

Luling et al. [108] claim that a very complete description of a load management policy

may become too complex for a general discussion. They propose a simple approach which

classi�es some general characteristics of the algorithm.

Any dynamic scheduler can be separated into a decision component and a migration com-

ponent. The decision component may use local load information (the resource itself and

its immediate neighbours) or information from the whole system. The former is referred

to as \local decision base", whereas the latter is referred to as \global decision base". The

migration component may allow tasks to migrate to direct neighbours only or to any of the

system's nodes. The former is referred to as \local migration space", whereas the latter is

referred to as \global migration space".

According to this distinction between local and global spaces, a new ordering is introduced

with respect to the decision base and the migration space. A further distinction is made

4.1. CLASSIFICATION OF SCHEDULING ALGORITHMS 53

with regard to the initiator of the load distribution activity: sender (s), receiver (r) or

symmetric (sr).

LDGM GDGM

LDLM GDLM

i

i

i

i

Decision baseGL

L

G

i in {s, r, sr}

Migration
space

Figure 4.1: Decision base � Migration space

This classi�cation is neither expandable nor contractible, ignores some important problem

features and does not separate the problem's speci�cation from its solution. In fact, only

the scheduling policy is classi�ed; no reference is made to the particular characteristics of

the scheduling problem.

4.1.2 Casavant's Taxonomy

The taxonomy presented by Casavant and Kuhl [24] is hierarchical as long as possible in

order to reduce the total number of classes, and at when the system's description may be

done in an arbitrary order. The levels in the hierarchy have been selected in order to keep

the description of the taxonomy itself small, and do not reect any ordering of importance

among characteristics. This point is specially important with respect to the positioning of

the at portion of the taxonomy near the bottom of the hierarchy. The structure of the

hierarchical portion of the taxonomy is shown in �gure 4.2.

For the at portion of this classi�cation the authors propose a number of characteristics

already discussed in chapter 3:

� Adaptive versus Non{Adaptive

� Load Balancing versus Load Sharing

� Bidding

� Probabilistic

54 CHAPTER 4. LOAD MANAGEMENT: ALGORITHMS

Optimal SubOptimal

HeuristicApproximate

Optimal SubOptimal

HeuristicApproximate

Scheduling

Static Dynamic

Physically Physically

Non-DistributedDistributed

Cooperative Non-cooperative

Figure 4.2: Casavant's hierarchical partial taxonomy

� One{time Assignment versus Dynamic Reassignment { presented as preemptive and

non{preemptive task transfers

This classi�cation identi�es a set of the scheduling policy's most signi�cant features and

allows expandability and contractibility. However, it does not include any independent

classi�cation of the particular scheduling problem being solved.

4.1.3 Families of Strategies

The classi�cation scheme proposed by Jacqmot and Milgrom [75] supports descriptions

of various levels of abstraction, starting from general aspects and gradually increasing

the detail down to some speci�c concerns. The approach reveals the existence of typical

behaviours (families) and of standard building blocks for constructing their descriptions.

The authors argue that two orthogonal facets should be considered separately: movement

of processes and handling of information.

With regard to the various process movement policies there are four basic operations (func-

tional units) which appear repeatedly:

� identify source node or identify target node: this corresponds to �nd a suitable trans-

fer partner;

� identify candidate process: selection of the task/process to transfer;

� move candidate process: mechanism of process transfer.

4.1. CLASSIFICATION OF SCHEDULING ALGORITHMS 55

According to these basic operations 4 process movement families (PM) are identi�ed:

PM Family 1 no explicit identi�cation of the candidate process; this identi�cation is not

the scheduler's responsibility;

PM Family 2 identi�cation of the candidate process precedes identi�cation of the target

node;

PM Family 3 identi�cation of the target node precedes identi�cation of the candidate

process;

PM Family 4 identi�cation of the source node precedes identi�cation of the candidate

process.

Information management policies (IM) may also be decomposed onto a limited number of

common building blocks:

� compute set of correspondents

� interrogate correspondents

� send back information (reply to information request)

� disseminate information (without previous request)

� update information table

� compute information

According to these blocks 3 IM families are identi�ed:

IM Family 1 no immediate available information; information is gathered at the moment

of decision and discarded afterwards;

IM Family 2 total information available; information about the nodes' states is main-

tained and used to search for a complementary node;

IM Family 3 partial information available; information about the nodes'states is main-

tained but may be out{of{date; it is used as a clue to nodes worthwhile polling for

obtaining actual data.

At this stage all activities which play a major role in the PM and IM strategies have been

described. Localisation aspects must now be considered. These include the distribution of a

56 CHAPTER 4. LOAD MANAGEMENT: ALGORITHMS

single component onto several nodes and the degree of replication which will determine, for

example, which components are centralised, totally distributed or organised into domains.

Finally, a number of speci�c concerns, which may or may not be addressed by a particu-

lar scheduler, are distinguished. These concerns have a major impact on the scheduler's

overall quality and include: achieving global coherence among multiple activations of the

scheduler's mechanisms (all actions executed must converge towards the same global objec-

tive), avoid ooding of nodes (coordination problem), avoid processor thrashing, minimise

overheads due to the scheduler's activity, minimise task movements and encourage most

useful task transfers.

This classi�cation scheme, besides being very inexible, is neither expandable nor con-

tractible, and does not include a separate characterisation of the particular scheduling

problem being solved.

4.1.4 Load, Action and Solution Model

Riedl et al. [139] propose a three models structure to classify the di�erent ways of solving

the scheduling problem:

Load model describes the workload the scheduler has to deal with, comprises a formal de-

scription of runtime environment states and describes the information available about

these states; most usually the load model, which represents the knowledge about the

workload, cannot be determined from the algorithm, unless explicitly described by

its designers;

Action model de�nes all the possible actions for each of the scheduler's components; it

deals with distribution actions and information collection;

Solution model sets the algorithmic context for task transfers and information collec-

tion decisions; it reects the objectives the algorithm is supposed to pursue and the

strategy it follows; only actions de�ned in the action model are considered.

In order to distinguish among the solution model and the solutions obtained with the

implementation, the actual problem solving is addressed by the solution making proce-

dure.

Finally, the authors argue that scheduling algorithms should be classi�ed according to

�ve criteria: objectives, type and amount of used information, initiating instance (sender,

receiver, symmetric), time of activation and source of distribution (central, distributed,

domains).

4.1. CLASSIFICATION OF SCHEDULING ALGORITHMS 57

This classi�cation separates the problem speci�cation from its solution. Whereas the prob-

lem speci�cation can be done, at least partially on the load model, the action and solution

models are used to characterise the solutions. Although the authors do not include any

classi�cation of the distributed system being managed, this could possibly be done on the

load model. The methodology and terminology used to characterise each of these models is

left unde�ned by the authors. This can be made expandable and contractible by selecting

an appropriate representation.

4.1.5 The ESR Classi�cation Scheme

Baumgartner and Wah [9] present a classi�cation scheme based on the scheduling problem

de�nition given in section 2.1.1. This scheme completely separates the problem's speci�-

cation from its solution's speci�cation.

The problem classi�cation establishes three groups of attributes corresponding to the sched-

uler's input components: the events (which refer to the workload characteristics), the

surroundings (which refer to the computing system) and the scheduler's performance re-

quirements. ESR stands for Events, Surroundings and Requirements. At this stage no

attempt is made to classify the solutions to the scheduling problem. Only the problem's

properties are classi�ed.

The actual attributes used in each of these groups are not speci�ed. Attributes can be

added in order to better describe each particular problem. The classi�cation scheme's

expandability and contractability arises from this characteristic, since the set of attributes

to use and their possible values can be enlarged or restricted to describe the scheduling

problem at the most adequate level of abstraction.

The set of attributes used throughout this thesis are described in table 4.1. These were

selected in order to enhance the problem's more relevant characteristics. The events, which

succinctly describe the application's workload, are classi�ed according to the kind of de-

pendency among tasks, the pattern of tasks' arrivals and their resources' requirements and

the decomposition used to implement the parallel application. The distributed system is

classi�ed according to the heterogeneity of the resources, their number, physical character-

istics and availability | are the resources constantly available to the application or do they

present a stochastic availability, maybe because they are shared with other applications?

The communication model and overheads are also included. Finally, the performance re-

quirements are speci�ed, including the scheduler's goal and the level of performance to be

attained.

The notation proposed by the authors suggests that the problem's speci�cation must be

written between brackets, as in the following example:

58 CHAPTER 4. LOAD MANAGEMENT: ALGORITHMS

Category Attribute Values

independent

Dependence among tasks precedence

communication

static

Events Arrivals periodic

(tasks) stochastic

Resource requirements deterministic

stochastic

functional

Decomposition domain { indivisible tasks

domain { divisible tasks

Classes of Resources homogeneous

heterogeneous

Number 1, n

Physical characteristics speed

memory size

Surroundings Availability deterministic

(system) stochastic

none

Communication overhead deterministic

stochastic

DSM

Communication model message passing

other

execution time minimisation

Goal throughput maximisation

real{time

Requirements fault{tolerance

any solution

Quality sub{optimal

optimal

Table 4.1: The ESR Scheduling Problem Classi�cation Attributes

4.1. CLASSIFICATION OF SCHEDULING ALGORITHMS 59

E :

8>>>><
>>>>:

precedence dependencies

stochastic arrivals

stochastic requirements

functional decomposition

9>>>>=
>>>>;
� S :

8>>>>>>>>><
>>>>>>>>>:

7 processors

homogeneous resources

300 MHz; 128 MBytes

stochastic availability

stochastic communication overheads

message passing

9>>>>>>>>>=
>>>>>>>>>;

R :

(
real{time

suboptimal performance

)

Finally, a classi�cation of scheduling strategies is included, which allows a complete separa-

tion between the problem speci�cation and particular solutions. This classi�cation includes

a set of attributes, which are also selected by the programmer, maintaining, therefore, the

expandability and contractibility properties. Table 4.2 presents the set of attributes that

are used throughout this thesis to classify the scheduling strategies, when appropriate. The

Information Space attribute indicates whether the scheduling agent has an image of the

entire environment's state (global) or an image of a given sub{domain (local), whereas the

Migration Space attribute indicates whether a task is allowed to migrate to any suitable

resource (global) or just to a particular subset (local). The separation between the problem

and the solution speci�cations, and the utilisation of the same set of attributes to classify

di�erent problems and solutions enables the identi�cation of relationships and di�erences

among these. Identical solutions for di�erent problems can be identi�ed, as well as which

are the most common characteristics appearing on solutions for problems with particular

attributes. A thorough analysis of the scheduling problem as a whole, is thus made possible

by this feature of the ESR classi�cation scheme.

4.1.6 Selection of a Classi�cation Scheme

Clearly, only the Load, Action, Solution Model and the ESR classi�cation schemes have the

attributes required for an adequate classi�cation scheme: expandability, contractability and

separation of the problem and solution speci�cations. Since the former leaves many aspects

unde�ned, such as, for example, how to characterise each model, and the latter includes

an explicit description of the distributed system being managed, ESR is the classi�cation

scheme selected to use throughout this thesis.

The ESR classi�cation does not impose a set of attributes to classify each of its components.

Although this characteristic can be bene�cial, since the programmers have the freedom to

select the most suitable attributes for their problems, it can make the comparisons of

di�erent problems and respective solutions quite diÆcult, if the sets of attributes used

60 CHAPTER 4. LOAD MANAGEMENT: ALGORITHMS

Attribute Values

Information Space local

global

Migration Space local

global

static

Adaptation dynamic

adaptive

distributed

Location of Control hierarchical

centralised

one{time assignment

Kind of Transfers non{preemptive

preemptive

divisible tasks

Decision Mechanism deterministic

stochastic

Level of Environment's none

State Information simple

detailed

Application's none

Execution Model deterministic

stochastic

Table 4.2: The ESR Scheduling Strategies Classi�cation Attributes

4.2. SCHEDULING POLICIES 61

by di�erent people are substantially di�erent. The set of attributes used throughout this

thesis is the one presented in tables 4.1 and 4.2, therefore this problem does not exist.

4.2 Scheduling Policies

A very large number of di�erent scheduling policies, with various performance objectives,

can be found in the specialised literature. Their main focus ranges from dedicated parallel

machines to shared distributed systems, from real{time constraints to execution time min-

imisation, from attempts to solve the scheduling problem for the general case to concerns

with balancing a speci�c application.

This section presents some representative approaches to the scheduling problem that illus-

trate the concepts described throughout chapter 3.

4.2.1 Centralised Algorithms

Zhou proposes a centralised algorithm [182], designated as CENTRAL. A node is considered

a sender when its workload, measured as the remaining expected execution time of all jobs

allocated to this node, exceeds a given threshold T . Only jobs with an expected execution

time above a threshold TCPU are eligible for remote execution, which requires that the job's

execution time is known in advance. To obviate this restriction it is possible to classify the

jobs either as 'big' or 'small'. Periodically all nodes send their workload information to one

of them, which acts both as the load information centre and the central scheduler. When

this central scheduler receives a request for transfer, it selects the node with the shortest

queue length and sends its identi�cation to the requester. The author concludes that for a

limited number of nodes and a relatively eÆcient communication medium the centralised

approach to load information distribution and job placement may be simple and eÆcient.

Theimer and Lantz [171] propose a similar strategy, but the number of nodes that send

update messages is restricted by sending a workload cuto� value to all nodes. Nodes with

a workload above this value do not send any load information updates until their load falls

below the cuto� value. Only the workload of nodes able to receive additional work needs

to be known to the central scheduler. The authors argue that this centralised approach is

highly scalable.

The Processor Farm paradigm allows underloaded nodes to request work from a central

scheduler which manages a work pool. New tasks are sent directly from the central sched-

uler to the requesting node. The contention on the scheduler can be reduced by using a

hierarchical management structure. The central scheduler can select some sub{managers,

which will be responsible for a sub{pool of work and a sub{domain of the distributed sys-

62 CHAPTER 4. LOAD MANAGEMENT: ALGORITHMS

tem. This is referred to as the Concurrent Access Protocol (in opposition to the Sequential

Access Protocol) [3]. If nodes can dynamically generate new tasks, then the work pool

becomes decentralised, but this can still be managed by a central scheduler [27, 146].

Most authors argue that centralised approaches are not scalable, because the central com-

ponent is potentially a bottleneck. The functional capacity of any centralised server is

bounded and cannot grow when the system where it is embedded is enlarged [92, 108, 125,

160].

4.2.2 Nearest{Neighbour Algorithms

Nearest{neighbour algorithms use only local information and make only local task trans-

fers. Global load management is achieved due to the overlapping of the various domains.

These algorithms are naturally iterative, in the sense that tasks are transferred successively

between neighbour nodes, each step according to a local decision of the sending node. They

rely on successive approximations to a global optimal workload distribution, and at each

step need only to concern with the direction and amount of workload migration. Some

algorithms select a single direction (a single nearest{neighbour), while others consider all

directions (all nearest{neighbours). There are three classes of nearest{neighbour algo-

rithms: dimension exchange, di�usion and the gradient model [29, 71, 179]. Within the

dimension exchange model a node balances its workload with its neighbours one at a time.

Within the di�usion model a node balances its workload with all its neighbours. It may

di�use fractions of its workload to one or more neighbours, while simultaneously requesting

some workload from its other neighbours. Within gradient models each node must transfer

a fraction of its workload along the direction of the nearest lightly loaded node [179].

Most iterative nearest{neighbour schedulers proposed in the literature aim to balance the

workload over the distributed system's nodes. As previously discussed, load balancing can

result in useless task transfers and system's instability.

Dimension Exchange

This model appeared initially with hypercube multicomputers, but it was extended to

arbitrary topologies using edge{colouring. The usual approach is to equalise the workloads

of the two nodes involved in a balancing operation over an edge of the network. Xu and

Lau [179] showed this to be non{optimal for general network topologies and generalised the

Dimension Exchange algorithm using an exchange parameter � to control the splitting of

workload among a pair of directly connected nodes. If nodes i and j are direct neighbours,

then the change of load on processor i at instant t is modelled as

wt+1
i = (1� �)wt

i + �wt
j

A single value of � is used to the entire network and its optimal value is closely related to

4.2. SCHEDULING POLICIES 63

the network topology and size.

Di�usion

The main di�erence between dimension exchange and the di�usion approach is that the lat-

ter implies that a node simultaneously balances its workload with all its nearest{neighbours.

It has been shown that di�usion inspired algorithms do converge to a balanced workload

distribution given any initial workload distribution. However, dimension exchange algo-

rithms seem to outperform di�usion algorithms in small and medium scale systems [179].

Scheurer et al. [94, 151] present the natural di�usion algorithm, where the fraction of load

each node has to change with its neighbours is described by a double stochastic di�usion

matrix PG. This matrix is obtained by applying a Poisson operator to the adjacency

matrix of the undirected connected graph G that describes the network's topology. It

has been shown that, for a suitable PG, natural di�usion converges towards an uniform

distribution. However, convergence may be slow depending on PG and on G's connectivity.

An alternative approach is to use partial di�usion. The graph G is split into partitions,

which may overlap. The load is balanced by carrying out a balancing step (e.g. natural

di�usion) inside each partition. For many partitions of the load balancing graph the

convergence rate of partial di�usion can be shown to be superior to natural di�usion.

The Gradient Model

Within this model each node is classi�ed as low(L), normal(N) or high(H), according to

its workload. Each node knows its distance to the nearest L{load node and knows in

which direction it should transfer a task so that it is oriented (according to the underlying

topology) towards it. Tasks are transferred to one hop away neighbours only (nearest{

neighbours) [100, 108, 117].

Let G � (V;E) be a processor network, V being the set of processors and E the physical

links. w : V ! f0; 1; : : : ; D(G)+ 1g is de�ned as follows: w(i) is the length of the shortest

path from node i to a processor which is in L{state and D(G) is the diameter of G. w(i)

equalsD(G)+1 if there is no L{load processor. w(i) is maintained by node i. The collection

of all w values is the gradient surface or pressure surface. The pressure function, at instant

t, is de�ned as

pt(i) =

(
0 if t = 0 or node i is L{loaded

1 +min(D(G);min(fpt�1(j) : j 2 Neighbours(i)g)) otherwise

When a processor is highly loaded, it transfers some of its load to its nearest{neighbour in

the direction of the nearest L{loaded node, which is the one with minimal pressure value.

It has been experimentally shown that this policy deals very slowly with large areas of

64 CHAPTER 4. LOAD MANAGEMENT: ALGORITHMS

L{load nodes. Some extensions have been proposed to enhance the basic gradient model

[108]. w is de�ned as w : V ! f0; 1; : : : ; D(G) + 1g. w(i) is the length of the shortest

path from node i to a node in state H. w(i) is D(G) + 1 if no H{load node exists. The

pair (w(i); w(i)) is maintained by node i. The collection of all such pairs is the extended

gradient surface. The collection of all w(i) values is the suction surface. The suction

function, at instant t, is de�ned as

st(i) =

8>><
>>:

0 if node i is H{loaded

D(G) + 1 if t = 0

1 +min(D(G);min(fst�1(j) : j 2 Neighbours(i)g)) otherwise

Nodes in N{state can send some of its load to the neighbour with maximal suction values,

which is the farthest from H-load nodes. The extended gradient model is robust with

respect to load characteristics, performs well in large networks and is easy to implement.

4.2.3 Random Location Algorithm

Eager et al. [39] present a thorough study of the random location algorithm. A node is

considered a sender if its CPU queue length exceeds a given threshold. The destination

node is randomly selected among all the system's nodes. No exchange of state informa-

tion is required, hence this is a non{cooperative algorithm. If the algorithm allows an

overloaded destination node to transfer the task once again, the algorithm is referred to

as "Uncontrolled Random" and the authors proved that it is unstable for a non{zero task

transfer cost. No matter what the environment's average load, there is a positive probabil-

ity that all nodes will be in a transferring phase simultaneously, and the system will enter

a state in which all nodes are devoting all their time to transfer tasks and none to process

them. Instability can be overcome by limiting the number of task migrations. The value

of this transfer limit is dependent on the ratio between the task processing rate and the

task transfer cost.

The random policy yields substantial performance improvement over the no{load sharing

case. The degree of performance improvement is surprisingly high for such a simple policy.

Zhou [182] also claims that this is a very scalable policy, which is not surprising since it

doesn't collect any environment's state information. However, both referred papers present

policies with better results.

Alternative approaches randomly select the destination nodes from a system's sub{domain,

instead of considering the whole system [108, 158]. Kumar and Grama [95] present an

isoeÆciency study of a random location policy in several di�erent machine architectures.

4.2. SCHEDULING POLICIES 65

4.2.4 Probing and Bidding

The algorithms presented throughout this section employ a demand{driven information

policy. Every time a node wishes to transfer some workload, it must inquire the possible

candidate nodes about their load state.

Probing

A node willing to participate in a task transfer probes another node to �nd out if it is a

suitable transfer partner. Nodes can be probed either serially or in parallel. A node can

be selected for probing on a random basis, on the basis of previously collected information

or on a nearest{neighbour basis [160].

Eager et al. [39] propose a probing algorithm which requires that a node willing to transfer

a task randomly selects another node and probes it to determine whether this transfer

would place it above threshold. If not, the task is transferred, otherwise another node is

probed. This process is repeated until a suitable transfer partner is found or a probe limit

is reached.

This algorithm usually performs substantially better than the random policy, which sug-

gests that the overhead of collecting some amount of state information is overcome by the

added bene�ts. Small values are appropriate for the probe limit. If p is the probability of a

particular node being below threshold, then the probability that such a node is encountered

at the ith probe is p(1 � p)i�1. If p is large (system lightly loaded) this value decreases

rapidly: an underloaded node will be found in the �rst few probes. For small p (system

heavily loaded) this value decreases more slowly. However, there are lots of overloaded

nodes trying to �nd underloaded ones. Each particular node can stop probing after a few

tries because another overloaded node will, with high probability, �nd an underloaded one.

Shin and Chang argue that probing is ineÆcient [158], since it introduces a delay in the

transferred tasks and an overloaded node might fail to �nd an underloaded one while there

are some. However, as stated before, this happens with small probability.

Under another approach to probing [39, 182], a set of randomly selected nodes is probed in

parallel and the best one (shortest CPU queue length) is selected. This policy's performance

is not signi�cantly better than the previous one, suggesting that the bene�ts of selecting

the best target within a set do not overcome the overheads of much more message traÆc

and interrupting more processors. Other approaches to probing include maintaining some

state information about the other nodes' states. This information can be obtained from

previous probes or from a low{frequency state dissemination process or both. This state

information, which can be outdated, is used as a clue to select nodes for probing [121].

66 CHAPTER 4. LOAD MANAGEMENT: ALGORITHMS

Symmetrically Initiated Adaptive Algorithm

Under this probing algorithm [160], nodes are classi�ed as senders, receivers or normal,

based on information got from previous probes. Each node maintains three lists where

other nodes' observed states are kept: a list of receivers, a list of senders and a list of

normal nodes. Initially, each node assumes that all other nodes are receivers. Each node is

allowed to initiate a task transfer either as a sender or as a receiver. The sender component

of the location policy is triggered when the node's load exceeds a given threshold. It will

probe the node at its receivers list head. The probed node will place the probing node in the

head of its senders list, and reply with a message indicating its current state. On receipt of

this reply, the sender will transfer a task if the answer indicates that the probed node is still

a receiver. Otherwise, it will be removed from the receivers list and put at the appropriate

list's head. Probing ends when a suitable receiver is found, the number of probes reaches

a limit or the receivers list becomes empty. The receiver initiated component selects nodes

for probing �rst from the senders list, from head to tail, using most updated information

�rst. If this list becomes empty it will then look in the list of normal nodes and then in

the receivers list, but from tail to head, using most outdated information �rst.

At high system loads the sender initiated components will fail to �nd transfer partners, so

the node's receivers list will become empty. Only receivers will try to transfer tasks, which is

more e�ective at such loads. At low system loads receiver initiated probing will be frequent

and will generally fail. These failures do not adversely a�ect the system's performance,

since extra processing and communication capacity is available. In addition, they have

the positive e�ect of updating the receivers lists. Future senders will �nd receivers with

the �rst few probes. By adapting its behaviour to system's load, this algorithm achieves

improved performance over a wide range of load patterns and preserves system stability.

To avoid preemptive task transfers, which may be originated by the receiver initiated

component, Shivaratri et al. propose a further extension to this algorithm [160]. Besides

maintaining the three lists, each node maintains a state vector indicating to which list

it belongs to at all other nodes, using information that circulates in probes and probes'

replies. When a node becomes a receiver, it informs all other nodes in the system which are

misinformed about its state. There are no preemptive task transfers, the sender initiated

component will do any task transfer on tasks' arrivals.

Lu and Lau [106] further extend this algorithm with a guarantee and reservation protocol.

A receiver that has accepted work, but has not received it yet, reserves some of its processing

power surplus. It will not accept further work from other senders which would overload this

node. Task migration among nodes is negotiated on batches, rather than on an individual

basis.

4.2. SCHEDULING POLICIES 67

Bidding

Bidding is a three{level contract protocol. In the �rst step, a node willing to transfer

some of its load broadcasts a request for bids. In the second step, bids are received from

those nodes willing to receive some load. In the last step, the node evaluates the bids and

sends the task(s) to the node which sent the best bid. Some algorithms allow the receiving

node to reactivate the bidding process if it is now overloaded [166, 167]. Other algorithms

[121, 158] allow several rounds of message exchanges before actually transferring a task.

This is necessary since the best bidder may become overloaded, and hence unwilling to

accept another task. An underloaded node may answer several requests for bids, so it may

be selected as a transfer partner by several overloaded nodes. It is possible for the bidding

node to consider previous bids it sent (and were not answered yet) when it evaluates

whether or not to answer yet another request for bids [25, 134]. The bidding algorithm

may be extended to maintain information about previously received bids. This information

is used to select a subset of nodes to which the request for bids will be sent, instead of

broadcasting it. An adaptive bidding algorithm is proposed by Luling [108], where a request

for bids is sent only to those nodes which are at a distance less than d from the requester.

The distance d is increased (respectively decreased) if not enough bids (respectively too

much bids) are received for the o�ered load unit within a time interval which also depends

on d.

The bidding algorithm has been used in distributed real time systems, where critical tasks

must meet their time deadlines. The algorithm requires that tasks deadlines and computa-

tion times are known beforehand. When a node can not guarantee that a task will meet its

deadline, it issues a request for bids. This algorithm is extended with focused addressing.

When a node can not guarantee a task, it selects a node which is supposed to have enough

surplus, based on information collected during previous bids. The task is transferred to

this focused node and a request for bids is issued with the indication that bids must be

sent to the focused node [134, 166, 167].

Drafting Algorithm

Ni et al. [121] claim that the bidding algorithm is interesting due to its generality, but it

creates a great deal of communication overhead which lessens its ability to reduce response

time. They propose the drafting algorithm, which is a receiver{initiated bidding algorithm,

that uses several techniques to reduce the number of messages exchanged. The authors

claim that the drafting algorithm alleviates many drawbacks encountered in the bidding

algorithm [108, 144].

68 CHAPTER 4. LOAD MANAGEMENT: ALGORITHMS

4.2.5 Flexible Load Sharing Algorithm

The exible load sharing algorithm (FLS) [93] partitions a system into sets of nodes, called

domains. A node only exchanges state information with and transfer tasks to members of

its domain. A node determines which other nodes to include in its domain based on their

load state: overloaded(O), underloaded(U) or medium loaded(M). Domain membership

is symmetrical: two nodes are candidate for inclusion in each other's domain if one is

overloaded while the other is underloaded; if node A belongs to node B's domain, then

node B also belongs to A's domain. When one node changes state, it informs the other

nodes in its domain and that node is discarded. The selection of domain's members is

based on messages which contain state{information and is done periodically. To account

for the fact that membership selection can be costly, the domain size is limited. Due

to information aging, remote nodes' state{information may be outdated. Thus, domain

membership is treated only as a clue and a request{reply protocol is used, which allows

nodes to refuse new tasks. If a supposedly underloaded node refuses a task, then it is

removed from the sender's domain and the task is executed locally.

4.2.6 Distributed Clustering Algorithms

Ozden et al. [125] propose an algorithm that privileges non{intrusiveness. A scheduling

algorithm is non{intrusive if the overhead that it induces on each resource is less than

the bound on overhead de�ned by the resource owner. Nodes are grouped into clusters,

and a centralised approach is applied for load management within each cluster. The set

of cluster managers may change over time to handle changes on intrusiveness' bounds.

When a manager receives a task request which can not be satis�ed by any node within

the cluster, it polls other cluster managers. While coherent global state information would

allow minimisation of polling, maintaining global state information would introduce the

scalability problems inherent to centralised algorithms. On the other hand, each manager

must keep a record of which clusters are currently available for polling to guarantee that the

intrusiveness bounds are observed. When a manager detects that it is in danger of violating

its cluster's intrusiveness constraints, it removes itself from the load sharing pools, notifying

the other managers. The author argues that this policy scales with system size, satis�es

bounds on intrusiveness and is able to regulate and control overheads.

Ahmad and Ghafoor [1] propose a distributed clustering approach where the multiproces-

sor system is partitioned into independent symmetric regions (spheres) centred at some

control points (schedulers). The schedulers optimally schedule tasks within their spheres.

To identify the spheres and respective centres a combinatorial structure, known as the

Hadamard Matrix, is used. It is shown that their approach yields better response time and

resource utilisation than a fully distributed nearest{neighbour algorithm.

4.2. SCHEDULING POLICIES 69

The Hicon concept [10, 11, 12, 13] provides dynamic scheduling support on heterogeneous

workstation networks. It employs distributed clustering, each cluster being managed by a

central scheduler and inter{cluster scheduling being done using a decentralised policy. The

centralised approach provides sophisticated load control, while the decentralised coupling

of clusters ensures scalability. The strategy used takes into account system and application

state information, data communication costs between cooperating tasks, access to remote

data, inter task dependencies and exploits load pro�le estimations. It includes several

automatic adaptation techniques, like adjustment of migration thresholds, correction of

task size estimations, correction of tasks remote data wait time estimations, correction of

CPU utilisation estimations and adaptation of the scheduling algorithm complexity.

4.2.7 Stochastic Learning Automata

The basic stochastic learning automata is a probabilistic algorithm. The suitability of

each possible action is encoded as a probabilistic value in a data structure referred to as

the probability vector. Initially all these probabilities are equal, since nothing is known

about the desirability of each action. After an action is executed, an answer will be

received indicating whether the action was 'good' or 'bad'. Based on this response the

probability vector is updated. This process is known as reinforcement learning [170, 183].

The automaton's learning behaviour occurs in the following manner:

� if the response to a certain action i is favourable, then increase the probability of

that action: 8><
>:
pj = pj � a � pj j 6= i

pi = pi +
X
j 6=i

(a � pj) j = i

where a is a reward constant.

� if the response to a certain action i is not favourable, then decrease the probability

of that action, using a penalty constant b.

This algorithm has the advantage [166] of modelling the environment's response history in

the probability vector, and does not require highly time consuming calculations to make

decisions.

This basic scheme has been extended with the introduction of environmental states [96,

166]. Each node knows the states of all other nodes (over or underloaded). Each environ-

mental state is an arrangement of the nodes' states. Each node has a di�erent probability

vector for each environmental state and, at each instant, uses the vector corresponding

to the current state. When the indication of reward or penalty is received after an ac-

tion's execution, the probability vector in e�ect at the time the decision was made (and

70 CHAPTER 4. LOAD MANAGEMENT: ALGORITHMS

not necessarily in e�ect now) is updated. This extended scheme requires that each node

periodically checks its status and broadcasts it.

Schaerf, Shoham and Tennenholtz [150] have studied the utilisation of a distributed multi-

agent reinforcement learning system in the context of load management. Jobs are submitted

to the agents, which select the appropriate resources. Each agent is a stochastic learning

automata, which uses only local information to update its probability vector. The agents

never communicate with each other, so they have no knowledge about the environment's

state. The learning process is controlled by a parameter w, which determines the weigh of

new information on the probability vector. The decision making process is controlled by

another parameter n, which biases the decision towards resources that performed better in

the past. The larger the value of n the stronger this bias is. Large values of n do not allow

the agent to exploit improvements on the capacity or workload of the various resources.

The two parameters n and w interplay in the sense that highly exploratory activity (low

n) must be matched with giving greater weigh to more recent experience (high w). This is

known as the exploration versus exploitation problem on intelligent agents. Should the agent

exploit the knowledge it has about the environment's behaviour on the past or explore new

actions in an attempt to improve its e�ectiveness? The authors show that good results can

be achieved using only local information and that the naive use of communication might

deteriorate the scheduler's e�ectiveness.

In the stochastic learning automata presented on the literature, only the desirability of

each action, for each environmental state, is probabilistically modelled. The environment's

states themselves are modelled using deterministic quantities. In most real cases, the

scheduling agent is uncertain of the outcomes of actions and of the environment's current

state. Therefore, both these aspects should be probabilistically modelled.

4.2.8 Physics Based Models

Physical optimisation algorithms are based on analogies with physical systems. The load

management problem is mapped onto some physical system, which is then solved using

techniques from experimental and theoretical physics. G. Fox and P. Coddington [53]

apply physics based algorithms to manage the load of scienti�c simulation applications.

The data elements are treated as particles free to move around in the "space" of the parallel

machine. Minimising the total execution time requires the minimisation of

max
nodes i

Ci

where Ci is the total time for computation and communication on node i. This minimax

problem is replaced by a least squares minimisation of

E =
X
i

C2
i

4.2. SCHEDULING POLICIES 71

Labelling the data elements with m and communication between any two data elements

m, m0 with (m;m0), they show that

C2
i =

X
(m;m0);m2i

Comm(m;m0) +
X

(m;m0)2i

Calc(m)Calc(m0)

In physics, this equation describes an Hamiltonian, or energy function, which must be

minimised to achieve the most eÆcient decomposition of data onto the distributed system's

resources. The last term in the Hamiltonian is zero, unless data elements m and m0 are

on the same node i. This acts as a repulsive force, which spreads the data elements

throughout the system. The �rst term acts as an attractive force among those data elements

which need to communicate with one another. This term is proportional to the amount of

communication, so that heavy communicating elements stay near one another. For dynamic

problems, where data elements change with time, the Hamiltonian will also change and

data elements will have to be redistributed periodically. In this case it is the time averaged

Hamiltonian H that must be minimised:

H(t; tav) =
Z t+tav

t
H(u)du

The relative importance of each of the terms of the Hamiltonian is governed by the ratio

tcomm=tcalc, which is a characteristic of the distributed system. The Hamiltonian can be

minimised using simulated annealing.

Hui and Chanson [71] propose an hydrodynamic approach for load balancing an hetero-

geneous parallel system. Each node i is modelled as a cylindrical liquid container, whose

cross{sectional area corresponds to the capacity ci of the node, the communication links

are modelled as liquid channels among the cylinders, the workload is represented as liquid

and the load balancing algorithm describes the liquid ow. Global fairness is achieved

when the heights of the liquid columns in the cylinders are equal. When global fairness is

achieved, there is no more liquid movement among the cylinders, therefore the system is

stable. In physical terms, the load is balanced across the system when the global potential

energy (GPE) is minimised. The GPE is de�ned as the sum of potential energies (PE)

of all the nodes, where PEi =
cih

2

i

2
, hi being the height of liquid in cylinder i. This is a

nearest{neighbour algorithm as load (liquid) is exchanged only among neighbouring nodes

(cylinders).

4.2.9 Economy Based Models

Scheduling resources in a large distributed system is a complex task, similar to allocating

resources in human economies. This similarity motivated researchers to apply economy

theory to load management [44, 45]. The hope of this research is that concepts that

evolved over thousands of years in human societies will also prove e�ective on distributed

systems.

72 CHAPTER 4. LOAD MANAGEMENT: ALGORITHMS

Economic models consist of two types of agents, suppliers and consumers, which sel�shly

attempt to achieve their own goals. In a computer system, consumers are applications

and suppliers are resources needed by the applications, such as CPU time, memory, etc.

A consumer attempts to optimise its individual performance criteria by obtaining the

resources it requires, while a supplier's goal is to optimise its pro�t derived from its choice

of resource allocations to consumers.

Pricing is the technique used to coordinate the sel�sh behaviour of agents. Consumers are

endowed with money they use to buy resources and suppliers charge consumers for the

use of its resources. The price charged by a resource is determined by its supply and the

agents' demand.

Resource scheduling is based on the following mechanism. Each agent computes its de-

mand from its utility function and its budget constraints. The aggregate demand from all

the agents is sent to suppliers, which then compute new prices. This process continues

iteratively until an equilibrium price is achieved. Another form of resource allocation is

bidding. With this mechanism the highest bidder gets the resource and the resource's

current price is determined by the bids.

A fundamental requirement of economic models is that consumers know its resource re-

quirements (e.g. CPU time) before execution time. This is not realistic for all applications.

Furthermore, it is assumed that consumers compete among each others to acquire system

resources and that the system's performance criteria is determined by some combination

of the individual consumers' performance criteria. This might not be the case when one is

interested on a single application's execution time.

4.3 Distributed Job Management Systems

The ever growing interest on using clusters of available and inexpensive computers has

led to the appearance of load management systems, which manage the distribution of

independent jobs across the cluster. A cluster is de�ned as an heterogeneous collection of

computers on a network, that can function as a single computing resource through the use

of additional system management software [87]. This additional software is often referred to

as the Distributed Job Management System (DJMS). The DJMS performs some scheduling

tasks usually associated with system level scheduling, such as resource allocation at the

job level and processes' checkpointing [19]. It assumes many of the traditional operating

system responsibilities at the network level, managing distributed computing resources,

while preserving an uni�ed system image of what amounts to a virtual supercomputer. All

computing resources are made transparently available to all users on the network according

to the organisation's policies [130]. Distributed job management has evolved from, and

4.3. DISTRIBUTED JOB MANAGEMENT SYSTEMS 73

exhibits similar requirements to, job scheduling on mainframes. The challenge is to build

a system that provides mainframe{like levels of robustness and reliability in today's fragile

and immature distributed computing environments [74].

There are several commercial and public{domain DJMSs currently available, the most

popular being [73, 87, 126]: COmputing in DIstributed Networked Environments (CO-

DINE), Condor [40, 103, 104], Network Queueing System (NQS) [67, 89], Distributed Job

Manager (DJM), Distributed Queueing System (DQS), LoadBalancer, LoadLeveler [110],

Tivoli Maestro [74], Load Sharing Facility (LSF) [73, 129, 130], Hector [142], Portable

Batch System (PBS) and Task Broker. A qualitative comparison of some of these systems

can be found in [81, 83, 87].

Key requirements of a DJMS include reliability, security, fault tolerance, eÆcient use of

available resources, heterogeneous platform support and ergonomic administration tools

[47, 74, 147].

Most of the available DJMS's allow the user to specify the resources to be used (number of

nodes, exclusive CPU access, peripheral devices, etc.) and produce reports about resource

usage which can be used both by the users and administrators. The users' requests might

be postponed and processed in batch whenever the requested resources become available.

The need for DJMS's has increased with the growing community of users who are now

concerned with the throughput of their applications, rather than response time. Scienti�c

and engineering users measure the power of the system by the amount of work performed

on a �xed amount of time. Response time makes no sense as the amount of data to pro-

cess is virtually unbounded. The concern here is not about the instantaneous system's

performance, but about the amount of computing harnessed over a long period of time.

These users' computing needs are satis�ed by High Throughput Computing (HTC) envi-

ronments, that can take advantage of workstations' idle times. DJMS's can support these

environments by opportunistically using idle resources.

Reliability is a very strong requirement for these long{lived applications. Work already

done should not be lost in the event of an hardware failure. DJMSs use checkpointing to

ensure reliability. A checkpoint of an executing program is a snapshot of its state, which

can be used to restart the program from that point at a later time. Besides providing

reliability, checkpointing also enables preemptive migration. Although checkpointing is an

expensive mechanism, both in space and time, any attempt to deliver HTC has to rely on

it due to the opportunistic nature of resource usage [103, 104].

To improve system's throughput or minimise application's turnaround time some DJMSs,

like CODINE, LSF, Dynamic PVM, PBS and MARS, provide dynamic load balancing

facilities [2, 47, 57, 103, 104, 124]. In order to make scheduling decisions, the DJMS

monitors the current system and network load. New jobs are placed on lightly loaded

74 CHAPTER 4. LOAD MANAGEMENT: ALGORITHMS

nodes and existing jobs are migrated from heavily loaded machines to less loaded ones. One

of the major requirements for providing a migration facility is transparency: a process's

execution should continue as if the migration never took place. For parallel applications

this transparency should also hold for the migrated process's communication partners.

Since the performance goals that need to be satis�ed for each site di�er considerably,

DJMSs o�er the means to install multiple scheduling algorithms and to activate them on the

y. A set of di�erent scheduling schemes is usually provided to the system's administrator,

including First-Come-First-Served, maximisation of system's throughput, etc.. In addition,

the scheduler's library is often designed as an application programming interface, allowing

the development of site speci�c scheduling strategies, addressing individual needs [47].

Recently, DJMS's have evolved to allow for global load sharing by scheduling jobs not only

within clusters, but also among them [40, 129]. This enables multi{organisational resource

sharing, but leverages several problems like security and resource ownership enforcing,

limiting the intrusion level and long{distance communications.

Table 4.3 presents a set of criteria (based on the ones proposed by Kaplan and Nelson [87]

and James Jones [82]) which can be used to compare DJMSs.

DJMSs are targeted towards system level scheduling rather than application level schedul-

ing, although some of them include some dynamic scheduling possibilities. Their main

goals are, usually, maximising system's throughput and reliability. Most of these systems

see the parallel application as a single job, rather than considering its various tasks. They

are, therefore, unable to dynamically reschedule the application's tasks in order to meet

the application's particular performance requirements. This is often performed by the

application level scheduler, embedded within the application's code, which manages the

resources allocated by the DJMS.

Uncertainty about the environment's behaviour, however, may be present both at the

application and system level. This suggests that some of the ideas discussed throughout

this thesis can also be applied to the DJMS scheduler.

4.4 Summary

The e�ective comparison of di�erent scheduling strategies requires a classi�cation scheme

with some fundamental properties, like expandability and contractability, which allow the

speci�cation to be done at the desirable level of detail, and a clear separation between

the speci�cation of the problem being solved and the particular solutions found to that

problem. This separations enables a systematic analysis of di�erent classes of problems

and respective solutions, allowing the identi�cation of similarities and di�erences among

4.4. SUMMARY 75

Heterogeneous computers support

Batch support

Interactive applications support

Parallel applications support

Message passing support

Checkpointing

Automatic load balancing

Preemptive process migration

User speci�ed execution time/date

Exclusive use of CPU for job

User speci�ed resources

Job runtime limits

Administrator speci�ed restrictions on resource usage

Relinking applications not required

Graphical user interface

No single point of failure

Cluster's dynamic con�guration

Information about resources usage

Information about jobs status

Input/output redirection

Supported operating systems and machines

Resource scheduling policies

Scheduling priorities support

Fault tolerance support

Security

Level of intrusion

Inter{cluster scheduling support

Table 4.3: Criteria for DJMS's evaluation

76 CHAPTER 4. LOAD MANAGEMENT: ALGORITHMS

them. The ESR classi�cation scheme exhibits these properties, hence it was selected as

the one to be used throughout this thesis.

Section 4.2 presents an overview of several scheduling policies, with di�erent solutions to

the scheduling problem. This global view of various solutions to the challenge of e�ectively

and eÆciently manage the workload of a distributed system, helps in better understanding

the scheduling problem.

Finally, Distributed Job Management Systems are briey discussed. Although these are

mainly focused on system level scheduling, many diÆculties faced by these systems are

shared with application level schedulers. Uncertainty about the distributed system's cur-

rent state is one of these shared diÆculties.

Chapter 5

Handling Uncertainty

"Thus, the more precisely the position is determined, the less precisely the momentum is

known, and conversely."

Uncertainty Principle

Werner Karl Heisenberg, 1927

Contents

5.1 Notation . 78

5.2 Beliefs Expressed as Probabilities 79

5.3 Probabilistic Models . 80

5.4 Bayesian Networks . 85

5.5 Making Decisions . 92

5.6 Knowledge Engineering . 95

5.7 Applying Decision Networks to a Dynamic Scheduler 99

5.8 Summary . 104

The environment where an application level scheduling agent is required to operate is often

complex, non{deterministic, dynamic and inaccessible. This means that the agent can

neither have a complete, accurate and updated image of the system's state, nor make exact

predictions about near future system's behaviour. In every instant there are important

questions about the system's state, tasks' requirements and their current execution progress

for which no categorical answers can be found. The agent has to act under uncertainty,

and it is this uncertainty that hinders the scheduler from fully achieving its performance

goals.

Decision theory provides principles and tools for rational decision making under uncer-

tainty. It combines utility with probability in the evaluation of an action. Probability

provides a way of summarising the uncertainty that comes from laziness and ignorance.

77

78 CHAPTER 5. HANDLING UNCERTAINTY

Utility theory is used to represent and reason about preferences among system's states.

Whereas judgements about the likelihood of states are quanti�ed by probabilities, judge-

ments about the desirability of an action's consequences are quanti�ed by utilities.

Decision networks are one of the tools provided by decision theory. They provide coher-

ent prescriptions for choosing actions and meaningful guarantees of the quality of these

choices. Decision networks, also called inuence diagrams, constitute a general mechanism

for rational decision making under uncertainty.

The hypothesis put forward by this thesis is that decision networks, if applied to the schedul-

ing agent's execution model, may improve its e�ectiveness and help overcome the problems

caused by uncertainty.

This chapter begins by explaining why beliefs about uncertain quantities can be expressed

and combined as probabilities, and describes some fundamental properties that allow the

design of computationally tractable probabilistic models of real world problems. Bayesian

belief networks are introduced in section 5.4, and extended in section 5.5 to allow auto-

mated decision making. Section 5.6 describes the fundamental steps required to assemble

a coherent and computable decision basis. Finally, section 5.7 discusses how decision net-

works may be applied to the scheduling problem and presents a generic structure for such

a network.

5.1 Notation

Random variables are denoted by capital letters (e.g X ;Y ;Z), whereas speci�c values taken

by these variables are represented by lowercase letters (e.g. x ; y ; z). A discrete random

variable X may take on values from a �nite domain DX . The number of di�erent values a

variable X can take, i.e., the cardinality of its domain DX , is labelled by #DX .

Sets of variables are denoted by boldfaced uppercase letters (e.g. U), and assignments of

values to these variables are denoted by boldfaced lowercase letters (e.g. u). If Z stands

for the set of variables fX ;Y g, then z represents the assignment fx ; yg : x 2 DX ; y 2 DY .

P (x) is used as a short notation for the probability P (X = x); x 2 DX . P (z), for the set

Z = fX ;Y g, means

P (Z = z) = P (X = x ;Y = y); x 2 DX ; y 2 DY

i.e., the probability that X = x and Y = y .

The probability distribution of a variable X over its domain DX = fx1 ; x2 ; : : : ; xng is de-

noted by the boldfaced operator P(X), representing the vector

P(X) = fP (X = x1); P (X = x2); : : : ; P (X = xn)g;
X
i

P (X = xi) = 1

5.2. BELIEFS EXPRESSED AS PROBABILITIES 79

To distinguish between the �xed conditional probability table that describes the variable

X probability distribution as a tabular function of all possible combinations of some other

random variables, and a variable's probability distribution given what is known, the former

is referred to as CPT(X jY ;Z ; : : :) and the latter as P(X jY = y ;Z = z ; : : :).

The conditional probability CPT(X jY) is represented by a two{dimensional matrix with

#DY rows and #DX columns. If DX = fx1 ; x2g and DY = fy1 ; y2 ; y3g then,

CPT(X jY) =

2
664
P (x1 jy1) P (x2 jy1)

P (x1 jy2) P (x2 jy2)

P (x1 jy3) P (x2 jy3)

3
775

where the values across each row add up to one, i.e.,
P2

i=1 P (xi jyj) = 1; 8yj 2 DY .

5.2 Beliefs Expressed as Probabilities

Due to the inherent uncertainty present in any model of a real world problem, the agent's

knowledge is, at best, a degree of belief on the environment's most relevant aspects. Proba-

bility theory provides a language for making statements about uncertainty, making explicit

the notion of partial belief and incomplete information. Probability assigns numerical val-

ues to these degrees of belief, supplying an agent's designer with a way of summarising the

uncertainty that comes from laziness and ignorance.

Viewing probability as a belief on a given statement is the approach taken by the subjec-

tivist school. The frequentist approach is that probabilities can only come from counting

experimental results. Probability is, therefore, the frequency with which a given event oc-

curs. The objectivist view is that probabilities are real aspects of the universe, i.e., objects'

tendencies to behave in certain ways [31, 118, 143].

One common criticism of the Bayesian de�nition of probability is that probabilities seem

arbitrary. Why should degrees of belief satisfy the rules of probability? Many di�erent sets

of properties that should be satis�ed by degrees of belief have been suggested. Each of these

sets leads to the same set of rules: the rules of probability. This provides a particularly

strong argument for using probability to measure and combine beliefs [66].

The approach taken throughout this work is that beliefs can be expressed as probabilities,

and, therefore, that anyone can assign a probability to a given event, even if that person

has never experienced it. This probability merely reects that individual's own belief that

the event will occur.

The belief on a given event, or statement, depends on what is known about the totality of

other events, or statements, that are relevant to this one. Beliefs are context{dependent.

One is willing to change its beliefs once more relevant information becomes available.

80 CHAPTER 5. HANDLING UNCERTAINTY

Probabilities are also context{dependent. The assignment of a probability to an event

depends on what is known about the relevant aspects of the universe. Hence the existence

of conditional probabilities, P (A = ajB = b) = x, which means that the probability of

A being a is x, given that all that is known is B = b. If a new fact C = c becomes

known and is relevant to A, then the new probability of A = a must be expressed as

P (A = ajB = b; C = c) = y. Even prior probabilities, P (A = a) = x, which do not seem

to be conditioned on any previous knowledge, are, in fact, conditioned by some background

knowledgeK = k, and should be written as P (A = ajK = k) = x. In practice, K is omitted

because it is assumed to be static, i.e., it does not change in any way that could be relevant

to our belief in A.

Probability theory, being unique in the way it handles context{dependent information and

uncertainty, is the language used to express beliefs and, furthermore, is the tool used to

process and combine these beliefs, providing a coherent account of how the belief on a set

of statements must change in the light of additional information [127]. It can be used as

an inference mechanism to compute the likelihood of a given statement, given the beliefs

on a set of related statements.

5.3 Probabilistic Models

5.3.1 The Joint Distribution

In order to apply probability theory to a given problem, a probabilistic model of the world

has to be built. A probabilistic model consists of a set of stochastic variables that can

take particular values with certain probabilities. Each variable represents some important

aspect of the world being modelled. The values each variable can take on are the variable's

domain. This can be a binary domain, a multi-valued domain or a continuous domain.

The variable's probability distribution over its domain speci�es the designer's degree of

belief that the variable will take on a particular value. An atomic event is an assignment of

particular values to all the variables in the model. In other words, a complete speci�cation

of the world's state.

The joint distribution assigns probabilities to all possible atomic events. If a proba-

bilistic model consists of 3 discrete variables, namely, A, B, C, with DA = fT; Fg,

DB = fS1; S2; S3g and DC = fT; Fg, then the joint distribution could be as shown in

Table 5.1.

The joint distribution allows direct access to the probability of any atomic event and allows

the computation of the probability of any sentence formed with the model's variables. For

instance, to compute P (A = T ^ C = F) its is enough to marginalise B out of table 5.1,

5.3. PROBABILISTIC MODELS 81

A B C P (A;B;C)

T S1 T 0:05

T S1 F 0:015

T S2 T 0:025

T S2 F 0:1

T S3 T 0:01

T S3 F 0:05

F S1 T 0:04

F S1 F 0:1

F S2 T 0:2

F S2 F 0:15

F S3 T 0:2

F S3 F 0:05

Table 5.1: The joint probability distribution: an example

by adding up all lines where A = T and C = F :

P (A = T ^ C = F) =
X
Si

P (A = T;B = Si; C = F) = 0:015 + 0:1 + 0:05 = 0:12

More formally, the marginal probability of a given sentence can be computed from a joint

distribution by using equation 5.1.

P (Xi = xi) =
X

Xi=xi

P (X1; : : : ; Xn) (5.1)

Similarly, the conditional probability P (Xi = xijXj = xj) can be computed using equation

5.2 and the two marginal probabilities P (Xi = xi; Xj = xj) and P (Xj = xj).

P (Xi = xijXj = xj) =
P (Xi = xi; Xj = xj)

P (Xj = xj)
(5.2)

The joint distribution, although being a complete speci�cation of a probabilistic model,

presents a number of problems that render it inadequate for probabilistic inference. The size

of the joint distribution grows exponentially with the number of variables. The joint of a

model with n Boolean variables requires the speci�cation of 2n�1 independent values. The

last value is not independent because the joint is required to add up to 1, i.e., the model's

state must be one of all the possible atomic events. Real world problems usually require

a large number of variables, which result on an unthinkably large joint distribution. Even

though the memory space required to store it may not be a problem on modern computing

systems, computing marginal probabilities requires summing across a very large number

of variable combinations. Furthermore, the exponentially large number of probabilities

82 CHAPTER 5. HANDLING UNCERTAINTY

required must either be assessed by experts on the problem's domain, or be computed

from historical data. However, the majority of these probabilities are very diÆcult to assess

since they represent the likelihood of conjunctions of propositions which lack psychological

meaningfulness. The expert issuing these probabilities may either never have seen a case

where the atomic event he is assessing occurred, or may never have related some of the

model's variables with each others. The probabilities the expert is required to issue would

not be reliable, since the joint does not reect his natural way of thinking about the

problem.

5.3.2 Local Structure and Conditional Independence

The huge number of numerical values required to build the joint distribution, together with

the fact that marginalisation of the joint is non{intuitive and lacks explanatory power, have

been the main arguments against the use of probabilistic models to handle uncertainty.

However, since the late 1980s, the fully probabilistic approach has steadily gained accep-

tance, with the realisation that \brute force" manipulations of high{dimensional problems

could never become neither technically feasible nor acceptable [127]. The path ahead was

to �nd some way of introducing modularity, enabling a large and complex model to be split

up into small manageable pieces [31]. Since most real systems exhibit local structure, in

the sense that each of the system's subcomponents interacts directly with only a restricted

set of other components, regardless of their total number, modularity may be introduced

on the model by representing these local interactions. On a probabilistic model of such

a system each stochastic variable Xi is directly inuenced by at most k other variables.

The remaining variables carry no informational relevance to Xi once the relevant ones are

known. Probability theory handles the notion of informational relevance with the concept

of conditional independence.

Two variables A and B are conditionally independent given a third variable Z if

P(AjZ;B) = P(AjZ)

which means that once Z is known, the belief in A does not change with the discovery of

B.

To build a probabilistic model of a given problem it is not enough to identify the relevant

stochastic variables; the direct dependencies that hold among these variables must also be

identi�ed. The probabilistic model must then be encoded on such a way that when the

belief on a variable Xi is being computed, the ignorable is recognisable, or better yet, the

unignorable is quickly identi�ed. The inference process is speeded up, since only a subset

of the entire model must be consulted.

Since the probabilistic model is structured in terms of direct inuences among the variables,

5.3. PROBABILISTIC MODELS 83

all that is needed to quantify this model is to assess the strengths of these direct inuences.

This is achieved by quantifying the conditional probability table P(XijParents(Xi)). The

conditional probability table (CPT) speci�es the likelihood that the event Xi = xi { i.e.,

that Xi takes on a particular value xi belonging to its domain { occurs, given any com-

bination of the variables that directly inuence it, and that are denoted by Parents(Xi).

These conditional probability tables are referred to as CPT(XijParents(Xi)), throughout

this thesis.

Suppose one wants to build a probabilistic model of a burglary alarm which can go o� due

to a burglary or due to an earthquake (example due to Judea Pearl [127]). Three Boolean

variables are identi�ed, namely, Burglary (B), Earthquake (E) and Alarm (A). B and E

directly inuence A, so Parents(A) = fB;Eg. B and E do not bear any directly inuence

on each other, at least on the context of this example. The direct inuence of A's parents

on it is quanti�ed by CPT(AjB;E), requiring four independent values, which are given

by table 5.2.

CPT(AjB;E) A

B E T F

T T 0:95 0:05

T F 0:9 0:1

F T 0:3 0:7

F F 0:01 0:99

Table 5.2: Burglary Alarm Example: CPT(AjB;E)

Probability is used to quantify the strength of the relationship among the parents and

their children. It is also used to summarise all those factors that were not considered

on the probabilistic model, but that can, nevertheless, inuence the system's behaviour.

For example, the probability that the alarm goes o� even if neither a burglary nor an

earthquake occur is 0:01. This value represents all those other reasons that the model's

designer believes can make the alarm go o�, but that were not explicitly considered in the

model.

Those stochastic variables for which no parents were identi�ed are quanti�ed by their

prior probabilities P(Xi). As previously discussed (section 5.2), prior probabilities are

conditioned on some background knowledge K, which is assumed to be static and is not

explicitly represented.

The conjunction of these local estimates of direct inuences, or CPTs, speci�es a complete

and consistent probabilistic model, on the basis of which any probabilistic query can be

answered. In fact, the joint distribution over all the model's variables (X1; X2; : : : ; Xn) is

84 CHAPTER 5. HANDLING UNCERTAINTY

given by

P(X1; X2; : : : ; Xn) =
nY
i=1

P(XijParents(Xi)) (5.3)

By explicitly integrating the notion of conditional independence on the probabilistic model,

the number of independent numeric values needed to quantify it is drastically reduced.

Returning to the Alarm example, the prior probabilities of B and E must still be speci�ed.

These require one independent number each (see table 5.3).

P(B) T F

0.40 0.60

P(E) T F

0.05 0.95

Table 5.3: Burglary Alarm Example: P(B) and P(E)

This model requires the assessment of 6 independent values, whereas the direct assessment

of the joint distribution requires 7 independent values. The joint can be calculated using

equation 5.3.

P(A;B;E) = P(AjB;E)P(B)P(E)

A B E P(A;B;E)

T T T 0.019

T T F 0.342

T F T 0.009

T F F 0.0057

F T T 0.001

F T F 0.038

F F T 0.021

F F F 0.5643

Table 5.4: Burglary Alarm Example: P(A;B;E)

Although, due to its low complexity, this example does not illustrate the reduction in the

number of probabilities that must be assessed, it does show that the required probabilities

are far more meaningful than the joint and that the direct dependencies existing on the

model are usually easy to identify.

Experience has shown that it is usually easy for an expert to decide which direct dependen-

cies hold in a problem [127, 143]. People tend to judge the notion of direct relevance with

5.4. BAYESIAN NETWORKS 85

clarity and conviction, even though they might not be able to provide precise numerical

estimates of probabilities. This suggests that relevance and dependence are far more basic

to human reasoning than the numerical values attached to probability judgements. There-

fore, a probabilistic model built using these concepts is more likely to correctly reect the

real problem than one using only numerical representations of probabilistic information,

as the joint distribution, due to its lack of psychological meaningfulness.

5.3.3 Causality

Probabilistic models which integrate the notion of direct dependencies can constitute a

sound and complete inference mechanism if the model is constructed causally, i.e., if each

variable's parents are its direct causes, as identi�ed by the model's designer. Choosing a

causal variable ordering facilitates the expert's task of assessing each variable's conditional

probability table, since the resulting model represents the expert's natural way of reasoning

about the problem. Choosing a non{causal variable ordering will result on direct depen-

dencies that require diÆcult and unnatural probability judgements. Moreover, a causal

model minimises the number of relationships that must be considered while the model is

being built. The designer ends up having to specify fewer probabilities, and these have

psychological meaning [127, 128].

The use of direct causal knowledge provides the crucial robustness, clarity, soundness and

completeness needed to make probabilistic systems e�ective in the real world.

Although the identi�cation of conditional independencies among the model's variables ren-

ders it more adequate for probabilistic inference, inappropriate assumptions of conditional

independence can lead to noticeable loss of e�ectiveness. The model's designer must care-

fully analyse its decisions to ignore tenuous direct causal relationships, since these can lead

to models that do not represent reality with accuracy enough. It has been shown that

problems with assuming conditional independence can grow as the number of variables in

the model increases. The potential bene�ts of considering a large number of variables can

be overwhelmed by the proportional increases in the missing dependencies [69].

5.4 Bayesian Networks

Once identi�ed, direct causal relationships must be encoded on such a way that they are

quickly recognisable and that they are maintained as a stable part of the model, indepen-

dently of the numerical assignment of probabilities.

Directed graphs, or networks, can be viewed as inference engines which represent direct

causal relationships. The graphs' nodes are the model's stochastic variables. The links

86 CHAPTER 5. HANDLING UNCERTAINTY

between the nodes represent local causal dependencies. The strengths of these dependencies

are quanti�ed by the conditional probability tables, which are external to the network.

The advantage of network representations is that local causal relationships are encoded

directly as neighbouring nodes. The network topology, once built, displays a consistent set

of direct and indirect dependencies, and preserves them as a stable qualitative characteris-

tic of the model, independently of any particular assignment of quantitative information,

namely conditional probabilities. The network topology can be thought of as an abstract

knowledge base, that holds in a variety of settings, representing the domain's general struc-

ture of causal relationships [69, 127, 143].

These networks are known as Bayesian belief networks [35, 69, 76, 77, 78, 80, 84, 122, 127,

128, 143]. A Bayesian network is a directed acyclic graph where each node represents a

random variable, or uncertain quantity. The directed arcs represent direct causal inuences

between the linked nodes. The strength of these inuences is quanti�ed by assigning to

each variable Xi a conditional probability table CPT(XijParents(Xi)), which represents

the belief on the event Xi = xi, given any combination of the parents, or direct causes, of

Xi.

Formally, a Bayesian network is an annotated directed acyclic graph, constituted by the pair

B = (G;�), that encodes a joint probability distribution of a set of random variables U.

G is a directed acyclic graph whose vertices correspond to the random variables U1; : : : ; Un

and whose edges represent direct dependencies among the variables. � represents the set

of numerical parameters that quantify the network. It contains parameters �uijParents(Ui) =

PB(uijParents(Ui)); 8ui2DUi
;Ui2U , where Parents(Ui) denotes the set of parents of Ui in

G. A Bayesian network B de�nes a unique joint probability distribution over U given by

PB(U1; : : : ; Un) =
Qn
i=1PB(UijParents(Ui)) [55].

A belief network can be built incrementally as follows:

1. choose the set of relevant variables Xi that describe the domain;

2. choose an ordering for the variables such that causes always precede its e�ects;

3. while there are variables left:

(a) add a node to the network for the next variable Xi;

(b) set Parents(Xi) to some minimal set of nodes already in the network, which

are perceived as direct causes of Xi, and draw arrows from each of these nodes

to Xi;

(c) de�ne the conditional probability table CPT(XijParents(Xi));

5.4. BAYESIAN NETWORKS 87

5.4.1 Conditional Independence and d{separation

The absence of direct links among nodes are qualitative expressions of probabilistic in-

dependence of various kinds. Conditional independence among two variables depends on

what is known about the entire domain.

Two variables with no parents are independent of each other if nothing is known about

their successors. They become conditionally dependent of each other when information

is acquired about any of its common successors. This phenomenon reects a prevailing

pattern of human reasoning: if a cause for a symptom is discovered, then the belief on

other possible causes is reduced, although many causes may well be present at the same

time. This is known as one cause "explaining away" the perceived e�ect.

��
��
X1

��
��
X3

��
��
X2

��
��
X4

@
@@R

�
��	

?

Figure 5.1: A simple Bayesian network

The Bayesian network of �gure 5.1, illustrates the fact that P(X1) = P(X1jx2) if nothing

is known about the remaining variables. If evidence is entered about one of their successors,

e.g., if the exact value of X4 is known, then the probabilities which must be considered are

P(X1jx4) and P(X1jx4; x2). These are no longer equal, i.e., X1 is conditionally dependent

of X2 given X4, since the discovery of X2 "explains away" X4, diminishing the belief on

X1.

��
��
X1 ��

��
X2

��
��
X3 ��

��
X4

@
@
@
@
@@R

�
�

�
�

��	? ?

Figure 5.2: A simple Bayesian network

Variables with common parents are dependent of each others if nothing is known about their

common ancestors. A person's belief on the possibility of a disease's symptom increases

if other symptoms are present. From �gure 5.2 it can be seen that P(X3) 6= P(X3jx4).

88 CHAPTER 5. HANDLING UNCERTAINTY

However, X3 and X4 become conditionally independent of each other if one of the causes,

e.g., X1, is discovered. The belief on the symptoms depends solely on the way the disease

works, not on the presence of other symptoms, therefore P(X3jx1) = P(X3jx4; x1).

A variable is conditionally independent of its indirect predecessors if its parents are known.

From �gure 5.1, P(X4jx3) = P(X4jx3; x2) = P(X4jx3; x1) = P(X4jx3; x1; x2). The belief

on the symptoms of a given disease does not change with information about how the disease

was caught, once it is known whether or not the disease is present.

Finally, a variable is conditionally independent of the remainder of the network given

its Markov blanket. A variable's Markov blanket is de�ned as its immediate causes, its

immediate successors and its immediate successors' parents.

An obvious question is if it is possible, for any belief network, to read whether a node X

is conditionally independent of a node Y, given a set of evidence E. The answer is yes,

and the method is given by the concept of direction{dependent separation or d{separation

[77, 84, 127, 143, 148]. Two variables X and Y in a belief network are said to be d{separated,

if for all paths between X and Y, there is an intermediate variable V, such that:

1. the connection is serial,! V !, or diverging, V !, and the state of V is known;

2. the connection is converging, ! V , and neither V nor any of its descendants are

known.

If, given all the evidence available E, two variables X and Y are d{separated, then changes

on the belief of X have no impact on the belief of Y, and conversely. Therefore, if X and Y

are d{separated by E, then they are conditionally independent of each other given E, i.e.,

P(XjE; Y) = P(XjE)

5.4.2 Probabilistic Inference

A fully speci�ed Bayesian network constitutes a model of the environment, rather than, as

with rule based expert systems and neural networks, a model of the reasoning process [70,

128]. Furthermore, it constitutes a complete probabilistic model of the relevant variables,

i.e., it speci�es a joint distribution over them (equation 5.3). Hence, the network contains

all information necessary to answer all probabilistic queries about the model.

The basic task of a probabilistic inference engine is to compute the posterior probability

distribution for a set of query variables given the probability distribution for some evidence

variables. Bayesian networks are exible enough so that any node can serve as either a

query or an evidence variable. Belief networks can make four kinds of inference:

5.4. BAYESIAN NETWORKS 89

diagnostic inference { given the e�ect what is the belief on causes;

causal inference { given the causes what is the belief on e�ects;

intercausal inference { how does the belief on some causes of a common e�ect changes,

given other causes and the common e�ect { explaining away;

mixed inferences { combinations of any of the above inferences.

The burglary alarm example (section 5.3.2) can be extended to include the possibility that

the neighbours of the alarm's owner, N1 and N2, call him if they hear the alarm. The

model includes the possibility that they think they heard the alarm when in fact they did

not, and conversely. However, the reasons why this can happen are not explicitly modelled.

They are summarised on the conditional probability tables associated with each variable.

Following a causal ordering, this problem can be represented by the Bayesian network

presented on �gure 5.3.

��
��
B

��
��
N1

��
��
A

��
��
N2

��
��
E

@
@@R

�
��	

�
��	

@
@@R

Figure 5.3: The burglary alarm's Bayesian network

Computing the probability that a burglary actually occurred, given that neighbour 1 called

{ P(Bjn1) { is a diagnostic query. The probability that N2 calls, given that an earthquake

occurred is a causal inference { P(N2je) {, whereas the probability that the alarm rang

given that an earthquake occurred and both N1 and N2 called { P(Aje; n1; n2) { is a mixed

inference.

5.4.3 Bayes' Rule

The heart of Bayesian inference techniques lies in the inversion formula, universally known

as Bayes' Rule,

P(HjE) =
P(EjH)P(H)

P(E)
(5.4)

which states that the belief on an hypothesis, or cause, H, given the available evidence, or

e�ects of this cause, E, can be computed by multiplying the previous belief on the hypoth-

esis, P(H), by the likelihood that E will materialise given the hypothesis, P(EjH). This

90 CHAPTER 5. HANDLING UNCERTAINTY

rule enables diagnostic inferences, from e�ects to causes, on Bayesian networks where the

available information is causal, i.e., from causes to e�ects. The denominator of equation 5.4

hardly enters into consideration, since it is a normalising constant � that can be computed

by requiring that P(HjE) +P(:HjE) = 1. Equation 5.4 can be rewritten as

P(HjE) = �P(EjH)P(H) (5.5)

A further advantage of Bayesian networks is that new evidence can be added as soon as

it arrives, piece by piece, without recomputing the previously held beliefs. When evidence

E1 arrives, the belief on H is computed according to equation 5.5

P(HjE1) = �P(E1jH)P(H)

As new evidence E2 arrives, the belief on H is recomputed using the previously held belief

P(HjE1)

P(HjE1; E2) = �P(E2jH;E1)P(HjE1) (5.6)

Since E2 and E1 are conditionally independent given their causes H, equation 5.6 becomes

P(HjE1; E2) = �P(E2jH)P(HjE1) (5.7)

This process is known as Bayesian updating.

5.4.4 Pearl's Probabilistic Inference Algorithm

Pearl [127] proposes an algorithm for probabilistic inference on Bayesian networks that

views the impact of each new piece of evidence as a perturbation that propagates through

the network via message passing between the nodes, without any external supervision.

This algorithm guarantees that equilibrium is reached in time proportional to the longest

path in the network, and that at equilibrium each variable is given a belief measure equal

to its posterior probability distribution, given all the available evidence. This algorithm is

suitable only for singly connected networks. In such networks there is one and only one

undirected path between any two nodes. If the network contains loops, i.e., undirected

cycles, messages may circulate inde�nitely around these loops, and the algorithm will

not converge to equilibrium. To handle such cases, di�erent methods must be used, like

clustering, conditioning or stochastic simulation [77, 127, 143]. Furthermore, all stochastic

variables must be discrete. Appendix B contains a comprehensive description of Pearl's

inference algorithm.

Throughout the remainder of this work the dynamic values of the nodes' inferred probabili-

ties, P(XjE) will be referred to as BEL(X), which reects the belief distribution accorded

to X by all evidence, E, received so far. So

BEL(X) = P(XjE)

5.4. BAYESIAN NETWORKS 91

5.4.5 Sensor Model

In the general case, an agent acquires information about the environment through its

sensors, sets the respective evidence variables and infers its belief distribution on the state

of the world. To be e�ective the agent must include the possibility that its sensors return

noisy and/or incorrect readings. This is the role of the sensor model, which is implemented

through the conditional probability table CPT(EjX) associated with the percept node

[143].

The direction of the causal relationship is the crucial element: the state of world X causes

the sensor to take on a particular value E. The inference process will go the other way:

given evidence arriving from the percept node, it is propagated to the state variable.

Temp Therm

P(Temp) CPT(Therm¦Temp)

Figure 5.4: Thermometer sensor model

Figure 5.4 presents a belief network where a thermometer measures the environment's

temperature. The thermometer's readings depend on the environment's temperature. The

sensor model is implemented through CPT(ThermjTemp). The great advantage of causal

ordering is that CPT(ThermjTemp) only depends on the way the thermometer works, on

its characteristics and range of supported temperatures. It does not depend on the par-

ticular characteristics of the environment being measured. These are encoded on the prior

probabilities P(Temp), which describe the probability distribution over a range of temper-

atures for that particular environment. The direct speci�cation of CPT(TempjTherm)

would require that both the thermometer and the environment's characteristics are en-

coded on the CPT, loosing clarity and generality. Furthermore, it would also require the

speci�cation of P(Therm), which lacks meaningfulness.

If the sensor gives a perfect report of the current state, then the sensor's CPT is purely

deterministic. On a more realistic model, noise and sensor's errors are reected in the

probabilities of incorrect readings.

If the agent has several sensors to measure the same state variable, the resulting inference

process is called data fusion. Integrating the readings frommultiple sensors provides greater

accuracy, since these are conditionally independent of each others, given the measured

variable actual value. Although they are not unconditionally independent | they should

all return approximately the same value | they are correlated only in the sense that they

depend on the quantity being measured.

The sensor model can be extended to include additional variables, which represent the

sensor's condition. To measure a computer's workload, for example, additional variables

92 CHAPTER 5. HANDLING UNCERTAINTY

can be included to account for the various factors that can inuence either the sensor's

readings or the actual workload's value. Inaccuracies associated with information's age can

be included in the model by means of an extra variable, Information Age, that changes

the belief distribution over the actual workload, according to the time elapsed since the

last time the sensor was actually activated. Also, if that computer's workload is known

to follow some regular pattern across the day and/or the week | maybe because it is

regularly used on some speci�c task | this information can be included on the model, by

means of additional variables that directly determine the actual workload (�gure 5.5).

�
�

�
�

Day of

Week

�
�

�
�Workload

�
�

�
�

Time of
Day

�
�

�
�

Information
Age

�
�

�
�

Workload's
Sensor

- �

-

?

Figure 5.5: Extended sensor model

Extended models enable accurate estimates of the variable being measured and can perform

diagnosis in case of failure [143].

5.5 Making Decisions

5.5.1 Preferences and Utilities

A decision is an allocation of resources under the control of the decision{making agent,

which changes the state of the environment. A decision implies an action, that, on a non{

deterministic environment, may have several di�erent outcomes. Each particular outcome

is a completely speci�ed state of the environment. To be able to select among di�erent

alternative actions, an agent must have preferences for the di�erent possible outcomes.

Utility theory is used to represent and reason about preferences. It says that each state has

an utility for an agent, and that the agent will prefer states with higher utility. Whereas

judgements about the likelihood of states are quanti�ed by probabilities, judgements about

the desirability of an action's consequences are quanti�ed by utilities.

Utility is a function that maps system's states to real numbers [77, 127, 143]. The agent's

preferences among di�erent states are captured by this function, which assigns a single

number to express the state's desirability. Utility imposes a preferential ordering on the

system's states. Every utility function can be normalised, such that the most preferable

5.5. MAKING DECISIONS 93

state has an utility U(S) = 1, and the least preferable one has an utility U(S) = 0.

Most real problems require the system's state to be characterised by many di�erent vari-

ables, or attributes. In such cases, it is necessary to resort to multiattribute utility theory,

in order to specify the utility function. If the system's state is described by variables

X1; : : : ; Xn, the multiattribute utility function is usually an additive value function

U(S) =
nX
i=1

�iXi

Additive functions are a natural way of expressing an agent's preferences, and are valid in

many real world problems. These functions can be safely used when the attributes exhibit

mutual preference independence, i.e., when each attribute does not a�ect the way in which

the agent trades o� the other attributes against each other. Two attributes X1 and X2 are

preferentially independent of a third attribute X3, if the preference among the outcomes

(x1; x2; x3) and (x01; x
0
2; x3) does not depend on the particular value x3 for attribute X3.

However, when mutual preference independence does not strictly hold, an additive function

can still be a good approximation to the agent's preferences [143].

Decision theory combines utilities with probabilities, providing principles for rational infer-

ence and decision making [69]. A rational method of choosing among actions, is to weigh

the utility of each of the various possible outcomes of each action with the probabilities

that these outcomes will occur.

Let Resulti(a) be a possible outcome of a nondeterministic action a, where the index i

ranges over all the di�erent possible outcomes of a. The expected utility of action a, given

the agent's available evidence E about the state of the world, is given by

EU(ajE) =
X
i

P (Resulti(a)jE; Do(a))U(Resulti(a)) (5.8)

where:

Do(a) is the proposition that a is executed in the current state;

P (Resulti(a)jE; Do(a)) is the probability that this particular Resulti(a) occurs given E

and Do(a);

U(Resulti(a)) is the utility of the outcome Resulti(a).

The fundamental idea behind decision theory is that the agent is rational if and only if

it selects the action that yields the highest expected utility, averaged over all possible

outcomes of that action. This is the principle of Maximum Expected Utility (MEU)

action arga[max
a2A

[EU(ajE)]] (5.9)

94 CHAPTER 5. HANDLING UNCERTAINTY

where A is the set of available actions.

If an agent follows the MEU principle, trying to maximise an utility function that correctly

reects its performance objectives, then the agent exhibits rational behaviour [143].

Rational behaviour must be distinguished from omniscient behaviour, where the agent

never fails. A good decision may lead to a bad result. Alternatively, a random decision

can lead to a successful result. Such is the nature of deciding under uncertainty. Decision

theory strives for good decisions that, on average, lead to good outcomes.

5.5.2 Decision Networks

Decision networks provide coherent prescriptions for selecting actions and meaningful guar-

antees of the quality of these selections. Decision networks, also called inuence diagrams

[6, 79, 88], constitute a general mechanism for rational decision making. These networks

combine belief networks with additional node types for actions and utilities.

Decision networks require three kinds of knowledge:

� causal knowledge about how events and actions inuence the world's state;

� knowledge about which actions are feasible in any given set of circumstances;

� knowledge about how desirable the consequences of an action are;

The set of actions available to the agent at any given instant can be represented by variables

that are under the full control of the decision{making agent, unlike the random variables

discussed so far. Selecting an action amounts to impose the value of the decision variable,

rather than determine it probabilistically. This setting alters the probability distribution

of another set of stochastic variables in the network, known as the consequences of the

decision variable. The utility function can then be evaluated, taking into account the

probability distribution over those variables that directly a�ect utility.

Decision networks are Bayesian networks with two additional node types:

Decision nodes { represent choices available to agent. Their values are imposed to rep-

resent actions.

Utility nodes { represent the utility function to be optimised. Its parents are those vari-

ables that directly a�ect utility. The table associated with this node is a tabulation

of the agent's utility as a function of the attributes that determine it.

5.6. KNOWLEDGE ENGINEERING 95

Actions are selected by evaluating the decision network for each possible setting of the

decision node. Once this node is set, it behaves exactly like a chance node that has been

set as an evidence variable. The algorithm for evaluating decision networks is as follows:

1. Set the evidence variables;

2. For each possible setting of the decision node:

(a) Set the decision node to that value;

(b) Propagate the beliefs through the network to compute the new distribution over

the relevant variables;

(c) Compute the expected utility for this action EU(ajE);

3. Choose the action with the highest expected utility;

This is a straightforward extension of the belief network inference algorithm (sections 5.4.2

and 5.7.2) [127, 143].

5.6 Knowledge Engineering

Decision theory provides principles for probabilistic inference and rational decision making

under uncertainty. However, it does not tell how to apply these principles to real problems

in a tractable manner. This is the realm of decision analysis [69].

Decision analysis is an engineering discipline that addresses the pragmatics of applying

decision theory to real problems. Decision theory does not help the model's designer

in the task of identifying which environmental aspects should be modelled, which direct

dependencies hold among them, what level of detail and granularity should be used to

reason about the decision problem or what utility function and probability distribution

should be selected. Decision analysis, in contrast, addresses these issues directly.

Decision analysis provides a set of techniques for focusing attention on the problem's rele-

vant aspects, both on the modelling and on the decision making phases [69, 127, 143].

Knowledge engineering is the process by which expert knowledge is obtained and repre-

sented on decision making systems. Although this term is not usually associated with

decision analysis, most of their fundamental activities are similar.

The core of decision analytic knowledge engineering is assembling a coherent and com-

putable decision basis. A decision basis is the complete model of a decision problem,

consisting of components that represent states, relationships, alternatives and preferences.

96 CHAPTER 5. HANDLING UNCERTAINTY

Decision networks allow the representation of a decision basis and provide mechanisms for

decision making based on this representation.

The knowledge engineering process for building decision theoretic systems entails several

steps [143], described along the next sections.

5.6.1 Determine the Scope of the Problem

Decide which of the environment's aspects will be explicitly modelled as stochastic vari-

ables, which will be each variable's domain and which actions will be available to the agent.

This requires a thorough understanding of the problem's domain. The number of variables

implies a tradeo� between accuracy and computational tractability. The variables' do-

mains must be carefully chosen. Large domains require the assessment of a large number

of conditional probabilities. Continuously valued variables can often be discretised without

loosing e�ectiveness.

The set of alternative actions has an huge e�ect on the overall value of the model. The

generation of new actions is often worth an extensive reasoning and careful analysis [69].

5.6.2 Identify Direct Dependencies

This step entails the laying out of the network's topology. Variables judged to be direct

causes of another variable are connected with arrows, following a causal ordering. Those

variables that are direct consequences of actions must be identi�ed, as well as those that

directly determine the environment's state utility.

Laying out the network's topology amounts to identify conditional independencies among

variables. Although conditional independence renders the model simpler and tractable,

care must be taken with wrong independence assumptions, as these can jeopardise the

model's e�ectiveness (section 5.3.2).

5.6.3 Assign Probabilities

Decision networks require, for each variable Xi, the assessment of P(XijParents(Xi)). A

frequent concern with Bayesian models is the availability of probabilities, as well as the

number of probabilities required, which can be huge if the model is complex.

People are notoriously bad numerical estimators. Although it is usually easy for a domain

expert to decide which direct conditional dependence relationships hold in a domain, it is

very diÆcult to the same expert to decide on exact values for the probabilities associated

5.6. KNOWLEDGE ENGINEERING 97

with these dependencies. However, sensitivity analysis often reveals that these numbers

need only to be speci�ed approximately. As long as the ratio between the probability

of an event occurring or not occurring, given the same evidence, roughly reects genuine

experience, valid conclusions will still be reached.

The important point to note is that the value of decision networks resides both on its

qualitative part, i.e., the network's topology, and its quantitative part, i.e., the variables'

conditional probabilities and utility functions. The network topology speci�es which direct

and indirect dependencies must be considered, and probability theory gives rules of how

numbers must be combined. These remain unchanged independently of the accuracy of

the actual probability estimates. If the rules by which exact numbers combine are strongly

believed, then the same combination rules can be used on rough estimates of these numbers

[127].

The assessment of P(XijParents(Xi)) is facilitated by the causal ordering required on

Bayesian models. The assessment of these parameters amounts to estimating the likelihood

that the event Xi = xi will occur, given any combination of Xi direct causes, Parents(Xi).

This kind of assessments points to psychological meaningful cause{e�ect relationships and

is easier to quantify than diagnostic relationships or conjunctions of a large number of

propositions.

In fact, diagnostic knowledge, i.e., from e�ects to causes, is often much more tenuous

than causal knowledge and is dependent of the particular environment where the agent is

required to operate (section 5.4.5).

Conditional probabilities assessment becomes particularly diÆcult when a variable has a

large number of parents. Quantifying the combined inuence of these interacting causes is

a very demanding task. Several techniques have been developed to ease this task.

One of such techniques is to divorce a set of parents S from the remaining parents, by

introducing a mediating variable M , and making M a child of S and parent of the former

child of S (see �gure 5.6).

��
��
A1 ��
��
A2 ��
��
A3 ��
��
A4

��
��
V

@
@
@
@@R

�
�

�
��	

B
B
B
BBN

�
�
�
��

��
��
A1 ��
��
A2 ��
��
A3 ��
��
A4

��
��
M

��
��
V

JĴ

�

?

�

HHHHHj

Figure 5.6: Divorcing fA1; A2g from fA3; A4g

Divorce and mediating variables' inclusion is mainly a matter of convenience. Although it

98 CHAPTER 5. HANDLING UNCERTAINTY

will ease the assessment of conditional probabilities, it may increase the model's complexity

to a level that may jeopardise performance [77].

Often the causal relationship among several parents and their childs falls into a category

that can be modelled by canonical distributions, requiring only the identi�cation of the

distribution and a few parameters. One of the most common of such distributions is the

noisy{OR. This can be applied when any member of a set of causes is likely to independently

cause the e�ect, and this likelihood does not diminish when several of the causes are present

simultaneously. This distribution requires the speci�cation of the probability that the e�ect

will not occur when one cause is present, for each of the causes. This probability is referred

to as the inhibitor. All the remaining probabilities can be computed according to some

well de�ned rules [69, 127, 143].

On the other hand, some of the required conditional probabilities might be computed

based on previous experience, by counting the number of occurrences of a given e�ect for

each combination of its causes. A Bayesian model can learn its numerical parameters by

adopting this frequentist approach.

5.6.4 Assign Utilities

The model's designer must specify an utility function which translates system's states to

real numbers that express the states' desirability and which maintains the agent's pref-

erential order among these states. The utility function must correctly reect the agent's

performance goals. By selecting the action that maximises its expected utility, the agent

will, in average, achieve its goals.

5.6.5 Model Re�nement and Sensitivity Analysis

Sensitivity analysis is used to determine which variables, uncertainties and assumptions

have the most inuence on the system's behaviour. It involves exploring the space of

possible models, in order to build a model that is both e�ective and computationally

tractable. Sensitivity analysis to variables removal, continuous quantities discretisation,

conditional independence assumptions and changes on the conditional probabilities and

utility function should be performed in order to increase con�dence on the agent's decisions

[66, 69, 143].

The most usual analysis is to check whether the best decision is sensitive to small changes

on the assigned probabilities and utilities, by varying these parameters and observing the

agent's decisions. If small changes lead to signi�cantly di�erent decisions, then it may be

worthwhile to spend more resources in order to build a more robust model.

5.7. APPLYING DECISION NETWORKS TO A DYNAMIC SCHEDULER 99

The assessment of probabilities is often a very demanding task and the expert is often un-

certain about the distribution he is providing. There is always a tradeo� between assigning

a probability based on a current state of understanding and expending additional e�ort to

come up with a better estimate. Sensitivity analysis helps in this task of achieving a con-

�dent tradeo�. If the model proves to be robust with respect to conditional probabilities,

no further probability re�nements are required.

5.7 Applying Decision Networks to a Dynamic Sched-

uler

This section discusses the application of decision theory, and more particularly, of decision

networks, to the scheduling problem. There is a large number of di�erent approaches

to design a decision network, which selects the action that will, with higher probability,

maximise the scheduling agent's performance goals. The most adequate approach to each

case depends on the particular characteristics of the application, the distributed system

and the performance goals.

5.7.1 Generic Structure

The scheduling problem can be briey described as the problem of allocating resources

to tasks, in such a way that a given set of performance goals is met. To properly match

resources and tasks, the scheduler must know to some extent both the resources' capac-

ities and the tasks' requirements. Even when these are not explicitly represented in the

scheduler's execution model, they are implicitly known with some detail: a scheduler would

not assign a disk to a task which requires calculations, since the disk has no computing

capacity. Solving the scheduling problem requires that some resources are allocated to

the scheduler itself; therefore, some direct overheads are incurred to generate an appropri-

ate schedule. The resulting allocation of resources to tasks is suboptimal in most cases,

resulting in additional indirect overheads. The scheduler must strive to minimise these

overheads, since they can compromise its ability to achieve its performance goals. Four

entities can be identi�ed as having an important role on the scheduling process: tasks'

requirements, resources' capacities, performance goals and scheduling overheads.

The decision network designer must also take into consideration that he is developing an

agent which acts upon the environment, changing its state. The agent's goal at each

instant is to select the action that leads the environment from its current state to the most

desirable next state, that is, the one which has a maximum expected utility. To select this

action, the agent needs to represent the environment's current state, the actions available

to the agent, the state transition model (which estimates the next state for each action,

100 CHAPTER 5. HANDLING UNCERTAINTY

given the current state), the next state and the utility function.

From the last two paragraphs it is possible to identify the relevant entities that can be

represented in a decision network. Figure 5.7 presents a generic structure for such a net-

work. The network topology complies with causal relationships: the sensors' readings are

an e�ect of the relevant quantities actual values, the next state is a function of both the

current state and the selected action.

Sensor

Metric Metric

Sensor Sensor

Metric Metric

Metric Metric

Sensor Sensor

Sensor

Utility

Scheduling Overheads

Resources’ Capacities Tasks’ Requirements

Next State

Decision

Figure 5.7: A generic structure for a scheduling decision network

Six di�erent blocks can be identi�ed:

� the resources' capacities, tasks' requirements and scheduling overheads blocks, built

with stochastic variables that describe the agent's belief on the environment's current

state, as perceived by its sensors;

� the decision variable, that lists all the actions available to the scheduling agent;

� the next state block, constituted by stochastic variables, that describe the agent's

belief on the outcome of each action;

� the utility variable, that computes the expected utility of each action.

5.7. APPLYING DECISION NETWORKS TO A DYNAMIC SCHEDULER 101

The environment's current state includes the tasks' requirements, the resources' capacities

and the expected scheduling overheads. These are directly perceived through the agent's

sensors and quanti�ed by speci�c metrics. The sensors, however, are prone to impreci-

sions, and should not be blindly trusted. Using the capabilities of Bayesian networks,

these errors may be explicitly modelled, by including the sensors' models in the network.

The sensors' readings are entered on the network using evidence variables, and the be-

lief distributions over the metrics, modelled as stochastic variables, are inferred, using

the conditional probability tables that quantify the sensors' models. The sensors' read-

ings themselves are deterministic values, but the agent's belief on the relevant metrics is

quanti�ed by stochastic vectors, since it is uncertain about the sensors' correctness. The

reasoning behind this process is that imperfect information about the metrics is obtained

through perfect information about the sensors.

The environment's current state may also be described by higher level variables, which

represent more abstract concepts, such as the distributed system degree of load balancing

or the communication network availability.

The variety of available sensors determines the type of information that can be included

in the scheduler's execution model. These can include the node's computing throughput,

the network latency and bandwidth, the amount of work completed at the sampling time,

the tasks' communication volume, the tightness of the coupling among tasks, the available

memory, etc. The set of available sensors may also depend on the instant the scheduler is

acting. On an initial scheduling step, before starting the application, the scheduler may

have no information about the tasks' requirements and decide based only on the resources'

capacities. On a later step, and if task migration is possible, i.e., if the scheduler is not

restricted to do one{time task assignments, it may also use information about the tasks'

behaviour to redistribute the workload.

The actions available to the decision making agent are represented using a decision variable.

This must list all possible actions, which depend on the particular workload and on the

distributed system being managed; it may include: assign task T1 to node n2, migrate

task T2 from node n3 to node n5, transfer 35% of node n1 workload to node n4, etc. The

agent will assess the network for all possible actions and select the one which maximises

the expected utility.

The state transition model describes the state that will occur from each action, given the

current state. On a decision network it is composed by all conditional probability tables

(CPT) associated with the stochastic variables that describe the next state. These CPTs

can be either assessed by an expert, or the agent may learn them during execution, using

dynamically gathered data.

The next state is composed by a set of one or more variables that describe the resulting

102 CHAPTER 5. HANDLING UNCERTAINTY

state of the most relevant aspects of the environment, after each action is executed. These

should be quantities that are a�ected by the actions being selected, since the agent uses

them to quantify the desirability of each action. On a scheduling agent, these can include

the tasks' estimated new completion times, the resulting degree of load balancing, the

actions' expected overheads, etc.

Finally, the utility function is included by means of an utility variable, and represents the

performance goals degree of achievement for each action. It maps the environment's next

states into real numbers that express the desirability of each state. The most desirable

states must be assigned an higher utility, while the less desirable ones are assigned low

utilities. The utility function can be normalised, meaning that the most desirable state

has an utility of 1, and the least desirable has an utility of 0.

The main di�erence between deterministic and stochastic models lies in the representa-

tion of the relevant quantities. Deterministic models generate a single estimate of the

environment's state | which is assigned a probability, or belief, of 1 | and, based on

this estimate, generate a single estimate for the environment's next state, for each action.

Stochastic models, on the other hand, use stochastic variables, and, consequently, are not

restricted to assign a certainty of 1 to the value of a given variable. A belief distribution is

used instead, specifying a probability for each of the variable's possible values. This allows

the explicit inclusion in the model of uncertainties arisen from:

� imprecisions in the sensors' readings;

� information aging, which occurs within dynamic environments;

� incomplete models, which do not include all the relevant aspects of the environment;

� uncertainty about the actions' outcomes | non{deterministic environments.

It is this thesis' hypothesis that, by explicitly dealing with these uncertainties, a decision

network based scheduling agent will be able to make more rational decisions, that will,

with higher probability, increase its performance goals degree of achievement.

Discussion

A particular decision network may not include all the blocks that describe the environment's

state. The selection of the relevant blocks to include, and respective metrics, depends on

three major factors:

� the uncertainty associated with each metric, and with how does it inuence other en-

tities considered on the execution model; if there is no uncertainty, it makes less sense

to include it on the decision network, although deterministic conditional probability

tables could be used;

5.7. APPLYING DECISION NETWORKS TO A DYNAMIC SCHEDULER 103

� the capability to measure the quantity described by the metric; if it can not be

measured, then probably it should not be included, since the sensor's variable can

not be instantiated with evidence;

� the strength of the inuence each entity has on the environment's behaviour; if an

entity is considered irrelevant, then including it on the decision network will not

contribute to a better decision making, and will render the decision network more

complex, requiring more time both to design it and to infer the belief distribution.

-

6

Dedicated Shared

Regular

Irregular

k1

k3

k2

k4

Distributed
System

Application

Figure 5.8: The system sharing level versus the application regularity space

Figure 5.8 presents the environments where a scheduler may be required to act, classi�ed

along two axis: the system sharing level and the application's workload regularity. Four

particular points are highlighted, corresponding to the extreme values along each axis.

Uncertainty about the environment's behaviour increases from the lower left corner (point

1) to the upper right corner (point 4).

If an application has a regular workload and the distributed system is dedicated to that

single application (point 1), then both the tasks' requirements and the resources' capacity

can be accurately estimated. In such cases, the uncertainty about the environment's be-

haviour is not signi�cant. Tasks and resources can be matched using deterministic models;

it is worthless to employ decision networks.

If an application has a regular workload, but the distributed system is dynamically shared

among several users or applications (point 2), then the resources' capacity can no longer be

estimated with accuracy. In such cases, the decision network must include the resources'

capacity block. The tasks' requirements block can be either discarded or simpli�ed. In-

cluding a very simple tasks' requirements block, built only with a single variable for each

relevant metric, allows the inclusion on the execution model of the uncertainty about how

will that task perform on a resource whose capacity is uncertain.

Point 3 illustrates the case where the system is dedicated, but the application's workload

is irregular. The resources' capacity block can be composed by a single variable for each

104 CHAPTER 5. HANDLING UNCERTAINTY

metric, while the tasks' requirement block must include all the uncertainties about the

applications' behaviour.

The upper right corner (point 4) illustrates the more complex case, where the application

has an irregular workload and the distributed system is dynamically shared. The decision

network must include both blocks, since there is uncertainty about their behaviours. This

thesis further investigates this case, as described throughout Part II.

The scheduling overheads block should be included in the decision network, if these over-

heads are relevant to the decision making process, i.e., if their magnitude can compromise

the scheduler's e�ectiveness and if they can be measured or estimated.

5.7.2 The Decision Making Process

Figure 5.9 illustrates the decision making process using decision networks. At each iter-

ation, the agent starts by entering on the network all the evidence available about the

environment's state (step a). This is acquired through its sensors. Since its is uncertain

about the sensors' correctness, it will then infer a belief distribution over the relevant met-

rics (step b), using each sensor model, embedded in the network as conditional probability

tables associated with the sensors' variables. The agent's belief distribution over the en-

vironment's current state may now be inferred, since all the relevant metrics are already

known (step c). The inference algorithm performs these two steps in a single phase. The

stochastic functions that describe how these higher level variables are inuenced by the

metrics are embedded in the network as conditional probability tables.

Once the belief distribution over the environment's current state is known, the agent may

infer, for each action, which is the belief distribution over the environment's next state (step

d). This is achieved by using the state transition model, represented as a set of conditional

probability tables associated with the next state stochastic variables. The agent may then

compute the expected utility for each action (step e). A rational agent will select the action

which maximises its expected utility (step f).

5.8 Summary

This chapter describes decision networks, a tool proposed by decision theory for rational

decision making under uncertainty. It also presents decision analytic knowledge engineer-

ing, whose main goal is to assemble a coherent and computable decision model of a real

world problem. Appendix B presents with detail the inference algorithm used throughout

this work.

5.8. SUMMARY 105

Select the action which

maximises the

expected utility

Metric

Sensor

Current
State

Sensor

Metric Metric

Sensor

Next
State

Action Utility

Metric

Sensor

Metric

Sensor

Metric

Sensor

Metric

Sensor

Step d)

Step e)

Step f)

Step a) Step b)

Step c)

for each available action

Current
State

Sensor

Metric Metric

Sensor

Next
State

Action Utility

Current
State

Sensor

Metric Metric

Sensor

Next
State

Action Utility

Current
State

Sensor

Metric Metric

Sensor

Next
State

Action Utility

Current
State

Sensor

Metric Metric

Sensor

Next
State

Action Utility

Figure 5.9: The decision making process

106 CHAPTER 5. HANDLING UNCERTAINTY

The hypothesis put forward by this thesis is that decision networks, if applied to the

scheduling agent's execution model, may improve its e�ectiveness and help overcome the

problems caused by uncertainty; section 5.7 discusses how this paradigm may be applied

to the scheduling problem, and presents a generic structure for such a decision network.

Part II veri�es the hypothesis that decision networks, when applied to an application level

scheduling agent's execution model, may improve its performance and eÆciency.

Part II

Hypothesis' Veri�cation

107

Part II

The hypothesis forwarded by this work is that: decision networks, if applied to the schedul-

ing agent's execution model and decision making mechanism, may improve its e�ectiveness

and help overcome the problems caused by uncertainty.

This hypothesis must be submitted to a systematic experimental testing, to verify if real

facts do corroborate it. Since an hypothesis is an universal proposition, and experimental

results are singular facts, or propositions, these can never conclusively con�rm the hypoth-

esis. They can either demonstrate that the hypothesis is false, in which case it must be

rejected, or they can corroborate it, in which case it is temporarily accepted. Scienti�c

knowledge always maintains its hypothetical nature.

It is not enough, however, to demonstrate that a single hypothesis does solve the problem

being tackled. It is necessary to compare the main hypothesis's performance with alter-

native hypothesis. If it solves the problem better, or as well as, the alternative solutions,

then it is not rejected. There is no advantage in accepting an hypothesis which performs

worst than other possible explanations.

Experimentation is an attempt to demonstrate that the hypothesis is false, or that it is

unable to explain real facts as well as other alternative explanations. The hypothesis can

only be corroborated if it survives these rejection tests [90].

In order to guarantee that experimentation results are valid, some principles of rigorous

testing must be employed [68]:

� to insure objectivity in experimental measurements;

� to employ e�ective controls to isolate what is being measured;

� to document all environmental factors that may a�ect results;

� to provide enough details to permit other researchers to replicate the results;

� to employ unambiguous notation;

� to validate the models and results with additional experiments and studies;

� to reason from the obtained results to explore fundamental underlying principles.

109

110

Part II of these thesis presents the experimentations performed to test the hypothesis,

and compares the performance and eÆciency of the stochastic scheduler with alternative

approaches.

Chapter 6 describes the method used to perform the experimentations, the alternative

scheduling strategies with which the stochastic approach is compared and the metrics used

to assess the results.

Chapter 7 describes the parallel ray tracer used as a case study for all experiments, while

chapter 8 presents the actual evaluation tests, the execution models used by the scheduling

agents and the conclusions drawn from these experimentations.

Appendix D presents all the obtained experimental results.

Chapter 6

Methodology

Contents

6.1 The Distributed System . 111

6.2 Selection of a Case Study . 113

6.3 The Problem's ESR Classi�cation 115

6.4 Performance Modelling . 116

6.5 Reference Scheduling Strategies 120

6.6 Synthetic Background Workload 125

6.7 Summary . 129

The e�ectiveness of the decision network based scheduler is assessed by performing a num-

ber of controlled experiments. The performance and eÆciency of this scheduler are com-

pared with those obtained using three other reference scheduling strategies. Since it is

not possible to evaluate all di�erent applications and workloads running on di�erent dis-

tributed computing systems, a particular application | representative of a broader class

of applications | and distributed system are used throughout all experiments.

This chapter describes the conditions under which the experiments are performed. The

application and the distributed system are identi�ed and classi�ed. The scheduling policies

and the metrics used to evaluate their eÆciency and e�ectiveness are briey described. The

experiments are repeated with a set of di�erent synthetic background workloads, which

are also presented. However, this chapter does not present any results; these are presented

throughout chapter 8 according to the particular execution model used on each experiment.

6.1 The Distributed System

Scalable distributed or parallel computing systems are converging towards three general

architectures, whose di�erences lie in the level of resources sharing [73] (�gure 6.1).

111

112 CHAPTER 6. METHODOLOGY

P

C

PC

M

D

PC

M

D

PC

M

D

M

D

PC

M

D

PC

M

D

PC

M

D

DISK

Interconnection Network

MEMORY

c) shared-memory

Interconnection Network

DISK

Interconnection Network

a) shared-nothing b) shared-disk

- Processor

- Cache

- Memory

- Disk

Figure 6.1: Three di�erent distributed system's architectures

The shared{nothing architecture consists on several nodes connected by an interconnection

network, but that do not share any resources. Each node can have more than one processor,

in which case that node's architecture is referred to as symmetric multiprocessor (SMP).

Processors within SMP nodes have an high level of resources sharing, but usually have

private caches. The shared{disk architecture di�ers from the previous one in that some

disks can be shared by several, or even all, nodes. On shared{memory architectures even

the main memory becomes shared. Hybrid versions of these architectures are common.

A parallel system's memory architecture can be either centralised or distributed. Central

memories are usually shared and are also known as uniform memory access (UMA) sys-

tems, in the sense that memory accesses take roughly the same time, independently of

the node that is accessing it. Two types of UMA systems are the parallel vector proces-

sor (PVP) and SMP systems. Since each processor has its own cache, maintaining cache

coherence is a major issue on UMA parallel systems.

Distributed memories may be either shared or non{shared. Examples of non{shared dis-

tributed memory systems, also referred to as no{remote memory access (NORMA), are

loosely coupled clusters of workstations (COW) and tightly coupled massive parallel pro-

cessing systems (MPP). These are usually programmed using message passing.

Distributed shared memory systems (DSM) have special hardware that enables all local

memories to be addressed as a single global address space. Since memory access times

depend on the location of the data items being accessed, these architectures are usually

referred to as non{uniform memory access (NUMA). The memory access mechanisms

di�er among architectures, including cache{coherent NUMA (CC{NUMA) and cache{only

memory architecture (COMA).

Clustering is becoming an widely spread solution to distributed processing, due to its

6.2. SELECTION OF A CASE STUDY 113

cost{e�ective approach of using available workstations and networks to assemble a scalable

distributed system. Although scalable clusters may require additional investments on high

speed networks, medium{size clusters can be assembled with equipment available at most

organisations, by installing additional system software, which is usually free of charge.

The experiments were performed on a cluster of seven personal computers, connected by a

FastEthernet network with a communication bandwidth of 100 Mbit/sec and a Myrinet net-

work with a communication bandwidth of 1.2 Gbit/sec. All the results presented through-

out this thesis were obtained using the Myrinet network. The computers are uni{processor

machines based on Intel Pentium II processors, running either at 350 or 400 MHz, with

128 MBytes of central memory each. All workstations run LINUX and share a common

disk by NFS. PVM 3.4 is used as the parallel execution environment.

Only seven nodes were available at the time these experiments were performed. Although

the current work could be more challenging if conducted on a larger distributed system, it

is felt that the results achieved are valid enough to be used as a starting point for future

work with larger systems. This cluster will have additional nodes soon, and evaluation on

these larger systems is already planned.

This cluster can be classi�ed as a shared{disk, NORMA, loosely coupled distributed system.

It is a small, distributed, heterogeneous shared system, in the sense that it is simultane-

ously used by several students and researchers. Dedicated access to a single user is not

guaranteed, although it may be possible by using the system at late hours. Its hetero-

geneity arises not only from the processors' clock frequency, but also from the di�erent

background workloads that can be assigned to each node at the same instant.

6.2 Selection of a Case Study

Parallel applications can be classi�ed according to several characteristics, which result

from an interplay among the application's algorithm properties and the particular parallel

programming paradigm and decomposition method selected for each implementation. The

selection of the actual programming paradigm and decomposition method, which are tightly

related, further depends on the characteristics of the distributed or parallel system being

used [49, 73].

Hwang and Xu [73] suggest that the application space can be partially ordered along

four dimensions, which are not totally independent: regularity in the algorithm, degree of

parallelism, computational granularity and interaction overhead (table 6.1).

Since the authors do not clarify the meaning of the algorithm regularity dimension, for the

purpose of this thesis it is understood as regularity in the algorithm's workload, i.e., whether

114 CHAPTER 6. METHODOLOGY

Regular Irregular Regular

High 1 2 3 4 Large Grain

Interaction 5 6 7 8 Small

Low 9 10 11 12 Grain

Interaction 13 14 15 16 Large Grain

Low Parallelism High Parallelism

Table 6.1: Application space divided according to application's characteristics

or not the workload depends on the particular data being processed. Another possible

interpretation is the homogeneity of the algorithm across all processes that constitute

the parallel application. This characteristic is addressed with the decomposition method

attribute.

Most current parallel or distributed environments favour applications falling on square

16, i.e., applications that exhibit coarse granularity, low interaction overheads, regular

algorithmic workload and high degree of parallelism.

Parallel applications can be further classi�ed according to an additional attribute: the

decomposition method selected to implement the application. The programmer can, in

general, opt for either functional or domain decomposition. Functional decomposition in-

volves decomposing the application's algorithm into several di�erent functional units and

assigning these units to di�erent processing nodes. Domain decomposition consists on ap-

plying the same algorithm to di�erent subsets of data. These are also referred to as data

parallel applications. Although the particular decomposition method to select on each case

depends on both the application and parallel system characteristics, domain decomposition

is usually simpler to implement and exhibits more scalability. Functional decomposition

requires the development of several di�erent processes and the application's degree of par-

allelism is bounded by the number of functional units. Domain decomposition, on the

other hand, requires the development of few di�erent processes | Single Program Multi-

ple Data (SPMD) or Few Programs Multiple Data (FPMD) programming paradigms |

and the degree of parallelism depends on the data set, which, in many cases, can be made

arbitrarily large. Hybrid decompositions are also possible and very common.

Since it is impossible to test the thesis' hypothesis against all applications' classes, one

of them has to be selected. The selected case study falls into either square 11 or 15 of

table 6.1 and uses domain decomposition. It consists on a ray tracer, which renders photo{

realistic images from a 3{dimensional description of the world, using a global illumination

model. Since image space decomposition is used, i.e., the image is divided into subregions

to generate parallel tasks, and each of the image's pixel can be autonomously rendered,

the application exhibits high parallelism and low interaction overheads. The grain size

6.3. THE PROBLEM'S ESR CLASSIFICATION 115

can be arbitrarily divided, therefore either small or large grains are possible. This can be

classi�ed as an arbitrarily divisible load (section 3.6.3). Since the computational workload

required to render each pixel depends on the particular subregion of the world traversed

by the primary and secondary rays, the algorithmic workload is irregular. This particular

ray tracer can process complex 3{dimensional scenes, whose description does not �t into

each node's local memory, on the target distributed memory parallel system. The ray

tracer implements, by software, a read{only distributed shared memory (DSM) system,

which allows data items stored on remote nodes' memories to be fetched. This operation

can increase the interaction overheads among nodes. At the renderer level, the distributed

system is a read{only NUMA. For further details about ray tracing see chapter 7.

6.3 The Problem's ESR Classi�cation

This section presents the ESR problem classi�cation according to the attributes presented

in table 4.1. On a ray tracer parallelised over the image space, i.e., where each pixel can

constitute one task (domain decomposition), and where image consistency is not used to

speed up the renderer, tasks are independent of each other and the maximum number of

possible tasks is previously known | the image's dimensions determine the set of possible

tasks. The computational e�ort required to render each pixel can not be previously known

without heavy preprocessing or pre{sampling; these alternatives are not considered in this

work since they are too application dependent. Furthermore, the execution time varies

over the image being rendered (�gure 8.2). Therefore, the resource requirements must be

stochastically modelled.

E :

8>>>><
>>>>:

independent tasks

static arrivals

stochastic resource requirements

domain decomposition | divisible tasks

9>>>>=
>>>>;
� S :

8>>>>>>>>><
>>>>>>>>>:

2 . . . 7 processors

heterogeneous resources

350 . . . 400 MHz; 128 MBytes

stochastic availability

stochastic comm. overheads

message passing

9>>>>>>>>>=
>>>>>>>>>;

R :

(
execution time minimisation

suboptimal performance

)

The distributed system has seven processors, whose only di�erence is the CPU clock fre-

quency. However, these resources must be classi�ed from the application's perspective.

They are heterogeneous, since they can have di�erent background workloads and, hence,

present di�erent computing throughputs to this particular application; the distributed sys-

tem is shared among several users, therefore its resources' availability is stochastic. The

communication mechanism is based on message passing, and its overheads are stochastic,

116 CHAPTER 6. METHODOLOGY

since the communication medium may be busy and message packing times vary as a func-

tion of message size and processor utilisation. The performance requirement is suboptimal

execution time minimisation.

According to this classi�cation, the applications' resource requirements, the resources'

availability and the communication overheads follow stochastic distributions, instead of

having deterministic values that can be precisely determined. This clearly identi�es two

sources of uncertainty, as presented throughout chapter 2: the scheduling agent can not

predict exactly neither the application's near future behaviour nor the distributed system's

state.

6.4 Performance Modelling

In order to both make decisions and assess its eÆciency and e�ectiveness, the scheduling

agent must collect a set of metrics. This set of metrics is referred to as the scheduler's

performance model. These metrics are acquired through the agent's sensors, and constitute

all the dynamic external information it has about the environment's state and the quality

of the schedule it is generating. They can be subdivided into three groups: performance,

environment and scheduling overheads metrics.

6.4.1 Performance Metrics

The performance metrics evaluate the scheduler's performance goals degree of achievement,

or e�ectiveness. Since the goal of the schedulers used throughout this thesis is to minimise

the application's execution time, this quantity is used as the performance metric and

denoted by Texec [101].

6.4.2 Environment Metrics

The environment metrics are used to update the image the scheduler has about the envi-

ronment's current state, and may include the distributed system's state, the application's

current state of execution and workload pro�les. These quantities can be directly used by

the agent's decision making mechanism. Environment metrics can be further subdivided

into two subgroups: foreground workload and resources' capacity metrics.

Foreground workload metrics

These values are used to measure each resource's current workload that was directly as-

signed by the application level scheduler. They must correlate well with tasks' response

6.4. PERFORMANCE MODELLING 117

times, since they are used to predict a task's performance if executed at a given resource.

Throughout chapter 8, the foreground workload is quanti�ed by the pair (Telapsed;W%).

Telapsed is the time elapsed since the task was assigned to that resource, until the sampling

instant; and W% is the percentage of work already executed. These metrics are used to

estimate the time required to �nish the current task, Tm.

Resources' capacity metrics

These metrics are used to assess the resources' dynamic availability; they measure the back-

ground workload on each resource, in contrast to the foreground workload metrics, which

measure the workload directly assigned by the application level scheduling agent. The

background workload is de�ned as the workload assigned to a resource by other processes

that do not belong to the application being scheduled. This workload may be generated

by other applications, eventually owned by di�erent users, operating system processes and

daemons that share the distributed system's resources. These values must correlate with

the performance degradation that results from sharing the resource with several processes

and can be either application{independent or application{dependent.

The set of resources' capacity metrics that are actually used by the scheduling agent depend

on the set of resources that are considered relevant to achieve the scheduler's performance

goals. Depending on the particular characteristics of the distributed system and appli-

cation, these may include, for example, the processors, the memory hierarchy and the

communication network. Each of these resources's capacities can be measured, respec-

tively, by the computing throughput, the memory capacity and the disk space and the

communication bandwidth and latency.

Since the ray tracer is low demanding on interactions among nodes when compared to the

computing requirements (see section 6.2), and the distributed system has a low latency

network, the communication overheads are neglected on a �rst approach. The results

presented throughout chapter 8 will show the correctness of this option.

The most time consuming task performed by a ray tracer consists on intersecting straight

lines (rays) with the objects present in the scene being rendered; hence, a processor's

computing throughput can be measured by the rate at which it is able to compute these

intersections, expressed in intersections per second. This metric must be inversely pro-

portional to the background workload. Such metric is used by the scheduler proposed

throughout chapter 8, and is referred to as Ir (intersection rate).

6.4.3 Scheduling Overhead Metrics

These metrics are used to quantify the overheads, both direct and indirect, imposed by

the scheduler upon the distributed system. They can be used in two di�erent ways: either

118 CHAPTER 6. METHODOLOGY

by the scheduler's designer to analyse a posteriori the scheduler's eÆciency and eventually

change its algorithm, or by the scheduling agent itself to automatically adapt its strategy in

order to minimise overheads and maximise bene�ts, i.e., to optimise its eÆciency. Metrics

for direct costs and for the three types of indirect costs identi�ed in section 3.7.2 are

presented next.

Direct Costs

Direct costs represent the resources directly consumed by the scheduler. These are incurred

every time the agent initiates some scheduling activity and can be measured by counting

how often each particular activity is triggered and what is the average cost of each of these

activities.

The list of scheduling activities that incur direct costs is presented in table 3.1. The imple-

mentation of these metrics depends on the application and scheduling policy used, being

described in section 8.3. The scheduling agents developed throughout these experiments

measure direct costs associated with information messages and the execution of the sched-

uler's selected actions. Two of these metrics are fully reported in appendix D: #T, the

number of tasks, and #TS, the number of information messages. The number of tasks

required to �nish the application is directly related to the scheduler's activity: a large

number of tasks indicates that the scheduler had to intervene frequently, imposing large

migration overheads, and may be a clue to instability [92]. A third metric, Tsched, is also

computed in run{time to assess the time required to migrate a task between two processing

nodes.

An obvious direct cost is the CPU time spent by the scheduling agent in its decision making

process, referred to as Tdecide. This cost is directly proportional to the complexity of the

scheduling strategy used. Tdecide is so small for the schedulers used throughout this thesis,

that it is not taken into account in the analysis of these schedulers' eÆciency.

Indirect Costs

Work replication | occurs when several processing nodes must perform the same work

in order to complete their respective tasks. The work replication penalty is quanti�ed by

Pen%, which measures the number of additional computations required by a particular

scheduling strategy compared to some reference scheduling strategy; it is computed as

Pen% =
Wsched �Wref

Wref

� 100 (6.1)

Details about how W is quanti�ed are given in section 8.3.

Resources' idle times | occur when the scheduler fails to keep the resources busy.

Resources' idle times are quanti�ed by TTidle, which measures the total time spent by all

6.4. PERFORMANCE MODELLING 119

processing nodes waiting for tasks. TTidle is given by

TT idle =
NX
i

T idlei (6.2)

where N is the number of processors and T idlei is the time processor i spent waiting for

tasks. This includes the time waiting for the application to �nish when some processors

already performed their last task. TTidle measures the time waiting for tasks speci�c to

the application being scheduled and assigned to the processors by the application level

scheduling agent. An high TTidle does not mean that the processor was idle, since it may

be busy processing other applications's tasks; furthermore, an high TTidle can result from

the scheduler being unable to use all the available resources e�ectively, but can also be

the result of a rational decision made by the scheduler, since the overheads of using some

resources can be larger than the associated bene�ts, probably due to a very low processing

capacity caused by a large background workload.

TT idle% =
TT idle

N � Texec
� 100 (6.3)

measures the percentage of the aggregated execution time that was spent waiting for tasks.

The standard deviation of the nodes' busy times, Tbusyi = Texec � T idlei, referred to as

StdDev, is also presented for all experiments, and is given by

StdDev =

sPN
i (Tbusyi � Tbusy)2

N
(6.4)

If StdDev is 0, then all processing nodes had work allocated for identical time periods. This

does not mean, however, that all nodes were busy during the whole execution time, since

they may have been idle for identical time periods, but in di�erent instants. StdDev gives

an hint about the average degree of load balancing among nodes, but not of the dynamic

instantaneous state of the system with respect to load balancing.

Remote data access overheads | result from the need to fetch data from remote

locations. These are quanti�ed by TTdata, which measures the total time spent by all

processing nodes waiting for remote data items, instead of performing useful work. TTdata

is given by

TTdata =
NX
i

Tdatai (6.5)

where N is the number of processors and Tdatai is the time processor i spent waiting for

remote data.

TTdata% =
TTdata

N � Texec
� 100 (6.6)

measures the percentage of the aggregated execution time that was spent waiting for remote

data. Remote data fetching is an undesirable overhead, that the scheduler may try to

minimise by exploiting data locality.

120 CHAPTER 6. METHODOLOGY

Although the overhead metrics can be used by the scheduling agent in its decision making

mechanism to optimise its eÆciency, the schedulers proposed throughout this work do not

make such use; these are expected to be too low to signi�cantly compromise the scheduler's

e�ectiveness. Only Tsched is considered by the scheduler in run time; the remaining metrics

are used only after completion to evaluate the scheduler's eÆciency. The experimental

results will show the correctness of this approach.

6.5 Reference Scheduling Strategies

To assess the e�ectiveness of the decision network approach to the scheduler's decision

making mechanism, its results are compared with those of three other scheduling strate-

gies: a static uniform data distribution, a demand{driven approach and a sensor based

deterministic dynamic scheduling strategy, referred to as "det", that uses dynamically

gathered information about the environment's state. All these are application level sched-

ulers, whose performance goal is to minimise execution time. The schedulers can have

either a centralised or a distributed architecture. Although centralised strategies are op-

timal from a logical point of view [13], they often exhibit scalability problems, since the

central agent may become a bottleneck (section 3.5). On a system with seven nodes, how-

ever, the central scheduling agent does not become a contention point; all these schedulers

have a centralised source of control, employing a single agent for decision making.

Parallel applications with a structure similar to ray tracing with image space decomposition

have a static maximum number of parallel tasks, which is known at the beginning of

execution, and determined by the resolution of the image being rendered. This is in

contrast with applications that dynamically generate new tasks [36, 49, 141]. When the

whole set of possible tasks is known at the beginning, the scheduler can either initially

allocate the entire workload to the processing nodes and then subdivide the tasks and

reallocate them in run{time, or perform the work subdivision and allocation on demand.

The approaches followed in this assessment include some of these alternatives: the static

data distribution does not reallocate tasks, the demand driven allocates tasks on demand

and the sensor based deterministic approach performs an initial allocation of workload and

then reallocates it in run{time, using task migration.

This initial allocation of workload to resources is equivalent to static scheduling. Rather

complex strategies can be used to perform this step. The appropriate complexity depends

on the performance goals, and on what is known about the tasks' requirements and the

distributed system's capacities and dynamics. If these two latter factors are known, at

least to some extent, then the scheduler may spend additional e�orts on this step to

produce a suitable initial allocation, by using an adequate partitioning strategy (section

3.3). Decision networks could also be used on this initial step (section 5.7). An optimised

6.5. REFERENCE SCHEDULING STRATEGIES 121

initial allocationmay reduce the number of task migrations required in execution time. This

approach does not seem very adequate for the present work, since the tasks' requirements

are unknown for the ray tracer and the distributed system is shared among several users.

Although some preprocessing could be done to estimate the tasks' requirements [61, 137,

138], this was not applied because it is too application dependent; furthermore, the high

variability in capacity exhibited by resources in a shared system, may render this initial

allocation inadequate soon after execution begins. This led to a simple approach to the

initial allocation of work: the image to be rendered is divided on as many sub{regions as

the number of processing nodes, and each region (task) is allocated to each node. Since

the scheduler is dynamic, it can redistribute this workload according to the environment's

state at each instant, by performing task migration at a later scheduling episode.

This section briey presents each of the four scheduling strategies. Further details are

presented on the chapter describing the actual experiment, since these depend on the par-

ticular details of the scheduler's internal execution model, the decision making mechanism

and the ray tracer. Table 6.2, at the end of this section, presents the ESR classi�cation of

the four scheduling strategies, according to the attributes presented in table 4.2.

6.5.1 Uniform Work Distribution

This is a static work allocation strategy. The scheduler does not spend any e�ort at

run{time to optimise execution time: it does not collect environment's state information

and does not make dynamic scheduling decisions. The scheduler �nishes its role before

execution time. The image to be rendered is divided into as many vertical strips, with

identical widths, as the distributed system's nodes. Each of these strips is assigned to one

node, without any further work redistribution.

This approach corresponds to the worst case and its results are used as an upper bound

for execution time. If any of the dynamic schedulers presents worst execution times than

uniform distribution, then its scheduling overheads clearly exceed the bene�ts. If the work-

load is uniformly distributed across the image space, then an uniform decomposition may

result in an even distribution of workload among the processing nodes, thus achieving the

best results, since no scheduling overheads are incurred at run{time; the results obtained

in a dedicated system with two nodes with a fairly simple scene (balls3), presented in �gure

8.16 and table D.2, are an example of this situation. With two nodes, uniform work dis-

tribution slightly outperforms both the demand{driven and the sensor based deterministic

scheduling strategies, because the total workload gets almost evenly distributed between

the two nodes, as shown in �gure 8.2.

122 CHAPTER 6. METHODOLOGY

6.5.2 Demand{Driven Work Allocation

This strategy follows the processor farm paradigm. Processing nodes demand additional

work from a central scheduling agent, whenever they �nish their previously allocated task.

The central scheduling agent initially subdivides the image into a number of subregions

(tasks) larger than the number of processing nodes, and assigns one of these regions to

each processor. On completion of a task, another one is requested to the central scheduler.

This process is repeated until the whole image has been generated. The demand{driven

approach is labelled as \dd" in all tables and graphics where results are presented.

If the number of tasks is large enough, the system can be fairly well balanced, since nodes

with larger computing throughput will get more work. However, since no workload redistri-

bution takes place after assigning tasks to processors, it is possible that a slow/overloaded

processor gets a specially heavy image subregion and takes a considerable longer time to

render it, while the remaining nodes have already �nished the allocated work and stay idle

waiting for the slower node to complete. The potential for this to happen decreases as the

number of tasks increases; however, having too much tasks increases scheduling overheads,

since more tasks' assignments have to be made, and work replication and remote data

accesses may increase. For these experiments, the image is subdivided into 25 tasks for

systems with 2 or 3 nodes, and into 64 tasks if the number of nodes is larger than 3.

The demand{driven strategy does not require extended information about the environ-

ment's state: the central scheduling agent only needs to be informed that a processor has

�nished the previous task. This reduces direct scheduling costs, since only one information

message is required per task, no e�ort is spent computing the environment's metrics and

the decision making mechanism is extremely simple.

6.5.3 Sensor Based Deterministic Strategy

Both the sensor based dynamic deterministic scheduler and the decision network based

scheduler use the same information about the environment's state and have the same set

of possible actions to intervene on the environment's behaviour. In other words, they have

identical sensorial apparatus and e�ectual capabilities. The main di�erence between them,

is that the former uses a deterministic execution model, whereas the latter uses a stochastic

one. The main motivation behind this approach is to enable direct comparisons between

deterministic and stochastic approaches of identical complexity.

The sensor based deterministic scheduling strategy is labelled as \det" in all tables and

graphics. Since the actual strategy details depend on the particular execution model being

used, the sensorial apparatus and the set of actions available, only a general description

can be presented here. A detailed description is presented in chapter 8.

6.5. REFERENCE SCHEDULING STRATEGIES 123

This scheduling strategy uses information about the current system's state and workload

pro�le to make predictions about near future behaviour. Initially, the image being rendered

is divided into as many vertical strips of identical widths as the number of system's nodes,

and each of these subregions is assigned to one node. This is identical to uniform work

allocation. However, application processes are now able to send information messages

to the central scheduler, informing it of the environment's state. This is the information

policy. Using this information and its transfer policy, the central scheduling agent classi�es

the nodes as either potential work suppliers or receivers, for dynamic task migration.

The selection policy is used to determine the amount of work to transfer between two

nodes, one sender and one receiver, aiming to minimise total execution time. It works in a

pair by pair basis, i.e., one supplier only transfers work to one receiver in each scheduling

step. This can be classi�ed as a myopic view, since the bene�ts could be larger if the

surplus workload was allowed to be distributed among several receivers. However, this more

complex approach could also have non{desirable e�ects, such as increasing the number

of tasks' migrations and the execution model's complexity, thereby increasing the time

necessary to make decisions and the time it takes to design and test the scheduler. For

each pair (supplier,receiver) the selection policy computes the amount of workload that

should be transferred, based on the nodes' respective computing throughputs. This is

expressed as a percentage of the workload at the supplier, and is a function of the nodes'

relative computing throughput.

The location policy is then used to select the most suitable (supplier, receiver) pairs. For

each potential receiver, the location policy selects the supplier which maximises the gain

in execution time, Tgain, according to equation 6.7

Tgain = max(Tms; Tmr)�max(T 0
ms; T

0
mr) (6.7)

where Tms and Tmr are the estimated time required to �nish the supplier and the receiver

currently allocated tasks, T 0
ms and T 0

mr are the expected execution times of the tasks as-

signed to the supplier and receiver, respectively, if the percentage of work computed by the

selection policy is actually transferred. The supplier selected with equation 6.7 is accepted

only if this gain is larger than the time required to migrate a task between two processing

nodes multiplied by a constant. This time is measured at run{time and is referred to as

Tsched. This is a direct scheduling overhead metric. The constant value was arbitrarily set

to 6 throughout all experiments to ensure that the migration gain is signi�cantly larger

than the migration cost.

After selecting a supplier, the scheduler initiates the task migration mechanism. The

supplier may refuse to transfer some of its workload, since, due to information aging, it

is possible that it has already �nished its currently allocated task. If this happens then

the next supplier is selected. Upon reception of an acknowledgement message from the

supplier, both the supplier and the receiver ids are removed from their respective lists, and

124 CHAPTER 6. METHODOLOGY

the scheduler proceeds with the next potential receiver. This process is repeated until one

of the candidates' lists, built by the transfer policy, becomes empty.

6.5.4 Decision Network Based Strategy

The deterministic scheduling strategy uses deterministic quantities to make decisions about

the suitability of a given task migration; the decision network based strategy, labelled as

\DN", models some parts of the environment as random variables. The interactions among

these variables are stochastically modelled, by means of conditional probability tables.

Modelling part of the environment with random variables allows the explicit integration

of the uncertainty that may exist about their current values and of the exact way these

variables interact.

The DN strategy uses an execution model equivalent to that of the deterministic strategy.

The information policy is exactly the same. The location and selection policies are now

implemented mainly by evaluating the decision network. It is evaluated for each pair

of nodes, recommending the most adequate action for this pair, expressed in terms of

the percentage of work that should be transferred between the two nodes and on which

direction. For each pair of nodes, the sensor's readings are entered on the network as

evidence and the belief distribution over the environment's current state is inferred. Then,

for each alternative action, both the probability distribution over the environment's next

state and the expected utility of this action are computed. Decision networks provide an

automatic process of performing all these inferences on a small number of steps. The action

which maximises the expected utility for each pair of nodes is then selected. This produces

a list of recommended actions, one for each pair of nodes.

This approach requires the assessment of the decision network Cn
2 times, which may rep-

resent a large overhead, since it grows with O(n2):

Cn
2 =

n!

2!(n� 2)!
=
n(n� 1)

2
� O(n2)

To reduce the number of evaluations of the decision network, hence keeping the direct

cost of decision making, Tdecide, within acceptable values, it is evaluated only with pairs of

potential suppliers and receivers, as identi�ed by the transfer policy, which is, therefore,

deterministic.

Assessing the decision network once for each pair of nodes may be considered a myopic

approach, since the scheduler only considers those two nodes' states to recommend an

action. This is similar to what happens with the sensor based deterministic scheduling

strategy. The alternative is to build a decision network where the states of all nodes are

considered at once, and the most appropriate action would possibly entail various workload

movements through the system. However, building such a network would be much more

6.6. SYNTHETIC BACKGROUND WORKLOAD 125

demanding, at least with respect to the probabilities' speci�cation, and di�erent networks

would be required for systems with di�erent number of nodes. It could also result in a

larger number of tasks migrations.

The resulting list of recommended actions is then sorted by descending order of gain in

execution times, Tgain, given by

Tgain = max(Tms; Tmr)�max(T 0
ms; T

0
mr)

where T 0
ms; T

0
mr; Tms and Tmr are the estimated execution times on both the supplier and

the receiver, with and without executing the action, respectively. One recommended action

may be refused by the scheduler if its estimated gain, Tgain, is less than Tsched multiplied

by a given constant. The location policy is, thus, very similar to the one used in the

deterministic approach, reecting the fact that the execution models used on both strategies

are very similar. The scheduler then tries to execute these actions one by one following the

ordering just imposed. Once an action has been e�ectively executed, i.e., not refused by

the supplier, all actions where either the supplier or the receiver appear are removed from

this list, assuring that no node is involved in more than one action per scheduling step.

Table 6.2 presents these four scheduling strategies classi�cation, according to the attributes

discussed in section 4.1.5.

Characteristic Attributes

Uniform dd det DN

Information Space | global global global

Migration Space | global global global

Adaptation static dynamic dynamic dynamic

Location of Control centralised centralised centralised centralised

Kind of Transfers one{time one{time divisible divisible

assignments assignments loads loads

Decision Mechanism deterministic deterministic deterministic stochastic

Environment's none simple detailed detailed

State Information

Application's none none deterministic stochastic

Execution Model

Table 6.2: The Scheduling Strategies' ESR classi�cation

6.6 Synthetic Background Workload

To evaluate the scheduling agents' e�ectiveness on distributed shared systems, it is neces-

sary to experiment them under a variety of background workloads. Background workload

126 CHAPTER 6. METHODOLOGY

refers to all those processes that are not under the application level scheduling agent's

control, such as other applications, eventually belonging to di�erent users, and operating

system processes. Conversely, the processes under the scheduling agent direct control are

referred to as the foreground workload.

Characterising and generating a realistic and general background workload is a complex

issue [20, 21, 22, 23], if not an elusive goal [38], that falls outside the scope of this thesis.

To simplify this issue, a few synthetic background workloads are generated, by overloading

some of the distributed system's resources with a synthetic program [112].

Since the schedulers used throughout chapter 8 only take into account the nodes' computing

throughput in their execution models, these are the resources that are overloaded in these

experiments. For this purpose, a synthetic program, referred to as \CPUSpoiler", has

been developed, which performs oating point operations during all its life time. On a

time sliced environment CPUSpoiler creates a background workload that steals CPU time

from other processes. Each workstation background workload can be made heavier by

launching several copies of CPUSpoiler.

Three di�erent synthetic background workload patterns, referred to as Light, Medium and

Heavy backgrounds, are used throughout this work. Together with the dedicated mode,

these workload patterns simulate di�erent degrees of system sharing among applications, as

illustrated in �gure 6.2. These simulate 10 virtual users per node, each of them launching

new processes with a given frequency. The mean arrival time between consecutive processes

of the same user, hereby referred to as the mean arrival time, and the life time of each

process can be selected, allowing the simulation of di�erent background workloads, with

di�erent CPU demands.

-

6

Dedicated Shared

Regular

Irregular

w

w

w

w

Distributed
System

Application

Heavy�

Medium
��	

Light
@@R

Figure 6.2: Background workload: the system sharing level versus the application regularity
space

The arrival time is measured as the time elapsed since this user's last process terminated

until a new process is spawned. Each virtual user can only have an active process at each

6.6. SYNTHETIC BACKGROUND WORKLOAD 127

instant. The arrival time is exponentially distributed with parameter �, which means that

the mean arrival time is given by 1
�
[114]. The synthetic workload can be made heavier by

decreasing each user's mean arrival time.

Each process life time is measured as the time elapsed since the process is launched until

it is terminated. The CPUSpoiler program is used to simulate the users' processes. The

life time is also exponentially distributed. The synthetic workload can be made heavier by

increasing each process' mean life time.

The three di�erent background workload patterns are presented in table 6.3, sorted by

increasing order of CPU demand. These workloads are spatially heterogeneous, since two

out of the seven nodes are submitted to lighter background loads on average.

Mode Comments

No synthetic background workload.

Dedicated Only system processes coexist with

the application being scheduled.

Mean life time = 20 seconds

Light Nodes 0 and 2: Mean arrival time = 80 seconds

Remaining Nodes: Mean arrival time = 60 seconds

Mean life time = 20 seconds

Medium Nodes 0 and 2: Mean arrival time = 60 seconds

Remaining Nodes: Mean arrival time = 40 seconds

Mean life time = 20 seconds

Heavy Nodes 0 and 2: Mean arrival time = 20 seconds

Remaining Nodes: Mean arrival time = 5 seconds

Table 6.3: Synthetic background workloads

To ensure the experiments' reproducibility all the values needed to generate the workloads,

i.e., the processes' arrival and life times, were previously generated and saved. These are

then used to drive the simulations, ensuring that all experiments are identical with respect

to the synthetic background workload.

Figure 6.3 shows the behaviour of an application{dependent computing throughput metric,

the intersection rate (described with detail in section 8.3.2), when the distributed system

is submitted to these background workloads. The �gure illustrates the relative compu-

tational weigh of the selected synthetic background workloads. Larger values represent

larger available computing power. In order to keep the graphics readable only four nodes

are shown. The remaining nodes exhibit a similar behaviour.

128 CHAPTER 6. METHODOLOGY

Figure 6.3: Computing throughput variation with di�erent synthetic background workloads

6.7. SUMMARY 129

6.7 Summary

This chapter describes the environmental setup used throughout the experiments performed

to verify the proposed hypothesis. This can be summarised as follows:

� the distributed computing system is a small cluster, with seven nodes, that can be

simultaneously shared among several users; the nodes are interconnected by a low

latency, high bandwidth Myrinet network;

� a ray tracing application is used as the case study; this application exhibits an irreg-

ular algorithmic workload, low interaction among tasks and high parallelism; it has

been partitioned into parallel tasks using image space decomposition, which provides

arbitrarily divisible loads; the scenes being rendered may be arbitrarily complex,

which may require that data is distributed among the nodes' memories; this feature

can increase the interaction among nodes;

� the experimental results of three di�erent reference scheduling strategies are com-

pared with those of a decision network based scheduler; all these schedulers perform

application level scheduling, aim to minimise execution time and have a centralised

architecture;

� the workload is initially allocated to the various processing nodes following a straight

forward partitioning strategy, which does not consider neither the tasks' requirements

nor the resources' capacities; the sensor based dynamic schedulers focus their e�orts

on workload redistribution at run time by performing tasks migrations;

� the sensor based schedulers do not include scheduling overheads on their decision

making process, with the exception of the time required to migrate a task between

two nodes; scheduling overheads are used to evaluate the scheduler's behaviour after

the application completes;

� the only environment metrics used are the nodes' computing throughput and the

tasks' estimated time to �nish; the computing throughput is justi�ed by the high

computing requirements exhibited by ray tracers; other resources' capacity metrics,

like communication bandwidth and latency, are neglected, since an high performance

network is used; no attempt is made to subdivide the tasks' estimated time to �nish

in its various components, such as the computation time, the remote data fetching

time, etc.

� the distributed system is submitted to 3 di�erent synthetic background workload

patterns, which simulate shared environments.

130 CHAPTER 6. METHODOLOGY

The proposed decision network �ts into the generic decision network proposed in section

5.7, with the following modi�cations:

� scheduling overheads are not explicitly considered on the selection policy; this block

is not present in the actual decision network;

� the processing nodes are considered in a pair{wise basis; each of the resources' capac-

ities and tasks' requirements metrics include two sensors and respective stochastic

metrics, one for each node;

� the next state is described by a single variable related to the expected degree of load

sharing between the two nodes being considered at each inference step (section 8.5.1).

Chapter 7

Ray Tracing: a Case Study

Contents

7.1 Ray Tracing Algorithm . 132

7.2 Illumination Model . 135

7.3 Some Ray Tracing De�ciencies 141

7.4 Acceleration Techniques . 142

7.5 Parallel Ray Tracing . 144

7.6 PaRT { Parallel Ray Tracer . 146

7.7 Summary . 149

Ray tracing is a computer graphics method used to render photo-realistic images from

three{dimensional descriptions of the world. This is achieved by simulating light behaviour.

Ray tracing is one rendering algorithm among others, such as radiosity and particle tracing

[135, 136]. These algorithms di�er in the way light paths are approximated, which means

that the resulting light e�ects vary from algorithm to algorithm.

Rendering algorithms are computationally very demanding, with execution times that can

be intolerably long, depending on the scene's complexity and on the illumination model's

richness. To speed up ray tracing many approaches have been proposed, including parallel

processing. Since in ray tracing one pixel's computations are completely independent of

any other pixel, and the data structures needed to describe the world are not modi�ed, this

algorithm's parallelisation is straightforward. If the world's description is made available

to all processing nodes, then an image space problem decomposition can be used, assigning

di�erent image regions to each node [61]. Ray tracing falls in the class of embarrassingly

parallel problems. Since the workload associated with each pixel may vary widely across

the image [61, 135], the only issue left to be addressed is load management. However, there

are no dependencies among the various tasks and nodes, hence this problem can be easily

and eÆciently solved using some form of demand driven work allocation [27, 135, 136].

131

132 CHAPTER 7. RAY TRACING: A CASE STUDY

Unfortunately, having the whole scene description directly available to all processing nodes

may be impossible. On a distributed memory parallel system this requires replicating the

data across the processors, which limits the problem size to that of the memory available

at each node. To handle larger scenes this database has to be distributed across the

nodes. A distributed scene implies that processors either migrate tasks or fetch remote

data, whenever a given datum can not be found at the processor's local memory. This

incurs overheads that prevent naive ray tracing algorithms from scaling with the number

of processors [27, 135, 136].

When the scene data does not �t into each processor's local memory, the problem of eÆ-

ciently parallelising ray tracing becomes more diÆcult. Work allocation to the processors

can no longer be eÆciently done based solely on a processor's availability. Issues such

as data access costs must also be considered, to ensure that the time spent fetching re-

mote data or migrating tasks is minimised. The problem of eÆciently matching tasks and

data becomes even more complex due to the unpredictability of the data access patterns

exhibited by ray tracing tasks.

This complexity motivated the choice of ray tracing with large scene descriptions as a case

study for this work.

This chapter presents PaRT, a parallel ray tracer developed purposely as an experimental

testbed for this work. It begins by introducing the ray tracing algorithm and the Phong

illumination model and identi�es some de�ciencies associated with this algorithm. Parallel

ray tracing is then discussed, and section 7.6 describes PaRT's architecture.

7.1 Ray Tracing Algorithm

All rendering algorithms try to solve the rendering equation which models light behaviour

[48, 59, 86, 135, 136, 174]. The rendering equation is formulated as [159]:

L0(x;�0) = Le(x;�0) +
Z
allx0

v(x; x0)fr(x;�
0
0;�0)L0(x

0;�0
0) cos�i

cos �0
0dA

0

kx0 � xk2
(7.1)

This equation states that the outgoing radiance L0 at surface point x in direction �0

is equal to the self-emitted radiance Le plus the incoming radiance from all points x0

reected into direction �0. v(x; x
0) is a visibility term, being 1 if x0 is visible from x and 0

otherwise. �0
0 is the direction between x and x0. The material properties of surface point

x are represented by the bi{directional reection distribution function fr(x;�
0
0;�0), which

returns the amount of radiance reected into direction �0 as a percentage of the incident

radiance from direction �0
0 (represented by L0(x

0;�0
0)). The cosine terms translate surface

points in the scene into projected solid angles.

The rendering equation is a recursive integral that must be solved numerically. Ray tracing

7.1. RAY TRACING ALGORITHM 133

is a numerical method that approximates this equation by sampling the world from the

observer's point of view.

Ray tracing is a view dependent algorithm. The basic ray tracing algorithm follows a ray

from the view point, through each pixel of an imaginary image plane and into the scene

(�gure 7.1). These rays are referred to as primary rays.

view point

objects

primary ray

shadow ray

light source

image
plane

Figure 7.1: Primary and shadow rays

The closest intersection of the primary ray with an object in the scene must then be

calculated in order to shade this pixel. If an intersection point is found, then the appropriate

illumination model is applied, otherwise the pixel is shaded as background.

Primary rays perform hidden surface removal. In a naive ray tracer each ray must be

tested against every object in the scene for intersection. If the ray intersects more than

one object then the nearest intersection point is selected.

Once an intersection point is found, shadow rays are spawned towards each light source. If

an object is found in the path between the intersection point and the light source, then this

one is considered occluded and does not contribute to that point illumination. Otherwise,

a local illumination model is brought into play and that light source contribution to the

pixel is calculated (section 7.2.1). Figure 7.2 shows object O1 directly lit by light source

L1, while object O3 occludes light source L2. Object O2, on the other hand, is not lit by

any of the light sources.

Some ray tracers extend this model in order to account for transparent objects. The local

transparency coeÆcients of all objects intersected by the shadow ray are multiplied by the

light source intensity for each wavelength (section 7.2.1). If the product for a wavelength

reaches zero, then that wavelength does not contribute to that point illumination. If the

products for all wavelengths reach zero, then the intersection process may terminate, since

that light source does not contribute to that point illumination. This model is known as

�ltered transparency, since objects are treated as transparent �lters that selectively pass

di�erent wavelengths [48]. Filtered transparency ignores refraction, i.e., light rays are not

bent as they go through the objects.

134 CHAPTER 7. RAY TRACING: A CASE STUDY

L1 L2

O1

O2

O3

Figure 7.2: Shadow rays and occlusion

Including �ltered transparency on the shading model increases the computational load

associated with shadow rays. The intersection process can no longer terminate as soon as

the �rst object intersecting the shadow ray is encountered. It only terminates when the

computed products for all wavelengths reaches zero or if no intersecting object is found.

Ray tracing is a global illumination algorithm that also models light incident on a surface

after interaction with other objects. Most ray tracers include perfect specular reection

and perfect specular transmission on their global illuminationmodels (section 7.2.2). These

phenomena are modelled by shooting new rays into the reected and/or transmitted di-

rections (�gure 7.3). These rays are treated exactly the same way as primary rays. Hence,

ray tracing is a recursive algorithm. This recursive process is repeated, generating a tree

of rays, until a pre{established maximum depth is reached or no additional rays need to be

spawned. Light arriving to the surface through each of these secondary rays is multiplied

by either a global reection coeÆcient or a global transmission coeÆcient, to model the

surface's material properties (section 7.2.2).

V

N

R1

T1

T2

L1 N

L2 R2

L3 O3

O2

O1

Figure 7.3: Primary (V), Shadow (L), Reected (R) and Transmitted (T) rays

Figure 7.3 shows the tree of rays generated for one pixel. Although object O1 is not

directly lit by the light source (it is self-occluding), object O2 is seen through it by specular

transmission and object O3 is seen on O2's surface by specular reection. No further rays

7.2. ILLUMINATION MODEL 135

are spawned on O3's intersection point with ray R2, either because its global transmission

and reection coeÆcients are zero, or because the tree maximum depth has been reached.

7.2 Illumination Model

The illumination model expresses the factors that determine an object's colour at a given

point and speci�es the equations by which these factors are combined. An object's colour

at a given point depends on the object's position and orientation relative to other objects,

the view point and the light sources. It also depends on the object's material properties

and on the light sources' characteristics. Although illumination models are often referred

to as shading models, this term should be reserved for the broader framework in which an

illumination model �ts [48]. The shading model determines when and which illumination

model is applied. Some shading models invoke an illumination model for some pixels, and

shade the remaining pixels by interpolation.

Most ray tracers model both local and global illumination. Local, or �rst-order, illumination

models consider only direct interactions of an object with light arriving from a light source.

If light incides on a surface after interaction with another object, then that illumination is

referred to as global. Global illumination arises from the interaction of light with reective

or transparent objects [48, 59, 173, 174].

Glassner [59] presents four light transport modes by which light interacts with objects:

perfect di�use reection, perfect specular reection, perfect di�use transmission and per-

fect specular transmission. Ray tracers model some of these light transport mechanisms

on either their local or global illumination model, or even on both of them. However, these

perfect light transport modes are idealised models of reality, since there are no perfect spec-

ular or di�use surfaces. Many techniques used in computer graphics include simpli�cations

that have no �rm ground theory, but produce acceptable results and are computationally

tractable in useful time.

7.2.1 Local Illumination Model

Local illumination models consider only the �rst interaction of light with an object.

Many local models are presented on the literature. These include the Cook and Torrance

Model, models completely based on a physical surface roughness simulation and models

completely based on wave theory [48, 174]. The model used throughout this work { the

Phong model { is a completely empirical approach to specular and di�use reection that

approximates more precise theoretical models.

136 CHAPTER 7. RAY TRACING: A CASE STUDY

The Phong model is a linear combination of three terms: ambient light, di�use reection

and specular reection. This model will be extended by an extra term to account for the

spread that a light source produces when viewed through a transparent object.

Di�use Reection

Surfaces exhibiting di�use reection, also known as Lambertian reection, reect light with

equal intensity to all directions. For a given surface the brightness at point
:

P depends only

on:

� the angle � between the direction ~L to the light source and the surface's normal ~N

at point
:

P (�gure 7.4);

� the surface's material properties;

� the light source's characteristics.

N

P

L
θ

LightSource

Figure 7.4: Di�use reection

The di�use reection illumination equation is

Id = Iikd cos � = Iikd(~L � ~N) (7.2)

where Ii is the incident light's intensity (arriving directly from the light source), kd is the

material's di�use reection coeÆcient and (~L � ~N) is the dot product between ~L and ~N . kd

is a constant between 0 and 1 and varies from one material to another.

Most ray tracers handle colour by considering three di�erent wavelengths: red (R), green

(G) and blue (B). kd can be wavelength dependent. Equation 7.2 can be extended to

support multiple light sources and wavelenght dependent reections, becoming:

Id;R = kd;R
X
j

Ii;j;R(~Lj � ~N)

Id;G = kd;G
X
j

Ii;j;G(~Lj � ~N) (7.3)

Id;B = kd;B
X
j

Ii;j;B(~Lj � ~N)

7.2. ILLUMINATION MODEL 137

where kd;R, kd;G and kd;B are the material's di�use reection coeÆcients for each wavelength,

Ii;j;R, Ii;j;G and Ii;j;B are the incident light intensities from light source j for each wavelength,

and ~Lj is the normalised direction vector from point
:

P towards light source j.

The angle � must be in the range [0 : : : 90] degrees, otherwise the surface is self{occluding,

since light cast from behind a surface does not contribute to di�use reection.

Ambient Light

Ambient light is included in the Phong model to account for the interaction of multiple

di�use reections of light from the many surfaces present in the scene. The e�ect of this

global di�use interactions is modelled as a di�use, non-directional light source that reaches

every point of the environment. The Phong model assumes that ambient light impinges

equally on all surfaces from all directions and approximates it as a constant. Ambient light

is wavelength dependent and its equations are

Ia;R = Iamb;Rka;R

Ia;G = Iamb;Gka;G (7.4)

Ia;B = Iamb;Bka;B

where Iamb;R, Iamb;G and Iamb;B are the wavelength dependent intensities of ambient light

present in the environment and ka;R, ka;G and ka;B are the surface's material ambient

reection coeÆcients and range between 0 and 1.

More accurate solutions for modelling global di�use interactions are discussed on section

7.3.

Specular Reection

The highlight seen on shiny surfaces is the reex of a light source. It is caused by specular

reection and depends on the viewpoint. Specularly reected light is emitted mostly in

the direction of ~R, which is ~L mirrored about ~N . ~R is given by

~R = 2 ~N(~N � ~L)� ~L (7.5)

Specular reection is thus a function of
, the angle between the viewing direction ~V and

the mirror direction ~R (�gure 7.5).

The Phong model assumes that maximum specular reection occurs when
 is zero, and

falls o� rapidly as
 increases. This fallo� is approximated by cosns
, where ns is the

material's specular reection exponent. A value of 1 provides a broad highlight, whereas

higher values simulate a sharp highlight. For a perfect mirror ns is in�nite. Specular

reection is given by

Is;R = ks
X
j

Ii;j;R(~Rj � ~V)
ns

138 CHAPTER 7. RAY TRACING: A CASE STUDY

N

P

L
θ

R
−θ

ViewPoint

V

Ω

LightSource

Figure 7.5: Specular reection

Is;G = ks
X
j

Ii;j;G(~Rj � ~V)
ns (7.6)

Is;B = ks
X
j

Ii;j;B(~Rj � ~V)
ns

where ks is the material's local specular reection coeÆcient and is not dependent on the

wavelength, since highlights are modelled as being of the same colour as the incident light.

Once again �j must be in the range [0 : : : 90] degrees, otherwise the surface is self-occluding

and won't exhibit the specular highlight.

Specular Transmission

This term is introduced as an extension to the Phong model and it accounts for light that

is seen through a transparent object due to a light source standing behind it. This term

is evaluated only to those light sources laying behind the object (� > 90), whereas di�use

and specular reection are evaluated to those standing in front of the object (0 < � < 90).

Light is assumed to be maximally transmitted along the transmission direction ~T , but is

allowed to spread over this direction. This model is identical to the one used to allow spec-

ularly reected highlights to spread over the maximum reection direction. The broadness

of this spread is controlled with nt, which is the material's specular transmission exponent.

This term is wavelength dependent and is given by

It;R = kt;R
X
j

Ii;j;R(~N � ~H 0
j)
nt

It;G = kt;G
X
j

Ii;j;G(~N � ~H 0
j)
nt (7.7)

It;B = kt;B
X
j

Ii;j;B(~N � ~H 0
j)
nt

~H 0 is the orientation that the surface should have to maximally transmit light in the

viewer's direction and is a function of ~L, ~V and the material's relative index of refraction

7.2. ILLUMINATION MODEL 139

{ IOR or �. IOR is discussed with more detail in section 7.2.2. ~H 0 is given by [174]:

~H 0 =
�~L� �~V

� � 1
(7.8)

The complete equations for the local illumination model are:

Il;R = Iamb;Rka;R +
X
j

Ii;j;R[kd;R(~Lj � ~N) + ks(~Rj � ~V)
ns + kt;R(~N � ~H 0

j)
nt]

Il;R = Iamb;Rka;G +
X
j

Ii;j;G[kd;G(~Lj � ~N) + ks(~Rj � ~V)
ns + kt;G(~N � ~H 0

j)
nt] (7.9)

Il;B = Iamb;Bka;B +
X
j

Ii;j;B[kd;B(~Lj � ~N) + ks(~Rj � ~V)
ns + kt;B(~N � ~H 0

j)
nt]

7.2.2 Global Illumination Model

Illumination due to light that reaches a point
:

P after reection from and transmission

through other surfaces is computed using the rules de�ned by the global illumination

model.

Ray tracing includes mechanisms to model perfect specular reection and perfect specular

transmission. Reection and transmission rays are conditionally spawned into the scene

from each intersection point. These are referred to as secondary rays. A reection ray is

spawned if the material's global reection coeÆcient kgs is greater than 0, and a transmis-

sion ray is spawned if the material's global transmission coeÆcient kgt is greater than 0.

Secondary rays are then traced as if they were primary rays, recursively spawning shadow,

reection and transmission rays (�gure 7.3). The rays form a tree that is traced until a

pre-speci�ed maximum depth is reached or no additional rays need to be spawned. The re-

ected and transmitted rays' contributions are computed by applying the local illumination

model at their respective intersection points and are then weighed by kgs or kgt.

The direction of the reected ray, ~R, is ~V mirrored about ~N , and is given by equation

7.10. This is di�erent from the ~R vector used in the local illumination model, which is ~L

mirrored about ~N .
~R = 2 ~N(~N � ~V)� ~V (7.10)

The direction of the transmitted ray ~T is a function of the indices of refraction (IOR) of

the materials through which the light passes, �i and �t. A material's IOR is the ratio of

the speed of light in vacuum to the speed of light in the material. In practice, this means

that the direction of ~T is di�erent from the direction of ~V . The relation between the angle

of incidence �i and the angle of refraction �t (�gure 7.6) is given by Snell's Law:

� =
�t
�i

=
sin�i

sin�t

(7.11)

140 CHAPTER 7. RAY TRACING: A CASE STUDY

Θ

Θ t

Θ

Θ t

η tη
sin

sin

i
= η i

=
i

V

T

Figure 7.6: Snell's Law

The transmitted ray ~T is given by

~T =
1

�
~V � (cos�t �

1

�
(~V � ~N)) ~N (7.12)

cos �t =
q
1� sin2�t =

s
1�

1

�2
(1� (~V � ~N)2) (7.13)

Although � varies with the light's wavelength and even with temperature, most ray tracers

model it as wavelength independent to avoid shooting a di�erent transmission ray for each

frequency. The global illumination model can be written as

Ig = kgsIs + kgtIt

where kgs and kgt are the material's global specular reection and transmission coeÆcients,

Is and It are the reected and the transmitted ray contributions, respectively.

7.2.3 Ray Tracing Rendering Equation

The �nal equations used by a ray tracer that implements the illumination model presented

above are :

IR = Iamb;Rka;R +
X
j

Ii;j;R[kd;R(~Lj � ~N) + ks(~Rj � ~V)
ns + kt;R(~N � ~H 0

j)
nt] +

kgsIs;R + kgtIt;R

IG = Iamb;Gka;G +
X
j

Ii;j;G[kd;G(~Lj � ~N) + ks(~Rj � ~V)
ns + kt;G(~N � ~H 0

j)
nt] +

kgsIs;G + kgtIt;G

IB = Iamb;Bka;B +
X
j

Ii;j;B[kd;B(~Lj � ~N) + ks(~Rj � ~V)
ns + kt;B(~N � ~H 0

j)
nt] +

kgsIs;B + kgtIt;B

The parameters presented on table 7.1 are needed to describe each material's properties

and to apply the illumination model just described.

7.3. SOME RAY TRACING DEFICIENCIES 141

Symbol Description

kd;R, kd;G, kd;B Di�use reection coeÆcients

ka;R, ka;G, ka;B Ambient reection coeÆcients

ks Local specular reection coeÆcient

ns Specular reection exponent

kt;R, kt;G, kt;B Local specular transmission coeÆcients

nt Specular transmission exponent

� Index of refraction relative to the vacuum

kgs Global specular reection coeÆcient

kgt Global specular transmission coeÆcient

Table 7.1: Material's properties

7.3 Some Ray Tracing De�ciencies

Despite claims of realism, ray tracing uses an empirical illumination model that fails to

accurately represent all light transport mechanisms, resulting in images that have a clear

ray tracing signature [175]. This section discusses some of these de�ciencies.

Global Di�use Interaction

The global illumination model used by most ray tracers does not include light interaction

among di�use surfaces. This is approximated by a constant, referred to as ambient light.

Modelling di�use interaction by extending the ray tracing method would mean that at

each intersection point a large number of rays would be spawned and the algorithm would

quickly become intractable. However, much of the light that is seen on real scenes is due

to global di�use interactions, as are shadow's soft edges. Either radiosity or backwards ray

tracing can be used to account for this phenomenon [175]. Backwards ray tracing refers to

ray tracing from the light sources, instead of from the view point.

Specular to Di�use Interaction

This problem is similar to the previous one: conventional ray tracing does not account

for light incident on a di�use surface coming from an interaction with a specular one. An

intersection with a di�use surface is tested only for light source visibility, by spawning

shadow rays; light arriving from indirect routes, such as a specular reection on another

surface, is completely ignored. This light transport mechanism can also be modelled by

performing a previous pass with a backward ray tracing algorithm [175].

Aliasing

Classical aliasing artifacts are caused by inadequate sampling of high frequency information

142 CHAPTER 7. RAY TRACING: A CASE STUDY

by a low frequency sampling signal. In a point{sampled image, frequencies greater than the

Nyquist limit are inadequately sampled; high frequency patterns appear as low frequency

patterns and interferences are formed. Since primary rays are uniformly spaced, ray traced

images su�er from aliasing artifacts. One possible solution is to supersample the image.

Supersampling is the process by which aliasing artifacts are reduced by increasing the

frequency of the sampling grid followed by averaging down | the aliasing artifacts are not

eliminated, they are smoothed. The two main drawbacks of supersampling are that:

� there is a practical limit to the frequency at which supersampling may be done;

since the spatial frequency spectrum of the 3D scene can extend to in�nity, aliasing

artifacts are not eliminated, just reduced;

� spawning additional primary rays is an expensive process, that can increase the ren-

dering times beyond acceptable limits.

Alternative solutions to the aliasing problem include adaptive supersampling and stochastic

sampling [59, 175].

7.4 Acceleration Techniques

The naive ray tracing algorithm is a brute force approach, that tests every spawned ray

against all objects in the scene. This is a very ineÆcient algorithm, since intersection

tests are expensive and most of them fail. Several alternative eÆciency schemes have been

developed, which either try to reduce the number of rays or exploit coherence to reduce the

number of intersection tests. This section presents some of these acceleration techniques.

Adaptive Depth Control

In a naive ray tracer, secondary rays are spawned at each intersection point to account for

global reection and transmission, generating a tree of rays for each primary ray. This tree

only terminates when a ray hits nothing or a maximum trace depth is reached. Since the

contribution of each secondary ray is multiplied by a constant that ranges between 0 and

1, rays at greater depth contribute a decreasing amount to the pixel value | the e�ort

spent calculating rays deep down the tree may have an imperceptible e�ect on the �nal

image.

Adaptive depth control is implemented by accumulating the product of the global trans-

mission or reection coeÆcients along the tree of rays, and stop spawning secondary rays

if this value falls below a certain threshold [175].

7.4. ACCELERATION TECHNIQUES 143

Exploiting Coherence

Coherence is a property of the environment that expresses the degree to which parts of

the environment exhibit local similarities. Coherence may be exploited by acceleration

techniques. There are four types of coherence which are commonly used in the context

of ray tracing. Object coherence is the most fundamental one; it expresses the fact that

objects are connected, smooth and bounded and that di�erent objects are usually disjoint

in space. Image coherence is the view{dependent version of object coherence. The objects'

projections in the image plane exhibit the same degree of connectedness, smoothness and

boundness as the original 3D objects. Ray coherence means that rays with nearly the same

origin and direction are likely to trace similar paths through the environment, intersecting

the same object. Frame coherence means that successive frames of an animation are likely

to be similar if the time di�erence is small.

Applications of object and ray coherence are given in the next sections. Image coherence

is often applied to shade pixels in the middle of a surface; pixels at the surface's edges

are shaded with a regular illumination model, while the remaining pixels are shaded by

interpolation. Frame coherence can be applied to speed up rendering of consecutive frames;

two frames are accurately rendered, while intermediate frames are interpolated [59].

Occluding Object Bu�er

Ray coherence states that rays with nearly the same origin and direction tend to intersect

the same objects. Shadow rays spawned from neighbouring intersection points on the same

surface towards the same light source are likely to exhibit coherence among them. There

is an high probability that the object that occludes a surface from a light source for a

given intersection point, is the same that occludes it for nearby intersection points. If this

object's identi�er is saved on an occluding object bu�er and if this object is tested for

nearby intersection points, there is a good chance that this object is intersected and no

further intersection tests are required. Ray coherence contributes to reduce the number of

intersection tests.

Bounding volumes

Bounding volumes reduce the number of intersection tests by exploiting object coherence.

An object with an arbitrary complexity can be enclosed in a simple bounding volume, such

as a sphere; rays are tested for intersection against the simpler volume. If a ray does not

intersect the bounding volume, then it does not intersect the complex object, and no more

intersection tests are required. Spheres have commonly been used as bounding volumes,

because intersecting a ray with a sphere is computationally simple. If the object contains

a large number of polygons, this scheme can improve eÆciency signi�cantly, since it saves

unnecessary tests of the ray against each polygon.

144 CHAPTER 7. RAY TRACING: A CASE STUDY

Bounding volumes can be extended hierarchically; by enclosing a number of bounding

volumes within a larger bounding volume, many objects can be eliminated from further

consideration with a single intersection test [48, 59, 175].

3D Space SubDivision

Object coherence implies space coherence, because objects are connected. The rational

behind exploiting space coherence is simple. The 3{dimensional space occupied by the

scene is subdivided into 3{dimensional regions. Regions are processed in order along the

ray from its origin. Only objects contained within the current region must be tested for

intersection. If no intersections occur, then the next region along the ray direction is

processed. The �rst region where an intersection is found is the one nearer to the ray

origin, therefore no further regions must be visited.

Several di�erent approaches to 3D spatial subdivision have been proposed. All these

approaches require a top{down preprocessing step, that partitions the space into non{

overlapping 3 dimensional regions, also known as voxels (volume elements). Uniform space

partitioning requires that all voxels are of the same size, while non{uniform space parti-

tioning allows voxels of di�erent sizes. The most common approach is to use an octree of

non{uniform voxels, where these are hierarchically subdivided into smaller voxels, until a

minimum voxel dimension is reached or the number of objects within a voxel falls below a

prede�ned threshold [48, 59, 175].

7.5 Parallel Ray Tracing

Ray tracing is a computationally expensive algorithm, both due to its recursive nature and

to the arbitrary complexity of the scene being rendered. In addition to acceleration tech-

niques that reduce the number of operations required to render a scene, parallel processing

is often used to speed up ray tracing times. To write a parallel ray tracer two major issues

must be handled: problem decomposition and load distribution.

A decision has to be made whether the problem is decomposed into separate functional

parts (functional decomposition), or if identical algorithms are applied to di�erent parts

of the data (domain decomposition). The latter tends to be more suitable for parallel

rendering purposes [136], therefore this discussion focuses on domain decomposition.

In the context of ray tracing, domain decomposition can be done either in object space

or image space [61, 101, 136]. Object space entails subdividing the 3D scene space into

voxels, and allocating these voxels to the processing nodes; each processor stores a subset

of the whole database, rather than all the objects in the scene. Parallel tasks are executed

by the processors holding the required data; whenever a ray enters a di�erent voxel, the

7.5. PARALLEL RAY TRACING 145

respective task is migrated to the appropriate processor. Image space decomposition entails

subdividing the 2D image plane into a number of distinct regions, and allocating these

regions to the processors. Since each of these regions can be rendered independently

of all others, parallel ray tracing with image space decomposition is an embarrassingly

parallel problem [61]. This last statement presupposes that the whole scene database

may be replicated and stored at each node's local memory; with complex 3D scenes this

may not be the case, and the database must be distributed among the nodes. These will

need to request non{local data items, increasing the nodes' interaction and, consequently,

communication overheads [27].

Object space and image space decompositions may su�er from load imbalance problems.

With object space decomposition, both the number of objects per voxel and the number of

rays traversing each voxel are likely to vary. Certain parts of the scene attract more rays

than others; this is mainly related to the view point and the location of the light sources.

Having multiple voxels per processor, representing non{adjacent regions of the scene, may

be a good initial allocation of data to reduce load imbalances. Dynamic load distribution

can also be applied, by shifting the voxels' boundaries in runtime. The problem with data

redistribution is that data accesses are highly irregular, both in space and time; tuning

such systems is very diÆcult and if data is redistributed too often, the data communica-

tion overhead may dominate computation times. With image space decomposition, load

imbalances may occur due to di�ering complexities associated with di�erent areas of the

image; areas with many objects' projections tend to require more computing power than

areas with less projections. Static load balancing may be performed by either allocating to

each processor many non{adjacent regions of the image, or by trying to estimate, before

execution, the requirements of each region. Dynamic load balancing can follow many dif-

ferent approaches: tasks may be assigned to the processor on demand (demand driven) or

task migrations may be performed in runtime. If the scene's database has to be distributed

across the processors' memories, then image space decomposition may incur high overheads

due to remote data fetching.

Reinhard et al. [135, 136] propose an hybrid load management approach that tries to

reduce both load imbalances and communication overheads due to remote data fetching.

The scene's database is distributed across the node's memories, allowing the rendering of

complex scenes. Tasks that are not computationally very intensive, but require access to

a large amount of data, are rendered using object space decomposition, i.e., tasks migrate

among processors to access the required data; these are referred to as data driven tasks.

On the other hand, tasks that require a relatively small amount of data are processed on

demand. By assigning demand driven tasks to processors that attract few data driven

tasks, the load is balanced.

As discussed in section 6.2, image space decomposition has been selected for this work, be-

146 CHAPTER 7. RAY TRACING: A CASE STUDY

cause it is a very common model in parallel processing and quite application{independent.

It is expected that the results obtained with this work are of value beyond the scope of ray

tracing.

7.6 PaRT { Parallel Ray Tracer

PaRT is a simple ray tracer used as a testbed for this work. It is not a state{of{the{art

ray tracer, but it includes some of the features discussed on the previous sections.

PaRT's illumination model is the one discussed on section 7.2. Primary rays are shot

through the pixels' corners and the four corners' contributions are averaged to obtain the

pixel colour. This means that 513x513 primary rays must be �red to render a 512x512

image. Adaptive supersampling is supported to reduce the aliasing e�ect on the �nal image

(section 7.3). A �fth ray is shot through the pixel's center if any two corners di�er by more

than a given threshold. This ray's value is averaged with the corners' rays using formula

7.14.

Ipixel =
4 � Icenter + Icorner1 + Icorner2 + Icorner3 + Icorner4

8
(7.14)

Adaptive supersampling reduces aliasing artifacts by rising the sampling frequency, but it

is computationally expensive, since more rays are spawned. This feature can be turned on

or o� through a command line switch.

PaRT includes some acceleration techniques to improve execution time over exhaustive

ray tracing: adaptive depth control, occluding object bu�er and non-uniform 3D space

partitioning.

PaRT's input are scene descriptions written in Neutral File Format (NFF) [65]. A few

extensions to NFF have been added to allow the speci�cation of all the illuminationmodel's

parameters. PaRT's output is the rendered image in Targa format and a text �le containing

several statistics about the rendering process. It can also display, in run-time, the image

being rendered, if the system where it runs has XWindows and Tcl/Tk installed. A detailed

description of PaRT, version 2.1, can be found on PaRT's manual, included as appendix

C.

PaRT is a parallel ray tracer, running over PVM 3.3. It can handle scene descriptions

larger than each node's local memory, by including a mechanism that allows processes to

address remote data items. It also spawns processes whose only function is to distribute the

workload among the nodes. PaRT is, therefore, a suitable package to use as an experimental

testbed for the current work.

7.6. PART { PARALLEL RAY TRACER 147

7.6.1 PaRT's Architecture

PaRT runs over PVM 3.3 [58]. It starts in the root node and spawns processes on each of

the Parallel Virtual Machine's nodes. Figure 7.7 depicts the processes' structure.

PaRT LMDM

SM
X

AP

PaRT DM LM

SM

SLAVE NODE

AP

PaRT DM LM

SM

SLAVE NODE

AP

PaRT DM LM

SM

SLAVE NODE

SCREEN
OUTPUT AP DISK

ROOT NODE

Figure 7.7: PaRT's architecture

PaRT 2.1 is composed of 5 di�erent processes:

PaRT { this process plays di�erent roles depending on whether it runs in the root node

or in a slave node. In slave nodes it collects statistics and results from the local

Application Process (AP) and sends them to the PaRT process running on the root.

This one collects results and statistics from both its local AP and remote slave PaRT

processes. It then displays the �nal statistics, saves the rendered image to disk and

sends image data to the XWindows process if the appropriate command line switch

has been used.

AP { Application Process { these processes perform all the calculations related to the

ray tracing algorithm. All other processes perform auxiliary work, such as collecting

results or supplying AP processes with tasks and data.

LM { Load Management { these processes perform work allocation and redistribution

among the APs. The number of LM processes spawned and respective algorithm

depend on the particular scheduling policy being used. APs execute a main loop

where they wait for messages sent by the local LM. If it is a END{OF{WORK

message, the AP process �nishes. Otherwise, it must be a TASK message, containing

the top left coordinates and dimensions (width and height) of the image's region to

148 CHAPTER 7. RAY TRACING: A CASE STUDY

be rendered. Therefore, PaRT only supports image space decomposition. When the

AP �nishes processing its work, it sends the results and statistics to the local PaRT

process and requests more work from the local LM. This process can order task

transfers by sending to the AP a SPLIT{TASK message containing the identi�cation

of the receiver and the percentage of the remaining work that must be sent to this

receiver. This percentage determines the number of rows that will be sent. The AP

keeps the rows with lower y coordinate, and sends those with larger y. It refuses to

transfer work if it only has one row left to render. One row is, therefore, the �nest

grain of work that can be transferred. Tasks can thus be classi�ed as modularly

divisible.

X - XWindows display process { receives image data from the PaRT process running

in the root and displays it on a X window. This process is not launched unless the

appropriate command line switch is used.

DM { Data Management { this process supplies the local AP with data about the

objects present in the scene being rendered. It is not launched unless the entire scene

description does not �t on each node's local memory. If it does, then the whole data

is replicated on each node. Otherwise, a di�erent fraction of the scene's description

is sent to each DM. It is stored in a memory segment (SM) shared by the DM and

the AP. This fraction of the scene's description is referred to as the resident set.

Whenever the AP needs to access a particular object's description, it �rst searches

in the resident set for a local copy. This is eÆciently done by using the object and

node's identi�ers. If that object's description does not belong to the resident set, then

the AP searches it on a local cache also stored in the shared memory segment. The

object's description could have been placed on this cache by the DM on a previous

access to the same object. If a local copy can not be found, then the AP issues

a data request to the DM, which will locate the object's owner using its identi�er

and an hashing function. A remote data request is sent to the appropriate DM,

which will reply with the requested data. This will then be placed in the cache, and

the AP, which was idle waiting for data, can resume its work. The partitioning of

the entire data set in several resident sets is made sequentially, without using any

estimates of the number of accesses each resident set will su�er. More sophisticated

approaches could use statistics obtained from building the spatial subdivision to

derive a cost distribution. This cost distribution can then be used to calculate a

data distribution, such that voxels with higher cost are replicated over all nodes'

resident sets [137, 138] (section 8.2). The DM processes implement, by software, a

distributed shared memory with non{uniform memory access times (NUMA), since

the time required to access a remote data item depends on that item's localisation,

on the CPUs' current loads and on the communication network availability.

7.7. SUMMARY 149

An obvious improvement to this architecture is to use a multithreading approach, where

several AP's coexist at each node. While some processes are waiting for remote data,

others can continue performing useful work. This form of multithreading allows overlapping

of computational activities with data management tasks and can lower execution times.

Multithreading, however, presents some drawbacks. The number of pending remote data

requests increases with the number of threads, which in turn increases contention on the

communication medium and on the data management processes, therefore increasing data

access times. Furthermore, the multiple threads share the same data cache, but do not

necessarily exhibit locality among their data requests, which can result in cache trashing.

These overheads, associated with context switch costs, can result in a loss of performance

above a certain number of Application Processes per node [145, 146]. Since the main goal

of the current work is to study scheduling issues, not multithreading issues, this feature

has not been included in PART.

Since the ray tracing algorithm does not modify the scene description, no coherency prob-

lems arise among multiple copies of the same data item, that can exist simultaneously

across the various nodes. The Data Manager algorithm is, therefore, very simple.

7.7 Summary

This chapter introduced ray tracing and discussed some issues related to it. Ray tracing

with scene descriptions larger than each node's local memory capacity will be used as a

case study for the ideas presented throughout this thesis.

PaRT, a Parallel Ray Tracer, presented on section 7.6, was developed to serve as an ex-

perimental testbed for the current work. PaRT includes data management processes that

enable processes to address remote data items. It also spawns processes whose only function

is to distribute the workload among the nodes.

150 CHAPTER 7. RAY TRACING: A CASE STUDY

Chapter 8

Experimental Results

Contents

8.1 Experimental Data Sets . 151

8.2 Estimating the Tasks' Requirements 152

8.3 Performance Modelling . 159

8.4 Reference Scheduling Strategies 163

8.5 Decision Network Based Strategy 168

8.6 Results' Analysis . 189

8.7 Summary . 205

This chapter presents the results obtained using a decision network as the scheduling agent's

decision making mechanism. This scheduler's performance is compared with three reference

scheduling strategies. Results are obtained using the ray tracer described in chapter 7 as

a case study. Throughout these experiments only processing costs are explicitly taken into

account by the scheduler's decision making mechanism; it makes no e�orts to minimise

communication overheads due to remote data accesses.

8.1 Experimental Data Sets

Four di�erent scenes are used to test the ray tracer. These are taken from the Standard

Procedural Database (SPD), developed by Eric Haines [65]. The SPD package is meant

to act as a set of basic test scenes for ray tracing algorithms. Di�erent ray tracers can be

used with these scenes, and the respective results compared to assess both performance and

geometrical correctness. The scenes used throughout this experiment are balls3, balls3c,

balls4pv and teapot9 (�gure 8.1). The main characteristics of each scene are described in

table 8.1. They range from simple scenes (balls3 and balls3c), whose description entirely

151

152 CHAPTER 8. EXPERIMENTAL RESULTS

�ts into each node's local memory, to the more complex scene, balls4pv, whose size requires

the distribution of data across the nodes' memories. The execution time distribution over

the various images' regions depends on the observer's position and concentrates on those

regions where objects' images are projected. Figure 8.2 illustrates the fact that although

none of the experimental scenes exhibits an homogeneous distribution of workload across

the entire image, balls4pv is the one with the most concentrated workload.

Name Characteristics Comments

Dimensions: 512x512 All objects �t into each node's local

Nbr. of Objects: 821 memory, whose capacity is 2 MBytes.

balls3 Memory required: 341.3 KB The workload is mainly concentrated

Nbr. of light sources: 3 on the image's centre, corresponding

to the region �lled with the spheres.

Dimensions: 512x512 All objects �t into each node's local

balls3c Nbr. of Objects: 3280 memory. The workload is mainly

Memory required: 1256 KB concentrated on the image's top and

Nbr. of light sources: 3 to the left. It diminishes as y increases.

Dimensions: 256x256 Only 55% of the objects belong to each

Nbr. of Objects: 7382 processor resident set. The remaining

balls4pv Memory required: 2826 KB ones must be fetched from other nodes'

Nbr. of light sources: 3 memories. The workload is concentrated

on the image's top left corner.

Dimensions: 512x512 79% of the objects belong to each

teapot9 Nbr. of Objects: 5193 processor resident set. The workload

Memory required: 1988 KB is concentrated on the region occupied

Nbr. of light sources: 3 by the teapot and the base polygons.

Table 8.1: Scenes' main characteristics

8.2 Estimating the Tasks' Requirements

The static uniform distribution and the demand{driven schedulers do not use any internal

execution model on its decision making mechanisms. On the other hand, the dynamic

sensor based schedulers use an execution model both to predict the tasks' execution times

and for decision making. They use the same information about the environment's state

and have the same set of possible actions. This model only takes into account the tasks'

estimated time to �nish, the nodes' computing throughput and the time required to transfer

tasks among nodes. Data access overheads are completely ignored, therefore no attempt

is made to pro�t from, or improve, data locality. This option results from two facts:

8.2. ESTIMATING THE TASKS' REQUIREMENTS 153

Figure 8.1: SPD scenes { balls3, balls3c, balls4pv, teapot9

154 CHAPTER 8. EXPERIMENTAL RESULTS

8.2. ESTIMATING THE TASKS' REQUIREMENTS 155

Figure 8.2: Execution time distribution { balls3, balls3c, balls4pv, teapot9

156 CHAPTER 8. EXPERIMENTAL RESULTS

8.2. ESTIMATING THE TASKS' REQUIREMENTS 157

ray tracing is an application exhibiting low interactions among nodes (section 6.2) and the

distributed system has a low latency/high bandwidth communication network. The results

presented throughout this chapter will show the relevancy of including these overheads on

the scheduler's execution model. The main di�erence between these two schedulers is that

the former, as its name suggests, models the environment using deterministic quantities,

while the latter uses a stochastic model.

The schedulers have a centralised architecture. The scheduler running in the root node

receives messages from all nodes about system's state and tasks' workload pro�les, and

decides which actions to take based on this information and on its internal execution

model. These messages include the following values:

� the task's top left corner coordinates | x0; y0;

� the task's dimensions | width (w) and height (h);

� the number of rows that have been processed up to this moment | hp;

� the time elapsed since this task's execution began | Telapsed;

� the time the node spent idle, waiting for the load manager to send the current task

| T idle;

� the time spent waiting for remote data necessary to render the current task | Tdata;

� the node's computing throughput, as perceived by the application process (AP),

expressed on intersections per second; this metric is referred to as the Intersection

Rate | Ir.

This information includes foreground workload metrics (x0; y0; w; h; Telapsed; hp), resource's

capacity metrics (Ir) and indirect scheduling overhead metrics (T idle; Tdata). Messages

are sent by the application processes under certain conditions, which depend on the par-

ticular scheduling strategy being used.

Upon reception of an information message, the scheduler computes an estimate of the time

required for that task to �nish, Tm. This is used to quantify each node's current foreground

workload, and is a function of the currently assigned load, Tm = f(Telapsed;W%). W%

represents the percentage of the task that has been completed up to the current moment.

These are given by

W% =
hp
h

Tm =
Telapsed
W%

� (1�W%) (8.1)

158 CHAPTER 8. EXPERIMENTAL RESULTS

This component of the execution model is identical for the two schedulers. It has some

drawbacks:

� the time spent waiting for remote data is not explicitly taken into account; the

scheduling agent completely ignores this issue, so it may fail to generate accurate

predictions and does not try to reduce this overhead by exploiting data locality;

� the time required to �nish each task is computed as if the tasks' requirements were

constant, i.e., the time necessary to render each row is always the same; this is not

true for several reasons: the time required to render each pixel strongly depends

on the objects being intersected, hence varying across the image [61] (�gure 8.2),

and the resources' capacities may change at any moment due to uctuations on the

background workload.

Figure 8.3 shows the estimated versus actual Tm for one region of the balls3c scene. It

clearly shows that equation 8.1 does not predict Tm with great accuracy. To reduce these

errors there are several alternatives: the execution model may be improved to account

for the dynamics of the tasks' requirements, or the scheduler might have the possibility of

revising old decisions and appropriately redistribute the workload over the nodes to respond

to changes in tasks' Tm predictions. This is the approach taken with these schedulers.

Figure 8.3: Balls3c: Estimated versus actual execution time

More complex execution models could have been used, which would generate more accurate

predictions of tasks' execution times [161, 162]. An obvious approach is to render a low

8.3. PERFORMANCE MODELLING 159

resolution image of the scene, to obtain a reasonable estimate of the total cost of ray

tracing a larger image. Other alternatives include estimate an average cost per ray on

basis of the geometrical properties of the scene using statistics gathered during the space

partitioning phase [138], and estimate the number of rays using geometrical and surface

properties and the position of the light sources [137]. However, these models are very

application{dependent. Since the main purpose of this work is to study scheduling issues,

not ray tracing ones, the simpler execution model was preferred.

8.3 Performance Modelling

This section details the metrics used by the scheduling agents throughout this experiment.

These are the same metrics presented in section 6.4, but described with the particular de-

tails imposed by the scheduler's execution model. They include performance, environment

and scheduling overhead metrics.

8.3.1 Performance Metrics

This application level scheduler's performance goal is to reduce the application's execution

time; therefore Texec is the metric used to assess the scheduler's performance. It is measured

as the time elapsed from the beginning of the rendering process until the complete image

is stored in the root node's central memory. The time spent with the space partitioning

process, performed before the rendering process, is not included, since it has not been

optimised and the scheduler does not act upon this process. In order to reduce errors

measuring Texec, all application processes begin rendering at exactly the same time, once

space partitioning is completed, by performing a global synchronisation operation.

8.3.2 Environment metrics

These metrics are used to update the image the scheduler has about the environment's

state. They are subdivided into two subgroups: foreground workload metrics and resources'

capacity metrics.

Foreground workload metrics

These metrics measure each resource current foreground workload. The pair (Telapsed;W%)

is used to estimate the time required to �nish the task currently assigned to each processor,

Tm, using equation 8.1.

160 CHAPTER 8. EXPERIMENTAL RESULTS

Resources' capacity metrics

Both sensor based scheduling agents decide the amount of work to transfer between two

nodes | the sender and the receiver | based on the nodes' computing throughput, as

perceived by the application processes. On a ray tracer, the most adequate metric to

measure the computing throughput is the intersection rate, (Ir), expressed on intersections

per second, since it spends most of its time performing intersections between rays and

objects.

This metric could be computed by counting the number of intersections each node has

performed and dividing it by the time required to perform them. However, this approach

revealed itself very sensible to the characteristics of the image region being rendered. In

fact, the time necessary to perform an intersection with an object depends on the ob-

ject's type. Intersecting a straight line with a sphere is much faster than with a polygon.

Furthermore, if an image's region requires fewer intersections than other, the measured in-

tersection rate will be much lower since the processor will spend proportionally more time

managing auxiliary data structures. Also, this approach does not allow the intersection

rate's measurement when the node has no work allocated.

Since the intersection rate is not taken into account to compute Tm, its absolute value is not

important. What really matters is the two nodes' relative intersection rates. The approach

taken is to perform the intersection of a straight line with an object built speci�cally for this

purpose. For the deterministic and decision network based schedulers, all nodes measure

its current intersection rate in intervals of 7.5 seconds. These are, therefore, time{driven

sensors. Measurements have shown that, using this strategy, between 0.8% and 1.1% of

the application's execution time is spent computing this metric. This is an acceptable

intrusion level, since the bene�ts of using this metric outweigh the overheads of measuring

it.

The value reported by each intersection rate sensor to the scheduling agent is the average

of all the intersection rate measurements done during the application execution. For any

generic quantity Q, the arithmetic average of k + 1 measurements, denoted by Qk+1, is

given by

Qk+1 =
1

k + 1

k+1X
i=1

ri (8.2)

= Qk +
1

k + 1
[rk+1 �Qk] (8.3)

where ri is the i
th measurement and Q1 = r1. Expression 8.3 enhances the fact that Q is

updated each time a new reading rk+1 is received. This expression has the general form

NewEstimate OldEstimate+ � � [NewReading � OldEstimate]

and all measurements are given the same weigh 1
k+1

, which is more clearly seen in equation

8.3. PERFORMANCE MODELLING 161

8.2. This method of averaging is adequate when the quantity being measured is stationary,

i.e., it tends to oat around some particular value. If that quantity is not stationary, such

as the nodes' intersection rates, then it is more adequate to weigh recent readings heavier

than long{past ones. This can be done by using a constant �, 0 <= � <= 1. Each reading

ri is now given the weigh �(1��)k�i, which depends on how many observations ago, k� i,

it was observed. In fact, the weigh decreases exponentially according to the exponent of

(1��). This average is referred to as an exponential recency{weighed average [170]. Table

8.2 compares the behaviour of the arithmetic average with exponentially weighed averages

with di�erent �.

k rk Qk (arithmetic) Qk(� = 0:1) Qk(� = 0:5) Qk(� = 0:9)

1 5 5.00 5.00 5.00 5.00

2 4 4.50 4.90 4.50 4.10

3 6 5.00 5.01 5.25 5.81

4 7 5.50 5.21 6.13 6.88

5 6 5.60 5.29 6.06 6.09

6 1 4.83 4.86 3.53 1.51

7 6 5.00 4.97 4.77 5.55

8 3 4.75 4.78 3.88 3.26

9 2 4.44 4.50 2.94 2.13

10 3 4.30 4.35 2.97 2.91

Table 8.2: Comparison of arithmetic and exponentially weighed averages with di�erent �

It clearly shows that with � = 0:1 the average reacts very slowly to changes in the quantity's

tendency, as for k = 8, where rk starts to oat around 3. On the other hand, with � = 0:9,

recent readings are given an heavy weigh, therefore the average reacts very quickly to

changes in the readings. It fails to �lter out atypical values, like for r6 = 1. Using � = 0:5

seems to be a good compromise, since it reacts quickly to changes in the readings tendency,

and reasonably �lters out atypical values. Therefore, the intersection rate readings are

exponentially recency{weighed with � = 0:5.

This procedure revealed itself as being able to detect changes on the processor's work-

load. The intersection rate's measured value diminishes when additional applications are

launched on the same processor, i.e., when the background workload increases, as depicted

by �gure 6.3.

8.3.3 Scheduling Overhead Metrics

These metrics are used to quantify the direct and indirect overheads the scheduler imposes

upon the system.

162 CHAPTER 8. EXPERIMENTAL RESULTS

Direct costs

Direct costs depend directly on the scheduler's activity. Hence, they can be measured by

counting how many times the scheduler's mechanisms responsible for these overheads are

activated and by measuring the average cost per activation.

#T { number of tasks that have been processed. A number of tasks much larger than

the number of nodes indicates that the percentage of remote execution is high, i.e.,

the scheduler had to intervene frequently in the environment. This may be a clue to

instability.

Tsched { time required to transfer a task between two nodes. It is measured as the time

elapsed since the scheduler initiates the migration mechanism, until an acknowledge-

ment is received from the target node. It is used by the scheduling agent to decide if

the execution time potentially gained with a given task transfer outweighs the direct

cost of actually transferring that task. The product of this metric by the number of

tasks can be used to quantify the total task migration direct overhead.

#TS { number of information messages sent to the central scheduling agent by the appli-

cation processes.

A general classi�cation of direct costs is presented in table 3.1. The metrics #T and Tsched

are related to the cost of executing the actions selected by the scheduler, while #TS is

related to the cost of sending information messages from the processing nodes to the central

scheduling agent.

Indirect costs

Indirect costs are consequences of the scheduler's actions, and are related to the quality of

its decisions. Three di�erent indirect costs are measured:

work replication penalty (Pen%) { since each pixel's value is computed as the average

of its four corners, splitting an image's region into various subregions requires that

boundaries are computed by both nodes that have assigned contiguous regions. This

results on additional primary rays being spawned. The work replication penalty,

(Pen%), is measured as the percentage of additional primary rays that must be

�red, compared to an uniform screen space decomposition over the same number of

nodes. With an uniform screen decomposition, each node gets a vertical strip of the

image.

Pen% =
#PrimRayssched �#PrimRaysunif

#PrimRaysunif
� 100

resources' idle times (TTidle;TTidle%;StdDev) { T idlei is the time node i spent

waiting for tasks, including the time spent waiting for the application to �nish, when

8.4. REFERENCE SCHEDULING STRATEGIES 163

node i already performed its last task. All nodes terminate at the same time, even

though some of them could have no work allocated for some time. TT idle is the sum

of idle times for all nodes

TT idle =
nX
i=1

T idlei

TT idle% is the percentage of idle time for all n nodes, compared with the aggregated

execution time

TT idle% =
TT idle

n � Texec
� 100

StdDev measures the standard deviation of the nodes' busy times. If the standard

deviation is 0, then it means that all processors had work allocated for identical time

periods. This does not mean, however, that all nodes had work during the whole

execution time, since they may have been idle for identical time periods. If a given

execution of an application presents lower TT idle% and larger StdDev than another

execution of the same application, this means that the processing nodes had work

allocated for a larger fraction of the execution time, but that idle times were not

uniformly distributed by all processing nodes.

remote data access times (TTdata;TTdata%) { Tdatai is the time node i spent wai-

ting for remote data items, instead of performing useful work. TTdata is the sum of

Tdatai for all nodes

TTdata =
nX
i=1

Tdatai

TTdata% is the percentage of remote data access time for all n nodes, compared

with the aggregated execution time

TTdata% =
TTdata

n � Texec
� 100

Both the deterministic and the stochastic scheduler use Tsched as a gauge to decide whether

or not a given task transfer is pro�table. The remaining overhead metrics are not used

in run time. They are, however, used throughout this chapter to analyse the scheduler's

eÆciency.

8.4 Reference Scheduling Strategies

To assess the decision network approach's e�ectiveness, its results are compared with those

of three other scheduling strategies: a static uniform data distribution, a demand{driven

approach and a sensor based deterministic dynamic scheduling strategy, referred to as

det, that uses information about the current system's state and workload pro�le to make

predictions about future behaviour, in an attempt to improve its e�ectiveness.

164 CHAPTER 8. EXPERIMENTAL RESULTS

These scheduling strategies are briey described in section 6.5, and their classi�cation

according to the ESR classi�cation scheme is also presented. The static uniform work

distribution and the demand{driven approaches are described with enough detail, thus

no further descriptions are required. The deterministic scheduling strategy, on the other

hand, depends on the particular execution model being used, therefore it is described with

greater detail throughout this section.

Setting the Constants

Some of these strategies require the speci�cation of a few constants which regulate the

scheduler's behaviour. These constants are set empirically, using common sense to select

the most adequate values. A more rigorous alternative would be to run the scheduler with

several di�erent combinations of these constants' values and select the one which maximises

the scheduler's e�ectiveness. Throughout this work the empiric approach was preferred,

keeping in mind, however, that their values must be carefully selected. The reasoning that

led to each constant value is presented, whenever it is introduced.

8.4.1 Sensor Based Deterministic Strategy

This scheduling strategy uses information about the current system's state and workload

pro�le to make predictions about near future behaviour, in an attempt to improve e�ec-

tiveness. It can therefore be classi�ed as a dynamic non{adaptive strategy. Initially, the

image is divided into as many vertical strips as the system's nodes, and each of these strips

is sent to a di�erent node. This behaviour is identical to that of uniform distribution. The

scheduler spends no e�ort trying to generate an optimised initial workload distribution. It

focus on run time task migration, since the tasks' requirements are unknown before execu-

tion time and the resources' capacities may exhibit high variability. Application processes

are now allowed to send information messages to inform the central scheduler of both

that node's capacity and the tasks' requirements (section 8.2). Using this information,

the scheduler classi�es the nodes as either potential work suppliers or receivers. It then

computes the amount of work, if any, to be transferred among these nodes.

The time elapsed since a task migration is decided until it is e�ectively completed, is used

as a gauge to decide whether or not a given node can be classi�ed either as a potential

supplier, or a potential receiver, and to determine the expected pro�tability of a potential

task migration. This metric is referred to as Tsched, and is dynamically recalculated at

runtime. This is a direct cost, thoroughly described in section 8.3.3.

Information Policy

Whenever an application process �nishes rendering one row of its allocated task, it consults

a set of rules to decide whether it should send an information message to the scheduler.

8.4. REFERENCE SCHEDULING STRATEGIES 165

These rules are de�ned as follows:

� if the elapsed time since this node's intersection rate last measurement is longer than

a pre{de�ned value (7.5 seconds, as justi�ed in section 8.3.2), then measure it again;

� if no information message about the current task has been sent yet, then send one;

� if the current intersection rate changed more than a pre{de�ned value relatively to

the last information sent, then send one information message; some di�erent pre{

de�ned values were tried and the scheduler revealed itself quite insensitive to this

parameter; therefore, this value is set to 15% throughout this experiment.

An information message is also sent upon each task's completion. According to these rules

the information policy can be classi�ed as state{change driven (section 3.6), since although

the intersection rate is measured periodically, the scheduling agent is informed only if it

changes signi�cantly.

Whenever the scheduling agent receives an information message, it computes the task's

expected time to terminate, Tm (section 8.2), and updates all other tasks' Tms. To be able

to update other tasks' Tms, a time stamp is stored whenever an information message is

received. Tm is updated by subtracting the time elapsed since the last message was received

from that node.

Tmessage = T imeNow � T imeStamp

Tm = OldTm � Tmessage

Every information message carries the number of lines that have been processed up to this

moment, hp. When Tm is updated, hp must also be updated. This updated value is referred

to as hpcurr

hpcurr =
Tmessage
Tm

� (h� hp) + hp

where Tm and hp are the values e�ectively received with that node's last message, and not

the updated values.

Transfer Policy

Upon reception of an information message, and after updating the information available

about the system's state, the scheduler tries to identify potential work suppliers and re-

ceivers. The transfer policy used is threshold{based (section 3.6); the thresholds depend

on Tsched, the average time required to transfer a task among two nodes.

A node is classi�ed as a potential receiver if it is not currently enrolled on any task transfer,

it has no work allocated or if it has a small estimated Tm.

166 CHAPTER 8. EXPERIMENTAL RESULTS

A node is classi�ed as a potential supplier if it is not currently enrolled on any task transfer,

if it still has more than 2 lines to process and if it has a large estimated Tm.

The value of Tm is used by the decision agent according to the following rules:

Tm < Krecv � Tsched) potential receiver

Tm > Ksupp � Tsched) potential supplier

The values of Krecv and Ksupp were set to as 2 and 10, respectively. The value 2 allows the

selection as receivers of nodes which are probably about to �nish their currently allocated

task, while 10 assures that the potential supplier has enough work allocated to justify con-

sidering it for a task transfer, and that this transfer does compensate the direct overheads

of task migration (Tm must be an order of magnitude larger than Tsched).

Potential receivers are then sorted. Inactive nodes come �rst, sorted by descending order

of computing throughput (Ir), followed by nodes with allocated work, sorted by ascending

order of Tm. Potential suppliers are sorted by descending order of Tm.

Location and Selection Policies

After identifying candidates for potential tasks' migrations, the scheduler tries, for each

receiver, to �nd the most adequate supplier and the appropriate amount of work to transfer.

It computes the number of lines to transfer from the supplier to the receiver, ht, so that the

amount of work on the supplier, NIs, measured on number of intersections still to perform,

is equivalent to the amount of work on the receiver, NIr, given their relative intersection

rates, Irr
Irs

. Therefore,
NIs
NIr

=
Irs
Irr
, NIr =

Irr
Irs
�NIs (8.4)

The number of predicted intersections in both the receiver and the supplier, are given by

NIr =
NI

hp
� (ht + 1)

NIs =
NI

hp
� (hms � ht)

where NI is the number of intersections performed by the supplier during this task, hp is

the number of lines that required NI intersections, and hms = h� hpcurr is the number of

lines still to process for this task. To compute NIr, one unit is added to ht to account for

work replication, required by the fact that the pixel's values are computed by averaging

its four corners. Therefore, replacing in equation 8.4,

NI

hp
� (ht + 1) =

Irr
Irs
�
NI

hp
� (hms � ht)

and, trivially,

ht =
Irr
Irs
� hms � 1
Irr
Irs

+ 1
(8.5)

8.4. REFERENCE SCHEDULING STRATEGIES 167

The computation of the appropriate amount of work to transfer between a given pair of

nodes, ht, constitutes this scheduling strategy's selection policy.

After obtaining ht, the new estimated execution times on both the supplier, T 0
ms, and the

receiver, T 0
mr, are computed, using equations 8.6 and 8.7,

T 0
ms =

Telapsed
hp

� (hms � ht) (8.6)

T 0
mr =

Irs
Irr
�
Telapsed
hp

� (ht + 1) (8.7)

The supplier which presents the maximum gain in execution time, Tgain, according to

equation 6.7 (repeated below), is selected for this task transfer.

Tgain = max(Tms; Tmr)�max(T 0
ms; T

0
mr)

where Tms and Tmr are the estimated execution times in the supplier and the receiver if

the work migration does not take place. However, this supplier is accepted only if this

gain is larger than Tsched multiplied by a pre{de�ned constant, Kaccept, which is set to 6

throughout all experiments. Its purpose is to assure that only pro�table enough migrations,

compared to the cost of migrating tasks among nodes, are performed. Solving equation 6.7,

by means of which the most suitable supplier for the current receiver is found, constitutes

this scheduling strategy's location policy.

After selecting a supplier, the scheduler initiates the task migration mechanism. If, for

any reason, the supplier refuses to transfer work, then the next supplier is selected. Upon

reception of an acknowledgement message from the supplier, both the supplier and the

receiver ids are removed from their respective sorted lists, and the scheduler proceeds with

the next potential receiver. This process is repeated until one of the candidates' lists

becomes empty.

Migration Mechanism

After selecting the pair of nodes to enroll on the task transfer, and the amount of work to

migrate, ht, the scheduler noti�es the supplier, indicating the percentage of the remaining

work that it must transfer, W% = ht
hms
� 100, and to which node.

Upon reception of a task migration message, the supplier computes the number of rows

to transfer, given its current available work. If the number of lines still to process is less

than 2, then the supplier refuses this operation. Otherwise, it sends to the receiver the

coordinates of the new task, and reduces its own task to account for the transferred work.

Upon reception of a task transfer, the receiver begins processing its newly allocated work,

after notifying the central scheduler that the task was received.

168 CHAPTER 8. EXPERIMENTAL RESULTS

Extended Information Policy

Previous results obtained using the above described scheduling strategy, revealed some

de�ciencies on the execution model. Due to the dynamics of the tasks' requirements, the

tasks' predicted execution times, Tm, may present very signi�cative errors (�gure 8.3).

These errors' worst consequence is that, in some cases, the scheduling agent may estimate

that a given node is just �nishing its task, when actually it will take longer to �nish. This

happens when the scheduler has estimated an execution time, Tm, equal to 0 for that task,

but the task did not �nish yet and the respective application process does not send new

information messages. This node is not selected as a potential supplier and an opportunity

for better distributing the workload is missed.

To overcome this de�ciency, the information policy has been extended, by allowing the

scheduling agent to directly ask for updated information, whenever a node should have

already terminated its task, but no further information was received. Hence, it can be

classi�ed as an hybrid state{change and demand driven policy. This extended approach

has two main advantages:

� potential suppliers are more easily identi�able, due to more accurate information;

� the scheduling agent is no longer restricted to redistribute the workload only when

it receives an information message; it can stop waiting for these messages at any

instant, send an information request and enter a redistribution step.

Figure 8.4 shows the improvements obtained with the extended information policy, labelled

det, compared with the previous information policy (labelled det1) for teapot9. Unless

explicitly stated, all results presented through the remainder of this chapter and labelled

as det were obtained using this extended information policy.

8.5 Decision Network Based Strategy

While the deterministic scheduling strategy uses deterministic quantities to make decisions

about the suitability of a given task migration, the decision network based strategy (DN)

models some parts of the environment as random variables; the interactions among these

variables are also stochastically modelled, by means of conditional probability tables.

This strategy's information and transfer policies are identical to those of the sensor based

deterministic strategy; the selection and location policies are implemented mainly by eval-

uating the decision network. This is evaluated for each pair of nodes, one identi�ed by the

transfer policy as a potential receiver of work and the other as a potential work supplier

(section 6.5.4). The decision network recommends the most adequate action for each of

8.5. DECISION NETWORK BASED STRATEGY 169

Figure 8.4: Teapot9: improvements with extended information policy

these pairs, expressed in terms of the amount of work to transfer between them and in

which direction.

The list of recommended actions is sorted by descending order of gain in execution times,

Tgain, given by equation 6.7. Some of these actions may be discarded by the scheduler if its

estimated gain, Tgain, is less than Kaccept�Tsched, where Kaccept is a pre{de�ned constant set

to 6, as previously discussed. The scheduler will then try to execute these actions, assuring

that no node is involved in more than one action per scheduling step.

The next sections describe the knowledge engineering process followed to build the decision

network used throughout this experiment.

8.5.1 Laying out the Network's Topology

This step entails identifying those aspects of the problem that must be modelled and what

are the direct causal relationships holding among them. Once built, the network's topology

constitutes a knowledge base that represents the model's qualitative characteristics. These

are preserved independently of the assignments of quantitative information. No e�ort is

made through this section to describe or quantify how the various variables are inuenced

by each others. These causal relationships are just identi�ed and represented on the net-

work by means of direct arcs between causes and respective e�ects. The strengths of these

relationships, quanti�ed by the conditional probability tables, are speci�ed in the next

section.

170 CHAPTER 8. EXPERIMENTAL RESULTS

The decision network proposed throughout this section follows the generic structure pro-

posed in section 5.7, with some modi�cations:

� the selected case study involves an application with irregular workload running on

a shared system, as illustrated in �gure 8.5; in these cases, the scheduling agent

will be uncertain about both the tasks' requirements and the resources' capacity; to

properly handle these cases, a decision network must include two blocks to describe

the environment's state: the tasks' requirements block and the resources' capacity

block (section 5.7.1);

� the scheduling overheads are considered irrelevant for the decision making process,

i.e., it is assumed that they are not large enough to compromise the scheduler's

e�ectiveness, hence, this block is not included in the network; the experimental results

will show the correctness of this assumption;

� the sensors' model includes the age of the information; the older the information, the

more uncertain the agent is about its accuracy;

� the environment's next state is described by a single stochastic variable, that repre-

sents the expected degree of load sharing between the two nodes being considered.

-

6

Dedicated Shared

Regular

Irregular

w

w

w

w��
��

Parallel Ray Tracing
in a Shared Cluster

@I

Distributed
System

Application

Figure 8.5: Ray tracing: the system sharing level versus the application regularity space

Throughout this model two metrics are used to describe each node's state: the intersection

rate and the node's current foreground workload. This latter quantity is measured in terms

of the estimated time required to �nish the current task { Tm { and is given by equation

8.1. Each of these metrics can be seen as acquired through the scheduling agent's sensors.

To account for the possibility that these sensors can return noisy information, a model has

to be built for each sensor, that tries to capture the uncertainty associated with the various

readings.

8.5. DECISION NETWORK BASED STRATEGY 171

The Resources' Capacity Block

Figure 8.6 presents the Bayesian network used to model the intersection rate sensor. The

actual current intersection rate is modelled by node Ir. However, this value can not be

directly measured. It is known only through node InfoIr, which represents the sensor's

readings. The sensor works exactly the same way as described in section 8.3.2; imperfect

information about the desired quantity is only obtainable through perfect information

about the sensor. There is no uncertainty on the value of InfoIr, its value is completely

known just by reading the sensor. The uncertainty is about the value of Ir, and is modelled

by the conditional probability table CPT(InfoIrjIr). The notion of causality is crucial:

it is the actual intersection rate that determines the sensor's reading. CPT(InfoIrjIr)

represents the probability that the sensor will return a certain value, given that the actual

intersection rate takes a particular value. Inference will then be performed the other way

around: given the sensor's reading, which is the actual intersection rate?

�
�

�
�

�
�

�
�

�
�

�
�

?

6

AgeIr

InfoIr

Ir

Figure 8.6: Bayesian network { the intersection rate sensor model

Since the sensor also consumes resources, it can not be constantly activated to return

updated readings. The variable AgeIr models the uncertainty that arises from the fact

that the information returned by the sensor may be outdated. The older this information,

the less precise it is. This uncertainty is modelled by the conditional probability table

CPT(InfoIrjAgeIr; Ir).

One of the most fundamental properties of a variable is the set of values it can take on, i.e.,

its domain. Most algorithms for probabilistic inference are designed for discrete variables,

and this is also true for Pearl's algorithm, presented in section 5.4.4 and appendix B.

To use this algorithm, the decision network must include only discrete variables, even

if this requires that conceptually continuous quantities are discretised for the purposes

of reasoning. Experience has shown that, in most cases, continuous quantities can be

discretised without loosing e�ectiveness. The discrete domain's cardinality, however, must

be carefully selected. Large domains allow a more accurate discretisation of the continuous

172 CHAPTER 8. EXPERIMENTAL RESULTS

quantity, but require the speci�cation of a huge number of probabilities and the inference

process becomes heavier. Throughout this experiment, continuous variables are discretised

by three to �ve points. Sensitivity analysis to this aspect could be performed to determine

its relevancy.

Let DX represent the �nite domain of a random discrete variable X, and #DX represent

the domain's cardinality.

DAgeIr = fCurrent, Recent, OutDatedg

The age of a node's intersection rate information is classi�ed as a function of the time

elapsed since that node's last information message arrival, Tmessage, according to the fol-

lowing rule:

AgeIr =

8>><
>>:

Current (Tmessage <= 10 � TSched
Recent (10 � TSched < Tmessage <= 30 � TSched
OutDated (Tmessage > 30 � TSched

(8.8)

DInfoIr = fVeryLow, Low, Medium, High, VeryHighg

This variable's value is computed as a function of the intersection rate measured for each

particular node, Iri, and the average intersection rate over all n nodes, Ir =

Pn

j=1
Irj

n
,

according to rule 8.9. The decision network does not take into account the nodes' absolute

intersection rates, but their relative values.

InfoIr =

8>>>>>>>><
>>>>>>>>:

VeryLow (Iri <= 0:7 � Ir

Low (0:7 � Ir < Iri <= 0:9 � Ir

Medium (0:9 � Ir < Iri <= 1:1 � Ir

High (1:1 � Ir < Iri <= 1:3 � Ir

VeryHigh (Iri > 1:3 � Ir

(8.9)

Ir has exactly the same domain as InfoIr. As previously stated, there is never evidence

available about this variable's exact value. Therefore, its value is not directly set. The

belief distribution over this variable is computed by the inference engine, based on evidence

about AgeIr and InfoIr.

Since the network is used to determine the best action to take given a pair of nodes' states,

it must model both nodes' intersection rate sensors. Therefore, there are two sensor models,

subscripted with a and b, representing the two nodes. These two nodes relative intersection

rates are represented by an additional node, referred to as IrRatio, as depicted in �gure

8.7.

IrRatio represents the scheduling agent's belief distribution over node a's intersection rate

8.5. DECISION NETWORK BASED STRATEGY 173

�
�

�
�

�
�

�
�

�
�

�
�

?

6

AgeIra

InfoIra

Ira

�
�

�
�

�
�

�
�

�
�

�
�

?

6

AgeIrb

InfoIrb

Irb

�
�

�
�IrRatio

Q
Q
QQs

�
�

��+

Figure 8.7: Decision network { the resources' capacity block

relative to that of node b. Its domain is

DIrRatio = faMHigherb, aHigherb, aEqualb, aLowerb, aMLowerbg

where aMHigherb stands for node a presents a much higher intersection rate than node b.

The Tasks' Requirement Block

The foreground workload sensor model follows the same basic idea as the intersection rate

sensor model. There are two sensors, a and b, one for each of the nodes being considered.

Each sensor has three random variables: AgeFW, InfoFW and FW. The age variables

have exactly the same meaning and domain as AgeIr, and evidence is entered using rule

8.8. InfoFW represents the workload sensor readings, Tm. The foreground workload is

determined using equation 8.1 and the node is then classi�ed, according to rule 8.10, as:

NoWork { no work currently allocated;

Recp { potential receiver due to its light load;

Forn1 { lightly loaded supplier;

Forn2 { heavily loaded supplier.

DInfoFW = fNoWork, Recp, Forn1, Forn2g

174 CHAPTER 8. EXPERIMENTAL RESULTS

InfoFW =

8>>>>><
>>>>>:

NoWork (no work currently allocated

Recp (Tm <= 2 � TSched
Forn1 (2 � TSched < Tm <= 10 � TSched
Forn2 (Tm > 10 � TSched

(8.10)

FW is identical to Ir, in the sense that this is the quantity upon which decisions are made,

but its actual value is not directly observable. The agent's belief distribution over FW is

inferred, based on the evidence available from the sensor and on this information's age. Its

domain is

DFW = fNoWork, Recp, Forn1, Forn2g

The information available about the two nodes' workload is merged in FWRatio, as

depicted by �gure 8.8. It represents the scheduling agent's belief distribution over node a's

foreground workload relative to that of node b. Its domain is

DFWRatio = faMHigherb, aHigherb, aEqualb, aLowerb, aMLowerbg

�
�

�
�

�
�

�
�

�
�

�
�

?

6

AgeFWa

InfoFWa

FWa

�
�

�
�

�
�

�
�

�
�

�
�

?

6

AgeFWb

InfoFWb

FWb

�
�

�
�FWRatio

Q
Q
QQs

�
�

��+

Figure 8.8: Decision network { the tasks' requirements block

The Complete Decision Network

The belief distributions over variables IrRatio and FWRatio describe the current en-

vironment's state, with respect to the two nodes being considered, given the information

available as evidence, and obtained through the agent's sensors, and the age of this infor-

mation.

Any action decided by the scheduling agent, that transfers workload between these nodes,

must be based on this information and will change the environment's state. For each

8.5. DECISION NETWORK BASED STRATEGY 175

alternative action, the scheduling agent must infer the probability distribution over the

environment's next state and compute the respective expected utility. The decision network

provides an automatic process of performing these inferences on a small number of steps. To

allow this operation additional variables are required, to represent the alternative actions,

the environment's next state and the expected utility.

The network is completed (�gure 8.9) by adding three variables: Transfer is a decision

variable and represents the alternatives available to the scheduling agent; NewBalance is

a random variable and represents the scheduling agent's belief distribution on the system's

next state based on what is known about the actual state and on the selected action;

Gain is an utility variable that computes the expected utility of each action, based on its

di�erent possible outcomes and on the probabilities that these occur.

�
�

�
�

�
�

�
�

�
�

�
�

?

6

AgeIra

InfoIra

Ira

�
�

�
�

�
�

�
�

�
�

�
�

?

6

AgeIrb

InfoIrb

Irb

�
�

�
�IrRatio

Q
Q
QQs

�
�

��+

�
�

�
�

�
�

�
�

�
�

�
�

?

6

AgeFWa

InfoFWa

FWa

�
�

�
�

�
�

�
�

�
�

�
�

?

6

AgeFWb

InfoFWb

FWb

�
�

�
�FWRatio

Q
Q
QQs

�
�

��+

Transfer

�
�

�
�NewBalance- �� @@

��@@
Gain-

PPPPPPPq

�������)

Figure 8.9: The complete decision network

The Transfer variable models the alternatives available to the scheduling agent. After

entering all the available evidence about the current environment's state, the scheduling

agent successively sets this variable to each alternative action, in order to infer its expected

utility. By setting this variable, the belief distribution over the next state changes, to

express the action's expected consequences. The action's expected utility can then be

computed, by averaging each next state utility with the probability that it occurs. The

value of this decision variable is externally set by the agent, because it represents an

external intervention, which is extrinsic to the environment.

176 CHAPTER 8. EXPERIMENTAL RESULTS

The alternatives available to the scheduling agent are represented in terms of the percentage

of work to transfer among nodes a and b and in which direction, i.e., from a to b or from

b to a. Transfer's domain is

DTransfer = fa2b75, a2b50, a2b25, NoTransfer, b2a25, b2a50, b2a75g

where a2b75 stands for transfer 75% of node a's remaining task to node b, and b2a50 stands

for transfer 50% of node b's remaining task to node a.

NewBalance models the agent's belief distribution on which will be the environment's

next state, given its current state and the selected action. The next state is a stochas-

tic function of the current state { modelled by IrRatio and FWRatio { and the action

taken at this time step. The conditional probability table associated with this variable,

CPT(NewBalancejIrRatio; FWRatio; T ransfer), constitutes the environment's state tran-

sition model. NewBalance's domain contains three possible values, related to the future

degree of load sharing among the two nodes being considered:

DNewBalance = fVGood, Good, Badg

Gain is an utility node, with a corresponding utility function, which translates system's

states to real numbers that express the agent's preferences among these states (section

5.5.1). Since the next state is described by a single random variable, Gain is a single{

argument function of NewBalance.

Conditional Independence Analysis

The evidence available at each inference step is

E = fAgeIra, InfoIra, AgeIrb, InfoIrb, AgeFWa, InfoFWa, AgeFWb, InfoFWb, Transferg

where Transfer is directly set by the inference engine. The sensors, as expected, are d{

separated from each others given E. This means, for example, that changing InfoFWa

does not change BEL(FWb), since they are d{separated by FWRatio. This is assured by

rule 2 of d{separation: the connection between the 2 sensors is converging on FWRatio,

and neither FWRatio, nor any of its descendants is known (section 5.4.1). According

to the same rule, the intersection rate sensors and the foreground workload sensors are

d{separated by variable NewBalance.

8.5.2 Assign Probabilities

Once the network's topology is built, the strengths of the direct causal relationships among

the variables connected by arcs must be speci�ed. These strengths are quanti�ed by as-

signing to each variable Xi a conditional probability table, CPT(XijParents(Xi)), which

8.5. DECISION NETWORK BASED STRATEGY 177

represents the belief on the event Xi = xi, given any possible combination of the parents,

or direct causes, of Xi.

Since people are bad numerical estimators, one frequent concern with Bayesian networks is

the availability of probabilities. The notion that probabilities merely reect an individual's

own belief on a given statement and that these numbers need only to be approximately

speci�ed, allows an expert on the �eld to informally assess these conditional probabili-

ties. As long as the ratio between the probability of an event occurring or not occurring,

given the same evidence, roughly reects the expert's belief, valid conclusions will still be

reached (sections 5.2 and 5.6.3). This section presents the probability tables obtained by

direct assessment. The re�nements that resulted from performing sensitivity analysis are

presented in section 8.5.4.

The Resources' Capacities Block

The intersection rate sensor model requires the speci�cation of the following probabil-

ities: P(AgeIra), P(AgeIrb), CPT(InfoIrajAgeIra; Ira), CPT(InfoIrbjAgeIrb; Irb),

P(Ira) and P(Irb).

Since both sensors, a and b, are identical, the probabilities speci�ed for one of them also

hold for the other one. Hence, only P(AgeIr), P(Ir) and CPT(InfoIrjAgeIr; Ir) are

studied throughout this section.

The scheduling agent always knows the age of the information it is using: it is a function

of the time elapsed since that node's last information message arrival. Hence, in every

inference step AgeIr is instantiated with evidence. Since AgeIr does not have parents,

its prior probabilities P(AgeIr) do not have any inuence on the network's remaining

variables. Therefore, P(AgeIr) do not have to be speci�ed.

The prior probabilities of Ir, P(Ir), on the other hand, can strongly inuence the belief

distribution over Ir given AgeIr and InfoIr, BEL(Ir). This belief is biased towards the

prior probabilities distribution. This bias' magnitude depends on the uncertainty associ-

ated with the sensor model, CPT(InfoIrjAgeIr; Ir). The more accurate the sensor, the

less BEL(Ir) is biased towards the prior probabilities of Ir. In the case of a deterministic

sensor, there is no bias towards the prior probabilities, since there is no uncertainty asso-

ciated with the sensor's readings. Throughout this experiment no knowledge is assumed

about the nodes' intersection rates. Therefore, the prior probabilities of each node's inter-

section rate are assigned an uniform distribution P(Ir) = f0:2; 0:2; 0:2; 0:2; 0:2g. However,

these probabilities can be learned by observing the node's behaviour and updating this

probability vector (section 8.6.3).

CPT(InfoIrjAgeIr; Ir) represents the expert's belief distribution over the values returned

by the sensor, given the information's age and the actual intersection rate. If the sensor

178 CHAPTER 8. EXPERIMENTAL RESULTS

is known to exhibit some biased behaviour, then this information can be encoded on this

table. For instance, if the sensor often overestimates the actual intersection rate, then a

larger probability value can be given to account for this fact. The sensor used through-

out this particular experiment does not present such biased behaviour. It does, however,

present some noise that increases with the age of information. This noise is represented by

allowing the probability distribution over InfoIr to disperse around Ir's actual value. This

dispersion increases with the information's age. Figure 8.10 presents the initial probability

assessments for CPT(InfoIrjAgeIr; Ir = Medium), for all possible di�erent values of

AgeIr.

6

CPT(InfoIrjAgeIr;Ir=Medium)

6 6AgeIr=Current AgeIr=Recent AgeIr=OutDated

- InfoIr
0.05

0.90

0.05
0.10

0.80

0.10
0.15

0.70

0.15

0.2

0.4

0.6

0.8

1.0

VL L M H VH VL L M H VH VL L M H VH

Figure 8.10: InfoIr's belief distribution given Ir = Medium

The conditional probability table CPT(InfoIrjAgeIr; Ir), presented on table 8.3, was

obtained by applying this line of reasoning for all possible values of Ir. This is the ini-

tial proposal for this quantitative parameter. It will be re�ned by performing sensitivity

analysis throughout section 8.5.4.

CPT(IrRatiojIra; Irb) is a deterministic table, i.e., comprising only 0's and 1's, that

combines the beliefs on Ira and Irb onto the appropriate value of IrRatio (table 8.4).

However, BEL(IrRatio) is a stochastic vector, since both BEL(Ira) and BEL(Irb) are

stochastic vectors.

The Tasks Requirements Block

The reasoning behind the foreground workload sensor model is identical to the intersection

rate model. The prior probabilityP(AgeFW) does not need to be speci�ed, since AgeFW

has no parents and it is always instantiated with evidence. The prior probabilityP(FW), if

known, should be included in the model, since it biasesBEL(FW). Once again this bias de-

pends on the uncertainty associated with the sensor model, CPT(InfoFW jAgeFW;FW).

Since nothing is known about FW, P(FW) is assigned an uniform probability distribution.

CPT(InfoFW jAgeFW;FW) must obey certain rules, that were not present in the inter-

8.5. DECISION NETWORK BASED STRATEGY 179

CPT(InfoIrjAgeIr; Ir) InfoIr

Ir AgeIr VeryLow Low Medium High VeryHigh

Current 0:950 0:050 0:000 0:000 0:000

VeryLow Recent 0:900 0:100 0:000 0:000 0:000

OutDated 0:850 0:150 0:000 0:000 0:000

Current 0:050 0:900 0:050 0:000 0:000

Low Recent 0:100 0:800 0:100 0:000 0:000

OutDated 0:150 0:700 0:150 0:000 0:000

Current 0:000 0:050 0:900 0:050 0:000

Medium Recent 0:000 0:100 0:800 0:100 0:000

OutDated 0:000 0:150 0:700 0:150 0:000

Current 0:000 0:000 0:050 0:900 0:050

High Recent 0:000 0:000 0:100 0:800 0:100

OutDated 0:000 0:000 0:150 0:700 0:150

Current 0:000 0:000 0:000 0:050 0:950

VeryHigh Recent 0:000 0:000 0:000 0:100 0:900

OutDated 0:000 0:000 0:000 0:150 0:850

Table 8.3: Intersection rate sensor model | CPT(InfoIrjAgeIr; Ir)

section rate sensor model:

� if the sensor reports that the node is in state NoWork, then there is no uncertainty

about this proposition; NoWork corresponds to the node having no work allocated,

and this only happens when the node already sent the results of its last task, and

the scheduler did not yet send a new task; this is something the scheduler can be

completely sure of;

� these sensors also report some noise, which increases with information's age; however,

the scheduling agent also assumes that the foreground workload diminishes with

time, since the node is performing its work; consequently, the probability of the

sensor returning values larger than the current foreground workload increases with

the information's age { see �gure 8.11 for an example with FW=Forn1.

The initial assessment of the conditional probability table CPT(InfoFW jAgeFW;FW),

presented on table 8.5, was obtained by applying this line of reasoning for all possible values

of FW. It will be re�ned by performing sensitivity analysis throughout section 8.5.4.

CPT(FWRatiojFWa; FWb) is a deterministic table, i.e., containing only 0's and 1's,

that combines the beliefs on FWa and FWb onto the appropriate value of FWRatio

(table 8.6). To avoid work transferences among two nodes that present similar foreground

workloads, two special cases must be considered:

180 CHAPTER 8. EXPERIMENTAL RESULTS

CPT(IrRatiojIra; Irb) IrRatio

Ira Irb aMHigherb aHigherb aEqualb aLowerb aMLowerb

VeryLow 0 0 1 0 0

Low 0 0 0 1 0

VeryLow Medium 0 0 0 0 1

High 0 0 0 0 1

VeryHigh 0 0 0 0 1

VeryLow 0 1 0 0 0

Low 0 0 1 0 0

Low Medium 0 0 0 1 0

High 0 0 0 0 1

VeryHigh 0 0 0 0 1

VeryLow 1 0 0 0 0

Low 0 1 0 0 0

Medium Medium 0 0 1 0 0

High 0 0 0 1 0

VeryHigh 0 0 0 0 1

VeryLow 1 0 0 0 0

Low 1 0 0 0 0

High Medium 0 1 0 0 0

High 0 0 1 0 0

VeryHigh 0 0 0 1 0

VeryLow 1 0 0 0 0

Low 1 0 0 0 0

VeryHigh Medium 1 0 0 0 0

High 0 1 0 0 0

VeryHigh 0 0 1 0 0

Table 8.4: CPT(IrRatiojIra; Irb)

8.5. DECISION NETWORK BASED STRATEGY 181

6

CPT(InfoFW jAgeFW;FW=Forn1)

6 6AgeFW=Current AgeFW=Recent AgeFW=OutDated

- InfoFW
0.025

0.95

0.025 0.05

0.85

0.1 0.075

0.75

0.175
0.2

0.4

0.6

0.8

1.0

NW R F1 F2 NW R F1 F2 NW R F1 F2

Figure 8.11: InfoFW's belief distribution given FW = Forn1

CPT(InfoFW jAgeFW;FW) InfoFW

FW AgeFW NoWork Recp Forn1 Forn2

Current 1:000 0:000 0:000 0:000

NoWork Recent 1:000 0:000 0:000 0:000

OutDated 1:000 0:000 0:000 0:000

Current 0:000 0:975 0:025 0:000

Recp Recent 0:000 0:900 0:100 0:000

OutDated 0:000 0:825 0:175 0:000

Current 0:000 0:025 0:950 0:025

Forn1 Recent 0:000 0:050 0:850 0:100

OutDated 0:000 0:075 0:750 0:175

Current 0:000 0:000 0:025 0:975

Forn2 Recent 0:000 0:000 0:020 0:980

OutDated 0:000 0:000 0:010 0:990

Table 8.5: Foreground workload sensor model | CPT(InfoFW jAgeFW;FW)

� if one node is classi�ed as NoWork and the other as Recp, then no work transfer

among them is desirable; hence, FWRatio must be aEqualb;

� if one node is classi�ed as Forn1 and the other as Forn2, then no work transfer among

them is desirable; hence, FWRatio must be aEqualb;

The State Transition Model

The CPT associated with node NewBalance

CPT(NewBalancejIrRatio; FWRatio; T ransfer)

182 CHAPTER 8. EXPERIMENTAL RESULTS

CPT(FWRatiojFWa;FWb) FWRatio

FWa FWb aMHigherb aHigherb aEqualb aLowerb aMLowerb

NoWork 0 0 1 0 0

NoWork Recp 0 0 1 0 0

Forn1 0 0 0 0 1

Forn2 0 0 0 0 1

NoWork 0 0 1 0 0

Recp Recp 0 0 1 0 0

Forn1 0 0 0 1 0

Forn2 0 0 0 0 1

NoWork 1 0 0 0 0

Forn1 Recp 0 1 0 0 0

Forn1 0 0 1 0 0

Forn2 0 0 1 0 0

NoWork 1 0 0 0 0

Forn2 Recp 1 0 0 0 0

Forn1 0 0 1 0 0

Forn2 0 0 1 0 0

Table 8.6: CPT(FWRatiojFWa; FWb)

constitutes the environment's state transition model. Since

#DIrRatio = 5 #DFWRatio = 5

#DTransfer = 7 #DNewBalance = 3

this CPT requires the assessment of 5 � 5 � 7 � (3� 1) = 350 independent probabilities. To

simplify this assessment some rules must be de�ned:

� FWRatio determines the direction of work transfer, hence:

{ if FWRatio = aMHigherb or FWRatio = aHigherb, then work is transferred

from node a to node b; work transfers from b to a, represented by decisions b2a25,

b2a50 and b2a75, must be rejected, independently of IrRatio; this is achieved

by assigning an absolute certainty to the proposition NewBalance=Bad for

these decisions; the converse is also true, when b presents higher foreground

workload than a; this rule reduces in 3 � 5 � 4 � (3 � 1) = 120 the number of

independent values to be assessed;

{ if FWRatio = aEqualb, then some work transfer, from the node exhibiting

lower intersection rate to the node with higher intersection rate, may still be

desirable; transfers in the opposite direction, however, must be avoided; this

rule reduces in 4 � 3 � (3 � 1) = 24 the number of independent values to be

8.5. DECISION NETWORK BASED STRATEGY 183

assessed; the distribution of the 5 � 7 � (3 � 1) = 70 stochastic independent

values associated with FWRatio = aEqualb are presented in table 8.7;

� FWRatio (FWR) and IrRatio determine the amount of work to transfer among

the two nodes; larger ratios of workload and smaller ratios of intersection rate among

the sender and the receiver (as determined by the previous rule), should correspond to

larger amounts of transferred work; �gures 8.12 and 8.13 present the probability dis-

tribution over NewBalance's states, for FWR=aMHigherb and FWR=aHigherb,

respectively, for all values of IrRatio and for Transfer 2 fa2b75, a2b50, a2b25,

NTg, where NT stands for NoTransfer; the probabilities for FWR = aLowerb and

FWR = aMLowerb are the converse of these ones with Transfer 2 fb2a75, b2a50,

b2a25, NTg; in order to better understand these graphics two further remarks must

be done:

{ the rational behind CPT(NewBalancejTransfer = NoTransfer) is that not

transferring workload among a potential supplier/receiver pair leaves the envi-

ronment on an undesirable state, and this situation worsens with the increase

of the potential receiver's intersection rate;

{ the rational behind

CPT(NewBalancejIrRatio; FWRatio = aHigherb; T ransfer)

which is built from

CPT(NewBalancejIrRatio; FWRatio = aMHigherb; T ransfer)

is that, since the supplier's foreground workload is lighter, transferences are not

so pro�table, therefore all the probabilities are slightly shifted towards worst

values of NewBalance; for Transfer = NoTransfer, P (NewBalance = Good)

is slightly increased.

Figures 8.12 and 8.13 present the remaining 80 rows (160 stochastic independent values)

of CPT(NewBalancejIrRatio; FWRatio; T ransfer). These graphs can be read across 3

dimensions:

� reading each graph across the horizontal illustrates how the probability distribution

over the values of NewBalance changes as the sender's intersection rate increases,

for the same action;

� reading each graph across the vertical illustrates how the probability distribution over

the values of NewBalance changes as a function of the amount of work to transfer,

for the same intersection rate ratio;

184 CHAPTER 8. EXPERIMENTAL RESULTS

NewBalance

IrRatio Transfer VGood Good Bad

a2b75 0:00 0:00 1:00

a2b50 0:00 0:00 1:00

a2b25 0:00 0:00 1:00

aMHigherb NoTransfer 0:60 0:40 0:00

b2a25 0:30 0:60 0:10

b2a50 0:00 0:70 0:30

b2a75 0:00 0:20 0:80

a2b75 0:00 0:00 1:00

a2b50 0:00 0:00 1:00

a2b25 0:00 0:00 1:00

aHigherb NoTransfer 0:70 0:30 0:00

b2a25 0:10 0:80 0:10

b2a50 0:00 0:50 0:50

b2a75 0:00 0:10 0:90

a2b75 0:00 0:00 1:00

a2b50 0:00 0:00 1:00

a2b25 0:00 0:20 0:80

aEqualb NoTransfer 1:00 0:00 0:00

b2a25 0:00 0:20 0:80

b2a50 0:00 0:00 1:00

b2a75 0:00 0:00 1:00

a2b75 0:00 0:10 0:90

a2b50 0:00 0:50 0:50

a2b25 0:10 0:80 0:10

aLowerb NoTransfer 0:70 0:30 0:00

b2a25 0:00 0:00 1:00

b2a50 0:00 0:00 1:00

b2a75 0:00 0:00 1:00

a2b75 0:00 0:20 0:80

a2b50 0:00 0:70 0:30

a2b25 0:30 0:60 0:10

aMLowerb NoTransfer 0:60 0:40 0:00

b2a25 0:00 0:00 1:00

b2a50 0:00 0:00 1:00

b2a75 0:00 0:00 1:00

Table 8.7: CPT(NBjFWRatio = aEqualb; IrRatio; T ransfer)

8.5. DECISION NETWORK BASED STRATEGY 185

� comparing two identically positioned blocks of both graphs illustrates how the prob-

ability distribution over the values of NewBalance changes as a function of the

foreground workload ratio, for the same intersection rate ratio and amount of trans-

ferred work.

8.5.3 Assign Utilities

An utility function must be speci�ed which translates each action's outcome, probabilisti-

cally encoded inNewBalance, into a real number that expresses that action's desirability.

Since the next state is described by a single variable, the required utility function is a sin-

gle attribute function. Each possible value of NewBalance is given a certain utility.

Expected utility is computed by weighing these utilities with the probability that each

particular value of NewBalance occurs.

Utilities are normalised, therefore the most desirable state, NewBalance = VGood, is

given an utility of 1, and the least desirable state, NewBalance = Bad, is given an utility

of 0. Since NewBalance = Good is conceptually closer to VGood than to Bad, as can be

seen by carefully analysing �gures 8.12 and 8.13, it was given an utility of 0.6. Therefore,

each action a expected utility given the available evidence E, is computed as follows

U(NB = VGood) = 1

U(NB = Good) = 0:6

U(NB = Bad) = 0

EU(ajE) = P (NB = VGoodjE; Do(a)) � U(NB = VGood)+

P (NB = GoodjE; Do(a)) � U(NB = Good)+

P (NB = BadjE; Do(a)) � U(NB = Bad)

where NB stands for NewBalance.

8.5.4 Sensitivity Analysis

Sensitivity analysis is used to determine which of the model's qualitative or quantitative

parameters are more relevant to the system's behaviour and aims to increase con�dence

on the agent's decisions. Most of the model's parameters can be analysed, by introducing

small variations and verifying if the best decision changes with them. Since there is a large

number of di�erent combinations of the various parameters of the model, a tradeo� must

be found between the e�ort spent in sensitivity analysis and the con�dence on the agent's

decisions.

The tests performed to the decision network just described include the analysis of:

186 CHAPTER 8. EXPERIMENTAL RESULTS

CPT(NBjFWRatio=aMHb;IrRatio;T ransfer)

-

-

-

-

NB

NB

NB

NB

6 6 6 6 6

IrR=aMLb

IrR=aMLb

IrR=aMLb

IrR=aMLb

IrR=aLb

IrR=aLb

IrR=aLb

IrR=aLb

IrR=aEb

IrR=aEb

IrR=aEb

IrR=aEb

IrR=aHb

IrR=aHb

IrR=aHb

IrR=aHb

IrR=aMHb

IrR=aMHb

IrR=aMHb

IrR=aMHb

Transfer =

Transfer =

Transfer =

Transfer =

NoTransfer

a2b25

a2b50

a2b75

0.9

0.1

0.7

0.3

0.5 0.5

0.3

0.7

0.1

0.9

0.5 0.5

0.7

0.3

0.9

0.1

0.7

0.3

0.5 0.5

0.1

0.9

0.3

0.7

0.5 0.5

0.7

0.3

0.9

0.1

0.1

0.9

0.2

0.8

0.3

0.7

0.4

0.6

0.5 0.5

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.0

1.0

VG VG VG VG VGG G G G GB B B B B

VG VG VG VG VGG G G G GB B B B B

VG VG VG VG VGG G G G GB B B B B

VG VG VG VG VGG G G G GB B B B B

where:
IrR�IrRatio; NB�NewBalance

DNewBalance=fVGood;Good;Badg�fVG;G;Bg

DFWRatio=DIrRatio=faMHigherb;aHigherb;aEqualb;aLowerb;aMLowerbg�faMHb;aHb;aEb;aLb;aMLbg

Figure 8.12: NewBalance's belief distribution given FWRatio=aMHigherb

8.5. DECISION NETWORK BASED STRATEGY 187

CPT(NBjFWRatio=aHb;IrRatio;T ransfer)

-

-

-

-

NB

NB

NB

NB

6 6 6 6 6

IrR=aMLb

IrR=aMLb

IrR=aMLb

IrR=aMLb

IrR=aLb

IrR=aLb

IrR=aLb

IrR=aLb

IrR=aEb

IrR=aEb

IrR=aEb

IrR=aEb

IrR=aHb

IrR=aHb

IrR=aHb

IrR=aHb

IrR=aMHb

IrR=aMHb

IrR=aMHb

IrR=aMHb

Transfer =

Transfer =

Transfer =

Transfer =

NoTransfer

a2b25

a2b50

a2b75

0.85

0.15

0.65

0.35
0.45

0.55

0.25

0.75

0.05

0.95

0.45

0.55
0.65

0.35

0.85

0.15

0.65

0.35
0.45

0.55

0.05

0.95

0.25

0.75

0.45

0.55
0.65

0.35

0.85

0.15

0.15

0.85

0.25

0.75

0.35

0.65

0.45

0.55 0.55

0.45

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.0

1.0

VG VG VG VG VGG G G G GB B B B B

VG VG VG VG VGG G G G GB B B B B

VG VG VG VG VGG G G G GB B B B B

VG VG VG VG VGG G G G GB B B B B

where:
IrR�IrRatio; NB�NewBalance

DNewBalance=fVGood;Good;Badg�fVG;G;Bg

DFWRatio=DIrRatio=faMHigherb;aHigherb;aEqualb;aLowerb;aMLowerbg�faMHb;aHb;aEb;aLb;aMLbg

Figure 8.13: NewBalance's belief distribution given FWRatio=aHigherb

188 CHAPTER 8. EXPERIMENTAL RESULTS

� the sensitivity of the agent's best decision to the sensors' variables domain cardinality;

� the inuence of the age of information variables on the belief distribution over the

associated metrics.

Sensors' variables domain cardinality

A complete list of the best decisions for all possible combinations of the evidence variables

showed that:

� the recommended decision changes with variations in the the values of both InfoIra

and InfoIrb; the domains of these variables are, therefore, maintained;

� the recommended decision is insensitive to whether InfoFW is equal to NoWork

or Recp; the same applies to whether InfoFW is equal to Forn1 or Forn2; conse-

quently, these variables' domains are rede�ned to include only two states:

DInfoFWa = DInfoFWb = fRecp; Forng

As a consequence of the latter item, the domains of FWa and FWb must be rede�ned to

the same set of values as InfoFWa's domain.

The foreground workload sensor model must also be adjusted, as well as FWRatio's

domain. CPT(FWRatiojFWa; FWb) is now given by table 8.8.

CPT(FWRatiojFWa;FWb) FWRatio

FWa FWb aMHigherb aEqualb aMLowerb

Recp Recp 0 1 0

Recp Forn 0 0 1

Forn Recp 1 0 0

Forn Forn 0 1 0

Table 8.8: CPT(FWRatiojFWa; FWb)

Since FWRatio's domain now has only three elements, the entries of the state transi-

tion model, CPT(NewBalancejIrRatio; FWRatio; T ransfer) for FWRatio = aHigh-

erb and FWRatio = aLowerb no longer exist. This conditional probability table (CPT)

now requires the assessment of 5 � 3 � 7 � (3 � 1) = 210 independent probabilities, which

are equal to those presented in section 8.5.2.

Sensitivity to the age of information

The accuracy of the sensors' models

CPT(InfoFW jAgeFW;FW)

8.6. RESULTS' ANALYSIS 189

CPT(InfoIrjAgeIr; Ir)

determines whether the age of the information, AgeFW and AgeIr, and the prior proba-

bilities of the metrics, P(FW) and P(Ir), have any inuence on the belief on these metrics,

BEL(FW) and BEL(Ir), given the available evidence.

The more accurate the sensors, the less these beliefs are inuenced by the age of information

and by the prior probabilities, since the uncertainty about the sensor's readings decreases.

On the case of a perfect sensor, represented by a deterministic probability table, there is no

inuence from these quantities, since there is no uncertainty associated with the sensor's

readings. Real sensors, however, are not perfect, hence the belief on the non{observable

metrics should be inuenced by the age of information and by the prior probabilities of

these metrics.

The accuracy of the sensors is modelled in the CPTs associated with the variables that

represent the sensors' readings: InfoIr and InfoFW. In order to adjust these models,

so that the age of information inuences BEL(FW) and BEL(Ir), two di�erent sets of

CPTs were tried. Two indexing variables, one for each environment metric, were added

to the decision network. These are IrS and FWS, and allow the selection between two

sensor models: Model1 models an accurate sensor, with low uncertainty about the sen-

sors' readings, while Model2 represents a more inaccurate sensor, increasing the agent's

uncertainty about its readings. If the indexing variable is set toModel1 then the accurate

sensor model is selected, otherwise it must be set to Model2 and the inaccurate model is

selected. Figure 8.14 depicts the decision network with the indexing variables, and tables

8.9 and 8.10 present the alternative conditional probability tables for the intersection rate

and the foreground workload sensors, respectively.

The values obtained for BEL(Ir) and BEL(FW), for all possible combinations of the

evidence and indexing variables, have shown that only withModel2 do these beliefs exhibit

some sensitivity to the information's age. Furthermore, only these sets of conditional

probabilities allow the beliefs on these metrics to be inuenced by the prior probabilities

of the intersection rate and foreground workload, P(Ir) and P(FW). Hence, the sensors

models which include more uncertainty about the sensors' readings were selected for the

current experiment. The �nal decision network is thus obtained by removing the indexing

variables, IrS and FWS, and using the conditional probability tables associated with

Model2.

8.6 Results' Analysis

This section presents and discusses the results obtained with the schedulers introduced

in the previous sections. The numerical results are presented in appendix D. Section

190 CHAPTER 8. EXPERIMENTAL RESULTS

CPT(InfoIrjAgeIr; Ir; IrS) InfoIr

IrS Ir AgeIr VeryLow Low Medium High VeryHigh

Current 0:950 0:050 0:000 0:000 0:000

VeryLow Recent 0:900 0:100 0:000 0:000 0:000

OutDated 0:850 0:150 0:000 0:000 0:000

Current 0:050 0:900 0:050 0:000 0:000

Low Recent 0:100 0:800 0:100 0:000 0:000

OutDated 0:150 0:700 0:150 0:000 0:000

Current 0:000 0:050 0:900 0:050 0:000

Model1 Medium Recent 0:000 0:100 0:800 0:100 0:000

OutDated 0:000 0:150 0:700 0:150 0:000

Current 0:000 0:000 0:050 0:900 0:050

High Recent 0:000 0:000 0:100 0:800 0:100

OutDated 0:000 0:000 0:150 0:700 0:150

Current 0:000 0:000 0:000 0:050 0:950

VeryHigh Recent 0:000 0:000 0:000 0:100 0:900

OutDated 0:000 0:000 0:000 0:150 0:850

Current 0:950 0:030 0:015 0:005 0:000

VeryLow Recent 0:850 0:100 0:030 0:020 0:000

OutDated 0:750 0:150 0:070 0:020 0:010

Current 0:050 0:900 0:030 0:015 0:005

Low Recent 0:150 0:700 0:100 0:030 0:020

OutDated 0:250 0:500 0:150 0:030 0:020

Current 0:020 0:030 0:900 0:030 0:020

Model2 Medium Recent 0:050 0:100 0:700 0:100 0:050

OutDated 0:100 0:150 0:500 0:150 0:100

Current 0:005 0:015 0:030 0:900 0:050

High Recent 0:020 0:030 0:100 0:700 0:150

OutDated 0:030 0:070 0:150 0:500 0:250

Current 0:000 0:005 0:015 0:030 0:950

VeryHigh Recent 0:000 0:020 0:030 0:100 0:850

OutDated 0:010 0:020 0:070 0:150 0:750

Table 8.9: CPT(InfoIrjAgeIr; Ir; IrS) | sensitivity analysis

8.6. RESULTS' ANALYSIS 191

�
�

�
�IrS -

�
�

�
�

�
�

�
�

�
�

�
�

?

6

AgeIra

InfoIra

Ira

�
�

�
�

�
�

�
�

�
�

�
�

?

6

AgeIrb

InfoIrb

Irb

�
�

�
�IrRatio

Q
Q
QQs

�
�

��+

�
�

�
�FWS�

�
�

�
�

�
�

�
�

�
�

�
�

?

6

AgeFWa

InfoFWa

FWa

�
�

�
�

�
�

�
�

�
�

�
�

?

6

AgeFWb

InfoFWb

FWb

�
�

�
�FWRatio

Q
Q
QQs

�
�

��+

Transfer

�
�

�
�NewBalance- �� @@

��@@
Gain-

PPPPPPPq

�������)

Figure 8.14: Sensitivity analysis

8.6.1 discusses the results obtained in dedicated mode, while throughout section 8.6.2 the

distributed system is submitted to di�erent background workload patterns. In section 8.6.3

the stochastic scheduler learns some of the model's probabilities, using a process known as

sequential update, in an attempt to both correct eventual errors in the initial assessment

of these parameters and to adapt to changes in the dynamics of the environment. Finally,

section 8.6.4 discusses and summarises the obtained results.

8.6.1 Dedicated Mode

Figure 8.15 presents the execution time for all four scenes and scheduling strategies, while

�gure 8.16 presents the performance improvement obtained by using each dynamic schedul-

ing strategy relative to the static uniform workload distribution. The performance improve-

ment is computed as
Tunif � Tsched

Tunif
� 100

where sched refers to each scheduling strategy and unif refers to the uniform work distri-

bution [101]. These results were obtained using the distributed system in dedicated mode,

i.e., without any additional background workload, as described in section 6.6.

Figure 8.15 aims to illustrate the system's behaviour as a function of the number of nodes

and scheduling strategy. Since the execution time with the uniform allocation strategy is

192 CHAPTER 8. EXPERIMENTAL RESULTS

CPT(InfoFW jAgeFW;FW;FWS) InfoFW

FWS FW AgeFW Recp Forn

Current 0:950 0:050

Recp Recent 0:900 0:100

Model1 OutDated 0:850 0:150

Current 0:050 0:950

Forn Recent 0:100 0:900

OutDated 0:150 0:850

Current 0:900 0:100

Recp Recent 0:825 0:175

Model2 OutDated 0:750 0:250

Current 0:100 0:900

Forn Recent 0:175 0:825

OutDated 0:250 0:750

Table 8.10: CPT(InfoFW jAgeFW;FW;FWS) | sensitivity analysis

signi�cantly larger than with the dynamic strategies, the di�erences among these are not

easy to read from these graphics. Figure 8.16 aims to clearly show these di�erences.

Some comments can be made by carefully interpreting these last graphics. Signi�cant gains

are obtained by using dynamic scheduling strategies, rather than a static uniform workload

distribution. The performance improvement can be as high as 75%, for balls4pv and a

system with 5 processing nodes. The only exception is with scene balls3 and 2 processing

nodes, where the uniform distribution is more e�ective than some of the dynamic ones, due

to a balanced distribution of work between the two nodes. However, if di�erent background

workloads were imposed on these nodes, the static scheduling strategy would not be able to

redistribute the workload and, hence, would fail to achieve better results than the dynamic

ones.

The performance improvement increases with the scenes' complexity: balls4pv is more

complex than teapot9, which is more complex than balls3c, which is more complex than

balls3; the improvements achieved follow exactly the same order. This is expected, since

more complex workloads, both on required computational power and remote data fetch-

ing, provide the scheduler with more opportunities to intervene. However, the scheduling

agent's execution model and available information must be adequate, otherwise it may fail

to decide correctly.

The performance improvement tends to decrease as the number of nodes increases. This

is true for all scenes, when the number of nodes increases from 6 to 7. This trend was

not yet con�rmed with a larger number of nodes; the cluster used as the target platform

will have additional nodes soon, and evaluation on these larger system is already planned.

8.6. RESULTS' ANALYSIS 193

Figure 8.15: Execution time with di�erent scheduling strategies

This is a predictable behaviour, since, as the number of nodes increases, the static uniform

scheduling agent divides the image in an increasing number of sub{regions, increasing

the probability that the workload gets evenly distributed across all nodes. However, if

the nodes' background workloads change in runtime the opposite behaviour is expected,

since the static scheduling agent is not able to redistribute the workload according to the

variations in the nodes' computing throughputs. This issue will be addressed in section

8.6.2 (see �gure 8.22).

The reduction in performance improvement with the number of nodes must not be confused

with a scalability problem. Figure 8.15 clearly shows that execution times decrease as the

number of nodes increases.

The sensor based dynamic scheduling strategies achieve consistently better results than

the demand{driven one. This is specially true for the more complex scenes. It can be

concluded that the time spent collecting detailed information about the environment's state

and using a more complex decision making mechanism is worthwhile: the better quality

of the generated schedules overcomes the overheads associated with these strategies. The

higher performance level is also partially due to the more wide range of actions available to

194 CHAPTER 8. EXPERIMENTAL RESULTS

Figure 8.16: Performance improvements with di�erent scheduling strategies.
(Note: the upper and lower graphics' axis have di�erent scales)

the schedulers. These are not restricted to do one{time assignments of tasks to processing

nodes, they can migrate tasks by taking advantage of their divisibility property.

The improvements obtained with the stochastic scheduler may not seem signi�cantly larger

than those obtained with the deterministic scheduling agent; however, �gure 8.17, which

plots the performance improvement achieved with DN relative to det, computed as

Tdet � TDN
Tdet

� 100

shows that the gains achieved with the stochastic approach increase, although not mono-

tonously, with both the number of nodes and the scenes' complexity. The main exception

happens for scenes teapot9 and balls4pv, with 5 nodes, because the deterministic scheduler

performs specially well in these two cases. From 6 to 7 nodes, this di�erence in gain

increases signi�cantly. This suggests that this approach can be more rewarding on larger

distributed systems.

Figure 8.18 shows indirect costs associated with scenes teapot9 and balls4pv, using the

deterministic and stochastic scheduling strategies. It includes the percentage of resource

idle times (TTidle%) and the percentage of remote data fetching times (TTdata%) com-

8.6. RESULTS' ANALYSIS 195

Figure 8.17: Performance improvement of DN relative to det

pared to the aggregated execution time; the number of tasks, which is a direct cost, is also

shown. The replication penalty is not included, but it is strongly related to the number

of tasks. On each group of bars the left{hand side bar represents the deterministic results

(det) and the right{hand side one the decision network (DN) results. DN consistently

presents lower indirect costs than det. The improvements achieved with DN are, probably,

a consequence of these reduced indirect overheads. Furthermore, these results are achieved

with a smaller number of tasks, which further contributes to reduce overheads associated

with tasks migrations and work replication penalty.

TTdata is not signi�cant for teapot9, but it represents a large overhead for balls4pv. None

of the scheduling agents makes any e�ort to reduce TTdata, since it is not included on

their execution model. However, TTdata is slightly lower with the DN scheduling strategy

than with the det one. This is probably due to the lower number of tasks. Since each

task is a sub{region of the image and because rays within the same neighbourhood tend to

access the same set of objects due to image coherency, it is probable that after processing

a few rays most of the objects required to render that region are stored on the processing

node local cache. When a task is divided into two sub{regions and one of them is assigned

to another node, this node will have to �ll its local cache, thereby increasing remote data

fetching time.

This graphic also shows that, for balls4pv, TTdata% tends to decrease as the number of

nodes increases. Data items are evenly distributed across all processing nodes and the

number of data items residing in each node is independent on the number of nodes. As the

number of nodes increases, data requests are more evenly spread around all nodes. Hence,

each node receives less data requests, which reduces contention on the process servicing

these requests. These are satis�ed faster, reducing each node's remote data fetching time.

196 CHAPTER 8. EXPERIMENTAL RESULTS

Figure 8.18: TTidle% and TTdata% with det and DN scheduling strategies.
On each group of bars det is the left hand{side bar and DN the right hand-side one.

The labels above the bars represent the number of tasks.

(Note: the two graphics' axis have di�erent scales)

8.6.2 Background Workload

Figure 8.19 presents the execution time, in a system with 7 nodes, for the di�erent schedul-

ing strategies and background workload patterns described in section 6.6, while �gure 8.20

presents the respective performance improvement relative to the uniform work distribution.

A few remarks can be made from this �gure:

� the performance improvement increases with the weigh of the background workload;

the static uniform work distribution strategy gets more ine�ective as the hetero-

geneity of the nodes' computing throughput increases, while the dynamic schedulers

can redistribute the workload in runtime, migrating tasks from overloaded nodes to

8.6. RESULTS' ANALYSIS 197

Figure 8.19: Execution time with di�erent background workloads (7 nodes)

underloaded ones;

� the sensor based dynamic strategies get more e�ective than the demand{driven ap-

proach as the background workload increases; this con�rms and reinforces the previ-

ous conclusion that the additional costs of collecting detailed information about the

environment's state are overcome by the improved quality of the generated schedule;

� the performance improvement obtained with the stochastic strategy is larger than

that obtained with the deterministic strategy, for all scenes and background work-

loads; furthermore, the performance improvement obtained with the stochastic sched-

uler relative to the deterministic scheduler, computed as

Tdet � TDN
Tdet

� 100

increases with the background workload weigh and the scene's complexity, as illus-

trated by �gure 8.21.

Figure 8.22 presents the performance improvement obtained with scene teapot9 and the

heavy synthetic background workload for di�erent number of nodes. Clearly, the perfor-

mance improvement increases with the number of nodes. The only exceptions are with 3

198 CHAPTER 8. EXPERIMENTAL RESULTS

Figure 8.20: Performance improvement with di�erent background workloads (7 nodes)
(Note: the upper and lower graphics' axis have di�erent scales)

nodes, where the uniform scheduler performs poorly, and with 5 nodes, where it performs

particularly well.

Figure 8.23 shows indirect costs and the number of tasks, for scenes teapot9 and balls4pv,

using the deterministic and stochastic scheduling strategies, on the 7 nodes distributed

system, with di�erent background workloads. The stochastic scheduler, once again, incurs

less indirect overheads and requires less task migrations than the deterministic scheduler.

Remote data fetching times grow very signi�cantly as the background workload increases.

Since processors are busier, the time to reply to data items requests is longer. These

results suggest that including remote data fetching overheads on the execution model, so

that the scheduling agent tries to minimise them by exploiting data locality, can increase

the scheduler's performance when the background workload is signi�cantly heavy.

This graphic corroborates the observations made about �gure 8.18. The stochastic schedul-

ing strategy consistently incurs less indirect overheads than the deterministic one, reducing

both resources' idle times and the time spent waiting for remote data. The number of tasks

generated by this scheduler is also smaller.

8.6. RESULTS' ANALYSIS 199

Figure 8.21: Performance improvement of DN relative to det (7 nodes).

Figure 8.22: Teapot9: performance improvement with heavy background workload

8.6.3 Using Previous Knowledge about the Background Work-

load

The decision network used so far does not include any previous knowledge about the nodes'

actual intersection rates. In fact, the prior probabilities of these variables are assigned

uniform distributions, P(Ir) = f0:2; 0:2; 0:2; 0:2; 0:2g. This assignment does not mean that

it is believed that all nodes have an equal probability of being in any state with respect to

their computing throughput. Rather, it is a consequence of the designer's ignorance about

the nodes' background workloads and computing throughput. This ignorance prevents the

designer from making more accurate guesses about the nodes' intersection rates and forces

him to rely solely on the sensors' inputs.

The imprecisions on the prior probabilities P(Ir) can be corrected, by updating them

200 CHAPTER 8. EXPERIMENTAL RESULTS

Figure 8.23: TTidle% and TTdata% with det and DN scheduling strategies and di�erent
background workloads.
On each group of bars det is the left hand{side bar and DN the right hand-side one.

The labels above the bars represent the number of tasks.

(Note: the two graphics' axis have di�erent scales)

whenever new data is available. At each inference step, hereby designated as iteration, the

scheduling agent observes the environment's state as perceived by its sensors. The observed

variables are represented by the evidence vector E, which includes the intersection rates'

sensors readings. Using this evidence the agent infers the expected utility for each action,

and selects the one which maximises it. Since the used inference algorithm updates the

belief on all the decision network's variables, the posterior probabilities of the intersection

rate variables given the available evidence, P(IrajE) and P(IrbjE), are also computed.

Hence, these values, which are available without any additional computational e�ort, can

be used to update the prior probabilities P(Ira) and P(Irb). This can be achieved by

using an exponentially recency{weighed average at each iteration, as discussed in section

8.3.2, with � = 0:5,

Pn+1(Ir) = Pn(Ir) + � � [Pn(IrjE)�Pn(Ir)] (8.11)

8.6. RESULTS' ANALYSIS 201

This process is known as sequential updating of numerical parameters on a �xed structure,

since the network's topology is kept constant. Sequential update is an online learning prob-

lem. At each iteration n, the Bayesian network Bn receives new data un and produces the

next hypothesis Bn+1 [55, 66, 164]. Sequential update is a crucial capability, allowing the

development of adaptive systems that can overcome errors in their initial model and adapt

to changes in the dynamics of the environment being modelled. It requires a conceptual

change on how probabilities are understood; these are no longer restricted to represent the

degree of belief on a given proposition, as proposed by the subjectivist school, but also

encode the frequency with which a given event occurs.

A new version of the decision network based scheduler was developed, which sequentially

updates the nodes' intersection rates prior probabilities at each inference step, using equa-

tion 8.11. This is referred to as the adaptive stochastic scheduler. The proposed decision

network evaluates the best action to take, based on pairs of processing nodes, instantiating

the variables subscripted with a and b with data from the appropriate nodes. Therefore,

the posterior probabilities P(IrjE) and the prior probabilities P(Ir) must be computed

separately for each processing node.

Figure 8.24 a) presents the performance improvement of the adaptive stochastic scheduler

relative to the previous stochastic scheduler. The results were obtained with the four

di�erent scenes and synthetic background workloads, for a system with 7 nodes.

The improvements in execution time go as high as 3.7%. These improvements grow with the

background workload weigh and the scene's complexity. The improvement growth with the

background workload weigh shows that as the heterogeneity among the processing nodes'

intersection rates increases, the information encoded on the prior probabilities P(Ir) gets

more valuable, allowing the scheduling agent to make more correct decisions with respect

to the nodes' future behaviour.

Figure 8.24 b) plots the performance improvement obtained with the adaptive stochastic

scheduler relative to the deterministic scheduler, computed as

Tdet � TSeqUpd
Tdet

� 100

This improvement is signi�cant and grows, although not monotonously, with the scene's

complexity and the background workload weigh. It goes up to 13.8% for balls4pv and

a heavy background workload, corroborating the hypothesis that the decision network

based scheduler can be more e�ective than an equivalent deterministic one, by explicitly

including on its execution model and decision making mechanism the uncertainty about

the environment.

202 CHAPTER 8. EXPERIMENTAL RESULTS

Figure 8.24: Performance improvements with adaptive stochastic approach
a) relative to non{adaptive
b) relative to deterministic

8.6. RESULTS' ANALYSIS 203

8.6.4 Discussion

The results presented throughout this chapter show that signi�cant performance improve-

ments are obtained by using sensor based dynamic scheduling strategies, rather than a

static uniform workload distribution or even a dynamic demand{driven approach. This

strategy is a very common approach to the scheduling problem, due to its simplicity.

Figure 8.25 shows that the performance improvements obtained with both the determinis-

Figure 8.25: Performance improvements relative to demand driven with 7 nodes
For each scene the bars represent, from left to right, dedicated mode, light, medium and heavy

background workloads

tic and the adaptive stochastic sensor based schedulers relatively to the demand{driven one

increase, although not monotonously, with the complexity of the data set being processed

and the background workload weigh, and that the stochastic scheduler is more e�ective

than the deterministic one. The additional costs imposed upon the system to gather more

detailed system's state data and by a more sophisticated decision making mechanism, are

largely overcome by the better quality of the generated schedule. This conclusion contra-

dicts some authors that claim that sensor based scheduling strategies are not likely to o�er

much improvements over very simple ones [25, 39, 182] (section 3.2). This statement is

based on the fact that sensor based strategies rely on detailed information about the en-

vironment's state, which may be inaccurate and expensive to gather, and on the potential

for instability. These authors, however, only consider small, homogeneous and dedicated

distributed systems. Becker [10, 12], on the other hand, argues that sophisticated schedul-

ing is more e�ective than simply assigning tasks to the least loaded resources, when the

environment being managed is complex enough, which is con�rmed by the results just

presented. The eÆciency of a sophisticated scheduling strategy may, however, fall below

204 CHAPTER 8. EXPERIMENTAL RESULTS

acceptable levels if the overheads of detailed information collection and decision making

overcome the associated bene�ts. The information policy and the decision making mecha-

nism may not scale with the environment's heterogeneity and size. Di�erent organisations

and levels of sophistication may be required for these two components of the scheduler,

depending on the environment's properties.

The performance improvements obtained with the stochastic scheduler on small dedicated

distributed systems do not seem signi�cant when compared with those obtained with the

deterministic scheduler. Since their respective performance levels are similar, a straight-

forward conclusion is that the design of decision network based schedulers may not be

worthwhile: although they are able to meet their performance requirements to the same

degree as the deterministic ones, they require the assessment of a large number of nu-

merical parameters (conditional probabilities and utilities), which the scheduler's designer,

probably more used to build deterministic models, can �nd diÆcult to estimate.

The advantages of the stochastic scheduler become clear as soon as the environment gets

more complex. The improvements grow with the scene's complexity, the background work-

load weigh and the size | number of nodes | of the distributed system (section 8.6.2).

Furthermore, they are obtained by reducing both resources' idle times and the number of

migrations triggered by the scheduler. This result is very encouraging, since it suggests

that the decision network approach may be specially e�ective in larger and more complex

environments, such as distributed environments on a wide Internet scale and the newly

emerging computational Grid [50]. Applying this paradigm to these complex environments

would require an adequate execution model and information policy. The additional com-

munication costs | due to a high latency/low bandwidth network | and complexity |

due to issues like heterogeneity and ownership | of such an environment would have to be

taken into consideration; however, decision networks seem to be an appropriate alternative

to deterministic models.

The measured values of resources' idle times and remote data access overheads suggest that

there are still opportunities to further increase the overall scheduler's e�ectiveness (�gure

8.23):

� the execution models used throughout these experiments do not explicitly handle

communications costs, focusing on computation costs; however, indirect overheads

due to remote data accesses increase signi�cantly with the weigh of the background

workload; further performance improvements may be obtained on heavily loaded

systems, by including in the decision network the communication costs due to remote

data accesses, to reduce these costs by increasing data locality;

� the schedulers used throughout this work do not make any e�ort to generate an

optimised initial distribution of work, relying on runtime task migrations to prop-

8.7. SUMMARY 205

erly redistribute the workload among the resources; an optimised initial distribu-

tion of work could reduce the number of required task migrations, decreasing direct

scheduling overheads; this approach's e�ectiveness depends on the dynamics of the

environment;

� the execution model may require further tuning, to more adequately represent the en-

vironment's behaviour; imprecisions may be present either in the model's qualitative

component (network topology, random variables and respective domain, available ac-

tions) or in its quantitative component, i.e., conditional probability tables and utility

function.

These issues are discussed in detail in chapter 9. The latter, however, has been partially

tackled by using sequential update to recompute some of the decision network's probabil-

ities. The assessment of the conditional probabilities can be particularly diÆcult, since

humans are generally bad numerical estimators. These numbers often need only to be

speci�ed approximately. As long as the ratio between the probability of an event occur-

ring and not occurring, given the same evidence, roughly reects genuine experience, valid

conclusions will still be reached [127]. If the network topology is built following a causal

ordering, the required probabilities are psychological meaningful and this topology con-

stitutes a qualitative knowledge base which is maintained independently of the numerical

parameters, rendering the conclusions more dependable. Nevertheless, the required prob-

abilities' correctness can be increased by updating them whenever new data is available

(section 8.6.3). This process, known as sequential updating, has the additional capability

of adapting the decision network's numerical parameters to changes in the environment's

dynamics.

An adaptive version of the stochastic scheduler has been developed, which updates the

prior probabilities P(Ir) whenever new data is available. The results achieved with this

adaptive version are signi�cantly better than those achieved with the deterministic one.

This corroborates the hypothesis that the the decision network approach e�ectiveness can

be increased by �ne tuning the execution model's numerical parameters.

8.7 Summary

Chapter 6 de�ned a methodology to validate the hypothesis put forward by this thesis.

A stochastic scheduling strategy was presented, and further re�ned in this chapter, to

include on the scheduler's execution model the uncertainty about the environment's state

and behaviour. It was shown that the scheduler's execution model successfully bene�ted

from the use of Bayesian decision networks.

206 CHAPTER 8. EXPERIMENTAL RESULTS

The �nal results also show that, by updating some of the model's numerical parame-

ters based on past observations, signi�cant improvements are achieved with the stochastic

scheduler, when compared to a deterministic one with an equivalent level of complexity.

Furthermore, these improvements grow with the environment's complexity.

Since the stochastic scheduler achieves better results than those of the deterministic sched-

uler, the hypothesis put forward in the �rst part of this thesis is corroborated and can

not be rejected. Decision networks do constitute a suitable approach to the scheduling

problem, particularly for highly parallel irregular applications, exhibiting low interaction

among arbitrarily divisible tasks, and executing on distributed shared systems.

Chapter 9

Conclusions

Contents

9.1 Discussion . 207

9.2 Future Work . 210

9.1 Discussion

This thesis addresses application level scheduling in distributed dynamically shared sys-

tems. In such environments the scheduling agent must decide and act under conditions

of uncertainty about the application's requirements, the distributed system's state and

the consequences of its actions. Distributed shared systems are often dynamic, non{

deterministic and partially inaccessible, preventing the scheduling agent from having a

complete, accurate and updated image of the environment's state at any instant and from

being completely sure about its actions outcomes. The problem tackled by this thesis is:

should the scheduling agent explicitly include the uncertainty and incompleteness of infor-

mation it has about the environment on its internal model of the world and on its decision

making mechanism, in order to more tightly meet its performance requirements?

To improve the scheduler's e�ectiveness, decision networks were applied to the scheduling

agent's execution model and decision making mechanism. Decision networks are one of

the tools proposed by decision theory to enable automated rational decision making under

conditions of uncertainty.

A generic structure for this decision network is proposed, which includes the entities that

play a relevant role on the scheduling process: the environment's current state description

| composed by the tasks' requirements, the resources' capacity and the scheduling over-

heads | the alternative actions available to the agent, the estimated next state and the

expected utility for each action.

207

208 CHAPTER 9. CONCLUSIONS

A subset of the proposed structure is evaluated, by comparing both its e�ectiveness and

eÆciency with those of a deterministic scheduling strategy of identical complexity. To

perform this evaluation, a parallel ray tracer is used, representative of a broader class of

parallel applications, exhibiting low interaction among tasks, high parallelism, irregular

workload and decomposed across data space, which provides arbitrarily divisible tasks.

The distributed computing system used as the target platform is a small, heterogeneous

cluster. To simulate the workload generated by several simultaneous users, some prede�ned

synthetic background workload patterns are applied.

An adaptive version of the stochastic scheduler is also evaluated, which uses an online

learning process, referred to as sequential update, to learn some of the probabilistic model

numerical parameters. This process allows the development of adaptive systems that can

overcome errors in their initial model and adapt to changes in the dynamics of the envi-

ronment being modelled.

The results presented throughout this thesis show that sensor based dynamic scheduling

strategies, that include a rather sophisticated execution model of the environment being

managed and that use dynamically gathered data about the state of this environment,

obtain signi�cant performance improvements when compared with simpler approaches,

such as a dynamic demand driven strategy. The additional costs imposed upon the system

by detailed information collection and a more sophisticated decision making mechanism

are largely overcome by the better quality of the generated schedule.

The execution models used by both the deterministic and the stochastic schedulers do not

explicitly handle communication costs. The tasks' requirements are characterised in terms

of estimated time to completion, without distinguishing between computation and com-

munication requirements, the data access patterns are not considered and the resources'

capacity is measured in terms of computing throughput only. However, the results pre-

sented show that indirect overheads caused by remote data accesses increase signi�cantly

with the background workload weigh. This suggests that these overheads should be con-

sidered on the schedulers' execution models, in an attempt to reduce them by exploiting

data locality.

The performance improvements obtained with the stochastic scheduler relative to the de-

terministic one, and in particular the adaptive scheduler, become increasingly signi�cant

as the environment's complexity grows. The complexity of the data set, the background

workload weigh and the size of the distributed system contribute to increase the envi-

ronment's complexity, providing the scheduler with more opportunities to intervene. The

adaptive stochastic scheduler is able to explore these opportunities more e�ectively than

the deterministic one. These additional improvements are obtained by reducing the num-

ber of task migrations, and by reducing indirect overheads, including resources' idle times

and remote data fetching times.

9.1. DISCUSSION 209

When the stochastic scheduler is used to manage small, dedicated distributed systems

the performance improvements over the deterministic one are not signi�cant. The addi-

tional e�orts required to assemble a probabilistic model, particularly the assessment of the

model's numerical parameters, seem worthless in these simple environments. However, the

improvements obtained in more complex, shared environments, with complex data sets and

dynamic background workloads, do justify these e�orts. The decision network approach

gets more e�ective as the level of system sharing and the application's workload irregu-

larity increase, as illustrated by �gure 9.1. These results corroborate the hypothesis that

the explicit representation of uncertainty on the scheduler's execution model and decision

making mechanism, using decision networks, increases its e�ectiveness by overcoming the

problems caused by this uncertainty. This was veri�ed by the class of applications and

distributed computing systems considered throughout this thesis.

-

6

Dedicated Shared

Regular

Irregular

w

w

w

w

Distributed
System

Application

q Direction of
increased e�ectiveness

�
�
�
�
�
�
��

�
�
�
��

�
�
�
��

Figure 9.1: The decision network approach e�ectiveness

The e�ectiveness of the stochastic scheduler, particularly of the adaptive one, increases

with the complexity of the environment being managed. This is an encouraging result,

since it suggests that the decision network approach may be specially e�ective in complex

and large environments, such as distributed environments on a wide Internet scale and

the newly emerging computational Grid. These environments present new challenges that

have to be properly handled; these include a large number of heterogeneous resources,

a high latency/low bandwidth communication medium and a number of new issues like

ownership and accounting. The centralised approach used throughout this thesis is prob-

ably inadequate for these environments. The large number of di�erent and autonomous

organisations involved prevents the utilisation of a single point of control, which could also

become a bottleneck, compromising the system's scalability. Design choices like the de-

centralisation of the scheduling agent and the implementation of a decision making policy

with adaptive complexity have to be considered. In order to keep the relationship between

scheduling overheads and pro�ts under control, the schedulers operating on more complex

environments may perform a more sophisticated pro�tability determination analysis. This

may be achieved by explicitly representing scheduling overheads in the execution model,

210 CHAPTER 9. CONCLUSIONS

as proposed in section 5.7. With this extended execution model the scheduling agent will

be able to estimate the scheduling overheads associated with a given action and weigh it

against the potential gain obtainable with the same action. The relationship between cost

and bene�t could, thus, be automatically optimised [10, 12].

The main diÆculty involved on the development of decision networks lies on the assess-

ment of the numerical parameters, both probabilities and utilities. Identifying the relevant

variables to represent in the model and the direct causal relationships holding among them

is a fairly simpler task [127]. The absolute estimates of the probabilistic values, however,

are unimportant, as long as their ratio reects the conditions holding on the real world.

Nevertheless, techniques developed by decision analysts can help the expert on this task.

Sensitivity analysis, for example, helps in verifying how sensitive is the system to small

variations in these values. This task may be made easier by using automated learning

mechanisms, like sequential update or reinforcement learning, that generate new estimates

by observing the system's behaviour.

9.2 Future Work

The approach to the scheduling problem proposed throughout this thesis has been applied

to a single class of parallel applications. It remains an open question whether it can be

successfully applied to di�erent applications | exhibiting high interactions among paral-

lel tasks, �xed grain size or hybrid functional plus data domain decomposition | or to

problems with di�erent performance requirements.

The initial allocation of work to the distributed system's resources has been neglected

throughout this work, on the basis that the application's requirements and the system's

behaviour are highly unpredictable and dynamic. If these can be modelled to some extent

[8], then techniques from static scheduling can be used to generate an optimised initial

schedule, which may require less task migrations, thereby reducing direct scheduling over-

heads.

The performance improvements achieved with the stochastic scheduler grow with the en-

vironment's complexity. This conclusion must be further validated by using more complex

distributed computing systems. Experiments are already planned in a cluster with more

processing nodes. The presented results suggest that the decision network approach would

be more e�ective if used on a highly heterogeneous system, distributed in a wide Internet

scale, probably composed of physically distributed clusters, owned, administered and used

by di�erent groups of people. These resources could be dynamically joined together on a

virtual machine, using software like PVM or Legion [28, 62, 63, 177], and made available to

the users on{demand or transparently. A stochastic scheduler would, hopefully, be able to

9.2. FUTURE WORK 211

manage e�ectively this pool of heterogeneous resources, workloads and performance goals.

A centralised architecture is probably inadequate to larger environments. The central

scheduling agent may represent a bottleneck, compromising the system's scalability. Dis-

tributed approaches must be investigated, since they scale better with system's size and ac-

tivity. These can be either completely distributed or partition the system into domains. In-

side each domain centralised scheduling strategies may be applied, while scheduling among

domains can be done hierarchically or on a neighbourhood basis (sections 3.5 and 4.2.6).

By applying decision networks to these distributed scheduling agents their performance

goals may be more tightly met.

In such environments the scheduling overheads can be far more signi�cant than in the envi-

ronments used throughout this thesis; the scheduler must include in its execution model a

pro�tability determination component, that weighs each action's bene�ts with the expected

overheads. This can be achieved by explicitly including the scheduling overheads on the

decision network. Furthermore, the environment's state is better described by including a

more comprehensive set of metrics, such as the communication's network bandwidth and

latency. This also applies to the parallel ray tracer, as discussed in section 8.6.4.

The stochastic scheduler used throughout this work is adaptive with respect to the node's

computing throughputs, since their prior probabilities are dynamically computed using a

sequential update technique. However, there are several di�erent opportunities for adap-

tation for a dynamic scheduler, as identi�ed by Becker and Waldmann [12] and discussed

in section 2.3:

� correction of pro�le and load predictions;

� determination of di�use factors in the execution model;

� control of the relationship between overhead and pro�t.

The �rst of these opportunities has been addressed by dynamically updating the nodes'

computing throughputs prior probabilities. The third one can be addressed by including

the expected scheduling overheads on the decision network and by dynamically updating

some of the associated probabilities. The determination of di�use factors will depend

on the execution model being used. Although the agent may be given the ability to

adapt many of its parameters, such as the Bayesian decision network's structure itself

[18, 54, 56, 84, 91, 97, 98], the state transition model is an obvious candidate to adaptation.

The state transition model is a conditional probability table (CPT), that relates the envi-

ronment's next state to its current state and the action selected by the agent. Since this

CPT is initially assessed by the agent's designer, it may contain numerical imprecisions.

These can be corrected by updating the conditional probabilities whenever new data is

212 CHAPTER 9. CONCLUSIONS

available. This is a learning process, since it involves acquiring new knowledge from the

environment, or reorganising current knowledge, in order to improve the agent's perfor-

mance [35]. Furthermore, this is an unsupervised learning process, since no entity can

tell the agent which is the best action to take at each instant. Either Bayesian learning

techniques or reinforcement learning algorithms [166, 170, 183] can be applied to improve

the state transition model accuracy.

Reinforcement learning algorithms use a reward{penalty scheme to update each action's

probabilities; if, after selecting an action, the agent receives a feedback signal from the

environment indicating that the action was successful, then increase the appropriate values

in the CPT to increase the probability of this action being selected the next time the

environment is in the same state; otherwise, decrease them. Reward{penalty schemes are

presented in section 4.2.7. This is a promising technique, whose suitability to increase the

scheduling agent's e�ectiveness deserves further investigation.

The decision networks and the probabilistic inference algorithm used throughout this work,

require that all the model's variables are discrete random variables. However, some of the

metrics are continuous values; representing them with discrete variables requires the dis-

cretisation of their domain. This process can lead to imprecisions on the model, particularly

if the range of values each variable can take on is in�nite or can not be previously deter-

mined. Representing these metrics as continuous random variables provides a natural way

of expressing them, leading to models in better accordance with reality, which increases

the models' clarity.

Several inference algorithms for decision networks with mixtures of discrete and continuous

random variables have been developed [5, 88, 99, 119, 123, 131, 149]; unfortunately, exact

probabilistic inference is only possible when all the continuous variables are normally dis-

tributed and have no discrete children. Directed graphical probabilistic models require the

speci�cation of the conditional distribution of each node, given its parents. For discrete

variables with discrete parents, this distribution is usually represented using a conditional

probability table. For continuous variables with continuous parents, the variable's dis-

tribution is given by N(� + �Y; �2), where � is the normal distribution mean, Y is the

vector of states of the continuous parents, � is a vector of weighs and � is the normal

distribution variance. If the continuous variable also has discrete parents, then a distri-

bution N(�i + �iY; �
2
i) must be speci�ed for each con�guration i of the discrete parents.

Representing the environment's continuous metrics as continuous variables, rather than

discrete ones, increases the probabilistic model's clarity and capacity of expression, which

can contribute to increase the scheduling agent's e�ectiveness. Furthermore, continuous

models require less numerical parameters and these are more meaningful, which allows a

more accurate initial assessment of these numbers and facilitates automated learning based

on dynamically available data.

Appendices

213

Appendix A

Glossary

Contents

A.1 Decision Theory . 215

A.2 Load Management . 218

This appendix presents a brief de�nition of the terms most frequently used throughout this

thesis. These are subdivided into three sections, according to the subject with which they

are related.

A.1 Decision Theory

Bayes' rule | This rule states that the belief on an hypothesis, or cause, H, given the

available evidence, or e�ects of this cause, E, can be computed by multiplying the

previous belief on the hypothesis P(H) by the likelihood that E will materialise given

the hypothesis P(EjH). This is given by

P(HjE) =
P(EjH)P(H)

P(E)

The heart of Bayesian inference techniques lies in this inversion formula, which en-

ables diagnostic inferences, from e�ects to causes, on Bayesian networks where the

available information is causal, i.e., from causes to e�ects.

bayesian network | Bayesian networks are a tool proposed by decision theory to prob-

abilistically model real world problems. The network's nodes represent the aspects of

the real world that are being modelled, while the network's directed links represent

direct causal relationships among them. The network's nodes are associated with

stochastic variables Ui, which describe the network's current belief on the state of

215

216 APPENDIX A. GLOSSARY

each of the world's relevant aspects. The network's links are associated with condi-

tional probability tables, which represent the strength of the inuence of a variable's

state on its successors' states. The network topology, once built, displays a consistent

set of direct and indirect dependencies, and preserves them as a stable qualitative

characteristic of the model, independently of any particular assignment of quanti-

tative information, namely conditional probabilities. The network topology can be

thought of as an abstract knowledge base, that holds in a variety of settings, repre-

senting the domain's general structure of causal relationships [69, 127, 143]. Evidence

about the current state of one or more variables can be entered into the network, and

a probabilistic inference mechanism can be triggered to compute the new probability

distribution over the remaining variables.

Formally, a Bayesian network is an annotated directed acyclic graph, constituted

by the pair B = (G;�), that encodes a joint probability distribution of a set

of random variables U. G is a directed acyclic graph whose vertices correspond

to the random variables U1; : : : ; Un and whose edges represent direct dependencies

among the variables. � represents the set of numerical parameters that quantify the

network. It contains parameters �uijParents(Ui) = PB(uijParents(Ui)); 8ui2DUi
;Ui2U ,

where Parents(Ui) denotes the set of parents of Ui in G. A Bayesian network B

de�nes a unique joint probability distribution over U given by PB(U1; : : : ; Un) =Qn
i=1PB(UijParents(Ui)) [55].

d{separation | Stands for direction{dependent separation and provides a mechanism

for directly reading from a bayesian network whether or not two variables are condi-

tionally independent, given the available evidence [77, 84, 127, 143]. Two variables

X and Y in a belief network are said to be d{separated, if for all paths between X

and Y, there is an intermediate variable V, such that:

1. the connection is serial, ! V !, or diverging, V !, and the state of V is

known;

2. the connection is converging, ! V , and neither V nor any of its descendants

are known.

If, given all the evidence available E, two variables X and Y are d{separated, then

changes on the belief of X have no impact on the belief of Y, and conversely. There-

fore, if X and Y are d{separated by E, then they are conditionally independent of

each other given E, i.e.,

P(XjE; Y) = P(XjE)

P(Y jE; X) = P(Y jE)

decision networks | Decision networks are a tool proposed by decision theory for ratio-

nal decision making under conditions of uncertainty. These networks combine belief

A.1. DECISION THEORY 217

networks with additional node types for actions and utilities. The set of actions avail-

able to the agent at any given instant can be represented by decision variables that

are under the full control of the decision making agent. Selecting an action amounts

to impose the value of a decision variable, rather than determine it probabilistically.

This setting alters the probability distribution of another set of stochastic variables

in the network, known as the consequences of the decision variable. The utility

function can then be evaluated, taking into account the probability distribution over

those variables that directly a�ect utility. A rational agent should assert the decision

variables to all possible combinations, and select the sequence that maximises its

expected utility.

joint distribution | A probabilistic model consists of a set of stochastic variables that

can take particular values with certain probabilities. Each variable represents some

important aspect of the world being modelled. The values each variable can take

on are the variable's domain. The variable's probability distribution over its domain

speci�es the designer's degree of belief that the variable will take on a particular

value. An atomic event is an assignment of particular values to all the variables in

the model. The joint distribution assigns probabilities to all possible atomic events,

and it allows direct access to the probability of any atomic event. The cardinality of

the joint distributions is given by

NY
i=1

#DVi

whereN is the number of stochastic variables in the model and #DVi is the cardinality

of Vi's domain.

sequential updating | Sequential updating is an online learning process. At each it-

eration n the Bayesian network Bn receives new data un and produces the next

hypothesis Bn+1, which is then used to predict un+1. In practice, at each iteration

n each variable of interest Xi is assigned a given prior probability Pn(Xi). Upon

reception of new evidence E, the posterior probabilities Pn(XijE) are inferred. The

prior probabilities for each variable Xi can be updated using the old estimate Pn(Xi)

and the newly computed posterior probabilities Pn(XijE) by using the exponentially

recency-weighed average, as given by

Pn+1(Xi) = Pn(Xi) + � � [Pn(XijE)�Pn(Xi)]

This is a crucial capability for building adaptive models that can overcome errors in

the initial model numerical parameters, and that can adapt to the dynamics of the

underlying system [55, 164].

utility function | Utility theory is used to represent and reason about preferences. It

says that each state has an utility for an agent, and that the agent will prefer states

218 APPENDIX A. GLOSSARY

with higher utility. Utility is a function that maps system's states to real numbers

[77, 127, 143]. The agent's preferences among di�erent states are captured by this

function, which assigns a single number to express the state's desirability. Utility

imposes a preferential ordering on the system's states. Every utility function can

be normalised, such that the most preferable state has an utility U(S) = 1, and

the least preferable one has an utility U(S) = 0. Most real problems require the

system's state to be characterised by many di�erent variables, or attributes. In such

cases, it is necessary to resort to multiattribute utility theory, in order to specify

the utility function. If the system's state is described by variables X1; : : : ; Xn, the

multiattribute utility function is usually an additive value function

U(S) =
nX
i=1

�iXi

Additive functions are a natural way of expressing an agent's preferences, and are

valid in many real world problems. These functions can be safely used when the

attributes exhibit mutual preference independence, i.e., when each attribute does not

a�ect the way in which the agent trades o� the other attributes against each other.

Two attributes X1 and X2 are preferentially independent of a third attribute X3, if

the preference among the outcomes (x1; x2; x3) and (x
0
1; x

0
2; x3) does not depend on the

particular value x3 for attribute X3. However, when mutual preference independence

does not strictly hold, an additive function can still be a good approximation to the

agent's preferences.

A.2 Load Management

application{dependent metrics | Application{dependent metrics are those which use

the actual work performed by the application to measure some particular aspect of

the environment. On an image processing or graphic application, for instance, this

could be the number of pixels processed by unit of time. Application{dependent met-

rics usually convey more information than application{independent ones. To avoid

dependencies among the actual data being processed by each node and the metric's

values, data templates, equal in all nodes, can be used to compute the metric. This

approach will, however, impose an additional overhead, since computing the met-

ric does not directly contribute to �nish the task in hand. The bene�ts of using

an application{dependent metric must be carefully weighed with the overheads of

computing it.

application{independent metrics | Application{independent metrics refer to char-

acteristics of the system, like each resource's waiting queue or the network's latency,

rather than to the application's characteristics. These can be computed either by

A.2. LOAD MANAGEMENT 219

the applications themselves or by some system speci�c software, eventually at the

operating system level.

application level scheduling | Scheduling performed by the application itself in order

to meet its own performance objectives, while in competition with any other applica-

tions that may be sharing the same distributed system [14, 19]. E�ective application

level scheduling involves the integration of application-speci�c and system-speci�c

data, and it depends on the dynamic interactions between the application and the

computing system. The scheduler, embedded within each application, must e�ec-

tively combine the data it receives about the distributed system and the tasks' states

in order to meet its performance requirements.

background workload | The workload associated with all those processes that are

not under the application level scheduling agent's control, like other applications,

eventually belonging to di�erent users, and operating system processes.

congestion problem | Formation of regions of nodes within the distributed system

with an excessive workload, when compared with the remaining nodes. This prob-

lem may be diÆcult to solve, specially with schedulers using local information and

migration policies, like nearest{neighbour ones.

coordination problem | Occurs when several overloaded nodes simultaneously select

the same underloaded node as their migration target, overowing it with tasks.

data locality | Addresses the fact that tasks, being executed by the distributed sys-

tem's nodes, require data, which can be either located in the node's local memory,

or located in remote memories. If the access times to remote memories are signi�-

cant, the execution time may be severely impaired if data locality is low, due to the

increased number of remote data fetches.

direct costs | Direct scheduling overheads represent the resources the scheduler con-

sumes, since they result directly from the scheduler's activity. They depend on the

scheduler's strategy complexity and on the frequency with which it triggers its various

mechanisms. These include metrics' estimation, information and control messages,

selection of the most adequate action to take at each instant and execution of the

selected actions.

divisible loads | If data domain decomposition has been used to parallelise an appli-

cation, then the application's tasks are de�ned by the subset of data that each task

must process. If the data set can be arbitrarily subdivided at run{time into smaller

regions, therefore originating an arbitrary number of tasks, then the workload is

classi�ed as an arbitrarily divisible load.

220 APPENDIX A. GLOSSARY

dynamic scheduling | Dynamic scheduling policies generate the schedule at run time,

using a set of rules to specify correcting actions that redistribute the workload over

the system. Among dynamic policies three di�erent approaches can be distinguished:

� those that do not consider the environment's state at each instant, deciding as

if they were blind;

� those that use environment's state information as input to their set of rules,

hoping to make better decisions;

� those that go a step beyond, by using environment's state inputs to modify

either its rules' parameters or the rules themselves, i.e., the scheduling agent's

execution model is modi�ed in run{time in order to better represent the external

world; these are usually classi�ed as adaptive policies.

Those that use environment's state information on their decision making process

are also referred to as sensor based dynamic scheduling policies, since they use data

gathered through the scheduler's sensors.

environment metrics | Metrics used to update the image the scheduler has about

the environment's current state. These may include the distributed system's state,

the application's current state of execution and workload pro�les. These quantities

are, usually, used directly by the agent's decision making mechanism. Environment

metrics can be further subdivided into foreground workload metrics and resources'

capacity metrics.

execution model | To be able to generate an e�ective schedule, the scheduler must

have an internal execution model of the world, that adequately represents the dis-

tributed system and the workload's most relevant aspects and respective interrela-

tionships. This execution model is used to generate estimates of future behaviours

that are used as inputs to the scheduler's decision making mechanism. Being a com-

putational representation of a real world problem, the execution model must be a

simpli�cation of the objects and relations that hold on the universe being consid-

ered. This simpli�cation may result in inaccuracies on the generated estimates, that

must be properly handled by the scheduler, so that its e�ectiveness does not get

compromised.

foreground workload | The workload associated with all those processes that are un-

der the application level scheduling agent's control.

foreground workload metrics | Metrics used to measure each resource's current work-

load that was directly assigned by the application level scheduler. They must corre-

late well with tasks' response times, since they are used to predict a task's perfor-

mance if executed at a given resource.

A.2. LOAD MANAGEMENT 221

indirect costs | Indirect scheduling costs are consequences of the scheduler's selected

actions. By changing the resources allocated to the application's tasks, the scheduling

agent modi�es both the application's course of action and the pattern of resources'

utilisation. These changes on the environment's behaviour may cause additional

overheads that reduce the scheduler's eÆciency. Indirect costs depend on the appli-

cation and distributed system being managed. Three di�erent kinds of indirect costs,

however, occur for many applications, in distributed memory parallel systems: work

replication, resources' idle times and remote data access overheads.

information aging | Since the environment's state changes continuously, the image an

agent has about it gets obsolete with time. This phenomenon is known as information

aging. Increasing the rate at which information is acquired can be prohibitively

expensive, and the problem can never be completely solved since the environment's

state changes while the information is being transmitted.

information policy | Set of rules that determine when, where and what information

must be collected, through the scheduling agent's sensors, about the system's re-

sources current workload and tasks' workload pro�les.

location policy | Set of rules that identify the various partners enrolled on a given

scheduling action, e.g., workload transfer.

measurability | The environment's measurability is a function of the total set of infor-

mation available to the scheduling agent and the cost of acquiring this information.

The more information available, the more measurable the environment is.

performance metrics | Metrics used to evaluate the scheduler's performance goals de-

gree of achievement, or e�ectiveness.

performance model | In order to both make decisions and assess its eÆciency and

e�ectiveness, the scheduling agent must collect a set of metrics. This set of metrics is

referred to as the scheduler's performance model. These metrics are acquired through

the agent's sensors, and constitute all the dynamic external information it has about

the environment's state and the quality of the schedule it is generating. They can be

subdivided into three groups: performance, environment and scheduling overheads

metrics.

pro�tability determination | Pro�tability determination is the assessment of whether

or not a given workload transfer among resources should take place, by weighing the

expected bene�ts with the overheads incurred with this action.

resources' capacity metrics | Metrics used to assess the background workload on

each resource, in contrast to load metrics, which measure the workload directly as-

signed by the application level scheduling agent. These values must correlate with

222 APPENDIX A. GLOSSARY

the performance degradation that results from sharing the resource with several pro-

cesses.

scheduling e�ectiveness | The e�ectiveness is the scheduler's performance goals de-

gree of achievement. This is closely related to the quality of its decisions, and can

be described as the application's satisfaction with how well the scheduler manages

the resources in question. The e�ectiveness of the scheduler's decisions can only be

evaluated by using suitable performance metrics.

scheduling eÆciency | EÆciency is a measure of the scheduling overheads. It is re-

lated to the application's satisfaction in terms of how costly it is to be serviced by

the scheduler and to the level of intrusion that it imposes on the system.

scheduling overhead metrics | Metrics used to quantify the overheads, both direct

and indirect, imposed by the scheduler upon the distributed system; they can be

used in two di�erent ways: either by the scheduler's designer to analyse a posteriori

the scheduler's eÆciency and eventually change its algorithm, or by the scheduling

agent itself to automatically adapt its strategy in order to minimise overheads and

maximise bene�ts, i.e., to optimise its eÆciency.

scheduling problem | The scheduling problem is the problem of mapping a set of

tasks onto a set of resources. Local, or intranode, scheduling is concerned with

scheduling within a single node. Global, or internode, scheduling is a level above

this, and is concerned with scheduling among nodes. The scheduling problem has

�ve components: the tasks (or relevant events related to them), the distributed

system, the performance requirements, the schedule and the scheduler. The tasks'

events, system's characteristics and performance requirements are the input to the

scheduler, or load manager, and the mapping, or schedule, is its output.

scalability | Scalability can be de�ned as a system's ability to achieve a performance

which is proportional to its hardware and software resources' capabilities. According

to Hwang [73], a computer system is scalable if it can scale up (improve its resources)

to accommodate ever increasing performance and functionality requirements and/or

scale down (decrease its resources) to reduce costs.

selection policy | Set of rules that decide which work must be transferred among the

partners identi�ed by the scheduler's location policy.

stability | Stability is the scheduler's ability to detect when the e�ects of further actions

(which consume the resources being scheduled) will not improve the environment's

state. A stable algorithm will return the environment to a state of equilibrium after a

perturbation from this equilibrium and, in the absence of further input, ceases to take

actions which cause changes in environment's state in �nite time. In the context of

A.2. LOAD MANAGEMENT 223

load management, a perturbation is caused by a sudden change in the environment's

behaviour, due either to the arrival or removal of tasks or background workload, or to

modi�cations on the tasks' activity, which may cause imbalances between the nodes'

loads. Instability relates to the amount of schedulable resources being consumed by

the scheduler, while the environment's state is changing, but not moving towards a

more stable state.

static scheduling | Static scheduling policies generate the schedule before execution

time, based on the system's properties and on the tasks' requirements. This is also

called the mapping problem, because a mapping function must be de�ned, which

assigns tasks to resources before the execution begins.

transfer policy | Set of rules that determine whether a given resource is in a suitable

state to participate on a workload transfer, either as a sender or a receiver of work.

224 APPENDIX A. GLOSSARY

Appendix B

Propagation Rules for Bayesian

Networks

Contents

B.1 Notation . 225

B.2 Propagation Rules for Chains 227

B.3 Propagation Rules for Trees . 228

B.4 Propagation Rules for Polytrees 231

B.5 An Example: The Burglary Alarm 233

This appendix presents the algorithm proposed by Judea Pearl [127] for probabilistic in-

ference on Bayesian Belief Networks. This algorithm is based on local message passing

between neighbouring nodes. It is suitable only for polytrees, i.e., networks which do not

contain undirected cycles. If the network has undirected cycles, local message passing

algorithms run the risk of double counting information arriving from a common source.

Furthermore, all the model's variables must be discrete stochastic variables.

It introduces all the relevant notation and presents the propagation rules for chains, trees

and polytrees. Section B.5 �nishes with an example that illustrates the algorithm with a

simple network.

B.1 Notation

Discrete random variables are denoted by capital letters (e.g X ;Y ;Z), whereas speci�c

values taken by these variables are represented by lowercase letters (e.g. x ; y ; z). A random

variable X may take on values from a �nite domain DX . The number of di�erent values a

variable X can take, i.e., the cardinality of its domain DX , is labelled by #DX .

225

226 APPENDIX B. PROPAGATION RULES FOR BAYESIAN NETWORKS

Sets of variables are denoted by boldfaced uppercase letters (e.g. U), and assignments of

values to these variables are denoted by boldfaced lowercase letters (e.g. u). If Z stands

for the set of variables fX ;Y g, then z represents the assignment fx ; yg : x 2 DX ; y 2 DY .

P (x) is used as a short notation for the probability P (X = x); x 2 DX . P (z), for the set

Z = fX ;Y g, means

P (Z = z) = P (X = x ;Y = y); x 2 DX ; y 2 DY

i.e., the probability that X = x and Y = y .

The probability distribution of a variable X over its domain DX = fx1 ; x2 ; : : : ; xng is de-

noted by the boldfaced operator P(X), representing the vector

P(X) = fP (X = x1); P (X = x2); : : : ; P (X = xn)g;
X
i

P (X = xi) = 1

To distinguish between the �xed conditional probability table associated with each of

the network's links (that describes the variable X probability distribution as a tabular

function of all possible combinations of its parents) and a variable's probability distribution

given what is known, the �rst is referred to as CPT(X jParents(X)) and the latter as

P(X jY ;Z ; : : :). Moreover, the dynamic values of the updated nodes' probabilities, inferred

using the algorithm described throughout this appendix, that reects the belief distribution

accorded to X by all existing evidence E, is referred to as BEL(X). Thus

BEL(X) = P(X jE)

The conditional probability CPT(X jParents(X)), with Parents(X) = Y , is represented

by a two{dimensional matrix with #DY rows and #DX columns. If DX = fx1 ; x2g and

DY = fy1 ; y2 ; y3g then,

CPT(X jY) =

2
664
P (x1 jy1) P (x2 jy1)

P (x1 jy2) P (x2 jy2)

P (x1 jy3) P (x2 jy3)

3
775

where the values across each row add up to one, i.e.,
P2

i=1 P (xi jyj) = 1; 8yj 2 DY .

The symbol � denotes a normalizing constant, e.g.,

�(2; 2; 4) = (0:25; 0:25; 0:5)

All incoming evidence is represented by e and is regarded as coming from a set E of

variables whose value is known. E+
X and E�

X label evidence as arriving from, respectively,

B.2. PROPAGATION RULES FOR CHAINS 227

ancestor and descendant variables of X . E = E+
X [E

�
X and X separates E+

X from E�
X ,

therefore

P(X je) = P(X je+X ; e
�
X) = �P(e�X jX ; e+X)P(X je

+
X)

= �P(e�X jX)P(X je+X)

The symbol � represents the diagnostic support that a descendant node attributes to its

parent. Therefore, �(x) = P (e�X jx). This vector is usually referred to as the likelihood

vector. On a network with two nodes and a single link X ! Y , the belief distribution over

X is given by

BEL(X) = �P(X)�(x)

�(x) = CPT(Y jX)�(y)

�(x) is computed at node Y and transmitted to node X . Since Y has no descendants

its likelihood vector �(y) is set to whatever is known about Y . If DY = fy1 ; y2 ; y3g and

nothing is known about Y , then �(y) = (1; 1; 1) = 1. But if it is known for sure that

Y = y2 , then �(y) = (0; 1; 0).

The symbol � represents the causal support that a parent node attributes to its child.

Therefore, �(x) = P (x je+X). Considering again a simple network of two nodes and a single

link X ! Y , the belief distribution is given by

BEL(X) = P (X je+X ; e
�
X) = �P (X je+X)P (e

�
X jX)

= ��(x)�(x)

BEL(Y) = P (Y je+Y ; e
�
Y) = �P (Y je+Y)P (e

�
Y jY)

= ��(y)�(y)

�(y) = �(x)CPT(Y jX)

Since X has no parents, �(x) is set to the prior probabilities of X , i.e., �(x) = P(X).

B.2 Propagation Rules for Chains

A chain is a network where each node has exactly one parent and one child, except for

the head and tail nodes which have, respectively, only one parent and one child (see �gure

B.1).

Local belief updating can be done by each node in three steps which can be executed in

any order. The method for belief updating is triggered whenever a message is received

from any of the node's direct neighbours.

Step 1 | Belief updating: Node X might receive either an update vector �(x) from

its descendant Y , or an update vector �(u) from its parent U . If �(u) is received, then

228 APPENDIX B. PROPAGATION RULES FOR BAYESIAN NETWORKS

U X Y

(x)(u)λ λ

π (u) π (x)

CPT(X¦U) CPT(Y¦X)

Figure B.1: A Bayesian network with a chain topology

�(x) must be computed,

�(x) = �(u)CPT(X jU) (B.1)

Belief updating can now take place

BEL(X) = ��(x)�(x) (B.2)

Step 2 | Bottom-up propagation: When a �(x) message is received from the node's

child, a new message �(u) must be computed and sent to the parent U :

�(u) = CPT(X jU)�(x) (B.3)

Step 3 | Top-down propagation: When a �(u) message is received from the node's

parent, �(x) must be computed, using equation B.1, and sent to the child Y .

Figure B.2 illustrates an individual node's structure.

BEL(x)

λ (x)

π (x)
π (x)

λ (x)λ (u)

π (u)
CPT(X¦U)

CPT(X¦U)

Figure B.2: Structure of an individual node on a chain network

B.3 Propagation Rules for Trees

On tree structured networks each node might have several children and only one parent

(�gure B.3). Each node must combine the impacts of � messages obtained from several

children, and must distribute separate � messages to each of its children.

The belief distribution over X depends on two distinct sets of evidence: diagnostic evidence

from the sub{tree rooted at X and causal evidence from the remainder of the tree. The

former evidence is obtained from each of X 's children in the form of likelihood vectors

�Yi(x) = P(e�Yi
jX), while the latter is obtained from U as the causal support vector

�X(u) = P(X je+X).

B.3. PROPAGATION RULES FOR TREES 229

U

XV W

Y1 Y2 Yn

Figure B.3: A Bayesian network with a tree topology

Data Fusion

To compute the belief induced on X by some evidence e = e+X [e
�
X , �(x) and �(x) must

be calculated

�(x) = P(e�X jX)

�(x) = P(X je+X)

and combined together

BEL(X) = ��(x)�(x)

Since there is only one parent, the causal support is computed exactly the same way as for

chain networks, thus

�(x) = �(u)CPT(X jU)

The information arriving from the various descendants of X (�Y1(x); : : : ; �Yn(x)) must be

combined. The sub{tree rooted at X can be partitioned into the root X and one sub{tree

for each of its children. If X itself is not initialised with evidence, then e�X = e�Y1
[: : :[e�Yn

,

and since X separates its children

�(x) = P(e�X jx)

= P(e�Y1
; : : : ; e�Yn

jx)

= P(e�Y1
jx) � : : : �P(e�Yn

jx)

= �Y1
(x) � : : : � �Yn

(x)

=
Q
i �Yi(x)

Propagation Mechanism

The message that X sends to its parent must include all the diagnostic support given by

the sub{tree rooted at X , i. e.,

�X(u) = CPT(X jU)�(x)

230 APPENDIX B. PROPAGATION RULES FOR BAYESIAN NETWORKS

The message that X sends to its descendant Yi must include all the causal support given

by X 's parent and all diagnostic support induced by all descendants of X except Yi . This

last condition prevents double counting of evidence. Pearl [127] shows that this can be

computed as

�Yi(x) = �
BEL(X)

�Yi(x)

There is no need to normalise � or � messages, only BEL() requires normalisation. The

sole purpose of the normalisation constant � is to preserve the probabilistic meaning of the

messages. It is a good practice, however, to encode messages so that the smallest element

of the vector is 1.

Summary of Propagation Rules

Local belief updating can be done by each node in three steps which can be executed in

any order. The method for belief updating is triggered whenever a message is received

from any of the node direct neighbours.

Step 1 | Belief updating: Node X might receive either update vectors �Yi
(x) from

its descendants, or an update vector �(u) from its parent U . It can then update its belief

distribution

BEL(X) = ��(x)�(x)

where

�(x) = �(u)CPT(X jU)

�(x) =
Y
i

�Yi
(x) (B.4)

Step 2 | Bottom-up propagation: Using �(x) a new message �(u) must be computed

and sent to the parent U :

�(u) = CPT(X jU)�(x)

Step 3 | Top-down propagation: X must compute new � messages to send to its

descendants Yi :

�Yi(x) = �
BEL(X)

�Yi(x)
(B.5)

Figure B.4 illustrates an individual node's structure.

Root, terminal and evidence nodes require special treatment:

B.4. PROPAGATION RULES FOR POLYTREES 231

Πλ i (x) α (λ π)

BEL(X)
α

λ (x)1

BEL(X)
α

λ (x)2

λ 1(x) λ 2(x) π 1(x) π 2(x)

λ (x) π (x)

π X (u)λ X (u)

BEL(X)

CPT(X¦U) λ CPT(X¦U)π

Figure B.4: Structure of an individual node on a tree network

Anticipatory node { a leaf node that has not been initialised. BEL must be equal to

�, so � = (1; 1; : : : ; 1);

Evidence node { if a variable is initialised with a value, then � must be set with a 1 at

that value's position (e.g. � = (0; 1; 0; : : : ; 0));

Root node { � of the root node must be set equal to this variable's prior probabilities.

B.4 Propagation Rules for Polytrees

A polytree is a singly connected network, where each node might have several parents and

children, but no more than one undirected path might exist between any two nodes (�gure

B.5).

U1 U2 Un

X

YnY1 Y2

Figure B.5: A Bayesian network with a polytree topology

The belief distribution over X depends on two distinct sets of evidence: diagnostic evidence

from the sub{tree rooted at X and causal evidence from the remainder of the polytree.

The former evidence is obtained from each of X 's children in the form of likelihood vectors

232 APPENDIX B. PROPAGATION RULES FOR BAYESIAN NETWORKS

�Yi(x) = P(e�Yi
jX), while the latter is obtained from each of the parents Ui as causal

support vectors �X(ui) = P(X je+Ui
).

Data Fusion

The information from the various descendants of X (�Y1(x); : : : ; �Yn(x)) is combined exactly

the same way as for trees,

�(x) =
Y
i

�Yi(x)

The information from the various parents of X (�X (ui)) must also be combined on �(x).

Pearl [127] shows that

�(x) =
Y
i

�X (ui)CPT(X jU) (B.6)

The belief distribution over X can be calculated as usually by

BEL(X) = ��(x)�(x)

Propagation Mechanism

The message �X (ui) that X sends to its parent Ui must include all diagnostic support

induced by the sub{tree rooted at X (given by �(x)) and all causal support induced by all

its other parents except Ui . Pearl [127] shows that

�X(ui) = �
X
x

[�(x)(
X

uk:k 6=i

CPT(XjU)
Y
k 6=i

�x(uk))] (B.7)

The message that X sends to its descendant Yi is computed as in the previous case,

�Yi(x) = �
BEL(X)

�Yi(x)

Summary of Propagation Rules

Local belief updating can be done by each node in three steps which are executed in any

order. The method for belief updating is triggered whenever a message is received from

any of the node's direct neighbours.

Step 1 | Belief updating: Node X might receive either update vectors �Yi
(x) from its

descendants, or update vectors �X (ui) from its parents Ui . It can then update its belief

distribution

BEL(X) = ��(x)�(x)

B.5. AN EXAMPLE: THE BURGLARY ALARM 233

where

�(x) =
Y
i

�X (ui)CPT(X jU)

�(x) =
Y
i

�Yi
(x)

Step 2 | Bottom-up propagation: A new message �X (ui) must be computed and

sent to each parent Ui , according to equation B.7:

�X(ui) = �
X
x

[�(x)(
X

uk:k 6=i

CPT(XjU)
Y
k 6=i

�x(uk))]

Step 3 | Top-down propagation: X must compute new � messages to send to its

descendants Yi :

�Yi(x) = �
BEL(X)

�Yi(x)

The special treatment required by root, terminal and evidence nodes is the same as for

tree networks.

B.5 An Example: The Burglary Alarm

B.5.1 The Probabilistic Model

Judea Pearl [127] presents a probabilistic model of a burglary alarm, which is used to

exemplify the proposed algorithm. This alarm can go o� due to a burglary or due to an

earthquake. Three random variables are identi�ed, namely, Burglary (B), Earthquake (E)

and Alarm (A). B and E directly inuence A, so Parents(A) = fB ;Eg. B and E do not

bear any directly inuence on each other, at least on the context of this example.

The alarm's owner (Mr. Watson), when away from home, might be warned by any of

his two neighbours (N1 and N2), that usually call him when they hear the alarm. The

problem is that they are quite old, and some times they think they heard the alarm, when,

in fact, it did not go o�. Furthermore, these two neighbours have no possibility of knowing

whether or not a burglary or an earthquake occurred, so the event "Call the alarms owner"

does not depend on any direct observation of these two events, but only on whether or not

each of them thinks he heard the alarm.

Let

DB = f(T)rue; (F)alseg

234 APPENDIX B. PROPAGATION RULES FOR BAYESIAN NETWORKS

DE = f(S)trong; (M)ild; (F)alseg

DA = f(T)rue; (F)alseg

DN1 = f(T)rue; (F)alseg

DN2 = f(T)rue; (F)alseg

The Bayesian network that represents this model is presented on �gure B.6.

��
��
B

��
��
N1

��
��
A

��
��
N2

��
��
E

@
@@R

�
��	

�
��	

@
@@R

Figure B.6: The burglary alarm's Bayesian network

The prior probabilities of B (Burglary) and E (Earthquake), for the particular region where

Mr. Watson lives, are given by table B.1

P(B) T F

0.40 0.60

P(E) S M F

0.01 0.07 0.92

Table B.1: Burglary Alarm Example: P(B) and P(E)

The direct inuence of A's parents on it, quanti�ed by CPT(AjB;E), is given by table

B.2.

CPT(AjB;E) A

B E T F

T S 0.98 0.02

T M 0.95 0.05

T F 0.90 0.10

F S 0.30 0.70

F M 0.20 0.80

F F 0.01 0.99

Table B.2: Burglary Alarm Example: CPT(AjB;E)

The conditional probabilities CPT(N1jA) and CPT(N2jA) are given by table B.3

B.5. AN EXAMPLE: THE BURGLARY ALARM 235

CPT(N1jA) N1

A T F

T 0.95 0.05

F 0.10 0.90

CPT(N2jA) N2

A T F

T 0.99 0.01

F 0.20 0.80

Table B.3: Burglary Alarm Example: CPT(N1jA) and CPT(N2jA)

B.5.2 Inference Algorithm without Evidence

Initially no evidence is available about any variable, so

�(b) = �(a) = �(n1) = �(n2) = f1; 1g

�(e) = f1; 1; 1g

B and E are root nodes, therefore,

�(b) = P(B) = f0:4; 0:6g

�(e) = P(E) = f0:01; 0:07; 0:92g

From equation B.2

BEL(B) = ��(b)�(b) = f0:4; 0:6g

BEL(E) = ��(e)�(e) = f0:01; 0:07; 0:92g

B and E must compute �A(b) and �A(e), respectively. Since both of them only have only

one child, �A(b) = �(b) and �A(e) = �(e).

After receiving these two vectors, node A must compute �(a), using equation B.6.

�(a) =
Q
i �A(ui)CPT(AjB ;E)

= �A(b)�A(e)CPT(AjB ;E)

= f0:4; 0:6gf0:01; 0:07; 0:92gCPT(AjB ;E)

= f0:004; 0:028; 0:368; 0:006; 0:042; 0:552gCPT(AjB ;E)

= f0:37744; 0:62256g

Using equation B.2

BEL(A) = ��(a)�(a) = f0:37744; 0:62256g

236 APPENDIX B. PROPAGATION RULES FOR BAYESIAN NETWORKS

A must now compute �N1 (a) and �N2 (a), to send to N1 and N2 , respectively. Using

equation B.5

�N1 (a) = �BEL(A)
�N1 (a)

= f0:37744; 0:62256g

�N2 (a) = �N1 (a)

After receiving �N1 (a), node N1 must compute �(n1) using equation B.1

�(n1) = �N1 (a)CPT(N1 jA) = f0:420824; 0:579176g

Therefore

BEL(N1) = ��(n1)�(n1) = f0:420824; 0:579176g

Node N2 must proceed the same way, yielding

�(n2) = �N2 (a)CPT(N2 jA) = f0:4981776; 0:5018224g

Therefore

BEL(N2) = ��(n2)�(n2) = f0:4981776; 0:5018224g

B.5.3 Belief Distribution with Evidence

If neighbour N2 calls, then �(n2) = f1; 0g, and the belief distribution over N2 becomes

BEL(N2) = ��(n2)�(n2) = f1; 0g

Node N2 must compute �N2 (a) and send it to node A, using equation B.3

�N2 (a) = CPT(N2 jA)�(N2) = f0:99; 0:20g

Upon reception of �N2 (a), node A computes �(a), given by equation B.4

�(a) = �N1 (a)�N2 (a) = f1; 1gf0:99; 0:20g = f0:99; 0:20g

The new belief distribution over A is thus given by

BEL(A) = ��(a)�(a) = �f0:37744; 0:62256gf0:99; 0:20g= f0:75007; 0:24993g

As expected the belief that the alarm has actually gone o�, increased from 0:37744 to

0:75007 with N2's phone call.

B.5. AN EXAMPLE: THE BURGLARY ALARM 237

Node A must send �N1 (a) to N1, �A(b) to B and �A(e) to E.

�N1 (a) = �
BEL(A)

�N1 (a)
= f0:75007; 0:24993g

Node N1 can now estimate its belief distribution over N1

�(n1) = �N1 (a)CPT(N1 jA) = f0:73756; 0:26244g

BEL(N1) = ��(n1)�(n1) = f0:73756; 0:26244g

Mr. Watson's belief that neighbour N1 is going to phone, increased with N2 phone call, as

expected.

The diagnostic support induced by A on B and E must be computed using equation B.7

�A(b) =
X
a

[�(a)(
X
e

CPT(AjB ;E)�A(e))]

=
X
a

[�(a)(
X
e

2
66666666664

0:98 0:02

0:95 0:05

0:90 0:10

0:30 0:70

0:20 0:80

0:01 0:99

3
77777777775
f0:01; 0:07; 0:92g)]

=
X
a

[f0:99; 0:20g

2
4 0:9043 0:0957

0:0262 0:9738

3
5]

= f0:914397; 0:220698g

�A(e) =
X
a

[�(a)(
X
b

CPT(AjB ;E)�A(b))]

=
X
a

[�(a)(
X
b

2
66666666664

0:98 0:02

0:95 0:05

0:90 0:10

0:30 0:70

0:20 0:80

0:01 0:99

3
77777777775
f0:40; 0:60g)]

=
X
a

[f0:99; 0:20g

2
664
0:572 0:428

0:500 0:500

0:366 0:634

3
775]

= f0:65188; 0:59500; 0:48914g

238 APPENDIX B. PROPAGATION RULES FOR BAYESIAN NETWORKS

Nodes B and E can now compute their respective belief distribution

BEL(B) = ��(b)�(b) = f0:73419; 0:26581g

BEL(E) = ��(e)�(e) = f0:01309; 0:08360; 0:90332g

Mr. Watson's belief on both events increases, but the increase on burglary's belief is larger

than on earthquakes, since burglaries are more likely and the alarm is more sensible to

them.

Appendix C

PaRT 2.1 : User's Manual

Contents

C.1 Introduction . 239

C.2 Illumination Model . 240

C.3 Supported Primitives . 242

C.4 Neutral File Format . 242

C.5 PaRT 2.1 Extensions to the Neutral File Format 246

C.6 PaRT 2.1 Usage . 247

C.1 Introduction

PaRT (Parallel Ray Tracer) is a fairly simple ray tracer, designed with the purpose of

developing an adaptive data and load management strategy, which can learn how to achieve

better e�ectiveness. Its sources are available and are quite simple to understand. PaRT

2.1 is a parallel version, running over PVM 3.3 or later.

It supports spheres, polygons, polygonal patches, cylinders, cones and axis aligned boxes.

The illuminationmodel includes both local and global illumination. The local term uses the

Phong model with four terms: ambient, di�use reection, specular reection and specular

transmission. The global term includes global specular reection and transmitted rays.

Three intensity equations (Red, Green and Blue) are used to simulate colour.

Rays are shooted through the pixels' corners (meaning that 513 x 513 primary rays are

created, for a 512x512 resolution). The four corner contributions are averaged to arrive at a

pixel value. Adaptive supersampling is possible, consisting on shooting a �fth ray through

the pixel's centre if any two corners di�er more than by some pre-established amount. The

239

240 APPENDIX C. PART 2.1 : USER'S MANUAL

value of this ray is averaged (with weight = 0.5) with the four corner contributions. This

feature can be turned on or o� through a command line switch.

Some acceleration techniques have been included to improve the eÆciency over exhaustive

ray tracing. These include adaptive depth control and nonuniform space partitioning.

These features can be turned on or o� using command line switches.

PaRT accepts scene descriptions written in Neutral File Format (NFF) [65]. A few exten-

sions to NFF are included (see C.5), so that all of the illumination model's parameters can

be set.

PaRT 2.1 includes �ve di�erent scheduling strategies. These include: static uniform load

distribution, demand-driven work assignment, a complex deterministic scheduling policy

and two stochastic approaches to load management. The scheduling strategy is selected

by a command line switch.

PaRT 2.1 can interactively display the image being generated. To use this capability

XWindows and Tcl/Tk must be installed in the root node. If these packages are not

available, PaRT 2.1 can still be executed , but the -X switches can not be used.

C.2 Illumination Model

The illumination model includes both local and global illumination. Local or direct illu-

mination is light incident on a surface directly from the light sources. If light is incident

on a surface after interaction with another object then that illumination is categorised as

global. Global illumination arises from the interaction of direct light with reective or

transparent objects [48, 59, 173].

To calculate colour three intensity equations are used, for Red, Green and Blue. This

implies having di�erent coeÆcients for each light frequency.

The local component is calculated using the Phong reection model, extended by another

term to account for transparent objects. The model is a linear combination of four terms:

di�use reection, ambient light, specular reection and specular transmission, which are

described in section 7.2.1.

From each intersection point reected rays and transmitted rays are conditionally shoot to

account for global illumination. A reected ray is shoot if the material's global specular

reection coeÆcient kgs is greater than zero, whereas a transmitted ray is shoot if the

material's global transparency coeÆcient kgt is greater than zero. These new rays are then

traced as if they were primary rays. These tree of rays is recursively traced until a given

maximum depth is reached or no additional rays need to be spawn. Total internal reection

C.2. ILLUMINATION MODEL 241

is not implemented on this version of PaRT. Details can be found in section 7.2.2.

Most ray tracers spawn shadow rays from the intersection point towards each light source

to determine whether or not that light source is visible from that intersection point. If any

object is found in the path towards the light, then this one is considered occluded and will

not contribute to that point illumination.

PaRT takes a di�erent approach, in order to account for transparent objects. The local

transparency coeÆcients of all objects intersected by the shadow ray are multiplied by the

light source intensity for each wavelength. If the product of these constants is zero then

the intersection process terminates because that light source won't contribute to that point

illumination.

C.2.1 Rendering Equation

The �nal equations used by PaRT are

IR = Il;R + kgsIs;R + kgtIt;R (C.1)

IG = Il;G + kgsIs;G + kgtIt;G (C.2)

IB = Il;B + kgsIs;B + kgtIt;B (C.3)

The following parameters are needed to describe each material properties:

Symbol Description

kd;R, kd;G, kd;B Di�use reection coeÆcients

ka;R, ka;G, ka;B Ambient reection coeÆcients

ks Specular reection coeÆcient

ns Specular reection exponent

kt;R, kt;G, kt;B Local transparency coeÆcients

nt Local transparency exponent

� Index of refraction

kgs Global specular reection coeÆcient

kgt Global transparency coeÆcient

Table C.1: Set of parameters describing the material properties

Additionally the position and wavelengths of each light source must also be described. The

ambient term and the background colour require three additional parameters each (one per

wavelength).

242 APPENDIX C. PART 2.1 : USER'S MANUAL

C.3 Supported Primitives

PaRT 2.1 supports spheres, polygons, polygonal patches, cylinders, cones and axis aligned

boxes. It also supports texture mapping on 4{sided polygons.

Spheres

A sphere takes 4 parameters, namely, its centre coordinates (X, Y, Z) and its radius.

Polygons

Polygons can have up to a maximum number of vertices (200 on the actual version). All

vertices must be coplanar.

Polygonal Patches

A polygonal patch is a polygon, but the surface normal at each edge must also be supplied.

During the rendering process the surface normal at each intersection point is computed

based on the distance between this point and each of the vertices.

Cylinders and Cones

Both cylinders and cones require the speci�cation of the bases coordinates and radius. If

one of the bases has a radius of 0, then it is a perfect cone. Hence, it requires 8 parameters,

namely, the �rst and second bases coordinates and radius (X1, Y1, Z1, R1) and (X2, Y2,

Z2, R2).

Axis Aligned Boxes

These are rectangular boxes whose edges are aligned with the world coordinates axis. To

specify an axis aligned box only the coordinates of two opposed vertices are required.

C.4 Neutral File Format

The NFF (Neutral File Format) is designed as a minimal scene description language. The

language was designed in order to test various rendering algorithms and eÆciency schemes.

It is meant to describe the geometry and basic surface characteristics of objects, the place-

ment of lights, and the viewing frustum for the eye. Some additional information is provided

for aesthetic reasons (such as the colour of the objects, which is not strictly necessary for

testing the eÆciency of rendering algorithms). At present the NFF �le format is used in

conjunction with the SPD (Standard Procedural Database) software, a package designed

to create a variety of databases for testing rendering schemes [65].

Files are constituted by lines of text. For each entity, the �rst �eld de�nes its type. The

C.4. NEUTRAL FILE FORMAT 243

remainder of the line and possibly other lines contain further information about the entity.

Entities include:

"v" viewing vectors and angles

"b" background colour

"l" positional light location

"f" object material properties

"c" cone or cylinder primitive

"s" sphere primitive

"p" polygon primitive

"pp" polygonal patch primitive

Viewpoint Location

"v"

"from" Fx Fy Fz

"at" Ax Ay Az

"up" Ux Uy Uz

"angle" angle

"hither" hither

"resolution" xres yres

Format:

v

from oat oat oat

at oat oat oat

up oat oat oat

angle oat

hither oat

resolution int int

The parameters are:

From the eye location in XYZ.

At a position to be at the centre of the image, in XYZ world coordinates. A.k.a. "lookat".

Up a vector de�ning which direction is up, as an XYZ vector.

244 APPENDIX C. PART 2.1 : USER'S MANUAL

Angle in degrees, de�ned as from the centre of top pixel row to bottom pixel row and left

column to right column.

Hither distance of the hither plane (if any) from the eye. Mostly needed for hidden surface

algorithms. Not supported by PaRT 2.1.

Resolution in pixels, in x and y.

No assumptions are made about data normalisation (e.g. the from-at distance does not

have to be 1). Also, vectors are not required to be perpendicular to each other.

A view entity must be de�ned before any objects are de�ned (this requirement is so that

NFF �les can be displayed on the y by hidden surface machines).

Background Colour

A colour is simply RGB with values between 0 and 1:

"b" R G B

Format:

b oat oat oat

If no background colour is set, assume RGB = 0,0,0.

Positional light

A light is de�ned by XYZ position and RGB intensity.

"l" X Y Z [R G B]

Format:

l oat oat oat [oat oat oat]

All light entities must be de�ned before any objects are de�ned (this requirement is so that

NFF �les can be used by hidden surface machines). If no RGB intensity is given then the

light is assumed to be white (RGB = 1, 1, 1).

Shading Parameters

"f" ka;R ka;G ka;B kd ks n kgt �

Format:

f oat oat oat oat oat oat oat oat

ka;R, ka;G, ka;B are the material ambient reection coeÆcients.

C.4. NEUTRAL FILE FORMAT 245

kd PaRT calculates the material di�use reection coeÆcients as

kd;R = kd � ka;R

kd;B = kd � ka;B

kd;G = kd � ka;G

ks is used both as the material's local and global specular reection coeÆcient.

n is used both as the material's specular and transparency exponent.

kgt is the material's local and global transparency coeÆcient.

� index of refraction.

The shading parameters are used to shade the objects following it until a new set of

parameters is assigned.

Sphere

A sphere is de�ned by a radius and centre position:

"s" center.x center.y center.z radius

Format:

s oat oat oat oat

Cylinders and Cones

Cylinders and cones are de�ned by the coordinates and radius of both bases. A base of 0

de�nes a perfect cone.

"c" base1.x base1.y base1.z base1.radius base2.x base2.y base2.z base2.radius

Format:

c oat oat oat oat oat oat oat oat

Polygon

A polygon is de�ned by a set of coplanar vertices.

"p" totalVertices

vert1.x vert1.y vert1.z

(etc. for total vertices)

Format:

246 APPENDIX C. PART 2.1 : USER'S MANUAL

p int

oat oat oat

(etc. for total vertices)

Polygonal Patch

A patch is de�ned by a set of coplanar vertices and their normals.

"pp" totalVertices

vert1.x vert1.y vert1.z norm1.x norm1.y norm1.z

(etc. for total vertices)

Format:

pp int

oat oat oat oat oat oat (etc. for total vertices)

Comment

Format:

string

As soon as a "#" character is detected, the remainder of the line is considered a comment.

C.5 PaRT 2.1 Extensions to the Neutral File Format

PaRT 2.1 extends NFF by recognizing 4 additional commands:

Amb - Ambient light;

Myf - Extended set of shading parameters;

AlignB - Axis aligned box;

Tmap - Texture to map on the next 4-sided polygon.

Ambient Light

The ambient light is RGB with values between 0 and 1:

"Amb" R G B

Format:

Amb oat oat oat

C.6. PART 2.1 USAGE 247

If no ambient light is set, assume RGB = 0,0,0.

Extended Set of Shading Parameters

This command allows the speci�cation of all the parameters used by the illuminationmodel

as described in table C.1

"Myf" ka;R ka;G ka;B kd;R kd;G kd;B ks ns kt;R kt;G kt;B nt � kgs kgt

Format:

Myf oat oat oat oat oat oat oat oat oat oat oat oat oat oat oat

Axis Aligned Box

An axis aligned box is de�ned by the coordinates of two opposite vertices.

"AlignB" vert1.x vert1.y vert1.z

vert2.x vert2.y vert2.z

Format:

AlignB oat oat oat

oat oat oat

Texture

A bitmap �gure can be mapped onto a 4-sided polygon. The Tmap primitive speci�es the

path for a Targa �le { tga extension. This �gure is then mapped on the polygon speci�ed

after the Tmap primitive. This must be a rectangle.

Format:

Tmap drive:pathname

C.6 PaRT 2.1 Usage

C.6.1 Installation and Requirements

PaRT 2.1 requires PVM 3.3 or greater installed on all computers that will be part of the

parallel virtual machine.

To install PaRT 2.1 just type 'aimk'. This command will read Make�le.aimk. This �le must

be edited in order to correct the pathnames to each particular machine. The executables

(part, ap, lm, dm, MyXProc) are copied to the appropriate PVM binary directory (usually

$HOME/pvm3/bin/$PVM ARCH).

248 APPENDIX C. PART 2.1 : USER'S MANUAL

In order to visualise the images being generated MyXProc needs to be built. This requires

that both XWindows and Tcl/Tk are installed on the root computer. If this is not the

case, then PaRT 2.1 can still be used , but the -X switches can not be used. MyXProc is

required only on the root computer, i.e., the one where PIRT is started. If MyXProc is

succesfully built on one machine, then the -X switches can be used if PaRT is started on

that machine.

C.6.2 Usage

The �rst step is to start a Parallel Virtual Machine. Then PaRT can be executed. It will

spawn processes on all nodes of the Virtual Machine.

PaRT <input file> [<output file>] [-<switch>]

If no output �le is given, data is output to a �le with the same name as input with extension

.tga

Supported switches:

-p If present the percentage of work already �nished is displayed;

-adap oat If present turns on adaptive depth control: the parameter is the minimum

contribution of a ray for it to be spawned;

-nopart If present turns o� hierarchical space partitioning;

-adsamp If present turns on adaptive sampling;

-raydepth int If present the rays tree maximum depth will be equal to the parameter,

otherwise it is some default value;

-unif Uniform data distribution. The image is split on as many regions as nodes in the

system. Each of these images will be processed on one of the nodes;

-dd Demand driven load distribution. The image is subdivided into regions according to

the following rule: if there are 4 or less nodes split into 25 regions, if there are between

5 and 8 nodes split into 64 regions, otherwise split into 100 regions. These tasks are

then sent to the nodes on demand. When one AP has no work, it requests a task

to its local load manager, which, in turn, requests a task to the root load manager.

The local load managers usually fetch one task in advance, so that they can quickly

satisfy the AP request. Processing �nishes when there are no tasks left;

-det Deterministic complex scheduling strategy;

C.6. PART 2.1 USAGE 249

-bayes Bayesian network based scheduler;

-sequpd Bayesian network based scheduler, with sequential updating of prior probabili-

ties;

-Xasap Display the image on a X window. The regions of the image are displayed as soon

as processed;

-Xc Display the image on a X window. The image is displayed only when all its subregions

have been processed.

250 APPENDIX C. PART 2.1 : USER'S MANUAL

Appendix D

Results

This appendix presents the results obtained with the experiments described in chapter 8.

These values were obtained using several di�erent scheduling policies: uniform work distri-

bution (unif), demand{driven work allocation (dd), the deterministic scheduling strategy

(det1), the deterministic scheduling strategy with extended information policy (det), the

decision network approach (dn) and the decision network with updated probabilities (dn{

upd). det1's execution times were measured only for balls4pv and teapot9. The columns'

labels are described in table D.1.

Label Comment

N Number of nodes

Sched Scheduling strategy

Texec Execution time

#T Number of tasks

#TS Number of information messages

sent by the application processes

Pen% Replication penalty

TTidle Total time spent waiting for tasks

TTidle% Percentage of (execution time * N)

StdDev Standard deviation

TTdata Total time spent waiting for remote data

TTdata% Percentage of (execution time * N)

Table D.1: Columns's Labels

Tables D.2, D.3, D.4 and D.5 present the results obtained using the distributed system

in dedicated mode, i.e., without any additional users. All available processing power and

communication bandwidth are dedicated to the ray tracer and operating system tasks.

Tables D.6, D.7, D.8 and D.9 present the results obtained using the distributed system

with 7 nodes and di�erent synthetic background workloads, as described in section 6.6.

251

252 APPENDIX D. RESULTS

N Sched Texec #T #TS Pen% TTidle % StdDev

2 unif 103.40 2 | 0.0% 2.95 1.43% 1.40

2 dd 107.31 25 | 1.4% 7.82 3.64% 3.65

2 det 104.69 3 39 0.1% 0.91 0.44% 0.18

2 dn 101.60 3 40 0.1% 0.69 0.34% 0.20

2 dn{upd 101.84 3 39 0.1% 0.55 0.27% 0.07

3 unif 87.98 3 | 0.0% 59.77 22.64% 13.94

3 dd 70.53 25 | 1.2% 4.63 2.19% 0.94

3 det 70.74 8 73 0.3% 2.12 1.00% 0.38

3 dn 68.25 7 71 0.3% 0.89 0.43% 0.09

3 dn{upd 67.98 7 68 0.3% 0.79 0.39% 0.08

4 unif 65.88 4 | 0.0% 58.75 22.30% 12.40

4 dd 53.14 64 | 2.2% 3.19 1.50% 0.63

4 det 53.43 13 100 0.4% 3.04 1.42% 0.37

4 dn 51.93 10 91 0.2% 2.89 1.39% 0.45

4 dn{upd 50.51 10 89 0.3% 2.75 1.36% 0.55

5 unif 52.18 5 | 0.0% 59.33 22.74% 10.70

5 dd 41.75 64 | 2.0% 5.31 2.54% 0.71

5 det 41.31 15 121 0.4% 1.31 0.64% 0.07

5 dn 40.13 16 126 0.4% 1.24 0.62% 0.09

5 dn{upd 39.75 13 118 0.3% 1.14 0.58% 0.09

6 unif 46.05 6 | 0.0% 77.91 28.20% 9.24

6 dd 34.39 64 | 1.8% 6.38 3.09% 0.83

6 det 33.96 17 145 0.4% 1.86 0.91% 0.12

6 dn 33.37 15 139 0.3% 1.70 0.85% 0.29

6 dn{upd 33.14 15 138 0.3% 1.66 0.83% 0.30

7 unif 37.36 7 | 0.0% 63.81 24.40% 7.09

7 dd 30.54 64 | 1.6% 12.56 5.87% 1.10

7 det 29.40 27 192 0.6% 2.05 1.00% 0.10

7 dn 28.60 20 172 0.4% 1.87 0.93% 0.14

7 dn{upd 28.41 21 176 0.4% 1.69 0.85% 0.14

Table D.2: Balls3: dedicated mode results

253

N Sched Texec #T #TS Pen% TTidle % StdDev

2 unif 176.18 2 | 0.0% 65.71 18.65% 32.69

2 dd 146.88 25 | 1.4% 2.80 0.95% 1.15

2 det 146.65 5 34 0.3% 0.67 0.23% 0.02

2 dn 142.44 5 34 0.3% 0.63 0.22% 0.15

2 dn{upd 142.41 5 34 0.3% 0.60 0.21% 0.14

3 unif 125.84 3 | 0.0% 89.95 23.83% 23.04

3 dd 98.36 25 | 1.2% 3.99 1.35% 0.94

3 det 98.37 8 53 0.3% 1.63 0.55% 0.31

3 dn 95.23 8 53 0.3% 0.88 0.31% 0.10

3 dn{upd 94.58 8 53 0.3% 0.85 0.30% 0.09

4 unif 92.69 4 | 0.0% 82.78 22.33% 16.51

4 dd 74.32 64 | 2.2% 2.70 0.91% 0.35

4 det 73.99 13 77 0.4% 1.53 0.52% 0.19

4 dn 71.99 13 78 0.5% 1.34 0.46% 0.15

4 dn{upd 69.97 12 71 0.4% 1.17 0.42% 0.12

5 unif 74.02 5 | 0.0% 87.25 23.57% 15.08

5 dd 57.63 64 | 2.0% 1.62 0.56% 0.20

5 det 57.85 18 98 0.5% 1.92 0.66% 0.16

5 dn 56.26 17 91 0.5% 1.76 0.62% 0.19

5 dn{upd 56.15 17 97 0.5% 1.67 0.59% 0.18

6 unif 64.64 6 | 0.0% 107.29 27.66% 13.71

6 dd 47.37 64 | 1.8% 2.81 0.99% 0.37

6 det 47.51 20 111 0.5% 2.31 0.81% 0.20

6 dn 46.30 22 117 0.5% 2.35 0.84% 0.21

6 dn{upd 45.97 21 116 0.5% 1.99 0.72% 0.20

7 unif 54.04 7 | 0.0% 95.85 25.34% 11.21

7 dd 41.64 64 | 1.6% 8.17 2.80% 0.60

7 det 41.10 23 138 0.4% 2.42 0.84% 0.14

7 dn 39.70 20 128 0.4% 2.10 0.75% 0.12

7 dn{upd 39.41 20 127 0.4% 1.80 0.65% 0.15

Table D.3: Balls3c: dedicated mode results

254 APPENDIX D. RESULTS

N Sched Texec #T #TS Pen% TTidle % StdDev TTdata %

2 unif 282.54 2 | 0.0% 204.07 36.11% 101.90 0.57 0.10%

2 dd 151.87 25 | 1.4% 62.37 20.54% 31.10 0.57 0.19%

2 det1 138.23 6 81 0.4% 28.96 10.5% 14.36 0.62 0.20%

2 det 118.19 7 90 0.5% 2.30 0.97% 1.03 0.69 0.29%

2 dn 116.35 7 89 0.5% 2.09 0.90% 1.01 0.66 0.28%

2 dn{upd 114.80 7 90 0.5% 1.81 0.79% 0.89 0.66 0.29%

3 unif 220.83 3 | 0.0% 291.84 44.05% 82.71 0.64 0.10%

3 dd 112.84 25 | 1.2% 21.46 6.34% 7.93 0.92 0.27%

3 det1 85.30 12 134 0.6% 41.71 16.30% 9.74 0.72 0.30%

3 det 75.60 11 140 0.5% 6.75 2.98% 1.82 0.66 0.29%

3 dn 73.41 11 140 0.5% 5.34 2.42% 1.64 0.63 0.29%

3 dn{upd 71.96 9 134 0.4% 4.15 1.92% 1.14 0.65 0.30%

4 unif 166.40 4 | 0.0% 266.26 40.0% 65.48 0.47 0.07%

4 dd 71.96 64 | 2.2% 27.43 9.53% 5.27 1.01 0.35%

4 det1 65.57 21 178 0.8% 17.32 6.60% 2.93 0.72 0.30%

4 det 64.83 14 167 0.5% 6.37 2.46% 1.32 0.78 0.30%

4 dn 62.86 16 178 0.6% 4.44 1.76% 0.66 0.72 0.29%

4 dn{upd 59.68 16 175 0.6% 3.97 1.66% 0.61 0.74 0.31%

5 unif 133.58 5 | 0.0% 266.97 39.97% 46.66 0.47 0.07%

5 dd 65.35 64 | 2.0% 50.06 15.32% 5.72 0.83 0.25%

5 det1 51.86 30 253 1.00% 24.12 9.30% 2.41 0.68 0.30%

5 det 49.16 27 242 0.9% 13.13 5.34% 1.11 0.82 0.33%

5 dn 48.66 25 242 0.8% 12.36 5.08% 1.53 0.77 0.31%

5 dn{upd 46.95 24 248 0.7% 8.44 3.60% 0.78 0.80 0.34%

6 unif 115.24 6 | 0.0% 289.95 41.94% 38.87 0.60 0.09%

6 dd 59.59 64 | 1.8% 43.40 12.14% 6.05 1.15 0.32%

6 det1 52.47 20 252 0.50% 45.94 14.60% 4.94 0.85 0.30%

6 det 45.34 31 298 0.8% 10.07 3.7% 1.01 0.79 0.29%

6 dn 42.94 28 282 0.7% 9.57 3.72% 1.07 0.74 0.29%

6 dn{upd 42.67 26 268 0.6% 6.79 2.65% 0.58 0.67 0.26%

7 unif 99.57 7 | 0.0% 297.84 42.73% 31.75 0.61 0.09%

7 dd 57.67 64 | 1.6% 77.85 19.29% 5.68 0.94 0.23%

7 det1 47.89 22 264 0.6% 23.41 7.00% 4.5 0.39 0.80%

7 det 45.55 38 337 0.9% 16.02 5.02% 1.30 0.83 0.26%

7 dn 41.13 32 315 0.7% 14.68 5.10% 1.47 0.80 0.28%

7 dn{upd 40.82 28 305 0.6% 14.28 5.00% 1.40 0.84 0.30%

Table D.4: Teapot9: dedicated mode results

255

N Sched Texec #T #TS Pen% TTidle % StdDev TTdata %

2 unif 958.03 2 | 0.0% 791.41 41.30% 395.56 197.01 10.28%

2 dd 420.17 25 | 2.7% 51.78 6.16% 25.78 134.02 15.95%

2 det1 314.30 8 37 1.2% 22.84 3.6% 11.32 88.70 14.10%

2 det 305.69 7 35 1.0% 11.87 1.94% 5.83 90.29 14.77%

2 dn 297.05 6 33 0.8% 11.17 1.88% 5.79 86.84 14.62%

2 dn{upd 295.97 6 33 0.8% 10.32 1.74% 5.26 86.68 14.64%

3 unif 740.03 3 | 0.0% 975.27 43.93% 285.38 213.19 9.60%

3 dd 331.82 25 | 2.3% 27.38 2.75% 7.55 131.13 13.17%

3 det1 218.25 12 61 1.2% 77.29 11.80% 18.24 85.76 13.10%

3 det 203.39 12 61 1.2% 23.08 3.78% 5.54 88.14 14.44%

3 dn 192.19 10 57 0.9% 8.25 1.43% 2.71 84.40 14.64%

3 dn{upd 191.85 10 56 0.9% 7.71 1.34% 2.36 84.02 14.60%

4 unif 557.61 4 | 0.0% 1061.92 47.61% 210.87 191.96 8.61%

4 dd 201.23 64 | 4.3% 2.98 0.37% 0.63 92.77 11.52%

4 det1 191.32 17 80 1.3% 221.28 28.90% 31.98 72.03 9.40%

4 det 148.35 21 99 1.7% 11.54 1.95% 2.45 82.59 13.92%

4 dn 140.60 18 89 1.4% 8.98 1.60% 0.56 72.20 12.84%

4 dn{upd 138.87 18 88 1.4% 8.79 1.58% 0.51 69.21 12.46%

5 unif 477.37 5 | 0.0% 1157.75 48.51% 170.55 176.31 7.39%

5 dd 149.58 64 | 3.9% 13.90 1.86% 1.39 95.07 12.71%

5 det1 124.10 25 115 1.6% 54.65 8.80% 5.79 70.61 11.40%

5 det 118.11 23 113 1.4% 14.34 2.43% 1.63 77.09 13.05%

5 dn 121.95 21 108 1.2% 18.38 3.01% 5.30 66.21 10.86%

5 dn{upd 119.72 21 108 1.2% 15.31 2.56% 4.48 78.98 12.35%

6 unif 384.94 6 | 0.0% 1145.50 49.60% 138.71 158.60 6.87%

6 dd 145.16 64 | 3.5% 41.80 4.80% 3.12 125.50 14.41%

6 det1 114.36 36 151 2.00% 63.63 9.30% 8.60 81.31 11.9%

6 det 102.47 28 139 1.4% 44.94 7.31% 4.56 67.94 11.05%

6 dn 99.09 28 137 1.4% 17.17 2.89% 1.81 61.80 10.39%

6 dn{upd 98.94 27 142 1.4% 14.82 2.50% 1.59 59.20 9.97%

7 unif 325.13 7 | 0.0% 1107.59 48.67% 119.10 156.54 6.88%

7 dd 123.33 64 | 3.1% 82.29 9.53% 5.08 93.31 10.81%

7 det1 105.36 38 176 2.0% 71.12 9.6% 7.91 82.03 11.10%

7 det 96.11 29 150 1.2% 32.85 4.88% 2.90 81.25 12.08%

7 dn 91.00 28 204 1.2% 29.92 4.56% 2.91 57.35 9.00%

7 dn{upd 90.18 29 178 1.3% 27.28 4.32% 2.85 55.01 8.71%

Table D.5: Balls4pv: dedicated mode results

256 APPENDIX D. RESULTS

Workload Sched Texec #T #TS Pen% TTidle % StdDev

unif 37.36 7 | 0.0% 63.81 24.40% 7.09

dd 30.54 64 | 1.6% 12.56 5.87% 1.10

Dedicated det 29.40 27 192 0.6% 2.05 1.00% 0.10

dn 28.60 20 172 0.4% 1.87 0.93% 0.14

dn{upd 28.41 21 176 0.4% 1.69 0.85% 0.14

unif 140.79 7 | 0.0% 423.94 43.02% 33.94

dd 81.32 64 | 1.6% 52.17 9.16% 4.12

Light det 76.65 33 221 0.8% 21.10 3.93% 1.24

dn 73.06 22 197 0.4% 12.56 2.46% 0.91

dn{upd 72.60 21 178 0.4% 7.86 1.55% 0.74

unif 175.91 7 | 0.0% 542.25 44.04% 36.32

dd 98.37 64 | 1.6% 110.51 16.05% 7.54

Medium det 87.65 24 190 0.4% 50.53 8.24% 4.41

dn 85.02 22 213 0.3% 25.15 4.23% 2.00

dn{upd 84.12 23 195 0.3% 20.99 3.56% 1.52

unif 374.83 7 | 0.0% 870.73 33.19% 71.83

dd 198.65 64 | 1.6% 132.51 9.53% 8.82

Heavy det 168.75 21 187 0.4% 31.22 2.64% 2.04

dn 160.91 20 188 0.4% 24.28 2.16% 1.98

dn{upd 159.46 22 195 0.5% 19.44 1.74% 1.45

Table D.6: Balls3: results with di�erent background workloads (7 nodes)

257

Workload Sched Texec #T #TS Pen% TTidle % StdDev

unif 54.05 7 | 0.0% 95.85 25.34% 11.21

dd 41.64 64 | 1.6% 8.17 2.80% 0.60

Dedicated det 41.10 23 138 0.4% 2.42 0.84% 0.14

dn 39.70 20 128 0.4% 2.10 0.75% 0.12

dn{upd 39.41 20 127 0.4% 1.80 0.65% 0.15

unif 166.46 7 | 0.0% 398.32 34.18% 45.95

dd 99.43 64 | 1.6% 12.66 1.82% 1.04

Light det 98.71 22 152 0.4% 4.68 0.68% 0.16

dn 95.69 24 148 0.5% 4.01 0.60% 0.24

dn{upd 94.46 23 149 0.4% 3.48 0.53% 0.25

unif 222.84 7 | 0.0% 544.24 34.89% 54.76

dd 127.04 64 | 1.6% 20.78 2.34% 1.75

Medium det 121.83 25 156 0.5% 11.61 1.36% 0.64

dn 116.57 24 156 0.5% 7.13 0.87% 0.55

dn{upd 115.27 24 160 0.5% 6.66 0.83% 0.38

unif 546.89 7 | 0.0% 1355.99 35.42% 96.25

dd 271.08 64 | 1.6% 102.01 5.38% 7.19

Heavy det 237.76 21 150 0.4% 18.99 1.14% 0.58

dn 229.87 19 153 0.5% 16.61 1.03% 0.51

dn{upd 225.65 19 154 0.5% 14.60 0.92% 0.53

Table D.7: Balls3c: results with di�erent background workloads (7 nodes)

258 APPENDIX D. RESULTS

Workload Sched Texec #T #TS Pen% TTidle % StdDev TTdata %

unif 99.57 7 | 0.0% 297.84 42.73% 31.75 0.61 0.09%

dd 57.67 64 | 1.6% 77.85 19.29% 5.68 0.94 0.23%

Dedicated det 45.55 38 337 0.9% 16.02 5.02% 1.30 0.83 0.26%

dn 41.13 32 315 0.7% 14.68 5.10% 1.47 0.80 0.28%

dn{upd 40.82 28 305 0.6% 14.28 5.00% 1.40 0.84 0.30%

unif 288.70 7 | 0.0% 817.80 40.47% 100.99 16.27 0.81%

dd 159.67 64 | 1.6% 208.99 18.70% 18.35 14.80 1.32%

Light det 112.35 33 325 0.7% 44.71 5.69% 3.53 18.41 2.34%

dn 107.53 29 315 0.9% 42.70 5.67% 3.29 17.39 2.31%

dn{upd 106.27 29 317 0.9% 40.89 5.50% 2.93 17.25 2.32%

unif 432.49 7 | 0.0% 1562.94 51.63% 121.29 20.86 0.69%

dd 206.93 64 | 1.6% 413.07 28.52% 39.95 25.61 1.77%

Medium det 149.46 41 381 0.9% 66.58 6.36% 5.74 31.28 2.99%

dn 143.20 38 393 0.9% 24.46 2.44% 2.63 28.17 2.81%

dn{upd 140.21 36 374 0.9% 20.90 2.13% 2.14 27.75 2.83%

unif 967.32 7 | 0.0% 3377.43 49.88% 291.26 69.37 1.02%

dd 377.85 64 | 1.6% 512.19 19.36% 47.04 80.88 3.06%

Heavy det 253.24 34 352 0.8% 122.03 6.88% 8.46 102.20 5.77%

dn 233.13 33 357 0.7% 46.14 2.77% 4.34 80.58 4.84%

dn{upd 228.43 33 361 0.7% 43.77 2.71% 4.25 76.84 4.76%

Table D.8: Teapot9: results with di�erent background workloads (7 nodes)

259

Workload Sched Texec #T #TS Pen% TTidle % StdDev TTdata %

unif 325.13 7 | 0.0% 1107.59 48.67% 119.10 156.54 6.88%

dd 123.33 64 | 3.1% 82.29 9.53% 5.08 93.31 10.81%

Dedicated det 96.11 29 150 1.2% 32.85 4.88% 2.90 81.25 12.08%

dn 91.00 28 204 1.2% 29.92 4.70% 2.91 57.35 9.00%

dn{upd 90.18 29 178 1.3% 27.28 4.32% 2.85 55.01 8.71%

unif 926.90 7 | 0.0% 3134.14 48.30% 340.52 983.90 15.16%

dd 323.39 64 | 3.1% 186.32 8.23% 17.48 526.91 23.28%

Light det 269.15 30 151 1.3% 129.47 6.87% 10.13 400.92 21.28%

dn 255.60 29 154 1.3% 102.62 5.74% 7.98 351.20 19.63%

dn{upd 250.91 27 149 1.2% 96.86 5.52% 5.94 347.41 19.78%

unif 1129.35 7 | 0.0% 3432.14 43.41% 408.85 1206.16 15.26%

dd 381.19 64 | 3.1% 180.34 6.76% 11.32 542.56 20.33%

Medium det 301.94 33 178 1.5% 141.18 6.68% 6.61 604.24 28.59%

dn 273.70 31 214 1.4% 129.50 6.76% 5.87 571.20 29.81%

dn{upd 267.05 30 190 1.4% 92.91 4.97% 5.12 558.72 29.89%

unif 2445.71 7 | 0.0% 4001.68 23.37% 1519.93 3771.69 22.03%

dd 725.29 64 | 3.1% 576.67 11.36% 615.42 2040.86 40.20%

Heavy det 454.10 27 159 1.1% 147.39 4.64% 13.59 1146.36 36.06%

dn 405.88 25 153 1.0% 109.91 3.87% 8.03 987.54 34.76%

dn{upd 391.28 25 152 1.0% 106.78 3.90% 7.88 953.66 34.82%

Table D.9: Balls4pv: results with di�erent background workloads (7 nodes)

260 APPENDIX D. RESULTS

Bibliography

[1] Ahmad, I., and Ghafoor, A. Semi{Distributed Load Balancing for Massively

Parallel Multicomputer Systems. IEEE Transactions on Software Engineering 17, 10

(Oct. 1991), 987{1004.

[2] Al-Saqabi, K., Otto, S., and Walpole, J. Gang Scheduling in Heterogeneous

Distributed Systems. Tech. Rep. 94{023, Oregon Graduate Institute, 1994.

[3] Almasi, G., and Gottlieb, A. Highly Parallel Computing, 2nd ed. Benjamin

Cummings Publishing, 1994. ISBN 0-8053-0443-6.

[4] Azevedo, C., and Azevedo, A. Metodologia Cient���ca. C. Azevedo, 1994. ISBN

972 9114 10 2.

[5] Azevedo-Filho, A., and Schachter, R. Laplace's Method Approximations

for Probabilistic Inference in Belief Networks with Continuous Variables. In 10th

Conference on Uncertainty in Arti�cial Intelligence (1994), Morgan{Kaufmann.

[6] Bacchus, F., and Grove, A. Graphical Models for Preference and Utility. In

11th Conference on Uncertainty in Arti�cial Intelligence (1995), Morgan{Kaufmann,

pp. 3{10.

[7] Balter, M., and Downey, A. Exploiting Process Lifetime Distributions for

Dynamic Load Balancing. In ACM Sigmetrics Conference on Measurement and

Modeling of Computer Systems (Philadelphia, USA, May 1996), ACM.

[8] Barbosa, J. Paralelismo em Processamento e An�alise de Imagens M�edicas. PhD

thesis, Faculdade de Engenharia da Universiade do Porto, Porto, Portugal, July 2000.

[9] Baumgartner, K., and Wah, B. Computer Scheduling Algorithms: Past, Present

and Future. Information Sciences 57, 58 (Dec. 1991), 319{345.

[10] Becker, W. Dynamic Balancing Complex Workload in Workstation Networks -

Challenge, Concepts and Experience. In High Performance Computing and Net-

working (HPCN95) (Milan, Italy, May 1995), Springer, pp. 407{412.

261

262 BIBLIOGRAPHY

[11] Becker, W., and Waldmann, G. Exploiting Inter Task Dependencies for Dy-

namic Load Balancing. In IEEE 3rd Int. Symposium on High-Performance Dis-

tributed Computing (San Francisco, California, Aug. 1994).

[12] Becker, W., and Waldmann, G. Adaption in Dynamic Load Balancing: Poten-

tial and Techniques. In Fachtagung Arbeitsplatz-Rechensysteme (Hanover, Germany,

May 1995).

[13] Becker, W., and Zedelmayr, J. Scalability and Potential for Optimization in

Dynamic Load Balancing-Centralized and Distributed Structures. In Parallel Algo-

rithmen und Rechnerstrukturen (Potsdam, 1994).

[14] Berman, F., Wolski, R., Figueira, S., Schopf, J., and Schao, G. Applica-

tion Level Scheduling on Distributed Heterogeneous Networks. In SuperComputing'96

(Pittsburgh, USA, 1996).

[15] Bharadwaj, V., Ghose, D., Mani, V., and Robertazzi, T. Scheduling Di-

visible Loads in Parallel and Distributed Systems, 1st ed. IEEE Computer Society,

1996.

[16] Bischof, S., Ebner, R., and Erlebach, T. Parallel Load Balancing for Prob-

lems with Good Bisectors. Journal of Parallel and Distributed Computing 60, 9 (Sept.

2000), 1047{1073.

[17] Bozyigit, M., Al-Ghamdi, J., Ghouseuddin, M., and Barada, H. A Load

Balanced Distributed Computing System. Tech. rep., Information and Computer

Science Department | King Fahd University of Petroleum & Minerals, 1999.

[18] Buntine, W. Operations for Learning with Graphical Models. Journal of Arti�cial

Intelligence Research 2 (Dec. 1994), 159{225.

[19] Buyya, R. High Performance Cluster Computing, 1st ed., vol. 1. Prentice Hall,

1999. ISBN 0-13-013784-7.

[20] CalzaRossa, M., and Massari, L. Measurement{Based Approach to Workload

Characterization. In 7th International Conference on Modelling Techniques and Tools

for Computer Performance Evaluation (1994), R. Marie, G. Haring, and G. Kotsis,

Eds.

[21] CalzaRossa, M., Massari, L., and Merlo, A. General Purpose Parallel Com-

puters: Architectures, Programming Environments and Tools, 1st ed. Edizioni ETS,

Consiglio Nazionale delle Ricerche, 1995. chaps. 11,13,14.

[22] CalzaRossa, M., Massari, L., and Tessera, D. Workload Characteriza-

tion: Issues and Methodology. In Performance Evaluation { Issues and Methodology

BIBLIOGRAPHY 263

(2000), G. Haring, C. Lindermann, and M. Reiser, Eds., no. 1769 in Lecture Notes

in Computer Science, Springer, pp. 459{484.

[23] CalzaRossa, M., and Serazzi, G. Workload Characterization: A Survey. Pro-

ceedings of the IEEE 81, 8 (Aug. 1993), 1136{1150.

[24] Casavant, T., and Kuhl, J. A Taxonomy of Scheduling in General-Purpose

Distributed Computing Systems. IEEE Transactions on Software Engineering (Feb.

1988), 141{154.

[25] Casavant, T., and Kuhl, J. E�ects of Response and Stability on Scheduling in

Distributed Computing Systems. IEEE Transactions on Software Engineering (Nov.

1988), 1578{1588.

[26] Castillo, E., Gutierrez, J., and Hadi, A. Expert Systems and Probabilistic

Network Models. Springer-Verlag, 1997. ISBN 0-387-94858-9.

[27] Chalmers, A. A Minimum Path System for Parallel Processing. PhD thesis,

Department of Computer Science, University of Bristol, Apr. 1991.

[28] Chapin, S., Katramatos, D., Karpovich, J., and Grinshaw, A. The Legion

Resource Management System. In Int. Parallel and Distributed Processing Sym-

posium (IPDPS'99) Workshop on Job Scheduling Strategies for Parallel Processing

(San Juan, Puerto Rico, Apr. 1999).

[29] Corradi, A., Leonardi, L., and Zambonelli, F. Di�usive Load Balancing

Policies for Dynamic Applications. IEEE Concurrency: Parallel, Distributed and

Mobile Computing (Jan. 1999), 22{31.

[30] Costa, L., and Neves, J. An Intelligent Self-Organizing System for Dynamic Load

Balancing. In 5th IASTED International Conference on Robotics and Manufacturing

(Cancun, Mexico, May 1997).

[31] Cowell, R., Dawid, A., Lauritzen, S., and Spiegelhalter, D. Probabilistic

Networks and Expert Systems. Springer-Verlag, 1999. ISBN 0-387-98767-3.

[32] Czajkowski, K., Foster, I., Kesselman, C., Martin, S., Smith, W., and

Tuecke, S. A Resource Management Architecture for Metacomputing Systems. In

Workshop on Job Scheduling Strategies for Parallel Processing (1998).

[33] Dandamudi, S. Sensitivity Evaluation of Dynamic Load Sharing in Distributed

Systems. IEEE Concurrency (July 1998), 62{72.

[34] Dasgupta, P., Majumder, A., and Bhattacharya, P. V THR: An Adaptive

Load Balancing Algorithm. Journal of Parallel and Distributed Computing, 42 (1997),

101{108.

264 BIBLIOGRAPHY

[35] Dean, T., Allen, J., and Aloimonos, Y. Arti�cial Intelligence: Theory and

Practice. Benjamim Cummings Publishing Company, 1995.

[36] Decker, T. Virtual Data Space | A Universal Load Balancing Scheme. In Solv-

ing Irregular Structured Problems in Parallel (IRREGULAR'97) (1997), Springer {

Lecture Notes in Computer Science 1253, pp. 159{166.

[37] Diekmann, R., Monien, B., and Preis, R. Load Balancing Strategies for Dis-

tributed Memory Machines. World Scienti�c (1997).

[38] Downey, A., and Feitelson, D. The Elusive Goal of Workload Characterization.

Performance Evaluation Review 26, 4 (Mar. 1999), 14{29.

[39] Eager, D., Lazowska, E., and Zahorjan, J. Adaptive Load Sharing in Ho-

mogeneous Distributed Systems. IEEE Transactions on Software Engineering (May

1986), 662{675.

[40] Epema, D., Livny, M., Dantzig, R., Evers, X., and Pruyne, J. AWorldwide

Flock of Condors: Load Sharing among Workstation Clusters. Future Generation

Computer Systems 12 (1996), 53{65.

[41] Fabero, J., Martin, I., Bautista, A., and Molina, S. Dynamic Load Balanc-

ing in a Heterogeneous Environment under PVM. In 4th EuroMicro Workshop on

Parallel and Distributed Processing (Braga, Portugal, Jan. 1996), IEEE Computer

Society Press, pp. 414{419.

[42] Feitelson, D. Job Scheduling in Multiprogrammed Parallel Systems. Research

Report RC 19790, IBM T.J. Research Center, Aug. 1997.

[43] feitelson, D., and Rudolph, L. Parallel Job Scheduling: Issues and Approaches.

In Job Scheduling Strategies for Parallel Processing (1995), Springer { Lecture Notes

in Computer Science 949, pp. 1{18.

[44] Ferguson, D., Nikolaou, C., Sairamesh, J., and Yemini, Y. Economic

Models for Allocating Resources in Computer Systems. Tech. rep., IBM T. J. Watson

Research Center and Columbia University, 1995.

[45] Ferguson, D., Nikolaou, C., and Yemini, Y. Microeconomic Algorithms for

Dynamic Load Balancing in Distributed Computer Systems. Tech. rep., IBM T. J.

Watson Research Center and Columbia University, 1995.

[46] Ferrari, D., and Zhou, S. An Empirical Investigation of Load Indices for Load

Balancing Applications. Tech. rep., University of California, Berkeley, 1987.

[47] Ferstl, F. Job and Resource Management Systems in Heterogeneous Clusters.

Future Generation Computer Systems 12 (1996), 39{51.

BIBLIOGRAPHY 265

[48] Foley, J., van Dam, A., Feiner, S., and Hughes, J. Computer Graphics:

Principles and Practice, 2nd ed. Addison-Wesley, 1990. ISBN 0-201-12110-7.

[49] Foster, I. Designing and Building Parallel Programs. Addison-Wesley, 1994. ISBN

0-201-57594-9.

[50] Foster, I., and Kesselman, C., Eds. The Grid: Blueprint for a New Computing

InfraStructure. Morgan Kaufmann, 1999.

[51] Foster, I., Kesselman, C., Lee, C., Lindell, B., Nahrstedt, K., and

Roy, A. A Distributed Resource Management Architecture that Supports Advance

Reservations and Co{Allocation. In Proceedings of the 7th International Workshop

on Quality of Service (1999).

[52] Foster, I., Roy, A., and Sander, V. A Quality of Service Architecture that

Combines Resource Reservation and Application Adaptation. In Proceedings of the

8th International Workshop on Quality of Service (June 2000), pp. 181{188.

[53] Fox, G., and Coddington, P. Parallel Computers and Complex Systems. Tech.

rep., Northeast Parallel Architectures Center, Syracuse University, June 1994.

[54] Friedman, N., and Goldszmidt, M. Discretizing Continuous Variables while

Learning Bayesian Networks. In 13th International Conference on Machine Learning

(1996), pp. 157{165.

[55] Friedman, N., and Goldszmidt, M. Sequential Update of Bayesian Network

Structure. In 13th Conference on Uncertainty in Arti�cial Intelligence (1997),

Morgan{Kaufmann, pp. 165{174.

[56] Friedman, N., Goldszmidt, M., Heckerman, D., and Russell, S. Challenge:

Where is the Impact of Bayesian Networks in Learning? In 13th International Joint

Conference on Arti�cial Intelligence (1997).

[57] Gehring, J., and Reinefeld, A. MARS - A framework for minimizing the

job execution time in a metacomputing environment. Future Generation Computer

Systems 12 (1996), 88{99.

[58] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and

Sunderam, V. PVM: Parallel Virtual Machine { A User's Guide and Tutorial for

Networked Parallel Computing, 1st ed. The MIT Press, 1994.

[59] Glassner, A. An Introduction to Ray Tracing, 7th ed. Academic Press, 1997. ISBN

0-12-286160-4.

266 BIBLIOGRAPHY

[60] Grama, A., Gupta, A., and Kumar, V. IsoeÆciency: Measuring the Scalability

of Parallel Algorithms and Architectures. IEEE Parallel and Distributed Technology

(1993), 12{21.

[61] Green, S. Parallel Processing for Computer Graphics, 1st ed. The MIT Press, 1991.

ISBN 0-262-57087-4.

[62] Grinshaw, A., and Wulf, W. The Legion Vision of a Worldwide Virtual Com-

puter. Communications of the ACM 40, 1 (Jan. 1997).

[63] Grinshaw, A., Wulf, W., French, J., Weaver, A., and Reynolds, P. A

Synopsys of the Legion Project. Tech. rep., University of Virginia, June 1994.

[64] Gustafson, J. Reevaluating Amdahl's Law. Communications of the ACM (May

1988), 532{533.

[65] Haines, E. Neutral File Format, 1992. ftp.princeton.edu (pub/Graphics/SPD).

[66] Heckerman, D. A Tutorial on Learning with Bayesian Networks. Tech. rep.,

Microsoft Research | Advanced Technology Division, Mar. 1995. MSR{TR{95{06.

[67] Herbert, S. Features of Generic NQS. http:// www.gnqs.org/ docs/ papers/

gnqs papers/ gnqs0013.htm, June 1996.

[68] Hockney, R. The Science of Computer Benchmarking, 1st ed. SIAM, 1996. ISBN

0 89871 363 3.

[69] Horvitz, E., Breese, J., and Henrion, M. Decision Theory in Expert Systems

and Arti�cial Intelligence. Tech. rep., Palo Alto Laboratory, 1988.

[70] Huang, C., and Darwiche, A. Inference in Belief Networks: A Procedural Guide.

International journal of Approximate Reasoning 11 (1994).

[71] Hui, C., and Chanson, S. Theoretical Analysis of the Heterogeneous Dynamic

Load-Balancing Problem Using a HydroDynamic Approach. Journal of Parallel and

Distributed Computing, 43 (1997), 139{146.

[72] Hui, C., and Chanson, S. Improved Strategies for Dynamic Load Balancing.

IEEE Concurrency (July 1999), 58{66.

[73] Hwang, K., and Xu, Z. Scalable Parallel Computing: Technology, Architecture,

Programming. McGraw{Hill, 1998.

[74] International Business Machines (IBM). Enterprise Job Scheduling: why

only the toughest survive. http:// www.tivoli.com/, 1998.

BIBLIOGRAPHY 267

[75] Jacqmot, C., and Milgrom, E. A Systematic Approach to Load Distribution

Strategies for Distributed Systems. In Decentralized and Distributed Systems (Palma

de Mallorca, Spain, Sept. 1993), IFIP, pp. 291{303.

[76] Jensen, F. Bayesian Networks Basics. AISB Quarterly 94 (1996), 9{22.

[77] Jensen, F. An Introduction to Bayesian Networks. Springer-Verlag, 1996. ISBN

0-387-91502-8.

[78] Jensen, F. Bayesian Graphical Models. Encyclopedia of Environmetrics (2000).

[79] Jensen, F. Inuence Diagrams. Encyclopedia of Environmetrics (2000).

[80] Jensen, F., and Lauritzen, S. Probabilistic Networks. Handbook of Defeasible

and Uncertainty Management Systems: Algorithms for Uncertainty and Defeasible

Reasoning 5 (2000), 289{320.

[81] Jones, J. Evaluation of Job Queuing/Scheduling Software: Phase 1 Report. Tech.

Rep. NAS-96-009, NAS High Performance Processing Group, NASA Ames Research

Center, July 1996.

[82] Jones, J. NAS Requirements Checklist for Job Queuing/Scheduling Software. Tech.

Rep. NAS-96-003, NAS High Performance Processing Group, NASA Ames Research

Center, Apr. 1996.

[83] Jones, J., and Brickell, C. Second Evaluation of Job Queuing/Scheduling Soft-

ware: Phase 1 Report. Tech. Rep. NAS-97-013, NAS High Performance Processing

Group, NASA Ames Research Center, June 1997.

[84] Jordan, M. Learning in Graphical Models. MIT Press, 1998. ISBN 0-262-60032-3.

[85] Kafil, M., and Ahmad, I. Optimal Task Assignment in Heterogeneous Dis-

tributed Computing Systems. IEEE Concurrency (July 1998), 42{51.

[86] Kajiya, J. The Rendering Equation. In Computer Graphics (SIGGRAPH'86 Pro-

ceedings) (New York, Aug. 1986), pp. 143{150.

[87] Kaplan, J., and Nelson, M. A Comparison of Queueing, Cluster and Distributed

Computing Systems. Technical Memorandum 109025, NASA Langley Research Cen-

ter, June 1994.

[88] Kenley, C. Inuence Diagrams Models with Continuous Variables. PhD thesis,

Stanford University, June 1986.

[89] Kingsbury, B. The Network Queueing System (NQS). http:// www.gnqs.org /docs

/papers /mnqs papers /original cosmic nqs paper.htm, Apr. 1992.

268 BIBLIOGRAPHY

[90] Koche, J. Fundamentos de Metodologia Cient���ca: Teoria da ciência e pr�atica da

pesquisa, 14 ed. Vozes, Petr�opolis, Brasil, 1997. ISBN 85 326 1804 9.

[91] Krause, P. Learning Probabilistic Networks. Tech. rep., Philips Research Labora-

tories, 1998.

[92] Kremien, O., and Kramer, J. Methodical Analysis of Adaptive Load Sharing

Algorithms. IEEE Parallel and Distributed Systems (Nov. 1992).

[93] Kremien, O., Kramer, J., and Magee, J. Scalable, Adaptive Load Sharing

for Distributed Systems. IEEE Parallel and Distributed Technology: Systems and

Applications (Aug. 1993), 62{70.

[94] Kropf, P. Load Balancing. Short Course on Advanced Parallel Computation,

Cosmase - EPFL - Lausanne, Suisse, Mar. 1996.

[95] Kumar, V., and Grama, A. Scalable Load Balancing Techniques for Parallel

Computers. Tech. rep., University of Minnesota, 1992.

[96] Kunz, T. The Inuence of Di�erent Workload Descriptions on a Heuristic Load

Balancing Scheme. IEEE Transactions on Software Engineering (July 1991), 1327{

1341.

[97] Lam, W., and Bacchus, F. Learning Bayesian Belief Networks: An Approach

Based on the MDL Principle. Computational Intelligence 10, 4 (1994), 269{293.

[98] Lam, W., and Bacchus, F. Using New Data to Re�ne a Bayesian Network. In

10th Conference on Uncertainty in Arti�cial Intelligence (1994), Morgan{Kaufmann,

pp. 383{390.

[99] Lauritzen, S., and Jensen, F. Stable Local Computation with Conditional Gaus-

sian Distributions. Tech. rep., Aalborg University | Departement of Mathematical

Sciences, Sept. 1999. R{99{2014.

[100] Lin, F., and Keller, R. The Gradient Model Load Balancing Method. IEEE

Transactions on Software Engineering (1987), 32{38.

[101] Lin, W., Lau, R., Hwang, K., Lin, X., and Cheung, P. Adaptive Parallel

Rendering on Multiprocessors and Workstation Clusters. IEEE Transactions on

Parallel and Distributed Systems (Sept. 2000).

[102] Livney, M., and Melman, M. Load Balancing in Homogeneous Broadcast Dis-

tributed Systems. In Proceedings of the ACM Computer Network Performance Sym-

posium (1982), pp. 47{55.

BIBLIOGRAPHY 269

[103] Livny, M. High Performance Distributed Computing: Building a Computational

Grid, 1st ed. Morgan Kaufmann, 1997.

[104] Livny, M., Basney, J., Raman, R., and Tannenbaum, T. Mechanisms for

High Throughput Computing, May 1997.

[105] Loh, P., Hsu, W., c. Wentong, and Sriskathan, N. How Network Topology

A�ects Dynamic Load Balancing. IEEE Parallel & Distributed Technology (Fall

1996), 25|35.

[106] Lu, Q., and Lau, S. A Negotiation Protocol for Dynamic Load Distribution Using

Batch Task Assignments. Journal of Parallel and Distributed Computing, 55 (1998),

166{191.

[107] Luling, R., and Monien, B. A Dynamic Distributed Load Balancing Algorithm

with Provable Good Performance. In ACM Symposium on Parallel Algorithms and

Architectures (Paderborn, Germany, 1993), ACM Press.

[108] Luling, R., Monien, B., and Ramme, F. A Study on Dynamic Load Balancing

Algorithms. Tech. rep., Paderborn Center for Parallel Computing, June 1992.

[109] Maheswaran, M., Ali, S., Siegel, H., Hensgen, D., and Freund, R. Dy-

namic Mapping of a Class of Independent Tasks onto Heterogeneous Computing

Systems. Journal of Parallel and Distributed Computing 59, 2 (Nov. 1999), 107{131.

[110] Maui High Performance Computing Center. Load Leveler. http:// www.lrz-

muenchen.de/ services/ compute/ sp2/ loadleveler/ LoadLeveler.htm, 1997.

[111] Mehra, P., and Wah, B. Automated Learning of Workload Measures for Load

Balancing on a Distributed System. In 1993 International Conference on Parallel

Processing (Syracuse University, Aug. 1993), CRC Press, Inc., pp. 263{270.

[112] Mehra, P., and Wah, B. Synthetic Workload Generation for Load-Balancing

Experiments. IEEE Parallel and Distributed Technology: Systems & Applications

(Oct. 1995), 4{19.

[113] Mehra, P., and Wah, B. Automated Learning of Load-Balancing Strategies in

MultiProgrammed Distributed Systems. International Journal of System Sciences

(1997).

[114] Meyer, P. Probabilidade: Aplica�coes a Estatistica, 2nd ed. Livros Tecnicos e

Cienti�cos, 1983.

[115] Minsk, M. Steps Toward Arti�cial Intelligence. In Institute of Radio Engineers

(1961), pp. 8{30.

270 BIBLIOGRAPHY

[116] Monien, B. Mapping and Load Balancing on Distributed Memory Machines. Pader-

born Spring School - Course Notes, Apr. 1995.

[117] Monien, B. Load Balancing Driven Process Migration. EURO-PAR'96, Lyon,

France, Aug. 1996. Tutorial.

[118] Morgan, M., and Henrion, M. Uncertainty: A Guide to Dealing with Uncer-

tainty in Quantitative Risk and Policy Analysis, 1st ed. Cambridge University Press,

1990. ISBN 0 521 42744 4.

[119] Murphy, K. A Variational Approximation for Bayesian Networks with Discrete

and Continuous Latent Variables. Tech. rep., University of California | Computer

Science Division, 1999.

[120] Neves, J., Machado, J., Costa, L., and Cortez, P. A Software Agent Dis-

tributed System for Dynamic Load Balancing. In Modelling and Simulation ESM'96

(Budapest, Hungary, June 1996).

[121] Ni, L., Xu, C., and Gendreau, T. A Distributed Drafting Algorithm for Load

Balancing. IEEE Transactions on Software Engineering (Oct. 1985), 1153{1161.

[122] Niedermayer, D. An Introduction to Bayesian Networks and their Contemporary

Applications. Tech. rep., Dec. 1998. CS{420.

[123] Olesen, K. Causal probabilistic Networks with both Discrete and Continuous

Variables. IEEE Transactions on Pattern Analysis and Machine Intelligence 3, 15

(1993).

[124] Overeinder, B., Sloot, P., Heederik, R., and Hertzberger, L. A Dynamic

Load Balancing System for Parallel Cluster Computing. Future Generation Computer

Systems 12 (1996), 101{115.

[125] Ozden, B., Goldberg, A., and Silberschatz, A. Scalable and Non-Intrusive

Load-Sharing in Owner-Based Distributed Systems. In 5th IEEE Symposium on

Parallel and Distributed Processing (Dallas, TE, Dec. 1993), IEEE, pp. 690{699.

[126] Papakhian, M. A Comparison of Job Management Systems from the User's Per-

spective. IEEE Computational Science & Engineering (1998).

[127] Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann Publishers, 1988. ISBN 1-55860-479-0.

[128] Pearl, J. Bayesian Networks. MIT Press, 1995.

[129] Platform Computing. LSF MultiCluster: Software for Global Load Sharing.

http:// www.platform.com/ platform/, Dec. 1996.

BIBLIOGRAPHY 271

[130] Platform Computing. LSF - Product Overview. http:// www.platform.com/

platform/, 1997.

[131] Poland, W., and Schachter, R. Mixtures of Gaussians and Minimum Relative

Entropy Techniques for Modeling Continuous Uncertainties. In 9th Conference on

Uncertainty in Arti�cial Intelligence (1993), Morgan{Kaufmann.

[132] Pozzetti, E., and Vetland, V. General Purpose Parallel Computers: Archi-

tectures, Programming Environments and Tools, 1st ed. Edizioni ETS, Consiglio

Nazionale delle Ricerche, 1995. chap. 12.

[133] Pulidas, S., Towsley, D., and Stankovic, J. Design of EÆcient Parame-

ter Estimators for Decentralized Load Balancing Policies. Tech. rep., University of

Massachusetts, Aug. 1987.

[134] Ramamritham, K., Stankovic, J., and Zhao, W. Distributed Scheduling of

Tasks with Deadlines and Resource Requirements. IEEE Transactions on Computers

(Aug. 1989), 1110{1123.

[135] Reinhard, E. Scheduling and Data Management for Parallel Ray Tracing. PhD

thesis, Department of Computer Science, University of Bristol, Oct. 1999.

[136] Reinhard, E., Chalmers, A., and Jansen, F. Overview of Parallel Photo{

Realistic Graphics. EuroGraphics'98: State of The Art Report (Sept. 1998).

[137] Reinhard, E., Kok, A., and Chalmers, A. Cost Distribution for Parallel Ray

Tracing. In 2nd EuroGraphics Workshop on Parallel Graphics and Visualization

(Sept. 1998), EuroGraphics, pp. 77{90.

[138] Reinhard, E., Kok, A., and Jansen, F. Cost Prediction in Ray Tracing. In

Rendering Techniques'96 (1996), Springer-Verlag, pp. 41{50.

[139] Riedl, R., and Richter, L. Classi�cation of Load Distribution Algorithms. In

4th EuroMicro Workshop on Parallel and Distributed Processing (Braga, Portugal,

Jan. 1996), IEEE Computer Society Press, pp. 404{413.

[140] Romke, T., Rottger, M., Schroeder, U., and Simon, J. On EÆcient Em-

beddings of Grids into Grids in PARIX. In International Conference on Parallel

Processing (EURO-PAR'95) (University of Paderborn, 1995).

[141] Rosti, E., Smirni, E., Dowdy, L., Serazzi, G., and Sevcik, K. Proces-

sor Saving Scheduling Policies for Multiprocessor Systems. IEEE Transactions on

Computers 47, 2 (Feb. 1998), 178{189.

272 BIBLIOGRAPHY

[142] Russ, S., Reece, K., Robinson, J., Meyers, B., Rajan, R., Rajagopalan,

L., and Tan, C. Sensitivity Evaluation of Dynamic Load Sharing in Distributed

Systems. IEEE Concurrency (Apr. 1999), 47{55.

[143] Russell, S., and Norvig, P. Arti�cial Intelligence: A Modern Approach.

Prentice-Hall, 1995. ISBN 0-13-103805-2.

[144] Ryou, J.-C., and Juang, J.-Y. An EÆcient Load Balancing Algorithm in Dis-

tributed Computing Systems. In 5th IEEE Symposium on Parallel and Distributed

Processing (Dallas, Texas, Dec. 1993), IEEE Computer Society Press, pp. 233{240.

[145] Santos, L., Chalmers, A., and Proenc�a, A. A Message Density Monitor-

ing Strategy for Distributed Memory Parallel Systems. In 2nd Int. Conference on

Software for MultiProcessors and SuperComputers: Theory, Practice and Experience

(Moscow, Russia, Sept. 1994), pp. 288{288.

[146] Santos, L. P. Optimiza�c~ao de Tr�afego em Sistemas de Mem�oria Distribu��da. Mas-

ter's thesis, Departamento de Inform�atica, Universidade do Minho, Braga, Portugal,

Sept. 1994.

[147] Saphir, W., Tanner, L., and Traversat, B. Job Management Requirements

for NAS Parallel Systems and Clusters. Tech. Rep. NAS{95{006, NAS Scienti�c

Computing Branch | NASA Ames Research Center, Feb. 1995.

[148] Schachter, R. Bayes{Ball: The Rational Pastime. In 14th Conference on Uncer-

tainty in Arti�cial Intelligence (1998), Morgan{Kaufmann, pp. 480{487.

[149] Schachter, R., and Kenley, R. Gaussian Inuence Diagrams. Management

Science 35, 5 (May 1989), 527{550.

[150] Schaerf, A., Shoham, Y., and Tennenholtz, M. Adaptive Load Balancing:

A Study in Multi-Agent Learning. Journal of Arti�cial Intelligence Research 2 (May

1995), 475{500.

[151] Scheurer, C., Scheurer, H., and Kropf, P. Load Balancing Driven Process

Migration. Tech. rep., University of Berne, June 1995.

[152] Schopf, J. Structural Prediction Models for High{Perfomance Distributed Appli-

cations. In Cluster Computing Conference (1997).

[153] Schopf, J. A Practical Methodology for De�ning Histograms for Predictions and

Scheduling. In ParCo'99 (Aug. 1999).

[154] Schopf, J., and Berman, F. Performance Prediction Using Intervals. Tech. Rep.

CS97-541, University of California, San Diego, May 1997.

BIBLIOGRAPHY 273

[155] Schopf, J., and Berman, F. Stochastic Scheduling. In SuperComputing'99 (Port-

land, OR, USA, 1999).

[156] Schopf, J., and Berman, F. Using Stochastic Intervals to Predict Application

Behavior on Contended Resources. In WorkShop on Advances in Parallel Computing

Models { ISPAN'99 (1999).

[157] Senar, M., Ripoll, A., Cort�es, A., and Luque, E. Performance Compari-

son of Strategies for Static Mapping of Parallel Programs. In Recent Advances in

Parallel Virtual Machine and Message Passing Interface, 4th European PVM/MPI

Users'Group Meeting (Cracow, Poland, Nov. 1997), no. 1332 in Lecture Notes in

Computer Science, Springer, pp. 575{587.

[158] Shin, K. G., and Chang, Y.-C. A Coordinated Location Policy for Load Sharing

in HyperCube-Connected Multicomputers. IEEE Transactions on Computers (May

1995), 669{682.

[159] Shirley, P. Physically Based Lighting Calculations for Computer Graphics. PhD

thesis, University of Illinois, Urbana-Champaign, Nov. 1991.

[160] Shivaratri, N., Krueger, P., and Singhal, M. Load Distributing for Locally

Distributed Systems. IEEE Computer (Dec. 1992), 33{44.

[161] Smith, W., Foster, I., and Taylor, V. Predicting Application Run Times

Using Historical information. In Workshop on Job Scheduling Strategies for Parallel

Processing (1998).

[162] Smith, W., Taylor, V., and Foster, I. Using Runtime Predictions to Esti-

mate Queue Wait Times and Improve Scheduler Performance. In Workshop on Job

Scheduling Strategies for Parallel Processing (1999).

[163] Sohn, A., and Biswas, R. Guest Editors' Introduction. Journal of Parallel and

Distributed Computing { Special Issue on Dynamic Load Balancing, 47 (1997), 99{

101.

[164] Spiegelhalter, D., and Lauritzen, S. Sequential Updating of Conditional

Probabilities on Directed Graphical Structures. Networks 20 (1990), 579{605.

[165] Stankovic, J. An Application of Bayesian Decision Theory to Decentralized Con-

trol of Job Scheduling. IEEE Transactions on Computers C-34, 2 (Feb. 1985), 117{

129.

[166] Stankovic, J. Stability and Distributed Scheduling Algorithms. IEEE Transactions

on Software Engineering (Oct. 1985), 1141{1152.

274 BIBLIOGRAPHY

[167] Stankovic, J., Ramamritham, K., and Cheng, S. Evaluation of a Flexible Task

Scheduling Algorithm for Distributed Hard Real-Time Systems. IEEE Transactions

on Computers (Dec. 1985), 1130{1143.

[168] Stankovic, J., Spuri, M., Natale, M. D., and Buttazzo, G. Implications of

Classical Scheduling Results for Real{Time Systems. IEEE Computer 28, 5 (1995),

16{25.

[169] Suen, T., and Wong, J. EÆcient Task Migration Algorithm for Distributed

Systems. IEEE Transactions on Parallel and Distributed Systems 3, 4 (July 1992),

488{499.

[170] Sutton, R., and Barto, A. Reinforcement Learning: An Introduction. The MIT

Press, 1998.

[171] Theimer, M., and Lantz, K. Finding Idle Machines in a Workstation Based

Distributed System. IEEE Transactions on Software Engineering (Nov. 1989), 1444{

1458.

[172] Wang, Y., and Morris, R. Load Sharing in Distributed Systems. IEEE Trans-

actions on Computers C-34, 2 (Mar. 1985), 204{217.

[173] Watt, A. 3D Computer Graphics, 2nd ed. Addison-Wesley, 1993. ISBN 0-201-

63186.

[174] Watt, A., and Watt, M. Advanced Animation and Rendering Techniques: Theory

and Practice, 1st ed. Addison-Wesley, 1998. ISBN 0-201-54412-1.

[175] Watts, J., and Taylor, S. A Practical Approach to Dynamic Load Balancing.

IEEE Transactions on Parallel and Distributed Systems 9, 3 (Mar. 1998), 235{248.

[176] Weiss, G. MultiAgent Systems: A Modern Approach to Distributed Arti�cial Intel-

ligence, 1st ed. The MIT Press, 1999.

[177] White, B., Grinshaw, A., and Nguyen-Tuong, A. Grid{Based File Access:

The Legion I/O Model. In 9th IEEE International Symposium on High Performance

Distributed Computing (Pennsylvania, U.S.A., Aug. 2000), IEEE Computer Society

Press.

[178] Willebeek-LeMair, M., and Reeves, A. Strategies for Dynamic Load Balanc-

ing on Highly Paralel Computers. IEEE Transactions on Parallel and Distributed

Systems 4 (Sept. 1993), 979{993.

[179] Xu, C., and Lau, F. Load Balancing in Parallel Computers: Theory and Practice.

Kluwer Academic Publishers, 1997.

BIBLIOGRAPHY 275

[180] Xu, C., Luling, R., Monien, B., and Lau, F. C. M. An Analytical Comparison

of Nearest Neighbours Algorithms for Load Balancing in Parallel Computers. In 9th

International Parallel Processing Symposium (Paderborn, Germany, Apr. 1995).

[181] Zaki, M., Li, W., and Parthasarathy, S. Customized Dynamic Load Balancing

for a Network of Workstations. Journal of Parallel and Distributed Computing 43

(1997), 156{162.

[182] Zhou, S. A Trace Driven Simulation Study of Dynamic Load Balancing. IEEE

Transactions on Software Engineering (Sept. 1988), 1327{1341.

[183] Zomaya, A., Clements, M., and Olariu, S. A Framework for Reinforcement{

Based Scheduling in Parallel Processor Systems. IEEE Transactions on Parallel and

Distributed Systems 9, 3 (Mar. 1998), 249{259.

276 BIBLIOGRAPHY

Index

average, recency{weighed, 161, 200

Bayes' rule, 21, 89

bayesian networks, 85

bidding algorithm, 35, 67

certainty factors, 20

congestion problem, 33

coordination problem, 33, 41, 56

credit{assignment problem, 48

d{separation, 88, 176

data locality, 41, 119

decision networks, 94

decomposition

domain, 114, 144

functional, 114, 144

default reasoning, 20

degree of balancing, 26

Dempster-Shafer theory, 20

Distributed Job Management System, 14,

72

distributed shared memory, see parallel

architectures, DSM

distributed shared system, 12, 13

divisible loads, 40, 115

drafting algorithm, 67

environment, 10

measurability, 15

properties, 15

execution model, 11, 14

structural, 21, 31

exploitation, 70

exploration, 70

fuzzy logic, 20

High Throughput Computing, 73

idle{while{waiting condition, 9

illumination model, 135

ambient light, 137

di�use reection, 135, 136

di�use transmission, 135

�ltered transparency, 133

global, 135, 139

index of refraction, 138, 139

Lambertian reection, see di�use re-

ection

local, 135

Phong model, 136

refraction, 133

Snell's Law, 139

specular reection, 135, 137

specular transmission, 135, 138

information aging, 16, 18, 35

joint distribution, 20, 80

knowledge engineering, 95, 169

load balancing, 26

load sharing, 26

mapping problem, 28

Maximum Expected Utility, 21, 93

measurability, see environment, measura-

bility

metrics

application{dependent, 37, 117

application{independent, 37, 117

277

278 INDEX

environment, 10, 116, 159

foreground workload, 116, 159

performance, 42, 116, 159

resources' capacity, 117, 160

scheduling overhead, 42, 117, 161

multithreading, 149

nearest{neighbour policy, 33, 62

di�usion, 63

dimension exchange, 62

gradient, 63

Neutral File Format, 146

NFF, see Neutral File Format

NP{complete, 2, 28

parallel application characteristics, 113

parallel architectures

memory organisation

CC{NUMA, 112

COMA, 112

DSM, 112, 115, 148

NORMA, 112

NUMA, 112, 115, 148

UMA, 112

shared{disk, 112

shared{memory, 112

shared{nothing, 112

SMP, 112

performance model, 41, 116, 159

probability theory, 20, 79

probing algorithm, 65

process checkpointing, 73

processor farm, 61, 122

processor trashing, 26, 46

pro�tability determination, 26, 42

ray tracing, 114, 131

3D space partitioning, 144, 146

adaptive depth control, 142, 146

adaptive supersampling, 141, 146

coherence, 143

occluding object bu�er, 143, 146

primary rays, 133

rendering equation, see rendering equa-

tion

secondary rays, 139

shadow rays, 133

reinforcement learning, 21, 69

rendering equation, 132, 140

scalability, 45, 193

scheduling

agent, 11

application level, 13

requirements, 14

centralised, 32, 61

direct costs, 43, 118, 162

distributed, 32

domains, 33

e�ectiveness, 42

eÆciency, 42

indirect costs, 43, 118, 162

overheads, 42

performance, 42

real{time systems, 12

system level, 14, 72

scheduling policies

adaptive, 17, 30

opportunities, 17

classi�cation scheme, 52

Casavant's taxonomy, 53

decision � migration space, 52

ESR, 57, 125

Families of strategies, 54

Load, action and solution models,

56

components, 34

information policy, 35

location policy, 41

selection policy, 39

transfer policy, 38

INDEX 279

dynamic, 16, 28

sensor based, 17, 30

static, 16, 28

scheduling problem, 10

global, 10

local, 10

sequential update, 201

simulated annealing, 31, 71

stability, 46

stochastic learning automata, 21, 69

task, 9

uncertainty, 18, 77

reasons, 18

utility, 92

function, 92, 185

variable

decision, 94, 175

random, 86, 168, 171, 175

utility, 94, 175

workload

background, 115, 117, 125

foreground, 126

synthetic, 126

280 INDEX

