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Abstract| 

Numerical Optimization and Economic Analysis in the design of a Micro-CHP System with a 

Stirling engine and a Solar Collector 

The micro-CHP systems are a promising technology for improving the energy efficiency of small energy 

conversion units, located near the end user. The combined heat and power production allows the optimal 

use of the primary energy sources and significant reductions in carbon emissions. Its use, still incipient, 

has a great potential for applications in the residential sector. This study aims to develop a methodology 

for the thermal-economic optimization of micro cogeneration units using Stirling cycle engine as prime 

mover and concentrated solar energy as the heat source. 

A detailed thermodynamic study was carried out to define the model for the physical characterization of 

the Stirling engine. The study of the physical model includes three types of analysis: ideal isothermal, ideal 

adiabatic and non-ideal adiabatic analyses. The latter includes limitations in the heat transfer processes 

and losses due pumping effects. These analyses were performed through numerical simulations by 

developing a code in MatLab® programming language, based on the model developed by Urieli and 

Berchowitz. The mathematical modelling was modified, improved and adapted to adjust the configuration 

of the Stirling engine for cogeneration applications. Subsequently to its implementation, several sensitivity 

analyses on the operational and geometric parameters were conducted in order to understand which of 

them have the highest relevance in the Stirling engine performance. The definition of these criteria is 

crucial in the choice of the decision variables for the thermal-economic optimization model. 

After characterizing the physical model, a purchase cost equation representative of each system 

component was defined: a cost equation for each one of the heat exchangers (i.e. heater, regenerator and 

cooler) and a cost equation representative of the engine bulk. Each cost equation is based on physical 

parameters, taking into account the sizing of the system. Through data collected from market available 

Stirling systems, the most appropriate cost coefficients were defined and the cost equations were 

validated. 

After the validation of both physical and economic models, the thermal-economic optimization was 

formulated. The maximization of the annual worth from the system operation was defined as the objective 

function, subjected to a set of nonlinear thermodynamic and economic constraints in order to give 

significance to the numerical results. The model was formulated considering a cost/benefit approach, 

where the terms of the objective function represent a balance between costs and revenues. The decision 

variables correspond to geometric and operational parameters with the highest relevance in the system 

operation. The Pattern Search algorithm was implemented to achieve the numerical solution, using 

different search methods, i.e., the Nelder-Mead and genetic algorithm method  

The optimization model was effective in the determination of the optimal solution and a positive annual 

worth was obtained for the defined input simulation conditions. The thermal-economic model yielded the 

combination of decision variables that defines the best configuration for maximum economic benefit. 

Through the economic assessment of the best solution obtained for the micro-CHP system, and 

considering the costs for installing a solar concentrator collector, it can be that such a system is 

economically attractive, with a payback period of approximately 9 years. 
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Resumo| 

Otimização Numérica e Análise Económica na Conceção de uma Micro-Cogeração com motor 
Stirling e Concentrador Solar 

Os sistemas de micro-cogeração são uma tecnologia muito promissora para a melhoria da eficiência 

energética das pequenas unidades de conversão de energia localizadas junto ao utilizador final. A 

produção combinada de calor e eletricidade permite a otimização da utilização das fontes de energia 

primária e significativas reduções nas emissões de carbono. A sua utilização, ainda incipiente, possui um 

grande potencial para as aplicações no sector residencial. Este estudo visa o desenvolvimento de uma 

metodologia de otimização termo-económica dedicada ao desenvolvimento de unidades de micro-

cogeração usando como tecnologia os motores de ciclo Stirling e a energia solar como fonte de calor.  

O trabalho iniciou-se com um estudo detalhado sobre o modelo termodinâmico para a caracterização 

física do motor Stirling. O estudo do modelo físico incluiu três tipos de análises: a análise ideal isotérmica, 

a análise ideal adiabática e a análise não ideal onde foram incluídas as limitações na transferência de 

calor e as perdas devido a efeitos de bombagem. O estudo das diferentes análises foi efetuado através de 

simulações numéricas com o desenvolvimento de um código de programação em linguagem MatLab®, 

tendo como base o modelo desenvolvido por Urieli e Berchowitz. Este foi modificado, melhorado e 

adaptado no sentido de a adequar à configuração do motor Stirling para aplicações em cogeração. Após a 

sua implementação, foram efetuadas várias análises de sensibilidade a parâmetros, quer operacionais 

quer geométricos, de modo a compreender quais os critérios mais influentes na performance do motor 

Stirling. A identificação destes critérios foi fundamental para a definição das variáveis de decisão a usar 

no modelo de otimização termo-económica.  

Após a caracterização do modelo físico, procedeu-se à definição das equações dos custos de investimento 

para cada um dos componentes do sistema. Assim, foram definidas quatro equações de custo: uma 

equação para cada um dos permutadores de calor (i.e. permutador de aquecimento, arrefecimento e 

regenerador) e uma equação representativa do corpo do motor. Cada uma das equações de custo foi 

definida com base em parâmetros físicos, tendo em consideração o dimensionamento do sistema. 

Através de dados recolhidos de sistemas Stirling já comercializados, foram definidos os coeficientes de 

custo mais adequados e procedeu-se à sua validação. 

Foi desenvolvido e implementado o modelo de otimização termo-económica. A maximização do lucro 

anual decorrente da operação do sistema foi definida como a função objetivo, estando sujeita a um 

conjunto de restrições não lineares de natureza termodinâmica e económica, com vista a dar significância 

aos resultados numéricos. O modelo foi formulado numa abordagem custo/benefício em que os termos 

da função-objetivo representam um balanço entre custos e receitas. O conjunto de variáveis de decisão 

que correspondem às variáveis geométricas e operacionais de maior relevância no sistema. Foi usado o 

algoritmo Pattern Search do Matlab® com uso de diferentes métodos de procura, isto é, o Nelder-Mead e 

os algoritmos genéticos, na resolução numérica do modelo.   

O modelo de otimização mostrou-se eficaz na determinação da solução ótima, tendo sido obtido lucros na 

operação do sistema para as condições de simulação definidas, assim como, a combinação ótima para 

as variáveis de decisão que definem a melhor configuração para o máximo benefício económico. Através 

da avaliação económica de aquisição deste sistema de micro-cogeração, e considerando os custos de 

instalação de um concentrador solar, verificou tratar-te de um projeto economicamente atrativo, com 

retorno de investimento de aproximadamente 9 anos.  
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dhwCons  Domestic Hot Water Consumption 2 1. .L m day   
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3

€ / m

€ / cm .bar

 

suC  Sutherland Constant - 

vc  Specific Heat Capacity at constant volume -1 -1kJ.kg K  

d  Diameter mm  

 j
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Nu  Nusselt Number  



 

 

Numerical Optimization and Economic Analysis in the Design of a micro-CHP System with a Stirling Engine and a Solar Collector             XXI 

 

P  Pressure bar  

P  Pressure Drop bar  

 ,P x r  Penalty Function for Constraints Violation - 

Pr  Prandtl Number  

p  Price €  

Q  Thermal Energy /J cycle  

Q  Thermal Power W  

dhwQ  Thermal Domestic Hot Water .2 -1kWh.m day  
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el Electrical  
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exit Outlet 

fuel Fuel Source 

h Heater 
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hydraulic Hydraulic Diameter 

i ith component  
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in Inlet 

inner  Internal Diameter 
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inv Investment  

j iteration 
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overall Overall Efficiency 

p Produced 

r Regenerator 
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th Thermal  

w Wetted Heat  Transfer Area 

w0 Void Regenerator Wetted Area 

wall Wall 
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wire Regenerator Wire Diameter 
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Introduction|  

 

1.1. Motivation 

1.2. Scope and Objectives 

1.3. Structure of the Thesis 

1.4. Contributions of the Work 

_____________________________________________________________________ 

1.1. Motivation 

This research project aims the development of numerical optimization methods for a thermal-economic 

analysis in the design of a micro-cogeneration unit. The main idea is to take into account the energy 

requirements for individual and multi residential buildings. The innovation of this work is correlated with 

the application of numerical optimization techniques in the economic evaluation of a new cogeneration 

system, taking into consideration the restrictions of Portuguese market. The cogeneration system applies 

a new technology and uses a renewable energy source, i.e., a solar powered Stirling cycle engine.  

 

1.1.1.  Cogeneration Systems versus Conventional Energy conversion 

In modern society few goods are as important as energy. However, the energy needs are mostly 

accomplished by using fossil fuels such as oil, coal and natural gas. In this sense, several measures have 

been presented to promote the use of energy in a more sustainable way. The sustainable development 

consists on the rational use of energy, satisfying energy demands without compromising the future of 

mankind. The idea of cogeneration is almost as old as the Industrial Revolution and was introduced when 

steam was the main source of energy in industry and electricity was giving the first steps in power and 

lighting usage. In 1882, the first commercial power station, built by Thomas Edison, was a cogeneration 

plant that distributed both electricity and thermal energy to neighbouring buildings (WADE, 2014). As 
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electrical power became more widely diffused, steam driven mechanisms were replaced, creating a 

transition from mechanically to electrically powered systems (Alanne & Saari, 2004). The increase of 

centralized power facilities and reliable utility grids drove electricity costs down, and industrial large scale 

units began buying electricity and ceased the generation of their own power. This lead to a decrease in the 

importance of cogeneration plants until the first oil crisis of 1973. However, in the last decades, systems 

that are efficient and have the ability to use alternative energy sources have begun to be commercialized.  

This situation was driven by the increase in energy prices, the uncertainty in fuel supplies, energy grid 

reliability issues and growing environmental concerns.  

Combined Heat and Power (CHP) or cogeneration is defined as the simultaneous production of useful 

thermal energy (usually heat in the form of hot water and/or steam) and mechanical energy from a single 

primary energy source. The mechanical energy is usually converted into electricity. The thermal energy 

can be used in a direct heating process or indirectly in the production of hot water or steam (Praetorius & 

Schneider, 2006). Cogeneration is an excellent technology for improving the overall efficiency of energy 

conversion systems. As can be seen in Figure 1.1, when compared to the conventional separate 

production of electricity (in a centralised power station) and heat (in a local boiler), the combined 

production of heat and power in a single unit can result in a significant reduction in the total fuel 

consumption.  The single CHP unit allows the recovery of thermal energy from the electricity generation, 

which contributes to higher global efficiency. 

 

Figure1.1 Energy flows of conventional separate production versus the CHP alternative. 

 

Small-scale CHPs also referred as Micro CHPs have found niche markets in domestic and building 

applications due to the ability to rapidly vary their electrical load and to adjust the thermal output. 
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Cogeneration has been worldwide considered as the major alternative to traditional systems in terms of 

energy saving and environmental conservation (Cao, Mohamed, Hasan, & Sirén, 2014).  

The potential of cogeneration systems is mainly seen in buildings with central heating systems. This 

generally means that electricity generators with heat exchanger(s) and storage boilers replace 

conventional heating systems. The heat produced is used for space and water heating and possibly 

cooling, while the electricity is used within the building or fed into the grid to supply electrical power, as 

presented by Figure 1.2. 

 

Figure 1.2 A general schematic of domestic micro CHP system. Adapted from (Maghanki, Ghobadian, Najafi, & 

Galogah, 2013) 

 

CHP systems present flexible solutions to produce thermal and electrical energies which reduce both 

primary energy consumption as well as the overall investment costs. Therefore, and despite the general 

use of auxiliary boilers, the additional cost of a full separate installation to generate all the thermal energy 

is avoided (Dentice d’Accadia, Sasso, Sibilio, & Vanoli, 2003; Onovwiona & Ugursal, 2006). The improved 

efficiency in energy conversion corresponds to a reduction in the amount of energy for a given energy level 

output and, therefore, to a decrease in greenhouse and pollutant gas emissions. The use of cogeneration 

reduces the demand for limited natural resources (e.g. coal, natural gas, and oil) and improves the 

nation’s energy security (Chicco & Mancarella, 2009). 

The cogeneration market is still dominated by large-scale units but new technologies are emerging for 

small- and micro-scale systems. Such plants have great potential for applications in small and medium-

sized buildings. The main target market for small-scale and micro-CHP systems is the massive residential 

sector as a replacement for conventional boilers. The micro-CHP plants shall operate according to the 

‘heat-demand’ profile of the  residential buildings (Onovwiona, Ugursal & Fung, 2007).  

In the conventional energy flow-path the primary source is converted, usually in a large-scale plant, and 

then transmitted to the end-user to satisfy energy demands. The bulk of electricity is delivered by 

centralized power plants, most of them using large fossil fuel combustion or nuclear reactions to produce 
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steam to drive steam turbine generators. In many cases, the energy is converted in a decentralized energy 

conversion plant, located near to the end-user, and then distributed to the final appliances, as shown in 

Figure 1.3. 

 

Figure1.3 Grassman diagram of energy conversion processes. 

 

Decentralized energy conversion includes the use of small-scale generators, located near to the end-user, 

or in an isolated place where the connection to the grid is remote. Providing electrical power through 

decentralized energy plants on those locations allows a reduction of transmission and distribution losses, 

and so, costs are minimized.  

 

In the design of technical systems and in order to introduce them into the market, it is important to 

reduce costs, improve the system performance and its reliability. The use of rigorous methods in decision-

making (such as numerical optimization methods) is an effective tool for finding optimal solutions. To 

make use of this tool, the objective function must be defined a correlation that quantitatively measures the 

performance of the system under study. This objective function can be a single variable, such as the 

profit, or a combination of variables that can be numerically quantified. To achieve an optimal solution, it 

is necessary to find the best combination for the input decision variables that optimize the objective 

function taking into account the physical limitations and problem constrains. The identification of the 

objective function, decision variables and the constraints allows the construction of an appropriated 

optimization model that is complex enough to give feasible solutions.   

The choice of the most appropriate algorithm depends on the application. In many cases, there are 

mathematical expressions, known as optimality conditions, for checking if the defined set of variables is 

indeed the solution of the problem. The verification of the optimal conditions gives useful information on 

how the approximation to the solution can be improved. Therefore, the model may be improved by 

applying techniques, such as sensitivity analysis, which reveals the stability of the solution to changes in 
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the model and data. The interpretation of the solution may also suggest directions for which the model 

can be improved. The solution obtained from the mathematical model must be feasible. 

The development of favourable policies in using cogeneration technologies and renewable energy sources, 

and the application of numerical optimization methods to solve complex mathematical models are 

intrinsically connected with the motivation for the development of this work. In this particular project, the 

mathematical model of a new technology (i.e. a thermal energy system) involves the problem of plant 

optimization and must take into account both the technical and the economic aspects. The integration of 

these two fields is the subject of thermal-economics. The aim is to minimize the total costs, including 

those related with the thermodynamic inefficiencies and so to define the key parameters of each plant-

component that lead to the optimal design of the technology. Thus far, numerical methods of optimization 

have been used for the thermodynamic and economic optimization of large scale systems (Abusoglu & 

Kanoglu, 2009; Feng, Chen, & Sun, 2011; Tsatsaronis, 1993; Valero et al., 1994). Studies involving the 

comparison of different cogeneration technologies are also commonly available, often assuming a fixed 

design.  

Summarizing, growing concern about the depletion of    fossil energy resources and environmental issues 

have led to policies favouring the introduction of distributed/decentralized energy production systems 

(Bruckner, Morrison, & Wittmann, 2005). CHP has gained attention because of decreased fuel 

consumption and lower gas emissions. Small-scale cogeneration systems are an example of distributed 

energy production suitable for the building sector. Dentice d’Accacia and co-workers, in 2003 reported on 

the possibilities of residential micro-CHP systems and presented a general survey of market and 

technological perspectives. The authors concluded that the introduction of micro-CHP for domestic 

applications would be subject to the availability of the technology, the matching of electrical and thermal 

load profiles, and gas and electricity prices (Dentice d’Accadia et al., 2003). Also, the implementation of 

micro-CHP systems aims to replace the boiler in the conventional central heating system and the 

production of electricity as a by-product (De Paepe & Mertens, 2007; Praetorius & Schneider, 2006). 

The most used CHP technologies are those based on the internal combustion engine, micro gas turbine, 

organic Rankine cycle and Stirling engine. Internal combustion engines are the most well established 

technology for small- and micro-CHP applications. Regarding the development of micro turbines, the 

major technical factors that challenge the development of systems with less than 10 kW of capacity are 

related to the small-scale impacts (e.g. high heat and mechanical losses, as well as, increased specific 

costs). The Micro CHP systems based on Rankine cycles, with a power size of up to 10 kW, are mostly 

available on the market at a prototype level only.  

Fuel-cell micro-CHP achieves lower electrical efficiency levels and the effective use of the heat production 

is unable to compete with efficient central power plants. Despite several potential markets, these systems 

face a number of competing technologies and the price projections based on learning curves for fuel cells 
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reveal that without economies of scale, they can hardly reach the markets without subsidies before 2025. 

Cogeneration systems based on Stirling engine as prime movers have an electric power ranging from 1 

kW to 9 kW and a corresponding thermal power size from 5 kW to 25 kW, which may also represent a 

good alternative to household boilers. The electric efficiency ranges from 13% to 28% with the CHP 

efficiency higher than 80%, which may even go beyond 95% (Maghanki et al., 2013). Comparing all these 

technologies, Stirling engines seems to be a good alternative to supply the energy needs of small and 

medium size buildings. From an energy point of view, this system should satisfy most of the thermal and 

electric energy demand, with a primary energy saving index higher than 20%. Regarding the economic 

feasibility, it is accepted that a reasonable target for the marginal cost of a CHP system for household 

heating is approximately 3000 €/kWel (Barbieri, Spina, & Venturini, 2012).  

The use of renewable energy sources and efficient energy conversion systems - such is the case of 

cogeneration – is considered, currently, a priority. The market trends correspond to the decentralized 

energy generation and the increasing replacement of boilers and other conventional systems by small- and 

micro-scale cogeneration units able to produce the same amounts of useful energies. The micro scale 

cogeneration systems (<50 kWel) have been developed as ideal solutions to meet the energy needs for the 

building sector in urban areas. Small and micro-cogeneration units represent a great opportunity to 

decentralize the production of electricity.  

 

1.1.2.  Where is the research opportunity? 

The research opportunity is related with the possibility of optimizing a renewable-based cogeneration 

system for houses, by using numerical optimization tools. The increase of energy demands in the building 

sector, the innovative nature of the technology, the favourable legislation (e.g. with the opportunity for 

selling electricity to the grid by benefiting from attractive feed-in-tariffs) justify the proposed research work. 

In Portugal, during 2012, the cogeneration installed power capacity reached a value around 1 300 MW, 

spread over various technologies. Most of those technologies use Natural Gas (NG) as fuel. Accordingly to 

data from Cogen Portugal, in 2012, cogeneration installations were responsible for the production of 14% 

of the electricity consumed in the country.  

A significant part of the energy consumptions is related to buildings. It is estimated that buildings use 

about 40% of the primary energy needs in Europe. In that way, buildings, including households, play a 

major role in the energy consumptions in Europe. Electricity consumption per capita has increased 

steadily in Portugal and in the EU15 since the sixties.  

Accordingly to the most recent data from International Energy Agency (IEA), in 2009 the Portuguese 

residential sector is the third highest consumer of final energy in the country. The sector is responsible for 

the consumption of almost 30% of electricity in a total of 47 855 GWh (see Figure 1.4).  
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Figure1.4 Electricity consumption by activity sector (International Energy Agency - IEA, 2012). 

 

In the Portuguese household sector the consumption of electricity has been growing in the last decades 

due to the new consumption habits of the population. The continuous growing of electricity consumption 

in Portuguese residential buildings leads to a major role of this energy source in the domestic sector, 

which is directly related with the increasing use of electrical equipment but also with the use of electricity 

for heating. This can explain why electricity registered a growth in consumption when compared with other 

energy sources. There is also a significant amount of energy used for hot water needs and for heating and 

spaces. Still, there are a significant number of buildings in Portugal and in Europe built in a period of time 

in which thermal regulations were not in force. 

 

1.2. Scope and Objectives 

The main objective of this project is to develop a thermo-economic optimization model for facilities based 

on a new micro-cogeneration system. This system applies a new technology and uses a renewable energy 

source, i.e., the powered solar Stirling cycle engine. The implementation of a numerical optimization 

method allows the determination of the optimal solution and ensuring the design of a facility that 

represents an economically viable solution. 

The specific objectives of the project are: 

 Study and definition of the thermodynamic model for the physical characterization of the 

Stirling engine;  

 Definition of the thermal power duration curve representative of both heating and domestic hot 

water needs for a residential building. 

 Definition of the purchase cost equations for each system component and the development of a 

complete nonlinear optimization model (objective function and constraints); 
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 Implementation of the thermo-economic model, using numerical optimization techniques. The 

numerical model will be implemented in MatLab with the possibility of comparing the 

performance of different techniques for non-linear optimization problems. Validation of the 

optimal solution should be performed through a sensitivity analysis by varying physical, 

economic and numerical parameters; 

 Study the economic viability of CHP facilities concerning the Portuguese market, taking into 

account the most relevant variables to the target customers. The variables should include the 

study of energy consumption profiles, purchase and sale prices of electricity; 

 Identification of the main attractive features of this type of equipment that may lead to the 

viability of its commercialization in the Portuguese market. 

 

1.3. Structure of the Thesis 

The present thesis is organized in eight chapters: (1) Introduction; (2) Literature review; (3) Energy 

consumption profiles; (4) Analysis and characterization of the physical model; (5) Development and 

validation of the thermo-economic optimization model; (6) Results and discussion; (7) Economic viability 

of micro-CHP system; (8) Conclusions and future work. 

In the first chapter, the general motivation for this research work is presented and the framework is 

provided. The objectives and contributions of the present study are also offered.  

The second chapter concerns a literature review. The state-of-the-art of the different technologies that are 

applied on micro-cogeneration systems is described. In particular, the study should be further explored in 

the analysis of the Stirling engine cycle; relevant legislation about energy systems; profiles of energy 

consumption for the residential sector in Portugal; and the identification of critical factors for the diffusion 

of micro-CHP in the Portuguese market. The review also includes the study of the tools and methods used 

in the thermal-economic optimization and a brief review of the optimization models. 

In chapter three, a study is presented to define the energy consumption profiles for single and/or multi-

family residences, determining the appropriate relationship with thermal storage demands. The evaluation 

of the energy consumptions is very important to minimize electricity demand from the network grid and to 

maximize the efficiency of the CHP unit. 

The fourth chapter reports the thermodynamic analysis of the physical system considering: the definition 

of the equations which describe the Stirling cycle considering three distinct thermodynamic analysis; 

sizing of the heat exchangers. Subsequently, the thermal fluid analysis is also presented. The analysis and 

the characterization of the physical model are concluded with the definition of the thermodynamic model. 

The aim of chapter five is the development of the thermo-economic optimization procedure. The objective 

function and constrains of thermo-economic optimization model that maximizes the revenues of the new 
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cogeneration system are presented. After the development of the mathematical model in which the 

thermodynamic equations are determined, the equations of the purchase costs of the main components 

of the micro-cogeneration are disclosed. The cost equations are based on physical parameters and quality 

and sizing parameters are included in the definition of the purchase cost equations. Four representative 

purchase cost equations were defined to estimate the system cost. The non-linear optimization model will 

be defined considering a single objective function, which corresponds to the maximization of the annual 

worth from the system operation. In the maximization of the annual worth, income/profits from selling the 

electricity to the grid network are included in the mathematical model. The economic operation of CHP 

systems requires both limitation of operational performance and power demands Therefore, the aim is the 

determination of the total cost per year, including the fuel cost, the initial investment, the operation and 

maintenance cost. In addition, a set of non-linear constrains are imposed by the operability of the system, 

giving physical significance to the complex mathematical model. The implementation and validation of the 

numerical optimization model in the MatLab environment is also described. The MatLab software was 

chosen due to its use as a scientific tool that allows the performance comparison of different numerical 

techniques, including distinct optimization tools.  

Chapter six discloses the main numerical results from the study. The results were divided in four main 

groups. The first group concerns the results from the thermodynamic analysis, including the results from 

the isothermal, ideal adiabatic and non-ideal analysis for a base-case scenario were the geometrical and 

operational parameters are fixed values. The second group of results correspond to a sensitivity analysis 

focused on the impact of each geometrical and physical parameter in the performance of the Stirling 

engine. The third group of results regards the cost estimation of each system component and the 

sensitivity of the purchase cost regarding the parameters variation. The fourth group of results concerns 

the thermal-economic from the application of the optimization model.  

The study concerning the economic viability of the new micro-CHP system in the Portuguese market is 

presented in chapter seven. The study is based on a cost/benefit analysis. The micro-economic changes 

that influence the feasibility of micro-CHP are discussed.  

Finally, the main conclusions of the research and some suggestions for further developments are pointed 

out in chapter eight. 

 

1.4. Contributions of the Work 

In this project, numerical optimization tools are applied in modelling a cogeneration system based on a 

recent technology, the Stirling engines. Several contributions of this project were identified:  

 The aim of this project is to contribute for the optimization of micro-scale cogeneration systems for 

residential applications. The optimization of this technology is based on the development of a 
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physical and economic model in order to achieve a feasible commitment between the maximization 

of system performance and its purchase cost. The system optimization allows reducing the amount 

of used primary energy and, simultaneously, improves the efficiency in the energy conversion 

process. The combination of both aspects increases the sustainability of these thermal systems in 

the market. As a consequence, these systems contribute to the reduction of fossil fuels imports and 

the gas emissions, which represent an economic and an environmental benefit. 

 The project contributes to societal objective that promote the development and use of sustainable 

systems that allow the rational use of energy, fulfilling the building energy demand without 

compromising the security of national energy grids.  

 One of the major contributions is the development of purchase cost equations for each main 

component of the system. These equations were formulated considering a methodology that allows 

estimating the total investment cost of the thermal plant considering the operational and 

thermodynamic parameters. These purchase cost equations are adjusted to this technology and 

includes quality and size parameters to better estimate the system cost.  

 The integration of a physical and an economic model for thermal-economic optimization helps to 

improve initial system designs and enhance its operation in order to achieve the maximum profit, the 

minimum cost, the least energy waste. Monetary value provides a convenient measure of different 

objectives. In thermal systems, benefits arise from improved plant performance, such as improved 

yields of valuable products (i.e. produced energy), reduction of maintenance costs, less equipment 

wear, etc. Intangible benefits arise from proper identifying the objective, constraints and the degrees 

of freedom in the system operation, leading to higher quality in the design and faster and more 

reliable decision-making.  

The fundamental problems in the design of Stirling engines are related with the time consumption in the 

design process and the cost of manufacturing. In most of the cases, finding the geometrical parameters of 

the engines is based on insufficient and costly experimental information. Therefore, improvements to the 

engine design are been achieved through high-cost and time-consuming trial-and-error procedures. 

Regarding this, numerical modelling represents a great opportunity to identify the key parameters and 

optimize the system under a cost effective process.  
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2  
 

Literature Review|  

 

2.1 Combined Heat and Power  

2.2 Technologies Applied to Cogeneration 

2.3 Optimization Methods 

______________________________________________________________________ 

This chapter provides a brief review of the various studies and the state of the art of the technologies 

relevant to this research. A background review on various conversion technologies is considered. The 

main approaches in thermo-economic modelling approaches, as well as, their significance in this research 

are highlighted. 

 

2.1. Combined Heat and Power  

Cogeneration is not a new concept. Industrial plants led to the concept of cogeneration back in the 

1880’s, when steam was the primary source of energy in industry. The use of cogeneration became 

common practice as engineers replaced steam driven and pulley mechanisms with electric power and 

motors, moving from mechanical powered systems to electrically powered ones. The central electric 

power plants construction and utility grids led to the reduction in the electricity cost, and numerous 

industries began buying electricity, stopping their own energy production. This resulted in the reduction of 

cogeneration power plants in the industrial sector. Furthermore, other factors that led to the decline of 

cogeneration were the increasing of regulatory policies regarding electricity generation, low fuel costs and 

advances in technology resulting in products like packaged boilers (Dentice d’Accadia, Sasso, Sibilio, & 

Vanoli, 2003).  

However, the descending trend started to revert after the first fuel crisis in 1973. Because of the increase 

of energy price and uncertainty in fossil fuel supply, efficient power plants and systems able to run with 

alternative fuels started drawing attention. 
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In the beginning of the 20th century, most electricity generation was from coal fired boilers and steam 

turbine generators, with the exhaust steam used for industrial heating applications. 

These reasons led various governments especially in Europe, US, Canada and Japan to take leading roles 

in establishing and/or promoting the increased use of cogeneration applications not only in the industrial 

sector but also in other sectors including the residential one (Pehnt et al., 2004).  

As mentioned before, by definition, cogeneration is the simultaneously generation of energy in different 

forms by using fuel energy at optimum efficiency in a cost-effective and environmentally accountable way, 

allowing a reduction on primary energy consumption. The main energy flows of a CHP unit are reported in 

Figure 2.1. 

 

Figure 2.1 Scheme of the cogeneration energy conversion system. 

 

The applications for cogeneration in the building sector include, for instance, hospitals, office buildings 

and single- and multi-family residential buildings. Specifically in the CHP applications for single-family, the 

design of the systems is associated with technical challenges due to the non-coincidence of thermal and 

electrical loads, requiring electrical/thermal storage or connection to the electrical grid (Gullì, 2006;  

Onovwiona & Ugursal, 2006). 

CHP power plants are usually connected to the lower voltage distribution grids. Besides reducing losses in 

transmission and distribution, they can bring improvements to grid power quality, supplying energy when 

required. Moreover, applications in the residential sector offer opportunities in terms of improving energy 

efficiency and reduction of pollutant gas emissions. It is well believed that technologies like Stirling 

engines and Fuel Cells are promising for small-scale cogeneration in the near future, because of their 

potential to achieve high efficiency and low emissions level.  Nevertheless, those technologies are still in 

development and they are not available at reasonable cost.  

The efficiency of a cogeneration system is the best way to measure and compare it with the conventional 

power production. The total efficiency of a system is measured as the fraction of the input fuel that can be 
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converted in usefully power and heat. Most manufacturers of this kind of power plants relate efficiency to 

the Lower Heating Value of the input fuel (LHV). The efficiency is commonly expressed in terms of both 

electrical efficiency and overall efficiency, as shown by equation (2.1) and equation (2.2). 

 

 
Electrical ouput

Electrical efficiency
Fuel Input

  (2.1) 

 

 
Useful thermal Electrical output

Overall efficiency
Fuel Input


  (2.2) 

he overall efficiency of energy conversion in cogeneration mode increases to over 80% as compared to an 

average of 30–35% in conventional fossil fuel fired electricity generation systems (Onovwiona & Ugursal, 

2006). The efficiency of a cogeneration system depends on the type of the prime mover, its size, and the 

temperature at which the recovered heat can be used. 

Cogeneration systems can run with several technologies and almost all types primarily generate electricity 

along with making the best practical use of the heat. The conventional power plants use the high potential 

energy available in the fuels to generate electric power, wasting a substantial share of the low-end residual 

energy by rejecting the high temperature outlet gases. Otherwise, a cogeneration process uses the high 

potential energy to generate electric power and capitalises the low quality residual energy for heating 

process or similar use (Onovwiona & Ugursal, 2006). So, several benefits can be listed when regarding 

the potential of small- and micro-scale cogeneration plants (see Figure 2.2).  

 

Figure 2.2 Benefits from using cogeneration systems. 

 

Primary energy savings: The successful implementation of CHP leads to a 
reduction in fuel consumption by approximately 25% compared to the 
convencial production of electricity. 

Reduction of gas emissions: With the reduction of primary energy 
usage, the gas emissions are also reduced, mainly if renewable 
energy sources are used. 

Economic benefits: End-users can obtain economic benefits, due 
to the possibility  of selling electricity to the grid.  

Increase the reliability of energy supply: The connection of cogeneration 
systems to the grid guarentees a continuous operation of the installation 
and allows the injection of energy in the national grid, improving its 
reliability. 
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The advantages include economic, environmental and energy safety aspects. CHP systems can represent 

an effective alternative to supress some of the most relevant technological needs in the energy field. 

These include reducing the use of conventional fossil fuels and, therefore, reduce the costs with the 

energy production; reduce the pollutant gas emissions because of the reduction of fuel utilization and the 

use of alternative energy sources (renewable ones). Finally the possibility of recover wasted heat from 

systems operation is also an advantage. 

 

When projecting or deciding for the CHP system installation, some aspects must be taken under 

consideration in the selection of a specific technology for a certain application: 

 Normal and maximum/minimum power load in the plant, and the operation period. 

 Unexpected increases and decreases in demand with their duration and response time required 

to provide the necessary quantity of energy. 

 Type of fuel available, long-term availability of fuels and their pricing. 

 Commercial availability of alternative systems, their lifetime and the corresponding expense for 

maintenance. 

 Influence exerted by local conditions at plant site, i.e. space available, installation conditions, raw 

water availability, infrastructure and environment. 

 Project cost and long term benefits. 

 

2.2. Technologies Applied to Cogeneration 

Various technologies are available for residential applications, i.e. single-family (<10 kWel) and multi-family 

(10–50 kWel) applications. In this size range, the technologies suitable for cogeneration systems are: 

Micro-turbine based cogeneration systems, Internal Combustion Engines (ICEs) based cogeneration 

systems, Fuel Cell based cogeneration systems, Organic Rankine cycles and reciprocating external 

combustion Stirling engine based cogeneration systems. Different definitions of small-size cogeneration 

are available in technical and scientific literature. European Directive on the promotion of cogeneration 

sets this value at 50 kWel; Ugursal et al. (2006) analyse residential CHP systems considering applications 

that are suitable for single-family and multi-family households (generally covered by systems of <10 kWel 

and <25 kWth); De Paepe et al. (2006) study residential applications of micro-CHP systems (<5 kWel) for 

isolated single-family household (De Paepe, D’Herdt, & Mertens, 2006; H.I. Onovwiona & Ugursal, 2006). 

 

2.2.1.  Micro-Turbines 

The basic components of micro-turbine systems are the compressor, turbine generator and the internal 

recuperator. The compressed air and the fuel are mixed and combusted in a combustion chamber. Hot 
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combustion gas expands turning the turbine, which drives the compressor and provides power by rotating 

the compressor turbine shaft. The compressor-turbine package is the heart of a micro-turbine, which is 

mounted on a single shaft along with the electric generator. The turbo-compressor shaft turns at high 

rotational speeds, of about 80 000–120 000 rpm. The physical size of components and rotational speed 

of micro-turbine systems are toughly influenced by the turbine and compressor design features 

(McDonald, 2003; Onovwiona & Ugursal, 2006). 

Micro-turbines operate under the Brayton cycle. In this cycle, atmospheric air is compressed, heated, and 

then expanded, with the excess power produced by the expander (i.e. turbine) over that consumed by the 

compressor is used for power generation (Kaikko & Backman, 2007). The power produced by the turbine 

and consumed by the compressor is proportional to the absolute temperature of the gas passing through 

them. Thus, it is advantageous to operate the expansion turbine at the highest practical temperature 

consistent with economic materials.  With the technological advance and the use of more resistant 

materials, it is possible to get higher turbine inlet temperatures. Plus, the optimum pressure ratio also 

increases. Higher temperature and pressure ratios result in higher efficiency and specific power. Thus, the 

trend in gas turbine advancement has been towards a combination of higher temperatures and pressures. 

However, micro-turbine inlet temperatures are generally limited. Accordingly to Kaikko & Backman (2007), 

the turbine inlet temperatures are low (1075–1275 K) to use relatively inexpensive materials for the 

turbine, and so, keeping the costs at a reasonable level and maintaining low-pressure ratios (3.5 to 4.0). 

The low inlet temperature affects the efficiency, which can be counteracted by using recuperation. As a 

result, micro-turbines typically apply a recuperated cycle and achieve electrical efficiencies of about 28–

30%.  

Micro-turbine designs include a recuperator to reduce fuel consumption, thereby substantially increasing 

efficiency. With a recuperator, the hot exhaust gas helps the air pre-heating as it passes from the 

compressor to the combustion chamber. A recuperator has two performance parameters: effectiveness 

and pressure drop. Higher effectiveness recuperation needs large recuperator surface area, resulting in 

higher-pressure drop as well as higher cost. However, increasing recuperator effectiveness raises the 

micro-turbine efficiency and allows fuel savings derived from pre-heating.  

Additional value in cogeneration operational mode is gained when the thermal energy from the exhaust 

gases is recovered to supply local heat. Commonly, an integrated heat exchanger is used to extract heat 

from the exhaust gas before their release to the atmosphere. Depending on the application, hot water in 

the 70–90 ºC temperature range or steam may be produced. In this case the use of recuperation may not 

be economically justified. In combined heat and power (CHP) generation, the overall efficiencies of the 

micro-turbines, as claimed by manufactures can reach values in the range 75–85%. The total investment 

costs for micro-turbine-based CHP applications are estimated to vary from 1000 to 1700 EUR/kWel.  
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Capstone Corporation® is one of the most important manufacturers of micro-turbines for cogeneration 

applications (Figure 2.3). Capstone makes various sizes of micro-turbines: 30 kW, 65 kW, and 200 kW, 

which can be used in distributed power generation and can operate on: Natural Gas, Propane, Gas, Diesel 

and Kerosene.  

 

Figure 2.3 Design of the C65 Capstone MicroTurbine (“Capstone Turbine Corporation,” 2012). 

 

The Micro-turbines offer a number of potential advantages compared to other technologies for small-scale 

power generation. Those advantages are their compact size and low-weight per unit power, a small 

number of moving parts, lower noise levels, multi-fuel capabilities, as well as, opportunities for lower 

emissions. Micro-turbine systems range in size suitable to meet the thermal and electrical requirements of 

multi-family residential, commercial or institutional buildings. 

 

2.2.2.  Internal Combustion Engine (ICE) 

ICE cogeneration-based systems are suitable for small-scale applications because of their robust and well-

proven technology. Reciprocating ICEs are classified by their method of ignition: spark ignition, Otto 

engines, or compression ignition, Diesel engines. Otto engines are mainly used for smaller cogeneration 

applications, with their heat recovery system producing up to 160 ºC hot water or steam at 20 bar. These 

engines can run on natural gas, although they can be set up to run on propane, gasoline or landfill gas. 

Diesel engines are more suitable for large-scale cogeneration, mostly running on diesel fuel or oil. They 

can also operate on a dual fuel mode that burns primarily natural gas with a small amount of diesel fuel 

(Hycienth I. Onovwiona, Ismet Ugursal, & Fung, 2007). 

The interest in ICEs, as a choice of prime mover of for residential cogeneration applications is due to their 

robust nature, reliability, and reasonable cost.  
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The basic configuration of an ICE based cogeneration system comprises: the engine, the generator, the 

heat recovery system, the exhaust system and controls. The generator is driven by the engine, and the 

useful heat is recovered from the engine by the cooling systems (Onovwiona & Ugursal, 2006).  

In cogeneration applications, and according to size, engines can operate at high, median or low speeds. 

For high-speed engines, the specific costs (EUR/kW) are lower, once the engine power output is 

proportional to the engine speed. ICEs have electrical efficiencies that range from 28 to 39%. In general, 

diesel engines are more efficient than spark ignition engines because of their higher compression ratios. 

In terms of overall efficiency, the value varies between 85–90% for ICE based cogeneration systems.   

Concerning to heat recovery, there are four sources, where waste heat can be used:  exhaust gases 

(between 30% and 50%), engine jacket cooling water (up to 30%), lubrication oil cooling water and 

turbocharger cooling.  The temperature of the hot water recovered from the engine jacket is often between 

85 and 90 ºC, whereas the engine exhaust gases temperatures can reach 120 ºC. The latter, can be used 

to produce, for instance, hot water or low-pressure steam for space heating, domestic hot water heating 

(Yun, Cho, Luck, & Mago, 2013). One of the most disadvantages of ICEs is the need of periodic 

maintenance inspections, where the most important maintenance operation involves oil changing. Some 

cogeneration systems based on ICEs, fuelled by natural gas, have been redesigned recently. The most 

important improvement is to force the oil passage through all engine surfaces. Furthermore, appropriate 

material quality led to the minimization of engine maintenance requirements. These engines occupy small 

installation space, have low noise (<60 dB(A) at 1 m), vibrations and long life service (40 000–60 000 h, 

corresponding to about 10 years).  Several ICE based cogeneration systems, suitable for the residential 

sector, are currently available in the market. The main characteristics of some of those commercial 

systems are listed in Table 2.1. According to the data, their specific cost ranges between 2000 and 3 

000€/kWel when electric power is higher than 5 kWel.  

Honda, and Osaka Gas have developed the Ecowill model able to produce 1 kW of electrical power and 

2.80 kW of thermal output.  This model was designed for single-family applications with an overall energy 

efficiency of 85%. The German manufacturer, Senertec®, produces a cogeneration unit of 5.0 kW electric 

and 12.3 kW thermal power called Dachs. This unit is based on a one-cylinder four-stroke engine that can 

be fuelled by natural gas, LPG, fuel oil or biodiesel. The total efficiency at full load is lower than 90%. With 

an optional exhaust gas heat exchanger, the thermal output could be raised to 13.3 kW and an overall 

efficiency of 92% is then achieved. PowerPlus Technologies®, with the Ecopower model, proposes a 

system based on Briggs & Stratton 5 hp engine, fuelled by natural gas or propane. Its output is of 4.7 kW 

of electrical power and 12.5 kW of heat for an overall efficiency of up to 92%. At the moment, gas-fired 

ICEs are the most mature technology available on the market. 
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Table 2.1 Commercially available cogeneration systems based on ICE 

Specifications Honda Ecowill 
Aisin Seiki 

GECC 46 
Ecopower 

Senertec 

Dachs  

Cogengreen 

Ecogen 12 

Electr. Power [kW] 1.0 4.6 4.7 5.0 11.7 

Therm. Power [kW] 2.8 11.7 12.5 12.3 26.5 

Electr. Efficiency [%] 22.5 25.5 24.8 25.5 28.5 

Therm. Efficiency [%] 63.0 58.5 66.0 62.7 64.6 

Fuel NG, LPG NG, LPG NG, Propane NG NG,LGP 

Weight [Kg] 83 465 390 530 750 

Nº Engine Cylinders 1 3 1 1 4 

Noise [dBA] 44 54 56 56 53 

 

2.2.3.  Fuel Cells  

Fuel cells generate electricity through a chemical reaction without combustion and mechanical work. 

Concerning to principle of operation, every fuel cell has two electrodes, one positive and one negative, the 

anode and cathode. The reactions that produce electricity take place at the electrodes. The electrolyte 

carries electrically charged particles from one electrode to another, and a catalyst speeds the reactions. 

Hydrogen is the basic fuel, but fuel cells also require oxygen. Fuel cells generate electricity with zero 

pollutant emissions, since combining hydrogen and oxygen form water and heat as a by-product during 

the electricity production. Basically, the reaction is achieved through the electrochemical oxidation of the 

hydrogen and the electrochemical reduction of oxygen. The fuel cell produces an electrical current that, 

because of the way electricity behaves, this current returns to the fuel cell, completing an electrical circuit. 

Considering that the reaction is exothermic the released heat can be used for space and domestic water 

heating. The hydrogen used as fuel can be produced from different sources, such as, natural gas, 

propane, coal, or through the electrolysis of water. 

Currently, there are various types of fuel cell technologies in different stages of development. These 

include Alkaline Fuel Cells (AFC), Polymer Electrolyte Membranes Fuel Cells (PEMFC), Phosphoric Acid 

Fuel Cells (PAFC), Molten Carbonate Fuel Cells (MCFC), Solid Oxide Fuel Cells (SOFC), and Direct 

Methanol Fuel Cells (DMFC) (Perry & Fuller, 2002). 

ACF uses a solution of potassium hydroxide in water as their electrolyte. Efficiency is about 70 %, and 

operating temperature is 150 to 200 ºC. Their output ranges from 300 W to 5 kW and require pure 

hydrogen fuel.  MCFC uses high-temperature combinations of salt carbonates (e.g. sodium or magnesium) 

as the electrolyte. Efficiency ranges from 60 to 80%, and operating temperature is about 650 ºC. Power 

plants with output up to 2 MW have been constructed, and designs exist for units up to 100 MW. Their 

nickel electrode-catalysts are inexpensive compared to the platinum used in ACF. But the high 
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temperature also limits the materials and safe uses of MCFCs in residential buildings. Efficiency of PAFCs 

range from 40 to 80%, and operating temperature is between 150 to 200 ºC. The output of PAFCs is up 

to 200 kW, and 11 MW units have been tested in the last years. Platinum electrode-catalysts are needed, 

and internal parts must be able to withstand the corrosive acid. PEMFC works with a polymer electrolyte 

in the form of a thin, permeable sheet. Efficiency is about 40 to 50%, and operating temperature is about 

80 ºC for an output in the range from 50 to 250 kW. These cells operate at a low enough temperature to 

make them suitable for residential systems because the leak risk is low. However, their fuels must be 

purified, and a platinum catalyst is used on both sides of the membrane, which actually raise their cost. 

SOFC use a hard, ceramic compound of metal oxides as electrolyte. Their efficiency is about 60%, and 

operating temperatures are about 1000 ºC. Cells output is up to 100 kW. At such high temperatures, a 

reformer is not required to extract hydrogen from the fuel, and waste heat can be recycled to make 

additional electricity. However, the high temperature limits applications of SOFC units and they tend to be 

rather large (Cells2000, 2005).  

Fuel cell technology is an emerging technology with potential for both electricity and thermal generation. 

The advantages of fuel cell cogeneration systems include low noise level, potential for low maintenance, 

low emissions, and a potential to achieve a high overall efficiency even with small units. With a fuel cell, 

carbon dioxide emissions may be reduced by up to 49%, nitrogen oxide (NOx) emissions by 91%, carbon 

monoxide by 68%, and volatile organic compounds by 93% (Onovwiona & Ugursal, 2006). Low emissions 

and noise levels make fuel cells particularly suitable for residential and small commercial applications. 

Figure 2.4 summarizes the main advantages and disadvantages according to fuel cell typology. 

The high cost and relatively short lifetime of fuel cell systems are their main negative aspects. On-going 

research to solve technological problems and to develop less expensive materials and mass production 

processes are been developed. Fuel cell based cogeneration system consist of a system that includes: fuel 

cell stack; feed gas manifolds; a fuel cell processing subsystem such as fuel management controls, 

reformer, steam generators, shift reactors, sulphur absorbent beds, and ancillary components; a power 

and electronic subsystem such as solid state boost regulator, DC to AC inverters, grid interconnect 

switching, load management and distribution hardware, and inverter controller and overall supervisory 

controller; a thermal management subsystem such as stack cooling system, heat recovery and 

condensing heat exchangers. The components with most representative costs are: the fuel cell stack (25 

to 40%) and the fuel processing subsystem, which represents 25–30% of equipment costs. The main 

drawback of this technology is the investment cost (Kuhn, Klemeš, & Bulatov, 2008). 
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Figure 2.4 Advantages and disadvantages for different types of fuel cells and range of temperature operation. 

 

2.2.4.  Organic Rankine Cycles 

Organic Rankine Cycles (ORCs) are also a emergent technology that has been prove to be suitable for low-

temperature heat source applications at various scales, from several kWel to over 1 MWel. By using of low-

temperature heat sources, the ORC has a relatively higher thermal efficiency when compared to other 

heat cycles. The conventional Rankine cycle comprises five components, namely, the working fluid, 

heater, expander (i.e. turbine), condenser and compressor (or pump). An ORC cogeneration based system 

uses a working fluid which is first pumped through a boiler, suffers evaporation, pass through a turbine 

and, finally, is condensed (Saitoh, Yamada, & Wakashima, 2007). The fluid is organic, and may have a 

higher boiling point than the water. Low-temperature heat can be used in the micro-CHP by converting it 

to work and, thus, electricity. In fact, at low temperatures, organic working fluids lead to higher cycle 

efficiency than water. ORC power generation systems have been used successfully in geothermal power 

plants for decades. In small-scale and micro-scale CHP systems, organic working fluids are desirable 

because the fluid mechanics leads to high efficiency. With an appropriately selected organic working fluid, 

the vapour can expand in the turbine in its saturated and superheated states. Some ORC engines are 

quite small and light, with theoretical net electrical efficiencies of up to 17%. Some units can also vary 

their output in response to the heating demand.  

Although the specific investment cost of an ORC system is higher than conventional steam cycle, the 

operating cost is considerably lower due to its good controllability, high degree of automation, and low 

maintenance cost (Dong, Liu, & Riffat, 2009). 
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Key technical advantages of ORC power plants include: 

 High cycle efficiency; 

 Very high turbine efficiency (> 85%); 

 No erosion, due to the absence of moisture in the vapour nozzles; 

 Long lifetime periods; 

 Simple start-stop procedures; 

 Quiet operation and minimum maintenance requirements; 

 Good part load performance. 

In the literature, several studies have been presented concerning to ORCs optimization and experimental 

validation. Saitoh et al.(2007) reported the experimental results of a solar ORC system. Authors performed 

experimental tests using a displacement-type scroll expander and compound parabolic concentrator (CPC) 

solar collector to improve the thermal efficiency of the system. The results shown that, the proposed 

system is capable of using waste heat from sources such as the combustion heat of biogases or hydrogen 

and the exhaust heat from other energy systems, improving its overall efficiency. Sun & Li (2011) 

proposed a mathematical model to optimize the performance of an ORC heat recovery power plant using 

R134a as working fluid. Their work analyses variables, such as the working fluid mass flow rate, air cooled 

condenser fan air mass flow rate, and expander inlet pressure, on the system thermal efficiency and 

system net power generation. Yamamoto et al. (2001) developed a numerical simulation model to 

estimate ORC system performance under various operating conditions. An experimental apparatus was 

also developed to validate the numerical results.  

The most important factors in the evaluation of an ORC system are the investment costs and the overall 

efficiency. The annual maintenance costs should be less than 0.5% of the total investment costs. The 

proven lifetime ought to exceed 80 000 operating hours. Data about the ORC investment costs was not 

found in the literature.  

 

2.2.5. Stirling Engines  

Stirling engines are a technology that is not fully developed yet, and it is not widely used. This technology 

has good potential because of its high efficiency, fuel flexibility, low emissions, low noise/vibration levels 

and good performance at partial load (Alanne, Söderholm, Sirén, & Beausoleil-Morrison, 2010). Unlike 

reciprocating internal combustion engines, Stirling engines rely on an external combustion or other 

exterior heat-source, thus allowing the use of different primary energy sources including fossil fuels (oil 

derived or natural gas) and renewable energies (solar or biomass). In these engines, the working fluid 

operates on a closed regenerative thermodynamic cycle, with cyclic compression and expansion of the 

working gas at different temperature levels (Kongtragool & Wongwises, 2003; Rogdakis, Antonakos, & 
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Koronaki, 2012). Since the combustion process takes place outside the engine, the continuous 

combustion process make Stirling engines a smoothly technology, resulting in lower vibration, noise level 

and emissions when compared with the reciprocating internal combustion engines. This technology is also 

characterized to have fewer moving parts compared to other engines. Stirling engines have low wear and 

long maintenance free operating periods. Stirling cycle engines have been developed as an external 

combustion engine with regeneration. The cycle resembles in the ideal Carnot cycle. Stirling cycle has the 

potential of achieving higher overall efficiency than those of the Rankine or Joule Cycles, because it more 

closely approaches the Carnot cycle. 

Nevertheless, there are some limitations for Stirling engine technology. Some components of the engine 

should be manufactured with special alloys because of the high temperature and pressure operational 

conditions endured by the system. This increases the production costs which require high investment 

costs. Moreover, the choice of the “ideal” gas can bring some difficulties associated with its ability to 

diffuse through materials, which works at high operation pressures. Despite these limitative aspects of 

Stirling engines, this technology fulfils a number of requirements for decentralized energy conversion 

applications. Table 2.2 presents the actual energy requirements and the attractive features of the Stirling 

technology.   

 

Table 2.2 Power plant needs and matching attractive features of Stirling engines 

Technological Needs Stirling Engine Characteristics 

Reducing conventional fuels use Flexible fuel sources 

Increasing fossil fuel costs Low fuel consumption 

Use of alternative fuels Low noise and vibrational levels 

Reduction of gas emissions Clean combustion 

Waste heat recovery High thermal efficiency 

 

A number of Stirling engine developers for micro-CHP applications are available. Stirling engine 

manufactures that are focused on micro-CHP applications are worldwide dispersed.  

Stirling engines have been developed in a wide range of power capacity, from 1 W to 1 MWel. Both engine 

drive types show a great potential for combined heat and power systems. The kinematic Stirling units are 

able to produce 1.1 to 500 kWel of electrical capacity, while free piston Stirling engines can be found in the 

range between 1 and 25 kWel. This makes free piston Stirling engines an attractive technology suitable for 

small- and micro-scale applications. There are some commercially available cogeneration systems, based 

on Stirling engines, in development.  The company WhisperTech® (New Zealand) developed an alpha 

kinematic engine called WhisperGen™ with a capacity of up to 1.2 kW of electrical power and 7.5-14.5 kW 

of heat. It is a four-cylinder unit with the option to interface with the electrical grid. WhisperGen™ provides 
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a low electrical efficiency of 12% but an total efficiency of 80%, leading to smooth and vibration free 

operation (WhisperTech, 2012).   

Microgen™ unit, developed by BG Group from a US (Sunpower) design, contains a supplementary burner 

that enables it to meet the full heating requirements for larger homes. MicroGen™ is a cogeneration unit 

for residential and small-office use. The unit is based on free piston Stirling engine and it is fuelled by 

natural gas. This unit is able to produce 1.1 kW of electricity and a thermal output range of 15-36 kWth. 

However, when the demand is low, the unit has the capacity of modulating down to 5 kW th. According to 

BG Group, the MicroGen™ unit can reduce CO2 emissions in 25% (Baxi, 2012). 

Cleanergy® is a leading engine manufacturer in the Stirling technology field. It offers two variants of small 

power plants: one for biogas and one for solar power, the Solo Stirling model. The units are of open 

source configuration and have the maximum electrical capacity of 9kW. The combined heat and power 

unit for biogas also generates 26 kW of thermal power. Cleanergy’s Stirling units have a very long lifetime 

and high efficiency. In 2009, Cleanergy® moved the production of Stirling engines from Germany to the 

newly refurbished company in Sweden in order to scale-up the production (Cleanenergy, 2012). 

The Enatec® consortium in the Netherlands and Rinnai in Japan both use Infinia Stirling generator 

technology in their residential CHP systems. Their free-piston Stirling generators are designed to deliver 

energy in a way that is virtually silent, long-lasting, economical, environmentally-friendly and exceptionally 

low-maintenance. Infinia Corporation® recently launched a new system, the PowerDish™, which uses a 

parabolic concentrator dish to concentrate the sun's energy onto the hot end of a free-piston Stirling 

engine. This concentrated solar energy creates a temperature differential across the engine, causing the 

expansion and the contraction of the working gas which leads to the piston motion and the alternator 

generates electricity (Infinia Corporation, 2012). Inspirit® has been developing a micro-CHP unit based on 

a kinematic Stirling engine design.  The beta configuration Stirling engine uses helium as its working gas 

and utilises an external heat source, to provide energy. The micro-CHP unit is capable of simultaneous 

generation of 15kW thermal and 3 kW electrical output, exporting this electricity back to the utility grid. 

The appliance offers a total efficiency of up to 92%, comparing to an electrical efficiency of 16% and a 

thermal efficiency of 76% (Inspirit, 2012).  

Stirling BioPower®, previously called STM Power, is a North American company which designs and 

manufactures Stirling engines. The company developed the PowerUnit™ which uses a Stirling engine to 

create a prime mover designed for renewable energy and distributed generation applications. The system 

was designed to operate on natural gas, propane, alcohol and renewable energy such as biomass or hot 

air as heat source. PowerUnit™ is able to reach a net electrical efficiency of 27-28% and, used in 

cogeneration mode, the total efficiency can achieve the 75-80% (Stirling BioPower, 2012). Sigma 

Elektroteknisk (in Norway) developed a Stirling engine, PCP 1-130, to be used in co-generating 
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applications. The beta-type Stirling uses helium as the working fluid, producing 1.5 kW of electrical power 

and 9 kW of thermal power with a total efficiency of 95%. 

Table 2.3 presents the specifications of several commercial cogeneration units based on Stirling engine 

technology. The cogeneration units are compared in terms of electrical and thermal output; electrical and 

thermal efficiency, fuel, working gas, size and engine configuration. 

In the literature, there are some interesting works concerning the optimization of Stirling engines for 

several applications. Some of those studies are numerical and others are experimental. Wu, Chen, Wu 

and Sun (1998) analysed the optimal performance of a Stirling engine. In their Study, the influence of 

heat transfer and regeneration time on the Stirling engine cycle performance was discussed.  Formosa & 

Despesse (2010) developed an analytical thermodynamic model to study free-piston Stirling engine’s 

architecture. The model integrated the analysis of the regenerator efficiency and conduction losses, the 

pressure drops and the heat exchangers effectiveness. The model was validated using the whole range of 

the experimental data available from the General Motor GPU-3 Stirling engine prototype. The influence of 

the technological and operating parameters on Stirling engine performance was investigated. The results 

from the simplified model and the data from the experiment showed a reasonable correlation.  

 

Table 2.3 Cogeneration units based on Stirling engine technology and their specifications 

Specifications Whispergen Baxi Ecogen Sunmachine  SM5A Solo 161 

Electr. Power [kW] 1.0 1.0 3.0 8.1 9.0 

Therm. Power [kW] 7.0 6.0 10.5 24.9 26.0 

Electr. Efficiency [%] 12 13.5 20.0 21.1 25.0 

Therm. Efficiency [%] 84.3 81.1 70.0 64.8 72.2 

Fuel NG NG, Biogas Wood Pallet Biogas 
NG, LPG, 

biogas, biomass 

Weight [Kg] 137 110 410 900 460 

Working fluid Nitrogen - Nitrogen Helium 
Helium, 

Hydrogen 

Engine Type Alpha  LFP(1) Alpha Beta  Alpha 

Noise [dBA] - 45 - - - 

(1)Linear Free Piston (LFP) 

Kaushik & Kumar (2000) studied effects of irreversibility of the regenerator and heat transfer process in 

heat/sink sources. Ust, Sahin & Kodal (2007) introduced a new thermo-economic performance analysis 

based on an objective function defined as the power output per unit total cost. Boucher, Lanzetta & Nika 

(2007) reported a theoretical study of the dynamic behaviour of a dual free-piston Stirling engine coupled 

with an asynchronous linear alternator. The objective was the evaluation of the thermo-mechanical 
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conditions for a stable operation of the engine. Kongtragool and Wongwises (2006) investigated the effect 

of regenerator effectiveness and dead volume on the engine network; and the heat input into the engine 

efficiency by using a theoretical investigation on the thermodynamic analysis of a Stirling engine. 

Nepveu and his co-authors presented a global thermal model of the energy conversion of the 10 kWel 

Eurodish dish/Stirling unit, using optical measurements to calculate the losses by parabola reflectivity. 

The authors also performed a thermodynamic analysis of a SOLO Stirling 161 engine. The model was 

divided in 32 control-volumes and equations of ideal gas, mass and energy conservation are written for 

each control-volume. The differential equation system was then solved, iteratively by using a MatLab 

programming environment (Nepveu, Ferriere & Bataille, 2009). Rogdakis et al. (2012) studied a Solo 

Stirling Engine V161 cogeneration module via a thermodynamic analysis. Calculations were conducted 

using different operational conditions concerning the heat load of the engine and the produced electrical 

power. The authors achieved good results in terms of electrical and thermal efficiencies as well as a 

positive primary energy saving. Asnaghi and his co-authors (2012) also performed a numerical simulation 

and thermodynamic analysis of SOLO 161 Solar Stirling engine. He and his co-authors considered several 

imperfect working conditions, pistons’ dead volumes, and work losses in the simulation process. 

According to their studies, regenerator effectiveness, heater and cooler temperatures, working gas, phase 

difference, average engine pressure, and dead volumes are parameters that affect Stirling engine 

performance, which was estimated for different input considerations. Also, the results indicated that the 

increase in the heater and cooler temperature difference and the decrease in the dead volumes will lead 

to an increase in thermal efficiency. 

Cheng & Yang ( 2012) developed a theoretical analysis of the effects of the geometrical parameters on the 

shaft work of the Stirling engines. The optimal combination of the phase angle and the swept volume ratio 

was studied and the maximization of the shaft work of the engine was obtained under different specified 

conditions. Effects of the mechanism effectiveness, the dead volume ratio, and the temperature ratio on 

the maximum shaft work of the engine as well as the optimal combination of the phase angle and the 

swept volume ration were also evaluated. Puech and Tishkova, (2011) performed a thermodynamic 

analysis of a Stirling engine conducting an investigation about the influence of regenerator dead volume 

variations. The results showed that the dead volume amplifies the imperfect regeneration effect. 

Zarinchang and Yarmahmoudi (2008) performed a very interesting study in order to optimize the thermal 

components in a 20 kWel Stirling engine. The main objective of their study was re-designing the heat 

exchangers by using two programs, the STRENG and the OPTIMUM. The authors presented an evaluation 

to the geometrical parameters effect in the Von-Mises stress, engine efficiency and power output.  A 

sensitivity analysis to the geometrical parameters of each heat exchanger was presented in order to 

determine the best configuration of the thermal components in order to improve the engine performance. 

The authors concluded that the analysis of the relationships between the geometric characteristics of the 
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heat exchangers gives important insights of their relevance in the engine performance. Moreover, 

significant improvements in terms of engine efficiency can be achieved (Zarinchang & Yarmahmoudi, 

2008, 2009). Ahmadi and co-authors (2013) presented the optimization of a solar-powered high 

temperature differential Stirling engine considering multiple criteria. A thermal model was developed so 

that the output power and thermal efficiency of the solar Stirling system with finite rate of heat transfer, 

regenerative heat loss, conductive thermal bridging loss, finite regeneration process time and imperfect 

performance of the dish collector could be obtained. The problem was formulated as a multi-objective 

problem applying evolutionary algorithms (MOEAs) based on the NSGA-II algorithm. The solar absorber 

temperature and the highest and lowest temperatures of the working fluid were considered as decision 

variables (Mohammad H. Ahmadi, Sayyaadi, Mohammadi, & Barranco-Jimenez, 2013). The system under 

study is presented at Figure 2.5. 

  

Figure 2.5 PV diagram of an isothermal solar Stirling engine cycle. Adapted from ( Ahmadi et al., 2013). 

 

The study showed that in the multi-objective optimization of the solar-dish Stirling engine, if a great weight 

factor is considered for the thermal efficiency, absorber temperature and temperature ratio of the engine 

should be considered at a lower value in comparison to the case in which a lower weight factor is 

considered for the thermal efficiency.  

 

2.2.6.  Comparison between the Technologies  

For micro-CHP applications, spark ignition engines are used when the exhaust heat as well as the heat 

from the oil and engine cooling is recovered using heat exchangers. Reciprocating engines are produced 

and commercialized in large scale by a variety of companies worldwide. One of the most sold systems is 

the Dachs model by Senertec® Company. Different models are available which generates 5.0 or 5.5 kW 

of electricity and 14 kW of thermal energy. It achieves 25% and 80% of electrical and total efficiency, 

respectively. An interesting unit for single-family house applications is the Honda’s Ecowill unit, which 
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delivers 1 kW of electricity.  Fuel Cells, which convert the chemical energy into electrical energy, are under 

development by several companies. Leading examples include the Plug Power PEM (Polymer Exchange 

Membrane) unit with a production of 4.6 kW of electricity, plus 7 kW of heat and the Sulzer Hexis SOFC 

(Solid Oxide Fuel Cell) 1 kWel unit with integral gas burner to provide flexible thermal output. The main 

disadvantages of this technology are that the heat cannot be extracted at well-defined points in the 

system, investment costs are extremely high and reliability issues are still a problematic.  

The most used Rankine engine is the steam engine in which water is boiled by an external heat source, 

expands and exerts pressure on a piston or turbine rotor and hence does useful work. Some of these 

systems use an organic fluid and operates at temperatures and pressures much closer to conventional 

heating and refrigeration purposes. An example of these units is the Energetix Genlec system, based on 

the Inergia prototype developed by the Battelle Institute in the USA.  This system is able to produce 1 kW 

of electricity and 10 kW of heat. Although having rather low electrical efficiency, it is well matched to many 

domestic applications and appears to offer relatively low manufacturing costs and good service life 

characteristics. In 2011, this system was in laboratory tests phase (Energetix Group Web Site, 2012). 

Micro gas turbines are also used as prime movers for cogeneration applications, but not at the micro-

scale level due to the fact that these systems are only available for higher power outputs (30kWe). In Table 

2.4, the different technologies are compared considering the electrical and overall efficiencies, the stage 

of the technology development, fuel versatility, and investment costs for each technology and the specific 

power.  

 

Table 2.4 Comparison of different cogeneration technologies 

Technology 
ηel 

 (%) 
ηoverall (%) 

Energy 
Source 

Stage of 
Technology 

Investment 
Costs (€/kWel) 

Specific Power 
(W/kg) 

Micro-Turbines 28-30  
NG, Propane, 
Gas, Diesel 

Mature Technology 1 000 – 1 700 30-47(1) 

ICEs 20-30 > 85 
Liquid fuel 

NG 

Commercially 
available 

 

2 100(2) – 4 500 

 

10 - 18 

Stirling  

Engines 
11-35 > 85 

Any type of fuel, 
Solar radiation 

Some models are 
already 

commercially 
available 

 

2 000(3) – 10 000 

 

7.3 - 9.1 (4) 

Fuel Cells 24-39 80-85 
Hydrogen 

hydrocarbon 
In R&D and test 

prototypes 

 

>30 000 
- 

ORCs 10-20 70-85 Any type of Fuel In R&D - - 

(1) Capstone Models; (2)For a 15 kWe unit; (3) Solo 161 not currently available; (4) not including Solo 161 
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Considering the data from Table 2.4, it can be said that Stirling engines offer a high variety of fuels with 

which it is possible to operate, allowing in particular the use of bio fuels or solar energy. Stirling engines 

have a great potential to achieve high overall efficiencies despite the moderate electrical efficiency. Also, 

the Stirling engines have good performance at partial load. The reciprocating engines are the technology 

with higher maturity, which represents a great advantage with respect to their diffusion in the market. 

Reciprocating engines have similar values for electrical efficiency when compared with the Stirling 

engines, but theoretically require more periodic maintenance representing a cost increase. In addition, 

reciprocating engines have high noise levels and pollutant emissions.  

Fuel Cells and Rankine engines are still under development with some pilot plants being currently tested. 

The major potential of these two technologies lies in the highest electrical efficiency and the almost zero 

pollutant emissions. However, and due to fact that both are emerging technologies, their capital costs are 

considerable. As a result, their competitiveness remains unclear until they could be distributed in the 

market.  

The performance of several CHP units based on Micro Gas Turbine, Stirling engine, ORC and ICE 

technologies is graphically compared in Figure 2.6.  The electric and thermal efficiency is presented as a 

function of electrical power, considering data from CHP units varying in the range of few kW to 100 kW.  

 

Figure 2.6 Comparison of electric and thermal efficiency as a function of electrical power for different technologies. 

 

Comparing the technologies, it may be said that the ORC and the SE are the technologies that present 

higher values for the thermal efficiency and MGT and ICE are the technologies which models can achieve 

a higher electrical efficiency. Accordingly to these data, it can be said that some technologies are more 

suitable for some size of applications than others, taking into account the heat or the electricity demands. 

The CHP tecnhologies seem suitable to be applied for heating of residential buildings (mainly systems up 
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to 5-10 kWel). Bigger buildings requires CHP units with an electric power size lower than 100 kWel (Bianchi, 

De Pascale, & Spina, 2012). 

 

2.3. Optimization Methods 

Optimization refers to a field of applied mathematics and computer science concerned with the 

minimization or maximization of a certain function, possibly under constraints. The birth of the 

optimization can be perhaps traced back to an astronomy problem solved by the young Gauss in the 

1850’s. It matured later with advances in physics and mechanics, where phenomena were described as 

the result of the minimization of a certain ‘‘energy’’ function. Optimization has evolved towards the study 

and application of algorithms to solve mathematical problems with higher or lower complexity (Bejan, 

Tsatsaronis, & Moran, 1996). 

Optimization is an important tool in decision science and in the analysis of physical systems. To make use 

of this tool, the first step is to identify some objective, a quantitative measure of the performance of the 

system under study. This objective can represent profit, time, energy, or any quantity or a combination of 

quantities that can be represented by a single value. This objective (i.e. objective function, ( )f x ) 

depends on certain characteristics of the system, called variables or unknowns, which optimal values 

optimize the objective function (Nocedal & Wright, 1999). The process of identifying objective, variables, 

and constraints for a given problem is a very important step in the design of an appropriate model. If the 

model is too simplistic, it does not give useful insights into the practical problem. If it is too complex, it 

may be too difficult to solve (S. S. Rao, 2009). Most of the scientific problems involve equations that relate 

the changes in some key variables to each other. Modelling a physical phenomenon comprises reasonable 

assumptions and approximations, always taking into account the relevant physical laws and the 

dependency degree between the variables. The model should reflect the essential features of the physical 

problem it represents.  

Once the model is formulated, an optimization algorithm can be used to find its solution, usually with the 

help of computer software or a simulation platform. There is no universal optimization algorithm; a 

particular algorithm should be applied to a particular optimization problem. Problems can be classified 

according to the nature of the objective function and constraints (linear or nonlinear), the number of 

variables, the smoothness of the functions (differentiable or non-differentiable), and so on (Rodríguez-

Toral, Morton, & Mitchell, 2000). 

The optimization problems can be divided into continuous and discrete types depending on the nature of 

the objective function. Discrete problems usually have a finite number of variables, each of which 

assumes exactly one value at an optimal solution. In continuous problems, the optimal values are 

functions of some parameter, and a solution to the problem requires the specification of this function over 
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a set of parameters. The continuous optimization problems have a non-linear nature and are 

characterized by the presence of explicit and implicit constraints on both control variable and objective 

function. Continuous optimization problems are normally easier to solve because the smoothness of the 

functions makes it possible to use objective and constraint information at a particular point x value of the 

decision variable to deduce information about the function’s behaviour at all points close to solution. In 

discrete problems, by contrast, the behaviour of the objective and constraints may change significantly as 

we move from one feasible point to another. 

On the basis of the number of objective functions describing the performance of the system, the objective 

to find the optimal solution is called single-objective optimization when an optimization problem describing 

an optimization problem involves only one objective function. When the optimization problem involves 

more than one objective function, it is known as multi-objective optimization problems, which use multiple 

decision-making criteria. 

Optimization problems can also be characterized as unconstrained and constrained problems. 

Unconstrained optimization problems arise even in some problems with natural constraints on the 

variables, as they do not influence the solution and do not interfere with algorithm procedure. Other 

situation regards to the problems that arise as a reformulation of constrained optimization problems, in 

which the constraints are replaced by penalty techniques added to objective function. Constrained 

optimization problems arise from models in which constraints play an essential role, for example in 

imposing physical or economic constraints in a design problem. These constraints may be simple bounds, 

more general linear constraints, or nonlinear inequalities that represent complex relationships among the 

variables. 

Many algorithms for nonlinear optimization problems seek only a local solution, a point at which the 

objective function is smaller than at all other feasible nearby points. They do not always find the global 

solution, which is the point with lowest function value among all feasible points. Global solutions are 

needed in some applications, but for many problems they are difficult to recognize and even more difficult 

to locate (Nocedal & Wright, 1999). 

Optimization algorithms are iterative. They start with an initial feasible point (a set of values for the 

decision variables) and generate a sequence of improved estimates (called “iterates”) until they terminate, 

hopefully at a solution. The strategy used to move from one iterate to the next distinguishes one algorithm 

from another. Most strategies make use of the values of the objective function, the constraint functions, 

and possibly the first and second derivatives of these functions. Some algorithms accumulate information 

gathered at previous iterations, while others use only local information obtained at the current point. Good 

algorithms should possess: robustness, efficiency and accuracy. A robust algorithm is able to solve well a 

wide variety of problems in their class and does not require excessive computer time or storage; an 
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efficient and accurate algorithm is able to identify a solution with precision, without being too much 

sensitive to errors in the data when implemented on a computer.  

Nevertheless, compromises between convergence rate and computational effort, and between robustness 

and speed must be considered when applying these numerical approaches in solving engineering 

problems. A rapidly convergent method for a large unconstrained non-linear problem may require too 

much computer effort. On the other hand, a robust method may also be the slowest (Thomas, David, & 

Leon, 2001a). 

There is a great variety of optimization methods and/or algorithms. Its choice and application depends on 

the problem that is intended to solve: constrained or unconstrained; linear or non-linear; global or local 

optimization problems. In the literature, there are gradient-based as well as derivative-free optimization 

methods that converge to solutions of problems.  

Most algorithms require the user to supply a starting point, denote by 1x . The user with knowledge about 

the application and the data set may be in a good position to choose 1x  to be a reasonable estimate of 

the solution. Otherwise, the algorithm must choose the starting point, either by a systematic approach or 

in some arbitrary manner. Optimization algorithms generate a sequence of iterates that terminate when 

either no more progress can be made or when it seems that a solution point has been approximated with 

sufficient accuracy. In deciding how to move from one iterate to the next, the algorithms use information 

about the function. They use this information to find a new iterate with a lower function value than. Many 

constrained optimization algorithms can be adapted to the unconstrained case, often via the use of a 

penalty method. However, search steps taken by the unconstrained method may be unacceptable for the 

constrained problem, leading to a lack of convergence. Nevertheless, most problems in engineering are 

somehow constrained (Williamson & Shmoys, 2010).  

 

2.3.1. Optimization Methods for Multidimensional Problems  

Derivative-free as well as gradient-based optimization methods are used to solve problems with several 

decision variables and its application depends on the problem formulation and if the functions are 

differentiable or not. Direct Search methods attempt to solve optimization problems when the functions 

are not differentiable and when the explicit information about its gradient is unavailable or untrustworthy. 

According to Kolda, Lewis, & Torczon (2003), interest in direct search methods was revived after its 

application in parallel computing. Since then, it was proved that direct search methods continue to be an 

effective option, and sometimes the only option, for several varieties of difficult optimization problems and 

that it is possible to provide rigorous guarantees of convergence of most of them. 

The Nelder–Mead simplex algorithm (or the method of the polyhedron in R) is one of the most widely cited 

of the direct search methods. This method does not calculate derivatives, using only the information of the 



  

34                     Numerical Optimization and Economic Analysis in the Design of a micro-CHP System with a Stirling Engine and a Solar Collector 
 

objective function whose expression is not differentiable. The simplex is composed by n+1 vertices. The 

simplex is usually represented by 
1 2 1, , ,k n nS X X X X  , where the vertices are represented by 

crescent order (i.e. 1 2( ) ( )f X f X ), where the 1X  is the better vertex of the simplex and 1nX  , is the 

worst. For each iteration, auxiliary points are defined and those points are candidate vertices of a new 

simplex that will be accepted or rejected by comparing only the values of function with their value. The 

first step of the algorithm is to calculate the centroid of the simplex defined by the better n vertices of the 

simplex. After that, a new vertex is calculated according to equation (2.3): 

  1 1new n nX X X X     (2.3) 

where  begins with the value 2 when the first auxiliary point is calculated. Four scenarios are possible: if 

its function value is good ( 1( ) ( ) ( )new nf X f X f X  ), the reflected vertex is accepted and the worst 

one is removed from the simplex; it its function value is very good ( 1( ) ( )newf X f X ), the simplex is 

expanded (
expX ); if the reflected vertex is weak ( 1( ) ( ) ( )n new nf X f X f X   ), the simplex is 

contracted( contrX ); finally, if the reflected point is very weak ( 1( ) ( )new nf X f X  ), the simplex is 

contracted to the interior of the polyhedron (
contr_intX ).If none of the four conditions is found out, the 

polyhedron is shrunk. This means that each vertex is replaced by the midpoint of the segment joining the 

vertex to its collinear one. To calculate the simplex for the next iteration, it is necessary to order the 

simplex to check the stopping criterion. Figure 2.7 presents the design of each type of algorithm vertices.  

         

2.7-a 

             

2.7-b 

 

2.7-c 

 

2.7-d 

Figure 2.7-a Calculation of the simplex centroid for the Nelder–Mead simplex algorithm. 2.7-b Calculation of the 

reflected vertex for the Nelder–Mead simplex algorithm. 2.7-c Calculation of an expanded vertex for the Nelder–Mead 

simplex algorithm. 2.7-d Calculation of a contracted vertex for the Nelder–Mead simplex algorithm. 
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Gradient methods use the information from the objective function and they can only be applied to 

problems that are differentiable. In general, these methods reach the convergence easily when compared 

to the search methods and generate a succession of approximations to the solution 
( )( )jx according to 

the equation(2.4): 

 
( 1) ( ) ( ) ( )j j j jx x d    (2.4) 

where ( )jd is the search direction (a vector) and ( )j  is the step length (a scalar). The iterative equation 

to calculate the search direction is different for each method. Gradient based methods include the 

safeguarded Newton method and the Quasi-Newton method, both using the information of the objective 

function and the derivatives (gradient and/or Hessian matrix) and can only be applied to problems whose 

functions are differentiable. 

 

2.3.2. Constrained Optimization Methods 

Algorithms about minimizing (maximizing) functions subject to constraints on the variables are usually 

based on the formulation described by equation (2.5): 

 

( ) 0
min ( )

( ) 0

i

i

c x
f x subject to

c x




  (2.5) 

where ( )f x is the objective function and ic are the constraints, both real-valued functions on a subset of 

n . Finding a solution in constrained optimization problems can be much harder than in unconstrained 

ones, since the feasible domain might exclude many of the local minima and it may be comparatively 

easy to pick the global minimum from those that remain. However, constraints can also make things more 

difficult (Thomas, David, & Leon, 2001c). If the constrained problem has only equality constraints, the 

method of Lagrange multipliers is usually used to convert it into an unconstrained problem whose number 

of variables is equal to the original variables number plus the number of equality constraints. Alternatively, 

if the equality constraints are all linear, they can be solved for some of the variables in terms of the others, 

leading to an unconstrained problem in a lower number of variables (S. S. Rao, 2009). 

For problems with inequality constraints, it can be characterized in terms of the Karush–Kuhn–Tucker 

conditions (KKT conditions), in which simple problems may be solvable. 

If the objective function and all of the constraints are linear, then the problem is a linear programming 

problem. This can be solved by the simplex method, which usually works in polynomial time in the 

problem size but is not guaranteed to, or by interior point methods which are guaranteed to work in 

polynomial time (Thomas, David, & Leon, 2001b). If all the hard constraints are linear but the objective 

function is quadratic, the problem is a quadratic programming problem.  
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Penalty methods correspond to a class of algorithms for solving constrained optimization problems. A 

penalty method substitutes a constrained optimization problem by a series of unconstrained problems 

whose solutions converge to a proximal solution of the original constrained problem. The subsequent 

unconstrained problems are defined by adding a term, called a penalty function, to the objective function 

that consists of a penalty parameter multiplied by a measure of violation of the constraints. The measure 

of violation is non-zero when the constraints are violated and is zero in the domain where constraints are 

not violated. The penalty method can be commonly defined as in equation (2.6).  

 *( ) arg min ( , )
nx R

x r x r


   (2.6) 

where ( , ) ( ) ( , )x r f x P x r   , ( )f x is the initial objective function, ( , )P x r  is the penalty function 

that measures the constraint violation.  

The application of the penalty functions depends on the constraints typology. Different penalty function 

may be applied taking into account if the constraints are equality or non-equality constraints. The 

quadratic penalty function and the penalty function of absolute value correspond to non-exact and exact 

methods to solve the optimization problem. 

 

Penalty Function of Absolute Value for equality constraints (exact): 

 

1

min ( , ) ( ) ( , )

( , ) ( )
m

i

i

x r f x P x r

P x r r c x


  

 
 (2.7) 

( , )x r  is not differentiable, then the solution can only be calculated by a method that does not use 

derivatives such as the Nelder-Mead method. Exact penalty methods for the solution of constrained 

optimization problems are based on the construction of a function whose unconstrained minimizing points 

are also solution of the constrained problem. 

 

Quadratic Penalty Function for equality constraints (not exact): 

 2

1

min ( , ) ( ) ( , )

1
( , ) ( ( ))

2

m

i

i

x r f x P x r

P x r r c x


  

 
 (2.8) 

where ( , )x r consists of differentiable functions and the solution can be calculated by a method that 

uses derivatives such as safeguarded Newton method or Quasi-Newton method.  
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Penalty Function for inequality constraints (exact) 

 

1

min ( , ) ( ) ( , )

( , ) max(0; ( ))
p

j

j

x r f x P x r

P x r r h x


  

 
 (2.9) 

( , )x r  is not differentiable at points where 0)( xh j
, then the solution can be calculated by a 

method that does not use derivatives, such as the Nelder-Mead method (Fernandes, 1997). 

The obvious advantage of applying the penalty function approach is obtaining a method that converts 

constrained problems of any type into unconstrained problems. Another advantage to the penalty function 

approach is that many constraints in the real optimization problems are “soft”, in the sense that they 

need not be satisfied precisely. The drawback to penalty function methods is that the solution to the 

unconstrained-penalized problem will not be an exact solution to the original problem (except in the limit 

cases). The Pattern Search algorithms handle optimization problems with nonlinear, linear, and bound 

constraints. When these methods are applied to constrained optimization problems, they can be 

considered as penalty methods and it is required to specify a penalty parameter for the nonlinear 

constraints as well as a penalty update characteristic of the implemented search method. 

 

Sequential Quadratic Programming (SQP) is a method for solving optimization problems with all kinds of 

constraints (equality, inequality and simple limits). SQP relies on theoretical foundation and provides 

powerful algorithmic tools for the solution of optimization problems. 

The idea of SQP is to model the constrained nonlinear problem at the current point kx  ( k is the iteration 

number) by a quadratic sub-problem (QP) and to use the solution of this sub-problem to find the new point 

1kx  . SQP is the application of Newtons’ method to the KKT optimality conditions. The QP sub-problems, 

which have to be solved in each iteration step, should reflect the local properties of the non-linear problem 

with respect to the current iterate. This is done in such a way that the sequence converges to a local 

minimum ( *x ) of the nonlinear problem as k  → ∞. Then, the objective function is approximated by a 

quadratic function while the constraints are approximated by linear functions.  

The Lagrange function ( , )L x   is given by the equation (2.10): 

 ( , ) ( ) ( )TL x f x c x    (2.10) 

where T is the Lagrange multiplier for the k constraints ( )c x of the nonlinear problem. The Kuhn-

Tucker optimal conditions can be identified by equations (2.11) and (2.12). 

 ( , ) ( ) ( ) 0xL x f x c x       (2.11) 
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 2 2( , ) ( ) ( )xxL x f X c x      (2.12) 

As the minimum of the augmented Lagrange function is involved, the SQP method is also known as the 

projected Lagrangean method and the problem is formulated as in the equation (2.13): 

 

21
min ( ) ( , )

2

. . ( ) ( ) 0

T T k k

k

T

k k

d f x d L x d

s t c x c x d

  

 

 (2.13) 

where d is the search direction. The first-order conditions to solve this quadratic problem are defined 

using the Lagrangean function associated ),d(Lq   as in equations (2.14) and (2.15): 

 2( , ) ( ) ( , ) ( ) 0d q k xx k k kL d f x L x d c x        (2.14) 

 ( , ) ( ) ( ) 0T

q k kL d c x c x d       (2.15) 

where η is the vector of multipliers for the quadratic problem. In the matrix form the problem can be 

solved iteratively by solving the quadratic programming problem through the Newton’s method, as shown 

by the equation (2.16): 

 

2 ( )( , ) ( )

( )( ) 0

T
kxx k k k

T
kk

f xdL x c x

c xc x





     
    

     
 (2.16) 

where 2 ( , )L X  is the Hessian matrix of the Lagrange function, ( )c x is the gradient matrix of the 

constraints and the solution ( , )Td  is a vector with n elements that defines the search direction, d , and 

m elements that define , the vector of multipliers for the quadratic problem. 

As this method is valid for a restricted trust region near to ( *x ), the convergence of the method is 

guaranteed only locally. To ensure the global convergence from any initial approximation and to ensure a 

downward direction of the algorithm search, it is required to verify the admissibility criterion and to 

implement a technique of globalization. The admissibility criterions tests if the constrain have decreased 

sufficiently ( )kc x . The function used to measure the progress of the algorithm is a merit function, which 

combines terms that depend not only of the objective function but also on the constraints, as in equation 

(2.17): 

 
2

2

1
( , ) ( ) ( ) ( )

2

T

pM x f x c x c x      (2.17) 

where 
p is a positive penalty parameter. The convergence of the method depends on the Lagrange 

multiplier estimates. In addition, a reasonable value for the penalty parameter is very important since it is 

essential to ensure that the search direction is descendent for the merit function and, therefore, that the 

condition described by the equation (2.18) is verified. 

 ( , ) 0T

x kM x d   (2.18) 
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Note that a major advantage of SQP is that the initial point (or any future iterations points) need not be 

feasible points (solutions that solve the constraints of the problem). 

Recently, engineering problems begun to be solved by applying the genetic algorithms (GA) (Mohammad 

H. Ahmadi et al., 2013; Valdés, Durán, & Rovira, 2003).  While a classical algorithm, at each iteration, 

generates a single point to approach an optimal solution, a GA generates a population of points and the 

best point in the population approaches an optimal solution. The GA is a method for solving both 

constrained and unconstrained optimization problems based on a natural selection process that mimics 

biological evolution. The algorithm repeatedly modifies a population of individual solutions. At each step, 

the genetic algorithm randomly selects individuals from the current population and uses them as parents 

to produce the children for the next generation. Over successive generations, the population "evolves" 

toward an optimal solution. The population size depends on the nature of the problem, but typically 

contains several hundreds or thousands of possible solutions. Usually, the population is generated 

randomly, allowing the entire range of possible solutions (the search space). The solutions may be 

"seeded" in areas where optimal solutions are likely to be found. 

Traditionally, a GA requires a genetic representation of the solution domain and a fitness function to 

evaluate it. The fitness function is a particular objective function that is used to give merit of a given 

solution. After each simulation step, the idea is to delete the worst solutions, and breed new ones. Thus, 

fitness functions indicate how close a certain solution came to meeting the overall specification of the 

optimization problem. These algorithms are usually applied to find global minima for highly nonlinear 

problems (R. V. Rao & Patel, 2013).  

Evolutionary algorithms (EA) are also applied in energy systems optimization. An EA is a category of 

evolutionary computation, a generic population-based meta-heuristic optimization algorithm. An EA also 

uses mechanisms inspired by biological evolution, such as reproduction, mutation, recombination, and 

selection. Candidate solutions to the optimization problem play the role of individuals in a population, and 

the fitness function determines the quality of the solutions as in GA algorithms. 

 

2.3.3.  Thermo-economic Modelling Approaches 

Thermo-economics can be applied to improve the design, thermodynamic and economic aspects of a 

system and its components. Thermo-economics combines energy and exergy analysis with conventional 

cost analysis in order to assess and improve the performance of energy systems. The thermo-economic 

studies in literature can be divided in two different streams: (i) studies focused on the cost flow analysis if 

the objective is the determination of cost generation and/or cost losses and (ii) studies focused on the 

optimization of the design, i.e., the selection of the best system operational conditions if the objective is 

the optimization of power system. The objective of a thermodynamic optimization is to minimize the 
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thermodynamic inefficiencies within the system, whereas the objective of a thermo-economic optimization 

of a system is to estimate the cost-optimal structure and the cost-optimal values of the thermodynamic 

inefficiencies in each component (Bejan et al., 1996). 

Coupling exergy and cost streams is not a new idea. In 1932, Keenan was the first researcher pointed out 

that the value of the steam and the electricity rests in the ‘‘availability’’ not only in their energy. Latter, 

studies focused on desalination processes by exergy analysis, conduced to the idea of exergy costing and 

its applications to engineering economics, for which they coined the word ‘‘thermo-economics’’ (El-Sayed, 

1993). Nevertheless, “exergo-economics” is considered as a part of thermo-economics, since the latter 

have been used in a general sense expressing the interaction between any thermodynamic variables and 

economics. The main idea behind this methodology was to trace the flow of money, fuel cost and 

operation and amortized capital cost through a power plant, associating the utility of each stream with its 

exergy (Tsatsaronis, 1994). 

Numerous studies and theoretical approaches in the thermo-economic field have been developed to 

design and optimize thermal systems since 50s. Bergmann and Schmidt assigned costs to the exergy 

destruction in each component of a steam power plant and optimized feed water heaters. Szargut used 

exergy costing method in the analysis of a simple cogeneration plant and introduced ecological cost 

coefficient by developing an estimated formulation (Szargut, Morris, & Steward, 1988). The use of this 

coefficient made the determination of cumulative consumption of non-renewable natural resources in a 

production process possible. Some of these thermo-economic analyses were collected in a book in 1985 

by Kotas, which is still seen as one of the major references in exergy analysis and thermo-economics of 

thermal systems (Kotas, 1985).  

During 90s, the studies concerning exergo-economic analysis techniques and applications increased 

considerably. Spakovsky (1993), (El-Sayed, 1993) and Valero et al. (1994) developed methods that 

incorporate some key concepts of thermo-economics: sizing constraint through component costing 

equations, integration of both decomposition and large-scale optimization schemes, distinction of 

thermodynamic variables (power, mass rate, heat rate, enthalpy, entropy, heat loss, efficiency, heat 

exchanger effectiveness), adaptation of thermo-economic models to non-linear programming problems 

and development of a new methodology related to exergy cost analysis. 

Lozano and Valero (1993) published another key paper on thermo-economics and presented the basic 

methodology related to exergy based cost analysis and applications, the theory of exergetic cost and 

thermodynamic optimization. This theory lies within the context of cost allocation, which provides an 

important methodology to outline the costing equations. 

One of the most interesting works was the CGAM problem, which proposed a standard and common 

mathematical formulation for all thermo-economic models. The CGAM (Cristhos Frangopoulos, George 

Tsatsaronis, Antonio Valero and Michael von Spakovsky). CGAM was constructed to assess the optimum 
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design parameters of a simple CHP apparatus that produces 30 MW of electricity and 14 kg/s of 

saturated steam. The purpose of this physical model was the standardization of thermo-economic 

methodologies through the common definitions of physical, thermodynamic and cost models plus the 

objective function (Valero et al., 1994).  

Two main categories of thermo-economic methodologies have been identified: the algebraic methods and 

the methods based on differential equations. These methodologies rely on the definition of subsystems; all 

of them are based on optimization of the system by the optimization of the various components of the 

complex thermal systems. The change in one operating condition of a component influences the other 

components. The classification of most important theories about thermo-economic methodologies is 

presented in Figure 2.8. 

 

Figure 2.8 Classificaton of thermo-economic methodologies. 

 

The algebraic methods define algebraic cost-balance equations resultant of conventional economic 

analysis and auxiliary cost equations for each a component or a sub-system of any unit. They are related 

with the cost formation process of the system in order to investigate the average costs. In algebraic 

methods, three approaches can be applied: the Theory of Exergetic Cost (TEC) developed by Valero & 

Lozano (1993), the Theory of Exergetic Costs considering the Disaggregating method (TECD) and the 

Exergoeconomic Analysis (EEA) proposed by Tsatsaronis & Ho-Park (2002).  

The two first approaches use the concept called the exergetic cost. The system is divided into units (a 

component, or a set of components) and a system of equations can be defined with a cost-balance 

equation for each unit. A single product and fuel for each component in the system must be defined. 

Thus, a system of equations can be built with a cost-balance equation for each unit, cost allocation 

equations for external flows into the system for which costs are externally defined, and losses for which 

the cost is set equal to zero.  
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The optimization of EEA is based on an iterative procedure that does not achieve the global optimum of 

the predefined objective function, but attempts to find a reasonable solution for the overall system design. 

Two possible alternatives in these methodologies were formulated: average cost and specific cost. The 

average cost concept is very similar to the application of TEC theory. In the specific cost technique, the 

cost of the addition of exergy to a material/stream current is determined and charged to the unit that 

makes use of that exergy. This means that a component will obtain the exergy from a stream at different 

costs, depending on the components that supplied the exergy to that stream. The division in components 

of the main plant may be made. If power produced is the main product, cost of all external irreversibility is 

loaded on the electricity. In opposition, if heat is produced as main one, the steam produced in the plant 

follows the similar procedure.  

Silveira and Tuna (2003) presented a thermo-economic analysis of a cogeneration plant, applied as a 

rational technique to produce electric power and saturated steam. The aim was to obtain the minimum 

exergetic production cost, based on the second law of thermodynamics. The variables selected for the 

optimization were the pressure and the temperature of the steam leaving the boiler, the pressure ratio, 

turbine exhaust temperature and mass flow in the case of using gas turbines. The equations for 

calculating the capital costs of the components and products were formulated as a function of these 

decision variables.  

The methodologies based on calculus use differential equations. Cost flows are solved with the 

optimization algorithms based on the method of Lagrange multipliers and they are used to determine 

marginal costs. The variation of Lagrange multipliers from iteration to iteration is a consequent difficulty of 

this methodology when the component thermo-economic isolation is not accomplished. There are three 

different approaches: Thermo-economic Functional Approach (TFA), Engineering Functional Analysis (EFA) 

and Structural Theory of Thermo-economics (STT).  

TFA optimization is based on the implementation of a nonlinear optimization Lagrangian method. An 

accurate simulation of the system is necessary to determine the first order derivatives of the objective 

function. The methods used in EFA approach can be categorized on decomposition methods, modular or 

Lagrangian approaches.  

STT methods were proposed as a standard mathematical formulation for all thermodynamic 

methodologies employing models that can be expressed by linear equations.  

The main characteristic of the cited methods is that they propose a cost balance equation applying the 

exergetic unit cost to the exergy balance equation according to a specific principle. However, there is a 

disadvantage of applying those methods to actual systems: too many equations are required to fully define 

the thermo-economic model (Kim, 2010). Some nonlinear programming techniques for thermo-economic 

analysis should be used exclusively for a specific type of problem, being inefficient for some complex 
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models. Bilgen (2000) performed an exergetic and engineering analyses of gas turbine-based 

cogeneration plants consisting of a turbine, heat recovery steam generator and steam turbine.  

The CGAM problem was fully explored for thermo-economic optimization of cogeneration systems based 

on gas turbines. This model was the basis of the Silva (2000) work, who studied the optimization of CHP 

applications by adapting the CGAM problem. The same energy output as the original CGAM (30MW of 

electrical power and 14kg/s of saturated steam at 20 bar) have been considered. After that, Silva and her 

co-authors performed a thermodynamic study of a cogeneration system based on a gas turbine applied to 

a local textile factory at the northwest region of Portugal. The model was developed considering a 

compressor/turbine rated at 5 MWel, a boiler (10 bar) and a heat recovery unit for the thermal fluid. The 

problem was formulated as a non-linear optimization problem with constraints and it was solved with 

different numerical methods. The methodology was based on the thermodynamic analysis based on the 

first law of the thermodynamics and the cost constants were tuned for the Portuguese market and the 

costs updated to the moment according to the inflation rate. In this first approach, the mathematical 

model was implemented as a FORTRAN program and in MatLab® in order to proceed to its validation. A 

correlation for the different physical parameters was achieved in order to better define the coefficients of 

cost equations and the model was implemented considering two optimization criteria: the minimization of 

the total costs including those related with the thermodynamic inefficiencies of the system operation 

(Silva, 2003). 

Subsequently, this mathematical model was reformulated and adapted to small-scale application where 

the system was based on the central component of the plant, a micro gas-turbine, working under the 

Joule-Brayton thermodynamic cycle. The system was intended to deliver 125 kW of useful heat and 90 to 

100kW of electricity (Ferreira et al., 2011). The thermal-economic model was defined as a non-linear 

optimization problem for which the objective function was defined as the maximization of the annual worth 

subjected to the physical and economic constraints. The optimization problem was solved by the Box 

Method, a search method without the need of analytic derivatives, which was implemented in the 

MatLab® environment. This method has the advantage of being a direct optimization method similar to 

the ‘Simplex’ method, requiring a computation time relatively low in getting the optimal solution(Martins et 

al., 2011).  

Ferreira and her co-authors performed different sensitivity analysis regarding the best method to perform 

the thermal-economic optimization of the micro-gas turbines for small-scale cogeneration applications. 

Thus, the purpose was to optimize the main components, for application to medium size buildings, taking 

into account the specificities of the European market (e.g. high energy prices, support schemes). The 

authors intended to find the answer to: “What will be the optimal match between compressor pressure 

ratio, turbine inlet temperature and, internal pre-heater and external heat recovery system effectiveness 

that will lead to the best economical result?” According to the results, different sensitivity analyses have 
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been performed in order to understand how the electricity and fuel prices affect all the physical and 

economic variables (Ferreira, Nunes, Martins, & Teixeira, 2012; Ferreira et al., 2012).  

These studies were performed by comparing different optimization methods: derivative free methods such 

as the Box Method and methods based on the gradient information SQP by using the optimization toolbox 

of MatLab (Ferreira, Rocha, Teixeira, Nunes, & Martins, 2012). Those studies performed by Ferreira et al. 

were based on energy balance equations, applying the first law of thermodynamics. 

Lately, in 2013, the authors applied optimization methods by implementing exergy-based energy 

equations to the micro-gas turbine system (Ferreira et al., 2013; Ferreira, Teixeira, Nunes, Martins, & 

Teixeira, 2013). 

Recently, several authors have proposed approximate methods, including heuristic approaches and 

artificial neural networks, to solve these problems instead of using “traditional” optimization methods, 

such as linear-programming or quadratic programming. Heuristic methods can be seen as simple 

procedures that provide satisfactory, but not necessarily optimal, solutions to complex problems. Meta-

heuristics are generalizations of heuristics in the sense that they can be applied to a wide set of problems, 

needing few modifications to be adapted to a specific case. In some cases, the complexity of the problems 

to solve is so high that even heuristic and meta-heuristic methods requires large runtimes to obtain 

accurate solutions. In these cases parallel processing becomes an interesting way to obtain good solutions 

in reduced runtimes (Gendreau & Potvin, 2010).  

The most used way to classify meta-heuristic algorithms is based on trajectory methods versus population-

based methods. Trajectory meta-heuristics methods use a single solution during the search step and the 

outcome is also a single optimized solution. Most of them are extensions of simple iterative improvement 

procedures that include techniques that enable the algorithm to escape from local optima.  

Also, meta-heuristics based or population methods are also applied. Population-based methods use a 

population of solutions which evolve during a given number of iterations, also returning a population of 

solutions when the stop condition is achieved. The main population-based meta-heuristics include: d. The 

main population-based meta-heuristics include: genetic algorithms (GA) and evolutionary algorithms (EA), 

scatter search, particle swarm optimization (PSO), differential evolution, etc (Baños et al., 2011). 

Valdés et al. (2003) presented a study concerning the thermo-economic optimization of combined cycle 

gas turbine power plants using a genetic algorithm. Authors proposed two different objective functions: the 

minimization of the cost of production per unit of output and the maximization of the annual cash flow. 

Comparing the results, authors concluded that it is possible to find an optimum for every design 

parameter and this optimum depends on the selected optimization strategy. 

Most computational optimization methods have focused on solving single-objective problems, including 

constraints in some cases. Nevertheless, there is simultaneous optimization of several objective functions. 

Multi-objective approaches are often divided into two main categories: aggregate weight functions and 
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Pareto-based optimization methods. Aggregating functions consist of combining all the objectives to 

optimize in a single mathematical function, where the relative importance of each objective is adjusted 

according to relative weights, whereas, Pareto-based multi-objective optimization establishes relationships 

among solutions according to the Pareto-dominance concept. 

Multi-objective optimization has also been carried out in thermo-economic analysis. The importance of 

multi-criteria optimization in design and optimization of thermal systems has been discussed extensively 

(Lazzaretto & Toffolo, 2004). Multi-objective optimization of energy systems involves very complicated 

processes. The new optimization methods are based in genetic algorithms (crossover, mutation and 

selection) and artificial intelligence techniques.  Recently, the most suitable technique is using a particular 

class of search algorithm, known as Multi-Objective Evolutionary Algorithms (MOEAs), which have been 

proven to be able to overcome the difficulties faced by classical or gradient-based method (S. S. Rao, 

2009). 

Basu (2010) applied differential evolution, an improved version of the genetic algorithm and evolutionary 

programming to solve to solve the combined heat and power economic dispatch problem. The proposed 

algorithm test results are compared with those obtained from particle swarm optimization and 

evolutionary programming and proved to be a very efficient algorithm.  

Mathematical optimization, exergoeconomic or not, of real thermal systems correspond to complex 

problems due to the nonlinear characteristics and because mass, energy and exergy balance equations 

should be considered as restrictions (Vieira, Donatelli, & Cruz, 2004).  

Erdil (2005) analyzed and optimized the exergy output rate and exergy efficiency performance of an 

irreversible Carnot cycle cogeneration plant with heat resistance, heat leakage and internal irreversibility. 

Ahmadi & Dincer (2011) report a comprehensive thermodynamic and exergo-economic modeling of a Gas 

Turbine (GT) power plant, aiming to validate the thermodynamic model through a multi-objective 

optimization. The authors reported that the combustion chamber is the component with the highest 

irreversibility rate. Kaushik, Reddy, & Tyagi (2011) presented the second-law approach for the 

thermodynamic analysis of the reheat combined Brayton/Rankine power cycle.  

Depending on the purpose, studies on combined heat and power production in literature can be grouped 

in two groups.  The aim of study can be the quantification the monetary flow rate through components in 

the plant if the purpose is the allocation and determination of the production costs and/or cost of losses 

of the plant. Differently, if the objective is the optimization of a power system, the study is focused on the 

selection of the best conditions for operating the system. The latter approach usually uses energy 

balances from the first law of the thermodynamics, being more a techno-economic assessment of the 

power plants (Alanne et al., 2010; Ferreira et al., 2012). Table 2.5 presents some works on the thermo-

economic analysis and optimization of CHP systems. 
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Table 2.5 Thermo-economic analysis and optimization methodologies applied on CHP systems 

Author Thermo-economic methodology System 

(El-Sayed, 1993) Decomposition Strategy Gas Turbine 

(Frangopoulos, 1993) Thermo-economic Functional Approach 
Steam cycle cogeneration/ 

CGAM Problem 

(Von Spakovsky, 1993) Engineering Functional Analysis Combined Cycle Cogeneration 

(Lozano & Valero, 1993) TEC & method of Lagrange multipliers 
CHP system with boiler, 

turbine-alternator and pump 

(Tsatsaronis, 1994) Specific Exergetic Cost Analysis Method 
Simple Gas Turbine 

Cogeneration 

(Valero et al., 1994) Nonlinear Optimization Algorithms CGAM Problem 

(Manolas, Frangopoulus, Gialamas, 
& Tsahalis, 1997) 

Thermo-economic Functional Approach 
and Genetic Algorithm 

Industrial Cogeneration 
System 

(Rodríguez-Toral et al., 2000) Sequential Quadratic Programming. Combined Cycle Cogeneration 

(Valdés et al., 2003) 
Thermo-economic Functional Approach 

and Genetic Algorithm 
Combined cycle gas turbine 

plant 

(Silveira & Tuna, 2003) 
Exergoeconomic Analysis and 

Optimization 
Combined Cycle Cogeneration 

(Marechal, Palazzi, Godat & Favrat, 
2004) 

Multi-Objective Optimizer (MOO) 
Thermo-economic 

optimization of fuel cells 

(A. Silva, Teixeira, & Teixeira, 2003) Nonlinear Optimization Algorithms Gas Turbine 

(Vieira et al., 2004) Structural Theory of Thermo-economics CGAM Problem 

(Bonnet, Alaphilippe, & Stouffs, 
2005) 

Exergoeconomic Analysis Micro-cogeneration 

(Kong, Wang & Huang, 2005) Linear programming model 

CCHP system with gas 
turbine generator, chiller and 

a heat recovery 

boiler 

(Keppo & Savola, 2007) Mixed Integer Linear Programming (MILP) 
3 small Biofuel Fired CHP 

Plants 

(Sanaye & Ardali, 2009) Thermodynamic Analysis  Micro-turbines 

(P. Ahmadi & Dincer, 2011) Genetic algorithm (NSGA-II) Gas Turbine power plant 

(Ferreira et al., 2011) Box Method Micro-gas turbines 

(Ferreira et al., 2012) SQP Method Micro-gas turbines 

(Ferreira et al., 2013) Pattern Search Algorithm Micro-gas turbines 

(Rao & Patel, 2013) 
Teaching-learning-based optimization 

(TLBO) 
Heat Exchangers 

(Ahamadi, Sayyaadi & Hosseinzade, 
2013) 

MOEAs, NSGA-II Solar Stirling engine cycle 



 
  
Chapter 2 | Literature Review   47 
 

Optimization is the discipline concerned with finding inputs of a function that minimize or maximize its 

value which may be subjected to constraints. Computational optimization can be defined as the process of 

designing, implementing and testing algorithms for solving a vast diversity of optimization problems. 

Computational optimization includes the scientific domains of mathematics to formulate the model, 

operations research to model the system, computer science for algorithmic design and analysis, and 

software engineering to implement the model.  

According to the carefully analysis of the literature, it seems that different methods to a given system 

yields different values for the variables in the models. The resemblance between the methodologies 

depends on the assumptions made in the formulations of cost-balance equations. Besides, the chosen 

level of aggregation that specifies the sub-systems affects the cost structure of combined heat and power 

systems. The number of assumed parameters is crucial in achieving the costs. Some of these 

methodologies are difficult to implement, once the thermodynamic restrictions make the optimization 

problem difficult to be solved. 

Moreover, assessing the flow streams cost in a complex system allows understanding the process of cost 

formation from the input sources to the final products. These analyses can solve problems related to 

complex energy systems such as combined heat and power production. 
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______________________________________________________________________ 

3.1. Energy Policy Framework 

Portugal has a low level of electricity consumption per capita when compared with the EU’s average. 

However, the electricity consumption has greatly increased during the last two decades and mainly in the 

building sector. According to Eurostat data, Portugal (in 2007) was one of the EU countries with the 

highest energy dependence, importing 82% of the total primary energy, when compared to the EU-27 

average of about 53% (Eurostat, 2009). Energy demand has been increasing slightly faster than the rate of 

economic growth and consequently, the energy intensity is 4% higher than it was in 1991, and it is 10% 

above the EU 15-average.  

Thus, the Portuguese energy scenario is characterized by a huge import of primary fossil sources that 

justifies the high-energy dependence. In fact, the energy costs of the imported fuels have been subject to 

a significant growth and, together with the external factors, particularly those which cause variations of 

energy price and exchange rates in the international markets, lead to the research and development of 

cleaner and more efficient alternatives of energy production and conversion.  

Concerning the final energy consumption, a considerable structural change has been reported in the last 

15 years The Portuguese electricity demand has grown considerably in the last decade, at an average 

annual growth rate of 4.4%. Electricity consumption has increased particularly fast in residential, services 

and commercial sectors (International Energy Agency - IEA, 2012). Natural gas was introduced in 1996 

and its share has been continuously increasing while industrial fuel oil decreased and wind energy 

capacity dramatically augmented. 

 



56                      Numerical Optimization and Economic Analysis in the Design of a micro-CHP System with a Stirling Engine and a Solar Collector 
 

Nowadays, Portugal’s economy is dominated by the services sector (63%), while the industrial sector 

accounts for about 30% and it is decreasing. The commercial, public and residential sectors offer an 

interesting potential for cogeneration applications. Small and medium size buildings (e.g. hotels, company 

buildings, hospitals or residential condominiums) are the most suitable for the installation of small- and 

micro-cogeneration power plants.  

The micro-cogeneration market in Portugal has the potential for 6 000 units distributed across these 

sectors. Specifically in the residential sector, there is an estimated potential of around 500 MWel, for 

systems with less than 150kWel. In addition, Portugal is the fourth country of the European Union with 

higher electricity prices without taxes for households, which creates a favourable scenario for micro-CHP 

implementation (Monteiro, Moreira, & Ferreira, 2009).  

Since the 80s, the energy sector suffered profound changes as the production and distribution of 

electricity was opened to the private initiative. The figure of the independent electricity producer was 

created by the historical Decree-Law 88/90 (1988) and the Decree-Law 99/91 established the general 

principles of the legal regimes for the activities of production, transmission and distribution of electric 

energy. Also this decree-law defined the principles of the organization and functioning of the National 

Electric System.  

The subsequent Decree-Laws 183/95, 184/95, 185/95, and 187/95 of 27th July redefined the above 

three and introduced the independent regulation, through the creation of the Portuguese Energy Services 

Regulatory Authority (ERSE).  

The Directive 96/92/CE of the European Parliament and the Council resulted in widespread changes to 

the legal organizational of the electric sector. The National Electric System (NES) has been subject to 

many alterations. Based on the above- mentioned legal instruments, specific regulations were produced, 

and revised in September 2001, of which special mention should be made to the Tariff Code, the 

Commercial Relations Code, the Dispatch Code and the Access to the public grid and to the Inter- 

connections Code. 

In 2002, the entity ‘‘producer–consumer” was created by the Decree-Law 68/2002 allowing the power 

production in low tension, where at least 50% of the produced electrical energy must be self-consumed 

and the maximum power which can be delivered to the power utility is 150 kWel.  

In 2004, the European Union launched the Directive on the promotion of cogeneration based on a useful 

heat demand in the internal energy market (DIRECTIVE 2004/8/EC, 2004). The directive aims the 

promotion of high-efficiency systems led by heat demand. This Directive states that the whole generated 

electricity is to be considered as produced from cogeneration when a 75% overall annual efficiency is 

obtained, if the overall efficiency is below this value, the electricity amount from cogeneration can be 

calculated considering the power–heat ratio of the power plant.  
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This directive also establishes a framework for the promotion of high-efficiency cogeneration based on 

useful heat demand and Primary Energy Saving (PES). PES is considered as the evaluation criteria for the 

installation of cogeneration systems. For small-scale systems, a PES of at least 10% is required, so that 

the system can be classified as a high efficient, whereas in the case of micro-scale systems, it is only 

required a positive value of PES. Thus, PES allows the estimation of the fuel input savings that are 

possible to achieve by a cogeneration unit when compared with the conventional separate production of 

heat and power.  

In 2007, the European Council emphasised the need to increase energy efficiency in the EU member 

states and defined the objective of saving 20% of the primary energy consumption by 2020. The 

projections depicted a primary energy consumption of 1.842 Mtoe in 2020. Plus, on 23 April 2009, the 

Decision Nº 406/2009/EC of the European Parliament and of the Council requested the effort of member 

states to reduce their greenhouse gas emissions to meet the Community’s greenhouse gas emission 

reduction commitments up to 2020. 

After that, and regarding the cogeneration directive, the European commission established harmonized 

efficiency reference values for the separate production of electricity and heat, by taking into account 

factors such as the fuel type and year of construction. The guidelines recommend that correction factors 

should be applied for electricity production should be applied by taking into account the local climate and 

the avoided grid losses. The reference values for the separate production of heat should not be related to 

the year of construction neither heat grid losses because heat is always used near the site of production 

(Decision 2011/877/EU, 2011). 

The increased use of cogeneration constitutes an important part of the package of measures needed to 

comply with the Kyoto Protocol to the United Nations Framework Convention on Climate Change, and of 

any policy package to meet further commitments. 

In 2010, the Portuguese Decree-Law 23/2010 established the guidelines for high-efficiency cogeneration 

based on useful heat demand, which is considered a priority due to its potential primary energy savings 

and consequently reducing CO2 emissions. This Decree-Law also established the remuneration scheme for 

the cogeneration production (Decrew-Law n.o 23/2010, 2010).  

In the specific Portuguese scenario, the government has been promoting energy efficiency policies, trying 

to reduce the greenhouse gas emissions. The cogeneration has been benefiting from this political 

orientation, namely via feed-in-tariffs (FIT), and presently represents approximately 13% of the total 

National electricity production. According to the Energy Services Regulatory Authority (ERSE), between 

January 2008 and May 2011, the average FIT was 108 €/MWhel for large-scale CHP systems  (ERSE, 

2011). Nevertheless, the FIT is calculated monthly via a rather complex formula that involves, among 

other factors, oil market prices. The FIT for these large systems varies depending on the hour of the day, 

but it is always higher than the buy-back electricity price. A recent law guarantees a fixed FIT at any time 
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of the day or night, for micro-cogeneration systems with a grid power connection not exceeding 3.7 kWel in 

the case of single dwellings, or 11 kWel in the case of apartment blocks. For renewable micro-cogeneration 

systems (e.g. using biogas) the FIT is 20 €/MWhel during the first 8 years after commissioning, followed by 

168 €/ MWhel from 9-15 years. In the specific case of non-renewable cogeneration, the corresponding 

FITs are 160 and 96 €/MWhel (or market value if above). Considering the Portuguese scenario, it is 

expected that this fixed hourly FITs will be soon extended to small-scale cogeneration systems up to 250 

kWel. 

The European Energy Performance of Buildings Directive (EPBD) and its 2000 recast obliges all member 

states to ensure that, for new buildings with a floor area over 1000 m2, the economic feasibility of 

alternative systems, such as decentralized energy supply systems based on CHP or renewable energy, is 

considered at the design stage (DIRECTIVE 2010/31/EU, 2010). The Directive also outlines that buildings 

should become energy producers and, that by 2020 all new buildings should have nearly to zero energy 

requirements.  

It is expected that the rising costs of fossil resources and the future economic incentives associated with 

this legislation, will lead to a strong growth of CHP systems in the building sector. 

In 2012, the Energy Efficiency Directive (EED – 2012/27/EU) was adopted, repealing the Energy Services 

Directive (ESD – 2006/32/EC), as well as, the Cogeneration Directive (2004/8/EC). This directive has to 

be transposed by all Member States by the beginning of June 2014. The Directive establishes a common 

framework of measures for the promotion of energy efficiency within the EU in order to ensure the 

achievement of the 20 % headline target on energy efficiency in 2020, and to pave the way for further 

energy efficiency improvements beyond that date. According to the directive paragraph 35: “High-

efficiency cogeneration and district heating and cooling has significant potential for saving primary energy, 

which is largely untapped in the Union”. Member States should carry out a comprehensive assessment of 

the potential for high-efficiency cogeneration and district heating and cooling. These assessments should 

be updated, at the request of the Commission, to provide investors with information concerning national 

development plans and contribute to a stable and supportive investment environment”. Among the key 

measurements, the Directive states that EU countries are requested to draw up a roadmap to make the 

entire buildings sector more energy efficient by 2050 (commercial, public and private households 

included). Energy audits and management plans are required for large companies, with cost-benefit 

analyses for the deployment of combined heat and power generation (CHP) and public procurement.  

The Annex I of the EED Directive defines general principles for the calculation of electricity produced by 

cogeneration. According to the EED Directive, for large systems, the calculated values used of electricity 

shall be determined on the basis of the actual operation of the unit under normal conditions of use and, in 

the case of the micro-cogeneration units, the calculation may be based on certified values. 
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Electricity production from cogeneration shall be considered equal to total annual electricity production of 

the unit measured at the outlet mains of the  generator, in cogeneration units where the prime mover is 

back pressure steam turbine, gas turbine with heat recovery, ICE, micro-turbines, Stirling engines and 

Fuel Cells with an annual overall efficiency set by Member States at a level of at least 75% (Directive 

2012/27/EU, 2012). 

 

3.2. Portuguese Energy Scenario  

The current national energy scenario is characterized by a strong external dependency, with an energy 

sector heavily reliant on fossil energy sources (oil, natural gas and coal). The transportation and electricity 

production sectors share the main responsibility for this negative energy picture.  

 

3.2.1. Energy production 

According to Eurostat data, Portugal, in 2007, was one of the EU countries with the highest energy 

dependence, importing in that year 82% of the total primary energy consumed, when compared to the EU-

27 average of about 53% (Eurostat, 2009). Energy demand has been increasing slightly faster than the 

rate of economic growth and, consequently, the energy intensity of the economy is 4% higher than it was 

in 1991, and it is 10% above the EU 15-average (EUROSTAT, 2009). 

Thus, the Portuguese energy scenario is characterized by a huge import of primary fossil sources that 

justifies the high-energy dependence. In fact, the energy costs of imported fuel have been suffering a 

significant growth, together with the external factors that cause variations of exchange rates in the 

international markets, as well as, the energy price variations. Figure 3.1 shows the evolution of energy 

dependency between 2005 and 2011. 

 

Figure 3.1 Evolution of energy dependency in Portugal between 2008 and 2011. Adapted from (DGEG, 2013). 
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The scarcity of fossil resources leads to a high dependence on foreign energy. The highest value of energy 

dependence, during the last decade, was registered in 2005 due to low production of hydro plants due to 

the dry climatic conditions over the year. In 2011 it was also registered a growth of energy dependency 

due to increased consumption of coal in electricity production to offset the reduction in hydric production 

Accordingly to Directorate-General for Energy and Geology (DGEG), in 2012, the Portuguese energy bill 

resulted in net imports of 7.1 billion euros, which represents an increase of 4.2% when compared with the 

previous year. The trade in of energy products increased due to the exportations, which was positive for 

the economic balance. The most negative aspect was the increase of oil price. Actually, the imports of 

crude and refined oil increased almost 6.3% in value, to 9.2 billion euros, while the quantity suffered a 

reduction in 1.6%. The electricity imported in 2012 grew almost 75% and the amount of electricity 

purchased from Spain risen more than 86% to 8 297 GWh. 

Portugal has significantly shifted its electricity production system by introducing Natural Gas (NG) power 

plants, wind energy and a few new hydroelectric power plants. Electricity production from NG has 

increased from zero to near to 12.3 TWh between 1996 and 2006 and wind energy capacity dramatically 

augmented from 253 MW in 2003 to 4630 MW in 2013.  

Figure 3.2 presents the non-renewable power capacity from different primary energy sources for the 

period between the years 2008 and 2012. In 2012, the total installed power capacity was 9.4 GW, which 

represented a decrease of almost 6.4% when compared with the year 2011 and can be explained by the 

closure of the old fuel oil units. The NG power stations represent the main capacity share with a small 

slice corresponding to the cogeneration units. Note that 19% of the 4.97 GW of power generated by using 

NG is produced in cogeneration power stations.  

 
†include includes fuel oil, refinery gas, diesel, propane and industrial waste 

Figure 3.2 Non-renewable power capacities in Portugal between 2008 and 2012. Adapted from (DGEG, 2013). 
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The urgent need to balance supply and demand, as well as, the growing concern with environmental 

issues and reduction of external energy dependency, justifies the increased interest in the exploitation of 

Renewable Energy Sources (RES) and other more efficient strategies in terms of economic and social or 

environmental dimensions. The electricity sector represented a clear example of this RES trend with 

European and Portuguese policies focused on strategies promoting renewable resources and energy 

efficiency (DGEG, 2010a). The total electric capacity for all types of renewable energy sources has 

doubled from 1995 to 2009 and has reached 9.2 GW, by March 2010. 

Figure 3.3 presents the evolution of renewable power capacity from different primary energy sources for 

the period between the years 2008 and 2012. Data shows that, in the last four years, the increase in the 

installed capacity using renewable energy sources was mainly due to new wind energy units. Portugal is 

one of the European Union countries with the highest usable potential for hydropower. Nevertheless, there 

is an exploitable potential that remains unexplored, despite being a clear priority and one of the 

commitments in the national energy policy (Krajačić, Duić, & Carvalho, 2011). For instance, in 2012, the 

hydroelectric and wind power represented 91% of the total renewable energy power capacity. Biogas and 

geothermal energies are residual contributors in the renewable energy sector.   

 

Figure 3.3 Renewable power capacities in Portugal between 2008 and 2012. Adapted from (DGEG, 2013). 

 

Almost 65% of the electricity produced from biomass comes from systems which operate in cogeneration 

mode. In fact, biomass cogeneration is a prime example of how renewables and cogeneration can be 

combined. There is a double low-carbon benefit because of the use of renewable energy sources and, 

secondly, because these technologies when operating in cogeneration mode also enjoy the economic 

benefits of energy efficiency.  
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Among the policies used to promote RES, feed-in tariffs are a solution used by Portugal and many other 

countries. These price guarantees are valid for several years and their costs are supported by electricity 

consumers. The justification for this support mechanism is that free market would constrain RES use as 

they are still economically less attractive than the traditional technologies. Among renewable energy 

technologies, the exception to this rule is hydro power, which has been playing a major role in Portugal 

since the 50’s and is mostly operating outside the feed-in-tariff schemes. 

Among the remainder renewable energy sources, the most prominent is wind power. The first wind farm 

was built in 1992 and the growth of installed power was exponential until the end of 2011, when it already 

totalled 4081 MW. According to the Portuguese Renewable Action Plan, this number will reach 5300 MW 

in 2020 (DGEG, 2010). 

There are several types of biomass production, and they can be divided in a first type where the origin of 

biomass is the forest or agriculture (dedicated production), and a second type where biomass results from 

the processing of primary biomass, including residues, waste and sub-products (Daminabo, 2009). In 

some cases, the power plant may generate, besides the electricity, an amount of heat that is useful for 

industrial purposes. 

Currently Portugal has 462 MW of biomass installed power, among which 348 MW exist in cogeneration 

mode, mainly in the paper industry (INEGI, 2012). 

Thus, the Portuguese electricity generating system presents a diversified structure including a different set 

of renewable and non-renewable technologies. The role of the RES has been increasing over the years 

strongly supported by the government objectives of reducing energy importations and reducing CO2 

emissions. The special regime for producers includes the production from other renewable sources, waste 

and the cogeneration. These producers have priority access to the grid system and benefit from the 

established feed-in-tariffs for the licence period (Krajačić et al., 2011). The future of the electricity power 

systems is strongly constrained by international environmental agreements, namely, in the aftermath of 

the Kyoto protocol, several EU Directives such as the RES, EED and EPDB Directives.  

 

3.2.2. Energy Consumption 

Concerning the energy consumption, a considerable change in habits in the last 15 years has been 

reported. Final energy consumption has increased slowly since 1994, reaching its highest value in 2005. 

After that, the level remained relatively steady, being affected by financial and economic crises since 

2009. The decrease in energy consumption was the sharpest in the industry sector, which was one the 

activity sectors also affected by the economic recession. Nevertheless, in 2011, the share of final energy 

consumption of the main economic activity sectors was 33.7% in industry, 35.8% in transport, 16.6% 

residential, 11.3% in services and 2.6% in agriculture and fisheries. Yet, Portugal’s total energy 
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consumption per capita is lower that the EU average. The most consumed final energy resources are oil 

products, electricity, NG, biomass and other renewables in this order (IEA, 2011).  

Electricity consumption has increased particularly fast in households and in the services sector, by 37.8% 

and 38.3% respectively since 2000 (IEA, 2011). Figure 3.4 presents the evolution of production and 

consumption of electricity between the years 2000 and 2012.  

 

Figure 3.4 Production and consumption of electricity in Portugal.  

 

In 2006, 76% of electricity consumption was focused in urban areas when cities comprised less than half 

of the total population. With the foreseen growth of urbanization, it becomes imperative to study the 

dynamics of cities and their impact on energy use (International Energy Agency - IEA, 2012).  

Buildings consume a great amount of final energy. Domestic energy consumption can be defined as the 

amount of energy that is spent on the different appliances (heating, lightening, hot water, electrical 

equipment, etc.). The amount of energy used per dwelling varies, depending on the standard of living, 

climate of the country and the building characteristics. Although significant improvements in energy 

efficiency have been achieved in household appliances, the electricity consumption in households has 

been increasing during the past years. Some of the reasons for such increase in the residential sector are 

associated to a higher level of basic comfort and level of amenities and also to the widespread utilization 

of relatively new types of loads whose penetration and use has experienced a very significant growth in 

recent years. According to DGEG data, a Portuguese citizen consumes, in average, 20% less electricity 

than the average citizen of the European Union.  

Matching supply with the buildings energy requirements is a very demandable task. There are two policies 

that address energy conversion and consumption in buildings: regulatory instruments and incentive 

schemes. The main regulatory instrument is the building energy code, which is a set of minimum energy 

performance requirements. The purpose of the energy code is to ensure that a building’s energy 

performance is considered during the design stage of a building project (building energy codes are 
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mandatory in the European Union and often voluntary in other countries). Incentive schemes are 

complementary policies to regulatory instruments used to help increase the attractiveness of energy 

efficiency investments. They include all policy instruments that relate to fiscal, financial and other 

economic incentives to deliver energy efficiency improvements and disincentives to energy waste. Their 

objective is to motivate consumers to pursue investments they would not have ordinarily considered. 

In this sense, different alternatives are being studied in order to supress the net energy needs of the 

buildings, mainly because of the targets established by the EU, which aim at self-sustainability and nearly 

zero energy buildings by 2020. Cogeneration systems have a great potential in this field, because these 

technologies are able to produce electricity and heat on a more efficient way and using renewable energy 

sources.  

 

3.2.3. Cogeneration Share in energy generation 

The first cogeneration units were introduced in our country during the 40’s (in industry) with the 

installation of backpressure turbines, but it was only in the 90’s that CHP had a significant growth in 

terms of installed capacity and produced energy. Figure 3.5 shows the percentage of electricity generation 

from cogeneration technologies in Portugal and in EU27 by 2011. The contributions from cogeneration 

power plants have been increasing during the last decade, with the exception of the year 2009. 

In 2010, cogeneration contributed approximately with 12.7% of total national electricity production. The 

share of distributed generation (of which cogeneration accounts for over 80%) has increased steadily since 

the early 90s.  

 
††1997-2002 non-available data  

 

Figure 3.5 Evolution of cogeneration share in the total production of electricity in Portugal and in EU27.  

Adapted from (Eurostat, 2011).  
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The share of heat production supplied by CHP for the EU member states is presented ate Figure 3.6.  The 

share of heat production supplied by CHP has been estimated by analysing fuel that was used by final 

consumers (excluding energy industries, non-fuel uses and transport). Eurostat does collect data on 

derived heat from district heating.  These two data sets have been combined and assumptions used for 

boiler efficiency and other uses. The countries with a high market penetration are Finland (37.5%), 

Denmark (32.0%), Sweden (29.4%), Bulgaria (26.7%) and Portugal (22.5%). These data reveal that the 

share of heat generation by cogeneration is above the EU27 average. 

 

Figure 3.6 Share of cogeneration in total heat production in EU-27. Data was adapted from (European Environment 

Agency, 2012) 

 

The already installed cogeneration puts Portugal in a comfortable position with regard to this technology, 

just behind the countries that make use of large-scale networks of heat distribution.  

Figure 3.7 shows the evolution of cumulative cogeneration installed capacity until 2010. A marked 

increase can be observed from the early 90’s, particularly after 1993. The backpressure steam turbines 

were the most used technology in Portugal until 1990. In the 90’s, the increase of power cogeneration 

was mainly associated with the installation of combustion engines running with fuel oil and more recently 

with natural gas. 

The implemented remuneration schemes over the time created an impetus for improving efficiency 

through the adoption of the principle of proportionality to define the surplus in the selling price of the 

produced electricity, according to the avoided costs to the national generation, where environmental costs 

are included. It is thus possible to establish an intrinsic relationship between the development of 

cogeneration and a framework of remuneration for the selling price of electricity.  
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A fact worthy of note is the installations using more than 50% of renewable fuels (including biomass), 

represent almost 24% of the total installed cogeneration units (DGEG, 2010b). 

 

Figure 3.7 Evolution of total cumulative installed capacity of cogeneration in Portugal and legislation publication.  

 

There is a recognized potential market for additional cogeneration units. For example, the buildings sector 

has an estimated market of around 500 MWel for cogeneration systems of less than 150 kWel in size. With 

this installed capacity, the CO2 emissions could be reduced by 290,000 tonnes per year. Applications for 

small- and micro-cogeneration in Portugal include shopping centres, hotels and small industrial sites 

single or multifamily dwellings. 

The potential for new, small-scale and micro-cogeneration installations in Portugal is very considerable. 

According to the Research Centre for Energy, Transport and Environmental Economics, the micro-

cogeneration market has the potential for 6000 units for the building sector (Monteiro et al., 2009). 

These systems should allow a number of energy policy goals to be achieved, including the reduction in 

greenhouse gas emissions, improved energy safety, investment reduction in the electrical transmission 

and distribution network and potentially reduced energy costs to consumers (Ferreira, Martins, Nunes, & 

Teixeira, 2011). 

The plant evaluation must be based in two principles: a harmonised methodology for calculating the 

energy inputs required by the conventional separate production of electricity and heat, and a methodology 

for determining the efficiency of the cogeneration process. Conventional reference values of efficiency 

must be taken into account if cogeneration units and conventional separate production are to be 

compared. These reference values must consider the same fuel category and reflect the local climatic 

characteristics. The feasibility of micro-cogeneration systems in comparison with the alternative options for 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1983 1986 1989 1992 1995 1998 2001 2004 2007 2010 2013

In
st

al
le

d 
C

ap
ac

ity
 (M

W
el
)

D
L 

N
º 

18
9/

88

D
L 

N
º 

18
6/

95

D
L 

N
º 

31
3/

20
01

D
L 

N
º 

23
/2

01
0



 

 

 

Chapter 3 | Energy Consumption Profiles                   67 

 

residential energy supply depends on their capacity to satisfy the energy demands. It is very important to 

know the energy consumption profile for the correct sizing of the Cogeneration units, and to fulfil the 

policy requirements (Alanne, Söderholm, Sirén, & Beausoleil-Morrison, 2010). Thus, it is of utmost 

importance to define a methodology able to disclose the thermal energy needs of a dwelling. 

 

3.3. Thermal Load Methodology  

According to the European guidelines (Directive 2004/8/EC), high-efficient cogeneration shall operate 

based on the useful heat demand of the building, and provide a PES of at least 10%, compared with the 

references for separate production of heat and electricity. The cogeneration systems used for the heating 

of residential buildings are usually interconnected with the energy grid, as the surplus or even all the 

produced electricity can be sold to the external electric network. A simplified layout of the cogeneration-

integrated system is presented in Figure 3.8.  

 

Figure 3.8 Layout of the cogeneration system for a residential building. Adapted from (Maghanki, Ghobadian, Najafi, 

& Galogah, 2013). 

 

The evaluation of dwelling energy demands (i.e. hot water, electricity demand for space heating) is 

required. The thermal demand, considered as the sum of space and hot-water heating, is evaluated by the 

legislation for the energy certification of buildings. Thus, it is of utmost importance to match the thermal 

capacity of the cogeneration system to the total thermal load of the building.  

 

A simplified methodology was defined to estimate the annual Thermal Power Duration Curve (TPDC) of a 

building that includes both the heating and the domestic hot water needs. Both thermal loads were 

calculated according to the Portuguese regulation for the thermal behaviour of buildings (Regulation of the 

Thermal Performance of Buildings RCCTE, 2006) that complies with the energy performance of buildings 



68                      Numerical Optimization and Economic Analysis in the Design of a micro-CHP System with a Stirling Engine and a Solar Collector 
 

directive EPBD. The TPDC is obtained from the sum of the hourly heating load plus the hourly hot water 

needs.   

3.3.1. Heating Demand 

In order to determine the hourly heating load, the starting point was to define the building specific Winter 

Heating Demand (WHD) per unit of floor area (kWh/m2). This reference parameter, easily calculated 

following the RCCTE, expresses the amount of useful energy required to keep the building at a reference 

temperature of 20 ºC (293 K) during the heating season. The yearly overall thermal energy demand for 

heating a building, for a specific building envelop, mainly depends on the following two aspects: (i) 

building geometry and  (ii) climatic zone (Bianchi, De Pascale, & Spina, 2012). 

 This heating demand depends on the building Form Factor (FF) and on the Heating Degree Days (HDD20) 

of the local climate. FF corresponds to the building envelope area ((i.e. the sum of the areas in contact 

with the outside atmosphere Aext, and the areas in contact with non-heated spaces Aint) divided by inside 

volume, V. The term FF can be calculated according to equation (3.1). 

( )outside inside iA A
FF

V





     (3.1) 

where the variable  can be defined by the expression in equation (3.2). 

 inside a

inside ref

T T

T T






     (3.2) 

where insideT  is the inside air temperature at the reference temperature during the heating season, aT is 

the temperature at the non-heated local and refT  is the outside ambient temperature. The Heating Degree 

Days depends on the location (local climate). Table 3.1 presents the identification of the winter climatic 

zones, the corresponding number of heating degree-days and the heating season duration for the 

Portuguese district counties.  

The WHD can be calculated considering the characteristics of the building and the surrounding climatic 

conditions as shown in equations (3.3) to (3.6). 

 
20WDH=4.5+0.0395 HDD  for  FF  0.5    (3.3) 

20WDH=4.5+(0.021+0.037 FF) HDD  for 0.5< FF 1;    (3.4) 

20WHD= [4.5+(0.021+0.037 FF) HDD ] (1.2-0.2 FF) for 1 < FF 1.5;   (3.5) 

 
20WHD=4.05+0.068 85 HDD  for  FF > 1.5    (3.6)  

It was assumed a hypothetical dwelling classified as energy class B minus (i.e. the reference class of the 

RCCTE) located in the city of Porto, North of Portugal. For this case, FF was considered to be 1.0, and the 

value of HDD20 is 1610 ºC.days, for a heating season with the duration of 6.7 months (see Table 3.1).  
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Thus, the specific winter heating demand can, thereby, be obtained from equation (3.7).  

2

204.5 (0.021 0.037 ) /     WHD FF HDD kWh m per winter       (3.7) 

Table 3.1 Identification of winter climatic zones and respective reference climatic data 

Portuguese 
County 

Winter 
climatic 

zone 

Heating 
Degree Days 

(ºC.days) 

Heating 
season 
duration 
(months) 

Distribution of Winter Climatic  
Zones in Portuguese Territory 

Aveiro I1 1390 6 

 

Braga I2 1800 7 

Bragança I3 2850 8 

Beja I1 1290 5.7 

Castelo Branco I2 1650 6.7 

Coimbra I1 1460 6 

Évora I1 1390 5.7 

Faro I1 1060 4.3 

Guarda I3 2500 8 

Leiria I2 1610 6 

Lisboa I1 1190 5.3 

Portalegre I2 1740 6.7 

Porto I2 1610 6.7 

Santarém I1 1440 5.7 

Setubal I1 1190 5.3 

Viana do 
Castelo 

I2 1760 6.3 

Vila Real I3 2660 7 

Viseu I2 1940 7.3 

 

From the WHD, a global heat loss coefficient was calculated in W/(m2.ºC) and the hourly heat demand of 

the building was then computed, based on the difference between the inside reference temperature (kept 

constant) and the hourly outside temperatures for the local climate (for each month, the average day was 

used) and the total floor area (assumed to be 150 m2 per dwelling). The climate data was obtained from 

the database of the Soltherm software (LNEG, 2012). 

 

3.3.2. Domestic hot water needs 

Considering an occupation of 4 persons and that the Domestic Hot Water (DHW) needs are 40 L per 

person, per day at 333 K (60 ºC), the daily domestic hot water needs were calculated. The specific daily 

hot water consumption, (Consdhw) (in L.m-2.day-1), was computed by taking into consideration the ratio 

between the water needs per person per day and the occupancy of the building (i.e. area divided by the 
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number of residents). Finaly, the thermal requirements for domestic hot water, (Qdhw) can be calculated by 

equation(3.8). 

 2(4.187 / 3600)  -1

dhw dhwQ Cons T kWh m day          (3.8) 

where ΔT is temperature increase from the grid water temperature up to the required value, 333 K. The 

temperature increase required for hot water, if not calculated, can be assumed as the reference value of 

318 K (45 °C). This value considers that water coming from the public water supply is available at an 

average temperature of 288 K (15 ºC) and must be heated to a temperature of 333 K (60 ºC). The 

number of days of consumption depends on the conventional DHW period of the building use, which in 

the case of residential buildings corresponds to 365 days/year.  The hourly energy demand was then 

obtained by assuming the distribution presented in Figure 3.9.  

 

Figure 3.9 Assumed daily domestic hot water load distribution. 

 

This non-dimensional daily distribution of the domestic hot water consumption is assumed to be 

representative of a typical day for a residential domestic user. Considering the thermal requirements for 

each month, the hourly water consumption and the dwelling area, the hot water annual thermal load can 

be estimated.  

 

3.3.3. Thermal power duration curve 

The total thermal load of the building, on an hourly basis, was calculated by adding the hourly values of 

heating and hot water loads (Martins et al., 2011). Figure 3.10 presents the total annual thermal power 

duration and the hot water thermal load duration curves for the reference dwelling.  
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The annual curves were obtained by sorting the hourly values from maximum to minimum.  According to 

the implemented methodology, the peak thermal demand is about 7 kWth. This result is within the 

expected values, considering that, for individual dwellings, the decentralized energy systems available in 

the market are characterized by a thermal power in the range of 2-35 kWth (Konrad, Obé, & Frey, 2009). 

 

Figure 3.10 Annual power thermal power duration curve and hot water thermal load  duration curve for the reference 

dwelling. 

 

Figure 3.11 presents the evolution of the annual thermal energy production with the corresponding 

number of annual working hours matching the TPDC of Figure 3.10. The maximum output is 12.5 MWhth 

for a corresponding 3000 hours of operation, and a CHP system with a thermal capacity of 4.1 kWth. 

 

Figure 3.11 Thermal energy output as function of yearly operating hours at nominal capacity matching the TPDC. 
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4  
 

Characterization and Modelling of the 

Stirling System  
 

4.1. Stirling Engine Design and Configurations 

4.2. Thermodynamic Cycle 

4.3. Stirling Engine Components  

4.4. Working Fluids  

4.5. Stirling Engine Analyses  

4.6. Heat Exchangers Configuration 

_____________________________________________________________________ 

Since the presentation of the patent by Robert Stirling in 1816, Stirling engines have been developed for 

different purposes and applications. This versatility is due to the fact that the heat source in Stirling 

engines is external and thus can accept a wide variety of fuels. Another good point is that the combustion 

process can occur in steady state and therefore is easier to control. Stirling engines are very flexible and 

its most outstanding feature is related to their capacity to work at low temperatures. In this chapter, a full 

characterization of the technology will be provided. 

 

4.1. Stirling Engine Design and Configurations 

A Stirling engine is a device that converts heat into mechanical energy by alternately compressing and 

expanding a fixed quantity of a certain gas between a hot and a cold sink. The original idea of Robert 

Stirling was to develop of a special heat exchanger, called “economiser”, to improve the fuel efficiency of 

a variety of industrial processes. In 1816 he incorporated this “economiser” in an air engine, thus 

creating what we call today a Stirling engine. His patent described in detail the use of that “economiser”, 

explaining the cyclic heating and cooling of the internal gas by means of an external heat source and heat 

sink, and the characteristic phase difference between the displacer and expansion pistons. His intension 

| 
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was to develop an alternative for steam engines because, in those days, they were not safe due to the risk 

of explosion of their boilers. However, the need to operate a Stirling engine at high temperatures to obtain 

a reasonable efficiency, revealed the engine’s limitations.  

Consequently and also because of material constraints and their incapacity to deliver the required energy, 

Stirling engines were overcome by steam engines even with the risk of explosion. 

Later on, only smaller engines of the Stirling/hot air type were produced in reasonable number for 

applications where a low to medium power was required, for instance, rising water. Furthermore, in the 

early 20th century, this technology gained an exciting interest as the core component of micro-combined 

heat and power units. The very first known application dates to the 30’s, when the Philips, motivated to 

expand their equipment sales, decided to offer a low-power portable generator for users living in locations 

where the electricity was not available. At the time, Stirling engine seemed to be the best choice as prime 

mover due to its ability to run on a variety of heat sources (e.g. lamp oil). 

Since then, this company has invested millions of dollars and has created a very strong position in Stirling 

engine technology. Their developments have led to smooth and quiet-running demonstration engines with 

good efficiency.  

During the 80s and early 90s, Professor Senft of the University of Wisconsin came up with the low 

temperature differential Stirling engine. The first produced prototypes have no direct connection between 

the flywheel and the displacer, as the changing pressure inside the main chamber is the responsible for 

the displacer movement. 

Several experimental Stirling engines have been manufactured from the same general principles for 

vehicle applications, biomedical devices (e.g. blood pumps), electricity or hydraulic power generation or 

even in submarines. With a few notable exceptions of independent individuals who have done a very good 

work, most of the development on Stirling engines has been done by teams of engineers funded by the 

large companies, such as, Infinia Corporation, BAXI or Whispergen (Knowles, 1997). 

The Stirling engine consists of an engine piston (small tightly sealed piston that moves out when the gas 

inside the engine expands), the exchanger piston (a larger piston that moves easily between the heated 

and cooled sections of the engine) and three heat exchangers: a heater, a regenerator and a cooler. The 

engine piston converts the pressure variation of the working gas into mechanical power, whereas the 

exchanger piston is used to move the working gas between the hot and cold sources. Considering the 

forms of cylinder coupling, these engines can be classified in three arrangements: alpha, beta and 

gamma.  

The alpha configuration has two mechanically linked pistons (expansion and compression pistons, both 

working as gas exchangers) in separate cylinders, connected in series by the heater, the regenerator and 

the cooler. In some cases, the hot expansion cylinder is surrounded by the high temperature heat 

exchanger and the cold compression cylinder is surrounded by the cooler. The two-cylinder Stirling engine 
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is characterized by four different phases: expansion, pre-cooling transfer, compression, and pre-heating 

transfer. The complete cycle of an alpha Stirling engine is presented in Figure 4.1. 

Expansion: The gas is heated, expands and pushes 

the hot piston. The expansion continues in the cold 

cylinder, which is 90° behind the hot piston in its 

cycle, extracting more work from the hot gas. 

 

Pre-Cooling Transfer: About 2/3 of the working fluid 

is still located in the hot cylinder. Flywheel 

momentum carries the crankshaft the next 90º, 

transferring the main part of the gas to the cold 

cylinder. The working gas is pre-cooled while 

crossing the regenerator.  

Compression: Almost all the gas is now in the cold 

cylinder and cooling starts. The cold piston, 

powered by flywheel momentum (or other piston 

pairs on the same shaft) moves up and 

compresses the gas. 
 

Pre-Heating Transfer: The contracted gas reaches 

its minimum volume, and it will be transferred back 

to the hot cylinder to complete the cycle in the hot 

cylinder where it will be heated once more. 

 

Figure 4.1 Phases of a complete alpha type Stirling cycle. Adapted from Keveney (2009) website animation. 

 

The Beta configuration corresponds to the classic Stirling engine, having a power/compression piston 

arranged within a single cylinder with a displacer/expansion piston, both connected to the same shaft in a 

rather complex manner. The existence of a displacer aims to move the working gas between the 

expansion and the compression spaces at constant volume. When the gas is transferred to the hot space, 

it suffers expansion and the power piston is pushed, whereas when it passes to the cold end, the gas is 

compressed. The complete cycle of a beta Stirling engine is presented in Figure 4.2. 
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Expansion Transfer Compression Transfer 

    

Power piston has 

compressed the gas, 

the displacer piston 

starts to move down, 

while the gas is heated 

and expands, driving the 

power piston outward. 

The displacer piston 

moves up, transferring 

the gas from the hot to 

the cold space. 

The power piston moves 

up with energy from the 

flywheel, compressing 

the gas in the cold 

cylinder. This takes less 

energy, since the 

pressure is lower when 

the gas is cold. 

The displacer piston 

moves down 

transferring the gas 

from the cold to the hot 

space. 

 

Figure 4.2 Phases of a complete beta type Stirling cycle. Adapted from Keveney (2009) website animation. 

 

Gamma engines use a displacer-piston arrangement, quite similar to a beta Stirling (see Figure 4.3). The 

main difference between these two configurations is that, in the Gamma engine, the power piston is 

mounted in a separate cylinder alongside the displacer-piston cylinder and the working gas can flow freely 

between them (Onovwiona & Ugursal, 2006). 

 

Figure 4.3 Schematic representation of gamma type Stirling cycle. Adapted from Keveney (2009) website animation. 

Displacer 

Power-piston 
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This configuration produces a lower compression ratio, but allows an easier mechanical linkage between 

the pistons and a convenient separation between the heat exchangers, located at the ends of the displacer 

cylinder, and the work space associated to the power piston (Timoumi, Tlili, & Ben Nasrallah, 2008a). In 

addition, this configuration presents higher dead volumes and lower specific power and efficiency.  

Comparing the three configurations, it can be said that the alpha engine is the simplest one, suitable for 

large power requirements, whereas the Beta engine generates higher pressures. The Gamma engine is 

usually used when the benefit from having power piston in separate cylinders overcomes the low specific 

power (Asnaghi, Ladjevardi, Saleh Izadkhast, & Kashani, 2012). 

Another type of Stirling engine is the so called free-piston. In free piston-displacer Stirling engines, the 

reciprocating elements are driven by the pressure variations in the spaces surrounding them. As the linear 

alternator is tightly attached, the mechanical friction is minimized and, as a result, the leakage of the 

working gas is substantial reduced. So, the free piston engine does not require large maintenance costs, 

allowing a continuous power operation and revealing a great potential for high efficiency (Boucher, 

Lanzetta, & Nika, 2007). This concept was firstly idealized by William Beale, who realized that these 

engines could be properly used to generate power, and heat. 

According to Formosa et al. (2011), the free piston Stirling engine uses the working gas like a spring, in 

order to give adequate movements to the piston and displacer. A double free piston Stirling engine 

(DFPSE) acts as a vibrating generator in which gas is compressed and expanded by an oscillating system 

of masses and gas springs. 

Considering the operation mode, Stirling engines can be classified as single and double action. The term 

single action and double action in Stirling engine technology, is used to describe the mode of operation of 

a particular engine. In single action engines, the working fluid is only in contact with one side of the 

piston. The first engine conceived by Robert Stirling in 1815 was single action. The double action engine 

uses both sides of the piston to move the fluid from one space to another. Whereas, the double action 

engine arrangement is more complex because it requires a duct to connect the working spaces with the 

regenerator. Stirling engines using the double action principle require a multi-cylinder arrangement, since 

a minimum of three pistons is necessary in order to obtain the appropriate difference between the 

expansion and compression processes. The first double action engine was developed by Babcock in 

1885. 

There is another form of Stirling engines classification: forms of piston coupling. This classification 

category can be divided into rigid coupling, gas coupling and liquid coupling. The rigid coupling implies a 

physic mechanism, e.g. a slider crank drive or a rhombic drive for the engine operation: the slider cranks 

were widely used in double action engines due to its reliability and simple manufacture; the rhombic drive 

was developed mainly for single cylinder Stirling engines by Philips in the 50s (Thombare & Verma, 
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2008). In fact, the need of bigger systems leads to the need to seal off the cylinder space from the 

crankcase. An insight of the Stirling engine classification is presented in Figure 4.4. 

 

Figure 4.4 Stirling engines classification based on piston coupling. 

 

4.2.  Thermodynamic Cycle 

The Stirling engine works in a closed thermodynamic cycle and contains a fixed mass of a working gas. 

The ideal Stirling cycle combines four thermodynamic distinct processes: two constant-temperature 

processes and two constant-volume processes. The working gas is alternately heated and cooled as it is 

cyclic compressed and expanded. Figure 4.5-a represents the pressure/volume diagram of the ideal 

Stirling engine. The first process of the ideal Stirling engine cycle is the reversible isothermal compression. 

During this stage work (W1-2) is done on the working fluid (i.e. negative work), while an equal amount of 

heat (Q1-2=W1-2) is rejected by the system to the cooling source (equation (4.1), valid for an ideal gas). As 

the working fluid is compressed, the pressure increases from P1 to P2,(equation(4.2)). The temperature is 

maintained constant due to heat flow from the compression space to its vicinity. There is a decrease in 

entropy but the internal energy does not change. 

 1 2 1 2 1 1 ln(1/ )vQ W P V r      (4.1) 
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1 2W  is the compression work, P  and V are the pressure and the volume at points 1 and 2 of the PV 

diagram of the ideal cycle in Figure 4.5-a, and vr is the volume compression ratio, defined to be 
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At the second step, a constant-volume process occurs with heat addiction (Q2-3) because the working fluid 

is transferred from the compression to the expansion space through the regenerator. There is a gradual 

increase in temperature of the working fluid as heat is being received from the regenerator matrix. The 

passage of working fluid through the regenerator also causes an increase in pressure (equation (4.3)). No 

work is done (W2-3=0) as the process is isochoric and there is an increase in the entropy and internal 

energy of the working fluid.  

 2 3
3 3 2

2

;
PT

P V V
T

   (4.3) 

The terms P  and T are the pressure and the temperature at the points 2 and 3 of the pressure/volume 

diagram of the ideal Stirling engine cycle in Figure 4.5-a. The heat transferred to the working fluid is equal 

to the increase in internal energy as in equation (4.4): 

 
3

2

2 3 3 2. ( )

T

v v

T

Q c dT c T T      (4.4) 

where T is the  temperature at the points 2 and 3 of the pressure/volume diagram of the ideal Stirling 

engine cycle in Figure 4.5-a and vc is the specific heat capacity of the working fluid.  

At the third stage, the working fluid suffers an isothermal expansion, as heat is added (Q3-4) to the system 

from the external source. Positive work is done by the working fluid (W3-4) on the piston with the same 

magnitude of the supplied heat (equation (4.5)). The internal energy remains constant, but the entropy of 

the working fluid rises. As the expansion process proceeds, the pressure decreases (equation (4.6)): 

 3 4 3 4 3 3 ln vQ W P V r      (4.5) 
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where P ,T  and V are the pressures, the temperatures and the volumes, respectively, at the points 3 

and 4 of the PV diagram of the ideal cycle in Figure 4.5-a. Here, the volume ratio is defined to be 
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. 

In the final evolution, the working gas flows through the regenerator, while heat (Q4-1) is rejected to the 

regenerator matrix, decreasing the gas temperature. No work is done (W4-1=0) during this isochoric 

process and the internal energy and entropy of the working fluid decreases. The pressure of the working 

fluid during can be evaluated according to equation (4.7) and the heat rejection according to equation 

(4.8): 

 4 4
1 1 4

1

;
PT

P V V
T

   (4.7) 
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where P ,T  and V are the pressure, the temperature and the volume, respectively, at the points 4 and 

1 of the PV diagram of the ideal cycle in Figure 4.5-a. 
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Q c dT c T T      (4.8) 

In the ideal Stirling cycle, it is assumed that the total heat rejected during process 4→1 is absorbed by the 

regenerator and then released to the working fluid during the process 2→3, corresponding to a 

thermodynamically reversible cycle. These assumptions imply that the heat exchangers are required to be 

perfect (i.e. an infinite heat transfer coefficient between the component walls and the working gas and 

perfect regeneration). Then, the efficiency can be calculated by equation (4.9). 

 1 min

3 max

1 1
T T

T T
      (4.9) 

that corresponds to the Carnot efficiency of an engine working between a hot source and a cold sink with 

constant temperatures Tmax and Tmin, respectively. It should be noted that this theoretically best possible 

efficiency is also achievable even if the regenerative processes are non-isochoric, as will be seen in section 

6.2.1 with a sinusoidal engine. The relevant conditions are the reversible isothermal processes and a 

perfect regeneration.   

However, in real cycles, there are no perfect regenerators and, one of the causes for inefficiency of the 

real Stirling cycle is friction to the flow of the working gas when passing through the regenerator. Figure 

4.5-b represents the PV diagram of the real Stirling cycle with a sinusoidal piston motion. 

 

                  

4.5-a 
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                      4.5-b 

Figure 4.5-a PV diagram of the ideal Stirling engine cycle. 4.5-b PV diagram of a real Stirling engine cycle with a 

sinusoidal piston motion. Adapted from (Puech & Tishkova, 2011). 

 

One of the major causes of Stirling cycle inefficiency is the fact that not all the gas in the engine 

participates in the compression/expansion processes, since there is a certain amount of gas that remains 

in the heater, regenerator, cooler and connecting passages. In the ideal analysis, there is a decrease in 

specific power as dead volumes increase. In practice, the loss of efficiency happens because the pumping 

losses increase with the dead volumes. This “dead volume” is defined as the total void volume in a Stirling 

engine. 

Many authors have studied the effect of heat losses, irreversibilities and several design parameters on the 

thermodynamic performance of Stirling engines. Timoumi and co-workers (2008b) presented a study 

where a numerical simulation was developed using the experimental data from the General Motor (GPU-3) 

Stirling engine. The model was used to determine the influence of geometrical and physical parameters in 

the engine performance. Puech & Tishkova (2011) performed a theoretical analysis of the thermodynamic 

cycle of a Stirling engine with linear and sinusoidal variations of the volume. The authors concluded that 

the dead volume strongly amplifies the imperfect regeneration effect and, therefore, the cycle thermal 

efficiency. Kongtragool & Wongwises (2006) also studied the effects of dead volume and regenerator 

effectiveness on Stirling thermal efficiency and concluded that the dead volume leads to a reduction of 

engine network and thermal efficiency. 

The nature and the pressure of the working gas influence the power performance of the Stirling engine. 

Gases, such as helium and hydrogen, which allow a rapid heat transfer without a change of phase, are 

typically used in high-performance Stirling engines. Hydrogen is thermodynamically a better choice; it has 
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a higher thermal diffusivity and a lower viscosity and therefore lower friction losses than helium. On other 

hand, helium has fewer material compatibility problems and it is safer to work with. Also, air can be used 

as the working fluid but with a prejudice on performance. The influence of the gas properties will be 

further discussed in this chapter. 

The Stirling engine is currently an exciting choice as the core component of micro combined heat and 

power units, being considered more efficient and safer than other technologies. Presently, these engines 

are able to achieve an electrical efficiency of about 30% and a total efficiency of 85-98% operating in 

cogeneration mode (based on Low Heating Value, LHV). Stirling engines also have good capability to 

operate under partial-load conditions. In theory, the Stirling engine is the most efficient technology for 

converting heat into mechanical work, with its thermal efficiency limited by the Carnot cycle (ideal engine) 

efficiency, already defined in equation (4.9). 

 

4.3.  Stirling Engine Components 

The elements of Stirling engine include two volumes at different temperatures connected to each other 

through a regenerative heat exchanger and auxiliary heat exchangers (heater and cooler). The heat 

transfer requirements of the engine implicate that these volumes change periodically. An insight of the 

engine base, heater, regenerator and cooler operation is characterized in this section. 

 

4.3.1. Engine Base 

A basic Stirling engine has a cylinder with two pistons in opposed positions and a regenerator. The spaces 

between the regenerator and the respective pistons correspond to the expansion and the compression 

spaces (Asnaghi et al., 2012). The piston rods are connected to the crankshaft by connecting rods, the 

dry-running pistons in the high pressure chambers are sealed against the oil-lubricated crankcase by 

piston seals. The expansion space must be maintained at a high temperature whereas the compression 

volume must be maintained at a low temperature while the regenerator is responsible for the pre-cooling 

and pre-heating of the gas. Consequently, the heat exchangers are relevant components in a Stirling 

engine. The mechanical friction is due to the contact between different parts that compose the engine: 

piston rings, bearings, rubbing seals and other moving parts. Control systems are required to regulate the 

power output and speed of a Stirling engine. For engines which operate at constant speed, connected to 

fixed frequency electric power generators, its constancy is maintained by varying a load condition. The 

power of Stirling engines can be controlled by changing the operational parameters, such as the 

temperature, pressure, phase angle, dead volume and speed (Cheng & Yang, 2012). These latter are key 

parameters in the Stirling engine performance. The power output of the engine is directly proportional to 
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the mean cycle pressure of the working gas. Thus, if the pressure level is changed, then the engine power 

output can be adjusted. Also, dead volume has an impact in the engine output.  

Ideally, dead volumes should be zero but in real engines can represent almost 50% of the total engine 

internal gas volume (Thombare & Verma, 2008). An increase in the dead volume results in a loss of 

power output but not necessarily a decrease in efficiency.  In fact, the effects of dead volume depend on 

its location in the engine. For instance, Puech & Tishkova (2011) have shown that the efficiency reduction 

is amplified by the increase of the regenerator dead volume. 

 

4.3.2. Heater 

The heater is responsible for the heat transfer from the heat source to the operating fluid. This type of 

heat exchangers is not easy to design because of the distinct operation conditions inside and outside the 

exchanger. The outer surface of the heater is subjected to high temperature and low constant pressure 

flow, while the inner surface is at high pressure and high temperature turbulent flow. The heat source type 

and the ratio between the internal and external diameter are two other parameters that affect the choice 

of best heat exchanger to use. The most used configuration for heat exchangers are smooth pipes in a 

parallel arrangement (Figure 4.6). These heat exchangers are used when the pressure/temperature 

gradient between the fluids is high. In terms of materials, the pipes are usually made of stainless steel, 

nickel alloys, aluminium or titanium, all good conductors of heat. 

 

Figure 4.6 Schematics of heater parallel tubes arrangement. 

 

The heat transfer phenomena in this component include the convective heat transfer from the external 

heating source/medium to the walls of the heat exchangers (e.g. tubes or fins) followed by conduction 

from the outer to the inner surface of the walls, and by convective heat transfer from the inner wall to the 

working fluid. The heat source is a crucial aspect in designing the heater. The outer surface of the heat-

exchanger pipes will experience, in most of cases, a high temperature low-pressure steady flow boundary 

conditions or no flow in the case of a solar concentrator, whereas the inner surface experiences an 

Heater Tubes
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unsteady flow at high pressure and temperature. As a result, the heat transfer coefficients will be different 

inside and outside. Usually, the outside coefficient poses no problem, as fins can be easily added or it 

tends to infinity with a solar concentrator, but inside fins are not commonly used due to friction problems. 

Thus, the most crucial parameters are the inside convective heat transfer coefficient and the friction 

factor. These two parameters of heat exchanger can be assessed and the optimum dimensions of a 

proposed design can be accomplished for given thermodynamic specifications. The rate at which the heat 

flux is transferred to the working gas depends upon well-gas temperature difference, the mass flow rate 

and the specific heat of the gas. The working gas is highly pressurized and moves with high velocity, 

promoting the heat transfer process. So, in manufacturing these heat exchangers, alloys that can endure 

very high temperatures should be used. A reasonable thermal conductivity is also required to obtain a 

small temperature difference between the outer and inner wall surfaces. 

 

4.3.3. Cooler  

In a Stirling engine, the cooler absorbs heat from the working gas adjacent to compression space and 

rejects the heat to a coolant. Stirling engines may be water-cooled (common) or air-cooled (less common) 

similarly to IC engines. As the coolant temperature increases, there is a considerable drop in thermal 

efficiency, so it is desirable to have coolant temperature low as possible. The internal flow conditions are 

comparable to those of the heater but at lower temperatures. Almost all engine designers have adopted 

water-cooling and the outer cooler tubes experience the same flow conditions as in a conventional engine. 

The engine parameters should be optimised to minimize losses and to obtain high thermal efficiency for 

all the engine components, mainly the heat exchangers. While the main target of the engine is to produce 

sufficient power to run an application, there are conditions which pose critical constraints on the design. 

The temperature difference between the heater and the cooler is one of those parameters (Ercan Ataer & 

Karabulut, 2005). For the cooler analysis, the total heat transfer coefficient includes the heat transfer 

coefficient of the outside water film. Considering their operational conditions, coolers are usually designed 

as a set of smooth pipes (as presented in Figure 4.7), or finned tubes.  

 

Figure 4.7 Bundle of parallel smooth tubes for a cooler. 
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The main limitation on cooler performance is usually related with the poor heat transfer between the inner 

surface of the cooler tubes and the working gas, with a consequently high value for the mean temperature 

of the gas in the cooler (Zarinchang & Yarmahmoudi, 2008). Nevertheless, inside-tube fins are not 

common, due to the increased friction. 

 

4.3.4. Regenerator 

Regenerator is a special heat exchanger, usually containing a finely matrix of metal wires, which is able to 

absorb and release heat from and back to the working gas (Knowles, 1997). After the expansion process 

of the thermodynamic cycle, when the heat supplied to the working gas by an external source is converted 

into useful work, the hot expanded gas is pre-cooled in the regenerator while moving from the expansion 

to the compression space. This energy is internally stored in the regenerator. After the compression-

cooling process, the working gas flows back to the expansion space through the regenerator and the 

previously stored heat is transferred back to the working gas. This process is called regeneration and the 

efficiency of it dramatically influences the efficiency of the Stirling cycle (Thombare & Verma, 2008).  

An ideal regeneration would only be possible if the heat transfer coefficient or the area of heat transfer 

and the heat capacity of the regenerator matrix were infinite or in the case heat transfer capacity of fluid 

would be zero. However, in real practical conditions, the temperatures of the working gas entering the 

regenerator fluctuates because of the thermodynamic properties of the gas (e.g. density), its velocity and 

pressure (Zarinchang & Yarmahmoudi, 2008), and do not reach at the exit, the temperatures required for 

the isothermal expansion and compression processes (points 3 and 1 in Figure 4.5-a). 

As previously referred by Knowles (1997), the regenerator is the heart of the Stirling engine because it is 

responsible for critical temperature changes in the working fluid.  

Less heat internally transferred by the regenerator, in the pre-cooling and pre-heating processes, will 

correspond to increases in the external hot source and cold source energies, thus leading to a significant 

reduction in the cycle thermal efficiency. The regenerator thermal quality is thus defined as the ratio 

between the real heat transferred from the matrix to the working gas and the ideal equivalent amount 

from the hot to the cold-source temperature change of the gas (A. C. M. Ferreira et al., 2013; He, 

Sanders, & Berkeley, n.d.).  

To improve heat transfer coefficient and to establish the minimum temperature difference between matrix 

and the fluid, it is necessary to expose the maximum surface area of matrix. The regenerator also 

increases the pumping losses due to gas flow friction through the pipes, and contributes to the dead 

volume. Thus, a commitment between the geometrical characteristics of the regenerator matrix is 

required (Thombare & Verma, 2008; Zarinchang & Yarmahmoudi, 2009):  

 For maximum heat capacity: a large, solid matrix;  

 For minimum flow losses: a small, highly porous matrix; 
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 For minimum dead space: a small, dense matrix;  

 For maximum heat transfer: a large, finely divided matrix; 

 For minimum contamination: a matrix with no obstruction. 

 

According to Thombare & Verma, (2008) the choice of the materials for the regenerator matrix highly 

influences the performance of the engine. The efficiency and power output of the engine are a function of 

engine speed for metallic and ceramic regenerator materials. Due to lower permeation rate of ceramics 

when compared to metals, it is found that efficiency and power output of the engine with ceramic-coated 

materials is higher than the metallic regenerator. Several materials and configurations may be used for 

the regenerator matrix, such as steels wool, steel felt, wire mesh, fine pipes, spring mesh, foils or packed 

annulus. As shown in Figure 4.8-a, a typical regenerator is cylindrical in overall shape and includes axial 

passage(s) containing a matrix (Figure 4.8-b). This latter is an open, thermally conductive structure with 

many flow paths and large surface area for high heat transfer to and from the working fluid. 

 

 

4.8-a 

 

4.8-b 

Figure 4.8-a Wired matrix of a Stirling regenerator with an oriented arrangement. 4.8-b Ultra-fine wired matrix of a 

Stirling regenerator with chaotic arrangement. 

 

The regenerator matrix is usually made up of an ultra-fine wire mesh arranged in a grid or chaotically as 

shown by Figure 4.9. The porosity of the matrix is important since it will have a direct impact on the 

performance of the regenerator, and can be determined by its geometry, namely, wire diameter and the 

void volume. Any changes in the porosity will also change the regenerator effectiveness and the pressure 

drop (Tlili, Timoumi, & Nasrallah, 2008). 
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Figure 4.9 Microscope views of the matrix of three different regenerator matrices. Adapted from (Jiří, 2009). 

 

Regarding the heat exchangers, the most important in its design them it is their ability to supply or reject 

the required amount of heat to or from the working gas inside the engine. In this aspect, one crucial factor 

is the heat transfer area, which outlines the amount of heat energy to be permuted. Therefore, in order to 

achieve a high effectiveness for the heater and the cooler, larger transfer areas are needed (Tlili et al., 

2008). 

 

4.4. Working Fluids 

During the 19th century, most Stirling engines used air as working fluid. Nevertheless, helium and 

hydrogen are much better gases for Stirling engines. The selection of a specific working fluid is based on 

the following fluid properties: thermal conductivity, specific heat capacity, density, and dynamic viscosity. 

The working gas should have a high thermal conductivity (Figure 4.10) to improve the efficacy of the heat 

exchangers, and a low density and viscosity.  

 

Figure 4.10 Thermal conductivity as a function of temperature for three working fluids: air, helium and hydrogen. 

 

Lower dynamic viscosity and density are more related with the fluid friction, reducing the pumping losses 

and improving engine specific power and efficiency. The evolution of viscosity with the temperature is 
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shown in Figure 4.11, for three gases. Working fluids with high specific heat capacity leads to a larger 

increase in pressure or volume for a given amount of heat. 

 

Figure 4.11 Dynamic viscosity as a function of temperature for three working fluids: air, helium and hydrogen. 

 

The working fluid selection must be made based on the best combination of the parameters, which 

establish a relation between the heat transfer and the frictional drag in a flowing stream. The combined 

relevant property for heat transfer is the thermal diffusivity (thermal conductivity divided by volumetric heat 

capacity, 
pc   (J/(m³·K)), as shown by equation (4.10): 

 2( / )
p

k
m s

c



  (4.10) 

Where k is the thermal conductivity (W/(m·K)),   is the density (kg/m³) and 
pc is the specific heat 

capacity (kJ/(kg·K)).  

The thermal diffusivity evolution with the temperature for air, helium and hydrogen, at atmospheric 

pressure, is shown in Figure 4.12. Hydrogen has a lower dynamic viscosity when compared with the 

Helium. Helium is inert, has a thermal conductivity similar to the hydrogen but it has a volumetric thermal 

capacity even smaller than hydrogen, resulting in a better thermal diffusivity. Overall, hydrogen´s low 

viscosity and high thermal diffusivity make it the top compromise in terms of efficiency and specific power, 

mainly because the engine can run at higher speeds. Engine specific power is roughly proportional to the 

engine speed and mean pressure. However, due to its behaviour at high temperature, leaks through the 

solid metal of the heater may occur as well as metal embrittlement. These drawbacks are due to its high 

diffusion rate associated with this low molecular weight. As a consequence, engines using helium are 

more popular. The characteristic properties of the three working gases are presented at Table 4.1. 

 



 
Chapter 4 | Characterization and Modelling of the Stirling System   91 

 

 

Figure 4.12 Thermal diffusivity as a function of temperature for three working fluids: air, helium and hydrogen. 

 

Nitrogen can also be used as working gas, with minimum sealing and supply problems (lower costs) but 

leading to an engine with much lower specific power and efficiency (increased capital and operating 

costs). Furthermore, when air is used, the temperatures of internal components are limited due to the 

presence of oxygen which contributes to the degradation of materials, apart from safety issues and the 

reduction of engine efficiency.  

 

Table 4.1 Properties of selected working fluid 

Gas 
Gas Constant, R 

(kJ/kgK) 

Specific Heat, 
pc  

(kJ/kgK) 

Specific Heat Ration, 

  

Hydrogen 4.122 14.20 1.41 

Helium 2.079 5.19 1.67 

Air 0.2870 1.004 1.4 

 

It is well known that hydrogen and helium are the working fluids for which the performance of Stirling 

engines is better due to the fact that both have greater thermal diffusivity and lower dynamic viscosity than 

the air/nitrogen. Most technically advanced Stirling engines use helium as the working gas. Also, the cost, 

the safety during operation and the reliability cannot be neglected when choosing the working fluid. 
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4.5. Stirling Engine Analysis  

4.5.1. Ideal Isothermal Analysis 

The analysis of operation of Stirling cycle was first done by Gustav Schmidt of the German Polytechnic 

Institute of Prague published. In 1871, he published an analysis in which he obtained closed-form 

solutions of the equations for the special case of sinusoidal volume variations of the working spaces of a 

Stirling cycle. This analysis is still considered as a classic analysis and includes an isothermal 

compression, expansion and regeneration. Schmidt’s analysis of Stirling engines includes several 

assumptions: 

 All processes are reversible. 

 The regeneration process is perfect. 

 The working fluid is considered as an ideal gas, PV=mRT. 

 The mass of the gas is constant. 

 Steady state conditions are assumed and there are no flow or pressure losses 

 Temperature is the same and constant in the heater and expansion space. 

 Temperature is the same and constant in the cooler and compression space. 

 

In the ideal isothermal analysis, the fact that the gas in the expansion space and the heater is at the 

constant upper source temperature and the gas in the compression space and the cooler is at the 

constant lower sink temperature, allows to deduce a simple expression for the working gas pressure as a 

function of the volume variations. The assumption of isothermal working spaces implies that all heat 

exchangers, heater, cooler and the regenerator are perfectly effective.  The engine is considered as a set 

of five connected components (see Figure 4.13), consisting of a compression variable space (c), a cooler 

(k), regenerator (r), heater (h) and an variable expansion space (e). Each engine component represents an 

entity endowed with its respective volume (V), temperature (T), absolute pressure (P) and mass (m). 

 

 

Figure 4.13 Simplified Stirling model configuration. 

 

The temperature of the working fluid within the heat exchangers volumes Vk and Vh are, respectively, Tk 

and Th and the temperature within the regenerator can be described by a linear function between Tk and Th. 
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The total mass of the working gas in the engine is constant and can be taken as the sum of the gas 

contained in each component total c k r h em m m m m m     . If the mass expressions are 

calculated considering the ideal gas law, the mass of gas can be expressed as in equation (4.11). 

 c k h er
total

k k r h h

V V V VVP
m

R T T T T T

 
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 
 (4.11) 

where R is the gas constant, Vc and Ve are the compression and expansion volumes, respectively. As it is 

assumed that the temperature varies linearly (see Figure 4.14) between Tk and Th, the mean effective 

temperature at the regenerator (Tr) is given by the equation (4.12). 
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 (4.12) 

 

Figure 4.14 Schematic diagram of temperature distribution in the ideal isothermal analysis. 

 

Thus, the pressure can be obtained as a function of the expansion and compression volumes, according 

to equation (4.13) as these are the only variables along the cycle. 
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The volume evolutions of the compression and expansion spaces (Vc and Ve) are sinusoidal and can be 

given by equation (4.14) and equation (4.15), respectively: 

  , , 1 cos( ) / 2c d c sw cV V V     (4.14) 

  , , 1 cos( ) / 2e d e sw eV V V       (4.15) 

where Vd and Vsw correspond to the dead and the swept volumes (respectively) for both compression and 

expansion spaces;  represents the cycle crank angle, varying between 0 and 2π (point of maximum 

volume of compression cylinder), and   is the advance phase angle of the expansion cylinder. So, 
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substituting equation (4.14) and equation (4.15) into equation (4.13), the pressure as a function of  can 

be calculated as in equation (4.16). 
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 (4.16) 

where s is defined by equation (4.17). 
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In order to simplify the pressure expression, trigonometric substitutions in a right-angled triangle were 

introduced as shown from equation (4.18) to (4.21), accordingly to the description in Figure 4.15.  

 

 Figure 4.15 Schematics of trigonometric substitutions in the right-angled triangle for Schmidt analysis. 
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Therefore, replacing the variables in the pressure expression results in a more compact equation (4.22). 
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The total work done by the engine can be considered as the sum of the works done by the compression 

and expansion pistons over a complete cycle (
e cW W W  ). The expansion and compression work can 

be defined as in equations (4.23) and(4.24), respectively: 
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After solving these integrals one can obtain, as presented by equation (4.25): 

       2 2

, ,.sin 1 1 / .sin 1 1 /mean sw e sw cW P V b b V b b              (4.25) 

where b / s and 
meanP , the mean pressure along the cycle is given by equation  
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Thus, for a certain engine geometry and mass of gas, the Schmidt analysis permits the calculation of the 

mean pressure and of W, the total useful work per cycle. 

On evaluating the heat transfer over a complete cycle, it can be easily concluded that 
e eW Q  and 

c cW Q . For the ideal regenerator, 0rQ   because it is considered that all the heat exchange between 

the regenerator matrix and the working gas is internal. The thermal efficiency of the isothermal Stirling 

cycle will then be the total work divided by the heat transferred to the expansion space and despite the 

absence of isochoric evolutions, it os possible to demonstrate that is equal to the Carnot efficiency. The 

Schmidt analysis for Beta and Gama configuration is also presented in Annex I. 

Obviously, the isothermal analysis leads to an analysis where neither the heater nor the cooler contributed 

to any net heat transfer over the cycle. The ideal cycle only considers that all the heat transfer occurred 

across the boundaries of the isothermal working spaces. Nevertheless, in real engines the working spaces 

will approach the adiabatic condition which implies that the net heat transferred over the cycle must be 

provided by the heat exchangers. 

 

4.5.2. Ideal Adiabatic Analysis 

In opposition to the isothermal analysis, the compression and expansion spaces are considered adiabatic 

and, thus, their temperatures (Tc and Te) are not constant, varying over the compression and expansion 

phases, as shown by the temperature distribution diagram of Figure 4.16. 
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Figure 4.16 Schematic diagram of temperature distribution in the ideal adiabatic analysis. 

 

In this analysis, the model is treated as a "quasi steady-flow" system. A set of ordinary differential 

equations is iteratively solved, considering an initial-value problem in which the initial values of all the 

variables are arbitrated and the equations are integrated from that initial state over a complete cycle. The 

final state of the cycle is then used as a new initial-value for a new cycle and several iterations are made 

until cycle convergence is obtained. The resulting equations are linked by applying the mass and energy 

equations across five components (c,k,r,h and e) that form the entire system. Enthalpy is transported by 

means of mass flow and temperature entering and/or exiting at each component. There is no gas 

leakage, the total mass of gas in the system is constant   (
total c k r h em m m m m m     ) and 

there is no pressure drop. Work is done by varying the volumes of the working spaces Vc and Ve, and heat 

(Qk and Qh) is only transferred between the external environment and the working gas in the cooler (k) and 

heater (h), respectively. Also, Qr,ideal is the reversely heat transferred between the regenerator matrix and the 

working gas.  

Each component of the Stirling engine is considered as a single cell (i.e. thermodynamic equilibrium with 

uniform properties) where a working fluid mass flow suffers compression and expansion. A generalized 

cell of working spaces is presented in Figure 4.17. 

 

Figure 4.17 Representation of a generalized cell engine for a differential cycle movement, d . 

 

The energy equation for the working gas in a generalized cell becomes as in equation (4.27): 
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where 
pc and 

vc are the specific heat capacities of the gas at constant pressure and constant volume, 

respectively, Q is the thermal energy transferred into a cell of the working space and W is the 

mechanical work done on the environment (positive when expanding). The adiabatic analysis also assume 

a linear temperature profile in the regenerator, being the effective temperature,Tr , equal to the log mean 

temperature of Th and Tk. For this analysis, it is reasonable to assume the ideal gas law ( PV mRT ) as 

equation of state. So, deriving the mass equation ( 0c k r h edm dm dm dm dm     ), the mass 

equation for the three heat exchangers can be calculated as in equation (4.28) since the respective 

temperatures and volumes are constant. The derivative operator is denoted by d, thus for example dm 

corresponds to the mass derivative dm/dθ, where is θ is the cycle angle (engine crankshaft angle). 

 
dm dP dP dP V

dm m dm
m P P RT


      (4.28) 

Regarding the compression and the expansion spaces, both are adiabatic, meaning that 0c edQ dQ   

and the work done is dW pdV  for both spaces. Therefore, the mass equation for the compression 

can be reduced to the form presented by equation (4.29), always considering the ideal gas law and 

relationships. 
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where  is heat capacity ratio of the working fluid. A similar expression can be achieved for the expansion 

space, equation (4.30).  

 
/

e
e

e

h e

V dP
PdV

dm
RT




  (4.30) 

From the differential equation of state, it is possible to obtain 
cdT and 

edT  as presented by equation 

(4.31) and equation (4.32). 
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Applying the energy equation to the heat exchangers and substituting for the equation of state, the energy 

transferred at each heat exchanger can be calculated, considering the temperature and mass flow at the 

boundary between the compression space and the cooler (Tc/k), the boundary temperature between the 

cooler and the regenerator (Tk/r and dmc/k), the temperature and the mass flow at the boundary between 

the regenerator and the heater (Tr/h and dmr/h)  and the temperature and mass flow at the boundary 
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between the heater and the expansion space (Th/e and dmh/e). The energies transferred in the cooler, 

regenerator and heater are calculated by equations (4.33), (4.34) and (4.35), respectively. Figure 4.18 

represents the heat transfer process between the compression space and the cooler. 

 

Figure 4.18 Representation of heat transfer between the compression space and cooler. 

 

Thus the enthalpies flowing across the interfaces/boundaries depend on the respective adjacent upstream 

cell temperatures and mass flows. 
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The total work corresponds to the sum of the work done in the compression and expansion spaces given, 

respectively, by equation (4.36) and equation (4.37). 

 
c cdW PdV  (4.36) 

 
e edW PdV  (4.37) 

The independent differential equations here presented are solved simultaneously for the seven unknown 

variables: Tc,Te,Qk, Qr, Qh, Wc, We. The objective is to find the unknown function  Y  which satisfies both 

the differential equations and the initial conditions. The system of equations is solved numerically using 

the classical fourth-order Runge–Kutta method, cycle after cycle until convergence conditions are reached. 

The vector Y denotes the seven unknown functions and the corresponding set of differential equations is 

expressed as in equation (4.38). 
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A numerical solution to this problem is accomplished by computing the values of the derivatives at 
i 0 

and proceeding in small increments of   to a new point 
1i i     . Therefore, there are 22 

variables and 7 derivatives in the equation set, to be solved over a complete cycle. 

 

4.5.3. Non-Ideal Analysis 

The so called Non-Ideal analysis corresponds to a third modelling approach, where non-perfect heat 

transfer and flow-friction effects are taken in the engine performance evolution. This corresponds to a 

more realistic analysis, which permits a parametric sensitivity analysis as required for the design 

optimization of this kind of systems. Heat is transferred from the external heat source to the working gas 

in the heater, cyclically stored and recovered in the regenerator, and then rejected by the working gas in 

the cooler. In the non-ideal analysis, the regenerator heat capacity is diminished, and leads to an increase 

in both the hot source and cold sink heats. Also, the fluid friction associated with the flow through the heat 

exchangers result in a pressure drop. This pressure drop (also referred as “pumping losses”) corresponds 

to the work required to move the working gas through the heat exchangers, thus reducing the net power 

output of the engine. 

 

Evaluating the heat transfer in the regenerator, cooler and heater 

The non-ideal effects of the regeneration are mainly due to the convective thermal resistance between the 

gas and the regenerator surface, and can be modeled by using the Number of Transfer Units (NTU). NTU 

value is defined as a function of the heat exchanger size. This includes the actual contact area (
w,iA ), as 

well as the actual mass flow of gas being transferred. The NTU method is used to calculate the rate of 

heat transfer in heat exchangers, as presented by equation (4.39): 

 
w,i

p

h.A
NTU

m.c
  (4.39) 

where h is the convective heat transfer coefficient. The heat transfer coefficient can be calculated by 

relating the heat transfer to fluid friction by using standard non-dimensional parameters. The Prandtl 

number, Pr , is a property of the of the fluid and the Reynolds number, Re , is a property of flow. For the 

range of working gases used in Stirling engines, in the range between 300 and 1000 K, the Prandtl 

number is approximately constant, at around a value of 0.7. The Nusselt number relates the heat transfer 

coefficient, the length of the heater pipe and the thermal conductivity of the working fluid, k . Considering 

the heat transfer in a pipe, the Nusselt number is written as in equation (4.40):  

 
h D

Nu
k


  (4.40) 

The correlations between Nusselt, Reynolds and Prandtl numbers were taken as in equation (4.41): 
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 (Pr,Re)Nu f  (4.41) 

In the analysis of a heat exchanger, the NTU is assessed in terms of fluid properties. NTU is defined in 

terms of a Stanton number (St) as presented in equation (4.42). 

 
1

St
2

wA
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A
    
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 (4.42) 

where Aw refers to the effective or "wetted" heat transfer area of the heat exchanger and A is the free flow 

area through the matrix. The factor 2 is due to the fact that St is defined for heat transfer from a gas 

stream to a wall, whereas in the cyclic process of the regenerator, heat is also transferred from the matrix 

to the gas flow. Stanton number for heat transfer, St , is a dimensionless parameter relating heat transfer 

coefficient to heat capacity of the fluid stream per unit cross-sectional area per unit time as in equation 

(4.43):  

 St exit in
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T Th A

uc A T T

 
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 
 (4.43) 

where h  is the convective heat transfer coefficient,   is the gas density, u is the velocity and 
pc is the 

specific heat capacity of the gas.  

In the “loading” process, the hot working gas is pre-cooled, while flowing through the regenerator from the 

heater to the cooler, transferring heat to the regenerator matrix. Then, in the reverse process, the heat that 

was previously stored in the matrix is “discharged” and pre-heats the cold gas that flows into the heater 

and expansion space.  

The regenerator effectiveness can be defined as the ratio between the real amount of heat exchanged 

between the matrix and the working fluid and the maximum amount of heat transferred in the regenerator 

of the adiabatic model (Ferreira, 2010). The analysis of the effectiveness of the regenerator is made by the 

temperatures of the fluid, see Figure 4.19. 

 

Figure 4.19 Temperature profile of the working fluid across regenerator. 
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Accordingly, the regenerator effectiveness can be calculated as presented by equation (4.44). 
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By the NTU method, the regenerator effectiveness can be obtained by equation (4.45). 

 
1

r

NTU

NTU
 


 (4.45) 

Thus, the regenerator heat-transfer reduction, defined as 
rlossQ , can be calculated as a function of the 

regenerator effectiveness and the amount of heat transferred by the ideal adiabatic regenerator,
,r idealQ , 

as in equation (4.46). 

 
,(1 )rloss r r idealQ Q    (4.46) 

The effectiveness of the heater and cooler can also be evaluated by means of NTU. The heat exchanger 

effectiveness for both exchangers can be defined according to equation (4.47), valid if the heat transfer 

limitations are on the gas side. 

 1 NTUe    (4.47) 

The mean effective temperatures in heater (Th) and cooler (Tk) are, respectively, lower and higher than the 

corresponding heat exchanger wall temperatures: heater (Twall.h) and cooler (Twall,k) walls, as shown in Figure 

4.20.  

 

Figure 4.20 Schematic diagram of temperature distribution for the non-ideal analysis. 

 

This implies that the engine is operating between narrower temperature limits than originally specified 

which effectively reduces the thermodynamic engine efficiency. Thus, the relationship between the total 

heat transfer and the mean gas/wall temperature difference can be calculated by the basic equation for 

convective heat transfer, equation (4.48). 
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where Twall is the wall temperature, and T the mean effective gas temperature (heater or cooler). In fact, 

the temperatures, Th and Tk, are determined iteratively after the evaluation of Qh and Qk in each accordingly 
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to the equation (4.49) and the equation (4.50), respectively. The less heat transfer in the regenerator 

leads to increases in the heats of the hot and cold sources so that, the actual heat for both heat 

exchangers is determined. 

 
,h h ideal rlossQ Q Q   (4.49) 

 
,k k Ideal rlossQ Q Q   (4.50) 

The mass flow rates through the heater and cooler are used to determine the Reynolds number and thus 

the heat transfer coefficients. Thus, it is possible to evaluate the heater and cooler gas temperatures, 

according to equations (4.51) and (4.52).  
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where hinner,h is the heat transfer coefficient from the gas side because the model only considers the 

convective heat transfer from inner wall of the heater tubes to the working gas and assumes a constant 

temperature at the outer surface.   

Tk is evaluated by calculating the overall heat transfer coefficient, which includes the convective heat 

transfer from the cooler tubes to the working fluid, the conductive process through the cooler tubes wall 

and the convective heat transfer to the coolant (an external mass flow of water).  The calculation of the 

latter is explained in section 4.6.3.   
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 (4.52)

waterT  is the mean temperature of the external water, dout,k is the outer diameter of the cooler tubes, Lk is 

the length and nt the number of the cooler tubes; k is the thermal conductivity of the tubes, which was 

assumed to be equal to 54 W/(mK) (carbon steel) and Awater,k corresponds to water flow area at the external 

side of the heat exchanger.  

 

Evaluating the pumping losses 

Fluid friction associated with the flow through the heat exchangers, results in a pressure drop, thus 

reducing the output power of the engine. At each instant in time (and corresponding cycle angle θ), the 

pressure drop (ΔP) is taken over the three heat exchangers and then, the value of the corresponding work 

can be achieved by integration over the complete cycle. The total engine work per cycle, W is given by 

equation (4.53).  
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where Ve and Vc are, respectively, the expansion and compression volumes. The first term in the equation 

represents the ideal adiabatic work done per cycle and the second one represents the pressure drop per 

cycle. The pressure drop converted to work loss, ΔW, can be calculated by equation (4.54). 
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where θ is the crank angle. The pressure drop is evaluated by equation (4.55). 
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where  
fC is the friction coefficient, Re is the Reynolds number, µ and u are the gas viscosity and velocity, 

d is the hydraulic diameter of the small parallel passages and V the void volume. The friction coefficient is 

the non-dimensional wall shear-stress, defined according to equation (4.56). 

 
20.5

fC
u




  (4.56) 

where  , is the wall shear stress,   is the working fluid density andu is velocity. Dimension analysis 

proves that 
fC is a function of Re and the relative roughness of the pipe surface and can be obtained 

from the Moody diagram. In the case of smooth pipes 
fC can be calculated by using the Blasius 

equations. The Reynolds number represents the ratio of the inertia to viscous forces. The Reynolds 

number (equation (4.57)) is calculated because the friction factor and the heat transfer coefficient are 

strongly dependent on the flow regime. 

 Re
u d



 
  (4.57) 

The dynamic viscosity is a fluid property that influences the internal friction of the fluid. It is independent 

of pressure but varies with the temperature. Thus, it is important to account the effect of gas temperature 

changes in the dynamic viscosity.. The Sutherland law defines the dynamic viscosity as a function of 

temperature (see equation (4.58). 
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where 
0 is the viscosity value at the reference temperature, 

0T  is the reference temperature (assuming 

the value of 273.15 K) and suC is the Sutherland constant for each working gas.  

The algorithm of the non-ideal analysis can be better understood considering the diagram of Figure 4.21, 

which explains the sequence of the calculus. The solution algorithm requires iterative invoking of the Ideal 

Adiabatic analysis, each time with new Th and Tk values, until convergence is attained. After each 
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simulation run, values of Qh and Qk are available and Qrloss is determined in terms of the regenerator 

effectiveness. 

 

Figure 4.21 Flow diagram of the non-ideal algorithm.  

 

4.6.  Heat Exchangers Configuration 

In the literature, several configurations are mentioned for the Stirling heat exchangers (Sanz & Fayad, 

2008; Scollo, Valdez, & Baron, 2008; Tlili et al., 2008; Zarinchang & Yarmahmoudi, 2008). The most 

common configurations of heater and cooler are smooth tubes and finned or slotted tubes. Regenerators 

are usually tubular or annular and, depending on the application, regenerators could have a fine wired 

mesh or a foil.  

The use of a given configuration depends on design requirements, material constraints and, the most 

important, on improvement of the heat transfer rate. The heat transfer depends on the heat transfer 

coefficient and the heat transfer area.  

 

4.6.1. Heater: bank of smooth tubes 

In this study, solar energy will be considered as the hot source with heat transfer occurring by the 

incidence of the concentrated radiation on the heat exchanger walls. In this case there is no convection 
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from the outside and the wall temperature can be considered constant. Thus, agood option for the heater 

will be a bank of parallel thin tubes. This choice results from the need for a large contact area together 

with the capacity for a large mass flow of working gas.  

In order to calculate the effective heat transfer, it is important to calculate the inside contact wetted area 

of the heater (Aw,h) which can be defined by equation (4.59). 

 
,w h inner,h h hA d nt L  (4.59) 

where dinner,h is the inner diameter of the heater tubes, nth the number of the heater tubes Lh correspond to 

their length. 

 

4.6.2. Tubular Regenerator 

As previously mentioned, the regenerator is a special heat exchanger used in Stirling engines to improve 

its efficiency. Heat is transferred from the regenerator to the working fluid and it is therefore pre-heated 

when moving from the compression to the expansion space. At the end of the expansion process the flow 

is reversed and working fluid is pre-cooled with the heat transferred and stored in the regenerator. 

Preliminary studies demonstrated that, in a Stirling engine the regenerator can achieve effectiveness’s of 

up to 98 %, which indicates that the working fluid will leave the regenerator close to the temperature of the 

space it is occupying  (A. C. Ferreira, Oliveira, Nunes, Martins, & Teixeira, 2014). The large improvement 

in engine efficiency by using a regenerator far balances the minor reduction in specific power. In the 

present work, the choice was a tubular regenerator with a fine-wire mesh matrix, as represented by Figure 

4.22.  

Figure 4.22 Ilustration of geometrical parameters of the regenerator. 

 

The free section regenerator matrix area (Ar,matrix) is defined as in equation (4.60). 

 
,

2
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inner,rd
A

 
  (4.60) 

Considering the assumed configuration, the regenerator wetted area (Aw,r) can be calculated from the ratio 

of regenerator void volume (Vr) to the hydraulic diameter (dhydraulic,r) and adding the tubular wall area (Aw0,r) as 

in equation (4.61): 
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where the dhydraulic,r accounts for the mesh porosity. Thus, the regenerator wetted area can be calculated 

according to equation (4.62). 
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A d L

d


 
    

 
 

 

 (4.62) 

 

4.6.3. Cooler: bank of smooth tubes 

The cooler was also considered as a bank of parallel smooth tubes. In order to calculate the effective heat 

transfer at the cooler one must consider the inner heat transfer from the working fluid and the external 

heat transfer to the coolant. The contact wetted area of determined by equation (4.63). 

 
,w k inner,k k kA d nt L  (4.63) 

Tube banks are commonly-employed design elements in heat exchangers. Tube bundles are a sub-

component in shell-and-tube heat exchangers, where the flow resembles cross flow (outside) and 

longitudinal flow (inside).  Figure 4.23 shows the two basic tube-bank patterns. These are referred to as 

in-line tube banks and misaligned tube banks, respectively. They are characterized by crosswise pitch-to-

diameter ratios, ST/dout and SL/ dout, where dout is the external diameter of the tubes, and ST and SL the space 

between the tubes. 

 

 

 

 
In-line 

 

Staggered 

Figure 4.23 Schematic of an in-line and a staggered tube bank illustrating nomenclature. 
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By defining the ratio between the space of heat exchanger tubes and their external diameter, it is possible 

to calculate the maximum velocity accordingly to the correlations presented by equation (4.64) if the tubes 

are aligned or by equation (4.65) in case of a staggered tube bank. 

 T
ef

T out

S
u u

S d



 (4.64) 

 
2( ) 2

T outT
ef D

D out

S dS
u u if S

S d


 


 (4.65) 

In this study the dout,k is assumed as a function of the cooler tube internal diameter, with an assumed tube 

thickness of 1 mm and the cooler shell width. For calculations, it was assumed that ST/dout=2 and SL/ dout 

=2. This means that the tubes alignment will be dependent of the value of the internal diameter on the 

cooler tubes. Then, the correspondent Reynolds number is calculated and the water heat transfer 

coefficient (hout,k) can be determined through the Nusselt number, given by the equation (4.66).  

 ,max

1/3

11.13 Re Prdout

mNu c  (4.66) 

The water flow area at the external side of the heat exchanger (Awater,k) is calculated by equation  

 
,water k out,k k kA d nt L   (4.67) 

 

Regarding the description of the physical model, this project is focused on the optimization of a system for 

cogeneration applications based on an alpha Stirling engine (see Figure 4.24) as prime mover, able to 

produce 1-5 kW of electricity and a larger heat load suitable to supply the residential energy needs.  

  

Figure 4.24 Representation of an alpha Stirling Engine. 
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Stirling engine works between two temperatures Th and Tc (hot and cold sink, respectively). The value for 

the hot temperature was assumed considering that the energy source is concentred solar radiation. The 

cold sink of the engine is refrigerated by a mass flow of water which removes heat from the cooler to 

produce hot water. It was assumed that the mass flow of water is heated from 288 K to 343 K. 
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5  
 

Development of the Thermal-economic 

Optimization Model  
 

 

5.1 Formulation of the Conceptual Model 

5.2 Thermal-economic Optimization Model Definition 

5.3 Numerical Solution 

______________________________________________________________________ 

In this chapter, the thermal-economic formulation is presented, which is based on the definition of a non-

linear objective function, subject to physical constraints. The methodology for developing the purchase 

cost equations are presented and discussed. Also, the decision variables and the optimization constraints 

are presented and their choice is discussed. Finally, the numerical solution is discussed and presented. 

5.1 Formulation of the Conceptual Model  

The development of a mathematical model for cogeneration systems evaluation aims the design of an 

effective way to globally analyse a thermal system from the techno-economical point of view. The 

development of thermal systems models involves different steps that depend on technical and economic 

constraints. A cogeneration system sizing depends on the energy requirements. This means that the 

system components have to be chosen according to the thermal and power demands of the consumer 

(Pehnt, 2008). The identification of end user consumption necessities has a great importance in the 

definition of technical characteristics of the cogeneration unit. The definition of energy consumption 

profiles is determinant in finding out the appropriate relationship between the power production and its 

consumption. So, for small-scale applications, it is important to define if the system is to satisfy the energy 

needs of a single and/or multi-family residence; a commercial or an administrative building. 

The evaluation of the energy consumptions is very important to minimize electricity demand from the 

network grid and maximize the efficiency of the cogeneration unit. The main idea in the process is the 

| 
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design of a system that satisfies the energy requirements by a flexible adaptation to user consumption, 

also taking into account the tariffs of electrical power (Moreira, Monteiro, & Ferreira, 2007). It is also 

important to define the type of fuel and the tariff applied. This characteristic is significant in the 

operational costs of the system. In fact, the variation of fuel and electricity prices may have an important 

impact in the cash flows from the CHP system operation (Ana C.M. Ferreira et al., 2012). The main steps 

in the process of a modelling a thermal system for small-scale cogeneration applications are schematically 

describes in Figure 5.1.     

 

Figure 5.1 Diagram of thermal system modelling for small-scale cogeneration applications. 

 

A cost-benefit analysis can be performed to assess the economic evaluation of thermal systems 

(Commission, 2008). Estimating the fixed and variable costs for the new system and comparing them to 

the costs of a reference/conventional system may do the economic evaluation. Regarding the fixed costs, 

they can be calculated according to the costs on a component level. The variable costs are the hardest to 

identify since they depend on system operational conditions and performance, thus, a reasonable 

relationship between the physical variables must be achieved (Jackson, 2007).  

 

In the development of cost-benefit analysis, two types of variables should be considered: the variables that 

quantify and parameterize the investment and operational costs and revenues of the cogeneration system; 

and external variables that perform a cost-benefit analysis of social and environmental aspects arising 

from the use of cogeneration technology (e.g. monetize the carbon emission savings)  (Ferreira, Martins, 
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Nunes, & Teixeira, 2011). The most explicit way to compare costs and benefits in an economic evaluation 

is to monetize both. Thus, the economic assessment of a cogeneration power plant requires a complete 

methodology that takes into account all decision relevant variables (internal costs and revenues plus the 

externalities) able to affect the decision-making process (Ren & Gao, 2010; Soliño, Prada, & Vázquez, 

2009).  

The evaluation of the economic feasibility of a CHP system can be processed in three main steps: (1) 

assessment of the technical data; (2) costing methodology; and (3) evaluating the economic viability of the 

CHP residential system.  

The cost methodology allows the user to define the costs in a transparent manner, so that options can be 

validated and compared in an equitable manner. Cost estimation of the investment associated with the 

implementation of a particular system has to be made. Firstly, there is the need to gather and validate the 

cost data. For this, one can collect cost data from literature, technology suppliers and consultants. 

Secondly, the cost components have to be defined and allocated into investment cost, operation and 

maintenance costs, revenues and avoided costs. The financial analysis of power plants usually considers 

the value of electricity produced by the unit, which represents the most valuable income from the systems 

operation. Moreover, and for any given system, the payback relies on the unit’s operating hours and the 

total electricity produced annually. Obviously, it is not only the system purchase costs that are important 

to calculate. The installation and the frequency of the maintenance service over the system-working 

lifetime have to be quantified. Finally, it is necessary to use some parameters, such as, exchange rates, 

discount and interest rates, in order to enable a fair comparison of different CHP residential systems. 

These data are used to estimate whether the annual worth of the investment is positive or negative. The 

process describing the development of the thermal-economic optimization model is presented at Figure 

5.2. 

 

 

 

 

 

 

Figure 5.2 Process of the development of the thermal-economic optimization model. 

 

Therefore, the thermal-economic model includes the definition of the physical and economic mathematical 

model, for which an optimization problem is formulated in order to disclose the best solution for the 

physical model for the best economic output through the application of an optimization algorithm. 
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5.2 Thermal-economic Optimization Model Definition 

The thermal-economic model includes the definition of the objective-function, the decision variables and 

the constraints that give significance to the results. In the developed work, a single objective function on 

an economic basis is presented.  The terms of the objective function represent the balance between costs 

and revenues from the system operation. The equation term that represents the investment cost consists 

on the sum of the purchase cost equations of each component of the system, which will be describe in 

more detail. 

   

5.2.1 Definition of the Objective Function 

The main objective of the present optimization study is the maximisation of the Annual Worth (AW) of the 

cogeneration system subjected to economic and thermodynamic non-linear constraints. Therefore, the 

objective function is defined by the balance between the incomes and the costs of the system operation, 

as described by equation (5.1). 

 
2

Re Re Resell avoided CO res inv m

max AW

where AW= v C v v C C    
 (5.1) 

The revenues are: the income from selling electricity to the grid (Revsell), the residual value of the system at 

its lifetime (Revres), the avoided cost of heat generation by a conventional boiler (Cavoided) and the 

monetization of the carbon emission savings (Revco2). The considered costs were: the annual system 

investment cost (Cinv) and the maintenance costs involved in the production of electricity and heat using 

the CHP system (Cm).  

The annual income from selling electricity power to the grid was calculated from the electrical power 

delivered to the grid (
elW ) considering the yearly number of system working hours ( t ) which corresponds 

to 4000 h, multiplied by the electricity-selling price (psell), as in equation (5.2) . 

 sell sellRe elv W p t  (5.2) 

The electricity-selling price was taken as a guaranteed and fixed feed-in-tariff of 0.12 €/kWh.  The avoided 

cost represents the cost of NG that would be consumed by a conventional system (typically a boiler) to 

produce the same amount of useful thermal energy, Q. This avoided cost can be calculated as in equation 

(5.3). 

 avoided fuelC
b

Q
p


  (5.3) 

where, pfuel, is the NG price per energy unit (pfuel=10 €/GJ) on a Low Heating Value (LHV) basis and ηb is 

the efficiency of a conventional boiler. This value is usually assumed to be 90% (Decision(2011/877/EU), 

2011). 
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Considering that the system under optimization uses a renewable energy source, the carbon dioxide 

emission factor is null. Nevertheless, it was intended to monetize of the avoided carbon emission from the 

CHP unit considered. Therefore, the avoided carbon emissions were calculated considering as if a 

conventional boiler running with NG as the fuel, with an efficiency of 90%, produced the thermal power 

and if the power was obtained from the grid. The economic benefit from the avoided carbon emissions 

was calculated by equation (5.4), assuming a constant price (
2COp =24.0 €/ton Co2) per ton (Cozijnsen, 

2012) and an equivalent CO2 emission factor (
2COFE ) in the view of the conventional energy production. 

 
2 2 2

Re ( )CO CO CO elv p FE t W Q      (5.4) 

The residual value of the equipment at the end of its useful lifetime should be considered as revenue. 

From the economic point of view, the residual value of equipment is usually estimated as a percentage 

(ψ) of the initial system investment cost, Cinv, as in equation (5.5). The  was assumed to be 5%. 

 res invRev C   (5.5) 

The annual system investment cost Cinv is calculated according to the annualised capital cost. Annualising 

the initial investment corresponds to the spreading of the initial cost across the lifetime of a system, while 

accounting for the time value of the money. The initial capital cost is annualised as if it were being paid off 

a loan at a particular interest of discount rate over the lifetime of the option. The power production costs 

are sensitive to changes in the discount rate (i.e. the interest rate used to determine the present value of 

future cash flows) (Larsson, Fantazzini, Davidsson, Kullander, & Höök, 2014). The Capital Recovery 

Factor (CRF) is used to determine the equal amounts of n cash transactions for an investment and can be 

expressed as in equation (5.6). 

 
(1 )

(1 ) 1

n

e e

n

e

i i
CRF

i




 
 (5.6) 

where ie is the effective rate of return. The lifetime of the system was defined to be 20 years. According to 

Öberg, Olsson, & Palsson (2004), the total accumulated operating time for the Stirling engines is about 

180000 h, corresponding to  20.5 years. In addition, some caution should be introduced when a new 

technology is applied to an emergent market, and so, the investment risks are higher than with mature 

technologies and traditional markets. 

For thermal-economic optimisation, the ie can be approximated as: nominal rate of return (i.e interest rate) 

minus inflation rate plus owners’ risk factor and correction for the method of compounding (Larsson et al., 

2014). The ie herein considered was 7% resulted in a CRF of 0.0944. Thus, the annual system investment 

cost becomes as in equation (5.7). 

 inv i

i

C C CRF   (5.7) 
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where Ci is the purchase cost of each component of the CHP system (Ci Ck; Ch; Cr; Ceng).  

For Stirling engines, the normal maintenance intervals are of 5000-8000 h. According to a Swedish study 

(Öberg et al., 2004), the maintenance service can include the regenerator maintenance and the 

replacement of some engine components, oil and filters. Thus, the maintenance costs are evaluated as in 

equation (5.8). 

 m m elC p W t    (5.8) 

where pm is the maintenance price per unit of electricity produced. The maintenance costs are estimated 

to be 0.015 €/kWhel (Öberg et al., 2004). The electrical power (
elW ) already includes the efficiency of the 

electrical generator, herein assumed to be 93%.  

 

5.2.2 Definition of Purchase Cost Equations 

The total system investment cost corresponds to the sum of the purchase cost of each component of the 

system. Thus, four representative purchase cost equations are presented for each one of the heat 

exchangers (heater, regenerator and cooler) and for the engine bulk. The purchase cost equation of the 

engine bulk is representative of the remaining components of the Stirling engine. 

 

Methodology 

Each purchase cost equation should include terms, which relate the cost of the equipment with the 

physical parameters that have greatest relevance in the cost estimation. The mathematical expressions 

that define the cost of each component were based on the methodology developed by Marechal, Palazzi, 

Godat, & Favrat (2005) and already applied to micro-gas turbines (Ferreira et al., 2012) and to Stirling 

engine technology (Ferreira, Oliveira, Nunes, Martins, & Teixeira, 2014). The costing methodology also 

integrates cost coefficients adjusted for this kind of technology and based on real market data. The 

variables included in the purchase cost equations can be divided in size and quality variables. In terms of 

methodology, the equations were defined considering that the cost of each component of the system is 

based on a reference case and includes a cost coefficient, a factor of size, which scales the component, 

and a temperature quality factor as is represented in equation (5.9). 

 
, , ,ref i m i T iComponent Cost C F F  (5.9) 

The term Cref is the reference cost coefficient that corresponds to a cost per unit of (one or more) physical 

parameter. The term Fm is the sizing factor that scales the system component from a reference case, as 

presented in equation (5.10). 
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i
m ref

ref

F
F F

F

 
   
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 (5.10) 
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where Fref and Fi are the reference and the physical variable value and b the sizing exponent. A sensitivity 

analysis is required in order to determine the best value for the sizing exponents. 

Due to the high temperatures at which certain system components operates, such as, the heater and the 

regenerator, an additional term can be included into the cost component equation. The temperature 

factor, FT, can be defined as in equation (5.11). 

 

( )
1

2

i i refC T T

T

e
F

 


  (5.11) 

where Tref is the reference temperature for the working gas at the component, Ti is the effective 

temperature of the working gas at the components and Ci is the temperature cost coefficient. 

 

Heat Exchangers Purchase Cost Equations 

The purchase cost equations for the heater and the regenerator are presented by equations (5.12) and 

(5.13), respectively. For both heat exchangers, the equations relate the cost of the exchanger with its 

effective heat transfer area. An additional correction term must be added in order to include the 

temperature effect in their cost. 
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where C11,h, and  C21,r are the reference cost coefficients [in €/cm2] for heater and regenerator, respectively; 

C12,h and C22,r  are correction constants of the temperature factor  for heater and regenerator. Reference 

values for the heat transfer area and cost coefficients are assumed by considering a reference case from 

the available market. Working fluid temperatures, pressures and the type of heat source, affect the design 

of these two special heat exchangers. For instance, a high temperature, low-pressure steady conditions, 

while, in the internal surface, the fluid flows at high temperature and high pressure, subject to turbulence, 

characterizes the flow at heater’s outer surface. These limitations make these thermal components more 

expensive due to the materials used in their manufacture. The temperature reference values for heater 

and regenerator were assumed to be 725 K and 600 K, respectively.   

Figure 5.3 and Figure 5.4 presents the heater and regenerator cost estimation considering three different 

sizing exponents. Considering the obtained curves, it was assumed a size exponent of 0.5 for the heater 

purchase cost equation and a value of 0.6 for the regenerator. 

The regenerator can be considered the heart of the Stirling engine. Thus, the heat transfer is calculated 

assuming that the regenerator has a fine-wired matrix that improves the heat transfer process by exposing 
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the maximum surface area of the matrix. In that way, reference values were assumed for the heater and 

regenerator heat transfer area with similar configuration (Timoumi, Tlili, & Ben Nasrallah, 2008). 

 

Figure 5.3 Cost estimation of the heater considering different size exponents. 
 

 

Figure 5.4 Cost estimation of the regenerator considering different size exponents. 

 

The purchase cost equation for the cooler is presented by equation (5.14). For this component, the 

temperature factor was neglected because despite the gas flow conditions in the cooler are quite similar 

to the ones at the heater, the working fluid flows at lower temperature values.  
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where C31,h is the reference cost coefficient [ in €/cm2] for cooler cost equation. 

The heat transfer area at the cooler purchase cost equation was assumed to be the wetted area of the gas 

side because the gas convective heat transfer coefficient is relatively higher when compared with the 

water convective heat transfer coefficient. Figure 5.5 presents the cooler cost estimation considering three 

different sizing exponents. For the cooler purchase cost, it was assumed a size exponent of 0.4. 

 

Figure 5.5 Cost estimation of the cooler considering different size exponents. 

 

Engine Bulk Purchase Cost Equation  

The power of Stirling engines is affected by changing the operational parameters such as the pressure, 

phase angle, volume and speed (Tlili, Timoumi, & Nasrallah, 2008). Because of the complexity of system 

modelling, the engine bulk cost equation was estimated considering two main relevant physical 

parameters in its cost definition: the cylinders capacity (
engV ), a size factor, and the mean operating 

pressure ( meanP ), that influences the cost of sealants. The engine bulk cost equation can be defined as in 

the equation (5.15). 

 

1 2

41, , ,

, ,

b b

eng mean
eng eng ref eng ref mean

ref eng ref mean

V P
C C V P

V P

    
             

 (5.15) 

where C41,eng  is the reference cost coefficient [ in €/(cm3.bar)] for engine bulk cost equation. 
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Engine bulk cost includes the meanP of the system because of the proportionality between the mean 

pressure and the power output. Higher pressures also mean higher material costs and the need for better 

sealing solutions.  

Considering that the engine cost equation includes two physical parameters, it is of utmost importance to 

study the impact of each physical parameter as well as the respective sizing exponent in the engine bulk 

cost estimation.  At Figure 5.6-a) the engine cost was estimated considering a constant value for the mean 

pressure equal of 50 bar; while Figure 5.6-b) presents the engine cost estimation as a function of the 

mean pressure, varying the sizing exponent and assuming it equal to the reference value for the engine 

volume,
,ref engV 125 cm3. 

Figure 5.6-a Engine cost estimation as a function of the volume; 5.6-b Engine cost estimation as a function of the 

mean pressure. 

 

For those assumptions, data show that the engine cost achieves a higher range when varying the mean 

pressure in relation to the volume. Assuming the reference cost of this Stirling engine component of about 

10000€ (25% of the investment cost of the Solo Stirling engine (GmbH, 2007)), the analysis shows that it 

is acceptable to consider the size exponents for the volume (b1) and for pressure (b2) between 0.2 and 

0.4.  

5.6-a 

5.6-b 
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Nevertheless, the engine cost must be estimated considering the combined effect of these two physical 

parameters. Figure 5.7 shows the engine cost estimation as a function of the engine volume and the 

mean pressure, considering different sizing exponents.  

5.7-a  5.7-b  

Figure 5.7-a Cost estimation of the engine bulk considering b1=0.2; b2=0.2; and 5.7-b Cost estimation of the engine 

bulk considering b1=0.4; b2=0.4. 

 

Based on the analysis, the sizing exponents for the engine purchase cost equation were assumed to be 

0.35 for the engine volume (b1) and 0.2 for the mean pressure (b2) as presented by equation (5.16) 
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 (5.16) 

 

Validation of the Purchase Cost Equations  

The cost coefficients, Cref, for each purchase equation was based on the relative weight assumed for each 

component in the total cost of the equipment. Several combinations for the relative cost of each heat 

exchanger and the engine bulk were studied and the costs were calculated. Table 5.1 presents the 

different combinations of the relative component costs that were studied in order define the cost 

coefficients of the purchase cost equations.  

 

Table 5.1 Different combinations of relative costs weight for the thermal components 

 Combination A Combination B Combination C Combination D 

Regenerator  0.30 0.30 0.20 0.25 

Heater  0.30 0.20 0.30 0.25 

Cooler  0.10 0.10 0.10 0.10 

Engine Bulk 0.30 0.40 0.40 0.40 
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Based on those combinations, the cost coefficients of each thermal component were calculated and are 

presented in Table 5.2. Nevertheless, the relative weight that it is attributed to each component in the final 

purchase cost of the thermal plant significantly affects the component cost. This coefficient represents the 

cost per unit of physical parameter: heat transfer area in the case of the heat exchangers and mean 

pressure and cylinder capacity in the case of the engine bulk purchase cost equation.  

 

Table 5.2 Cost coefficients for different combinations of thermal component relative costs 

 Combination A Combination B Combination C Combination D 

Regenerator  1.88 1.88 1.25 1.56 

Heater  6.64 4.42 6.64 5.53 

Cooler  1.79 1.79 1.79 1.79 

Engine Bulk 0.31 0.417 0.417 0.417 

 

Based on all the sensitivity analyses performed to the sizing and cost coefficients, Table 5.3 summarizes 

all the assumed values for cost coefficients, temperature factors and sizing exponents for the purchase 

cost equations of each component. Note that the regenerator and the heater are the only two components 

which purchase cost equation includes a temperature factor, due to the temperature values that the 

working gas experiences.   

 

Table 5.3 Cost coefficients and sizing factors for the purchase cost equations 

Component Sizing Factor Cost coefficient Temperature Factor 

Heater b= 0.5 C11,h=5.53 C22,h=0.001 

Regenerator b=0.6 C21,r=1.56 C22,r=0.008 

Cooler b=0.4 C31,r=1.79 - 

Engine Bulk 
b1=0.35 
b2=0.20 

C41,eng=0.417 - 

 

The choice of cost coefficients and sizing factors values was based on technical information from 

commercial systems and sensitivity analysis. The development of a correct methodology to define the cost 

equations for each component of a thermal power plant is a very demanding process. Manufactures do 

not provide important information concerning the technical specifications and much less information 

about production costs. Based on the information presented in the Annex II, the purchase acquisition cost 

of two commercial models based on Stirling engine technology (the SOLO Stirling 161 ad the 5-ZGM-1 kW) 

was calculated in order to validate the presented cost equations. These two models were chosen just 
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because they are the only two models with data required to do the calculations. The purchase cost 

estimation for both models is presented in Table 5.4 and Table 5.5, respectively. 

 

Table 5.4 Validation of the purchase cost equations for the SOLO Stirling 161 model 

Component Parameter 
Parameter 

Value 
Cost (€) 

Heater 
Wetted Area (cm2) 1200 

4481 
Temperature (K) 973 

Regenerator 
Wetted Area (cm2) 2000 

7347 
Temperature (K) 670* 

Cooler  
Wetted Area (cm2) 1500 

2570 
Temperature (K) 303 

Engine  

Cylinder Capacity (cm3) 160 

10000 Rotational Speed (rpm) 1500 

Mean pressure (bar) 150 

Total Cost  (€) 24398 

 

Table 5.5 Validation of the purchase cost equations for the ENERLYT 5-ZGM-1 kW model 

Component Parameter 
Parameter 

Value 
Cost (€) 

Heater 
Wetted Area (cm2) 1696* 

4810 
Temperature (K) 1073 

Regenerator 
Wetted Area (cm2) 1202* 

2288 
Temperature (K) 730* 

Cooler  
Wetted Area (cm2) 1696* 

1404 
Temperature (K) 343 

Engine  

Cylinder Capacity (cm3) 328 

5602 Rotational Speed (rpm) 1100 

Mean pressure (bar) 6.5 

Total Cost  (€) 14104 

  *values estimated by applying reverse engineering 

 

Results show that calculating the purchase cost of both commercial models by using the developed cost 

equations, it is obtained a value of 14104€ and 24398€ for 5-ZGM-1 kW and the SOLO Stirling 161, 

respectively. These values demonstrate a good correlation between the costing methodology here 

presented and purchase cost documented in the literature. According to the data from Annex I, the 
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purchase cost correspond to 13000€ and 25000€, respectively. This output leads to the conclusion that, 

applying the purchase cost equations to different commercial models, the total equipment costs have the 

same cost magnitude, even without all the technical data.  

 

5.2.3 Definition of Non-linear Constraints 

Several inequality constraints were formulated in order to give physical significance to the mathematical 

model. The definition of these constraints aims bounding some of the variables according to their feasible 

limits in the system operation. The constraints divide the design space into two domains, the feasible 

domain where the constraints are satisfied and the respective values have significance in the optimization 

problem, and the infeasible domain where at least one of the constraints is violated and the variables 

results is no longer acceptable as optimal solution.  

For the optimization problem presented in this work, two main categories of constrains are defined: the 

thermodynamic and the economic conditions. The first group is defined to impose some relationships 

between the thermodynamic variables (e.g. temperature evolutions, thermal and power production ratios, 

etc.) and the second one that bound the relationships between the purchase costs of the different system 

components. 

For a machine that operates as an engine, the available electrical power produced should be always 

positive. Then, the most basic constraint of this model is to ensure that energy is produced, as in equation 

(5.17). 

 0W   (5.17) 

In view of the data from the market, a constraint bounding the heat-to-power ratio, λ, was included into 

the model. It is well known from the literature that the systems available on the market have an electric 

power size ranging from 1 kW to 9 kW and a corresponding thermal power output between 5 kW to 25 

kW. From the analysis of five commercial models: Solo 161, WhisperGen, Sunmachine, SM5A and Baxi 

Ecogen, the heat to power ratio was calculated for those commercial systems (see Figure 5.8).  

   

Figure 5.8 Comparison of the heat-to-power ratio of several commercial Stirling systems. 
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According to this analysis, the heat-to-power ratio was assumed to range between the values of 2.5 to 3.5 

as in equation (5.18). In addition, the production of thermal power was also restricted to a maximum 

value of 10.5 kW 

 2.5 3.5   (5.18) 

Considering the temperature evolution, the temperature of the working gas at the cooler was constrained 

as shown in equation (5.19). This constraint limits the temperature of the working fluid above 353 K, 

which corresponds to the cooler wall temperature.  
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where 
water T  is the mean temperature of the mass flow of water, where dout,k is the outer diameter of the 

cooler tubes, Lk is the length and nt the number of the cooler tubes; k is the thermal conductivity of the 

tubes, which was assumed to be equal to 54 W/(mK) (carbon steel) and Awater corresponds to water flow 

area at the external side of the heat exchanger.  

The temperature of the working gas at the heater was constrained as shown in equation (5.20). This 

constraint bound the temperature of the working fluid below the minimum acceptable value to the hot 

source temperature.  
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h A

    (5.20) 

Regarding the costs of each component, inequality constraints were defined in order to guarantee the 

relative share in terms of costs for each system component, by assuming a percentage in the total cost of 

the power plant. The constraints concerning the relative weight of each component in the total investment 

cost of the system is presented by equations (5.21) to (5.24). 
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The European Directive 2004/8/EC (DIRECTIVE 2004/8/EC, 2004) aims the promotion of high-efficiency 

systems led by heat demand and defines the PES value, accordingly to the unit size. For small-scale 
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systems, a PES of at least 10% is required so that the system can be classified as a system of high 

efficiency, whereas in the case of micro-scale systems, a positive value of PES is required (DIRECTIVE 

2004/8/EC - Directive on the promotion of cogeneration based on a useful heat demand in the internal 

energy market, 2004). Thus, PES allows estimating the total primary energy savings that are possible to 

achieve by a cogeneration unit (considering the combined electric and thermal efficiencies) when 

compared with the conventional power production process. The amount of primary energy provided by 

cogeneration production (equation (5.25)) must be a positive value in order to the system is classified as a 

high efficient system. 

 0PES   (5.25)  

The European Communities Commission gives a method to evaluate the harmonized efficiency reference 

values for separate production of electricity and heat. In particular, the value of the electric reference efficiency 

is a function of the year of construction of the cogeneration unit, the climatic condition, the electricity used on-

site and the avoided grid losses due to decentralized production (Decision(2011/877/EU), 2011).  

 

5.2.4 Definition of Decision Variables 

Defining the decision variables is in fact one of the hardest and/or most crucial steps in formulating an 

optimization problem. Based on the study of the physical model, explicit decision variables were defined in 

the numerical model. Upper and lower bounds were selected for these decision variables, considering 

their significance in the model. The decision variables were chosen considering their relevance in the 

performance of the system on an integrated way. Thus, two types of decision variables were considered in 

the model: operational and geometrical variables.  

The mean pressure is one of the operational parameters that most influences the system output. 

Considering its variation with the power produced, it was also considered as one the decision variables in 

the thermal-economic model. The upper and lower limit for this decision variable is presented in equation 

(5.26). 

 5 80meanP   (5.26) 

Several geometrical variables which affect directly the system sizing were also chosen as decision 

variables: the internal diameter of heater and cooler tubes; the number of tubes for the heater and the 

cooler; the porosity of regenerator matrix, the wire diameter of the regenerator matrix and the cylinders 

volumes. 

Regarding to heater, the physical model only considers the convective heat transfer from internal wall of 

the tube to the working gas and assumes a constant temperature at the outer surface of the heater. Thus, 

the heat transfer coefficient will be significantly affected by the heater inner diameter (dinner,h)  [in mm], 

which is used to define the wetted heat transfer area. The heat transfer coefficient is determined by using 

the well-known Reynolds number in order to relate heat transfer to fluid friction by applying non-



 
  
Chapter 5 | Development of the thermal-economic optimization model   127 

 

dimensional parameters. The upper and lower limits for the internal diameter of the heater tubes, as 

decision variable, is presented in equation (5.27). 

 
,1 5inner hd   (5.27) 

The cooler tubes internal flow conditions are quite similar to the heater but at lower temperatures. To 

reduce the temperature of the working fluid an outside flow of water is used as a cold sink. Thus, heat 

transfer phenomenon includes the convective heat transfer from working gas inner to the inner wall of the 

cooler tubes to the, conductive heat transfer through the inner to outer tube wall surface and outside 

convective heat transfer to the coolant, the water. A preliminary analysis of the cooler showed that the 

most relevant limitation is the poor heat transfer between the inner surface of the cooler tubes and the 

working gas. The convective heat transfer coefficient from inner wall to the working fluid is the term that 

most contribute to the global heat transfer coefficient. Thus, the inner diameter (dinner,k) [in mm] of the 

cooler tubes was selected as a decision variable. The upper and lower limits for both decision variables 

are presented in equation (5.28) 

 
,1 5inner kd   (5.28) 

The efficacy of the regeneration process is very important in the engine performance because along the 

thermodynamic cycle, heat transfer losses in the fluid pre-heating and pre-cooling leads to increases in the 

hot and cold energies and thus to an important decay in engine efficiency (Zarinchang & Yarmahmoudi, 

2009). The maximum efficiency of this process would only be achieved if the heat transfer coefficient or 

the area of heat transfer is infinite. However, the working fluid does not have a null heat transfer capacity 

neither the regenerator matrix has an infinite heat capacity. To improve the regenerator heat transfer, it is 

important to establish a commitment between the heat transfer and the fluid friction. Thus, the porosity of 

the regenerator matrix ( ) and the wire diameter of the regenerator matrix ( wired ) [in mm] were 

selected as the most relevant variables affecting the system performance.   

 0.3 0.9matrix   (5.29) 

 0.05 0.5wired   (5.30) 

The Stirling engine capacity is a very important aspect when sizing the system because the network 

produced by the engine can be determined as a function of mean effective pressure and the engine 

volume (Veng) [in cm3]. The upper and lower limits for this decision variable are presented in equation 

(5.31). 

 70 160engV   (5.31) 

The upper and lower limits for the decision variables were based on the data from the literature, by 

assuming a feasible range variation.  
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5.3 Numerical Solution 

The search methods may and often do find global optimal solutions, but they are not guaranteed to do so. 

Nonetheless, these methods are widely used, often finding very good solutions, and can be applied to non-

linear, complex problems. A search method usually starts with a feasible solution, exploring all the 

solutions in the neighbourhood of that point, looking for a better one, and repeats the process if an 

improved point is found (Thomas, David, & Leon, 2001a). These methods usually use a heuristic 

procedure that guide the procedure by changing its logic-based search so that the method does not 

become trapped in a local optimum (Thomas, David, & Leon, 2001b). 

Recent developments show that derivative-free methods are highly demanded by researches for solving 

optimization problems in various practical contexts. Derivative free optimization was developed for solving, 

in general, small dimensional problems (less than 100 variables) in which the computation of the 

derivatives are not available (Rao & Patel, 2013). Concerning the complexity of the physical system, the 

optimization problem was solved using the PS routine in the MatLab® optimisation toolbox.  

 

5.3.1 Optimization Algorithm 

Pattern Search (PS) algorithms are derivative free methods for the minimization of smooth functions 

(Lewis, Shepherd, & Torczon, 2007). This method handles optimization problems with nonlinear, linear, 

and bound constraints. 

At each step, the algorithm generates a set of points, called mesh. These set of points control how the 

pattern changes over iterations and adjusts the mesh for problems that vary in scale across dimensions. 

Controlling the initial mesh size, the mesh refining factor, or the mesh contraction factor allows speeding 

up the method convergence. The mesh is generated by creating a set of vectors based on the pattern by 

multiplying each direction vector by a scalar that corresponds to the mesh size. The pattern vector that 

defines a mesh point is called its direction.  

The algorithm polls the points in the current mesh by computing their objective function. If the algorithm 

fails to find a point that improves the objective function, the poll is called unsuccessful, remaining the 

current point as the best for the next iteration. After polling, the algorithm changes the value of the mesh 

size ( ), expanding or contracting its size. The mesh expansion depends on the polling step success. The 

optimization algorithm is briefly presented by the pseudo-code presented below. 

The Poll method specifies the pattern the algorithm uses to create the mesh. There are three patterns for 

each of the classes of direct search algorithms: the generalized pattern search (GPS) algorithm, the 

generating set search (GSS) algorithm, and the mesh adaptive direct search (MADS) algorithm.  

 



 
  
Chapter 5 | Development of the thermal-economic optimization model   129 

 

1

1

1

1

,

( )

( )

( )

;

;

( );

/ 2;

1;

j

j

th

i i

j j j j

i

j

i

j

j j

j j

i

j

j j

Given and x

if

then Stop

compute min f x

for i direction vector

Set x x p

compute f x

if f x min

Set x x

Set

min f x

else

j j

 

 



 

 











 











    

 

The pattern, GPS Positive basis 2N (GPSPositiveBasis2N), consists of a set of 2N vectors, where N is the 

number of independent variables for the objective function. For example, if the optimization problem has 

three independent variables, the pattern consists of the following six vectors:  [1 0 0] [0 1 0] [0 0 1] [–1 0 

0] [0 –1 0] [0 0 –1], as clarified by Figure 5.9.  

 

 

Figure 5.9 Compass of a direct search method. Adapted from (Kolda, Lewis, & Torczon, 2003). 

 

The GSS Positive basis 2N pattern (GSSPositiveBasis2N) is similar to GPS Positive basis 2N, but adjusts 

the basis vectors to account for linear constraints. GSS Positive basis 2N is more efficient than GPS 

Positive basis 2N when the current point is near of the constraint boundary. The MADS Positive basis 2N 

pattern (MADSPositiveBasis2N) consists of 2N randomly generated vectors, where N is the number of 

independent variables for the objective function. Randomly generating N vectors that form a linearly 

independent set, and then using this first set do this and the negative of this set gives 2N vectors.  This 
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method requires the definition of an initial point ( 1x ) and the iterative process is initiated with a “trial 

step” considering the convergence tolerance ( ), the length of search step and the initial direction. If the 

search returns a point that improves the objective function, the algorithm uses that point at the next 

iteration and omits the polling step. Several algorithms can be used as search methods: GPS, GSS and 

MAD Positive Basis algorithms, GA algorithms, Nelder-Mead method or Latin hypercube (MathWorks 

Documentation Center, 2012). 

 

5.3.2 Numerical Simulation  

The main objective of this study is to analyse an alpha Stirling engine (non-ideal analysis), by trying to 

disclose the best operational parameters for the Stirling engine for cogeneration applications. The 

mathematical model able to describe the physical system, was based on a software-code developed in the 

MatLab® environment, based on the physical model of Urieli & Berchowitz (2010). The base code was 

modified, improved and adapted to be part of the thermal-economic model optimization model. When 

employing the optimization model, several script files were created to define the equations that describe 

the purchase cost equations. The purchase cost equations depend on physical parameters that also affect 

the thermodynamic performance of the engine and the solution will be the combination of parameter 

values that will lead to the best economic output.  

To apply this optimization algorithm it was also required to create a configuration script and two others 

that define the nonlinear constraints as well as the simple bounds of the decision variables (upper and 

lower bounds). The bounds in the variables guarantee that the optimum solution is within the technical 

operating capability of the plant. The main routine, Optimization Stirling Engine Analysis (OptSEA), where 

all the algorithm parameters are called, integrates all the scripts in order to solve the optimization 

problem, as described by Figure 5.10. 

 

Figure 5.10 Schematics of optimization model structure. 
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PS method requires a feasible initial point to start the iterative process. The initial point for all the decision 

variables was assumed to be the: 1

Tx  [
engV = 125 cm3, meanP =50 bar, 

,inner,h inner kd d =3.0 mm, matrix

= 0.7 and 
wired =0.3 mm. This point was firstly tested in order to verify if any constraint of the model is 

violated. 

Table 5.6 presents the algorithm options used to perform the numerical simulations. Considering the 

optimization problem under scope, PS algorithm was applied considering the problem as a Non-linear 

constrained optimization problem. In relation to the poll option, once it controls how the algorithm vote the 

mesh points at each iteration, the simulations were carried out considering the complete poll ‘on’ in order 

to choose the point with the best objective function value by checking all the points in the mesh at each 

iteration. After few tests to the optimization algorithm, the poll method chosen was the Positive basis 2N 

Generalized Pattern Search algorithm.  

 

Table 5.6 Algorithm options for the numerical simulations  

Method Option Selected Option 

Problem Type Non-linear constrained 

Poll Method GPS Positive basis 2N 

Search Method Nelder-Mead & GA algorithm 

Maximum Objective Function Evaluation 8000 

Maximum Iterations 200 

Convergence Tolerance  1.0E-04 

Complete Poll on 

 

The search method was defined as the Nelder-Mead and the GA algorithm from the MatlLab® 

optimization toolbox.  The maximum number of functions evaluation was defined as 8000, taking into 

account a maximum of 200 iterations. The convergence tolerance was assumed to be 1.0E-04. 
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6  
 

Results and Discussion 
 

 

6.1 Base-case Scenario for Numerical Simulation  

6.2 Thermodynamic Cycle Analysis 

6.3 Sensitivity Analysis of the Operational Parameters 

6.4 Sensitivity Analysis of the Geometrical Parameters of the Heat Exchangers 

6.5 Cost Estimation Analysis 

6.6 Thermal-economic Optimization  

______________________________________________________________________ 

In this chapter, the numerical results are presented and discussed. These are divided in three main 

groups. The first group concerns the analysis of the Stirling thermodynamic cycle comparing the results 

from the isothermal, ideal adiabatic and non-ideal analysis for a base-case scenario, where the 

geometrical configuration was assumed to be fixed. The second group of results is focused on a sensitivity 

analysis of the geometrical and operational parameters in the performance assessment of Stirling engine 

thermal components. The computing code used in these two analyses was modified from the one 

presented by Urieli & Berchowitz (2010). The third main group of results concerns the numerical 

evaluation of the thermal-economic performance of the Stirling engine.   

 

6.1 Base-case Scenario for Numerical Simulation 

The numerical simulations were carried out considering a base-case scenario for which the first results 

were obtained. Thus, all the input parameters for the engine’s geometric characteristics were assumed to 

be fixed values according to Table 6.1. It was also necessary to define the cylinders dead and swept 

volumes, the working gas and the operating input parameters for running the code: engine speed [rpm], 

heater and cooler temperatures (both constant). The temperatures of the hot and cold source are, 

respectively, 725 K and 353 K.  

| 
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Table 6.1 Values of geometrical and operational parameters for the base case scenario 

 

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The engine was considered as an alpha type, assuming a phase advance angle for the expansion space 

 of 90º for the expansion cylinder and considering that both compression and expansion cylinders have 

a dead volume of 25 cm3 and a swept volume of 130 cm3. The numerical simulations were carried out 

considering different values for the rotational speed (i.e. 1500 and 3000 rpm) and mean operational 

pressure (i.e. 5 to 80 bar) in order to understand the relevance of those operating parameters in the 

engine performance.  

 

 

Engine Cylinders  

Engine swept volume, [cm3] 130.0 

Engine dead volume, [cm3] 25.0 

Drive engine configuration Sinusoidal 

Regenerator 

Internal Diameter ( ,inner rd )   [mm]  46.0 

Regenerator Length ( rL )   [mm] 60.0 

Matrix Porosity ( _r matrix )   [-]  0.7 

Wire Matrix Diameter ( ,wire rd )   [mm] 0.3 

Regenerator Volume ( rV ), 69.8 

Heater 

Internal Diameter( ,inner hd )   [mm] 3.0 

Heater Length( hL )   [mm] 150.0 

Number of Tubes ( hnt ) [-] 80 

Heater volume ( hV ), [cm3] 84.8 

Cooler  

External diameter, ( ,out kd ) [mm] 4.0 

Internal Diameter( ,inner kd )   [mm] 3.0 

Heater Length( kL )   [mm] 100.0 

Number of Tubes ( knt )[-] 150 

Cooler volume ( kV ), [cm3] 106.0 

Operational Parameters 

Hot Sink Temperature, [K] 725 

Cold Sink Temperature, [K] 353 
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6.2 Thermodynamic Cycle Analysis 

 

6.2.1  Isothermal analysis 

The isothermal analysis, also known as the Schmidt analysis, is still considered as the classic analysis and 

includes the isothermal compression and expansion, as well as, a perfect regeneration. The isothermal 

analysis when applied to a Stirling cycle results in a theoretical efficiency equal to the Carnot cycle.  

The isothermal analysis is usually used as the approach to assess the theoretical maximum for the Stirling 

engine performance, although all the heat transfer processes are considered as perfect. 

Table 6.2 shows the obtained results for the isothermal analysis. The power values correspond to a 

rotational velocity of 1500 rpm. According to the results, and despite the engine sinusoidal geometry, an 

efficiency of 51.3% was obtained for all the described operating conditions. This efficiency equals that of 

the Carnot cycle for the same hot and cold source temperatures ( (1 ( ))Carnot c hT T   ). 

The results also show that the work per cycle is proportional to the mean pressure and the engine power 

is directly proportional to the mean pressure and engine speed.  In fact these results were expected 

because, in an ideal analysis, the engine geometry (swept volume, dead volume, phase angle and form of 

volume evolutions – sinusoidal or other) defines the work per cycle, for a given mean pressure. All engine 

operational points can then easily be calculated. The nature of the working gas is irrelevant, as viscosity 

and thermal properties are not considered (no fluid friction and perfect heat transfer).  

 

Table 6.2 Results from the isothermal analysis for different values of mean pressure 

Pressure (bar) Work (J/cycle) Qe (J/cycle) Qc (J/cycle) Power(W) 

5 10.48 20.43 9.95 262 

30 62.9 122.6 59.7 1572 

50 104.8 204.3 99.5 2620 

80 167.7 326.9 159.2 4192 

 
 

Figure 6.1 shows the pressure variation along a cycle obtained for a mean pressure of 30 bar. The origin 

(crank angle   of 0º) corresponds to the Bottom Dead Centre (BDC or maximum volume) of the cold 

piston. According to Figure 6.1, the maximum pressure is obtained at the end of the gas pre-heating 

phase, while the minimum pressure occurs in the reverse process, when the working gas is pre-cooled 

and the volume is at a maximum, after the gas has been expanded. 
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Figure 6.1 Gas pressure evolution along a complete cycle for a mean operating pressure of 30 bar.  

 

Figure 6.2 shows the pressure versus total volume diagram (PV).  This simulation was carried out 

considering a mean pressure of 30 bar. In the isothermal model, the compression and expansion spaces 

are maintained at the respective cold source and hot source temperatures during the cycle. External heat 

is only transferred from the working gas and to the working gas during the compression and expansion 

processes. The closed area defined by the cycle on the P-V diagram represents the net positive cycle work. 

 

Figure 6.2 Pressure versus total volume diagram for the isothermal analysis at pmean = 30 bar (reference θ points 

also included). 

 

6.2.2  Ideal adiabatic analysis 

In the Ideal Adiabatic Analysis, the working gas temperature in the heat-exchangers remains equal to the 

cold and hot source temperatures (perfect heat-exchanger). However, as the compression and expansion 

spaces are considered adiabatic, the respective temperatures will fluctuate during the cycle evolution. The 
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results indicate that the average gas temperature in the expansion space is lower than the hot source 

temperature and the opposite happens in the compression space, by comparison to the cold source 

temperature, see Figure 6.3. As a consequence of this lower temperature difference, the cycle thermal 

efficiency is reduced to 43.0%, when compared with the previous isothermal or Carnot efficiency of 51.3%. 

Table 6.3 presents the values of the thermal powers transferred in the heat exchangers and the engine 

output power considering engine speeds of 1500 and 3000 rpm for pressures of 5, 30, 50 and 80 bar.  

 

Table 6.3 Results from the ideal adiabatic analysis considering different values of mean pressure and 

rotational speed 

Rotational Speed [rpm] 1500 3000 

Mean Pressure [bar] 5 30 50 80 5 30 50 80 

Heater Thermal Power 

  hQ  [W] 570 
 

3420 5700 9120 1140 6840 11400 18240 

Cooler Thermal Power  

  kQ [W] 325 
 

1949 
 

3249 5198 650 3899 6498 10397 

Net Power [W] 245 
 

1471 
 

2451 3922 490 2941 4902 7850 

 

Regarding the results, the values of engine power are slightly lower, when comparing them with those 

obtained for the isothermal analysis (for the same mean pressure and rotational speed). For higher 

rotational speed values, the heat transferred in the heater is higher. In Figure 6.3 it is presented the 

temperature variation along a complete thermodynamic cycle.  

 

Figure 6.3 Temperature evolution in the heat exchangers, expansion and compression spaces. 
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The data shows that in the compression space Tc varies between 329.4 K and 408.7 K, while in the 

expansion space Te changes from 601.4 K to 737.5 K.  

For the same operational conditions, all the thermal energy fluxes and net total work output were analyzed 

along the ideal adiabatic cycle. These results are presented in Figure 6.4. A significant aspect is the 

amount of heat transferred in the regenerator. The maximum heat transferred to and from the regenerator 

matrix is much higher than the net energies transferred in the heater or in the cooler. This reveals the 

importance of this Stirling engine component. The energy rejected by the gas to the regenerator matrix, 

roughly in the first half of the cycle, is equal to the energy absorbed by the gas in the second half. Thus, 

globally, the heat transfer to the regenerator during a complete cycle is zero. The maximum total work 

reached over a complete cycle is 471.2 J for a mean pressure of 30 bar. As with the isothermal model, 

the network output per cycle is proportional to the mean pressure, and the mechanical power output is 

proportional to the mean pressure and rotational velocity.  

 

Figure 6.4 Energy variation diagram for a pmean = 30 bar. 

 

The compression and expansion work evolutions are presented in Figure 6.5. The expansion work (We) 

suffers a different process from the heat supplied in the heater (Qh). Nevertheless, at the end of the cycle 

they reach the same value of 137 J/cycle (compare Qh at Figure 6.4 with We at Figure 6.5). Similarly, the 

same behaviour is verified for the compression work (Wc) and for the heat rejected in the cooler (Qk), 

reaching the same, 78 J/cycle. A perfect regenerator acts like a perfect insulator: the energy balance from 

the hot components (heater and expansion space) is isolated from the energy balance of the cold 

components (cooler and compression space). 
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Figure 6.5 Compression and expansion work variation for a pmean = 30 bar. 

 

Figure 6.6 shows, separately, the pressure-volume diagrams for the compression cylinder (P-Vc), the 

expansion cylinder (P-Ve) and the total system volume (P-Vtot). The pressure rises during the compression 

phase followed by the gas pre-heating phase, where it gets to its maximum value. The minimum pressure 

occurs in the reverse process, when the working gas is pre-cooled and the volume is at maximum, after 

the gas has been expanded. The regenerator pre-heating and pre-cooling phases are not exactly isochoric 

due to the sinusoidal volume variations of the two pistons. 

 

Figure 6.6 Pressure versus space volume diagrams for ideal adiabatic analysis at pmean = 30 bar. 

 

Comparing the isothermal and the ideal adiabatic analysis, the results are not so significantly distinct. For 

both analyses, the engine power is directly proportional to the mean pressure and engine speed and the 
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temperature of the heater and cooler are equal to the expansion and compression spaces, respectively. In 

the adiabatic analysis, the heat exchangers are considered ideal and they do not affect the engine 

efficiency. Thus, for a more conclusive analysis about the performance of Stirling engines, the quality of 

the heat exchangers should be taken into account, since they influence the engine efficiency. 

 

6.2.3  Non-ideal analysis 

In real engines, in addition to the hot source and cold source temperatures, the main factors that affect 

and reduce engine efficiency are heat-transfer limitations and pumping losses. Thus, in the optimal design 

of Stirling engines, the three heat-exchangers characteristics are crucial, namely the compromise between 

their thermal effectiveness and the pumping losses. These losses are due to the pressure gradient 

required to move the working fluid through the three heat exchangers (mainly the flow through the 

regenerator). All these effects were considered in the non-ideal analysis, and several simulations were 

carried out considering air, helium and hydrogen as working fluids. Table 6.4 presents the results 

corresponding to simulations performed at 1500 rpm and with mean cycle gas pressures of 30 and 80 

bar. 

Regarding the results in Table 6.4, the values of engine efficiency are much lower, especially with air, 

when comparing them with those obtained for the ideal adiabatic analysis. Heat exchangers effectiveness 

is an important parameter that influences the cycle thermal efficiency. In the adiabatic analysis, the heat 

exchangers are considered ideal and do not interfere with the efficiency of the engine (regenerator 

effectiveness equal to 100%). In the non-ideal analysis, the effectiveness of the heat exchangers has an 

impact in the efficiency of the engine.  

The regenerator effectiveness for the non-ideal is higher when helium and hydrogen are used, by 

comparison with air. Purely in heat transfer terms, helium is slightly better than hydrogen. However, 

hydrogen’s low viscosity and high thermal conductivity also contributes to a good performance. 

Concerning engine performance, by comparing the three tested working gases, results show that the 

hydrogen is the best choice because it always results in the highest engine efficiency and power output. 

Nevertheless, for the same operational conditions, there is no significant difference in engine efficiency 

between helium and hydrogen. The difference is already noticeable in the case of the power output 

(relatively lower when helium is used), and may be explained by the higher volume-specific heat capacity 

(ρ.Cp) of hydrogen. The results with air are downright worse: the effectiveness of the three heat 

exchangers, the efficiency of the engine and the power output, all are significantly lower than with H2 or 

He. . As to the influence of the mean operation pressure (proportional to the mass of working gas in the 

system), it is easily observed that the power output increases almost linearly with the mean pressure, 

while the efficiency deteriorates, mainly because of heat transfer limitations (reduction in the effectiveness 

of all heat-exchangers). 
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Table 6.4 Results from the non-ideal analysis considering a rotational speed of 1500 rpm 

 

Table 6.5 presents the results corresponding to simulations performed at 3000 rpm, again with. 

Simulations were run assuming a mean cycle gas pressures of 30 and 80 bar. 

Results show that at higher rotational velocities, the hydrogen is the best choice because it achieves the 

best thermal efficiency when compare with the other two working gases. Also, when H2 is the working gas, 

the results shows that the system is able to produce much power at the same operation mean pressures. 

The non-ideal results disclosed that the work losses are very low. Also, for He and H2, work losses are 

even lower than the results obtained for the air. The working gas used should have a low heat capacity, so 

that a given amount of transferred heat leads to an increase in pressure. Regarding this issue, He would 

be the best choice because of its low heat capacity. Nevertheless, hydrogen's low viscosity and high 

thermal conductivity make it a powerful working gas, mainly because the engine have a higher power 

production at faster rotational speeds. 

Comparing the two tested cases, 1500 and 3000 rpm, the effects are similar to those of the mean 

pressure: the power output rises nearly proportionally to the increase in rotational speed but the efficiency 

tends to decrease, mainly due to the rise in pumping losses but also to a reduction in the effectiveness of 

the heat-transfer processes. At 3000 rpm of speed, the numerical simulations, using helium as the 

working fluid, show again slightly better values in terms of effectiveness for the three heat exchangers, 

than with hydrogen. 

Mean Pressure [bar] 30  80  

Working Fluid Air He H2 Air He H2 

Real Hot source heat, Qh [J] 210.2 164.2 176.2 598.4 465.6 512.8 

Real Cold source heat, Qk [J] 164.2 113.2 120.8 500.8 346.2 379.0 

Work [J] 45.3 51.1 55.6 96.1 119.6 134.5 

Power [W] 1133.7 1277.6 1390.4 2403.6 2990.6 3363.0 

Work Losses [W] 12.33 3.37 1.56 26.4 6.38 2.98 

Engine Thermal Efficiency [%] 21.82 31.1 31.6 16.25 25.7 26.2 

Regenerator Effectiveness [%] 84.4 92.5 92.2 78.5 89.2 88.8 

Heater Effectiveness [%] 39.8 57.4 56.6 32.4 48.3 47.6 

Cooler Effectiveness [%] 28.9 43.0 41.9 23.8 36.0 34.9 
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Table 6.5 Results from the non-ideal analysis considering a rotational speed of 3000 rpm 

 

The gas temperature evolutions, in the expansion and compression spaces and in the heat exchangers, 

were also calculated for the non-ideal analysis. An example is shown in Figure 6.7, with air as working 

gas, at 3000 rpm and a mean pressure of 30 bar. The working gas temperatures in the compression and 

expansion spaces fluctuate along the cycle, while the mean effective temperature for the working gas 

within the heater and the cooler is now different from the hot source and cold sink temperatures, due to 

the non-perfect heat-transfer. Thus, for the adiabatic analysis, the values of the mean effective 

temperatures were calculated. Results show that mean effective temperatures in heater and cooler are, 

respectively, lower and higher than the corresponding heat exchanger wall temperatures (661.3 K and 

443.4 K, correspondingly). It was also found that temperature at the expansion space could exceed the 

hot gas temperature and that the temperature at the compression space could be less than the cold fluid 

mean temperature, which could be explained by the adiabatic compression and expansion processes in 

the adjacent cylinders.  

Due to the non-perfect heat-transfer, the average temperature of the working gas in the heater is lower 

than that of the wall. The same is verified in the cold side of the engine, where the mean temperature of 

the working fluid is higher than the wall temperature of the cooler. 

Mean Pressure [bar] 30  80  

Working Fluid Air He H2 Air He H2 

Real Hot source heat, Qh [J] 221.0 171.5 187.5 608.2 484.6 543.8 

Real Cold source heat, Qk [J] 181.1 124.6 135.4 533.6 382.6 424.1 

Work [J] 36.6 46.4 51.9 68.3 101.2 119.7 

Power [W] 1830.8 2318.1 2597.3 3413.7 5060.8 5985.2 

Work Losses [W] 84.2 21.0 9.76 183.3 42.2 19.79 

Engine Thermal Efficiency [%] 16.7 27.0 27.7 11.3 20.8 22.0 

Regenerator Effectiveness [%] 80.4 90.33 89.9 73.4 86.3 85.7 

Heater Effectiveness [%] 34.5 50.6 50.2 27.8 42.3 41.6 

Cooler Effectiveness [%] 25.2 38.5 36.8 20.7 31.5 30.6 
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Figure 6.7 Temperature evolution in the heat exchangers, expansion and compression spaces for the non-ideal 

analysis (3000 rpm, air as working gas and mean pressure 30 bar). 

 

Table 6.6 compares the mean gas temperatures in the heater, regenerator and cooler for the three 

working gases for a Stirling engine running at 3000 rpm and a mean pressure of 30 bar.  

Results show that the hydrogen is the working gas that has the highest temperature difference between 

the hot and the cold heat exchangers. This result may be explained by the higher heat transfer capacity of 

the hydrogen when compared to those of helium or air. Accordingly, the power output suffers a reduction 

of 14.4% when changing from hydrogen to helium and 30.4% to air (based on data from Table 6.5). 

Furthermore, this reduction in power reaches greater values for higher mean operating pressures. The 

mean gas temperature of the working fluids in the regenerator it is very similar for the three gases and for 

all tested conditions. 

 

Table 6.6 Comparison of mean gas temperatures at the three heat exchangers for Air, He and H2 (3000 

rpm and a mean pressure of 30 bar) 

Working Fluid Air He H2 

Heater  661.3 681.4 689.6 

Regenerator 545.3 537.3 535.7 

Cooler 443.4 415.1 406.7 

 

Figure 6.8 presents the pressure drop evolutions, due to flow friction, along the three heat exchangers as 

a function of the crank angle θ. The results were obtained with the non-ideal engine simulation at 3000 
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rpm and 30 bar of mean pressure, for which the pressure drop, with the three working gases, is 

compared.  It can be observed that air is the working gas which suffers higher friction when it flows 

through the heat exchangers while hydrogen is the one that shows the lowest pressure drops. 

According to calculations, the work loss due to pressure drop for hydrogen is 9.76 W whereas for air the 

value is 84.2 W, which is a low value when compared with the total power produced (2597.3 W for 

hydrogen and 1830.8 W for air). There is a relationship between the work losses, the rotational speed and 

the mean pressure.  

 

Figure 6.8 Pressure drop across the heat exchangers as a function of the crank angle θ, considering different 

working fluids: air, helium and hydrogen. 

 

The evolution of work loss should be approximately quadratic with the mean pressure and a cubic 

evolution with rotational speed. The rise in engine frequency increases the mass flux through the 

regenerator, as well as, the pressure magnitude. An increase of the total mass of gas in the engine leads 

to a rise in the mass flow, gas velocity and function pressure. Therefore, an increase in the total mass of 

gas in the engine leads to more energy loss by pressure drop. 

For the same gas, the variables that influence the pressure drop are the engine speed and the mean 

pressure (mass of gas in the system). To better evaluate the evolution of the pumping losses, they were 

calculated for 1500 and 3000 rpm and for different values of mean pressure, in a range between 5 and 

80 bar. The results for those conditions are presented in Figure 6.9. 
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   6.10-a 6.10-b   

Figure 6.9 Pumping losses as a function of the mean pressure at 1500 rpm; 6.9-b Work loss as a function of the 

mean pressure at 3000 rpm. 

 

Mechanical losses should be taken into account because they affect the efficiency of the engine: on one 

hand, friction within kinematic linkages joints for the piston and displacer; on the other hand, the moving 

parts of the engine can lead to bigger friction forces. 

Air is the working fluid where the power loss is higher, being its value significantly higher when compared 

with the helium and hydrogen. Also, for higher mean pressures, the variation of work is higher for air as 

the working gas. Results show that the rotation speed of the engine influences the magnitude of the work 

loss. For instance, at 1500 rpm and 5 bar of mean pressure, the work loss due to pressure drop for 

hydrogen is 0.68 W and 3.7 W for air, whereas, at 3000 rpm and 5 bar, the value is 3.6 W for hydrogen 

and 23.1 W for air. In fact, low-speed engines allow reducing viscous losses. 

Making a comparison between the three gases, it is possible to conclude that hydrogen is slightly better 

than helium, mainly when the Stirling engine operates at high rotational speeds and pressures. The fact 

may be explained through their thermo-physic properties. In fact, the thermal diffusivity of helium is higher 

than that of hydrogen, which improves heat transfer, although the density and viscosity are also higher. 

Hydrogen has better results in terms of power, efficiencies and lower pressure drop. Moreover, low-

pressure engines must operate at a higher speed to achieve reasonable specific powers, while high-

pressure engines may operate at lower speeds. The use of air should be precluded in high specific-power 

engines, which require an important load of working gas (i.e. mean pressure) and high rotational 

velocities. 

Figure 6.10 shows the pressure versus total space volume (P-V) for the non-ideal analysis, comparing the 

three gases under study. Comparing the three curves, it is verified that the non-ideal heat exchangers 

caused a deviation at the P-V diagram. The deviation is more noticeable for the air, than for hydrogen or 

helium, for which it is reached a higher pressure value during the thermodynamic cycle. The area 
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represented in the P-V diagram indicates the work that is done by the engine. From the graphical 

representation, it seems there is no significant difference in the area of each curve. Although, comparing 

the results obtained from Table 6.5 there is a significant reduction of the power and efficiency obtained of 

the air in relation to the helium and hydrogen: 1830.8 W of power and 16.7% of engine efficiency for air, 

whereas it was obtained a 2318.1 W of power produced and 27.0% of engine efficiency for helium and 

2597.3 W of power produced and 27.7% of engine efficiency for hydrogen.  

 

Figure 6.10 Pressure versus space volume diagrams for the non-ideal analysis at pmean = 30 bar. 

 

If the results from the non-ideal analysis are compared with the results from the ideal adiabatic, it is also 

verified a deviation (compare it with P-Vtot diagram at Figure 6.6), where the working gas experiences a 

higher pressure variation along the complete cycle.  

 

6.3 Sensitivity Analysis of the Operational Parameters 

The performance of the Stirling engine is affected by the operational parameters, which relevance should 

be studied. These operational parameters include the mean cycle pressure, rotational speed, dead and 

swept volumes ratio, working fluid type and heat source and sink temperatures. Note that all the results in 

this subsection concerns numerical simulations performed for the non-ideal analysis (i.e. accounting for 

the non-perfect regeneration and the pumping losses). 

 

6.3.1 Mean pressure and rotational speed effect 

The mean operating pressure is one of the operational parameters that most affects the Stirling engine 

specific power and efficiency. Engines operating at higher mean pressures represent larger costs in terms 

of materials (e.g. sealants). Figure 6.11 presents the variation of the engine efficiency as a function of the 
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mean pressure for two different rotational speeds (1500 and 3000 rpm) and with the three working 

gases. 

  

   6.11-a 6.11-b   

Figure 6.11-a Engine efficiency as a function of the mean pressure at 1500 rpm; 6.11-b Engine efficiency as a 

function of the mean pressure at 3000 rpm. 

 

According to the data, the engine efficiency decreases with the increase in mean pressure and when the 

engine runs at higher rotational speeds, for the three working fluids.  Also, and as expected after the 

results of section 6.2.3, it is clearly shown here that the efficiency is much better when the working fluid is 

either hydrogen or helium by comparison to the case with air. For instance, with a mean pressure of 30 

bar and 1500 rpm, there is a reduction of 31.7% in engine efficiency when changing from hydrogen to air, 

and of 27.8% in relation to helium. This means that in terms of engine efficiency, the best choice for the 

working fluid is hydrogen, closely followed by helium. 

The heat exchangers effectiveness is an important parameter to understand the trends in the efficiency 

results. Figure 6.12 presents the heat exchanger effectiveness results considering helium, hydrogen and 

air at two different mean pressures of 5 and 30 bar. Both graphs correspond to simulations performed at 

1500 rpm. The regenerator is the heat exchanger with higher effectiveness, above 90% in the cases of 

helium and hydrogen. This means that the ratio between the actual amount of heat transferred from the 

regenerator matrix to the working fluid and the maximum amount of heat transferred in the regenerator of 

the adiabatic model is near to one. 

Results also show that the heat exchangers effectiveness is slightly higher for helium when compared with 

hydrogen. Purely in heat transfer terms, helium is slightly better than hydrogen. The effectiveness of the 

heat exchangers considering air as working gas is much lower than the other two working fluids, which is 

probably due to the low thermal diffusivity of the air. It is important to mention that the effectiveness of the 

heat exchangers was based on the NTU method explained in chapter 4, and included the determination of 

the Stanton number, which relates the heat transfer coefficient to heat capacity of the fluid stream per unit 
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cross-sectional area. Thus, the influence of geometrical parameters in the heat exchangers effectiveness 

must also be evaluated. 

  

6.12-a 6.12-b 

Figure 6.12 Effectiveness of the heat exchangers considering helium, hydrogen and air as working fluids:  

 6.12-a at 5 bar of mean pressure; 6.12-b at 30 bar of mean pressure. 

 

Comparing the results for 5 and 30 bar, it is shown that the heat exchangers effectiveness decreases for 

higher values of mean pressure. This decrease is higher for the cooler and heater when compared with 

that of the regenerator. Obviously, the efficiency of the engine depends on several aspects, but it was 

already proved by numerous authors that the engine performance worsens when the heat-transfer capacity 

of the regenerator declines and is very sensitive to it (Timoumi, Tlili, & Ben Nasrallah, 2008; Tlili, 

Timoumi, & Nasrallah, 2008; Zarinchang & Yarmahmoudi, 2008, 2009). This was also explained in 

chapter 4, where the heat-transfer reduction rlossQ was defined in terms of the regenerator effectiveness 

and represents extra heat that must be provided by the hot heat exchanger. 

Figure 6.13 presents the the regenerator heat-transfer reduction rlossQ (in J/cycle) as a function of the 

mean operating pressure for hydrogen, air and helium at the rotational speeds of 1500 and 3000 rpm. 

The results show that the heat-transfer reduction increases when the engine operates at higher values of 

mean pressure and velocity. The air is the working fluid for which the value of 
rlossQ achieves a higher 

value: 259.1 J/cycle for 1500 rpm and 270.8 J/cycle for 3000 rpm. The working gas for which the 

regenerator enthalpy reduction is lower is the helium. This may be explained by the thermal properties of 

the working fluids. In fact, helium is inert and has a thermal conductivity near the hydrogen but it also has 

a volumetric thermal capacity even smaller than hydrogen, thus, presents the highest thermal diffusivity. 

So, the heater must provide a lower extra amount of heat when a Stirling engine operates with helium.  
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Figure 6.13 Variation of the regenerator heat-transfer reduction as a function of mean pressure for the three working 

gases. 

 

6.3.2 Regenerator housing thermal conductance losses  

The housing thermal conductance losses ( ,r hlssQ ) in the regenerator also affect engine efficiency. This 

aspect is influenced by the regenerator housing material. To reduce losses by conductivity alongside the 

regenerator and to the exterior, a material with high heat capacity and low conductivity must be chosen. 

Stainless steel and ordinary steel are the most suitable materials to be used for the regenerator housing. 

The evaluation of the engine performance taking into account the housing thermal conductance is 

presented at Table 6.7. The values were obtained for a numerical simulation at 30 bar of mean pressure 

and 1500 rpm of rotational speed. Results show that the engine efficiency decreases if the thermal 

housing conductance losses in the regenerator are taken into account.  

 

Table 6.7 Evaluation of engine performance taking into account the regenerator housing thermal 

conductance 

Working Fluid Air He H2 

Engine Output 
Efficiency 

[%] 
Power 
[W] 

Efficiency 
[%] 

Power 
[W] 

Efficiency 
[%] 

Power 
[W] 

Not Including ,r hlssQ  21.8 1134 31.1 1278 31.6 1390 

Stainless Steel 21.5 1146 30.6 1280 31.1 1391 

Steel 20.9 1144 29.5 1277 30.0 1389 

Carbon Steel 20.7 1143 29.2 1277 29.7 1388 
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Considering the tested materials for the regenerator housing (i.e. common steel, stainless and carbon 

steel) it is shown that: the lower the thermal conductivity of the material, the smaller conductance losses, 

which also results in better engine’s efficiency. 

 

6.3.3 Heat source temperature effect 

As previously stated, there are numerous Stirling engine systems using different types of energy sources 

(e.g. GN, biogas, biomass or solar energy). Depending on the system, one of the most relevant 

parameters affecting the power and efficiency is the temperature of the hot heat source. According to 

Ahmadi, Sayyaadi, Dehghani, & Hosseinzade (2013), for solar- temperature Stirling engine, the thermal 

limit of the operation of the Stirling engine depends on working temperatures on the heater and cooler 

sides. According to them, the Stirling engines powered by solar-concentrator panels operate with heater 

and cooler temperatures varying between of 923 and 338 K, respectively. 

Within the scoop of this project, a Stirling engine for CHP applications and wit a solar concentrator panel 

as the hot renewable energy source, a sensitivity analysis was carried out to evaluate the influence of the 

hot source temperature in the Stirling engine efficiency.  

Figure 6.14 presents the variation of the engine efficiency as a function of the temperature of the heat 

source at 1500 and 3000 rpm for helium and hydrogen as working fluids. The cold sink temperature was 

kept at 353 K.  

The results show that the engine efficiency rises with the increase of the temperature of the heat source 

but decreases with the increase of the mean pressure. According to the results, the engine efficiency is 

relatively lower when the engine operates at higher values of rotational speed. Comparing the results of 

hydrogen and helium, the engine efficiency is slightly higher when hydrogen is the working gas.  

 

  

6.14-a 6.14-b 
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6.14-c 6.14-d 

Figure 6.14 Variation of the engine efficiency as a function of the hot source temperature: 6.14-a for helium at 1500 

rpm; 6.14-b for hydrogen at 1500 rpm; 6.14-c for helium at 3000 rpm; 6.14-d for hydrogen at 3000 rpm. 

 

Furthermore, the engine running with hydrogen is able to produce higher values of power when compared 

with helium. Despite the results for air are not shown graphically, it was verified that the thermal efficiency 

is much lower compared to hydrogen and helium.  

The increase of the heat source temperature also affects the power produced by the engine. The 

numerical simulations allowed to conclude that, for a range of 175 degrees of temperature (i.e. 725-900 

K), the increase in power production is 25.8% for helium (5 bar, 1500 rpm), whereas, for hydrogen, it 

corresponds to an increase of 23.4%, (5 bar, 1500 rpm). This means that an increase in the heat source 

temperature as a relatively higher influence in the engine power production when helium is used. The heat 

source temperature also affects the effectiveness of the heat exchangers. According to the results, for the 

same temperature increase, the higher variation in terms of effectiveness is registered for the heater, as 

presented in Table 6.8. The effect of the heat source temperature at the regenerator and cooler is residual 

(an increase equal or below 1%). The increase of heat exchanger effectiveness is also strengthened by the 

increase in mean operating pressure. 

 

Table 6.8 Variation of heat exchangers effectiveness with hot source temperature increase (725 to 900 K) 

 5 bar, 1500 rpm 80 bar, 1500 rpm 

Heat Exchanger He H2 He H2 

Heater  +2.45% +3.50% +5.03% +5.07% 

Regenerator +0.31% +0.33% +0.83% +0.88% 

Cooler +0.78% +0.90% +0.96% +1.13% 
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An increase in heater temperature will increase thermal efficiency and total input heat (i.e. the total heat 

that is transferred from the hot source).  

 

6.3.4 Relationship for engine power, swept volumes and dead volumes 

The un-swept volumes, also called dead volumes, in a Stirling engine should be kept theoretically near to 

zero, but in practice there is a percentage of the total engine internal gas volume that is accounted as 

dead volume. Some of these extra inside spaces are due to the components connection and other useful 

volumes inside the engine cylinders. Accordingly to Thombare and Verma (2008) the increase in dead 

volume results in a loss of power but not necessarily a reduction in efficiency. Its effect on the engine 

efficiency depends on the location of the dead volume. Considering the fixed configuration presented at 

sub-section 6.1, all the heat exchangers have a fixed void volume, which corresponds to 84.8 cm3 for the 

heater, 69.8 cm3 for the regenerator and 106.0 cm3 for the cooler. Also, for that configuration, the total 

dead volume of 2X25 cm3 represented almost 20% of the swept volume of the two cylinders, each of them 

with a swept volume of 130 cm3.  

To investigate the influence of swept and dead volumes several groups of simulations were carried out. In 

the first one the influence of the swept volume in engine performance was analysed. Notice that the 

simulations were carried out considering a mean pressure of 30 bar for different rotational speeds, using 

helium as working fluid and maintaining the size of the heat exchangers. Figure 6.15 illustrates the 

variation of the power as a function of the swept volume.  

 

Figure 6.15 Variation of the engine power with the swept volume for different rotational speeds (Pmean=30 bar, He). 

 

The results show that the power output rises with the increase in the swept volume of the cylinders. Again, 

it is also noticeable that the power increases with the increase in rotational speed. The efficiency of the 

engine was also calculated for the different swept volumes and rotational speeds values as depicted in 
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Figure 6.16. It is shown that the engine efficiency rises when the swept volume increases until an optimal 

value. Also and again, higher values of efficiency are obtained for lower values of rotational speed. These 

remarks imply that, at several values of rotational speed, there exists an optimal value of swept volume for 

which maximum engine efficiency is obtained. From all these analysis, it may be said that net cycle power 

is direct function of the engine speed, the pressure of the working fluid and the size of the engine, which 

is expressed in terms of swept volume. 

 

Figure 6.16 Variation of the engine efficiency with the swept volume for different rotational speeds (Pmean=30 bar, He). 

 

It is also important to understand the relationship between the variation of dead volume and the 

performance of the engine (i.e. engine efficiency). A simulation was carried out considering a fixed swept 

volume of 130 cm3 per cylinder and varying the dead volume. The values of the power output and engine 

efficiency were calculated as a function of the dead volume and the results are presented in Figures 6.17a 

and 6.17-b.  

  

6.17-a 6.17-b 

Figure 6.17-a Power output and; 6.17-b Engine efficiency variation with the dead volume for different rotatinal 

speeds (Pmean=30 bar, He). 
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It was also verified that the power output of the engine slightly decreases for higher dead volumes in the 

engine cylinders. The engine efficiency presents a slightly increase with the growth of dead volume. 

However, from a certain value of dead volume, it appears that the engine efficiency stabilizes and there is 

no variation. Asnaghi, Ladjevardi, Saleh Izadkhast and Kashani (2012) in their studies concluded that a 

real Stirling engine must have some unavoidable dead volume. In normal Stirling engine design practice, 

the total dead volume (i.e. the total dead volumes from the cylinders, connections and heat exchangers) is 

approximately 58% of the total volume. According to Wu, Chen, Wu and  Sun (1998) a certain amount of 

dead volume is required to allow sufficient heat transfer surfaces. So, it is important to estimate the 

relationship between the swept and dead volumes and how it affects the power production and the 

efficiency of Stirling engines. Since it has been decided to adopt the alpha-type configuration, the 

compression swept volume ( ,sw cV ) should be equal to the expansion swept volume ( ,sw eV ). Nevertheless, 

the direct effects of the swept /dead volume ratio ( /sw dV V ) should be detailed in terms of the engine 

performance. Thus, the power produced by the engine is evaluated considering the variation of the swept 

/dead volume ratio.   

Figure 6.18 presents the relationship between the power production and the swept/dead volume ratio. 

Results show that the amount of power production does not have a significant variation when a /sw dV V

ratio is above the 6. For swept/dead volume ratios below of 4, the power production decreases sharply. 

Results also indicate that the power production is proportional to the engine rotational speed. 

 

Figure 6.18 Power output as a function of the swept/dead volume ratio for different frequencies (Pmean=30 bar, He). 

 

In conclusion, it is observed that an increase in dead volume has a reduced effect in the thermal efficiency 

but reduces the engine specific power. In contrast, an increase in swept volume while keeping the heat-

exchangers size, significantly affects the engine thermal efficiency.  
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6.4  Sensitivity Analysis of the Geometrical Parameters of Heat exchangers 

The Stirling engine performance depends on geometrical and operational characteristics of the engine and 

its thermal components. Thus, this sub-section presents a sensitivity analysis to the geometrical 

parameters of the heat exchangers (i.e. cooler, heater and regenerator), where the aim is to analyse the 

influence of the internal diameter of the tubes, the heat exchanger length, the number of tubes (i.e. for the 

cooler and heater); and the porosity and the diameter of the regenerator matrix wire in the performance 

and efficiency of the Stirling engine. To investigate the influence of these parameters on the engine 

performance, they were studied individually and, at each simulation, the others were kept unchanged and 

equal to the base case scenario of table 6.1. All the results in this sub-section are referent to simulations 

performed for a mean pressure of 30 bar and a rotational speed of 3000 rpm. He was the working gas 

used to perform the sensitivity analysis.  

 

6.4.1 Heater geometric parameters  

As previous described in chapter 4, the physical model only considers the convective heat transfer from 

the internal wall of the heater tubes to the working gas, and assumes a constant temperature at the outer 

surface of the heater. Changing the geometrical parameters affects the heat transfer between the tubes 

wall and the gas because the convective heat transfer coefficient will change, as flow conditions are 

altered, and because the heat transfer area will change too. Thus, the heat transfer may be significantly 

affected by the heater tubes inner diameter, the heater length and the number of tubes, which are used to 

define the contact heat transfer area. The values of these variables for the base case scenario were 3 

mm, 150 mm and 80, respectively, see table 6.1. 

Figure 6.19-a shows the engine efficiency and the heater effectiveness variations with the number of 

heater tubes. Results show that the engine efficiency slightly increases with the number of the heater 

tubes, namely from 23.6% to 28.1% with a six-fold increase in the number of tubes from 20 to 120. The 

heater effectiveness also increases with the number of tubes, with a variation of 15.9%. This variation is 

probably due to the increase of the heat transfer area with the increment of tubes in the heater. 

Nevertheless, it was also verified that the convective heat transfer coefficient decreases due to lower flow 

velocities.  

The power ouput was also calculated, as presented in Figure 6.19-b. Results show that the power 

production increases with the number of the heater tubes until a certain value. This value corresponds to 

a power of 2345 W, which was obtained for a number of heater tubes between 60 and 65. This means 

that, for a heater configuration with a set of smooth tubes 150 mm in length and 3 mm inner diameter, 

the optimum number of tubes corresponds to 60-65 tubes to achieve the maximum power output and an 

engine efficiency of 26.6 - 26.8%, respectively. Increasing the number of the tubes also reduces the fluid 
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frictional work in the heater. Nevertheless, of some point, the increase in the void volume of the heat 

exchanger overlaps the benefits obtained from a lower friction and better heat transfer when rising the 

number of heater tubes. 

  

                                                                                                  

6.19-a 
6.19-b 

Figure 6.19-a Engine efficiency, heater effectiveness and 6.19-b Power ouput as a function of the number of heater 

tubes. 

 

The heat transfer coefficient and the friction are two parameters of prime importance for the internal 

heater surfaces. When analysing the convective heat transfer coefficient and the pumping losses at Figure 

6.20-a and Figure 6.20-b, it was verified that these two parameters decrease with the rise in number of 

tubes. From the analysis, it was found out that the heat transfer, and hence the overall performance, is 

slowly improved by increasing the number of tubes. A reasonable evaluation of benefits of increasing the 

number of tubes in terms of efficiency and the reduction in power ouput  must be taken into account.  

  

6.20-a 6.20-b 

Figure 6.20-a Heat transfer coefficient and 6.20-b Pumping losses variation for different number of heater tubes. 
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The internal diameter of the heater tubes is also an important parameter that affects the pressure drop. A 

variation between 1.0 mm and 8.0 mm has been studied and the results of engine efficiency and heater 

effectiveness are presented in Figure 6.21-a. They show that the increase of the internal diameter leads to 

a strong decrease in the heater effectiveness (from 80.0% to 29.0%). This outcome is probably due to a 

reduction of the convective heat transfer coefficient. Regarding the engine efficiency, the maximum value 

is achieved for an internal diameter of 4.0 mm. Nevertheless, the power output (Figure 6.21-b) reaches 

the highest value at lower diameters (i.e. maximum power of 2560 W for an internal diameter of 1.5 mm). 

  

6.21-a 6.21-b 

Figure 6.21-a Engine efficiency, heater effectiveness and 6.21-b Power output as a function of the internal diameter 

of the heater tubes. 

 

Increasing the internal diameter also reduces the friction between the gas and the heater walls, which 

results in lower pumping losses, as depicted in Figure 6.24. This outcome is in agreement with the 

analysis of Zarinchang and Yarmahmoudi (2008) who claimed that an increase in tube diameter produces 

large reductions in pressure drop due to the reduction of fluid friction. 

 

Figure 6.22 Pumping losses variation as a function of the internal diameter of the heater tubes. 
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The length of the heat exchanger tubes is also an important parameter to investigate. The simulations 

have been performed by considering tube lengths in the range of 20 mm to 200 mm. Figure 6.23-a and 

Figure 6.23-b present the results for the engine efficiency and heater effectiveness and power output.  

  

6.23-a 6.23-b 

Figure 6.23-a Engine efficiency, heater effectiveness and 6.23-b Power output as a function of the heater tubes 

length. 

 

The results show that the heater effectiveness rises almost linearly with the increase of the heater length 

and is easily explained by the corresponding increase in the heat transfer area. The engine efficiency also 

improves, but its value shows no relevant variation for heater tubes above 140 mm of length. According to 

the data from the Figure 6.23-b, it is verified that the power increases continuously with the heater length 

(but again with no relevant improvement above 140 mm) and this can be explained by the implicit 

increase in the effectiveness of heat transfer process versus smaller increases in void volume and 

pumping losses. To improve the engine performance, a certain combination of input geometrical 

parameters is required. Analysing the results, probably the best combination of parameters relies on 

heater tubes with a diameter of 4.0 mm, with a length above 100 mm. In terms of number of tubes, if the 

maximization of the power output is one of the required improvements, the number of tubes should not be 

more than 80 (considering the commitment between the engine efficiency increase and the no relevant 

power output reduction). 

 

6.4.2 Regenerator geometric parameters  

The efficacy of the regeneration process is very important in the engine performance because, along the 

thermodynamic cycle, heat transfer reductions in the fluid pre-heating and pre-cooling processes leads to 

increases in the hot and cold energies and thus to an important decay in engine efficiency. The maximum 
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efficiency of this process would only be achieved if the heat transfer coefficient or the area of heat transfer 

and matrix capacity is infinite. However, the working gas does not have a null heat transfer capacity 

neither the regenerator matrix has an infinite heat capacity. To improve the regenerator heat transfer, it is 

of utmost importance to establish a commitment between heat transfer and fluid friction. 

In that way, the regenerator geometry and the variations in matrix wire diameter and porosity are studied 

in order to understand their influence in engine and regenerator performance. Figure 6.24 presents the 

results of the engine efficiency and regenerator effectiveness for different regenerator lengths. 

  

6.24-a 6.24-b 

Figure 6.24-a Engine efficiency, regenerator effectiveness and 6.24-b Power output as a function of the regenerator 

length. 

 

Results for the engine efficiency and the regenerator effectiveness show a similar trend. According to the 

results, both rise with the increase of regenerator length. Regarding the power ouput, it is observed that 

there is no significant variation from 70 mm of length onwards. The additional dead volume and the 

increase in the pressure losses lead to a maximum power for a length of 80 mm. However, for small 

regenerator lengths (i.e., below 30 mm), the power, as well as, the efficiency quickly decreases, as 

presented in Figure 6.24-b.  

Figure 6.25-a presents the engine efficiency and the regenerator effectiveness as a function of the internal 

diameter. It is noteworthy that the thickness of the regenerator wall was kept constant for calculations. 

Results show that both the engine efficiency and the regenerator effectiveness increase with the internal 

diameter of the regenerator. The maximum power produced is obtained for an internal diameter of 60 

mm. One of the major drawbacks of the regenerator is the great value of fluid friction, and one of the ways 

to reduce it is to increase the diameter of the regenerator, which was confirmed (a reduction of 396 to 20  

W for the pumping losses). Nevertheless, for real conditions, increasing the diameters also leads to the 

increase in conduction losses. Comparing the results from the internal diameter and the regenerator 
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length, it is observed that variations in length produce larger changes in engine efficiency and regenerator 

effectiveness. 

  

6.25-a 6.25-b 

Figure 6.25-a Engine efficiency, regenerator effectiveness and 6.25-b Power output as a function of the internal 

diameter of the regenerator. 

 

Thus, for the regenerator optimization, considering the length as a decision variable is probably more 

reasonably than the regenerator diameter.  The porosity of the regenerator is also an important parameter 

for engine performance. It affects the hydraulic diameter, dead volume, velocity of the gas, regenerator 

heat transfer surface and regenerator effectiveness; and thus, affects the losses (Timoumi et al., 2008; 

Tlili et al., 2008).  

Figures 6.26-a an 6.26-b present the performance results for several combinations of matrix porosities 

and matrix wire diameters. 

   

6.26-a 6.26-b 

Figure 6.26-a Engine efficiency and 6.26-b Regenerator effectiveness for different combinations of matrix wire 

diameter and porosities (0.6, 0.7 and 0.8). 
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The results indicate that any changes in the porosity leads to great variations in the regenerator 

effectiveness and pressure drops, which eventually affects the engine efficiency. It was expected that if the 

wetted surface area is large, the resulting porosity should be low, providing to the working gas the largest 

contacting surface to achieve the highest rate of heat transfer. Still, for wire diameters bellow 0.1 mm,  

results show that the highest engine efficiency is obtained for a matrix porosity of 0.7.  For bigger values 

of wire diameter, the engine efficiency is higher when the porosity is lower (i.e. equal to 0.6). The 

regenerator effectiveness decreases with the rise of the wire diameter and with the matrix porosity as 

shown by (Figure 6.26-b).  

Figure 6.27 presents the power outputs for the same combinations of matrix porosities and wire 

diameters. The power outputs have a similar trend to the engine efficiency evolutions: for lower wire 

diameters (0.1 mm) the power output is maximum when a porosity of 0.7 is assumed; for wire diameters 

above 0.2 mm, the power output is higher if the regenerator matrix has a porosity of 0.6. 

 

Figure 6.27 Power outputs for different combinations of matrix wire diameters and porosities (0.6, 0.7 and 0.8). 

 

Figure 6.28 presents the pumping losses for the previously combinations of mesh wire diameters and 

porosities. Results show that for lower values of mesh porosity, the friction factor is higher and so do the 

pumping losses. Hence, it can be said that for lower diameters (between 0.05 and 0.1 mm) , the 

pumping losses experiences a sudden and sharp drop, for intance, for a porosity of 0.7, between 0.05 

and 0.1 mm, the pumping losses increase by 182 W. The lowest pumping losses are obtained with the 

curve for the porosity of 0.8.   

It may be said that in order to obtain a higher porosity, and thus a lower pressure drop, the meshes 

should be made from wire with very small diameters and should be coarse.  
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Figure 6.28 Pumping losses variation for different combinations of mesh-wire diameters and regenerator porosities 

(0.6, 0.7 and 0.8). 

 

From the analyses of regenerator parameters, there is a range of combinations that benefit both engine 

and power efficiency. The best matrix should compromise between high effectiveness and low-pressure 

drop in order to obtain minimal losses in the regenerator. In conclusion, the best engine performance is 

obtained for lower wire mesh diameters (0.1 mm) combined with a mesh porosity of 0.7. For larger wire 

diameters a lower porosity (0.6) gives better results. 

 

6.4.3 Cooler geometric parameters  

The internal flow conditions in the cooler tubes are quite similar to the heater but at lower temperatures 

and pressures. To reduce the temperature of the working fluid an outside flow of water is used as a cold 

sink. Thus, heat transfer phenomenon includes the convective heat transfer from inner working gas to the 

inner wall of the cooler tubes,  the conductive heat transfer through the tube wall and the outside 

convective heat transfer to the coolant, the water.  Figure 6.29-a shows the engine efficiency and the 

cooler effectiveness evolutions as a function of the number of the cooler tubes. Results show that the 

engine efficiency increases with the number of the cooler tubes, showing an improvement of 16.8% in the 

tested range (40 to 160 tubes). The results from the cooler effectiveness show that the increase of the 

number of cooler tubes does not affect it significantly, only a variation of 8.0% in the cooler effectiveness is 

observed. The power production presents a great increase with the rise of the tubes number. These 

results may be explained by the counterbalance between the gains in heat transfer (i.e. increase of the 

heat transfer area) and the reduced pumping losses. 
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6.29-a 6.29-b 

Figure 6.29-a. Engine efficiency, cooler effectiveness and 6.30-b Power output as a function of the number of the 

cooler tubes. 

 

Figure 6.30-a presents the engine efficiency and the cooler effectiveness for different values of the internal 

diameter of the cooler tubes. The cooler effectiveness, similarly to the heater results, decreases with the 

rise in internal diameter. Also, the engine efficiency reaches its maximum value for an internal diameter of 

4.0 mm. It is also noted that increasing the internal diameter leads to a reduction in the power output 

(see Figure 6.30-b). 

  

6.30-a 6.30-b 

Figure 6.30-a Engine efficiency, cooler effectiveness and 6.30-b Power output as a function of the internal diameter 

of the cooler tubes. 

 

Figure 6.31-a presents the engine efficiency and the cooler effectiveness for different values of the cooler 

tubes length. A range between 40 mm and 240 mm was considered to study the length influence in the 

Stirling efficiency. It is observed that the engine efficiency and the cooler effectiveness increase with cooler 
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length, probably due to the gains in heat transfer with the increase of the contact area. Nevertheless and 

accordingtly to Figure 6.31-b, for lengths larger than 120 mm (where the maximum power is achieved, 

2244 W),  the power output starts to decrease. 

  

6.31-a 6.31-b 

Figure 6.31-a Engine efficiency, cooler effectiveness and  6.31-b Power production as a function of the cooler tubes 

length. 

 

From the results analysis, it can be concluded that the performance of the cooler can be improved 

increasing the internal diameter to 4.0 mm and raising its length in 20 mm (i.e. a cooler with 120 mm of 

length). Regarding the number of cooler tubes, it seems that 150 tubes is a reasonable value. 

 

6.4.4 Thermodynamic optimization 

The study of each geometric parameter of the Stirling engine thermal components gives an insight into the 

relations of those parameters in the engine performance. Therefore, this knowledge can be used to 

produce significant improvement to the general performance of a particular engine. Also, the individual 

analysis of the geometric parameters gives solid bases to decide which are the most relevant to choose as 

decision variables for the thermo-economic optimization.  

Regarding this, a comparison of the engine performance results between the base-case presented at 

Table 6.1 and the optimized configuration resulting from the analysis is now performed. Table 6.9 

resumes the enhanced geometric parameters compared to the values initially considered, whereas Table 

6.10 presents the comparison of performance results for both configurations. The trend for each 

parameter regarding the thermodynamic optimization is also indicated. 

The results were obtained considering the He as the working gas, a mean pressure of 30 bar and a 

rotational speed of 3000 rpm. 
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Table 6.9 Comparison between geometrical parameters for the base-case and enhanced configuration 

 

Results suggest that the combination of new values for the geometric parameters turns into a higher 

thermal efficiency of the engine, which corresponds to a relative increase of 45.9%, an increase from 

27.0% to 39.4%. Nevertheless, this large increase in the thermal engine efficiency also translates into a 

reduction in power output, as well as, an increase in total pumping losses. Also, it should be noted the 

important increase in the regenerator effectiveness.  

 

Table 6.10 Performance results for the base-case and enhanced configuration (He, 3000 rpm, 30 bar) 

 Base-case 
Configuration 

Enhanced-case 
Configuration 

Variation 

Engine Thermal Efficiency, % 27.0 39.4  

Power, W 2318 1801  

Work Losses, W 21.0 50.2  

Heater Effectiveness, % 50.6 44.1  

Regenerator Effectiveness, % 90.3 98.1  

Cooler Effectiveness, % 38.5 35.7  

 

 
Base case 

configuration 
Enhanced-case 
configuration 

Variation 

Regenerator 

External Diameter ( ,out rd )   [mm] 56.0 66.0  

Internal Diameter ( ,inner rd )   [mm]  46.0 56.0  

Regenerator Length ( rL )   [mm] 60.0 60.0  

Matrix Porosity ( matrix )   [-]  0.7 0.7  

Wire Matrix Diameter ( ,wire rd )   [mm] 0.3 0.1  

Heater  

Internal Diameter( ,inner hd )   [mm] 3.0 4.0  

Heater Length( hL )   [mm] 150.0 150  

Number of Tubes ( hnt )[-] 80 80  

Cooler  

Internal Diameter( ,inner kd )   [mm] 3.0 4.0  

Heater Length( kL )   [mm] 100.0 120  

Number of Tubes ( knt )[-] 150 140  
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6.5 Cost Estimation Analysis 

6.5.1 Total costs and revenues 

Considering the base-case configuration, the annual worth of a system with those characteristics can be 

estimated. Results of the annual worth, costs and revenues are presented in Table 6.11. Without 

optimizing the system, the configuration base discloses a negative annual worth of 779 €/year (i.e. 

economic loss). The most relevant term is the annualized capital cots from purchasing the cogeneration 

unit. Regarding the revenues, the income from selling electricity to the grid and the avoided cost for the 

heat generation are the most profitable terms from system operation. This outcome characterizes a 

system able to produce 1.25 kW of electrical power and 2.20 kW of thermal power. 

 

Table 6.11 Annual costs and incomes of the thermal plant for the base-case configuration 

Annual Costs and Revenues, €/year  

Capital Investment Cost, Cinv (1881) 

Maintenance Costs, Cm (75) 

Revenue from equipment residual value, 
Revres 

94 

Revenue from selling electricity to the 
grid, Revsell 

602 

Revenue from CES bonification, Revces 129 

Avoided cost from separate heat 
generation, Cavoided 

352 

Annual worth of the CHP system, AW -779 

 

The capital investment cost of the Stirling engine is now presented in Table 6.12 and detailed for each 

system component. The results were obtained for a simulation assuming a mean pressure of 30 bar and 

3000 rpm. 

Table 6.12 Cost estimation of the Stirling engine 

System Component Cost [€] 

Heater 5597 

Regenerator  7203 

Cooler 2510 

Engine bulk 4616 

Total capital cost of  Stirling engine 19926 
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According to the results, the total cost of the equipment is 19926€. Considering the cost of each system 

component, the heater, the regenerator, the cooler and the engine represent, respectively, 28.1%, 36.1%, 

12.6% and 23.2% of the total cost, as shown by Figure 6.32. Thus, the heater and the engine bulk are the 

most costly components. Regenerator represents an important cost in the system and it weight in the total 

cost of the equipment rises if better materials are used in its manufacture.  

 

Figure 6.32 Results of relative cost of each component of the Stirling engine. 

 

6.5.2 Sensibility analysis of the purchase cost parameters 

The cost equations presented in this work allow the combined variation of size and performance aspects. 

Therefore, varying the operational and the geometric characteristics of the Stirling engine and optimizing 

the costs of the system, seems to be the best commitment in optimizing these thermal plants. To 

investigate the influence of these parameters on the engine performance, they were studied individually 

and, at each simulation, the others were kept unchanged. All the results in this sub-section are referent to 

simulations performed at 30 bar of mean pressure and a rotational speed of 3000 rpm.   

 

Heater Cost  

Figures 6.33 to 6.35 present the heater cost variation and the engine efficiency as a function of the 

number and the internal diameter of the cooler tubes, and the cooler length. Considering the heater 

purchase cost equation definition, the increase in the heat transfer area leads to the increase of heater 

cost. Nevertheless, some geometrical parameters have a greater influence on the heat transfer are than 

others. The internal diameter and the heater length are the two geometrical parameter that most affect 

the heater cost. Results show that there is an optimal value for the internal diameter of the heater tubes 

for which the engine efficiency is maximum. The Stirling engine efficiency is maximum (i.e. 25.8%) when 

the internal diameter of the pipes is 4 mm. For this geometrical input, the heater cost corresponds to 

7032 €. 

Regenerator
36%

Heater 
28%

Cooler 
13%

Engine Bulk
23%
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Figure 6.33 Stirling engine efficiency and heater cost as 

a function of the number of the heater tubes. 

Figure 6.34 Stirling engine efficiency and heater cost as 

a function of the internal diameter of the heater tubes. 

 

Figure 6.35 Stirling engine efficiency and heater cost as a function of heater length. 

 

According to the results from Figure 6.35, it can be said that for the tube length above 120 mm the 

increase in engine efficiency is not sufficiently relevant against the rising costs of the thermal component.  

 

Heater Cost  

Figure 6.36 shows the relationship between the regenerator cost and the engine efficiency considering 

different values for the porosity of the regenerator matrix. Results show that the Stirling engine efficiency is 

maximum (i.e. 28.9%) when the matrix porosity ranges between 0.48 and 0.52. For this range, the 

regenerator cost is estimated to be 6 800 €. Figure 6.37 shows the regenerator cost and the engine 

efficiency variation considering different values for the matrix wire diameter, assuming a porosity of 0.7. 

According to the results, the regenerator cost decreases exponentially with the increase of the matrix wire 

diameter.   
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Figure 6.36 Stirling engine efficiency and regenerator cost 

as a function of porosity of the regenerator matrix. 

Figure 6.37 Stirling engine efficiency and regenerator 

cost as a function of matrix wire diameter. 

 

Figure 6.38 and Figure 6.39 present the regenerator cost and engine efficiency variation for different 

values of regenerator length and regenerator internal diameter, respectively. The regenerator cost 

increases with the length and regenerator internal diameter, because the heat transfer area increases. 

  

Figure 6.38 Stirling engine efficiency and regenerator cost 

as a function of regenerator length. 

Figure 6.39 Stirling engine efficiency and regenerator 

cost as a function of internal diameter of regenerator. 

 

The geometrical parameters that most affect the regenerator cost are the matrix wire diameter and the 

internal diameter of the regenerator. This means that varying these parameters a greater variation is 

obtained in the regenerator cost. 

 

Cooler Cost  

Figures 6.40 to 6.42 present the cooler cost variation and the engine efficiency as a function of each 

geometrical parameter: number of cooler tubes, internal diameter of cooler tubes and cooler tubes length. 

The cooler cost increases almost linearly with the increase of the number of tubes, varying between 1474 
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€ to 2575 €. The cooler cost value is more susceptible to the internal diameter of the tubes than to the 

length.  According to the results, the Stirling engine efficiency is maximum (i.e. 25.8%) when the internal 

diameter of the tubes is 4 mm, which corresponds to a cooler cost of 2816 €.  

  

Figure 6.40 Stirling engine efficiency and cooler cost as 

a function of the number of the cooler tubes. 

Figure 6.41 Stirling engine efficiency and cooler cost as 

a function of the internal diameter of the cooler tubes. 

 

Figure 6.42 Stirling engine efficiency and cooler cost as a function of cooler length. 

 

Engine Bulk Cost 

The engine cost depends on the engine volume and mean operational pressure. Figure 6.43 presents the 

engine bulk cost for different values of mean pressure considering three values of engine volume. Results 

show that the engine bulk cost increases most significantly with the mean pressure than the engine 

volume. Systems that operate at higher pressures oblige several design requirements to seal leakage 

paths of the working gas. Including the mean pressure as one of the key parameters in the engine bulk 

cost is also justified by the proportionality between the power output and the mean cycle pressure.  
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Figure 6.43 Engine cost variation for different values of mean operational pressure at Veng =100 cm3, Veng =130 cm3 

and Veng =160 cm3. 

 

Remarks on purchase cost parameters 

Obviously, for heater and cooler, the increase of the length, number and internal diameter of the tubes 

result into the rise of their purchase cost, since the increase of this parameters leads to higher values of 

the effective heat transfer area, which is the physical parameter used in the definition of the purchase cost 

equation. However, it seems that for some parameters, there is a certain value from which the gains in 

engine efficiency no longer compensate the increase in the geometry parameter and cost. For instance, 

from 160 mm of length, the engine efficiency does not increase significantly that justifies the increase in 

cooler cost rise. Regarding the regenerator, the matrix wire diameter is the parameter that most affect its 

cost.  The fine wire mesh is commonly obtained in a form of woven screen at variety of wire sizes, weave 

structures, matrix density and materials, whose complexity affects the manufacturing cost. 

All these analyses allow understanding the relationship between an individual parameter and the 

respective effect in the cost, engine efficiency and performance of the thermal component. Nevertheless, 

the full thermal-economic optimization of the thermal power plant tests the influence of all these 

parameters together in the performance and cost output.  

 

6.6 Thermal-economic Optimization  

All the sensitivity analysis performed to the physical and the economic model corresponded to an 

important work in defining the parameters for the thermal-economic optimization. During the process of 

the thermal-economic model definition, several tests were made in order to delineate the most appropriate 

model. Those tests include the consideration of different combinations of decision variables, working 

fluids, numerical methods and respective parameters. The simulations were run considering a rotation 
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speed of 1500 rpm considering the helium as the working fluids. The value for the other parameters that 

were not considered as decision variables were assumed constant and equal to the values assumed for 

the base case configuration. 

 

6.6.1 Results for six decision variable model  

The thermal-economic preliminary results are firstly presented considering six decision variables:

mean eng inner ,h inner ,k matrix wireP ;V ;d ;d ; ;d . For these simulations, the Nelder-Mead was the search 

method used to run the PS algorithm. 

After convergence was achieved, the optimal values for the objective function, decision variables and 

others thermodynamic and economic variables were obtained. The optimal solutions were obtained, no 

constraint was violated, the convergence tolerances were respected and the optimization terminated 

because the objective function was non-decreasing in feasible directions and the solution was within the 

value of the function tolerance. Table 6.13 presents the optimal annual costs and revenues from the CHP 

system operation. Results depicts that for all the optimal solutions it is possible to obtain a positive profit 

from the system operation.  

 

Table 6.13 Optimal annual costs and incomes of the thermal system considering six decision variables  

Annual Costs and Revenues, €/year  

Capital Investment Cost, Cinv (1766) 

Maintenance Costs, Cm (168) 

Revenue from equipment residual value, 
Revres 

88 

Revenue from selling electricity to the grid, 
Revsell 

1348 

Revenue from CES bonification, Revces 408 

Avoided cost from separate heat 
generation, Cavoided 

1573 

Annual worth of the CHP system, AW 1483 

 

The most predominant costs are the investment costs to acquire the system, whereas, the highest 

revenue came from the income from the avoided cost of separate heat generation. Arising from the fact 

that there is no need to have a separate system to produce the total heating demand, the economic 

benefit from that avoided cost was also accounted, representing a revenue of 1483 €/year . Also, the 

revenues from selling the produced electricity to the grid represent a great economic benefit. Results 

shows that for a base case scenario considering an electricity FIT of 0.12 €/kWh, it is possible to achieve 

an annual revenue above 1348 €/year if all the electricity generated is sold to the grid.  
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Stirling engine technology is characterized for long periods without need of maintenance intervention. 

Considering the results, the maintenance cost represents about 8.7% of the total annual costs of system 

operation and the annualized investment costs correspond to the highest charge.  

Considering the objective function defined for this optimization problem, it may be concluded that applying 

thermal-economic optimization to the system it is possible to obtain a best economic output and, at same 

time optimize the physical system, when comparing the objective function value from thermal-economic 

optimization results with the one obtained from the base-case configuration. 

For that optimal solution, Figure 6.44 presents the relative capital cost of each system component. 

Results show that the most expensive component is the engine bulk, representing 36.2% of the total 

capital cost, followed by the regenerator (26.0%), the heater (24.5%) and finally the cooler (13.3%). In fact, 

the regenerator and the heater are the most important heat exchangers of the thermal plant because of 

the thermal conditions and variations of the working fluid at those components. From the physical optimal 

solution calculated, the total capital cost of the thermal power plant is of 18714€.  

 

Figure 6.44 Relative capital costs for each thermal plant component. 

 

The optimal values for six the decision values presented in Table 6.14. Therefore, this corresponds to a 

thermal plant operating at 78.2 bar of mean pressure, considering cylinders with a 128 cm3 of capacity, a 

heater with 1.50 mm for the internal diameter of the tubes and 3.0 mm for the cooler tubes. The tubular 

regenerator should contain a wired matrix with a porosity of 0.7 and the with a wire diameter of 0.297 

mm. Considering the results for the He as working fluid, the optimal solution corresponds to a Stirling 

engine working at higher values of mean pressure. Although the mean operational pressure is one of the 

physical parameters in the engine bulk purchase cost equation, the increase in the component cost is 

lower than the gains that are obtained in terms of power produced by the system, that somehow are 

intended to be maximized. 
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Table 6.14 Optimum values of the six decision variables 

Decision Variables  

meanP , [bar] 78.2 

engV , [cm3] 128.0 

,inner hd , [mm] 1.50 

,inner kd , [mm] 3.00 

matrix ,[-] 0.70 

wired , [mm] 0.297 

 

Concerning the geometrical parameters, the optimal internal diameter of the heater tubes corresponds to 

a value of 1.5 mm. Nevertheless, the optimal solution obtained for the internal diameter of cooler tubes 

reached higher values when compared with the heater diameter tubes. The internal diameter is one of the 

most important parameters in sizing cooler and heater components, because its variation has a great 

impact in the heat transfer, affecting not only the heat exchanger effectiveness but also the engine 

efficiency. Obviously, for tubes with higher diameter, the heat transfer area increase, but also the friction 

that the fluid suffers during its passage, is influenced. Concerning the regenerator, the two most important 

parameters are the matrix regenerator porosity and the diameter of the matrix wire. The simulation 

depicted that the optimal porosity value is of 0.7 and a wire diameter between 0.221 mm and 0.297 mm.  

The performance criteria for the optimal solutions are presented in Table 6.15. The results disclose that 

the optimal solution discloses a thermal plant able to produce 2.79 kW electrical power and 9.23 kW of 

thermal power. These results are within a heat-to-power ratio below 3.5. The results for the thermal power 

are above the peak thermal demand for individual dwellings, which was estimated to be 6 to 8 kW th for 

decentralized energy systems (Konrad, Obé, & Frey, 2009). Qualitatively, the optimal solution presented 

an electrical efficiency of 23.5% and a total efficiency (in cogeneration mode) above 98%. This outcome 

reveals a great result considering the total efficiency of the system.  

  

Table 6.15 Optimum values of thermal system performance  

Performance Criteria  

Thermal Power, [kW] 9.23 

Electrical Power, [kW] 2.79 

Electrical Efficiency, [%] 23.51 

Total Efficiency, [%] 98.38 
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6.6.2 Analysis to the complexity of the thermal-economic model 

Although these results from the thermal-economic model are quite satisfactory, it was decided to increase 

the degree of complexity of the optimization model, by increasing the number of decision variables.  

From the sensitivity analysis performed to the physical model, it was concluded that the temperature of 

the hot source is one of the most important variables in the system, and so, it should also be regarded as 

one of the decision variables. The temperature of the heat source has a great influence in the efficiency of 

the Stirling efficiency. Lower and upper values for this new decision variable were also defined in order to 

include it in the optimization model ( 725 900hT  ). 

Thus, the heat source temperature was also considered as one of the decision variables:

mean eng inner ,h inner ,k matrix wire hP ;V ;d ;d ; ;d ;T . Considering this new combination of decision variables, 

numerical simulations were performed considering a rotation speed of 1500 rpm considering the helium 

as the working fluids. The Nelder-Mead was the search method used to run the PS algorithm for the 

numerical simulations. The optimal solution was attained when the objective function was non-decreasing 

in feasible directions and the solution was within the value of the function tolerance and convergence 

criteria.  

Table 6.16 presents the optimal annual costs and revenues from the CHP system operation for the seven 

decision variables. Results depicts that for all the optimal solutions it is possible to obtain a positive profit 

from the system operation. The most predominant costs are the investment costs to acquire the system, 

whereas, the highest revenue came from the income from the avoided cost of separate heat generation 

and the revenues from selling the produced electricity to the grid. The investment purchase costs are the 

most representative costs, representing more than 90% of the economic expenditures. It is important to 

note, once the energy source is a renewable one, no fuel costs are included in the economic model.  

 

Table 6.16 Optimal annual costs and incomes of the system considering seven decision variables 

Annual Costs and Revenues, €/year  

 Capital Investment Cost, Cinv (2016) 

Maintenance Costs, Cm (217) 

Revenue from equipment residual value, 
Revres 

101 

Revenue from selling electricity to the grid, 
Revsell 

1735 

Revenue from CES bonification, Revces 452 

Avoided cost from separate heat 
generation, Cavoided 

1544 

Annual worth of the CHP system, AW 1598 
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Comparatively to the six decision variable simulation, this combination of decision variables discloses a 

solution for which it was obtained a higher value of annual worth.  

The optimal values for the seven decision values presented in Table 6.17. Despite the solution gives a 

higher annual profitability, the optimal values for the decision variables are identical from the optimal 

solution with six decision variables model. Nevertheless, including the hot source temperature as one of 

the decision variables led to a combination of physical parameters for which, its optimal value is higher 

than the firstly assumed, 750 K. This is actually expectable because the higher the value of Th, the greater 

is the energy that the system can produce. Nevertheless, the heater cost also increases, and so the 

optimal value of Th represents the balance between the increase in the available energy and the 

minimization of heater cost. Thus, this result could also result in the need of a system capable of 

providing additional heat to the hot heat exchanger, which would lead, for instance, to a solar collector 

with a higher capacity, and therefore, more expensive, and so, a higher investment. Actually, this is a 

limitation of the model: the solar collector should also be included in the optimization model. 

 

Table 6.17 Optimum values of the seven decision variables 

Decision Variables  

meanP , [bar] 78.22 

engV , [cm3] 128.0 

,inner hd , [mm] 1.50 

,inner kd , [mm] 3.00 

matrix ,[-] 0.70 

wired , [mm] 0.300 

hT , [K] 808.3 

 

The performance criteria for the optimal solutions are presented in Table 6.18. The results disclose 

similar values for the electrical and thermal powers when comparing the results with the optimal solution 

from the six decision variables simulation.  

 

Table 6.18 Optimum values of thermal system performance  

Performance Criteria  

Thermal Power, [kW] 9.65 

Electrical Power, [kW] 3.61 

Electrical Efficiency, [%] 28.72 

Total Efficiency, [%] 98.01 
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The optimal solution, in all presented cases, has an electrical efficiency of 28.7% and a total efficiency (in 

cogeneration mode) of 98%. This outcome discloses a better result in terms of electrical efficiency when 

compared with the six decision variables tests.  

 

According to the sensitivity analysis performed to the geometrical parameters of the heat exchangers, the 

number of the tubes could also be optimized. The number of the tubes affects two aspects: for one hand 

it affects the pressure drop inside the heat exchanger and the dead volume in the component. Therefore, 

the number of cooler and heater tubes was also included in the decision variables in order to understand 

the influence of the commitment between the number and the tubes diameter at the heat exchangers in 

the system performance. The lower and upper limits for these two variables were defined to be: 

50 90hnt   for the number of heater tubes and 80 160knt  for the number of cooler tubes. 

 Thus, the number of heater and cooler tubes was introduced in the thermal-economic model as decision 

variables to perform the numerical simulations: mean eng inner ,h h k inner ,k matrix wire hP ;V ;d ;nt ;nt ;d ; ;d ;T . 

Table 6.19 presents the optimal annual costs and revenues from the CHP system operation. For a 

simulation which includes the number of tubes of cooler and heater, the annual worth of the CHP system 

presents a similar value, once it was obtained an annual profit of 1592 €/years. Comparing the results, 

the value for the annual worth was obtained considering a decrease of the capital investment costs and an 

increase on the avoided costs from separate heat generation. This economic output corresponds to a 

system able to deliver 3 kWel and 10.5 kWth for which it is obtained an electrical efficiency of 23.5% and a 

total efficiency of 98.5%. The thermal-economic model benefits the power production in order to maximize 

the economical income from selling the electricity to the grid. 

 

Table 6.19 Optimal annual costs and incomes of the system considering nine decision variables 

Annual Costs and Revenues, €/year  

Capital Investment Cost, Cinv 1878 

Maintenance Costs, Cm 180 

Revenue from equipment residual 
value, Revres 

94 

Revenue from selling electricity to the 
grid, Revsell 

1440 

Revenue from CES bonification, Revces 436 

Avoided cost from separate heat 
generation, Cavoided 

1680 

Annual worth of the CHP system, AW 1592 
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The optimal values for the nine decision values presented in Table 6.20. Including the number of heater 

and cooler tubes affects the optimal value of all the decision variables, resulting on a thermal system 

operating at slightly lower mean pressures, with higher cylinder capacities. The optimal value for the heat 

source is of 784 K, which is lower than the optimal value obtained for the simulation with seven decision 

variables. This means that including the new decision variables affects all the optimal solution. A 

reasonable explanation for this outcome is that these optimal solutions possibly correspond to local 

optima and not a global solution. Therefore, other optimization algorithms should be applied and studied. 

Concerning the optimal results for the heater number of tubes, its value is of 79 tubes, which is quite 

similar to the number of tubes of base-case configuration. Regarding the number of cooler tubes, the 

optimal solution presents a reduction of the number of tubes from 150 to 133 tubes. Nevertheless, this 

reduction of the number of cooler tubes also results into a reduction of the internal diameter of each tube, 

from 3.0 mm to 2.81 mm. It was also verified an increase in the matrix regenerator porosity (0.7 to 0.77) 

with a similar value for its wire diameter (0.303 mm). 

 

Table 6.20 Optimum values of the nine decision variables  

Decision Variables  

meanP , [bar] 75.1 

engV , [cm3] 131.8 

,inner hd , [mm] 2.77 

,inner kd , [mm] 2.81 

hnt ,[-] 79 

knt ,[-] 133 

matrix ,[-] 0.77 

wired , [mm] 0.303 

hT , [K] 784 

 

6.6.3 Comparison of different working fluids 

An interesting analysis is to apply the thermal-economic model to the thermal system comparing the 

optimal solutions systems operating with different working gases. Table 6.21 presents the optimal solution 

from a system operating with He and H2. 

Results shows that the optimal solution obtained for a system operating with H2 as working gas provides 

an higher profit when compared with the optimal solution obtained for He. This outcome is only due to the 

fact that the investment capital for the system with H2 is lower than the investment cost considering He.  

This difference in investment costs is probably due to variations of the optimal values for the decision 

variables. 
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Table 6.21 Comparison of optimal costs and incomes of the thermal system working with He and H2 

Annual Costs and Revenues, €/year He H2 

Capital Investment Cost, Cinv 1878 1829 

Maintenance Costs, Cm 180 180 

Revenue from equipment residual value, 
Revres 

94 91 

Revenue from selling electricity to the grid, 
Revsell 

1440 1440 

Revenue from CES bonification, Revces 436 436 

Avoided cost from separate heat 
generation, Cavoided 

1680 1680 

Annual worth of the CHP system, AW 1592 1639 

 

Figure 6.45 presents the relative capital cost of each system component for the optimal solution obtained 

from both working fluids. The purchase cost obtained for the thermal plant running with He is higher 

(19892 € than with H2 (19374 €).  

According to the data, the optimal solutions disclose the engine bulk as the most expensive component of 

the thermal system for both simulations, representing 35% of the total purchase cost of the system. The 

heater is the second most expensive component, followed by the regenerator and the cooler. 

 

Figure 6.45 Results of relative capital costs for each component, considering He and H2 as the working fluids. 

 

The small differences in purchase cost of the systems components are due to different results for the 

decision variables between both cases. Table 6.22 presents the optimum values of the decision variables, 

by comparing the simulations performed with He and H2 as working fluids. The results of the decision 

variables discloses to similar machines with small differences in the operating pressure and cylinder 

capacities. Geometrically, the commitment between the tubes number at each heat exchanger (i.e. heater 
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and cooler) and the internal diameter discloses an equivalent heat transfer area for both optimal solutions. 

Note that both optimal solutions disclose a machine able to deliver, approximately, 3.0 kWth and 10.5 kWel. 

Analysing the results, the main difference between the optimal solutions lies in the temperature of the hot 

source. 

 

Table 6.22 Optimum values of the decision variables for He and H2  

Decision Variables He H2 

meanP , [bar] 75.06 77.30 

engV , [cm3] 131.8 126.4 

,inner hd , [mm] 2.77 2.87 

,inner kd , [mm] 2.81 3.06 

hnt ,[-] 79 78 

knt ,[-] 133 129 

matrix ,[-] 0.77 0.75 

wired , [mm] 0.303 0.306 

hT , [K] 784.1 755.3 

 

Considering the results, the application of the pattern search algorithm with the Nelder-Mead method as 

the direct search option showed a good performance in obtaining optimal solutions for this complex non-

linear constrained optimization problem. Nevertheless, others optimization methods should be tested in 

order to understand the feasibility of the solutions. 

 

6.6.4 Comparison of different optimization methods 

The GA optimization method was also implemented as the search step into the PS algorithm. In order to 

better compare its results with the optimal solutions from the convergence tolerance criteria was 

considered to be equal to the Nelder-Mead method. The number of iterations ran by each simulation, the 

number of objective function evaluations, as well as, the simulation time is presented in Table 6.23. 

 

Table 6.23 Optimization parameters for both the simulations (He) 

 
PS with Nelder-

Mead 
PS with GA  

method 

Nº of Iterations 3 2 

Nº of O.F. Evaluations 3246 5034 

Simulation Computational Time, h 8.5 10 
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The data shows that the GA algorithm requires a larger number of objective function evaluations to reach 

the convergence. The increase in the number of objective function evaluations led to an increase in the 

computational time to achieve the optimal solutions for both search methods. 

Table 6.24 presents the results from two simulations considering the He as the working fluid and the 

model with nine decision variables, where the optimal solutions for the Nelder-Mead and GA algorithm are 

compared. The optimal solution from the GA algorithm discloses an optimal solution for which it is 

obtained a higher profit. The higher profit is obtained because of the lower investment costs obtained for 

that solution. This outcome implies that the optimal solutions lead to machines with different geometrical 

and operating conditions. 

 

Table 6.24 Optimal annual costs and incomes comparing different numerical methods (He) 

Annual Costs and Revenues, €/year 
PS with Nelder-

Mead 
PS with GA  

method 

Capital Investment Cost, Cinv 1878 1709 

Maintenance Costs, Cm 180 180 

Revenue from equipment residual 
value, Revres 

94 86 

Revenue from selling electricity to the 
grid, Revsell 

1440 1440 

Revenue from CES bonification, Revces 436 436 

Avoided cost from separate heat 
generation, Cavoided 

1680 1680 

Annual worth of the CHP system, AW 1592 1757 

 

Regarding the comparison of the optimization methods, few aspects are important to mention. Due to the 

complexity of the thermodynamic model, the nature of the constraints (i.e. non-linear), there is no 

guarantee that it is possible to determine derivatives from the functions, and so, the application of 

gradient-based methods to this model was discarded. Also, different initial and feasible points were tested 

in order to understand if the solution was dependent on the starting point. This fact has not been verified 

for both methods.  

The Nelder-Mead method is an iterative method that generates a sequence of feasible iterates whose 

objective function value is non-increasing. Also, the objective function is evaluated at a finite number of 

points on a mesh in order to try to find one that yields a decrease in the objective function value. Thus, 

the parameters defined to the mesh size and the admissible search directions determinate if the optimal 

solution is a local or a global one.  

The GA application disclosed an optimal solution with a better value for the objective function. 

Nevertheless, there an aspect from applying this method that has to be taken into account, the 

randomness of this algorithm. In fact, at each simulation, the algorithm repeatedly modifies a population 
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of individual solutions, and at each step, the genetic algorithm randomly selects individuals from the 

current population and uses them as parents to produce the children for the next generation. Over 

successive generations, the population "evolves" toward an optimal solution. This means that the same 

simulation, with the same convergence parameters can depict different optimal solutions.  

Table 6.25 compares the combination of optimal values from the two methods for all the decision 

variables. Both optimal solutions disclose a machine able to deliver, approximately, 3.0 kWth and 10.5 

kWel. However, despite both solutions disclose the same energy output, the application of different 

optimization methods leads to different optimal solutions in terms of decision variables. 

The optimal solution from applying the PS algorithm with the GA method depict a thermal system working 

at lower mean pressure, with cylinders with higher capacity and requires higher values for the heat source 

temperature. Geometrically, the heater should have a lower number of tubes but with a higher diameter, 

whereas for the cooler, the best configuration leads to a lower number of cooler tubes with a smaller 

internal diameter. The results for the regenerator parameters are quite similar for both optimal solutions. 

 

Table 6.25 Optimum values of the decision variables comparing different numerical methods (He) 

Decision Variables 
PS with Nelder-

Mead 
PS with GA 

method 

meanP , [bar] 75.06 62.13 

engV , [cm3] 131.8 140.8 

,inner hd , [mm] 2.77 3.68 

,inner kd , [mm] 2.81 1.71 

hnt ,[-] 79 60 

knt ,[-] 133 112 

matrix ,[-] 0.77 0.78 

wired , [mm] 0.303 0.307 

hT , [K] 784.1 811.7 

 

There is a significant difference between the optimal solutions considering the configuration of the heat 

exchangers. Thus, the effectiveness of heater, regenerator and cooler was calculated in order to compare 

both solutions. The results for the effectiveness are presented in Figure 6.46. Comparing the effectiveness 

results, the optimal solution disclosed by the GA method allows a great improvement in the cooler 

effectiveness but heater effectiveness gets a worse result. The regenerator effectiveness, as expected, is 

similar for both solutions. 
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Figure 6.46 Effectiveness of the heat exchangers considering optimal solutions from both numerical methods. 

 

The respective investment costs of the system and respective components for both solutions are 

presented in Figure 6.47. The total investment purchase cost disclosed by the PS algorithm applied with 

GA method optimal solution is lower than the one from the PS algorithm with Nelder-Mead method. 

 

Figure 6.47 Comparison of purchase investment for both optimal solutions. 

 

Therefore, the best system disclosed by the thermal-economic analysis leads to a thermal plant operating 

at 62 bar of mean pressure considering cylinders with a 141 cm3 of capacity, a heater constituted by 60 

tubes with 3.68 mm of internal diameter, a cooler with 112 tubes and 1.71 mm of internal diameter. The 

tubular regenerator should contain a wired matrix with a porosity of 0.78 and the with a wire diameter of 

0.307 mm.  This system allows an annual profit of 1757 €/year and the purchase investment cos of this 

system correspond to 15 836 €. 
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7  
 

Sustainability and Economic viability 

of micro-CHP system  
 

7.1 Economic and Technologic Challenges of CHP Systems 

7.2 Sustainability of micro-CHP Systems  

7.3 Economic Evaluation  

______________________________________________________________________ 

Developing efficient energy generation technologies has become essential due to scarcity and high prices 

of fossil fuels and environmental concerns. The economic viability assessment of a micro-CHP system is 

of utmost importance in the decision making process when considering a new investment. The micro-CHP 

systems offer some benefits that underlie their economic viability: the capacity of producing heat and 

power at consumption place; the reduction of transmission and distribution losses; maximization of the 

primary energy savings and finally offers significant contribution to gas emissions reduction. In this 

chapter, the economic viability of micro-CHP system is discussed and analysed through different 

economic indexes. 

 

7.1 Economic and Technologic Challenges of CHP Systems 

Cogeneration is a capital-intensive opportunity, so investment has to be properly assessed and justified. 

Costs can be quantified relatively easily, but valuing the benefits from the heat and electricity that will be 

produced is more difficult. It is not possible to objectively divide the costs between electricity production 

and heat production; hence the value of the produced heat and electricity is normally calculated on the 

basis of avoided cost. The value of cogenerated heat is calculated from the avoided cost of producing heat 

in a boiler and the cogenerated electricity is determined from selling electricity to the grid.  

The implementation of a residential cogeneration system can contribute significantly to the reduction of 

energy consumption. Yet, it requires additional expenses (namely, in terms of investment costs and 

| 
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operation and maintenance costs), while providing environmental and, in many cases, also economic 

benefits. Most micro-CHP systems are currently heat-led, so the plants only operate when there is a heat 

demand, being the electricity a by-product. The most likely situation corresponds to a higher number of 

hours heat demand. According to Pehnt et al. (2004), micro-CHP power plants are economically viable if 

they operate at least for about 3,500 to 5,000 hours at full load, and if the electricity is used at the 

production site. Thus, applications with a rather constant heat demand and an electricity demand 

matching the CHP electricity production profile are particularly well suited for micro CHP installation. 

Moreover, the economic incentive to export electricity plus the improvement of system electrical efficiency, 

turn the micro-CHP systems into a more attractive investment. Also, micro-CHP units must meet the 

consumer expectations: similar in size when compared with the power devices they are trying to be a 

replaceable solution, quiet and free from excessive vibration. 

The technical and economic challenges in the development of thermal plants are significantly higher for 

micro-CHP than for larger scale systems, because the costs per unit of power tend to rise exponentially as 

size reduces. The economic viability of the micro-CHP systems is associated with the capacity of design 

systems at a cost that can be recovered from the savings and incomes during its useful lifetime. The 

financial analysis depends on both the capital investment and the value of electricity produced by the unit, 

which represents the most valuable income from the systems operation (Barbieri, Spina, & Venturini, 

2012).  For any given system, the payback relies on the unit’s operating hours and consequently the total 

electricity produced annually. Clearly, it is not only the system purchase costs that are important to 

calculate. The installation and the frequency of the maintenance service over the system-working lifetime 

have to be quantified. In fact, the capital cost of micro-CHP units is an essential parameter and fluctuates 

according to the system sizing. A general indication of the capital cost per kWel of installed capacity is 

given in Figure 7.1.It reflects the specific capital cost of a cogeneration unit, including prime mover, 

generator and heat recovery equipment. 

 

Figure 7.1 Specific capital cost as a function of cogeneration unit size. Adapted from (Smit, 2006). 
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Thus, the economic viability of micro CHP mainly depends on achieving savings to recover the investment 

costs, but it is evident that a more comprehensive assessment is required. Therefore, a cost-benefit 

analysis can be applied for the economic evaluation of micro-CHP systems by assessing the monetary 

socio-environmental costs and benefits of a capital investment over its useful lifetime. 

 

7.2. Sustainability of Cogeneration Systems 

According to Soliño, Prada and Vázquez (2009), when examining the potential of a cogeneration system 

for a small scale-application, both economic and environmental costs and benefits affects the decision-

making process. 

 

7.2.1. Growth Drivers and Markets Constraints 

Assessing the sustainability of the micro cogeneration may be based on the balance between the growth 

drivers of these technologies and the market constraints they face. Therefore, the most relevant growth 

drivers for micro CHP are: the reduction of the external energy dependency, by reducing the fossil fuel 

imports; the favourable policies that ensure improved tariffs; the environmental concerns; the possibility to 

replace the heat production systems (e.g. boilers) by a system able to supply the thermal needs and 

additionally produce electricity where the surplus production can become an economic profit. The key 

market constraints that micro-CHP face are: the high manufacturing costs of these power plants; the lack 

of available money for risky investments; the competition from the conventional power production, as it’s 

still the easier way to access energy; and, finally, fuel prices fluctuations which can be determinant in the 

determination of these plants profitability. Figure 7.2 summarizes the growth drivers and the most 

relevant constraints that micro-CHP units have to overcome. 

 

Figure 7.2 Growth drivers and the market constraints for micro-CHP units. 
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Costs are also subject to change over time – imposition of different interest rates, political changes, 

fluctuations of fuel and electricity tariffs – requiring a sensibility analysis of the payback period to the fuel 

price and feed-in-tariffs. 

 

7.2.2. Sustainability Criteria Assessment 

In the literature, it is very common the evaluation of CHP systems considering the comparison of different 

alternatives (Alanne, Salo, Saari, & Gustafsson, 2007; De Paepe & Mertens, 2007; Karger & Hennings, 

2009). The available research investigates the advantages and the disadvantages of the alternative 

systems mostly on a hierarchically structure, based on sustainability criteria. The sustainability criteria 

used evaluate the alternative cogeneration systems can be summarized by a value tree analysis as shown 

by Figure 7.3. It is important to notice that, depending on the technical and economic boundary 

conditions, the advantages and the disadvantages from decentralized thermal plants are distinct and have 

different impacts. The criteria come from the information compilation, taking into account the 

sustainability evaluation of decentralized energy conversion systems. The criteria are mainly classified into 

four categories: environmental protection, security of supply, social and economic aspects.  

In the field of environmental protection, the impacts of distributed generation are related to two criteria: 

the reduction of CO2 emissions from households and the economical use of fuel and materials required 

during the construction, operation or dismantling of thermal power plants. The impacts in the security of 

energy supply sector are characterized by a number of conflicting influences and great uncertainty. For 

instance, there is an intensified dependence on NG even in the case of cogeneration power systems. This 

scenario has been changed mainly because of the incentives of applying renewable energy sources.  

With respect to an evaluation of the diversification of supply sources, systems with a great versatility in 

terms of energy sources are more attractive. Also, if that versatility includes renewable and non-expensive 

energy sources with the same efficiency level, those systems are even more interesting regarding a 

possible investment.  

Failure of small cogeneration systems has much less severe impacts than failure of large facilities. 

Nevertheless, when these power plants fail, the energy supply of the user is compromised. This issue 

raises the question of systems adaptability, which is a criterion highly valued regarding small-cogeneration 

systems.   

With respect to social aspects, concerning that these power plants are usually installed within the 

residential building, one of the aspects that is largely valued is related to the visual impacts and the noise 

levels from the system operation. Systems with low noise levels, reduced visual impacts are evaluated 

positively by a consumer(Østergaard, 2009).  
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Figure 7.3 Sustainability criteria used in the cogeneration systems evaluation. 

 

Regarding to economic aspects, investments in decentralized power plants are rated positively and have 

the greatest influence concerning its medium/long-term monetization (e.g. exporting total or part of the 

electricity to the electrical networks). On the other hand, there are the higher investment and maintenance 

costs of decentralized cogeneration systems, mainly if its acquisition is made by individual consumers. 

 

7.2.3. Cost-effectiveness of Environmental Benefits 

Cost effectiveness analysis is a well-known technique, frequently used in the implementation of 

environmental policies. The basic concept is simple: one can spend a euro only once (Commission, 

2006). This means that the aim is to achieve highest environmental profit for each euro invested for 

environmental purposes. This is useful because the economic cost has to be balanced against the benefit 

that a cogeneration offers to the environment. The external impacts can be divided into costs (negative 

externalities) and benefits (positive externalities) depending on the impacts. The incorporation of 

environmental externalities into the assessment of cogeneration residential systems offers the advantage 
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of expressing all costs and benefits into a common measuring unit (i.e. monetary value), and thus 

provides a single measure of the attractiveness of an alternative energy supply option.  

The performance of micro cogeneration technologies, regarding environmental aspects, depends mainly 

on the total conversion efficiency that can be achieved. Nevertheless, the emission reduction and potential 

of micro-CHP could partially be offset by a “rebound effect”, implying that energy savings achieved by a 

more efficient technology are annulled, by an increase in energy demand. Micro-CHP systems have mainly 

relied on natural gas, although other fossil fuels, and in a limited extent, renewable energy sources, can 

be used with most technologies. One of the important questions that arise nowadays is if most micro-CHP 

systems, which operate on fossil sources, can compete with renewable energy supply systems, for 

example, solar collectors or biomass boilers. Although micro-CHP systems operating with solar collectors 

have particular requirements, they could improve the competitiveness of developing renewable-fuel-based 

technologies for operating micro CHP systems, particularly Stirling engines (Chicco & Mancarella, 2009). 

Therefore, several important advantages regarding to key sustainability criteria can be summarized: 

greenhouse emissions and fossil fuel consumption reduction when compared to the average energy 

supply and even when compared to efficient and state-of-the art separate production of electricity in 

conventional power plants and heat in condensing boilers. Regarding this, micro-CHP systems are part of 

the transformation process for power generation, since the use of micro CHP allows more flexibility 

solutions when compared to centralized power production (Pehnt, 2008; Pehnt et al., 2004).  

The cost-benefit analysis can be used to estimate the social and environmental effects of an investment in 

thermal-power systems. The value attached to the visual impacts or the noise levels can be considered 

“priceless”. The so-called high-efficient power plants, such as the cogeneration systems, generate a 

positive environmental externality given the decrease of air pollutants emissions. Pollutant emissions are 

difficult to account for the evaluation of the environmental externalities.  

Considering that, several authors disclose that a strategic approach is needed to adequately embed the 

new technology, investment and operation practices in the expectations and living conditions of the 

potential users of micro-CHP systems. Pilavachi, Roumpeas, Minett, and Afgan (2006) defend that the 

development, construction and operation of small and micro-CHP systems must be evaluated according to 

economic, social and environmental aspects in an integrated way and the results of the evaluation should 

be compared by means of the sustainability scores. Huangfu, Wu, Wang, Kong, and Wei (2007) presented 

a study in which an analysis of a micro-scale combined cooling, heating and power system was 

performed. The economic efficiency of the system is discussed in terms of different criteria: payback 

period, initial costs, annual savings and profits, operating cost, calculation of the interest rate, payback 

time and net present value. Gullì (2006) presented a social cost-benefit analysis of small CHP distributed 

generation system. The analysis is based on the determination of internal (calculation of optimal electricity 

and fuel costs) and the external costs by applying the ExternE approach. The methodology of ExternE 
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approach includes the weighting of the external impacts using quantitative procedures in order to 

transform these impacts into monetary units. The author developed a comparison between the centralized 

and the decentralized  energy supply concluding that, despite the optimism about decentralized power 

production, their implementation in the residential sector does not represent a competitive solution. The 

reported approach may represent a good approximation to determine the damages from pollutant 

emissions and the damage would be quantified as an “energy footprint”. Alanne, Söderholm, Sirén, and 

Beausoleil-Morrison (2010) presented a techno-economic strategy to evaluate the performance of different 

configurations of a Stirling engine-based residential micro-cogeneration system. In the evaluation 

procedure, the variables considered were the annual costs, primary energy use and CO2 emissions. In 

this study, the economic viability of the system is based on the capacity to recover the capital investment 

costs by the annual savings during a certain period of time. 

The environmental effects are usually grouped in order to identify the potential environmental effects 

(grouped into 7 topics: human toxicity (NOx, SOx emissions), global warming (CO2, CH4 emissions), aquatic 

toxicity, acidification (presence of NOx, NH3, and SOx), eutrophication, ozone depletion, potential for 

photochemical ozone creation) provided for each of the pollutants, so that a wide range of pollutants can 

be directly compared or aggregated and expressed as an overall effect. The most common environment 

effects identified for the CHP residential system and analysed in this project are: reduction in emission of 

gas emissions and the reduction in primary energy consumption. In the specific case of this study, as it is 

intended to optimize a micro-CHP system based on Stirling engine with a renewable energy source, a 

solar collector, the challenge is apportioning costs (money) to the avoided emissions when compare to 

centralized energy production. Emissions from current Stirling engine burners can be ten times lower than 

those of ICE engines based on Otto or Diesel cycles without catalytic converters (Aliabadi et al., 2009).  

So, the approach was to determine the cost effectiveness of the annual reduction of gas emissions by the 

micro-CHP system by attributing to it a monetary value. This could be a path to monetize an 

environmental benefit from the use of micro-CHP systems. Though, the evaluation of the environmental 

benefit can be made by two indexes: the reduction of total consumption of primary energy and the 

reduction in CO2 emissions. Although the value of the monetization of carbon dioxide emissions is 

relatively low when compared with the other terms of the objective function (see results from Table 6.23), 

It contributes to the annual worth maximization. The results also prove that if the environmental benefits 

from using CHP technologies are accounted economically, this type of technologies will become more 

attractive as an effective alternative for energy supply. Obviously, the results of the optimal solution are 

deeply related with the constants assumed in the model, namely, the fuel and the electricity FIT. As 

matter of fact, the optimal solution is strongly correlated with the components performance/cost 

assumptions considered in the model (Ferreira, Nunes, Teixeira, & Martins, 2014). 
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It is important to be aware of whether or not the carbon dioxide emission costs have been included, as 

they might have a significant impact on the energy production costs if a life cycle cost analysis is 

considered (Fahlén & Ahlgren, 2010). 

 

7.2.4. Primary Energy and Carbon Emission Savings 

As a consequence of the primary energy saving, CHP systems can also be an effective means to pursue 

the objectives of the Kyoto’s Protocol in terms of greenhouse gas emission reduction. However, on a 

country-wise basis these benefits are strongly related to the generation mix characteristics of the relevant 

power system. Hence, the adoption of cogeneration has been pushed forward from a regulatory point of 

view in several countries, above all in those ones where the power generation mix is mostly based on 

thermal plants, so that CHP production can also bring consistent CO2 emission reduction. Besides the 

incentives available for cogeneration, CHP system profitability could be further improved by the possibility 

of accessing new energy-related markets (e.g., for green certificates, or emission allowances).  

The Portuguese Decree-Law 23/2010 established the guidelines for high-efficiency cogeneration based on 

useful heat demand, which is considered a priority due to its potential PES and consequently reducing 

CO2 emissions, as well as, the remuneration scheme for the cogeneration production. 

The energy and environmental benefits, in terms of primary energy saving of the CHP technology with 

respect to the separate production of electricity and heat can be evaluated through the PES index. The 

amount of primary energy provided by cogeneration production (in percentage) is calculated according to 

equation (7.1): 
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where 
CHPth is the cogeneration heat efficiency, defined as the annual useful heat output divided by the 

fuel energy input. The terms 
refth and 

refel are the efficiency reference values for the separate 

production of heat and electricity, respectively. Finally, 
CHPel is the electrical efficiency of the 

cogeneration production defined as annual electricity from cogeneration divided by the fuel input used to 

produce the sum of useful heat output and electricity from the cogeneration system. 

The equivalent CO2 avoided emissions can be calculated in order to estimate the reduction of gas 

emissions from using cogeneration systems to produce a certain amount of energy. Thus, CES allows 

estimating the carbon emission savings that are possible to achieve by a cogeneration unit, considering 
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the combined electric and thermal efficiencies, when compared with the conventional energy production 

process. This index can be calculated as in equation (7.2): 

 
2

2

2

,

,

,

1

1 .100CHP

CO CHP

el

CO i

i CO CHP

i B

FE

CES
FE

y FE





 

 
 
  
 

 
 


 (7.2) 

where 
CHPel is the electrical efficiency of the CHP unit, 

2 ,CO CHPFE is the equivalent carbon dioxide 

emission factor from the fuel used by the cogeneration unit, and 
2 ,CO iFE  is the equivalent carbon dioxide 

emission factor from the conventional power production. The 
2 ,CO iFE takes into account the specific CO2 

factor of the respective type of energy source multiplied by its fraction in energy mix. Correction factors 

relating to the average climatic situation was considered in the assumption of electric grid efficiency. The 

ambient temperature correction is based on the difference between the annual average temperature in a 

Member State and standard ISO conditions (15°C). A value of 0.1 % point efficiency is subtracted for 

every degree above ISO conditions. Correction factors for avoided grid losses for the application of the 

harmonised efficiency reference values were also accounted. 

The values obtained for CES and PES considering different commercial systems based on Stirling Engine 

technologies and for the optimal solution from the thermal-economic model (OptSEA) is presented in 

Table 7.1. Notice that it was assumed that 100% of electricity exported to the grid and the technical data 

for the commercial systems was based on Table 2.3, Chapter 2. 

 

Table 7.1 Primary Energy and Carbon emission savings for several micro-CHP systems 

System CES (%) PES (%) 

Whispergen 18.8 15.29 

Baxi Ecogen 19.1 15.12 

Sunmachine 21.6 15.95 

SM5A 19.7 13.45 

Solo 161 29.8 24.10 

OptSEA  33.3 26.6 

 

Cogeneration reduces the amount of primary energy used to produce the same energy output when 

compared with the conventional (separate) production and its quantification represents an environmental 

and economic benefit. CHP systems can contribute to the primary energy savings as well as for the 

reduction of carbon emissions, not only through higher efficiencies, but also through the use of renewable 

fuels. The most common fuel used by cogeneration systems is still the natural gas. For those systems, the 
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primary energy and the carbon emission savings are mainly due to the high efficiency of those systems in 

the energy conversion process.  

For the systems that can use renewable energy sources, the environmental benefits are even higher since 

no fossil fuels are consumed by the power plant. This reality is translated by the results from CES and 

PES calculated at the Table. Despite all of the systems present positive values for both indexes, the best 

outcome was obtained for the OptSEA outcome, which was modelled to use a clean energy source, the 

solar radiation.  

 

7.3 Economic Evaluation  

The economic optimization in the design of CHP systems may be based on the analysis of investment 

criteria for project selection. Prior to the analysis of economic criteria, it is necessary to define two 

important aspects: the life time of the project analysis and the definition of the minimum attractive rate of 

the return. An assertive determination of the minimum attractive rate is decisive because it influences the 

result of the economic evaluation. According to Biezma & Cristóbal (2006), the economic analysis, 

separated from the technical, is usually performed via investment criteria in order to perform a 

comparison of project alternatives. Engineers need tools to make wise economic decisions. These tools 

can be applied to independent projects to determine whether or not to invest. The typical steps of an 

economic evaluation of a project include: (1) the establishment of the analysis period for economic study; 

(2) the specification of the attractive rate of return for that project; (3) the estimation of the project cash 

flow; (3) acceptation or rejection based on the established criteria.  

Numerous criteria are available and the methods used in cogeneration systems selection can be 

categorized according to the information that each one provides about the project. The NPV method is 

used in capital budgeting to analyse the cash flows that an investment or a project will yield. Four 

economic criteria can be calculated: the present worth and future worth which give the cash flows of a 

project to one equivalent present and future data, respectively; the Annual Worth (AW) that converts all 

cash flows to a series of equal cash flows for the n number of years of the project lifetime; and the 

capitalized worth that represents the present worth evaluated over an infinite length of time. Concerning 

these methods, a project is accepted if the criteria have a positive value. The limitation of the NPV 

methods is a fair comparison can be made only when NPV values represent costs associated with equal 

service and assumes constant attractive rate throughout the analysis period. 

The use of Rate of Return methods implies a positive present worth. These methods include the Internal 

Rate of Return (IRR) and the growth rate of return. The IRR is the rate that equates the present value of a 

project's cash outflow with the present value of its cash inflow. In other words, it concerns the interest rate 

for which the present value of a project is equal to zero.  
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The Payback Period methods returns the number of the years required to recover the amount of capital 

invested in the project. The main disadvantages of these methods are related to the fact that it ignores 

any benefits that occurs after the payback period, not measuring the project’s profitability. In addition it 

does not take into account the time value of the money. All these economic evaluation methods provide 

valuable information about the projects.  However, the NPV, IRR and the payback period indicators are the 

more common criteria used to evaluate the economic optimization of CHP systems and the three 

generally used to accept or reject a project (Biezma & Cristóbal, 2006; Larsson, Fantazzini, Davidsson, 

Kullander, & Höök, 2014). The economic criteria: NPV, IRR and payback period was calculated 

considering the investment on the optimal micro-CHP system based on Stirling engine disclosed by this 

study. After determining all the terms, the annual Cash Flows (CF) of the cogeneration plant can be 

calculated. 
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 The project cash flow includes the annual payments (e.g. operational costs) and receipts (e.g. incomes 

from selling electricity to the grid, the economic bonification from CES and the avoided costs from 

producing heat) for the project lifetime. For our subject matter, CHP systems, n  is considered to be 20 

years. The term CF0 (i.e. investment year) includes into the analysis the capital investment cost to 

purchase the CHP power plant and the costs of a solar collector. Notice that the price for solar collector 

includes installation and tank needed to energy storage. The solar collector cost estimation is presented in 

Annex III. The residual value of the thermal plant is also accounted at the end of the investment period.  

IRR was also calculated as an indicator for the economics of the investment project. Expressing economic 

feasibility by means of IRR makes it easier to compare different power plants types or sizes. It is the 

current value of all actual or future cash flows over a given number of years at a predetermined interest 

rate. An investment is considered profitable if IRR is higher than the current interest rate, in order to take 

into account the risk of the investment. Considering the obtained economic output for the optimal 

solution, investment criteria like the VA, IRR and the payback period were calculated (Table 7.2). 

 

Table 7.2 Economic indexes for the project evaluation 

NPV, [€] 6 389 

IRR, [%] 10.04 

PP 8 years and 6 months 

 

Results shows that the investment can be recovered over a period of 8 years and approximately 6 months, 

which is less than half of system life period considered in the study. The IRR obtained was of 10.04%, 

which suggests that the investment on the micro-CHP system with these performance characteristics is 
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economically attractive, once the interest rate was assumed to be 7%. Results disclosed a NPV of the 6389 

€ for an interest rate of 7% and a 20 years lifetime project. Despite the numerous investment criteria 

available, practically the only ones used without a specific criterion to evaluate the economic viability of a 

certain investment have been the NPV, IRR and payback period. However, in order to select a project it 

would be convenient to apply more than one scenario to obtain additional information to make a decision. 

A sensitivity analysis to the lifetime project period was considered and the NPV and IRR variation for 

different project lifetime periods is presented in Figure 7.4. 

 

Figure 7.4 Variation of the NPV and IRR at the different number of years for the project lifetime. 

 

According to the data, the economic viability of this micro-CHP system, taking into account all the 

technical and economic assumptions, presents a positive NPV for a lifetime period above 13 years. For a 

lifetime period equal or below 13 years, the internal rate of return is lower than the interest rate at which 

the present value of the future cash flows equals the investment cost. Considering the IRR variation, the 

investment is clearly profitable if the project is considered to be at least 14 years, once the IRR is above 

the interest rate defined. These results are due to the high investment with the thermal system and with 

the installation of the solar collector. Possibly, it is reasonable to include the solar collector in the thermal-

economic optimization model in order to optimize this component, minimizing the costs from its 

installation. Due to the mutability of the economy, it would be also interesting to analyse the NPV if other 

interest rates were applied. Table 7.3 presents the NPV values considering different interest rates for the 

same lifetime period (20 years).  

 

Table 7.3 Project NPV values considering different interest rates 
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Data from Table 7.3 shows that the interest rate that is applied in the economic analysis has a great 

impact in the NPV. Interest rate is used to determine the present value of a stream of future cash flows 

and it has a significant impact on project feasibility, since the choice of the interest rate is one of the 

major cost factors for capital-intensive power generating technologies. In this regard, the reviewed studies 

differ considerably in their interest rate assumptions, making difficult a fair comparison of the results. This 

leads to generalize that the energy production costs are dependent on the used interest rate.  
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8   
 

Conclusions and Future Work 

 

8.1 Main Conclusions and Final Remarks 

8.2 Suggestions of Future Work 

______________________________________________________________________ 

The main objective of this project was to develop a methodology for the thermal-economic optimisation, at 

the design stage, of micro-CHP systems based on Stirling engine technology. In this research work, 

specific concepts and methodologies related to the thermal systems modelling, costing methodologies 

and application of numerical optimization methods were presented and discussed. Furthermore, general 

issues associated with the efficiency of computational methods to simulate real engineering problems 

were investigated. This chapter outlines the main conclusions and suggests possible lines of future work.  

 

8.1. Main Conclusions and Final Remarks 

The development of a model for a solar powered Stirling engine for micro-CHP applications integrated two 

main components: the definition of the thermodynamic model that described the Stirling engine operation 

and the definition of a set of cost equations able to describe the purchase cost of each system 

component. Both models were integrated in the optimization model in order to discover the optimal 

technical configuration for the system that will lead to the best possible economic output. 

The possibility to use a renewable energy source is very important from the point of primary energy 

savings and reduction of carbon emissions. These features make the Stirling engine a suitable choice, as 

prime mover, tin the development of new cogeneration systems for the energy supply of residential 

buildings.  

As imposed by an EU Directive, cogeneration plants are being sized and operated to match the thermal 

loads of the end-users. Micro-scale systems based on Stirling engines are typically designed to provide 

electricity in the range of 1-10 kWel and fairly larger heating loads, which appears to be a good opportunity 

| 
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to meet the global energy needs of households. Thus, one of the most important aspects was to properly 

evaluate the thermal energy requirements of residential buildings.  

A simplified methodology was defined to estimate the annual thermal power duration curve of a building 

that includes both the heating and the domestic hot water needs. Both thermal loads were calculated 

according to the Portuguese regulation for the thermal behaviour of buildings. The calculated peak 

thermal demand was approximately 7 kWth for a reference dwelling.  

The research project led to an extensive study of the thermodynamic cycle of an alpha configuration 

Stirling engine. A mathematical model was defined assuming the engine as a set of five connected 

components, consisting of the compression space, cooler, regenerator, heater and the expansion space. 

Each engine component represents an entity endowed with its respective time-dependent volume, 

temperature, pressure and mass. The hot source temperature was assumed considering that the energy 

source is concentrated solar radiation and the engine cold sink is a mass flow of water that removes heat 

from the cooler to produce hot water.  

Three approaches were considered for the thermodynamic analysis: isothermal, ideal adiabatic and a non-

ideal analysis. The isothermal analysis assumes that the expansion and compression spaces are 

maintained at constant temperatures. In the ideal-adiabatic analysis, the compression and expansion 

spaces are considered adiabatic, and thus their temperatures are not constant, but all the heat-transfer 

processes are still considered as perfect. This is not the case with the non-ideal analysis that accounts for 

temperature differences both in the heater and cooler, a non-perfect regeneration process where the heat 

internally and reversely transferred suffers a reduction, and losses due to flow friction. From the 

comparative analysis it could be concluded that: 

 The isothermal analysis is usually used as the classical approach to assess the theoretical maximum 

for the performance of a Stirling engine, given its size, geometry and gas operating pressure, 

although it considers all the heat transfer processes as perfect.  

 In the isothermal and ideal adiabatic analysis, the engine power was proportional to mean pressure 

and engine rotational speed.  

 The heat-transfer limitations strongly affect engine performance and the non-ideal effects of the 

regeneration are mainly due to the convective thermal resistance between the gas and the 

regenerator surface.  

 The pumping losses refer to fluid friction associated with the flow through the three heat exchangers, 

resulting in a pressure drop between the compression and expansion spaces and thus to a reduction 

in the power output. 

In addition to the analysis of the Stirling engine thermodynamics, a sensitivity analysis to the physical 

model was performed considering the non-ideal analysis. The effects of those parameters were mainly 

evaluated in terms of engine efficiency, power production and heat exchangers effectiveness. Moreover, 
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the results were analysed considering the use of different working fluids (i.e. helium and hydrogen). A few 

conclusions were disclosed from the analysis performed to the physical model: 

 The pumping losses increase with operational mean pressure and engine rotational speed and the 

latter has a larger effect.  

 The heat exchangers effectiveness is slightly higher for helium when compared with hydrogen. The 

fact may be explained through their thermal-physical properties. In fact, the thermal diffusivity of 

helium is higher than that of hydrogen, which improves heat transfer, but the density and viscosity 

are also higher. Hydrogen has better results in terms of power, efficiency and lower pressure drop.  

 The heat source temperature has a great impact in the Stirling engine performance. The study of 

each geometric parameter of the Stirling engine thermal components provided an insight into the 

relations of those parameters with engine performance. Also, the individual analysis of the geometric 

parameters gave solid bases to decide which decision variables were the most relevant to be chosen 

for the thermo-economic optimization. 

 The internal diameter and the number of the heater and cooler tubes, the wire diameter and the 

matrix regenerator porosity are the geometrical parameters with highest relevance in the heat 

exchangers effectiveness.  

A costing methodology was developed to define the purchase cost equations of the system. The purchase 

cost equations relate the cost of the thermal components with the physical parameters that have 

relevance in the cost definition. The costing methodology evidenced a good correlation between the 

physical and cost coefficients in determining the total system cost. Moreover, the cost methodology was 

validated by using data from already available commercial systems. 

The thermal-economic model was based on the definition of an economic objective function (i.e. the 

maximization of the annual worth) subject to the physical constraints. The results from the thermal-

economic optimization disclosed that:  

 The integration of physical and economic models allowed the identification of better combinations for 

the physical system parameters that resulted into lower investment and operational costs and in an 

increase in the engine performance and revenues.  

 All the tested combinations of decision variables and optimization algorithms yielded optimal 

solutions with net profits.  

 The objective function terms that most contribute to the positive balance of the annual profit, 

corresponds to revenue from selling electricity to the grid and the avoided costs in the production of 

heat. It is important to mention that the analysis assumed a fixed tariff for the electricity price. It 

must be recalled that the tariff can be very changeable over time and also depends on the legislation 

of the country. Other values may result in an unviable economic result. As expected, the thermal 

energy demand strongly influences CHP system profitability. An auxiliary boiler may be required to 
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meet the peak thermal demands when the prime mover in CHP configuration cannot achieve the 

thermal demand.  

 The thermal-economic optimization disclosed a thermal system based on a Stirling engine prime 

mover, able to produce 3.0 kWel and approximately 10.5 kWth. Assuming a life time investment of 20 

years with a fixed discount rate of 7%, it corresponds to an economic viable investment with a 

payback period of eight years and six months and with an internal rate of return of nearly 10%. 

Regarding the economic evaluation and the analysis of the micro-CHP systems, it was concluded that: 

 The economic aspect is, indeed, the most relevant when assessing this king of energy solutions. Yet, 

systems able to run with renewable and non-expensive energy sources are viewed positively.  

 The possibility to use decentralized energy systems to supply the energy needs of residential 

consumers is seen as a positive fact, mainly if the systems are able to convert energy in a cleaner 

and efficient way. 

 The monetization of the environmental benefits corresponds to an effective incentive to invest in this 

type of systems. This fact coupled with the current legislation that obliges additional measures to 

fulfil the environmental targets, may represent an advantage from purchasing and installing these 

CHP systems.  

 The work has shown that different numerical methods may result in different optimal solutions. This 

outcome may be due on how the algorithm is implemented, the definition of the solution search 

domain and if the search algorithm is a local or a global optimization algorithm.   

The model developed presents some limitations: the complexity of the thermodynamic cycle, the lack of 

technical data from the current commercial systems resulted in the adoption of some simplifications. Also, 

to correlate physical parameters and define reference cost coefficients requires a hard work and an 

extensive sensitivity analysis of the parameters. Nevertheless, the approach followed in this research 

project, provided information that is not available through the conventional energy analysis and economic 

evaluation, which is crucial to the design and operation of a cost-effective system. In fact, this 

methodology combined two types of optimization: thermodynamic and economic, where the 

thermodynamic optimization emphasizes the efficiency of the cogeneration system whereas, the economic 

one minimizes the levelized costs of the electricity and heat produced and assesses the profits.  

In the design of complex thermal systems, the definition of representative models is a complex process. 

Also, even if all the required information is available, the definition of purchased-thermal system costs, as 

a function of the appropriate thermodynamic decision variables does not guarantee the mathematical 

model to be fully accurate. Nevertheless, there is a good correlation between the numerical models and 

the real thermal-economic output.  
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8.2. Suggestions of Future Work 

There is ample scope for improving the work developed within this thesis. With regard to the field of 

numerical optimization, a more comprehensive sensitivity analysis could be made to the optimization 

model. These tests may include sensitivity studies of numerical parameters, by applying different 

optimization algorithms, for instance, heuristic methods such as the particle swarm algorithm. Other few 

suggestions can be made as future work: 

 The solar collector is not yet included into the optimization model, being its costs only accounted in 

the final economic evaluation of the optimal solution. The inclusion of the solar collector in the 

optimization model could be an important improvement to the model.  Also, the thermal-economic 

model could be tested considering different energy sources, e.g., biomass and evaluate the system 

performance.  

 The influence of the cost variables and legislative restrictions (e.g. feed-in-tariffs) could be studied in 

order to evaluate the system feasibility in other markets.  

 An additional suggestion for future work is to perform a comparative study of the results from this 

study to those from other alternative technologies, namely micro-gas turbines. Several thermal-

economic studies were previously conducted for small-scale cogeneration systems based on micro-

gas turbines for the building sector. A fair comparison could be performed to investigate the 

efficiency, the economic output and other few indexes (e.g. PES, CES) when covering the same 

energy demands for a reference building case.  

 The maximization of a Stirling engine performance is limited by its correct conceptual design and 

optimal construction of all components. Computational Fluid Dynamics (CFD) models, describing 

real processes which occur in external heat supply engines, can be used to simulate the dynamics 

and heat transfer of Stirling engine components. 

 Finally, the physical implementation of a test case/prototype to perform experimental tests would be 

useful and, therefore, to validate all the performed numerical studies.   
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Annex I Schmidt Analysis 

Table AI.1 Schmidt Analysis for Beta and Gama Configuration 
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Annex II Technical specifications of commercial Stirling CHP Systems 

Table AII.1 Technical specifications, purchase costs of 5 commercial Stirling CHP systems 

General Information 

Model Designation EcoGen WGS 20.1 eVita 25s, eVita 28c WhisperGen  5 - ZGM - 1 kW SOLO Stirling 161 

Manufacter 
August Brotje 

GmbH 
De Dietrich Remeha 

GmbH 
Whispertech 

ENERLYT 
NATUFEUER AG 

SOLO Kleinmotoren 

Engine Feature Free Piston Free Piston 
4 Stirling Cycles-
Motor (Siemens) 

5 Stirling Cycles-
Motor (Siemens) 

V-2-Cylinder 

Engine 
Configuration 

beta beta alpha alpha alpha 

Cylinder Capacity  
(cm3) 

- - - 328 160 

Development Date 1995 
1995 (engine), 

2005 (full) 
1993 2004 2004 

Development Stage Available Available Available Experimental Phase Available 

Dimensins (L x A x 
P) (mm) 

493 x 918 x 466 490 x 910 x 471 491 x 838 x 563 700 x 1500 x 520 1280x700x980 

Weight (kg) 134 128 154 150 460 

Noise  (dB) less than  46 ≤ 46 < 46 < 40 - 

Fuel NG Biogás, GPL NG NG Biogás, GPL NG NG, LPG, pellets 

Technical Specifications 

Thermal Output 
(kW) 

3,3 - 20 
3,5 - 23,7 (Stirling-

Motor 3,5 - 5,5) 
7,5 - 14,5 2.2 ago-26 

Electric Output (kW) 0,31 - 1 0,7 - 1 1 1 2-9.5 

CO Emission 
(mg/Nm^3) 

29.6 37 < 100 2.9 50 

NOx Emission 
(mg/m3) 

29.9 32 < 70 134.2 80-120 

Total Efficiency (%) 107.4 98.6 95 91.4 92-96 

Elect. Efficency (%) 15.0 13.9 12 28.6 22-24.5 

Transmission - Free Piston Wobble-Yoke No gears - 

Rotational Speed 
(rpm) 

3000 - 1500 1100 1500 

Working Gas Helium Helium Nitrogen Nitrogen, Helium Helium 

Mean Pressure 
(bar) 

23 bar a 25 °C no 
interior 

23 28 6.5 150 

Hot Heat  
Exchanger (°C) 

- 530 - 800 700 

Cold  Heat 
Exchanger (°C) 

- - - 70 30 

max. temperature 
of heated water 

(°C) 
70 65 70 65 65 

Maintenance 

maintenance cycle  
(h) 

. 8760 4000 6000 5800 

Life time period (h) 50000 45000 - 50000 40000 > 100000 180000 

Price 

Price (€) 13645 11950 8500 13000 25000 
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Annex III - Solar collector Analysis 

 

Solar collectors and thermal energy storage components are the two kernel subsystems in solar thermal 

applications. Solar collectors are usually classified into two categories according to concentration ratios: 

the non-concentrating collectors and concentrating collectors. A solar collector, the special energy 

exchanger, converts solar irradiation energy either to the thermal energy of the working fluid in solar 

thermal applications. For solar thermal applications, solar irradiation is absorbed by a solar collector as 

heat which is then transferred to its working fluid (air, water or oil). The heat carried by the working fluid 

can be used to either provide domestic hot water/heating, or to charge a thermal energy storage tank 

from which the heat can be drawn for use later (e.g. during the night periods). A non-concentrating 

collector has the same intercepting area as its absorbing area, whereas a sun-tracking concentrating solar 

collector usually has concave reflecting surfaces to intercept and focus the solar irradiation to a much 

smaller receiving area, resulting in an increased heat flux so that the thermodynamic cycle can achieve 

higher Carnot efficiency when working under higher temperatures. Regarding the concentrating collectors, 

they are usually equipped with sun-tracking devices and have much higher concentration ratio than non- 

concentrating collectors (Dascomb, 2009).  

In the literature several dish-solar thermal collectors are reported to work in conjunction with Stirling 

engines for thermal-electrical power applications. Parabolic dish collectors use an array of parabolic dish-

shaped mirrors (similar in shape to a satellite dish) to focus solar energy onto a receiver located at the 

common focal point of the dish mirrors. Heat transfer fluid contained in the receiver is then heated up to 

desirable working temperatures and pressures in order to generate electricity in the engine attached to the 

receiver. Parabolic dish-engine systems are characterized by high efficiency, low start-up losses and can 

be easily scaled up to meet the power needs in remote area, where centralised power supply is too 

expensive. Parabolic trough collectors can concentrate sunlight with a con- centration rate of around 40, 

depending on the trough size.  

 

Figure AIII.1 Solar dish concentrator. Adapted from (Schlaich Bergermann & Partner GbR, 2001). 

 

The key component of such collectors is a set of parabolic mirrors, each of which has the capability to 

reflect the sunlight that is parallel to its symmetrical axis to its common focal line. At the focal line, a black 
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metal receiver (covered by a glass tube to reduce heat loss) is placed to absorb collected heat. Parabolic 

trough collectors can be orientated through tracking the sun.  

The parabolic collectors consist of solar collectors (mirrors), heat receivers and support structures. The 

parabolic-shaped mirrors are constructed by forming a sheet of reflective material into a parabolic shape 

that concentrates incoming sunlight onto a central receiver tube at the focal point. Since the concentrator 

always needs to be perfectly oriented towards the sun light, tracking system.  

The receiver for this system acts as an absorber, boiler, and heat storage unit. The receiver is the part of 

the system that converts solar radiation to heat energy in a working fluid. The receiver consists of an 

absorber, heat exchanger and possibly heat storage. The absorber is the impinging surface for rejected 

solar radiation to strike. Radiation is absorbed into the absorber material as heat. The heat exchanger 

transfers the energy to a working fluid that carries the energy out of the receiver. 

A methodology can be applied in order to calculate the area of the solar collector (Acollector) needed to provide 

the total energy based on the domestic hot water and heating needs, as in equation (AIII.1):  

 
0

dhw dhw
collector collector

collector

Q WHD Q WDH
A A

Energy flow absorved .

 
  


 (AIII.1) 

where collector is the average efficiency of the collector, 0 the average solar irradiation. According to 

Nepveu, Ferriere and Bataille (2009), the direct solar irradiation is of 906 W/m2. According to the 

implemented methodology, the peak thermal demand is about 7 kWth. The efficiency of the collector is in 

fact a function of the exterior temperature, as disclosed by the equation (AIII.1), that was presented by Der 

Minassians and Sanders (2011): 

  0collector ref

U
T T

G
     (AIII.2) 

Where 0 is the maximum collector efficiency, U is the thermal loss coefficient, G is the power density of 

the incident sun light, T is the mean temperature of the collector and 
refT is the ambient temperature. 

The features and the cost per area of two commercial models are presented in Table AIII 1. 

 

Table AIII 1 Market information about parabolic solar collectors 

Collector Model 0  [%] U  [W/m2.K] Collector Cost per area [€/m2] 

AOSOL CPC 1.5x 75 4.280 114.3 

SOLEL CPC 2000 1.2x 91 4.080 309.6 

 

Considering the SOLEL CPC 2000 model the reference case for calculations, the collector efficiency was 

calculated assuming the value of 515 W/m2 for the variableG , as presented by the equations (AIII.3) 

 0 4778 47 78collector collector. . %     (AIII.3) 

Once the efficiency of the solar collector was determined, the area of the solar collector can be 

calculated assuming the peak thermal energy demand calculated in chapter 3. Then, and according to 

equation (AIII.4), the area of the collector is estimated to be: 
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   (AIII.4) 

 Therefore, the cost of the solar collector can be estimated considering the cost per area of surface. The 

costs for a few commercial inverters and tracking system are reported at Table AIII 2. Note that the 

installations costs are usually accounted in the Recommended Retail Prices (RRP).  

 

Table AIII 2 List of equipment costs for solar collector installation 

Model Price [€] 

Tracking Systems   

 SS2X_01 3M Metalogalva 4320 

 SS2X_O1 4M Metalogalva 4385 

 SS2X_01 5M Metalogalva 4485 

Inverters  

 AJ 400 – 48V Solar energias Renováveis Lda 333 

 AJ 500 – 12V Solar energias Renováveis Lda 579 

 AJ600 – 24V Solar energias Renováveis Lda 529 

 

In the Table AIII 3, the assumed prices for the solar collector, inverters and tracking systems are 

presented. These values were used to define the cash flow maps of the investment. 

 

Table AIII 3 List of equipment costs for solar collector installation 

Model Price [€] 

Solar Collector (SOLEL CPC 2000 1.2x) 5090 

Tracking system (SS2X_01 4M Metalogalva) 4385 

Inverter (AJ 400 – 48V Solar energias Renováveis Lda) 333 

Total 9808 
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Annex IV Economic Feasibility study  

Table AIV 1 Cash flow map of the economic feasibility study for the CHP system 

 

 

 

Data 

Porject Lifetime 20 years

Discount Rate [%] 7%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Solar Collector -5090

Tracking System + Installation Costs -4718

-15836

Fuel Costs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180

1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440

Rres 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 436.2

RCES 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73

1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680

-25644 3013 3013 3013 3013 3013 3013 3013 3013 3013 3013 3013 3013 3013 3013 3013 3013 3013 3013 3013 3449.2

NPV 6388.49

10.04%

Payback Period -25644 -22631 -19618 -16605 -13592 -10579 -7566 -4553 -1540 1473 4486 7499 10512 13525 16538 19551 22564 25577 28590 31603 35052.2

The payback period corresponds to 8 years and approximately 6 months

Initial Investment Costs 
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Cash Flow 

IRR
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