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Regulatory CD4+

 

 T Cells in the Immune Reconstitution of HIV-Infected Individuals 

Abstract 

Acquired Immunodeficiency Syndrome (AIDS) caused by the human immunodeficiency virus 

(HIV) is characterized by a steady imbalance in the immune system mainly at the level of the cell-

mediated immunity, leading to a final stage of inability to counteract major life threatening 

infections and tumors. With the advent of highly active antiretroviral therapy (HAART), HIV 

infection became manageable as a chronic disease. However, HAART does not fully restore 

health and does not always lead to the recovery of the CD4+

Regulatory T cells (Treg), a specialized subset of T cells, play an essential role in the control of 

immune responses. In the context of HIV infection, Treg may be considered harmful by 

suppressing HIV-specific immune responses or beneficial, by dampening excessive immune 

activation. It has also been hypothesize that their deregulation could hamper immune recovery 

and be involved in the immune reconstitution inflammatory syndrome (IRIS). Despite many 

reports concerning the role of Treg in the immune system recovery of HIV-infected patients under 

HAART, the subject remains controversial. Clarifying Treg function in this process is of paramount 

importance to better understand the immune reconstitution in HIV-infected patients and 

therefore, potentially use this information to improve the disease management.  

 T cell numbers to normal levels.  

Focused on understanding the role of Treg in the immune system reconstitution, we endeavor a 

work involving exclusively HIV-infected patients under HAART. Two studies were performed: a 

cross-sectional study involving HIV-infected patients aviremic under HAART, and a longitudinal 

study involving HIV-infected patients HAART-naïve, who were followed since the initiation of 

therapy, through several time-points and until they have performed two years of HAART (providing 

they were adherent to HAART and the treatment was effective at decreasing the viral load). 

We found that untreated HIV-infected patients in a more advanced stage of the disease (<200 

CD4+ T cells/mm3), tend to show higher Treg percentages among CD4+ T cells (although with 

high inter-individual variability) comparing to healthy controls and that those patients under 

HAART tend to normalize Treg percentage. However, after 2 years (longitudinal study) or even 

more years (cross-sectional study) of HAART, although the median Treg percentage of HIV-

infected patients was not different when compared with that of healthy individuals, the number of 

HIV-infected patients with a Treg percentage ≥10% was significantly superior to the one within the 

healthy group, and patients still demonstrated a more heterogeneous distribution of Treg 
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percentages. We also observed that a Treg subset homeostasis disturbance (lower naïve Treg 

and higher cycling Treg among Treg) was present at baseline and that this disturbance had not 

normalized even after two years under HAART in patients in a more advanced stage of the 

disease (<200 CD4+ T cell/mm3

Concerning immune recovery under HAART, we found, in our cross-sectional study: that amongst 

the patients with nadir values <200 cells/mm

). 

3, the individuals with higher Treg percentages had 

the poorest CD4+ T cell reconstitution; that the well-described direct correlation between the nadir 

value and CD4+ T cell reconstitution was clearly more evident in individuals with high Treg 

proportions; and finally, we also found a strong negative correlation between Treg percentages 

and CD4+ T cell recovery among immunological non-responder HIV-infected individuals. In 

addition, in our longitudinal study, we confirmed a negative correlation between baseline Treg 

proportion and CD4+ T cell counts at 24 months of therapy. However, we found that the 

individuals who presented high Treg percentages at baseline are for the most part the ones with 

lower nadirs and that there was a link between higher Treg percentage and lower CD4+ T cell 

counts at baseline that explained the correlation found (CD4+

One of the patients of the longitudinal cohort has developed a paradoxical toxoplasmosis-IRIS 

therefore allowing us to investigate the Treg and Treg subsets dynamics before, throughout, and 

after the process. We found an accentuated deregulation of Treg percentage and Treg subsets 

which suggests that these cells might have an important role in that condition. 

 T cell counts progression during 

therapy was independent on having high or low Treg percentages at baseline). 
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Células T CD4+

 

 Reguladoras na Reconstituição Imune de Indivíduos Infetados por VIH 

Resumo  

A Síndrome de Imunodeficiência Adquirida (SIDA) causada pelo vírus da imunodeficiência 

humana (VIH) é caracterizada por um desequilíbrio marcado do sistema imunitário, 

principalmente ao nível da imunidade mediada por células, levando a uma fase final de 

incapacidade para contrariar um grande número de infeções e tumores. Com o advento da 

terapêutica antirretrovírica de alta eficácia (HAART), a infeção pelo VIH tornou-se numa doença 

crónica controlável. No entanto, a HAART não restaura completamente a saúde e nem sempre é 

suficiente para que os doentes recuperem totalmente as células T CD4+

As células T reguladoras (Treg), uma subpopulação de células T especializadas em regular a 

resposta imunitária de outras células, desempenham um papel essencial no controlo da resposta 

imunitária. No contexto da infeção pelo VIH, as Treg podem ser consideradas prejudiciais por 

poderem diminuir ou mesmo suprimir as respostas imunitárias específicas anti-VIH ou benéficas, 

ao conseguirem diminuir a ativação imunitária exagerada encontrada no contexto desta doença. 

Tem sido também defendido que a sua desregulação, frequentemente observada em doentes 

com infeção por VIH, poderia dificultar a recuperação imunitária ou ainda estar envolvida na 

patogénese da síndrome inflamatória de reconstituição imunitária (IRIS). Apesar dos muitos 

estudos realizados nesta área, o papel das Treg na infeção pelo VIH ainda é controverso. 

Esclarecer o seu papel nesta doença é de suma importância para se perceber melhor a 

reconstituição imunitária e para, potencialmente, se poder usar essa informação na melhoria do 

manuseamento da doença. 

 para valores que 

possam ser considerados normais.  

Com o objetivo de compreender o papel das Treg na recuperação imunitária em doentes sob 

HAART, realizámos um trabalho que envolveu doentes infetados pelo VIH sob HAART.  

Foi realizado um estudo transversal que envolveu doentes infetados pelo VIH, todos sob HAART, 

e todos com bons resultados em termos de diminuição da carga viral, e um estudo longitudinal 

que envolveu doentes infetados pelo VIH, naïves em terapêutica e que foram seguidos desde o 

início do tratamento, durante vários momentos até atingirem os dois anos de terapêutica (desde 

que aderentes à HAART e sendo esta, eficiente na redução da carga viral). 

Estes estudos mostraram-nos que doentes infetados pelo VIH não tratados e que se encontram 

numa fase mais avançada da doença (<200 células T CD4+/mm3), apresentam percentagens 
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elevadas de Treg (embora com grande variabilidade inter-individual), em comparação com 

controlos saudáveis. Observámos também que a HAART tende a normalizar essas percentagens 

de Treg, ao longo do tempo nesses doentes. No entanto, mesmo após dois (no estudo 

longitudinal) ou mais anos (no estudo transversal) de HAART, apesar da mediana da 

percentagem de Treg dos doentes infetados pelo VIH não ser diferente daquela apresentada 

pelos controlos saudáveis, o número de doentes infetados pelo VIH que apresentavam uma 

percentagem de Treg ≥10% era significativamente maior que no grupo controlo e os doentes 

continuavam a apresentar uma maior variabilidade das percentagens de Treg. Observámos 

também que a desregulação da homeostasia das Treg (uma menor percentagem das Treg 

naïves e uma maior proliferação das Treg dentro das Treg) já presente nos doentes antes de 

iniciarem HAART, não normaliza com a terapêutica, nos doentes em fase mais avançada de 

doença (<200 células T CD4+/mm3

No que diz respeito à recuperação imunitária sob HAART, encontrámos, no nosso estudo 

transversal: que entre os doentes com valores de nadir <200 células/mm

), persistindo alterada mesmo ao fim de dois anos de 

terapêutica antirretrovírica. 

3, os indivíduos com 

percentagens altas de Treg tiveram pior reconstituição de células T CD4+; que a correlação direta 

já bem descrita entre o valor do nadir e o de células T CD4+ era claramente mais evidente em 

indivíduos com percentagens elevadas de Treg; e, finalmente, encontrámos também uma forte 

correlação negativa entre as percentagens de Treg e a recuperação de células T CD4+ entre os 

indivíduos infetados pelo VIH, imunologicamente não respondedores. Além disso, no nosso 

estudo longitudinal, encontrámos uma correlação negativa entre a percentagem de Treg no 

momento do início da terapia e o valor das células T CD4+ aos 24 meses de terapêutica. No 

entanto, verificou-se que os indivíduos que apresentavam percentagens altas de Treg no início do 

estudo eram, na maior parte, aqueles com valores de nadir inferiores e que era o elo entre a alta 

percentagem de Treg e o baixo valor de células T CD4+ no início do estudo, que explicava a 

correlação encontrada (a progressão da contagem de células T CD4+

Um dos doentes da coorte longitudinal desenvolveu uma IRIS paradoxal no contexto de uma 

toxoplasmose, permitindo-nos observar a dinâmica das Treg e das suas subpopulações celulares 

antes, durante e depois dessa intercorrência. Constatámos uma desregulação acentuada da 

percentagem das Treg e das suas subpopulações durante essa intercorrência, o que nos sugere 

que as Treg possam ter um papel importante nesse processo.  

 durante a terapia era 

independente de se ter percentagens de Treg altas ou baixas no início do estudo). 
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General Objectives and Outline of the Thesis 

 

Acquired Immunodeficiency Syndrome (AIDS), a cellular immunodeficiency caused by 

the human immunodeficiency virus (HIV), was first recognized in 1981 and dramatically evolved 

to a global pandemic, with cases reported from virtually every country. Globally, an estimated 

35.3 (32.2–38.8) million people were living with HIV in 2012. There were 2.3 (1.9–2.7) million 

new HIV infections worldwide, and the number of deaths due to AIDS were estimated at 1.6 

(1.4–1.9) million in the same year. 

 Great advances were made until the present in the HIV field. The advances made are a 

result of science, advocacy, political commitment, and effective partnerships with affected 

communities. HIV infection, considered in the beginning a rapidly fatal disease, is now 

considered a chronic disease easy to stabilize, at least, when the patients are early diagnosed, 

where the therapy and laboratory support are available, and when patients adhere to treatment 

and health care. 

Some issues related to this infection remain however a problem, even if patients are 

maintained many years under effective therapy; reservoirs where persistence of virus is the most 

important impediment to achieve a complete eradication of the virus; the persistence of a 

residual immune activation and inflammation accounting for a number of non-AIDS-related co-

morbidities, and also the inability of some patients to completely immune reconstitute being 

more prone to suffer from AIDS-related and non-AIDS-related complications and death. 

In an attempt to better understand the role of various interveners, particularly the human 

regulatory CD4+

The present dissertation is organized in three chapters: Introduction; Results; and Final 

remarks, general discussion and conclusion.  

 T cells (Treg), during the immune reconstitution, we endeavor a work with 

patients selected from Hospital Joaquim Urbano Unity of Centro Hospitalar do Porto, Porto, 

Portugal (HJUU/CHP) where these patients underwent medical care and from whom additional 

blood samples were analyzed at Life and Health Sciences Research Institute, School of Health 

Sciences, University of Minho (ICVS/ECS/UM). Part of the work developed culminated in this 

thesis. 

In Chapter 1, a general introduction is presented describing the state of art concerning 

both infection by HIV, and Treg. In the subchapter concerning infection by HIV, an overview is 

made on several aspects such as: the virus and its replication cycle; the natural history of the 
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infection covering transmission, pathogenesis and clinical spectrum; and the alteration of the 

natural history of the infection by highly active antiretroviral therapy (HAART) administration with 

the consequent immune reconstitution. Some considerations related to incomplete immune-

response that can arise despite efficacious antiretroviral therapy are also made in this 

subchapter. In the subchapter related to Treg, a revision of the theme is made trying to address 

several issues about these cells as where do they come from, how are they characterized and 

how do they work, and what is their role in infections and in particularly, HIV infection. 

In Chapter 2, results are presented in four subchapters: 

In the First subchapter, we explain how we gather a set of clinical, imaging, laboratory, 

and biologic data from HIV-1 infected patients; how patients were selected, what clinical and 

laboratorial data were collected from the hospital, and what supplementary analyses were made 

at ICVS/ECS/UM. Also a characterization of the study populations at baseline is showed in this 

subchapter. In this subchapter, the potentiality of such a set of data is also presented.  

The Second subchapter is composed of a paper, published in Plos One, entitled “Poor 

Immune Reconstitution in HIV-Infected Patients Associates with High Percentage of Regulatory 

CD4+ T Cells”. In a cross-sectional study, high Treg percentages were shown to be associated 

with sub-optimal CD4+ T cell recovery. This was particularly relevant for immunological non-

responders with low nadir values. This work suggested that the Treg proportion may be of clinical 

relevance to somehow predict the immunological reconstitution, at least in patients presenting 

low CD4+

The Third subchapter is presented in the form of article prepared for submission. In a 

longitudinal study performed to better knowledge the temporal order of events taking place in the 

immune reconstitution, we found that individuals, naïve for HAART, with lower CD4

 T cells nadirs at the HAART initiation. 

+ T cell counts, 

not only showed a higher Treg frequency median, but also a higher range of Treg frequencies, 

and both the Treg proportion and the range of those values decrease and tend to adjust to those 

of controls over time under HAART. Moreover, we found that individuals with higher Treg 

percentages at baseline have lower CD4+ T cell counts after 24 months of HAART. But, we also 

found that a higher Treg frequency at baseline was only an indirect predictor of a lower CD4+ T 

cell count at 24th month of antiretroviral therapy as that high Treg percentage was linked to a 

lower CD4+ T cell count at baseline. As the absolute increase in the CD4+ T cell counts and the 

reconstitution CD4+ T cell counts slope are constant and independent of CD4+ T cell counts at 

baseline, those patients with lower CD4+ T cell counts at baseline, show lower CD4+ T cell counts 
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constantly over time under therapy. Thus, the apparently negative impact of regulatory T cells in 

CD4+ T cells recovery (showed in the second subchapter) was not verified in a longitudinal study, 

being that apparent association explained by the existing linkage between low CD4+

In the Fourth subchapter, we present a clinical case report of a patient included in our 

database, which is strongly suggestive of a paradoxical toxoplasmosis-immune reconstitution 

inflammatory syndrome with the involvement of the spinal cord. The rarity, not only of the 

immune reconstitution inflammatory syndrome related with toxoplasmosis, but also the 

localization of the lesions (spinal cord), renders this presentation a case of particular interest.   

We investigated a linkage between this immune reconstitution inflammatory syndrome and the 

CD4

 T cell counts 

and high Treg percentages. Interesting alterations on the sub-populations of the Treg are shown 

and it is highlighted how low nadirs disturb the immune system at distinct levels. 

+ T Treg frequency on CD4+

Finally in the last and Third Chapter, the general discussion of the work developed, as 

well as the final remarks and conclusion are presented. 

 T cells, and Treg subsets dynamics over time before and after 

antiretroviral therapy onset. 
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General Introduction 
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1.1 Infection by the Human Immunodeficiency Virus (HIV) and the Acquired Immunodeficiency 

Syndrome (AIDS) 

 

1.1.1. Introduction 

 

Acquired Immunodeficiency Syndrome (AIDS) was first recognized in homosexual men in 

the summer of 1981, in the United States [1,2]. Shortly after, the disease was identified in male 

and female injection drug users; in hemophiliacs and blood transfusion recipients; among female 

sexual partners of men with AIDS; and among infants born to mothers with AIDS [3]. By 1983, it 

was demonstrated clearly that a virus, later named – the human immunodeficiency virus (HIV) – 

was the causative agent of this new acquired cellular immunodeficiency [4] that dramatically 

evolved to a global pandemic, with cases reported from virtually every country [5]. More than 

three decades after its recognition, an enormous amount of information in the areas of HIV 

virology, pathogenesis, treatment, and prevention has been flowed and continues expanding. 

 Although two types of HIV are currently recognized, HIV-1 and HIV-2, HIV-1 is responsible 

for the vast majority of cases. HIV-2 maintains a much more restricted geographical distribution, 

predominantly in West Africa nations, namely Republic of Guinea-Bissau, Gambia, Senegal, Cape 

Verde, Ivory Coast, Mali, Sierra Leone, and Nigeria. HIV-2 infection has also been reported in 

European countries, especially the ones with strong historical and socio-economic ties to West 

Africa as France and Portugal [6]. Compared with HIV-1 infection, asymptomatic infection is 

more common in HIV-2-infected individuals, blood virus loads tend to be lower, and transmission 

to partners or neonates is less frequent [7]. 

Globally, an estimated 35.3 (32.2–38.8) million of people were living with HIV in 2012. 

There were 2.3 (1.9–2.7) million new HIV infections globally, and the number of AIDS deaths 

was 1.6 (1.4–1.9) million in the same year. Since its discovery, AIDS has caused an estimated 

36 million deaths worldwide (prevision up to 2012) [5]. 

In Portugal, at the end of 2012, 42580 cases of HIV infection were reported cumulatively 

(1436 - 3,4% - corresponded to HIV-2 infection). In 2012, there were 776 new cases diagnosed 

(32 - 4,1% - of which were caused by HIV-2) and 139 AIDS-related deaths [6]. Porto was the 

second district of Portugal, the first being Lisbon, presented with the largest cumulative number 

of cases - 8637 (20.3%). Hereafter, HIV-1 will be only referred and designated as just HIV. 
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1.1.2. Infection by HIV 

 

1.1.2.1. The Main Characteristics of the HIV 

The HIV belongs to Lentivirus genus, Orthovirinae subfamily and Retroviridae family of 

virus [7,8,9]. The HIV is an enveloped roughly spherical virus that is 80 to 120 nm in diameter 

(Figure 1) and encloses a capsid containing two identical copies of the virus genome composed 

by positive-strand RNA. The virion contains several copies of viral enzymes as the reverse 

transcriptase, protease and integrase [7,8,9]. The genome of this virus consists of three major 

structural genes, and other additional genes (Figure 2). The three major structural genes, namely 

gag, pol and env, encode for structural and enzymatic proteins: gag encodes for the proteins that 

form the core of the virion (capsid – p24, nucleocapside – p7, matrix – p17, and nucleic acid-

binding proteins); pol encodes for the enzymes responsible for protease processing of viral 

proteins, reverse transcription, and integration (protease, reverse transcriptase, and integrase); 

and env encodes for the envelope glycoproteins (three pairs of gp120/gp41 forming a trimeric 

structure). Variations in the gene gag or env originate the different classes, subtypes or 

subsubtypes. The other genes, some of whose proteins are essential to regulate viral replication, 

are: tat, rev, nef, vif, vpr, and vpu. At each end of each of the RNA strands are long terminal 

repeat (LTR) sequences that contain promoters, enhancers, and other genetic sequences used 

for binding different cellular transcription factors [7,8,9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Organization of the HIV virion (extracted from [10]). 
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Figure 2. Genomic organization of HIV: the typical three structural genes (gag, pol and env), the six accessory genes 
(tat, rev, vif, nef, vpr, and vpu) located mainly between the pol and env genes, and the long terminal repeat (LTR) 
located at each end of the RNA strand (extracted from [11]). 

 

There are four major classes of HIV [12]: M, N, O, and P. Among the virus from the M 

class, which account for more than 90% of HIV infection worldwide, nine subtypes (or clades) 

designated by the letters A-D, F-H, J, and K followed by the number correspondent to the six 

subsubtypes A1-A4 and F1-F2 became recognized. The infection of a cell by two or more viruses 

may generate recombinant forms designated by CRF (circulating recombinant forms – forms that 

give rise to new epidemic outbreaks) or URF (unique recombinant forms), both nominated by a 

number (indicating the discovery order) and letters (indicating the subtypes involved), for example 

CRF01_AE corresponding to the first CRF described that result from a recombination between A 

and E subtypes. When more than two subtypes are involved, the CRFs are designated as 

CRF_cpx (complex) [reviewed in 11]. The clade B, that accounts for only 12% of the infection 

worldwide, is de most common subtype in the Americas and Western Europe. The subtypes non-

B (A, C, D, F-H, J, and K) account for the great majority of the infections in the rest of the world 

being the subtype C the most prevalent (responsible for more than 50% of infections worldwide) 

[11]. As in the American continent, the majority of European isolates of HIV belongs to subtype 

B. However, several countries including Portugal, also reported appreciable numbers of infections 

by non-B subtypes, with particular relevance to the subtype G, C and CRF03-AB [11 and 

references therein]. 

 
1.1.2.2. The Replication Cycle of HIV 

The replication cycle of HIV (Figure 3) [7,8,9,11] begins with the high-affinity binding of 

the gp120 protein (a viral envelope external protein) to its privileged receptor on the host cell 

surface, the CD4 molecule. The CD4 is a protein expressed predominantly by a subset of T 

lymphocytes, the CD4+ T cells or helper T cells, but also expressed on the surface of 

monocytes/macrophages, microglia, follicular dendritic cells of lymphoid tissue, blood dendritic 

cells or their homologues as the Langerhans cells (in skin and mucosa). The binding of the virus 

HIV-1 
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to the CD4 on the cell surface triggers a conformational change in gp120 allowing the virus to 

bind to a co-receptor (CC chemokine receptor type 5 - CCR5 - or CXC chemokine receptor type 4 

- CXCR4) also expressed on the host cell surface. Following this initial step, the fusion domain of 

HIV gp41 envelope protein is exposed and the fusion of the virus envelope and cellular 

membrane occurs followed by the virus entrance into the target cell. The virus genome, released 

from the capsid, serves as a template to the synthesis of a complementary (the early phase of 

replication begins) negative-strand DNA with the participation of the viral reverse transcriptase 

(RNA-dependent DNA polymerase) and a transfer RNA (tRNA) as a primer. The reverse 

transcriptase is also responsible for the destruction of the template RNA and by the construction 

of the second complementary strand of DNA. A double-stranded DNA is then formed and 

transported into the nucleus (as a complementary DNA - cDNA). The cDNA or “the proviral DNA” 

is integrated into the host chromatin with the aid of the viral integrase enzyme that is also 

transported to the nucleus, thereafter behaving almost like a cellular gene. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Replication cycle of HIV with different sites of action of antiretroviral agents (extracted from [7]). 
 

Cellular activation plays an important role and is required in the efficient integration and 

to the initiation of the late phase of replication. This late phase begins when the proviral DNA is 

transcribed by the host RNA polymerase II, and is regulated by the interaction of host 

transcription factors with promoter and enhancer elements in the LTR portion of the viral 

genome. Both genomic RNA and several mRNA are then produced. The six accessory viral gene 

products, in concert with the cellular machinery, regulate the HIV replication in different stages. 

Newly generated HIV core proteins, enzymes, and genomic RNA assembly inside the cell, and 
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immature viral particles form and bud off from the cell, acquiring their envelope from the cell 

membrane. Yet, the core of the virus is still immature. Final morphogenesis of HIV requires 

protease cleavage of gag and gag-pol polypeptides that continues even after envelopment. 

Infectious viral particles are then ready to infect other cells [7,8,9,11].  

 

1.1.3. Natural History of the HIV Infection 

 

1.1.3.1. HIV Transmission 

The HIV pandemic is still in a dynamic phase in most parts of the world, with continuing 

geographic spread and changing epidemiologic patterns. As already noted, AIDS was initially 

described in young, promiscuous, homosexual men [1,2] and is still prevalent in the gay 

community. However, heterosexual transmission by vaginal intercourse and parenteral 

transmission by intravenous drug abuse (from sharing contaminated syringe needles) have 

become the major routes by which HIV is being spread. Therefore, it can be said that HIV is 

transmitted primarily by sexual contact (both anal and vaginal intercourse); by blood and blood 

products; and by infected mothers to infants intrapartum, perinatally, or via breast milk 

[7,8,9,11]. 

 In Portugal, by December 2012, the transmission category that cumulatively recorded 

the highest number of cases was the "heterosexual category", followed by "intravenous drug user 

category" and “homo/bisexual category” corresponding to, respectively, 44.6%, 38.7% and 

14.1% of total cases notified [6]. Sexual transmission was thus observed in the majority (58.7%) 

of reported cases [6]. The heterosexual transmission has assumed greater importance in recent 

years and in very recent years, an increase in the number of cases referring to homosexuals has 

also been noticed [6]. It is important to take into account that activities undertaken by the 

responsible entities for drug prevention had made impact over time, reducing the number of 

cases associated with intravenous drug use [6]. 

 

1.1.3.2. The Acute Retroviral Syndrome 

Following an exposure of a mucosal surface to HIV, the virus can cross the barrier by 

binding to dendritic or Langerhans cells, or through microscopic rents in the mucosa [8]. Viral 

replication has been shown to occur locally for virus infecting CD4+ T cells that although spatially 

dispersed and partially activated, may be present at lamina propria [8]. Regardless of the route of 
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HIV transmission (whether it occurs through a mucosa barrier, or by direct introduction of the 

virus into the bloodstream), the virus reaches, after about two days of infection, the regional 

lymphoid organs. It appears that dendritic or other cells of the monocyte-macrophage lineage 

play an important role in this process of HIV transportation through the blood [13]. In the 

lymphoid organs, HIV antigens are presented to CD4+

After an active replication in the regional lymph nodes, the spread of the virus throughout 

the body (to other lymph nodes, gastrointestinal tract, brain, liver, spleen) occurs, leading to a 

very high viremia and a significant decrease in the blood CD4

 T cells found in a dense concentration, 

triggering their activation and infection [7,8].  

+ T cell counts [7,8]. An important 

lymphoid organ, the gut-associated lymphoid tissue (GALT), is a major target of HIV infection due 

to its location and the local presence of a large number of CD4+

 

 T cells [8], and may be even the 

first lymphoid tissue to be reached by the virus, and to amplify the virus [13]. The acute retroviral 

syndrome (the early acute phase of the disease), which coincides with this high viremia, occurs 

two to three weeks after infection (in Figure 4 is shown the natural history of HIV infection) [14]. 

At this stage, various unspecific symptoms and signs, acute mononucleosis-like, may occur 

rendering the recognition of the disease possible in its earlier stage, although, most frequently 

not recognized. Common symptoms are fever, prostration, lymphadenopathy, sore throat and 

pharyngitis, erythematous maculopapular rash, arthralgia and myalgia, diarrhea, headache, 

meningeal syndrome and other neurological signs. Patients recover from this phase 

spontaneously and seroconvert (anti-HIV antibodies become detectable in the blood) [11]. 

Antibodies anti-HIV proteins become generally detectable three to six weeks after the 

development of plasma viremia [8]. 

1.1.3.3. The Chronic Asymptomatic or "Latency" Phase 

The development of a humoral and cellular immune response against HIV leads to the 

recovery of the first phase and to the progression to the second phase which is known as the 

chronic asymptomatic or "latency" phase [15,16]. This acquired immune response, although not 

fully effective, appears to have an important impact on the reduction of the plasma viremia to a 

“setpoint” level that is highly predictive of the later course of disease progression [17]. The 

humoral response consists on the production of antibodies against multiple antigens of HIV 

although the precise functional significance of these different antibodies is unclear. The anti-p24 

antibodies appear to contribute to the decline of viremia after acute infection, and the envelope 
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proteins, gp120 and gp41, are the only viral protein to elicit neutralizing antibodies. These 

neutralizing antibodies may be protective, neutralizing HIV directly, preventing the spread of 

infection to additional cells, or participating in antibody-dependent cellular cytotoxicity (ADCC). 

The cellular response is for the most part mediated by cytotoxic CD8+ T lymphocytes (CTLs). 

These CTLs, through their HIV-specific antigen receptors, bind to and cause the lytic destruction 

of HIV-infected cells bearing autologous major histocompatibility complex (MHC) class I 

molecules presenting HIV antigens. Other CD8+ T cells present the ability of inhibiting viral 

replication in a non-cytolytic manner, mediated by soluble factors called CD8 antiviric factors 

[11]. HIV-specific CD4+ T cells are very important in the orchestration of the immune response to 

HIV by providing help to HIV-specific B cells and CD8+

 

 T cells [8,11]. In addition to T-cell 

mediated immunity and ADCC, that involves the killing of HIV-expressing cells by Natural Killer 

cells (NK) armed with specific antibodies directed against HIV antigens, also, NK cells alone have 

been shown to kill HIV-infected target cells in tissue cultures [8,11]. 

 

 

 

 

 

 

 

 
Figure – Natural history of the infection by HIV. 

 
 

 

The immune response is responsible for infection control for several years (on average 7 

to 10 years) [8,11,14]. During this stage, the HIV viral load in the blood remains low, but even 

during this phase, there is a solid and intense virus replication in the lymph nodes [18]. As the 

immune system, at this phase, is able to replenish the number of CD4+ T cells that are being 

destroyed, the number, after the initial recovery, appears to be stable, or slowly decreasing. 

Thus, this phase, although clinically latent, is not virologically latent. The patients may still show 

Figure 4. Natural history of HIV infection (extracted from [14]). 
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nonspecific symptoms such as persistent fever, malaise, weight loss or lymphadenopathy 

[reviewed in 11]. 

HIV, however, is able to elude the immune response through various mechanisms 

[reviewed in 8,11,13], namely: 1) the sustained level of replication leads to viral diversity, via 

mutation or recombination, and consequently, to epitope mutation and evasion of control from 

CTLs and from neutralizing antibodies; 2) apart from epitope mutation, also the glycosylation of 

the envelope or conformational masking of neutralizing epitopes contribute to evasion from 

specific neutralizing antibodies; 3) the production of proteins from tat and nef genes can change 

class I MHC molecules that lose their ability to present HIV epitopes rendering the cytotoxic CD8+ 

T cells less able to recognize HIV-infected cells; 4) the down regulation of MHC-II molecules that 

renders CD4+ T cells less able to effectively participate in the immune response; 5) the 

exhaustion, dysfunction and death of immune cells that render the immune response weaker; 

and finally, 6) the presence of infected cells that are not recognize as infected by the immune 

system, due to their state of latency (not expressing antigens) or to their sequestration in 

immunologically privileged sites such as the central nervous system, contribute to viral 

persistence. All these mechanisms lead to the gradual increase of the HIV viral load and the 

steady reduction in the number of CD4+

 

 T cells with the consequent reduction of cellular 

immunity and the gradual evolution to the next and final stage of the disease. 

1.1.3.4. Mechanisms Responsible for the Reduction of CD4+

There is considerable controversy regarding the relative contribution of the diverse 

mechanisms responsible for the reduction of the CD4

 T Cells Numbers in HIV-

Infected Patients 

+

Reduction of the CD4

 T cells during the course of HIV infection 

that occur through increased destruction, decreased production, and redistribution [reviewed in 

8,13,19,20]. 

+ T cells numbers results in part from the direct effects of infection 

of CD4+ T cells through several mechanisms [reviewed in 19] like: the disruption of the plasma 

membrane owing to the continuous budding of the virions or due to the enhanced permeability 

induced by viral vpu; increased cellular toxicity by the accumulation of nonintegrated viral DNA; 

the alteration by HIV of the normal cellular balance of pro- versus anti-apoptotic proteins resulting 

in the disruption of mitochondrial function and death of the cell; and the short lifespan of giant 

multinucleated cell called syncytium (formed by membrane fusion between infected cells that 
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express gp120 and the CD4 molecule expressed on the surface of all CD4+ T cells). Apart from 

the cytopathic effects of HIV, CD4+ T cells infected by HIV are also directly killed by HIV-specific 

cytotoxic CD8+

The infection of CD4

 T cells, by ADCC, or directly by NK as referred above [8,13,19,20]. 

+ T cells, however, does not appear to be sufficient to explain the 

progressive loss of CD4+ T cells which occurs over the course of HIV disease. In fact, the number 

of apoptotic cells in infected individuals greatly exceeds the number of HIV-infected cells 

indicating that uninfected cells are also killed by bystander indirect detrimental effects of HIV 

infection [8,13,19,20]. Uninfected cells may be eliminated primarily by [reviewed in 8,13,19,20] 

Fas-mediated or TNF-inducing ligand mediated apoptosis; due to the down-regulation of anti-

apoptotic proteins; or as a result of apoptosis stimulated by HIV proteins (such as gp120, tat, nef 

and vpu) released from infected cells [19]. An increased proliferation/turnover as well as death of 

CD4+ T cells is observed [21]. The excessive immune activation consistently observed seems to 

be a major determinant of this scenario [13,19,20,22-25]. Indeed, it is now accepted worldwide 

that the constant stimulation of the immune system plays a pivotal role in the progression from 

HIV infection to AIDS [22]. This activation of the innate and adaptive immune system leads to the 

release of pro-inflammatory mediators (namely TNF, IL-1β, and IL-6) which drives persistent 

inflammation [26]. This induced activation inflammatory condition, in addition of driving CD4+ T 

cell depletion, as already mentioned, may be responsible for the premature age-associated 

changes in the immune system (immunosenescence) demonstrated in HIV-infected patients (as 

many of the abnormalities in T cells observed in older adults are similar to those observed in 

untreated HIV-infected individuals), and for a number of co-morbidities non-AIDS related (to be 

referred later in this chapter) [26,27]. Several mechanisms may drive this immune activation 

such as [reviewed in 26,28]: ongoing HIV replication, microbial bioproducts translocation, mostly 

from the gut, like lipopolysacharide (as a great proportion of the CD4+

In addition to the increased destruction of CD4

 T cells pool in the GALT is 

depleted early in the infection course rendering the immune barrier leaky); increased viral load of 

co-infecting pathogens (CMV, other herpesvirus, and hepatitis virus), disregulation of regulatory T 

cells and other immunoregulatory cells, or lymphopenia per se [28]. 

+ T cells, a decreased production of these 

cells due to the disruption of normal hematopoiesis in the bone marrow and impaired thymus 

function (owing to several mechanisms) seems also to occur in a great proportion of patients 

during HIV infection [8,29]. 
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The redistribution caused by trafficking of CD4+ T cells from the peripheral blood to 

lymphoid tissue or inflammatory extra-lymphoid tissues could, in addition, account as an 

additional mechanism for CD4+

It is important to refer that the deleterious effects and immune dysfunction due to HIV 

infection are extended to several other cells of the immune system like CD8

 T cell peripheral blood depletion in HIV-infected patients [21]. 

+

 

 T, NK, B, 

nonlymphoid cells like macrophages and dendritic cells [20]. 

1.1.3.5. The Stage of Immunodeficiency or AIDS 

The gradual imbalance that occurs in the immune response, mainly in cell-mediated 

immunity leads early to the occurrence of infections that do not endanger the patient's life [those 

former designed by the Center for Disease Control and Prevention (CDC) as type B clinical 

category] [30], and later, to major life threatening infections/conditions that mark the transition 

of the disease to the final stage - the stage of immunodeficiency or AIDS. This phase results, if 

antiretroviral therapy is not administered, in the death of the individual in about one to three 

years, due to the appearance of several opportunistic infections and tumors. This stage occurs 

essentially when the CD4+ T cell counts in the blood are below 200 cells/mm3 (Table 1 shows the 

correlation of HIV-related complications occurrence with the CD4+

To improve standardization and comparability of surveillance data regarding people at all 

stages of HIV disease, the CDC proposed a classification system for adolescents and adults 

infected by HIV that was updated in 2008 [32]. This ranking is based on the number of CD4

 T cell counts) [31].  

+ T 

cells per mm3

As mentioned before, other clinical conditions (non-AIDS-defining complications), in 

addition to opportunistic infections and tumors (AIDS-defining complications), occur and 

contribute to morbidity and mortality seen in these patients. These non-AIDS co-morbidities, 

many of which are similar to those observed among the elderly, include cancer, heart, liver, 

kidney and bone disease, frailty, and neurocognitive decline, and provide indirect evidence that 

HIV infection might accelerate the aging process [26].  

 of blood (or their percentage in the total blood lymphocytes) and the clinical history 

of the patient as described in Table 2 [32]. 
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CD4+

counts 
 T cell 

(cells/mm3

Infectious 

) 
Complications 

Noninfectious 
Complications 

> 500 

- Acute retroviral syndrome 
- Candidal vaginitis 

- Persistent generalized  
  lymphadenopathy (PGL) 
- Guillain-Barré syndrome 
- Myopathy 
- Aseptic meningitis 

200 – 500 

- Pneumococcal and other bacterial  
   pneumonia 
- Pulmonary tuberculosis  
- Herpes zoster 
- Oropharingeal candidiasis  
- Cryptosporidiosis self-limited 
- Kaposi’s sarcoma  
- Oral hairy leukoplakia  

- Cervical and anal dysplasia  
- Cervical and anal cancer 
- B-cell lymphoma 
- Anemia 
- Mononeuronal multiplex 
- Idiopathic thrombocytopenic purpura   
- Hodgkin lymphoma 
- Lymphocytic interstitial pneumonia 

< 200 

- Pneumocystis pneumonia  
 -Disseminated histoplasmosis and 
  coccidioidomycosis 
- Miliary/extrapulmonary tuberculosis   
- Progressive multifocal   
  Leukoencephalopathy (LMP) 

- Wasting 
- Peripheral neuropathy  
- HIV-associated dementia 
- Cardiomyopathy 
- Vacuolar myelopathy  
- Progressive polyradiculopathy  
- Non-Hodgkin’s  lymphoma  

< 100 

- Disseminated herpes simplex  
- Toxoplasmosis 
- Cryptococcosis 
- Cryptosporidiosis (chronic) 
- Microsporidiosis 
- Candidal esophagitis 

 

< 50 
- Disseminated cytomegalovirus (CMV)  
- Disseminated  Mycobacterium 
  avium complex (MAC)     

- Primary central nervous system  
   lymphoma (PCNSL) 

 
Table 1. Correlation of complications with CD4+

 

 cell counts (adapted from [31]); some conditions listed as 
“noninfectious” are associated with transmissible microbes as lymphoma – Epstein-Barr virus and cervical and anal 
cancers – human papillomavirus). 

Stage 
CD4+

cells/mm
 T cell counts 

(% of total lymphocytes) 

3 Clinical 

1 ≥ 500 (≥ 29%) No AIDS-defining conditions 

2 200-499 (14 - 28%) No AIDS-defining conditions 

3 < 200 (< 14%) 
Or documentation of AIDS-

defining conditions 

Unknown No information No information 

 
Table 2. Surveillance case definition for HIV infection among adults and adolescents (aged ≥ 13 years); 

(adapted from [32]). Individuals classified in the shaded area meet the criteria for AIDS. AIDS-defining conditions: 
Candidiasis of bronchi, trachea, or lungs; Candidiasis of esophagus; Cervical cancer, invasive; Coccidioidomycosis, 
disseminated or extrapulmonary; Cryptococcosis, extrapulmonary; Cryptosporidiosis, chronic intestinal (>1 month's 
duration); Cytomegalovirus disease (other than liver, spleen, or nodes); Cytomegalovirus retinitis (with loss of vision); 
encephalopathy HIV related; Herpes simplex: chronic ulcers (>1 month's duration) or bronchitis, pneumonitis, or 
esophagitis; Histoplasmosis, disseminated or extrapulmonary; Isosporiasis, chronic intestinal (>1 month's duration); 
Kaposi sarcoma; Lymphoma, Burkitt (or equivalent term); Lymphoma, immunoblastic (or equivalent term); 
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Lymphoma primary of brain, Mycobacterium avium complex or Mycobacterium kansasii, disseminated or 
extrapulmonary; Mycobacterium tuberculosis  of any site, pulmonary, disseminated,  or extrapulmonary; 
Mycobacterium, other species or unidentified species, disseminated or extrapulmonary; 
Pneumocystis jirovecii pneumonia; Pneumonia recurrent; Progressive multifocal leukoencephalopathy; 
Salmonella septicemia, recurrent; Toxoplasmosis of brain; Wasting syndrome attributed to HIV. 

 

1.1.4. Alteration of the Natural History of the HIV Infection 

 

1.1.4.1.  Highly Active Antiretroviral Therapy (HAART) 

The emergence and administration of drugs with potent antiretroviral activity, and their 

use in combination (highly active antiretroviral therapy or HAART) to treat patients with HIV 

infection started in 1996 and markedly reduced the morbidity and mortality associated with this 

disease.  

An effective HAART (the drugs used in such combinations block several steps of the virus 

replication cycle as shown in Figure 3) is the therapy that conducts to a suppression of the viral 

load (undetectable viral load in the blood considering the detection limit of commercially available 

tests). Sustained viral load suppression leads for most patients to the restoration of CD4+

In the early times of HAART, regardless of all its related advantages, patients faced 

complex drug regimens, involving multiple drugs with a variety of administration schedules, high 

pill burden and troublesome side effects like gastrointestinal symptoms, lipoatrophy, visceral and 

abdominal fat gain, insulin resistance, DNA damage, or mitochondrial dysfunction. It was, in 

those times, difficult to maintain the high levels of adherence to therapy, necessary in order to 

prevent the development of HIV genetic mutations conferring drug-resistant. Since then, huge 

developments occurred: the design of highly potent drugs; new classes of drugs acting in 

different steps of the virus replicating cycle; drugs presenting a better safety profile; drugs with 

longer half-lives allowing once-daily dosing; and the availability of fixed-dose drug combinations 

[33]. It is now simple to define effective and potent, safe, tolerable, and easy-to-take therapeutic 

schemes allowing long-term suppression of HIV replication. 

 T cell 

compartment.  

The development of laboratory techniques that have been useful to: monitor HIV 

replication; detect HIV drug resistance; diagnose early and consequently to prevent and/or to 

treat opportunistic infections more effectively, also contributed to the decline in morbidity and 

mortality of HIV-infected individuals. HIV infection, considered in the beginning a rapidly fatal 

disease, is now considered a chronic disease easy to stabilize, at least, when the patients are 

diagnosed early, where the therapy, laboratory support and health care are available, and most 
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importantly when patients adhere to treatment. However, one must not forget that, even in face 

of sustained undetectable viral loads, there are local "sanctuaries"/reservoirs in the body (central 

nervous system, lymphoid tissue, genital organs) with infected but quiescent non productive of 

new virus CD4+

The ideal moment to start HAART for each patient has long been a subject of intense 

debate. The aim of antiretroviral treatment is not only to prevent CD4

 T cells. These reservoirs, somehow protected from HAART, are places where 

transitory replication and viral persistence are possible, allowing the occurrence of viral 

mutations, contributing to the maintenance of an abnormal level of immune activation, and being 

the most important impediment to achieve complete eradication of the virus in infected patients, 

even if they are maintained many years under HAART.  

+

In the light of the treatment options currently available, the main scientific societies in the 

area of HIV [34-36] (European AIDS Clinical Society - EACS, International AIDS Society - IAS, 

United States Department of Health and Human Services - USDHHS) have their own 

recommendations for the initiation of antiretroviral therapy to naive patients. Portugal, also edited 

its own recommendations [37]. The proposed time to start, and initial regimens recommended 

by each society and by the Portuguese panel are presented in Table 3 [34-37]. 

 T cells depletion and 

preserve its production by suppressing viral replication, but also to reduce the immune activation 

and persistent inflammation counteracting the immunosenescence and multi-co-morbidities non-

AIDS related. Taking this into account, and the existence of safer and comfortable drug schemes, 

it has been proposed that HAART should be initiated earlier and earlier in the course of the 

infection [34-36]. However, therapeutic regimen should only be initiated provided that the patient 

is perfectly elucidated and motivated to adhere to HAART. 

When the therapy is initiated at a late stage of the disease, it should be taken into 

account the possibility that, in the first months and due to immune reconstitution, certain 

infections, which might have remained silently undiagnosed due to the inactivity of the immune 

system, or have already been diagnosed and begun to be treated, became symptomatic, or get 

worse, as the reconstituting immune system might strongly react to these pathogens or antigens 

[38]. Drug interactions between HAART and other treatments/prophylaxis of opportunistic 

infections should also be the subject of our attention. The medication intolerance and toxicity 

seem to occur more often when HAART is initiated in more advanced stages of the disease. Even 

in this situation, when patients are motivated and adherent to the medication, the immune 
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reconstitution has been possible, allowing the subsequently discontinuation of primary or 

secondary opportunistic infections prophylaxis, clear improving their survival and quality of life. 

European AIDS Clinical Society [34] International AIDS Society [35] 
United States Department of Health and Human 

Services [36] 

Ideal time to start 

HAART is always recommended in 
any HIV-positive person with a  

current CD4+

below 350 cells/ mm
 T cell count 

3

For persons with CD4
.  

+

requesting HAART and is ready to 
start, has symptomatic HIV disease 

or various types of (co-morbid) 
conditions. 

 T cell counts 
above this level, the decision to start 
HAART should be individualized and 
considered, especially if a person is  

HAART is recommended 
for all adults with HIV infection, regardless of 

CD4+

The strength of the recommendation* increases 
as CD4

 T cell counts. 

+

CD4

 T cell count decreases and in the 
presence of certain conditions, with the 

following ratings: 
+ T cell count ≤500 cells/mm3

CD4
 (AIa); 

+ T cell count >500 cells/mm3

Pregnancy: AIa 
 (BIII). 

Chronic hepatitis B virus: AIIa 
HIV-associated nephropathy: AIIa 
Acute phase of HIV infection: BIII  

HAART is recommended 
for all HIV-infected individuals 

to reduce the risk of disease progression. 
The strength and evidence for this recommendation* 

vary by pretreatment CD4+

CD4
 T cell count: 

+ T cell count <350 cells/mm3

CD4
 (AI); 

+ T cell count 350–500 cells/mm3

CD4
 (AII); 

+ T cell count >500 cells/mm3

HAART also is recommended for HIV-infected 
individuals for the prevention of transmission of HIV. 
The strength and evidence for this recommendation 
vary by transmission risks: perinatal transmission 

(AI); heterosexual transmission (AI); 

 (BIII). 

other transmission risk groups (AIII). 
Preferential regimens 

Rregimens with optimal and durable efficacy, favorable tolerability and toxicity profile, and ease of use. 
A combination of one NNRTI or a 

ritonavir-boosted PI or an ITI 
and two NRTI 

NRTI: ABC/3TC (use with caution if 
HIV RNA>100000 c/ml ), FTC/TDF 

NNRTI: EFV,  
RPV (if HIV RNA<100000 c/ml) 

Ritonavir-boosted PI: 
ATV/r, DRV/r 
INSTI: RAL, 

EVG + cobi (+ FTC/TDF)  
(co-formulated) 

NNRTI-based regimen:  
EFV/FTC/TDF; EFV + ABC/3TC; 

RPV/FTC/TDF (if HIV RNA<100000 c/ml) 
PI-based regimens: 

ATV/r + FTC/TDF; ATV/r + ABC/3TC; 
DRV/r + FTC/TDF  

INSTI-based regimen: 
DTG + TDF/FTC, DTG + ABC/3TC, 

EVG/cobi/TDF/FTC, RAL + FTC/TDF 
(the combination ABC/3TC was less efficacious 

with HIV RNA>100000 c/ml than TDF/FTC 
when given with EFV or ATZ/r) 

NNRTI-based regimen: EFV/FTC/TDF 
PI-based regimens: 
ATV/r + FTC/TDF 

DRV/r (once daily) + FTC/TDF 
INSTI-based regimen: DTG + ABC/3TC, DTG + 

TDF/FTC, EVG/cobi/TDF/FTC, RAL + FTC/TDF, 
Also recommended if HIV RNA<100000 c/ml: 

EFV + ABC/3TC; RPV/FTC/TDF (if CD4>200/mm3

ATV/r + ABC/3TC 
) 

Preferred regimen for pregnant women: 
ATV/r or LPV/r (twice daily) 

+ ABC/3TC or TDF/FTC or ZDV/3TC  
Alternative regimens 

Regimens that are effective and tolerable but have potential disadvantages compared with preferred regimens. 
An alternative regimen may be the preferred regimen for some patients.  

Alternative regimen components: 
NRTI: TDF + 3TC, ZDV/3TC,  

ddl + 3TC or ddl + FTC 
NNRTI: NVP 

Ritonavir-boosted PI: 
FPV/r, LPV/r, SQV/r  
CCR5 inhibitor: MVC 

NNRTI-based regimen: 
NVP + FTC/TDF; NVP + ABC/3TC 

RPV + ABC/3TC 
PI-based regimens: 

ATZ/cobi + 2 NRTIs, DRV/cobi + 2 NRTIs 
DRV/r + ABC/3TC, LPV + 2 NRTIs 

INSTI-based regimen: 
RAL + ABC/3TC 

NRTIs limiting or sparing:                        
DRV/r + RAL, LPV/r + 3TC, LPV/r + RAL 

PI-based regimens: 
DRV/r + ABC/3TC 

LPV/r + ABC/3TC or FTC/TDF 
(LPV/r once or twice daily) 

INSTI-based regimen: 
RAL+ABC/3TC 

Beware of remarks and precautions to consider of components and combinations 
(pregnancy; cardiovascular risk; allele of major histocompatibility complex, class I,B - HLA B*5701; use of proton pump inhibitors). 

Fixed-dose combinations when possible for patient convenience. 

 
Portuguese recomendations37 

Ideal time to start 
The start of HAART should be individualized and the decision upheld by the following elements: clinical manifestations, number of CD4+ 

The HAART is recommended for all patients with chronic HIV-1 infection with a CD4

T 
lymphocytes, plasma viral load value, presence of co-morbidities (AII) and the patient's level of preparedness. 

+ T lymphocytes <350 cells/mm3

For persons with CD4
 (AI). 

+

(These recommendations are presently under revision – in the next publication HAART will be recommended for CD4

 T cell counts above this level, the decision to start HAART should be individualized and considered, especially if a person 
has symptomatic HIV disease or various types of (co-morbid) conditions, or for the prevention of transmission. 

+ T cells ≤500/ mm3) 
Preferential regimens 

A combination of one NNRTI or a ritonavir-boosted PI or an ITI and two NRTI 
NRTI: ABC/3TC, FTC/TDF; NNRTI: EFV, NVP; Ritonavir-boosted PI: ATV/r, DRV/r; INSTI: RAL 

When NVP or RAL are used, they may be combined with FTC/TDF 
(the next update will recommend also RPV as another NNRTI) 

Alternative regimens 
NRTI: ZDV/3TC; NNRTI: RPV; Ritonavir-boosted PI: FPV/r, LPV/r, SQV/r ; CCR5 inhibitor: MVC 

(the next update will recommend also EVG/cobi as alternative INSTI) 
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Table 3. Ideal time to start, and initial recommended and alternative regimens in antiretroviral-naïve patients, 
according to main AIDS societies and Portuguese panel. Adapted from [34-37]. *Definitions for rating/strength of 
recommendations and the rating/quality evidence: A = Strong; B = Moderate; C = Optional/Limited. Rating of 
Evidence: Ia – Evidence from ≥1 randomized clinical trial (RCT) published in the peer-reviewed literature; Ib - 
Evidence from ≥1 RCTs presented in abstract form at peer -reviewed scientific meetings; IIa – Evidence from non-
RCTs, cohort, or case-control studies published in the peer-reviewed literature; IIb - Evidence from non-RCTs, cohort, 
or case-control studies presented in abstract form at peer-reviewed scientific meetings; III – Recommendation based 
on the panel’s analysis of the accumulated available evidence (IAS panel); and I = Data from randomized controlled 
trials; II = Data from well-designed nonrandomized trials or observational cohort studies with long-term clinical 
outcomes; III = Expert opinion (DHHS panel). NNRTI – non-nucleoside reverse transcriptase inhibitor, NRTI – 
nucleoside (or nucleotide) analogue reverse transcriptase inhibitors, PI – protease inhibitor, INSTI – integrase strand 
transfer inhibitor, CCR5 – CC chemokine receptor 5 inhibitor. ABC – abacavir (only for patients who are HLA-B*5701 
negative), ATV – atazanavir, cobi – cobicistat, ddl –didanosine, DRV – darunavir, DTG – dolutegravir, EFV – 
efavirenz, EVG – elvitegravir, FPV – fosamprenavir, FTC – emtricitabine, LPV – lopinavir, MVC – maraviroc, NVP – 
nevirapine, RAL – raltegravir, RPV – Rilpivirine, SQV – saquinavir, TDF – tenofovir disoproxil fumarate, ZDV – 
zidovudine, 3TC – lamivudine, /r – ritonavir-booster 

 
 

1.1.4.2. Immune Reconstitution 

Under effective HAART, one assists, not only to the redistribution of memory T cells, but 

also to the expansion of naïve T cells. The CD4+ T cells restoration takes place during various 

phases [reviewed in 28,39,40] [Figure 5]. The initial phase of blood CD4+ T cell increment tends 

to be steeper than in other phases, and occurs in the first six months under HAART. This CD4+ T 

cells rise is thought to be mostly due to the liberation of memory CD4+ T cells from lymphoid 

tissues where sequestered (the inhibition of the viral replication leads to a decrease in the 

immune activation which in turn, drives the down-regulation of adhesion molecules and the 

liberation of those cells). Two other phases of CD4+ T cell restoration have been defined; the 

second lasts for most patients up to the end of the second or third year after HAART onset and 

the third phase may last until seven or more years after HAART initiation, when a CD4+ T cells 

plateau is reached. [39] [Figure 5]. Although the mechanisms involved in immune reconstitution 

in the second and third phases are related, the speed of the immune restoration differs between 

them [Figure 5]; it is quicker in the second (although slower than in the first) than in the third 

phase. The mechanisms involved in CD4+ T cell restoration in the second and third phases are: 

increase of thymic output; the decrease of the abnormal rate of cell death allowing the extension 

of CD4+ T cell half life (the reduction in chronic activation leads to a decreased sensitivity to 

apoptosis); and proliferation of the residual CD4+ T cells (by homeostatic peripheral proliferation 

or residual immune activation). Only the first mechanism allows the restitution of the T cell 

repertoire diversity [40]. As less naïve CD4+ T cells are converting to memory cells, a passive 

accumulation of those cells occurs in the periphery after HAART initiation also contributing to the 

immune reconstitution [40].  
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Several studies have analyzed the immune reconstitution in patient groups with 

sustained viral suppression under HAART aiming to discover if this was a limited process in time 

and what are the circumstances that may have hampered T cell reconstitution. The majority of 

studies show a plateau in CD4+ T cell recovery, in most patients, after 3 to 7 years of complete 

virological response under HAART, even if the CD4+ T cell counts are still low [40-45]. Even if 

some patients still have an increase in CD4+ T cells after that period of time, this increase 

appears to be insufficient for patients that initiate HAART at a very low CD4+ T cell counts to 

reach normal (700-1100 cells/mm3) or near normal (>500 cells/mm3) CD4+ T cell values [41-

45]. Others, however, reported continuous reconstitution of these cells after several years of 

HAART (even upon 10 years of HAART [46]) rendering possible that those normal or near normal 

values are reached for most patients despite low CD4+ T cells nadirs [46-49]. Nevertheless, in 

most patients, the CD4+ T cell counts slope as the absolute increase in the CD4+ T cell counts 

seems to be independent of the severity of the immune alterations present before HAART 

introduction. Therefore, the time taken to reach normal CD4+

 

 T cells depends to a great extent on 

the stage of the disease when HAART was initiated [41,47,49,50].  

 

 

 

 

 

 

 

 

 

1.1.4.3. Patients with Incomplete Immune Reconstitution 

A proportion of HIV-infected patients under HAART, and being virological suppressed 

during several years (4 - 7 years), do not reach normal (700-1100 cells/mm3), near normal (> 

500 cells/mm3) or, at least, satisfactory CD4+ T cell counts (higher than 250-350 cells/mm3, a 

level that would enable the patient to be protected from the more severe opportunistic infections), 

and therefore are more prone to suffer from AIDS-related and non-AIDS-related complications and 

death [36,41-45,51-53]. These patients (the proportion ranges between 15-40% depending on 

Figure 5. Kinetics and mechanisms of immune reconstitution of CD4+ T lymphocyte 
compartment after starting HAART (extracted from [40]). 
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the study) are referred to as immunological discordant or incomplete responders, although there 

is no agreement on the definition of immunological response failure and several definitions are 

used in several reports [reviewed in 54]. For example, a reasonable definition taking into account 

a shorter period of time under successfully HAART, could be a rise in CD4+ T cells lower than 

100 cells/mm3 after two years of treatment (i.e. less than half of the expected recovery) [28]. The 

failure in the immune recovery can be explained by insufficient production or by excessive 

destruction of CD4+

1. The irreversible damage (fibrosis) caused by HIV infection of lymphoid organs might lead 

to the failure of the bone marrow to produce hematopoietic stem cell precursors for 

different lineages of blood cells (including the lymphoid progenitor cells), and to an 

impaired thymic function (resulting in a deficient new T cells differentiation and export to 

the periphery). Moreover, local fibrosis in lymph nodes and GALT may alter survival and 

proliferation of CD4

 T cells due to several, multiple, concomitant, and overlapping conditions 

[41,42,47,52,55,56, reviewed in 28,51,54]: 

+

2. An advanced age is linked to a reduced thymus output, to a higher immune activation, 

and to age-associated changes in the immune system (immunosenescence); 

 T cells; 

3. The HIV infection seems to accelerate the aging process causing immunosenescence 

that could be in part irreversible and contribute to immune activation; 

4. Men have been shown to present lower thymus output than female; this has been 

associated to the anti-apoptotic effect of female sex steroids;  

5. Residual viral replication may occur in some cells of some apparently virological 

suppressed patients accounting for ongoing cytopathogenicity of the virus and immune 

activation; 

6. Presence of more cytopathogenic virus as those that use CXCR4 as a co-receptor; 

7. Some antiretroviral agents like zidovudine, that is toxic for haematopoietic progenitor 

cells, have been associated with worse reconstitution; on the contrary, some 

antiretroviral agents like raltegravir and the CCR5 antagonist maraviroc have been linked 

to a favorable recovery (the high accessibility of raltegravir to anatomic compartments 

could efficiently inhibit the residual HIV replication [57] and perhaps maraviroc, due to 

the fact that CCR5 is now recognized as a co-activation molecule, could decrease 

immune activation, though the beneficial role of maraviroc was not verified by all [58]); 
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8. Although T cell activation declines with virologic suppression, it is not abolished and may 

persist elevated in some patients continuing to drive apoptosis; 

9. Enhanced T cell activation and trapping in secondary lymphoid organs (due to high-

expression of adhesion molecules) has been reported; 

10. Some genetic polymorphisms account to an increased susceptibility to activation or 

apoptosis, or to an increased production of pro-inflammatory cytokines; 

11. Relative deficiency in interleukin (IL) -7 (a key cytokine with a positive effect on 

thymopoiesis, a survival factor for CD4+ and CD8+ T cells, and promoting homeostatic 

proliferation of peripheral T cells in lymphopenic conditions) production or function, or 

reduction in IL-7 receptor expression on CD4+ T cells (administration of recombinant 

human (rh) IL-7 to human has been promising in preclinical trials with increases in CD4+

12. Microbial translocation due to a leaker immune barrier may be one of the drivers of 

immune activation; 

 

T cell counts only after a short duration of treatment [59]); 

13. Co-infections by hepatitis C virus (HCV), cytomegalovirus, other herpesvirus, or even by 

Mycobacterium avium complex, could account for an increased immune activation. 

 

A low CD4+

The role of regulatory T cells (Treg) in immune restoration has been debated and while 

some authors refer to them as beneficial, as they diminish immune activation [60], others, 

however, report a harmful role of those cells [53,56,61] perhaps due to the fact that they impair 

specific anti-HIV immune response (via both indirect, by secreting immunosuppressive cytokines, 

and direct, by driving apoptosis of immune cells), they inhibit lymphopenia-induced proliferation 

[61,62], they may drive a more intense microbial translocation (their increase in mucosal barrier 

hampers the Th17 response against several microbes) [63,64] or they may account for 

exacerbated fibrosis of lymphoid tissues prejudicing immune reconstitution (by increasing levels 

of TGF-β1 and hence exacerbating collagen deposition) [65]. 

 T cell count at the therapy onset has consistently been shown to be a good 

predictor for an immunological non-response as in these situations, several of the above 

mentioned conditions are present, among others. An advanced stage of the disease may cause a 

more advanced fibrosis of lymphoid organs, a more intense microbial translocation, the 

development of other co-infections, a more advanced immunosenescence, the emergence of 

more aggressive X4 strains, and therefore, a more intense immune activation. 



25 
 

Advances made until present-day in the HIV field are a result of science, advocacy, 

political commitment, and effective partnerships with affected communities. Recently, the report 

of cases of sterilizing cure (elimination of all HIV-infected cells as it occurred in the Berlin patient) 

[66], functional cure (long-term control of HIV replication after HAART suspension as it seemed to 

be achieved in the Mississippi baby [67] or in 14 patients in the VISCONTI cohort [68]), and 

other cases of sustained reduction in HIV-reservoirs [69], had revived the hopefulness in a future 

free of AIDS. Several HIV-cure-related trials are being performed worldwide and although one is in 

the commencement, many now believe there may be a step forward in discovering a cure. The 

optimism persists despite the recently disappointing turn of events for the Mississippi baby (the 

child was found to have detectable HIV levels in the blood during a routine clinical care visit on 

July 2014). 

Until a cure is achieved, clinicians have to diagnose early and establish the most 

appropriate antiretroviral treatment for each patient and observed them clinically and analytically 

for a sustained viral suppression and consequently, a good immune recovery is reached, 

minimizing as much as possible what can hinder this recovery. It is worthwhile to mention that 

effective antiretroviral therapy, although allowing immune recovery, preventing AIDS-related 

complications, and prolonging half-life with better quality of life, it does not fully restore health. As 

mentioned above, immunosenescence, residual persistent immune activation/inflammation, and 

also, some HAART toxicity and prevalence of traditional behavior risk factors (as tobacco or 

intravenous drug use per example), account for a number of non-AIDS-related co-morbidities 

[26].  

Patients should then be encouraged to maintain a proper medication adherence and a 

healthy life in an attempt to prevent the onset of co-morbid conditions which if appear, should be 

promptly diagnosed and treated. Another major challenge is to maintain access to and funding 

for lifelong HAART to the more than 35 million of people with HIV infection worldwide. Efforts 

must be done to reach that aim at manageable costs to health systems.  

Since the incomplete immune recovery under effective long-standing HAART carries long-

term risks of disease progression and death, and there are no efficient therapeutic strategies 

currently in these situations, is of vital importance to find solutions. Scientists, apart from trying 

to discover a sterilizing or at least, a functional cure, have to investigate the immune-virological 

pathways behind insufficient immune recovery providing tools to anticipate it, and/or novel 

therapeutic strategies to treat it. One of the possible pathways involved and still insufficiently 
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explored is one that concerns the Treg. If further research in this field namely functional and 

longitudinal analyses of Treg in HIV infection, will demonstrate a well defined and sustained role 

of this CD4+

 

 T cell subset, immunotherapeutic manipulation or intervention involving Treg-cell 

number and/or function [70] could be attempted in HIV-infected patients already under 

treatment aiming to improve immune restoration. In the next session the role of Treg on HIV-

infection and immune restoration will be detailed.  
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1.2. Human Regulatory CD4+

 

 T Cells (Treg) 

1.2.1. Introduction 

 

One of the supreme tasks of our immune system is immunological tolerance i.e. the 

ability to distinguish self from non-self, offering protection to our own cells while fighting potential 

pathogens through the recognition of strange incoming antigens. Immunological tolerance has 

two components, a central and a peripheral one. Central tolerance comprises the processes of 

positive and negative selection that take place in the thymus where, presumably, only T cells with 

moderate affinity to self-peptides presented by self MHC molecules fully differentiate (positive 

selection) and leave thymus. On the other hand negative selection is responsible to eliminate 

differentiating T cells that show too much affinity/avidity to self-peptides presented by self-MHC 

molecules. However, thymic negative selection is known to be insufficient to avoid the 

differentiation of some T cells that react too strongly towards self-peptides-MHC complexes. In the 

periphery, Treg, a specific subset of T cells, play a very important role in restraining those auto-

reactive T cells [1]. 

The existence of a particular subset of T cells playing a negative immune regulation role 

has been a great controversy among immunologists for many years [2]. In the early seventies, 

Richard Gershon had indorsed the predecessors of these cells, the suppressor cells [3], but that 

field faced a major setback and had been mostly abandoned by the majority of the scientific 

communities after the negative results found using more modern tools for immunological 

investigation [reviewed in 2]. However, in the mid-1990s, immunologists recover their 

enthusiasm about T cells that had as a main function controlling/reducing the activity of other T 

cells - Simon Sakaguchi and his colleagues rediscovered what are now named Treg [4] - the 

discovery that some spontaneous diseases in mice and humans were the consequence of the 

lack of Treg [4-6] has rendered these cells definitely accepted. Changes in their number or 

function were linked to many events, but in particular to autoimmunity [7], cancers [8], allergies 

[9], and the outcome of infectious diseases [10-12] in particularly some chronic infections [11]. 

Treg are essential for the maintenance of the immune system’s equilibrium; playing key 

roles in the maintenance of immunological tolerance, preventing autoimmunity, and limiting 

chronic inflammatory diseases [7]. Moreover, they can be induced to inhibit transplant rejection 

reactions, and can limit immune-mediated tissue damages in infections [8,11,12,13]. However, 
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they also suppress antitumor immunity and may prevent sterilizing immunity against certain 

chronic infections [8,11,12,13]. 

The infection by the HIV leads to a deep imbalance of the immune system and growing 

evidence suggests that Treg may influence the outcome of this infection.  

Human Treg represent a minority of T cells comprising for most individuals less than 10% 

of the blood CD4+

This section will detail information on Treg namely their origin and main characteristics, 

their action mechanisms, and their role in infectious diseases focusing mainly on the 

interrelationship with HIV infection. 

 T cells [13,14], and it seems likely that manipulating the number and function 

of these cells will one day be a useful medical procedure in several diseases [12]. 

 

1.2.2. Where do Treg come from? 

 

Treg can be from thymic origin (named as naturally occurring Treg - nTreg), or be 

induced in the periphery from conventional CD4+ 

 

T cells (designated as induced, adaptive or 

converted Treg - iTreg) [reviewed in 11,12,15-17] (Figure 1 [17]). 

Treg from thymic origin - naturally occurring Treg - nTreg 

The thymus is essential for the differentiation and proliferation of lymphocytes precursors 

into mature T cells, setting up the peripheral T cell pool before birth and early in life. The thymus 

undergoes an age-dependent involution associated with a decline in function and consequently, 

in thymopoiesis. However, it is now generally accepted that thymopoiesis can be maintained even 

up to the eighth decade of life, or reactivated under particular circumstances such as after a 

massive exhaustion of the T cell pool as following haematopoietic stem cell transplantation 

[18,19]. 

In the thymus, T-cell precursors undergo recombination of sequences within its antigen-

binding T-cell receptor (TCR) genes to generate a TCR unique to that cell, expressed on their 

surface. A broad diverse TCR repertoire is thereby generated. As the epithelial cells in the thymus 

have the unique capacity to express most of the human genome, the differentiating T cells can be 

exposed to the normal repertoire of human proteins [20]. T cells expressing nonfunctional TCRs, 

TCRs that cannot interact with self-MHC molecules, or those that react too strongly with MHC 

expressing self-peptides, are eliminated (negative selection) [21,22]. The selection process leads 
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to the generation of MHC class I-restricted cytotoxic CD8+ T cells and MHC class II-restricted 

helper CD4+

Treg whose development program is still unclear, may possibly be an independent 

thymus-derived T cell lineage which commitment may occur earlier than the mature CD4 single 

positive stage [24,25]. How the thymic selection works, deleting self-reactive T cells but also 

giving rise to Treg specific for self-antigens, remains to be elucidated [22]. Avidity of the TCRs to 

these self-antigens-MHC complexes seems to determine the fate of T cell; whereas an 

intermediate affinity TCR to self-antigens would lead to a conventional T cell, a relatively high self-

reactive TCR (but not so much as to be deleted) would originate Treg (a transient expression of a 

functional IL-7 receptor and an increased level of the anti-apoptotic Bcl-2 could protect them from 

negative selection [24]).  

 T cells that are for the great majority self-restricted and self-tolerant. T cells exiting 

the thymus are referred in the periphery as naive recent thymic emigrants (RTE). These cells 

express high levels of CD-31 on their surface [23] together with CD45RA. 

Naturally occurring Treg can be activated and expanded by TCR stimulation and by other 

means [reviewed in 11]. These cells have a diverse TCR repertoire, but they are mainly self-

reactive helping to prevent autoimmunity. However, in an inflammatory response, the released of 

tissue antigens may activate these cells and also maybe due to a possible overlap between the 

TCRs of Treg and non-Treg, they can sometimes react specifically with microbial antigens [11]. 

Alternatives to TCR stimulation, although the exact mechanism is controversial and not fully 

elucidated, may include: 1) stimulation of other receptors either in the nTreg themselves or in 

intermediary cells of the immune system which will then activate Treg: nTreg seem to express 

pathogen recognition receptors (PRRs) like toll-like receptors (TLRs) and others that can be 

triggered by molecules expressed by microbial agents (pathogen-associated molecular patterns - 

PAMPs) [11 and references therein], or by reaction products produced by the host and released 

after infection or inflammation such as galectins (galectin-1 and galectin-9) and cellular 

metabolites (retinoic acid - RA, and others) [26]; or 2) stimulation by cytokines generated in the 

microenvironment of an infection like Interleukin (IL) -2, transforming growth factor-β (TGF-β), or 

tumor necrosis factor-α (TNF-α) [11 and references therein]. 
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Treg induced in the periphery from conventional CD4+ 

The iTreg are derived, in the peripheral lymphoid organs (lymph nodes, spleen, and 

mucosa-associated lymphoid tissue - MALT), from conventional CD4

T cells - induced, adaptive or 

converted Treg - iTreg 

+ T cells [27]. There is an 

induction of the expression of suppressor surface markers after TCR stimulation mainly by non-

self antigens (sub-immunogenic doses of peptides) in an appropriate environment of cytokines 

(TGF-β, IL-10 and IL-2 are of particular interest [28-32], and possibly IL-35 [33]), RA [30,31], and 

co-stimulation. Some dendritic cells (DCs), in some body’s compartments and in certain 

circumstances, are able to produce TGF-β or IL-10, and so, potentially help conventional T cells 

to convert into Treg [31,32]. Also, the anti-inflammatory molecule thrombospondin (TSP-1) 

secreted mainly by platelets and antigen presenting cells (APCs), interacts with CD47 receptor on 

CD4+

 

 T cells promoting their conversion on Treg, as IL-10 and TGF-β seem to do [34]. iTreg 

population seems to be of central importance, for example, to maintain a non-inflammatory 

environment in the gut, suppressing immune responses to commensal microorganism-derived 

antigens, and environment and food allergens [12,17].  

Figure 1. Thymic and peripheral generation of Treg cells. nTreg – naturally occurring Treg, iTreg - induced, adaptive 
or converted Treg, Th1, Th2, Th17, Tfh - CD4+ T cells subsets, FOXP3+ - expression of the master control gene 

forkhead-box nuclear transcription factor P3, TCR - T-cell receptor, Tr1, Th3 – other FOXP3-

 

 iTreg subsets (adapted 
from [17]). 

Bone marrow 
 

T lymphocyte 
precursor 
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IL-2 appears to have an important role in Treg’s (both nTreg and iTreg) initial production, 

and subsequent maintenance in the periphery (due to peripheral expansion and altered death 

rate of existing cells) although its real role in Treg differentiation remains under debate [21,35]. 

Experiences with mouse models demonstrated that this cytokine or its receptor (α chain of IL-2 

receptor or the CD25 molecule highly expressed on Treg’ surface) deficiency resulted in severe 

deficiency of Treg [35]. Additionally, most recently, it has been demonstrated that the large 

proportion of the total CD4+

As well as conventional T cells can be converted into Treg, the opposite seems also to be 

possible as Treg are highly prone to functional plasticity [37-40]. Recent findings suggest that T 

helper cell differentiation is more plastic than previously appreciated and lineage reprogramming 

can occur. Each CD4

 cells expanded due to IL-2 treatment, in patients infected by HIV, 

shared phenotypic, functional and molecular characteristics with Treg [36]. 

+

Under appropriate conditions, the function and phenotype of some subpopulations of 

Treg can change, losing their inhibitory effects and even becoming pro-inflammatory participants. 

The environment that could cause such plasticity, namely one rich in pro-inflammatory cytokines 

and Treg-attracting chemokines, is common in many virus induced inflammatory lesions [11,38 

and references therein]. Thymus-derived nTreg cells and peripherally derived iTreg cells appear 

to differ in their propensity for reprogramming, being the last ones more prone to change their 

function [38]. While TGF-β is required for the differentiation of iTreg and for the maintenance of 

nTreg after their egress from thymus, it is also needed for the development of Th17 (given that 

IL-1β and IL-6 are also present) and may be a relevant link between the two T cells lineages. 

 T cell subset can adopt alternate cytokine profiles in response to cytokine 

environmental changes and to inducible expression of key transcription factors [37-40]. Among 

the T cells subsets, Treg and Th17 cells have been described as displaying the highest 

propensity to switch to other phenotypes [38]. 

 

1.2.3. How are Treg Characterized? 

 

The identification of Treg has been hampered for years due to the lack of specific 

markers. Treg are CD4+ T cells and share many surface marker characteristics with activated 

CD4+ T cells. Treg were first identified on the basis of their high level of CD25 expression [14]. 

Subsequently, they were identified by the expression of the master control gene forkhead-box 

nuclear transcription factor P3 (FOXP3), a key regulatory gene for the development and function 
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of Treg [41]. Further human studies, however, demonstrated that activated CD4+

Even though the utility of other putative Treg markers in mice or in humans (as the 

cytotoxic T-lymphocyte associated antigen 4 - CTLA-4, glucocorticoid-induced TNFR-related 

protein – GITR) [30], is still debated, CD3

 T cells may also 

up-regulate the expression of CD25 and can transiently express FOXP3 [42]. More recently, it 

was shown that Treg express low levels of CD127 (the α chain of IL-7 receptor, negatively 

regulated by FOXP3), and therefore this surface molecule is considered useful as an additional 

marker to identify this population [43,44]. Lately, another surface marker specific for nTreg 

emerged - the orphan receptor glycoprotein A repetitions predominant (GARP or LRRC32) [45,46] 

– a transmembrane protein that seems to be selectively expressed by Treg and mainly by 

activated human Treg, but not by activated effector T cells. Moreover, the GARP seems not only 

to identify activated Treg but also discriminates those with the highest suppressive activity [45-

47]. Thus, GARP could play an important role on the identification of functionally active Treg.   

+ CD4+ CD127low CD25high FOXP3+

Recent studies have also shown that the expression of CD45RA or CD45RO, which are 

mutually exclusive, are particularly useful markers when combined with CD25 and/or FOXP3 

enabling the identification of functionally and phenotypically diverse Treg subsets [30,48-50]. 

Miyara et al [48] have defined, based on the expression of CD45RA/RO, three Treg subsets; 

resting Treg cells (CD45RA

 currently represent the 

most reliable markers set to identify this T cell subset. 

+FOXP3low), activated Treg cells (CD45RA-FOXP3high), both of which are 

suppressive in vitro (although in vivo activated Treg seem to be the main effectors of suppression 

[30]), and cytokine-secreting non-suppressive T cells (CD45RA-FOXP3low

The combination of CD45RA and the homing lymph tissue marker (CCR7) allows the 

classification of T cells in three populations: naïve (CD45RA

). 

+CCR7+), central memory (CD45RA-

CCR7+) and effector memory subsets (CD45RA-CCR7-) [51]. Furthermore, the combination of 

CD45RA and human leukocyte antigen (HLA)-DR may be used to define effector Treg (CD45RA- 

HLA-DR-) and terminal effector Treg (CD45RA-HLA-DR+

Others Treg subsets, like Tr1 and Th3, and the more recently identified - iTreg35 - seem 

to be iTreg converted from non-regulatory T cells under particular conditions, expressing some of 

the Treg surface markers (although, probably do not express FOXP3) and sharing some of the 

suppressive properties of Treg as IL-10, TGF-β or IL-35 secretion [15,33,52,53]. 

) [30]. 
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1.2.4. How do Treg Work? 

 

After activation, Treg are able to modulate the activities of a wide variety of cellular 

components of both innate and adaptative immune responses, reducing the magnitude of the 

protective T cell response and preventing inappropriate or exaggerated immune activation of T 

cells induced by pathogens. Furthermore, these cells down-regulate self-reactive T cells 

promoting tolerance and avoiding autoimmunity. Moreover, during spontaneous lymphopenia-

induced proliferation, Treg faired to be a limitative factor to the disparity of rate proliferation 

between varied T cell clones, and therefore lead to preservation of the TCR repertoire diversity 

and to protection against the development of inflammatory pathology and autoimmunity [54]. 

Suppressive activities of Treg include a reduction in the magnitude of the antigen-specific 

CD4+ and CD8+

The mechanisms used by Treg to exert suppressive function are still unclear. Although, 

studies in vitro and making use of animals models have shown multiple mechanisms that could 

be used by Treg to suppress their counterparts, there is still no absolute certainty if all of them 

are implicated in vivo, and if so in animals models, if they also happen in humans. At least three 

mechanisms of action of these cells [reviewed in 29,30,57,59-61] have been described and one 

of them, the cell-to-cell contact, seems to be the most important (in Figure 2 are shown some 

suppressive mechanisms of Treg [61]):  

 T cell responses by a suppression of activation, proliferation, differentiation and 

function of those cells [55], as well as an inhibitory effect on cell trafficking of activates antigen-

specific T cells to infected sites [56]. Inhibitory effects on APCs, NK, NKT, B and mast cells 

function as well as inhibition of the pro-inflammatory activity of macrophages and neutrophils are 

others mechanisms used by Treg to  control immune response [57,58]. 

1) By cell-to-cell contact, Treg can cause the death or the suppression of responder T 

cells (Figure 2A). The cell death can occur by direct lysis by a perforin/granzyme-dependent 

mechanism, or also by induction of apoptosis through Fas ligand-Fas interactions (human Treg 

have been found to express Fas and FasL). Also, Treg were found to induce death in B cells, 

monocytes and DCs. In addition to causing death of other immune cells, Treg might suppress 

immunological activities through: 1) release of cyclic adenosine monophosphate (cAMP) via gap 

junctions (leads to inhibition of T cell proliferation and IL-2 production); 2) the deliverance of a 

negative signal through surface molecules on Treg (CTLA-4 seems to be the most important); and 

3) generation of pericellular adenosine, catalyzed by CD39 and CD73 in Treg, that via A2A 
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receptor promote the sequential increase in intracellular cAMP. Treg with upregulation of CD39 

or CD73 expression may have a more potent suppressive effect [62,63]. The binding of Treg 

CTLA-4 to CD80/CD86 on the surface of the DCs also indirectly suppress T cell response: via 

modulation of APC function (down-modulating of CD80/CD86 on DCs, outcompeting the 

activating receptor CD28 on T effector cells, and inhibiting DC maturation) and inducing APCs to 

express the enzyme indoleamine 2,3-dioxygenase (IDO). IDO catabolizes conversion of 

tryptophan to kynurenine, a toxic product to the activated T cells (and privating effector T cells of 

tryptophan, an essential amino acid for their survival [12]) (Figure 2B). Apart from CTLA-4, 

several other molecules are reported to contribute to the suppressive function of Treg via direct 

Treg – T effector cells interactions and/or via modulation of APC function like (Figure 2A e 2B): 

lymphocyte activation gene 3 (Lag-3 [64,65]), Ig-like type 1 transmembrane protein (CD83), 

lymphocyte function-associated antigen 1 (LFA-1 or CD11a-CD18), GITR (tumor necrosis factor 

receptor superfamily or TNFRSF18), herpesvirus entry mediator (HVEM or TNFRSF14) [66], or 

programmed death-1 (PD-1 or CD279).  

2) Production of suppressive soluble factors such as the cytokines TGF-β, IL-10 and IL-35 

(Figure 2A). TGF-β may act as a mediator of suppression as a membrane-bound form (although 

this is still controversial), may condition responder T cells to be receptive to suppression, may 

maintain FOXP3 expression and, as mentioned above, may additionally contribute to the 

differentiation of other T cells into Treg-like cells. Suppression via IL-10 production has been 

shown to be a potent immunoregulatory mechanism with anti-inflammatory functions in in vivo 

models of Treg-controlled inflammation and homeostatic expansion [67]. IL-35 not only acts as 

an effector cytokine of Treg, but also appears to regulate Treg homeostasis (it was described to 

expand Treg defined as CD4+CD25+

3) Competition for IL-2, and possibly other growth factors, inducing cytokine deprivation-

mediated apoptosis in responder T effector cells (Figure 2A). In addition, Treg seem to compete 

by biochemical factors, for example, cystine, interfering with its DC secretion to T effector cells, 

indirectly depleting these cells of a factor strongly related with a proliferative and functional 

response [61] (Figure 2B).  

, and to induce a novel T cell population with IL-35-dependent 

regulatory function [33]).  

It is conceivable that the main suppressive pathway involved in Treg action depends on 

the particular disease or compartment involved, or that these multiple suppressive mechanisms 

operate simultaneously and synergistically, not being sufficient the disruption of one of them to 
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impair Treg mediated immune suppression [29]. Nonetheless, CTLA-4-dependent and possibly 

an IL-2-dependent mechanism seem to be the central suppressive mechanisms [29]. 

 
 

Figure 2. Scheme of suppressive mechanisms of naturally occurring Treg. A) Direct suppression and induction of 
apoptosis. B) Modulation of Teffector responses via APCs (extracted from [61]).  
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1.2.5. What is the Role of Treg in Infection? 

 

The study of Treg in human diseases has increased over the past three decades. There 

are countless papers on the possibility of these cells to become a therapeutic option in almost 

any situation where the suppression of an exaggerated/exacerbated immune response may be 

relevant; transplantation, autoimmunity, allergies, cancer, and infectious diseases [59 and 

references therein]. 

Leaning mainly on infectious diseases; for the control of immune responses to infection 

[10-12], several mechanisms are triggered, and accumulating evidence suggests an important 

role of Treg in controlling these responses. The nature of the Treg response in an infection can 

influence the disease’s pathogenesis and outcome [10-12]. There are instances where Treg 

expand in response to an infection by a pathogenic agent leading to an inadequately protective 

immunity, and contributing for the dissemination and/or persistence of the agent. In mice, for 

example, infection by Herpes simplex virus (HSV) has been shown to lead to Treg expansion, 

which delays the recruitment of protective CD8+ T cells to the infected mucosal, facilitating the 

infection of central nervous system [66,68]. Studies also suggest an important role for Treg in 

establishing chronic infection by HCV [69-72], and by multiple other pathogens (virus, bacteria, 

parasite, and fungus) [10,69,72]. Contrariwise, if the pathogen agent inhibits Treg function, that 

could allow a vigorous CD8+ T cell response which contributes for the establishment of an 

effective clearance of the pathogen (perhaps explaining why chronicity is uncommon in hepatitis 

A infection [73]). Sometimes, however, while the presence of Treg facilitates the pathogen 

persistence, that can be useful once the concomitant immunity developed protects the host from 

reinfection [74]. Moreover, the Treg expansion can be beneficial, limiting immune-mediated 

inflammatory conditions, and therefore restraining immune-mediated tissue damages. [75]. 

Indeed, some pathogens lack cytopathogenicity, and tissue damage is mostly due to T-cell-

mediated response to the infection. Controlling the extent of such tissue damage appears to be a 

major function of Treg. In an infection’s environment as pulmonary infection by Respiratory 

Syncytial virus, Treg also showed to influence the timely trafficking of other immune cells to the 

infection site and hence control both the growth and spread of infection and the 

immunopathology during the acute pulmonary virus infection [76]. Moreover, some infectious 

agents modulate Treg trafficking to the infection’s environment through the stimulation of 
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receptors in their surface that are important homing molecules (CD103 expression on Treg and 

skin infection by Leishmania major [77]).  

Concerning chronic and persistent infections, it appears that Treg could play even a more 

consequential role influencing outcome (comparing with acute infections). One human virus, HIV, 

has received the most attention, as it is a major cause of illness and death, and lacks effective 

prophylactic or curative therapy. 

 

1.2.6. What is the Role of Treg in HIV Infection? 

 

Treg, as important immunomodulatory cells, have been investigated as potentially 

relevant in the outcome of HIV infection. Although a great number of papers have been written 

about Treg and HIV infection, results continue to be conflicting. Deciphering the exact role of Treg 

in HIV pathogenesis is of crucial importance to fully understand HIV induced immune 

suppression as well as immune reconstitution. In addition, understanding how Treg influence the 

immune system among HIV-infected patients may contribute to the determination of potential 

new strategies to modulate the disease. 

Concerning HIV infection, different aspects have been investigated, namely: 1) whether 

or not Treg are directly infected and altered by the virus; 2) to what extent they are 

depleted/expanded; 3) if their function is preserved; and 4) what is their role during the HIV 

transmission, the course of disease progression from HIV infection to AIDS, and in the immune 

reconstitution under HAART. 

In relation to the direct infection of Treg by HIV, it has been reported that Treg cells are 

susceptible to HIV infection (these cells express, in addition to CD4, CC chemokine receptor type 

5 - CCR5 and the CXC chemokine receptor type 4 - CXCR4) [78-80]. However, it remains to be 

clarified to what extent Treg are infected, which Treg subsets are preferentially infected and the 

effects of the infection by HIV in Treg [78-83]. Some authors suggest that Treg are highly 

susceptible to HIV infection and are killed by viral replication [78]. Other studies, however, argue 

against the increased cell death of HIV-infected Treg [84,85]. In another study, the transcription 

factor FOXP3, critical for Treg development and function, was shown to modulate the HIV 

promoter’s transcription activity [82]. Thus, permissiveness to HIV replication in Treg may be 

reduced, partly as a result of FOXP3-mediated inhibition of HIV transcription. Others, however, 

suggest that FOXP3 may also facilitate HIV transcription by inhibiting histone deacetylases 
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(HDACs) rendering the proviral form more accessible for efficient transcription [83]. Interestingly, 

although using non-infectious virus with an intact envelope, a study showed that exposure of Treg 

to HIV selectively promotes their survival and expansion via a CD4-gp120–dependent pathway 

(the CD4-gp120 interaction resulted in the inhibition of Treg apoptosis) [81].  

In respect to the level of Treg depletion/expantion in HIV-infected patients, it has been 

reported to vary with several factors namely disease’s phase. Also, some disagreement exists on 

the reported evaluation of Treg role on the evolution from HIV infection to AIDS as well during 

immune reconstitution during HAART. Part of these contradictory data may result from the 

heterogeneity of the cohorts analyzed, from the different gating strategy and/or different set of 

Treg markers used to define Treg, and/or from the use of FOXP3 mRNA measured by reverse 

transcription polymerase chain reaction (RT-PCR) in T cells to define Treg instead of its 

expression by flow cytometry.  

During primary HIV infection, a decrease in Treg percentage was observed in the blood 

[86] reflecting, according to the authors, a susceptibility of these cells to HIV infection [78,79] or 

their recruitment to inflamed sites (lymphoid tissue) [81,84]. Nevertheless, the opposite (an 

increase in Treg frequency during the acute phase of the HIV-infection) was also reported by 

others [87], although in this last study, a lower number of patients were analyzed and a more 

incomplete set of Treg markers was used.   

After the acute phase, during the chronic phase without treatment, although both 

absolute numbers of peripheral Treg and proportions of Treg among total CD3+ T cells are mainly 

found to be decreased in patients comparing to healthy donors, most studies show that the 

proportion of peripheral Treg among CD4+ T cells expand - the numbers of Treg decrease 

progressively over time but at a lower rate than the whole CD4+ T cell population [86-90 reviewed 

in 91,92, and others studies whose references are therein]. Thus, most studies argue for a 

general increase in Treg frequency although this is not reported by all published studies [93,94]. 

The increased Treg representation could be the consequence of reduced HIV-mediated 

destruction comparatively to other CD4+ T cells [81], enhanced generation by thymus [95], 

conversion of uncommitted cells to become Treg (in HIV-infected individuals, DCs seem to be 

more prone to induce Treg [96,97], and some local cells are induced to produce TGF-β 

[81,93,98]), higher survival (relative resistance of Treg to activation-induced cell death), or 

increased proliferation (increased expression of Ki67, a marker of the cell cycle, was found in 

circulating Treg from untreated, chronically infected patients) [89,92,99]. Finally, several studies 
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suggest the presence of Treg responding to HIV proteins, and therefore expanding as a direct 

consequence of HIV infection [81,90,100].  

Successfully HAART treatment seems to result in a decrease of Treg frequencies (even if 

a transient increase in the first months after HAART occurs [89,101]) according to most 

[51,84,88,89,101-106], but not all [87,90,107] studies. Unsuccessfully treated or untreated 

patients, in contrast, often retain high Treg frequencies [106]. 

If the rise in Treg frequency frequently observed in HIV-infected patients represents a 

concomitant increase of a suppressor subset remains to be clarified. Several reports suggest that 

Treg function is preserved in HIV infection and may even, in same stages of the disease, be 

increased [80,81,87,90-92]. It has been reported that Treg with upregulation of CD39+ 

expression (Treg with more potent suppressive effect [62,63]) are expanded in HIV infection 

[88,89,108]. Furthermore, some authors demonstrated an increased sensitivity of effector cells 

to Treg-mediated suppression, in infection by HIV [108,109]. It has also been suggested that HIV 

tat could increase CTLA-4 expression and in addition the suppressive potency of Treg [110]. 

However, recently, the reports by Pion et al. [111] and by Angin et al. [112], have described in 

vitro that HIV-infected Treg show impaired suppressive capacity and a decreased expression of 

genes critical to Treg function. In some instances, the suppressive capacity of Treg may also be 

impaired as it seems to happen in the immune reconstitution inflammatory syndrome (IRIS). IRIS 

is a complication that occurs in a small percentage of patients that initiate antiretroviral therapy 

at a stage of advanced disease. It is characterized by an exaggerated and/or inappropriate 

immune system reaction to a subclinical undiagnosed (unmasking IRIS) or to an already 

diagnosed and under correct treatment (paradoxal IRIS) infection. Although, 

immunopathogenesis of IRIS remains unclear, a dysfunction of Treg (even with a Treg expansion) 

has been proposed by some authors as a potential mechanism responsible for a deregulated 

CD4+

Several roles have been assigned to Treg during HIV infection - a great amount of 

controversy exists and both detrimental and beneficial roles of Treg are suggested.  Detrimental 

 T and/or NK cell response and consequently, on that exacerbated pro-inflammatory 

immune response [102]. Others argue that the Treg dysfunction during IRIS is due to a rapid 

rebound of conventional T cells after HAART initiation, not followed by a comparable rise of Treg, 

leading to a rapid decrease in the frequency of Treg and to an exacerbated immune response to 

pathogens and hence to IRIS [51]. 
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effects of Treg could result from an excessive activity of Treg weakening HIV-specific CD4+ and 

CD8+ T cell responses [86,90,93,113]; a beneficial effect could be associated with the ability of 

Treg to minimize the extension of T cell activation controlling the availability of HIV targets and 

preventing immune-based pathologies [114-116]. It remains to be determined what of these 

contradictory main effects plays a greater role in the disease. Other effects have been suggested; 

a detrimental facet of Treg could be their eventual involvement in the exacerbated collagen 

deposition within T cell zones, shown in simian immunodeficiency virus (SIV) infected simian, 

that could destroy the lymphatic tissue architecture and hamper CD4+ T cells to reach essential 

sites or CD4+

- During the inter-individual transmission of the virus, a high Treg frequency could be 

protective by reducing T cell activation, and consequently decreasing the pool of susceptible CD4

 T cells reconstitution in infected patients (the pathway involved could be the 

increased level of TGF-β produced by Treg) [85]. Also, the ability of Treg to hamper the 

lymphopenia-induced proliferation could be one of the mechanisms involved in the poor immune 

reconstitution reported by some authors [54,117]. It appears that the different roles of Treg 

described above, could be occurring at different times and with different intensity during the 

distinct phases of the disease: 1) transmission of the virus, 2) disease progression, and 3) 

response to HAART: 

+ 

T cells (as have been observed in HIV-exposed seronegative women and in HIV-exposed 

uninfected infants or neonates) [114,118]. Additionally, in untreated acute SIV infection, the use 

of a CTLA-4 blockade procedure (to block Treg function) increased viral replication and CD4+

- During the HIV infection progression without treatment (the chronic infection phase) 

some observations are consistent with Treg playing a detrimental role, or that high levels of Treg 

are, at least, not an advantage for a good evolution of the disease: 1) though not consistently 

found, most studies showed an inverse relationship between Treg frequency and CD4

 T 

cell loss, particularly at mucosal sites (by providing more target cells for the virus by decreasing 

the threshold for T-cell activation) [115]). 

+ T cell 

counts (Treg frequency and plasma viral load were either not or positively correlated) 

[87,89,107,108,117]; 2) long-term non-progressors (HIV-infected individuals who maintain high 

CD4+ T cell counts even in the presence of HIV replication in the absence of therapy) and elite 

controllers (HIV-infected individuals who maintain undetectable viral loads in the absence of 

any treatment) seem to have lower levels of Treg frequency in peripheral blood and/or rectal 

mucosa than other infected individuals (these cell numbers may be similar to [87,88] or even 
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lower than those found in healthy individuals [119,120]), and in addition, these patients seem to 

have a polymorphism which does not allow their Treg to efficiently suppress HIV-specific 

proliferative responses of CD8+

The idea that Treg may play a positive role in the context of HIV infection, by limiting 

exaggerated immune activation, which is a prelude to the onset of AIDS, have also been reported. 

But if that were to be the case, it would be expected that a high Treg frequency would be related 

to a lower immune activation. Several studies investigated the potential ability of Treg to control 

exaggerated immune activation/inflammation in the context of HIV infection without treatment. 

Even though Treg may protect the host against immune-mediated damage (one study showed 

that Treg attenuate HIV-associated neurodegeneration [123]), most studies performed in 

untreated chronically infected patients, or in those interrupting HAART, showed a positive 

relationship between Treg frequencies and T-cell activation regardless of the activation markers 

analyzed (i.e. CD38 and/or HLA-DR or CD69 expressed on CD8 and/or CD4

 T cell [121]; 3) furthermore, some studies showed that extensive 

Treg accumulation within the lymph nodes was associated with a chronic progressive HIV and 

SIV infection [81,93,122]. 

+

- Under an effective HAART, a high percentage of Treg does not seem to be an 

advantage: 1) their percentages decrease with effective HAART; 2) a high percentage of Treg 

seems to limit immune reconstitution in patients under HAART [117,126-128]; 3) and also, in 

chronically SIV-infected HAART-treated macaques, the administration of anti-CTLA-4 blocking 

antibody (to block Treg function) was found to have beneficial virological effects [129]; 4) 

moreover, in two large global randomized controlled clinical trials (ESPRIT and SILCAAT), 

although supplementary IL-2 treatment resulted in a substantial and long-standing increase in 

 T cells) 

[87,88,107,117,124]. Furthermore, rectal Treg frequency was also found to positively correlate 

with rectal T-cell activation in untreated patients (a higher Treg frequency there, could be 

responsible for a lower Th17 response and lower specific response to several microorganisms 

and hence, a higher microbial translocation) [119,125]. Thus, Treg seem to be inefficient to 

control high immune activation in viremic patients. However, it could be that, for example 

concerning the beneficial effect of Treg decreasing immune activation, the most important would 

be absolute numbers (found to be decreased in these patients) instead of Treg percentages and 

some studies point into that direction as exploring the relation between Treg measured by 

absolute numbers and immune activation and found a negative relation between Treg absolute 

numbers and immune activation [88,106,116]. 
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CD4+ T cell counts compared to antiretroviral therapy alone [130], it has been demonstrated that 

a substantial proportion of the CD4+

While it is well known that HAART leads to CD4

 T cells expanded shared phenotypic, functional and 

molecular characteristics with Treg. Apparently, this seems to be the cause of the unexpected 

clinical outcome observed in those patients - they presented more potentially life-threatening 

events [36].  

+ T cell counts recovery preventing AIDS 

related complications, it does not prevent several complications typically associated with aging 

which tend to prematurely commit long-term treated patients [131,132]. These conditions seem 

to be related in part to immune activation [131,132]. Under successfully treatment, CD4+ and 

CD8+ T-cell activation dramatically decrease with viral suppression, but remains higher compared 

to healthy controls [131]. Treg frequency seems not to be crucial in reducing immune activation, 

as in most studies a successful treatment results in decrease of both immune activation and Treg 

frequency [88,89,101,102,131]. However, in the viral control situation under HAART, Treg 

frequency was found to negatively correlate with residual immune activation [133,134]. 

Interestingly, this negative relationship between Treg frequency and CD8+ T-cell activation was 

lost after treatment interruption (that resulted in viral rebound) [124]. Also, in HIV elite 

controllers, peripheral T-cell activation is lower than in patients with progressive disease, but 

higher than in HAART-treated aviremic patients, an observation that could be related to lower 

Treg frequency in HIV controllers than in successfully HAART-treated patients [103]. We can then 

conclude that in most HIV controllers, low levels of Treg could contribute to the high specific anti-

HIV CD8+

Hence, it appears that Treg may be able to control low levels of T-cell activation, but the 

effect may not be adequate to control high levels of immune activation as is often present, 

especially when levels of viral replication are high [91]. This could happen due to a decrease in 

the absolute number of Treg or because Treg, due to their plasticity in some environments rich in 

pro-inflammatory cytokines and Treg-attracting chemokines, can enter inflammatory locations, 

but after an initial anti-inflammatory effort could change function, be induced to secrete the pro-

inflammatory cytokine IL-17 and contribute to tissue damage and immune activation 

[39,48,91,135]. 

 T-cell responses described, but also for the relatively higher immune activation levels 

compared to HAART-treated patients [91].  
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 To conclude peripheral and mucosal Treg seem to trigger several effects that could be 

either beneficial or detrimental during the HIV infection, each of them playing different roles 

depending on the phase of the disease and possible other characteristics of individuals patients..  

Treg may have an overall beneficial effect during early acute HIV infection; before HIV-

specific immune responses are fully activated, by controlling T cell activation and decreasing the 

availability of target cells for HIV replication and transmission [114,115,118]. In contrast, during 

the late acute and chronic phases, increased Treg frequency may have an overall-negative role, 

as the Treg suppressive effect on HIV antiviral immune responses predominates and those cells 

seem be unable to counter immune activation [87,88,90,113,117,124]. In addition, a hampered 

CD4+

The influence of Treg in HIV infection/AIDS outcome seems to depend on the equilibrium 

between the negative effect of suppressing desired effector T cell responses and the positive 

effect of decreasing unwanted/exacerbated immune activation. If we could identify a particular 

subset of Treg able to suppress immune activation without suppress pathogen-specific immune 

response and unable to reprogrammed themselves, it would be of great interest for immune-

based therapy in chronic infectious diseases namely the HIV infection. The boundary between the 

beneficial effect and adverse effect of Treg seems to be very weak, and any impetuous action 

may cause the disruption of this equilibrium and have disastrous consequences. 

 T cell reconstitution likely due to exacerbated fibrosis of lymphoid tissues could contribute 

to this overall negative role [85]. The inhibition of the lymphopenia-induced proliferation, by these 

cells, could also explain the poor immune reconstitution sometimes observed [54,117,127]. 

However in virological suppressed patients under HAART, a higher Treg frequency could account 

for a reduced immune activation [124]. 

Several strategies have been developed aiming towards the abrogation of Treg that could 

be helpful in some diseases. The use of those strategies could be useful in HIV infection if the 

real role of Treg in the different phases of disease and/or the patient variables that influence this 

outcome would clearly known. To achieve this goal, much research has to be performed.  
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2.1. Construction of a Clinical and Biologic Database 

 

2.1.1. Introduction 

 

The emergence of HAART to treat  HIV-infected patients markedly reduced the morbidity 

and mortality associated with this infection. This is mainly achieved due to immune system 

recovery. However, some of the patients, although being under effective HAART, do not reach a 

normal (700-1100 cells/mm3), a near normal (>500 cells/mm3) or, at least, a satisfactory CD4+ 

T cell counts (a number higher than a threshold of 250-350 cells/mm3

 Trying to better understand the role of various interveners during the immune 

reconstitution, we gathered a set of clinical, imagiological, laboratorial, and biological data from 

HIV-infected patients undergoing HAART. 

, a level that would enable 

patients to be protected from more severe opportunistic infections). For this reason, these 

individuals are more prone to suffer from AIDS-related and AIDS non-related complications and 

death. There is considerable controversy regarding the relative contribution of various 

mechanisms of sub-optimal T cell recovery. 

The patients were selected from the hospital where these patients undergo medical care 

(HJUU/CHP). Blood samples of these patients were collected at HJUU/CHP and processed at 

the ICVS/ECS/UM. At the ICVS, the blood samples were analyzed, plasma was isolated and 

frozen and surplus blood cells were frozen for future analysis. Computer databases for all the 

data (clinical, imagiological and laboratorial data) were generated. 

 

2.1.2. Construction of a Cross-Sectional and a Longitudinal Cohort to Study Immune 

Reconstitution among HIV-Infected Patients under HAART 

  

Patients were enrolled for two independent type of studies: cross-sectional and 

longitudinal studies: 

 

2.1.2.1. The Cross-Sectional Study 

The cross-sectional study allowed to promptly examine a segment of patients infected by 

HIV and on HAART, and evaluated several parameters of their immune reconstitution in a single 

time-point taking into account information on their clinical history.  
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The number of patients included in this cohort was not pre-defined, and until now, 123 

adult patients were included, with the following criteria: 1) infection by HIV-1; 2) receiving or not 

HAART (regardless of the scheme used); 3) when on HAART, presumably being regular in 

therapy compliance. All participants have signed an informed consent (Annex 1) on a volunteer 

basis after explanation and prior to their enrollment in the study. This study was approved by the 

institutional review board of the HJUU/CHP under the protocol number 168/CES [addenda 

number 127/12 (NA-DEFI/089-CES)] (Annex 2 and 3). 

Participants in this study were randomly chosen among patients that were attending the 

hospital for routine analysis, on a day also randomly chosen, and subjected in that day to the 

only visit of the study. The patients’ physician informed and explained to patients about the study 

and if patients agreed in participating, a written informed consent was sign. Apart from the blood 

collected for the pre-programmed follow-up evaluation of these patients (performed at the 

hospital’s reference laboratory), additional blood samples were collected into heparinized tubes 

and transported to the ICVS to be processed on the same day as described in section 2.1.3.  

Clinical and demographic data was collected by patients’ physician from the clinical file 

(using a specific form – Annex 4) such as: patient’s epidemiological characteristics (gender and 

age); transmission mode of HIV; probable date of infection; date of HIV infection diagnosis; 

clinical history including infections/tumors HIV/AIDS-related and other relevant clinical 

conditions; hepatitis C virus (HCV) or B virus (HBV) co-infections. For patients under HAART: 

HAART onset date, nadir and/or baseline value of CD4+ T cell counts, clinical and laboratorial 

progression since HAART was initiated, and HAART schemes history and respective compliance. 

Viral load and CD4+

A computer database was constructed and data analysis performed. 

 T cell counts were determined by referenced laboratory of the hospital on the 

same day of the visit. 

This database 

allowed the study described in Subchapter 2.2 and other studies that resulted in Master's thesis 

and 

Epidemiological, virological and immunological characteristics of the cohort (n=123) are 

described in Table 1. 

which are currently supporting other studies. 
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Paramater Results 
Age, in years 

Mean ± SD (range) 
Median, (IQR) 

N=123 

45,19 ± 9,10 (24-76) 
44,00 (51–38) 

Sex – male, female n (%) 103 (83,7), 20 (16,3) 
Patients under HAART 

Yes (%)/No (%) 
N=123 

104 (84,55)/19 (15,45) 

Time between HAART onset and 
study visit, in years 
Mean ± SD (range) 

Median, (IQR) 
N=102 

6,38 ± 4,57 (0–17) 
5,50 (11–2) 

CDC CD4 cell category [2] 
n (%) 

N=119 

(1) ≥500/mm3 

(2) 200-499/mm
– 56 (47,06) 

3

(3) <200/mm
 – 54 (45,38) 

3 – 9 (7,56) 
CD4+ T cell count (cell/mm3

Mean ± SD (range) 
) 

Median, (IQR) 
N=119 

537,70 ± 282,24 (41–1372) 
486,00 (747-345) 

CD4+ T cell count (cell/mm3

(CD4
) increase 

+

Study visit - HAART onset) 
 T cell count: 

Mean ± SD (range) 
Median, (IQR) 

N=101 

309,88 ± 224,28 (-161 - +909) 
283,00 (432,00-132,50) 

Viral load (VL) copies/ml 
On treatment  

Mean ± SD (range) 
Median, (IQR) 

N=99/104 

<50 (virological supressed): 81 (81,82%) 
≥50: 18 (18,18%): 

33510,28 ± 101351,98 (51-413000) 
296,50 (2057,50–93,50)  

Viral load (VL) copies/ml 
Without treatment 
Mean ± SD (range) 

Median, (IQR) 
N=17/19 

96335,29 ± 178610,44 (1670-639000) 
25800,00 (100400,00–4785,00) 

 

Tabela 1. Epidemiological, clinical, virological and immunological characteristics of the cohort. 

 

2.1.2.2. The Longitudinal Study 

The longitudinal study aims to better understand the temporal order of events to 

determine the direction and the magnitude of potential cause-and-effect relationships between 

factors/interveners and outcomes (several grades of immune reconstitution process after HAART 

onset). Patients were enrolled according to pre-defined parameters and followed-up in defined 

time-points according to a protocol described below. In each time-point, coincident with routine 

appointments, patients were questioned about symptoms, underwent a medical examination and 

blood was collected and analyzed at the hospital (routine analysis) and at the ICVS. The data was 

collected and organized in the database. The first study (described in subchapter 2.3) describes 
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the evolution of Treg along therapy, an obvious follow up of our first report using the cross-

sectional study. This longitudinal cohort is presently being used for other studies. 

In the longitudinal study, a number of 100 patients were pre-defined to be included (a 

number of patients that it will be feasible to clinical care and whose blood will be economically 

feasible to be analyzed), and so, 100 adult patients were enrolled with the following criteria: 1) 

infected by HIV-1; 2) naïve on HAART; 3) having criteria to initiate HAART. All participants have 

signed an informed consent (Annex 5) on a volunteer basis after explanation of the entire 

protocol. A local Ethical Committee approval was received for the study (reference 168/CES on 

2th October 2009) (Annex 6).  

The patients were included between 29-04-2010 and 11-10-2012 (35 in 2010, 50 in 

2011 and 15 patients in 2012) when our aimed number of patients - 100 - was achieved. The 

start of HAART defined the study visit “0” or baseline visit. The decision to initiate HAART was 

individualized and upheld by the existence of at least one of the following elements: symptomatic 

clinical manifestations (presence of previously designed as category B and of any of the AIDS-

defining conditions by the Centers for Disease Control and Prevention – CDC [2,3]); number of 

CD4+ T lymphocytes or CD4+ T lymphocytes percentage of total of lymphocytes, <350 cells/mm3 

 

or <14%, respectively; plasma viral load value >100000 copies/ml in at least two determinations; 

presence of co-morbidities (cardiovascular disease or high risk for cardiovascular disease, HIV 

associated nephropathy – HIVAN, chronic hepatitis B virus or hepatitis C virus infection) or age 

>60 years. The patient's level of willingness and readiness was assessed, indorsed, and 

confirmed before HAART initiation [4-7]. 

Antiretroviral Therapy 

The HAART scheme chosen for each patient took into consideration scientific policy and 

National and International Guidelines and the price [4-7]. The first option was a combination of 

two Nucleoside Reverse Transcriptase Inhibitors (NRTIs) and one Non-Nucleoside Reverse 

Transcriptase Inhibitor (NNRTI), of which efavirenz (EFV) was the first option. The choice of NRTIs 

depended on the viral load; if the viral load value was below 100000 copies/ml, with no 

cardiovascular risk, and the allele of major histocompatibility complex was not HLA-B*5701, the 

option was abacavir (ABC) and lamivudine (3TC) coformulation (Kivexa®), if the viral load was 

above 100000 copies/ml, the option was then tenofovir (TDF) and emtricitabine (FTC) 

coformulation (Truvada®). When NNRTIs - EFV - could not be used (existence of hipersensibility, 
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mutations for resistance, or co-morbidities like psychiatric diseases that preclude his use), a 

Protease Inhibitor (IP) boosted with ritonavir was chosen being darunavir once daily, the first 

option. One patient, a woman, initiated zidovudine (AZT) + 3TC + nevirapine (NVP); she was 

suffering from cryptococcal meningitis and CMV encephalitis so the avoidance of EFV was due to 

its potential neuropsychiatric effects that could worsen the patient’s clinical state and, also, the 

use of potentially better central nervous system (CNS)-penetrating drugs like AZT or NVP (her viral 

load in cerebrospinal fluid - CSF - was about 157000 copies/ml) was tried. Two other patients 

initiated, as the third drug, lopinavir boosted with ritonavir (LPV/r); they were the first two 

patients using IPs in this cohort, they had CNS infections (tuberculosis meningitis and CMV 

encephalitis) and a high CSF HIV viral load, and LPV/r at the time was thought to be one of the 

more CNS-penetrating drugs. 

 

Protocol of study visits 

The patients were evaluated prior to initiation of HAART, the day they started HAART 

(baseline visit) and regularly thereafter following a protocol (Annex 7). The duration of this study 

was initially planned to be of three years. However, to have more time of follow-up would be 

suitable to the purposes of our aim; to better characterize the direction and the magnitude of 

cause-and-effect relationships between variables, it was decided to keep the patients in 

semiannual study visits after completion of three years until, at least, five years. At present, the 

study is yet ongoing. 

Prior to enrolment, the study and the entire protocol were explained to patients that 

signed the informed consent. In some cases, this visit was the first at the hospital and the first 

medical visit after the patient was informed that he/she was infected with HIV. Therefore, before 

the study explanation, a long conversation was taken, explaining to the patient the natural course 

of the infection, what are the medical tools to counteract the disease’s evolution, all the scientific 

advances made since the beginning of the epidemic, the therapy schemes and their potential 

adverse effects, and the need to be adherent to the therapies due to the ability of HIV to acquire 

mutations conferring resistance to HAART. Additionally, recommendations as how to lead a 

healthy life and about precautions to take to avoid the infection of others were provided. Also in 

this visit, a complete and exhaustive clinical assessment (questions about medical history, history 

of present illness if it was the case, and physical examination) was performed. 
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During the baseline visit, HAART was given according to a resistance test and to other 

conditions already described. Again an explanation regarding the medication was also given. In 

this visit, the first blood collection to be analyzed at ICVS was performed.  

In the follow-up visits, an evaluation consisting of clinical, analytical and imaging studies 

was performed. The analytical study included study routine, assessment of CD4+

The study visits were always made by the physician responsible for the patient/study – 

Ana Horta. Additional visits, blood collects, or hospitalizations were performed when the clinical 

condition of the patient demanded it. These decisions were made also by Ana Horta and when 

she was not available, made by the emergency physician. When hospitalized, patients were 

assigned to a physician in the rotation scheme instituted by the Infectious Diseases Department. 

 T lymphocytes 

and viral load and other analyses to evaluate potential infections (latent or active). All blood 

collections were performed at the hospital laboratory on the same day of the medical visits. On 

each visit, additional blood was also collected and transported to the ICVS, where it was 

processed the same day. 

Epidemiological, clinical, virological and immunological characteristics of this cohort at 

baseline are described in Table 2. Primary resistance to HAART (to NRTIs, to NNRTIs, and/or 

IPs) was present in 25 patients (some of them revealing mutations conferring resistance to more 

than one class of antiretroviral drugs) and the resistance mutations involved are reported in Table 

3. In Table 4, indicator conditions defining AIDS [3]) present at baseline are shown (in six cases, 

more than one condition were simultaneously present). 

When an AIDS-indicator condition was diagnosed previous to HAART initiation, the 

median period of time between the diagnosis/treatment onset for that condition, and the 

beginning of HAART (baseline) was 69,35 ± 75,19 day, 12 – 360 (Mean ± SD, range) or 44,50, 

90,00 - 19,50 (Median, IQR).  

Symptomatic conditions that are not included in AIDS-indicator condition definition, but 

are attributed to a cell-mediated immunity defect or for which the clinical course or management 

is complicated by HIV infection (prior classified in the classification from 1993 by CDC, as 

category B symptomatic-indicator conditions) [2] presented at baseline or referred as recently 

presented by patients are shown in Table 5. In sixteen patients, more than one condition was 

present. Others medical conditions present at baseline and not directly related to HIV infection 

are reported in Table 6. Data related to infection by hepatitis virus, at baseline, are shown in 
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Table 7. Baseline HAART combinations prescribed for the 100 patients at baseline are shown in 

Table 8.  

Paramater Results 
Age, in years, N=100 

Mean, SD, (range) 
Median (IQR) 

40,44 ± 10,42 (22–67) 
41,00 (46,75-32,00) 

Sex - male, female - n (%), N=100 79 (79), 21 (21) 

Transmission mode of HIV 
n=% 

N=100 

IVDUs – 20 
Heterosexuals – 43 

IVDUs and Heterosexuals – 5 
MSM – 29 

Unknown – 3 

HIV subtype and 
circulating recombinant forms (CRFs) 

n=% 
N=100 

B – 47, G – 25, C – 10 
Others – 9 

(A-3, A/D-2, CRF02_AG-1, 
CRF14_BG-1, F-2) 

Unknown – 9 
Time between diagnosis of HIV infection and 

baseline, in months, N=100 
Mean, SD, (range) 

Median (IQR) 

25,64 ± 34,97 (0-178) 
8,00 (37,75-2,25) 

Time between primo infection by HIV (known or 
likely) and baseline in months, N=17 

Mean, SD, (range) 
Median (IQR)  

28,59 ± 24,93 (3-76) 
26,00 (50,00-5,00) 

CDC clinical category [2] 
n=%, N=100  

A – 30, B – 44, C – 26 

CDC CD4 cell category [2] 
n=% 

N=100 

(1) ≥500/mm3 

(2) 200-499/mm
– 7 
3

(3) <200/mm
 – 49 

3 – 44 
CDC stage C or (3) (AIDS) [2,3] 

n=%, N=100 
48 

CD4+ T cell count (cell/mm3

Mean, SD, (range) 
), N=100 

Median (IQR)  

244,57 ± 192,37 (4-1033) 
247,50 (320,50-92,00) 

CD8+ T cell count (cell/mm3

Mean, SD, (range) 
), N=99 

Median (IQR)  

1025,19 ±  570,48 (150-2776) 
897,00 (1353,00-605,00) 

Viral load - copies/ml, log 10 copies/ml 
Mean, SD (range) 

Median (IQR)  
N=100 

859025,90 ± 1844752,70 (6790-10M), 
5,42 ±  0,64 (3,83–7,00) 

228500,00 (89400-583000), 
5,36 (4,95–5,77)  

Presence of mutations associated with resistance 
to drugs, by genotypic assays, N=96 

Yes - 25 (26,0%) 
No – 71 (74,0%) 

HAART resistance mutations detected 
by genotypic assays 

(detected in 25 patients) 

NRTI – 3 (12,0%) 
NNRTI – 10 (40,0%) 

IP – 15 (60,0%) 
[NNRTI + IP – 3 (12,0%)] 

HLA-B*5701 
N = 76 

Positive - 3 (4%) 
Negative – 73 (96%) 

 
Table 2. Epidemiological, clinical, virological and immunological characteristics of the cohort at baseline. 

SD – standard deviation, IQR – interquartile range, IVDUs – intravenous drug users, MSM – men having sex with 
others men, CDC – Centers for Disease Control and Prevention, HAART – antiretroviral therapy, NRTIs - Nucleoside 
Reverse Transcriptase Inhibitors, NNRTIs - Non-Nucleoside Reverse Transcriptase Inhibitors, IPs - Protease Inhibitors, 
HLA-B*5701 – allele of major histocompatibility complex, class I, B. 
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NRTIs resistance mutations 
(3 patients) 

T69N 2 
T215S 1 

Total 3 

NNRTIs resistance mutations 
(10 patients) 

K101E 1 
K103N 2 
E138A 1 
V179D 3 
Y188L 1 
G190A 1 
G190E 1 

Total 10 

IPs resistance 
mutations 

(15 patients) 

L10I 2 
K20I 7 
M46L 1 
T74S 4 
L90M 6 

Total 20 
Table 3. Resistance mutations to HAART presented at baseline (in 25 patients of 96 tested). 

NRTIs - Nucleoside Reverse Transcriptase Inhibitors, NNRTIs - Non-Nucleoside Reverse Transcriptase Inhibitors, IPs - 
Protease Inhibitors. 

 

AIDS-indicator conditions N (26 patients) 

Mycobacterium 
tuberculosis disease 

Pulmonary 
11 

7 

Extrapulmonary 4 

Pneumocystis jiroveci pneumonia 10 

Candidiasis esophageal 4 

Kaposi’s sarcoma 4 

Cytomegalovirus (CMV) encephalitis, 
esophagitis and/or colitis 

3 

Mycobacterium avium complex 
disease 

1 

Cryptococcal meningitis 1 

Cerebral Toxoplasmosis  1 

Table 4. Indicator conditions in case definition of AIDS at baseline (in 26 of 100 patients) 
(in six cases, more than one condition were simultaneously present). 

 

ategory B symptomatic conditions N (44 patients) 

Oropharyngeal candidiasis (thrush) 38 

Herpes zoster (shingles), involving two or more episodes or 
at least one dermatome 

9 

Diarrhea lasting >1 month 4 

Cervical dysplasia (moderate or severe)/cervical carcinoma in situ 1 

Vulvovaginal candidiasis, 
persistent or resistant 

1 

Angular cheilitis 1 

Table 5. Category B symptomatic conditions (by CDC) [2] present or referred as recently presented by 44 of 100 
patients at baseline (sixteen patients presented more than one condition). 
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Medical conditions 
not related to HIV infection 

N 
(53 patients) 

Syphilis 

VDRL 
positive – 17 

FTA-ABS positive - 28 
(Latent – 15, 

Secondary – 2, 
Early disease - 2 

Cured - 9) 
Genital Herpes 6 

Condyloma acuminata 5 
Molluscum contagiosum 2 

Neisseria gonorrhoeae urethritis 1 
Community-acquired Pneumonia 6 

DPOC 3 
Urinary tract infection 3 

Psoriasis 3 
Neoplasms 3 

Diabetes Mellitus 3 
Gallstones 2 

Nephrolithiasis 1 
Porphyria Cutanea Tarda 1 

Acute myocardial infarction 1 
Situs inversus 1 

Influenza A/H1N1 1 
Gastroenteritis 1 

 
Table 6. Others medical conditions present at baseline and 
not directly related to HIV infection (in 53 of 100 patients). 

VDRL – Venereal Disease Research Laboratory test, 
FTA-ABS – Fluorescent Treponemal Antibody Absorption 

 

  

 

Paramater Results 

Anti-HCV positive 
N = 100 

30 
(24 – HCV  RNA +; 

6 patients – spontaneous clearance) 

HCV genotypes 
(performed in the 24 patients 

with HCV RNA+) 

G1 – 15 (68,2%): 1a - 12, 1b – 2, 1 - 1  
G3 – 5 (22,7%) 
G4 – 2 (9,1%) 

G? - 2 
HCV RNA (IU/ml) 

Median, SD, (range) 
(performed in the 24 patients 

with HCV RNA+) 

5170180,83 ± 4861594,17 
(609 - 15400000) 

HBsAg positive (N = 100) 
HBV DNA (IU/ml) 

1 
 (Baseline HBV DNA = 171000000) 

 
Table 7. Data related to infection by hepatitis virus, at baseline. 

Anti-HCV – Hepatitis C virus antibody, HBsAg – Hepatitis B surface antigen. 
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NRTIs pairs N (100 patients) Total 
FTC + TDF 78 

100 3TC + ABC 21 
AZT + 3TC 1 

3th N (100 patients)  Drug Total 

NNRTI 
EFV 85 

86 
100 

NVP 1 

IP 
DRV/r 12 

14 
LPV/r 2 

Table 8. Initial regimen of HAART prescribed to the 100 patients, at baseline. 
NRTIs - Nucleoside Reverse Transcriptase Inhibitors, NNRTIs - Non-Nucleoside Reverse Transcriptase Inhibitors, IPs - 
Protease Inhibitors, FTC – Emtricitabine, TDF – Tenofovir, 3TC – Lamivudine, ABC – Abacavir, EFV – Efavirenz, NVP 

– Nevirapine, DRV – Darunavir, r – Ritonavir as boosted, LPV/r – Lopinavir boosted with ritonavir 
 

 To evaluate potential latent or active tuberculosis, a tuberculin skin test (TST or Mantoux) 

and interferon-gamma release assays (IGRAs) - Quantiferon® were performed in the vast majority 

of the patients. The Mantoux test was performed using the intradermal injection of five tuberculin 

units (5TU) of purified protein derivative (PPD). The results obtained are shown in Table 9. 

 

Diagnostic test Results 

Tuberculin skin test (TST) 
N=97 

Negative – 86 
Positive (> 5mm) – 11 

(Tuberculosis disease - 2 
Latent Tuberculosis assumed - 9) 

IFN-Gamma release assay (IGRA) 
Quantiferon® 

N = 98 

Negative – 84 
Positive – 8 

(Tuberculosis disease – 1 
Latent Tuberculosis assumed - 7) 

Table 9. Tuberculin skin test and Interferon-gamma release assay results at baseline. 

 

Thymus computed tomography 

Since the thymus has been shown to play an important role on the immune 

reconstitution of HIV-infected patients, a mediastinic non-contrast computed tomography (CT) 

was performed to evaluate thymic structure and dimension in 46 patients on the baseline visit (or 

just before) and upon 1 year on HAART, at Computerized Medical Service Image, SA (SMIC), 

Porto. The determination of the thymic volume and index were performed independently, and in a 

blinded manner by two appraisers. The results at baseline and at 1 year of follow-up were 

thereafter compared, between each other and to flow cytometry results. Those results were 

presented in an integrated Master thesis in Medicine (unpublished data) and are presently been 

processed for a future publication. 
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A database of healthy controls (age and gender matched) was constructed from 

individuals recruited from both institutions. The establishment of this database will not be 

described in the context of this work. The data base of controls included 252 adults without HIV 

infection. 

 

2.1.3. Samples Processing and Data Analysis – Work Performed at Laboratory 

 

The processing of samples from patients and healthy controls, regardless the type of 

study or the time-point of the longitudinal study was essentially the same. Whenever there was a 

difference, this was highlighted. Importantly, all the blood was sent to the ICVS and processed on 

the same day it was collected. 

The blood samples were processed as depicted in Figure 1. A blood sample collection 

into a tube without anticoagulant (performed only for longitudinal study) was centrifuged (2500 

rpm, 10 min), the serum was collected and stored in aliquots at -80ºC for subsequent analysis of 

different molecules such as cytokines and/or chemoquines. 

 

 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

 
 
 
 

 
Figure 1. Several tasks performed at ICVS with blood transported from UHU/CHP. Boxes in yellow: blood processed 

for multiparametric flow cytometry analysis after staining with a combination of monoclonal antigens – analysed 
presently. Boxes in blue: to be processed and analyzed in the future FACS – Fluorescence-activated cell sorting, 

PBMCs - Peripheral Blood Mononuclear Cells 
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A proportion of blood was processed for multiparametric flow cytometry analysis to allow 

the phenotypic characterization of distinct cell populations. Four different sets of monoclonal 

antibodies combinations were used (Table 10); three of them performed on total blood and 

uniquely for the identification of surface markers (M1, M2, and M3) and the fourth performed on 

peripheral blood mononuclear cells (PBMCs) to evaluate surface and intracellular markers (M4). 

A brief description of the protocol performed is described afterwards. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 10. Combination of monoclonal antibodies performed. Each antibody was titrated using serial dilutions until 

optimal concentrations was determined. All antibodies were from Biolegend except for the anti-FOXP3 
(eBiosciences), anti-CD3 V500 (BS Horizon) and anti-Ki67 (BD Biosciences). 

 

Staining Antibody Clone Flurofore Aim 

M1 

CD3 OKT3 PE 

Granulocytes 
B and T cells 

CD15 W6D3 PerCP 

CD19 HIB19 FITC 

TCRαβ IP26 Alexa Fluor 647 

M2 

CD3 OKT3 Pacific Blue 

CD4+ and CD8+

activation 

 T 
cells 

CD4 RPA-T4 APC-Cy7 

CD8 RPA-T8 APC 

CD45RA HI100 FITC 

CD45RO UCHL1 PerCP-Cy5,5 

CD69 FN50 PE 

HLA-DR L243 PE-Cy7 

M3 

CD3 OKT3 PE  
CD4+ and CD8+

T cells subsets: 
       

Recent thymus emigrant 
(RTE) 
Naive 

Memory 
Central memory 
Effector memory 

 

CD4 RPA-T4 APC-Cy7 

CD8 RPA-T8 BV 

CD31 WM59 PE-Cy7 

CD45RA HI100 FITC 

CD45RO UCHL1 PerCP-Cy5,5 

CCR7 TG8/CCR7 Alexa Fluor 647 

 
 
 

M4 

CD3 UCHT1 V500 
 
 

Treg and its 
subsets: 
Naives 

Memory 
RTE 

Proliferation 

CD4 RPA-T4 APC-Cy7 

CD25 BC96 APC 

CD31 WM59 PE-Cy7 

CD45RA HI100 Pacific Blue 

CD127 AO19D5 PerCP-Cy5,5 

 
FOXP3 PCH101 PE 

 

 
Ki67 MOPC-21 FITC 
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Isolation of PBMCs 

PBMCs were isolated using gradient centrifugation with Histopaque 1077 (Sigma-Aldrich) 

(Figure 1). After centrifugation (1500 rpm, 30 min), at room temperature, the plasma (upper 

phase) was collected to cryovials (stored at -80°C) and the interface between the plasma and the 

Histopaque 1077, containing PBMCs, was collected to a new tube with apyrogenic phosphate 

buffered saline (aPBS) (GIBCO/Life Technologies). After washing twice with the aPBS, the cell 

pellet was re-suspended in 500 μL of RPMI supplemented with 10% fetal bovine serum (FBS) 

(both from GIBCO/Life Technologies) and cells were counted using trypan blue to exclude dead 

cells. After taking cells to perform fluorescence-activated cell sorting (FACS) staining (M4), the 

remaining cells were frozen in aliquots of 5x106

 

 PBMCs each, in a media containing 80% RPMI, 

10% FBS and 10% DMSO. 

Staining for surface markers for flow cytometry 

For the surface marking, 100 (M1 and M2) or 200 μl (M3) of whole blood were 

incubated for 15 min, at room temperature, with a defined set of monoclonal antibodies (Table 

10). Afterwards, erythrocytes were lysed by incubation with FACS Lysis Buffer (BD Biosciences, 

San Jose, CA, USA) for 15 min at room temperature. Cells were washed with FACS buffer. 

 

 Staining for intracellular markers for flow cytometry 

 By the time these studies were initiated, no reliable methods were available for the 

staining of FOXP3 on total blood cells. For that reason, this staining had to be performed in 

isolated PBMCs. 

From the PBMCs suspension previously prepared, two million of fresh PBMCs were 

stained for M4 (Table 10). Cells were first incubated with the antibodies for the surface markers 

for 15 min at room temperature. After the excess antibody was washed out, cells were fixed and 

permeabilized using the FOXP3 Staining Buffer Set (eBioscience, San Diego, CA, USA). Cells 

were incubated with a mix of anti-Ki67 and anti-FOXP3 (intracellular markers) and after being 

washed with permeabilization buffer and FACS buffer. 

 

Sample acquisition on the flow cytometer 

All samples were acquired the same day they were processed on a BD LSR II flow 

cytometer (equipped with 3 lasers and 8 fluorescence detectors) using FACS DIVA software 
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(Becton and Dickinson, NJ, USA). Data was analysed using FlowJo Software (Tree Star, OR, 

USA). 
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Abstract

CD4+ regulatory T cells (Tregs) are essential for the maintenance of the immune system’s equilibrium, by dampening the
activation of potential auto-reactive T cells and avoiding excessive immune activation. To correctly perform their function,
Tregs must be maintained at the right proportion with respect to effector T cells. Since this equilibrium is frequently
disrupted in individuals infected with the human immunodeficiency virus (HIV), we hypothesize that its deregulation could
hamper immune reconstitution in patients with poor CD4+ T cell recovery under highly active antiretroviral therapy
(HAART). We analysed Tregs percentages amongst CD4+ T cells in 53 HIV-infected patients under HAART, with suppression
of viral replication and distinct levels of immune reconstitution. As controls, 51 healthy individuals were also analysed. We
observed that amongst the patients with Nadir values (the lowest CD4+ T cell counts achieved) ,200 cells/mL, the
individuals with high Tregs percentages ($10% of total CD4+ T cells) had the worse CD4+ T cell reconstitution. In
accordance, the well-described direct correlation between the Nadir value and CD4+ T cell reconstitution is clearly more
evident in individuals with high Tregs proportions. Furthermore, we observed a strong negative correlation between Tregs
percentages and CD4+ T cell recovery among immunological non-responder HIV+ individuals. All together, this work shows
that high Tregs frequency is an important factor associated with sub-optimal CD4+ T cell recovery. This is particularly
relevant for immunological non-responders with low Nadir values. Our results suggest that the Tregs proportion might be
of clinical relevance to define cut-offs for HAART initiation.
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Introduction

Infection with HIV initiates a series of events that ultimately

lead to profound immunosuppression, caused by functional

abnormalities in the immune system, mainly due to severe

depletion of CD4+ T cells [1].

The introduction of HAART has led to very important declines

in both mortality and morbidity due to HIV infection [2];

however, even though many patients steadily recover their CD4+

T cell compartment over several years post-HAART initiation, the

degree of immune recovery achieved is highly variable. On this,

studies indicate that even after several years of treatment, a

proportion of patients (from 15% to 40%) feature abnormally low

CD4+ T cell counts despite suppression of HIV replication

[3,4,5,6]. This group of individuals is referred to as immunological

discordants or non-responders and, unlike full responders, they are

at increased risk of clinical progression to acquired immunodefi-

ciency syndrome (AIDS)-related and non-related illnesses and

death [2].

Sub-optimal CD4+ T cell recovery may result from excessive/

premature cell death, decreased peripheral proliferation and/or

reduced production of these cells by the thymus. Several factors

have been suggested to contribute to this limited ability of the

CD4+ T cell compartment to normalise (reviewed in [7]) such as

advanced age [8], low baseline CD4+ T cell counts [6,8,9],

residual HIV replication [10], chronic immune activation [11],

abrogated thymic function [12,13], gender [14,15] and genetic

polymorphisms associated with increased programmed cell death

[16,17]. While all these factors are definitely relevant in

establishing different immune reconstitution profiles, there may

be other factors also contributing to this process [7].

Tregs are essential for the maintenance of self-tolerance and

immune homeostasis [18] and have been widely studied in the

context of HIV infection. Most studies have focused on whether or

not these cells are directly infected by HIV, to what extent are they
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depleted/expanded, and their role during the course of disease

progression from HIV infection to AIDS. The ability of HIV to

directly infect Tregs is still a subject of debate. Whilst it has been

reported that they are susceptible to HIV infection in vitro [19,20],

other studies showed that exposure of Tregs to HIV selectively

promotes their survival via a CD4-gp120–dependent pathway

[21]. Moreover, the accumulation of Tregs in the gut or in the

tonsils of HAART-naı̈ve HIV+ patients also argues against

increased killing of these cells in compartments where viral

replication is occurring [22,23].

During the course of disease progression in HAART-naı̈ve

patients, Tregs seems to act as a double-edged sword. On one

hand frequencies of these cells have been shown to negatively

correlate with the levels of immune activation [24,25,26,27,28],

which is one of the key contributors to HIV disease progression

[29,30,31]; on the other hand, high levels of Tregs have also been

linked with suppression of HIV-specific CD4+ and CD8+ T cell

activity and, thus, in this way Tregs could be linked to a worse

disease prognosis [32,33,34]. Tregs have also been investigated in

the context of HAART-associated immune reconstitution, al-

though to a much lesser extent. Results so far also lack a

consensus. Some authors found elevated levels of Tregs in

aviremic HIV+ patients in comparison to healthy controls

[35,36,37,38], whilst others described Tregs frequencies as

following a ‘‘biphasic curve’’ during the first year of HAART

[39], with an initial increase and a subsequent return to levels

comparable to controls [22,23,39]. The observation that the

proportion of Tregs in HAART-treated aviremic HIV+ individuals

is quite diverse prompted us to explore whether distinct values

were associated with differences in CD4+ T cell recovery. Thus,

we investigated how the percentage of Tregs within CD4+ T cells

correlated with CD4+ T cell count recovery and other parameters

of immune reconstitution in HAART-treated HIV+ individuals.

Understanding the mechanisms that limit T cell recovery during

HAART is essential to help adjust guidelines for HAART

initiation, and to prompt investigation of complementary immune

therapies that could enhance immune reconstitution.

Materials and Methods

Ethics Statement
This study was approved by the institutional review board of the

Hospital Joaquim Urbano under the protocol number 168/CES

[addenda number 127/12 (NA-DEFI/089-CES)]. Study subjects

gave written, informed consent prior to their participation.

Study population
A cross-sectional study was performed with 53 HIV+ individuals

recruited from Hospital Joaquim Urbano, Porto, Portugal (4368

years old, range 31 to 58 years old; 79% were males) and 51

healthy individuals recruited from the same hospital and from the

Life and Health Sciences Research Institute, Braga, Portugal

(3969 years old, range 27 to 56 years old; 49% were males).

Inclusion criteria for HIV+ individuals were: infection with HIV-1;

receiving HAART for at least 1 year; being regular on HAART

compliance (with no history of irregular compliance in the past);

plasma viral loads #50 copies HIV RNA/mL; and baseline CD4+

T cell counts #500 cells/mL. Information regarding patient’s

gender, hepatitis C virus (HCV) co-infection, HAART compli-

ance, baseline CD4+ T cell counts, Nadir value and actual CD4+

T cell counts was collected by patients’ physician. CD4+ T cell

counts were obtained by a reference laboratory. CD4+ T cell count

progression for each individual were calculated by subtracting the

baseline CD4+ T cell counts (immediately before HAART

initiation) from the actual CD4+ T cell counts. The CD4+ T cell

slopes (b1) for each individual during the first 12 months of

HAART were calculated by the least square estimation method

using MO Excel (CD4+ T cell count = b0+b16time; b0 being the

CD4+ T cell counts at 0 months of HAART); analysis was

restricted to those subjects who had at least three CD4+ T cell

measurements during the first year after HAART initiation.

Flow cytometry
All samples were processed for flow cytometric analysis on the

day the blood was collected. To stain for cell surface molecules

100 mL of whole blood were incubated with a defined set of

antibodies for 15 min at room temperature, followed by 15 min

with FACS Lysis Buffer (BD Biosciences), washed and acquired.

To determine the expression of the intracellular marker FOXP3, 2

million peripheral blood mononuclear cells (PBMCs), obtained

from heparinized blood by Histopaque 1077 (Sigma-Aldrich)

gradient centrifugation, were stained for cell surface markers for

20 min, washed, fixed, permeabilized and stained using the

FOXP3 Staining Buffer Set (eBiosciences). Antibodies used were

anti-CD4 (clone RPA-T4; BD Biosciences), anti-CD3 (clone

OKT3 or UCHT1), anti-CD45RO (clone UCHL1), anti-HLA-

DR (clone L243), anti-CD127 (clone PHCD127), anti-CD25

(clone BC96, all from Biolegend) and anti-FOXP3 (clone

PCH101, eBiosciences). Optimal concentration was determined

for each antibody by testing serial dilutions. All samples were

acquired on a BD LSR II flow cytometer using FACS DIVA

software (Becton and Dickinson, NJ, USA) and data were analysed

using FlowJo Software (Tree Star, OR, USA).

Statistical analysis
The normality assumption for parametric tests was tested using

the Kolmogorov-Smirnov test (with Dallal-Wilkinson-Lilliefor

Significance Correction); since the Tregs percentages from HIV+

individuals did not follow a normal distribution all tests applied

were non-parametric. Groups’ medians, variances and proportions

were compared using the Mann-Whitney, Levene’s and Chi-

square tests, respectively. Spearman’s rank correlation coefficient

was performed to assess the correlation between two variables. P-

values less than 0.05 were considered statistically significant.

Results and Discussion

Heterogeneous distribution of Tregs percentages among
HIV+ individuals under HAART

Human Tregs were first identified on the basis of their high-

level expression of CD25 (the IL-2Ra chain) [40,41,42] and

subsequently by the expression of the Forkhead-box transcription

factor FOXP3 [43,44]. However, further human studies have

shown that activated CD4+ T cells also up-regulate the expression

of CD25 and can transiently express FOXP3 [45,46]. More

recently, it was shown that Tregs express low levels of CD127 (the

IL-7Ra chain), and therefore this molecule is considered useful as

an additional marker to identify this population [47,48,49,50].

Even though the utility of these, and other putative Tregs markers,

is still debated, they currently represent the best available markers

to identify this cell subset. With this in mind, we chose to identify

Tregs within CD4+ T cells (CD3+CD4+) as the CD127lowCD25-
highFOXP3+ population (Figure 1A).

Using this gating strategy to define Tregs the vast majority of

our control individuals (75%) featured Tregs percentages between

5% and 10% (Figure 1B), frequencies similar to those reported by

other groups using the same markers and gating strategy [51]. By

comparing the median Tregs percentages no differences were
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observed between the HIV+ and control individuals (p = 0.8250,

Mann-Whitney test; Figure 1B). However, the range of Tregs

percentages observed was higher amongst HIV+ individuals

(p = 0.0020, Levene’s test; Figure 1B). It was interesting also to

note that the number of individuals with Tregs percentages $10%

was significantly higher in the HIV cohort as compared to control

(p = 0.0313, Chi-Square test; Figure 1C).

As studies of HAART-treated HIV+ individuals have yielded

conflicting data regarding Tregs percentages

[22,23,35,36,37,38,39], we sought to understand if other variables

could be influencing this parameter. We found that neither

individual’s age, number of years in therapy, overall immune

activation or infection by the hepatitis C virus (HCV) impacted

upon Tregs percentage in our HIV population (Figure S1).

Overall, whilst there were no differences in the median

percentage of Tregs in HIV+ and control individuals, there was

a wider distribution of Tregs percentages among HIV+ individuals,

ranging from 3% to 19%. Furthermore, Tregs frequencies were

not related to age, number of years of treatment, overall immune

activation or infection by HCV (Figure S1).

The majority of HIV+ individuals with high Tregs
percentages featured low Nadir value and incomplete
CD4+ T cell recovery

To evaluate whether distinct Tregs percentages were related to

different degrees of CD4+ T cell recovery amongst HAART-

treated HIV+ individuals, we assessed potential correlations

between distinct parameters to evaluate CD4+ T cell reconstitution

and Tregs percentages. As shown in Figure 2A, we found no

correlation between Tregs percentages and CD4+ T cell counts,

CD4+ T cell progression or CD4+ T cell slope (R = 20.2130 and

p = 0.1270; R = 20.2409 and p = 0.0823; R = 20.1836 and

p = 0.2633, respectively, Spearman’s correlation). While there is

no clear correlation between the CD4+ T cell reconstitution and

Tregs percentage, as previously reported by others [37,39], it is

interesting to note that amongst HIV+ individuals with high Tregs

proportions ($10%) the majority featured low CD4+ T cell

numbers (,500 cells/mL), low CD4+ T cell recovery and low

CD4+ T cell slope (Figure 2A).

To further dissect the link between low CD4+ T cell counts and

high Tregs percentages in HIV+ individuals we re-assessed the

relationship between these two variables taking into account the

gender, number of years on treatment and the Nadir value, all of

which are factors known to influence immune reconstitution

[3,4,5,15,52,53]. No clear correlations were observed between the

Tregs percentages and CD4+ T cell counts when patient’s gender

(R = 20.2480 and p = 0.1090 for males; R = 20.2480 and

p = 0.4920 for females, Spearman’s correlation), years of therapy

(R = 20.0772 and p = 0.7534 for ,5 y HAART; R = 20.2598

and p = 0.1379 for $5 y HAART, Spearman’s correlation) and

the Nadir value (R = 20.07719 and p = 0.0648 for ,200 cells/mL,

R = 0.0,0963 and p = 0.6893 for $200 cells/mL, Spearman’s

correlation) were taken in consideration (Figure 2B).

Of notice, we observed that almost all individuals with Tregs

percentage $10% and CD4+ T cell counts #500 cells/mL had

Nadir values ,200 cells/mL (Figure 2B). Since the Nadir value has

been considered one of the key factors influencing immune

reconstitution [3,4,5], we considered relevant to further explore

this association. To do so we analysed CD4+ T cell counts in HIV+

individuals divided on the basis of their Nadir values (,200 and

$200 cells/mL) and subdivided according to their Tregs frequency

(,10%, Figure 3A). As previously reported [3,4,5], we observed

that individuals with low Nadir values (,200 cells/mL) had lower

CD4+ T cell counts upon treatment (p = 0.0234, Mann-Whitney

test, Figure 3A). Interestingly, this difference lost statistical

significance when only those individuals with Tregs percentages

,10% were analysed (p = 0.1934 by Mann-Whitney test,

Figure 3A).To address the influence of Tregs percentages on the

well-established correlation between CD4+ T cell recovery and

Nadir value [3,4,5], a correlation between these two variables

separating the individuals according to the Tregs percentages was

performed. As shown previously by others we observed that CD4+

T cell counts positively correlate with the Nadir value when all

HIV+ individuals are considered (R = 0.4481 and p = 0.0008,

Spearman’s correlation; Figure 3B). Of interest this correlation

Figure 1. High variability of Tregs percentages in HIV+ individuals. A. Representative dot plots from an HIV+ individual illustrating the gating
strategy for Tregs analysis. Lymphocytes (selected according to FSC and SSC) were gated on CD3+CD4+ cells, on low or no expression of CD127 and
on the expression of FOXP3 and high levels of CD25. B. Tregs percentages amongst CD4+ T cells in control and HIV+ individuals. Each dot represents a
single individual and the lines the median Tregs percentages within CD4+ T cells. Dashed lines represent the range of Tregs percentages among total
CD4+ T cells described for healthy individuals (between 5% and 10%) [51]. C. Percentage of individuals with Tregs #5% and $10% in controls and
HIV+ individuals. P-value for the comparison of these proportions (Chi-square test) and the 95% confidence interval are depicted.
doi:10.1371/journal.pone.0057336.g001
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was much stronger when only those individuals with $10% Tregs

were taken into account (R = 0.8392 and p = 0.0006 by Spear-

man’s correlation; Figure 3B) indicating that CD4+ T cell recovery

of individuals with low Nadir is hampered by high proportions of

Tregs.

Results reported by Gaardbo et al. [36], who analysed a

correlation between CD4+ T cell counts and Tregs percentages in

patients sub-divided according to baseline CD4+ T cell counts (,

and .200 cells/mL), did not find any differences. Their analysis

focused on HIV+ patients with over 2 years of treatment. Since we

have observed that time in treatment seems to have no impact on

the CD4+ T cell counts vs. Tregs proportion relation, the

discrepancy is most likely due to the use of different markers to

define Tregs or to the fact that they used baseline CD4+ counts

instead of Nadir values.

Strong correlation between Tregs percentages and CD4+

T cell counts progression in immunologically non-
responders HIV+ individuals

While the observation that some individuals are unable to

reconstitute the CD4+ T cell numbers to normal values, even after

several years of therapy and suppression of viral replication, there

is still a lack of consensus on the definition of immunological non-

responder individuals [7]. The most well accepted definition for

immunological non-responders patients are the ones whose CD4+

T cell counts remained below a threshold (from 350 to 500 cells/

mL) after a variable period of time of treatment (from 4 to 7 years)

[3,4,5]. Considering as immunological non-responders the indi-

viduals under regular HAART for at least 5 years and whose

CD4+ T cell counts were ,500 cells/mL (14 out of 53 individuals

in our population), we observed a strong correlation between

Tregs percentages and CD4+ T cell progression (R = 20.7765 and

p = 0.0004, Spearman’s correlation, Figure 4), which strengthens

the observed association between high Tregs percentage and poor

CD4+ T cell reconstitution.

The biological processes that could lead to different Tregs

percentages in HIV+ individuals remain unclear. Whilst some

studies have shown that Tregs are permissive to HIV infection in

vitro [19,20], which could lead to the depletion of this subset in

HIV+ individuals, others have shown that HIV selectively

promotes Tregs survival by reducing apoptosis levels in this

subset, and thereby increasing their proportion within the CD4+ T

Figure 2. HIV+ individuals with high Tregs percentages feature low CD4+ T cell counts and Nadir values. A. Percentages of Tregs
amongst HIV+ individuals were plotted against CD4+ T cell counts, CD4+ T cell progression and CD4+ T cell slope (for the first year of HAART). Each dot
represents a single individual. B. Tregs percentages were plotted against CD4+ T cell counts in HIV+ individuals grouped by gender) number of years
under HAART and the Nadir value.
doi:10.1371/journal.pone.0057336.g002
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cell pool as a whole [21]. Several hypotheses have been put

forward in order to explain the observed differences in Tregs

percentages, such as increased Tregs thymopoiesis [37] or even

conversion of conventional CD4+ T cells to Tregs [54,55]. Further

studies are still needed in order to fully understand Tregs kinetics

during immune reconstitution in HAART-treated HIV+ individ-

uals.

Altogether, our data show that high proportions of Tregs during

treatment in individuals who reached low Nadir values (,200

CD4+ T cells/mL) have a synergistic/cumulative negative associ-

ation with incomplete CD4+ T cell recovery. While the clear

association of high percentage of Tregs with low Nadir and

incomplete reconstitution would suggest a potential negative

impact of Tregs on CD4+ T cell recovery, it cannot be excluded

the possibility that Tregs, in individuals with incomplete immune

reconstitution, play an important role preventing excessive

expansions of oligoclonal populations. This could be of importance

to better decide when to start treatment. If during the course of

HIV infection an individual already has a high Tregs percentage,

our results would support the need for HAART initiation even if

CD4+ T cells counts remain relatively high. Further studies

involving longitudinal follow up are needed in order to fully

understand how the high percentage of Tregs abrogates the CD4+

T cells recovery. Moreover, these studies could also help defining

the parameters that synergise with high Tregs frequencies and low

Nadir for sub-optimal T cell recovery.

Supporting Information

Figure S1 Tregs percentages are not affected by HCV
infection, age, time in treatment or immune activation.
A. Tregs percentages were compared in HIV+ individuals when

divided according to co-infection with HCV (p = 0.1250, Mann-

Whitney test). B. Relationship between the Tregs percentages and

age (left panel; R = 20.1520, p = 0.2773; Spearman’s correlation),

years in therapy (middle panel; R = 20.0682, p = 0.6277; Spear-

man’s correlation) and overall immune activation (right panel;

R = 0.1400, p = 0.3660; Spearman’s correlation). Each dot

represents a single individual.

(TIF)
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individuals were subdivided according to their Nadir counts (,200 and $200 cells/mL) and grouped according to Tregs percentages (all individuals
and individuals with ,10% Tregs) and the CD4+ T cell counts are shown for each group. Each dot represents a single individual and the line the
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correlation between Nadir value and CD4+ T cell counts during HAART. Each dot represents a single individual. P-value for the correlation between
CD4+ T cell counts and the Nadir value is shown (Spearman’s correlation).
doi:10.1371/journal.pone.0057336.g003

Figure 4. Immunological non-responders present a strong
correlation between Tregs percentages and CD4+ T cell
progression. Scatter plot illustrating the correlation between Tregs
percentages and CD4+ T cell progression. Patients were selected on the
basis of being under HAART for at least 5 years and whose actual CD4+

T cell counts are ,500 cells/mL or .500 cells/mL. Each dot represents a
single individual.
doi:10.1371/journal.pone.0057336.g004
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Figure_S1: Treg percentages are not affected by HCV infection, age, time in treatment or 
immune activation. A. Treg percentages were compared in HIV+ individuals when divided 
according to co-infection with HCV (p = 0.1250, Mann -Whitney test). B. 

 

Relationship between 
the Treg percentages and age (left panel; R = −0.1520, p = 0.2773; Spearman's correlation), 
years in therapy (middle panel; R = −0.0682, p = 0.6277; Spearman's correlation) and  overall 
immune activation (right panel; R = 0.1400, p = 0.3660; Spearman's correlation). Each dot 
represents a single individual. 
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2.3. The Dynamics of Regulatory T Cells on the Immune Recovery of Individuals Infected by the 

Human Immunodeficiency Virus on Antiretroviral Therapy 

 

2.3.1. Abstract 

 

Background: The introduction of highly active antiretroviral therapy (HAART) to treat individuals 

infected by the human immunodeficiency virus (HIV) resulted in a tremendous decrease in 

morbidity and mortality. Nevertheless, a sizeable percentage of HIV-infected individuals on 

HAART fail to increase their CD4+

Methods: A longitudinal study on 81 HIV-infected patients was performed. All individuals had 

criteria to initiate HAART, and were followed from the moment they initiated HAART (baseline) 

and during the following 24 months. CD4

 T cell counts, despite showing viral load suppression. Several 

factors have been put forward to explain this immune reconstitution impairment. Among them, 

the effect of regulatory T cells (Treg) has been widely discussed, although the dynamics and the 

role of Treg remain controversial. 

+

Results: Treg percentages from baseline and up to 6 months of HAART are higher in comparison 

to healthy controls, mainly for the individuals with <200 CD4

 T cell counts, Treg percentages and specific Treg 

subpopulations (naïve and cycling cells) were evaluated. 

+ T cells/μL at baseline. Of notice 

there is great diversity on the values, particularly for this last group of individuals. Despite the 

evolution of Treg percentages to levels similar to healthy controls, the percentage of CD45RA+ 

(naïve) and of Ki67+

Conclusions: The fact that some patients reach very low CD4

 (cycling) cells among Treg remained altered throughout the 24 months of 

follow-up.  

+ T cell counts before HAART 

initiation leads to a deregulation of the Treg subpopulations that are not fully recovered, even 

after 24 month of efficient HAART. These patients are not just unable to recover the CD4+

Running title (26/40 characteres): Treg dynamics during HAART. 

 T cells 

to numbers considered normal but in addition the quality of the reconstitution is also jeopardize. 

Keywords: Human Immunodeficiency Virus; Antiretroviral therapy; Immune reconstitution; 

Regulatory T cells. 
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2.3.2. Introduction 

 

During the course of the infection by the human immunodeficiency virus (HIV) various 

mechanisms contribute to the gradual depletion of CD4+

The emergence of drugs with potent antiretroviral activity, and their use in combination 

for the treatment of HIV infection markedly reduced the negative effects of HIV infection. The 

highly active antiretroviral therapy (HAART) dampens viral replication for the vast majority of the 

patients with a consequent increase of the CD4

 T cells. The deleterious effects and 

immune dysfunction are extended to other cells of the immune system. As a result, a steady 

imbalance occurs mainly at the level of the cell-mediated immunity termed as acquired 

immunodeficiency syndrome (AIDS). If left untreated, AIDS will lead to a final stage of inability to 

counteract major life threatening infections and some tumors, resulting in high morbidity and 

mortality rates [1]. 

+ T cell counts, culminating to what is called 

immune reconstitution [2]. However, among the HIV-infected individuals that initiate HAART and 

become virologically suppressed during several years (4 to 7 years), 15 to 40% of them (number 

that varies depending on the study) fail to reconstitute the CD4+

The failure of the immune system to recover might result from insufficient production 

and/or excessive destruction of CD4

 T cell counts. These individuals 

are referred to as immunological non-responders [3]. 

+ T cells. Several conditions may contribute, individually or in 

combination, to this defect such as [3-5]: failure of the bone marrow to produce hematopoietic 

stem cells; impaired thymic function; advanced age; immunosenescence; residual viral 

replication; infection by more cytopathogenic virus as those that use CXCR4 as a co-receptor; 

enhanced T cell activation and apoptosis; gut microbial translocation that could lead to increased 

T cell activation and destruction; or co-infections by hepatitis C virus, cytomegalovirus, or other 

herpes virus. It is worth noticing that some of these conditions can be associated to each other, 

being one the cause or effect of the others. Low CD4+ T cell counts at the therapy onset has 

consistently been shown as a strong predictor for worse CD4+

The role of regulatory T cells (Treg) in HIV infection pathogenesis has been extensively 

debated [9]. These cells may play a beneficial role by dampening the immune activation [10-12] 

and suppressing HIV-replication within conventional CD4

 T cell counts recovery even for 

virologically suppressed patients undergoing HAART [6-8].  

+ T cells [13]. On the other hand, Treg 

may have a harmful role by impairing specific anti-HIV immune response [14-17], inhibiting 
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lymphopenia-induced proliferation [18, 19], contributing for gut microbial translocation [20, 21] 

and for an exacerbated fibrosis of lymphoid tissues [22].  

Most of the studies describe that Treg percentage among CD4+

The effect of Treg percentages on the immune recovery of patients on effective HAART 

has also been explored. Despite high Treg percentages have been related to an impaired immune 

reconstitution [18, 31-34], none of these studies have correlated the Treg percentage at HAART 

onset with immune recovery. To better understand the temporal evolution of the Treg 

(percentages and subpopulations) during HAART and the potential effect of Treg percentages, at 

baseline and during therapy, on the immune reconstitution, we evaluated longitudinally 81 HIV-

infected individuals since the moment they initiated HAART and for the following 24 months. 

 T cells in chronic HIV-

infected patients naïve for HAART is higher in comparison to healthy controls [23-28], though 

some studies observe no differences [10, 14]. The evolution of Treg percentage upon HAART 

initiation is even more controversial; despite that most studies describe a decrease in the Treg 

percentage among individuals receiving HAART [24-26, 28-30], many claim that these values are 

maintained above the ones considered normal from healthy controls [24, 26, 27, 29]. The lack of 

consensus in this aspect might be related to different factors, namely differences on the study 

groups characteristics (cross-sectional over longitudinal studies; patients heterogeneity over 

homogeneity at HAART onset; differences on the size of the cohorts analyzed, being most of 

them relatively small) and/or from different strategies used to identify Treg.   

 

2.3.3. Materials and Methods 

 

Ethics Statement 

Individuals undergoing medical care at the Hospital Joaquim Urbano Unity of Centro 

Hospitalar do Porto, Porto, Portugal (HJUU/CHP) were selected for this study. After explanation 

of the entire study protocol, all the patients signed an informed consent prior to their enrollment 

in the study. A local Ethical Committee approval was received for this study (reference 168/CES 

on 2nd

 

 October 2009). It should be noted that HJUU/CHP is the one that follows a great 

proportion of the HIV infected individuals from the city of Porto and surrounding as its main focus 

is on infectious diseases.  
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Study Population 

Individuals were enrolled in this study with the following criteria: age over 18 years; 

chronically infected by HIV-1 (from now on referred simply as HIV); naïve for HAART but with 

criteria to initiate HAART. The moment of HAART initiation is referred in the study as 0 months or 

as baseline. The individuals were followed thereafter at 2, 6, 9, 12, 16, 20 and 24 months. 

HAART schemes chosen (Table 1) for each individual took into consideration the scientific policy, 

national and international guidelines [35], particular characteristics of each individual and drug 

cost, as it is usual for all individuals being followed at our care unit. 

At the end of the 24 months follow-up, only those patients that had been regular on 

therapy compliance and had plasma viral loads bellow 50 copies/mL, were included in this study 

in a total of 81 (demographic features depicted in Table 1). From these, two individuals had a 

virological blip at 24 months despite being regular on HAART; these individuals were maintained 

in the study after confirming virological suppression at 28 months (all virological blips were under 

200 copies/mL; Figure S1). In two patients, the data relative to 28 months of follow-up were 

used instead of 24 months (one has missed the 24 months visit and the other patient had 

pneumonia at 24 months, AH031 and AH030, respectively, in Supplementary Table 1). In 

parallel, we enrolled a group of age- and gender-matched HIV-uninfected subjects (Table 1). 

 

Sample processing and flow cytometry 

In each study visit blood was collected and sent both for routine analysis by a reference 

laboratory (CD4+

For the multiparametric flow cytometry surface staining, 100μL of whole blood was 

incubated for 15 min, at room temperature, with a defined set of monoclonal antibodies directed 

to human molecules (all from Biolegend): Pacific anti-CD3 (clone OKT3), anti-CD4 (clone RPA-

T4), anti-CD8 (clone RPA-T8), anti-CD45RA (clone HI100), anti-CD45RO (clone UCHL1) and anti-

HLA-DR (clone L243). Afterwards, erythrocytes were lysed upon incubation for 15 min in FACS 

Lysis Buffer (BD Biosciences, San Jose, CA, USA), at room temperature. Cells were washed with 

FACS buffer, and acquired on a flow cytometer. 

 T cell counts and HIV viral load) and for complementary multiparametric flow 

cytometry analysis. These procedures were performed on the same day the blood was collected. 

The analysis of Treg was performed in peripheral blood mononuclear cells (PBMCs) 

isolated upon gradient centrifugation with Histopaque 1077 (Sigma-Aldrich). Two million PBMCs 

were first labeled with the surface markers for 15 min at room temperature: anti-CD4, anti-CD25 
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(clone BC96), anti-CD45RA, anti-CD127 (clone AO19D5, all from Biolegend) and anti-CD3 (clone 

UCHT1, BD Horizon). After the excess antibody was washed out, cells were fixed and 

permeabilized using the FOXP3 Staining Buffer Set (eBioscience, San Diego, CA, USA), 

accordingly to the manufacturer’s instructions. Cells were afterwards incubated for 30min with 

anti-FOXP3 (clone PCH101, eBiosciences) and anti-Ki67 (clone MOPC-21, BD Pharmigen). Cells 

were washed and acquired on the flow cytometer. 

 

Variable HIV-infected 
(n=81) 

Control 
(n=44) 

Age, years (mean, range) 1 41 (22-67) 2 39.5 (22-56) 

Male gender (%, n)  77.8% (63) 68.0% (30)  3 

HIV transmission mode (n) 

Intravenous drug users 

Men who have sex with men 

4 

Heterosexuals 

Unknown 

 

19 

23 

37 

2 

NA 

CD4+ T cell counts, cells/μL (mean, range) 274 (8-1033) 1 NA 

log10 viral load, copies/mL(mean, range) 1 5.33 (3.8-7.0) NA 

With criteria for AIDS (%, n) 44.4% (36)  5 NA 

Hepatitis C virus-positive (%, n) 6 22.2% (18) NA 

Hepatitis B virus-positive (%, n) 1.2% (1) NA 

With viral mutations of resistance (%, n) 18.5% (15) NA 

HAART regimen components (n) 
2 NRTIs 
  TDF+FTC 
  ABC+3TC 
  ZDV+3TC 
3rd Drug (NNRTI or PI/r) 

EFV/NVP 
DRVr/LPVr 

 
 

61 
19 
1 
 

68/1 
10/2 

NA 

 
Table 1. Demographic information of the study individuals. 
1At baseline; 2No significant difference between the mean age of the two groups (unpaired T-test; p=0.533); 3No 
significant difference between the percentage of males on the two groups (Fisher exact probability test; p=0,285); 
4Five of these patients presented also heterosexual risk for HIV transmission; 5Accordingly to the guidelines of Centers 
for Disease Control and Prevention [36]; 6 

Abbreviations: ABC, abacavir; DRVr, ritonavir boosted darunavir; EFV, efavirenz; FTC, emtricitabine; LPVr, ritonavir 
boosted lopinavir; NA, not applicable; NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside (or 
nucleotide) analogue reverse transcriptase inhibitors; NVP, nevirapine; PI/r, ritonavir boosted protease inhibitor; TDF, 
tenofovir disoproxil fumarate; ZDF, zidovudine; 3TC, lamivudine. 

Positive for hepatitis C virus antibodies and RNA. 
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Each of the antibodies used were titrated using serial dilutions until the optimal 

concentrations were determined. All samples were acquired on a BD LSRII flow cytometer using 

FACS DIVA software (Becton and Dickinson, NJ, USA) and data were analyzed using FlowJo 

Software (Tree Star, OR, USA). 

 

Statistical analysis 

To evaluate normal distribution of the variables, skewness and kurtosis values were 

calculated and approximate normal distribution was defined for variables with absolute values of 

skewness below 3 and kurtosis below 8 [37]. 

As all variables followed a normal distribution, parametric tests were performed: Pearson’s 

correlation coefficient test to relate two distinct variables; unpaired T-test to compare two group’s 

means; one-way ANOVA followed by Bonferroni’s multiple comparison tests to compare more 

than two independent groups’ means; ANOVA repeated measurements (using the Geisser-

Greenhouse correction for sphericity) followed by Bonferroni’s multiple comparison tests to 

evaluate progression; and two-way ANOVA repeated measurements followed by Sidak’s multiple 

comparison test to compare and evaluate progression of more than two independent groups of 

individuals. To evaluate the predictors of a specific event, hierarchical linear regression models 

were used. Overall, significance was assumed when p<0.05 and represented in the graphs as *. 

To perform repeated measurements analysis, missing values are not allowed; to overcome 

this limitation (and only to perform these statistical analysis in Figures 1C, 1D and 5), these 

values were estimated by calculating the mean of the neighbor values (estimated values 

represented 1.25% and 2.89% of all the CD4+

Statistical analyses were performed using the IBM SPSS v.22 or the GraphPad Prism v.6. 

 T cell counts and Treg proportions measurements, 

respectively). It should be noted that the analysis was also performed excluding subjects who had 

at least one estimated value and the results were similar to those obtained using estimated 

values. Supplementary Table 1 depicts the raw data and highlights the values that were 

estimated.  
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Patient 
ID 

%Treg among CD4+ T cells   CD4+ T cell counts 
over time on HAART   over time on HAART 

0 2 6 9 12 16 20 24   0 2 6 12 16 20 24 
AH001 31,5 6,9 12,0 6,6 8,8 7,7 7,9 6,4 

 
11 59 116 180 301 373 382 

AH003 19,5 6,0 12,0 7,5 7,5 7,6 7,0 6,0   22 135 128 186 159 182 191 
AH004 11,5 9,3 8,2 10,2 11,9 12,9 8,5 6,5 

 
292 571 460 519 451 467 435 

AH005 12,9 5,3 7,3 7,5 7,0 9,3 5,8 6,6   257 413 370 549 604 585 344 
AH006 

 
14,0 13,4 15,7 10,2 13,4 11,7 14,8 

 
43 177 274 252 304 367 363 

AH007 12,5 9,9 10,8 5,1 11,0 11,8 8,1 11,3   147 414 425 534 819 629 679 
AH009 10,9 5,7 8,3 8,7 12,4 1,2 7,4 13,6 

 
310 544 427 555 451 625 600 

AH010 9,0 7,4 7,4 6,6 6,8 7,0 7,8 9,6   316 285 325 365 379 675 473 
AH011 12,6 13,9 20,3 4,9 16,4 15,3 19,9 11,5 

 
182 176 208 198 220 301 304 

AH012 12,2 10,7 13,3 10,4 9,8 10,0 6,5 9,8   230 347 508 472 532 646 641 
AH013 2,6 21,7 23,3 15,2 19,3 11,4 10,2 7,8 

 
30 60 190 204 329 273 303 

AH014 4,6 4,1 4,7 9,1 5,6 4,4 10,8     334 948 635 639 612 624 751 
AH015 6,7 8,7 7,7 6,5 6,3 6,8 4,2 7,3 

 
291 120 111 141 102 134 138 

AH016 7,9 9,1 7,9 9,4 9,9 10,6 11,1 9,7   974 1078 1284 1257 1035 1449 1380 
AH017 15,4 17,8 14,6 14,5 11,4 12,2 10,8 11,7 

 
408 448 524 486 468 443 374 

AH018 12,5 10,3 11,2 10,8 8,7 10,1 9,4 10,5   338 456 576 1042 850 818 747 
AH021 12,6 7,9 5,0 7,0 8,9 7,7 4,0 6,4 

 
239 529 746 649 693 665 644 

AH022 13,4 11,4 10,7 12,1 12,3 9,8 13,9 11,6   268 321 435 395 344 538 506 
AH023 18,0 12,0 10,4 11,5 10,9 8,1 12,0 10,8 

 
314 459 530 626 691 641 658 

AH025 12,7 6,5 10,0 8,9 3,2 7,2 6,4 3,0   278 287 201 245 243 288 378 
AH026 6,4 6,6 6,6 7,7 3,7 5,0 1,1 3,1 

 
665 1030 655 996 1180 799 1242 

AH027 7,5 6,1 5,5 8,0 1,7 4,6 5,5 2,2   415 441 393 658 840 667 972 
AH030 5,0 4,2 7,0 4,5 5,1 5,2 5,0 2,3 

 
330 390 419 449 567 519 477 

AH031 6,5 8,5 8,9 10,5 8,1 3,9 6,0 7,4   228 323 339 300 345 318 458 
AH032 12,1 14,7 12,4 13,7 12,2 13,0 10,8 11,5 

 
303 333 464 400 504 480 452 

AH033 7,3 11,6 14,5 17,4 8,7 11,0 6,2 6,7   68 270 282 428 512 515 454 
AH034 3,2 3,6 3,8 3,6 2,8 4,6 4,0 3,7 

 
306 400 475 507 392 612 588 

AH035 11,1 13,1 10,2 11,5 10,9 11,6 11,4 10,9   25 229 178 285 250 360 299 
AH036 7,8 8,7 9,2 8,4 8,2 1,1 8,4 7,8 

 
263 327 330 392 439 494 411 

AH037 2,6 12,5 21,6 17,4 12,2 3,6 8,8 6,6   92 163 169 133 322 368 322 
AH039 17,3 42,9 42,2 20,9 19,1 22,3 16,6 16,1 

 
9 77 72 100 155 121 152 

AH040 10,2 10,4 9,0 12,5 8,0 9,8 11,9 10,4   422 475 329 402 563 398 452 
AH041 8,1 11,5 13,6 9,7 7,3 4,8 6,7 8,3 

 
397 674 535 692 692 622 659 

AH042 9,6 15,8 13,5 14,4 11,3 12,6 17,1 10,3   262 366 386 426 425 397 538 
AH044 0,4 8,5 12,9 14,7 13,7 9,3 9,5 8,6 

 
56 489 463 537 505 434 439 

AH045 8,1 7,5 7,0 8,1 5,9 6,5 2,1 6,5   481 771 880 809 817 830 811 
AH046 9,9 9,2 9,5 8,5 6,4 5,0 7,3 3,0 

 
388 598 1002 725 890 972 724 

AH047 9,4 9,6 9,8 7,5 7,2 6,1 8,6 7,0   321 428 308 363 399 524 486 
AH048 22,1 24,9 24,3 20,0 12,1 29,7 17,0 12,4 

 
63 205 126 221 207 236 202 

AH049 6,8 8,9 9,6 9,2 11,9 11,6 11,0 8,4   415 420 424 488 599 533 503 
AH050 12,9 17,2 16,7 11,9 12,2 10,2 16,3 6,8 

 
303 514 435 389 452 481 581 

AH051 7,1 9,3 8,5 7,6 7,0 7,1 8,1 6,3   784 649 852 757 1039 761 998 
AH052 8,0 8,4 9,3 5,7 6,5 7,7 7,4 2,2 

 
107 165 213 300 290 360 348 

AH053 15,3 20,1 21,1 20,0 9,1 10,4 10,0 10,7   32 244 256 518 475 526 337 
AH054 7,6 9,3 8,5 6,5 8,2 7,2 6,3 6,7 

 
286 505 579 747 652 477 581 

AH058 10,1 12,8 12,6 13,7 10,2 7,5 13,3 8,0   326 272 295 414 385 406 373 
AH059 5,3 5,6 6,8 6,4 2,6 7,4 0,7 7,4 

 
1033 872 960 847 895 888 933 

AH060 5,1 15,8 10,8 11,0 11,7 9,3 0,7 6,3   341 516 524 872 614 864 629 
AH061 16,9 5,5 5,8 6,3 4,2 5,6 3,8 5,7 

 
339 410 398 398 537 546 642 

AH062 15,5 10,0 10,4 10,8 10,0 9,3 2,5 8,3   205 391 361 444 473 565 512 
AH063 13,4 8,7 7,9 6,8 8,3 7,6 4,9 7,6 

 
146 262 293 248 335 358 300 

AH064 11,8 13,2 10,7 10,7 10,0 10,2 1,4 8,9   603 580 724 772 865 713 694 
AH065 12,1 8,7 6,4 8,7 6,9 7,2 5,7 7,0 

 
319 433 673 593 654 708 716 
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AH066 29,4 48,6 14,9 9,9 14,7 14,1 10,1 9,6   12 112 155 209 274 475 375 
AH067 10,4 8,8 5,2 7,6 5,5 6,1 5,1 5,6 

 
504 631 744 791 857 968 950 

AH068 9,6 6,9 5,1 5,2 6,7 7,5 6,5 7,4   540 680 887 1093 866 911 1097 
AH069 11,3 9,9 21,5 8,4 5,8 6,6 6,7 4,6 

 
334 350 397 546 595 521 624 

AH070 8,4 7,4 6,1 4,8 6,1 7,3 3,9 4,3   269 521 574 575 660 659 630 
AH073 35,4 23,9 5,9 9,2 9,8 7,7 11,3 11,9 

 
37 85 118 104 106 140 222 

AH074 18,1 20,0 21,8 17,9 13,9 9,3 14,1 13,6   61 201 341 354 331 337 380 
AH075 7,1 5,3 5,8 4,7 7,2 6,2 5,0 2,1 

 
319 412 608 350 462 468 468 

AH076 7,8 8,9 8,6 6,1 8,9 8,3 5,9 11,0   296 352 407 550 604 623 544 
AH077 8,9 11,5 13,4 3,6 8,5 7,3 5,3 6,9 

 
471 748 1227 1145 930 1355 1213 

AH078 6,6 5,3 5,7 4,4 2,6 5,8 2,3 7,6   208 426 297 422 518 447 412 
AH079 15,4 14,3 5,0 8,6 7,9 5,9 8,4 5,7 

 
47 142 166 253 176 226 307 

AH080 7,5 11,4 6,3 12,3 10,9 8,3 9,2 9,1   14 167 197 197 263 327 302 
AH081 11,2 9,4 1,6 7,2 7,8 1,8 7,7 7,6 

 
181 262 324 320 327 463 467 

AH082 14,6 11,0 2,0 6,4 6,8 5,6 6,6 6,1   176 218 272 370 363 347 409 
AH083 27,3 16,1 4,0 14,2 12,1 0,8 8,7 13,0 

 
181 325 353 508 467 768 589 

AH084 8,0 6,1 10,1 5,3 3,5 2,1 9,2 13,4   243 273 336 332 379 448 387 
AH085 17,6 15,1 16,5 12,7 12,1 14,7 11,9 

  
8 43 47 65 119 174 186 

AH086 8,6 10,0 10,7 16,4 11,6 10,0 5,1 8,8   92 202 159 159 191 165 214 
AH087 1,5 11,6 20,5 10,8 7,0 6,9 8,0 7,7 

 
42 142 188 335 347 414 511 

AH088 5,6 13,6 10,1 10,5 9,1 8,1 10,0 9,7   174 227 238 180 241 277 274 
AH089 5,1 13,4 3,3 8,3 10,7 8,3 9,6 8,9 

 
143 396 254 328 240 304 263 

AH090 16,2 12,2 13,4 7,6 9,3 6,0 6,0 4,9   20 143 165 249 320 404 380 
AH091 

 
8,5 9,7 5,4 2,7 7,2 6,7 6,3 

 
97 157 167 192 213 247 218 

AH092   11,6 14,3 8,7 3,2 12,0 9,7 10,2   164 461 310 628 401 514 428 
AH093 

 
6,7 10,5 0,8 2,4 7,8 3,9 2,0 

 
193 404 602 774 707 766 726 

AH095 5,8 7,3 8,2 4,8 9,2 8,5 5,3 5,3   94 308 222 253 266 319 341 
AH096 10,1 11,6 18,8 7,1 16,4 26,4 16,9 17,4   216 424 375 550 590 745 692 

 
Supplementary Table 1. Treg percentage among CD4+ T cells and CD4+

 

 T cell counts for each HIV-infected individual 
enrolled in the study. Estimated missing values are underlined.  

 

2.3.4. Results 

 

Evolution of Treg percentages during HAART varies accordingly to the CD4+

In our cohort of HIV-infected patients, HAART resulted in a rapid and strong decline of the 

plasma viral load for all patients (Figure S1) and in an overall increment of the CD4

 T cell counts 

at baseline 

+

The selection of markers to define Treg is a controversial issue. We chose to identify Treg 

within CD4

 T cell counts 

over time of therapy (Figure S2) in accordance with what has been described for other cohorts 

following similar HAART regimens [35]. 

+ T cells (CD3+CD4+) as the CD127lowCD25highFOXP3+ cells accordingly to Sakaguchi et 

al. [38] using the gating strategy described before [33]. As previously shown by most of the 

studies [23-28], Treg percentages are significantly higher in HIV-infected individuals naïve for 

HAART in comparison to healthy controls. During therapy, Treg percentages tend to normalize for 
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the majority of the individuals reaching values that are not statistically significant different from 

healthy controls at about 9 months of HAART (Figure 1A). 

 

 
Figure S1. HAART leads to a decrease in the plasma viral load of all treated HIV-infected individuals. Each dot 
represents a single individual, the horizontal black lines the mean and the horizontal dashed line represents 50 
copies of plasma HIV RNA/mL. 

 

 
Figure S2. The CD4+ T cell counts rate of increase is similar between individuals with quite distinct CD4+ T cell 
counts at baseline. A. CD4+ T cell progression for three defined CD4+ T cell strata. The mean of each time-point is 
represented for the three strata independently. B. The progression of the CD4+ T cells counts is represented for each 
individual independently (black thin lines) and for the mean of all the individuals (thicker a green line). C. 
Comparison of the rates of CD4+ T cell recovery during the 24 months of HAART between the three defined strata. 
Slopes were calculated by the least square estimation method, as previously described [33]. Each dot represents a 
single individual and the solid horizontal line the mean. Comparisons were performed using a one-way ANOVA test 
followed by Bonferroni’s multiple comparison tests; no statistical significant differences were observed. 
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It has been previously described that for HIV-infected HAART-naïve individuals, Treg 

percentages correlate negatively with the CD4+ T cell counts [39]. This observation is confirmed 

in the present study (r=-0.3195, p=0.0046; Pearson correlation). To understand whether Treg 

percentage evolution during therapy differs accordingly to the disease stage at HAART initiation, 

individuals were stratified based on their CD4+ T cell counts at baseline (<200, 200-350, and 

>350 CD4+ T cells/μL). Interestingly, the differences observed on the Treg percentages of the 

overall HIV-infected individuals are only evident for the individuals that initiate HAART at very low 

CD4+ cell counts (Figure 1B). Due to the high variability on the Treg percentages depicted in 

Figure 1A and B, we consider that it would be of relevance to show the evolution of Treg 

percentages for each individual (Figure 1C and D). Overall, we can see a great diversity on the 

evolution of the Treg percentages (Figure 1C). Nevertheless, a decline in the Treg percentages is 

observed, that becomes significantly different from the baseline from 12 months of HAART on 

(Figure 1C). As can be seen in Figure 1D, the evolution of Treg percentages in most individuals 

with CD4+ T cell counts above 200 is quite similar, with a few individuals showing fluctuations. 

This is not the case for individuals that initiate HAART with <200 CD4+

The role of Treg in the immune recovery process in HIV-infected patients upon effective 

HAART remains to be elucidated. Some cross-sectional studies with individuals on HAART 

suggested a negative role of a high Treg percentage on the immune reconstitution during HAART 

[18, 31-34], but also the contrary has been proposed [41]. 

 T cell/μL; for the majority 

of these individuals, a high range of Treg percentages is present at baseline and their evolution is 

also very diverse (Figure 1D). 

  To evaluate whether Treg percentages at baseline affects CD4+ T cell reconstitution 

among HIV-infected individuals under effective HAART, we assess the correlation between Treg 

percentage at baseline and CD4+ T cell reconstitution. We observed that high Treg percentages at 

baseline negatively correlate with CD4+ T cell counts at 24 months (Figure 2A). As a result, when 

HIV-infected individuals were subdivided according to their Treg percentage at baseline (<10% 

and ≥ 10% as in [41]), those that present higher Treg percentages at baseline, showed lower 

CD4+ T cell counts at 24 months (Figure 2B). To evaluate whether this difference could be related 

to the 10% Treg cut-off, the same analysis was performed upon stratification of individuals based 

on Treg percentages quartiles of or our healthy control group (<5th, 5th to 95th and >95th; upper 5th 

percentile limit = 4.2%; lower 95th percentile limit = 13.3%) and similar results were found (Figure 

S3). 
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Figure 1. The most immunosuppressed individuals at HAART onset tend to show higher percentages of Treg, which 
decline with HAART for most patients. A. Overall comparison of the Treg percentages of healthy controls and HIV-
infected individuals at different time-points upon HAART initiation. B. Comparison of the Treg percentages of healthy 
controls and HIV-infected patients stratified accordingly to their CD4+ T cell counts at baseline. C. Longitudinal 
evaluation of Treg percentages throughout the first 24 months of HAART. D. Stratification of HIV-infected individuals 
accordingly to CD4+ T cell counts at baseline and longitudinal evaluation of Treg percentages throughout the first 24 
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months of HAART. For panels A and B, each dot represents a single individual, the horizontal black line the group 
mean and the shaded green horizontal bar represents the range of Treg percentages among CD4+

 

 T cells described 
for healthy individuals using similar markers [14]. Comparisons were performed using a one-way ANOVA test 
followed by Bonferroni’s multiple comparison tests using as reference group the HIV-uninfected individuals. For 
panels C and D, each thin line represents the Treg evolution of a single individual and the bold lines represent the 
means of the individuals for each time-point. The evolution of Treg percentage with HAART was evaluated using 
repeated measurements ANOVA test followed by Bonferroni’s multiple comparison tests using as reference the 
HAART-naïve individuals. 

 

 
 
Figure 2. Individuals with higher Treg percentages at baseline have lower CD4+ T cell counts at 24 months. A. 
Relation between Treg percentage at baseline and CD4+ T cell counts at 24 months of HAART (n=77) by Pearson’s 
correlation. B. Comparison of the CD4+

 

 T cells counts at 24 months of HAART between individuals with low (<10%; 
n=38) and high (≥10%; n=39) Treg percentages at baseline using an unpaired T-test. Each dot represents a single 
individual and the horizontal line the mean.  

 

 
 
Figure S3. Individuals with higher Treg percentages at baseline have lower CD4+ T cell counts at 24 months. Data on 
figure 2B was re-analyzed upon stratification of the individuals by percentiles of Treg percentages of the HIV-
uninfected group (higher 5th percentile limit of 4.2%; lower 95th

 

 percentile limit of 13.3%). Comparisons were 
performed between the three groups using one-way ANOVA test followed by Bonferroni’s multiple comparison tests. 
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The variation in the CD4+ T cell counts (i.e. the difference between the CD4+ T cell counts 

at 24 and 0 months) and the CD4+ T cell counts slope in the first 24 months of therapy (calculate 

by the mean square estimation model, as described in [33]) were independent of the CD4+ T cell 

counts at baseline (respectively, r=-0.0288, p=0.7887 and r=-0.0086, p=0.9390 by Pearson’s 

correlation) as it has been reported by previous studies [6, 42-44]. To evaluate whether the Treg 

percentages at baseline could affect this outcome, we stratified individuals according to Treg 

percentage at baseline (<10% and ≥ 10%) and the CD4+ T cell counts were evaluated throughout 

therapy and found no differences (Figure 3A). However, at baseline, individuals with higher Treg 

percentages have lower CD4+ T cell counts in comparison to individuals with lower Treg 

percentages (211 ± 146 vs. 313 ± 243 CD4+ T cell counts, p=0.030 by unpaired T-test). For this 

reason, and in order to evaluate reconstitution of individuals on the same stage of lymphopenia 

at HAART initiation but with distinct Treg percentages, we stratified individuals first based on their 

CD4+ T cell counts and then on the Treg percentage, both at baseline. No differences were 

observed on the pathern of CD4+ T cell recovery independently of the CD4+

Figure 3. Evolution of CD4

 T cell strata at 

baseline (Figure 3B). 

+ T cell counts with HAART is not associated with Treg percentage at baseline. A. 
Stratification of HIV-infected individuals based on their Treg percentages at baseline (<10%, n=38, blue line; ≥10%, 
n=39, red line) and evaluation of the CD4+ T cell reconstitution during HAART. Each line represents the median of all 
individuals in each specific time-point. B. Stratification of HIV-infected individuals based first on their CD4+ T cell 
counts at baseline (<200, 200-350 and >350 cells/μL) and afterwards on their Treg percentages at baseline (<10%, 
blue lines; ≥10%, red lines) and evaluation of the CD4 + T cell reconstitution with HAART. Each thin line represents a 
single individual and bold lines represent the median of all individuals from each group in each specific time-point. In 
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all graphs, a two-way ANOVA repeated measurements was performed to compare the evolution of the two groups 
throughout time of HAART and no significant differences were observed. 

 

 
Taken together, this data suggest that the negative effect observed of the higher Treg 

percentages at baseline on the CD4+ T cell reconstitution is dependent on the baseline CD4+ T 

cell counts. To test this hypothesis, and considering that several other different factors account 

for the immune reconstitution (e.g. age, gender, basal viral load, residual viral replication during 

HAART, co-infections, immune activation status [4]), hierarchical linear regression models were  

performed. As can be observed in Table 2, model 1, age, gender, co-infections, viral load at 

baseline and at 24 months and immune activation status (HLA-DR+ cells among CD4+ T cells) at 

24 months of HAART, by themselves are able to significantly predict 30% of the CD4+ T cell 

counts at 24 months of HAART. When the Treg percentages at baseline were included in the 

model (Table2, model 2) the predictive capacity of the model increases to 35% (5% difference 

from the 1st model) with Treg percentages at baseline showing up as a significant predictor of 

CD4+ T cell reconstitution. Taking all the afore mentioned variables in consideration, for the gain 

of each percentage unit of Treg at baseline, the predicted CD4+ T cell counts at 24 months 

decreases in 11 cells/μL. However, when the CD4+

  

 T cell counts at baseline are taken into 

consideration (Table 2, model 3) the predictability of the model raises to 70% (35% and 40% 

difference relatively to the 1st and 2nd models, respectively) but the contribution of the Treg 

percentage at baseline loses its significance. 
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Table 2.  Hierarchical linear regression models to predict CD4+ T cell counts at 24 months of HAART. 
1At baseline; 2Reference category: female; 3Reference category: no chronic co-morbidity (HCV 
infection/cancer/medical condition leading to recurrent infections; consider positive when at least one of them 
occurred during the 24 months of HAART). Variables were considered to significantly contribute to the model when 
p<0.05. 
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HIV-infected individuals showed Treg subset disturbances that are not restored with HAART 

initiation 

The human Treg population is heterogeneous and can be subdivided in naïve and memory 

Treg (CD45RA+

We observed a clear disturbance in Treg subpopulations distribution; in chronically 

untreated HIV-infected individuals, the percentage of CD45RA

 and CD45RA-, respectively), which are developmentally related cells [38, 40]. 

Because these cells, upon in vitro stimulation, present distinct phenotypes (proliferative but 

highly resistant to apoptosis cells vs. hyporesponsive and apoptotic cells, respectively) [38], the 

maintenance of the right proportion of these subpopulations is considered of relevance for the 

functioning of the immune system. In order to evaluate whether the Treg compartments were 

restored with HAART initiation to levels similar to healthy controls, we evaluated the percentage of 

naïve and cycling Treg. 

+ cells among total Treg was lower 

in comparison to healthy individuals and this difference persisted even upon 24 months of 

HAART (Figure 4A). These differences were more evident for individuals with less than 350 CD4+

As for the percentage of Treg undergoing proliferation, overall the percentage of Ki67

 

T cells/μL at baseline (Figure 4B). 

+ 

Treg is increased in HAART-naïve HIV-infected individuals in comparison to healthy controls 

though it normalizes with HAART initiation (Figure 5A). When HIV-infected individuals are 

stratified accordingly to their stage of lymphopenia at baseline, only the individuals with the 

lowest CD4+ T cell counts before HAART initiation (<200 cells/μL) presented higher Ki67+

 

 cells in 

comparison to healthy controls. This difference is maintained up until the end of follow-up (Figure 

5B). 

2.3.5. Discussion 

 

The evolution of Treg percentages during HAART and their contribution to the immune 

reconstitution of HIV-infected individuals is still a controversial issue that deserves attention. This 

lack of consensus might be related to several factors such as the type of studies performed, the 

heterogeneity and size of the study population, the time on therapy, the markers used to define 

this cell subset, among others. In an attempt to clarify this matter, we performed a longitudinal 

cohort study with 81 HIV-infected individuals being followed since HAART onset and for the 

following 24 months. During this time-period all individuals showed a decrease in their plasma 
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viral loads and most of them presented an increment of the CD4+

 

 T cell counts in a fashion 

similar to the one described previously [45]. However, it is important to notice that not all 

individuals are able to achieve proper immune reconstitution. Several factors have been 

inconsistently related with this lack of success, among them Treg. 

Figure 4. The percentage of naïve cells among Treg is not restored to levels similar to healthy controls at the end of 

24 months of HAART. A. Percentage CD45RA+ cells among Treg on healthy controls and on HIV-infected individuals 

from baseline up until 24 months of therapy. B. Percentage CD45RA+ cells among Treg upon stratification of the 

individuals accordingly to their CD4+

 

 T cell counts at baseline. In all graphs, each dot represents a single individual; 

horizontal black lines represent the mean. Comparison between healthy controls and HIV-infected individuals naïve 

for HAART or on different time-points upon HAART initiation performed using a one-way ANOVA test followed by 

Bonferroni’s multiple comparison tests. 

As most of the studies describe [23-28], we have observed an increase of Treg 

percentages in HAART-naïve HIV-infected individuals in comparison to healthy controls. However, 

when individuals were stratified accordingly to their CD4+ T cell counts at baseline this 

observation was more evident for individuals with less than 200 CD4+ T cells/μL at baseline, 

indicating that Treg evolution with HAART varies accordingly to the state of immunosuppression 

at the beginning of therapy. In fact, the lack of alterations in the Treg percentage of HIV-infected 
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individuals with CD4+ T cell counts above 200 cells/μL goes along with the observation made by 

Simmoneta et al. that evaluated a cohort of individuals with CD4+ T cell counts at baseline above 

350 cells/μL [14]. Thus, we added to the established knowledge that, although in general the 

percentage of Treg is increased in the HAART-naïve HIV-chronically infected individuals, the 

diversity is very high and the higher Treg percentages are clearly enriched among the individuals 

with very low CD4+

 

 T cells. 

Figure 5. Highly lymphopenic individuals at baseline maintain high proportions of Treg undergoing proliferation 
throughout HAART. A. Percentage Ki67+ cells among Treg on healthy controls and on HIV-infected individuals from 
baseline up until 24 months of therapy. B. Percentage Ki67+ cells among Treg upon stratification of the individuals 
accordingly to their CD4+

 

 T cell counts at baseline. In all graphs, each dot represents a single individual; horizontal 
black lines represent the mean. Comparison between healthy controls and HIV-infected individuals naïve for HAART 
or on different time-points upon HAART initiation performed using a one-way ANOVA test followed by Bonferroni’s 
multiple comparison tests. 

Disturbances in Treg subsets homeostasis in chronically untreated HIV-infected patients 

have been described in other studies [14, 32, 34, 46-48]. Some of these reports evaluated the 

percentages of Treg subsets among CD4+ T cells [14, 47]. However, because the percentage of 

total Treg among CD4+ T cells is highly variable for HIV-infected individuals (being or not on 

HAART), looking at percentages of Treg subsets among total CD4+ T cells, and not among Treg 

cells specifically was not the best option to analyse the diversity between patients. So, taking into 
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account only studies that evaluate naïve cells among Treg, the study by Gaardbo et al. observed 

that the percentage of naïve cells in healthy controls is higher than that in HIV-infected individuals 

on HAART, irrespective of their outcome in what concerns immune reconstitution (non-

responders, intermediate responders and responders) [48]. On the other hand, on the study 

published by Serana et al. no significant differences were observed on the percentages of this 

Treg subset in healthy controls vs. individuals on long-term HAART (>6 years) [46]. The 

discrepancy on these results might now be justified in light of our data as we observe that the 

evolution of the naïve cells among Treg varies accordingly to the CD4+

Several cross-sectional reports have proposed a role for Treg on the accomplishment of 

immune reconstitution [18, 31-34, 50]. In fact, we have previously shown that individuals with 

impaired immune reconstitution (i.e. less than 500 CD4

 T cell counts at baseline. 

Nevertheless, the low percentages of naïve cells among Treg may reflect an increased turnover of 

these cells into memory phenothype. In fact, we observe higher percentages of Treg cells 

undergoing cell division for the most immunosuppressed individuals at baseline (<200 cells/μL), 

even after initiating HAART, in comparison to the healthy controls. However, as natural Treg are 

generated in the thymus [38], one may not exclude the possibility that lower percentages of naïve 

cells among Treg could be related to lower thymic output, since it is known that HIV infection 

impacts thymic function [49]. 

+ T cells/μL after 1 to 15 years on 

HAART) were the ones with the highest Treg percentages (≥ 10%) and lower nadir values (the 

lowest CD4+ T cell count ever achieved by an HIV-infected individual) [33]. More recently, Saison 

et al., observed in a multivariate model adjusted for age, nadir, Treg percentage and CD8+ T cell 

activation (CD38+) that nadir and Treg percentages were the only two parameters associated with 

immunological response to HAART [31]. To our knowledge, no reports until now are available on 

the impact of Treg percentages at baseline on the immune reconstitution process. In our point of 

view this is a relevant issue especially if we take into consideration the observed high variability of 

Treg percentages at baseline. In fact, we perceive that Treg percentages at baseline correlates 

negatively with CD4+ T cell counts at 24 months of HAART. However no differences are observed 

on the CD4+ T cell counts progression of individuals with high vs. low Treg percentages at 

baseline (<10% and ≥10%) even after being stratified accordingly to their baseline CD4+ T cell 

counts. Taking into account in hierarchical linear regression models other factors known to affect 

immune reconstitution we observed that Treg percentages at baseline affect CD4+ T cell counts at 

24 months in a way dependent of CD4+ T cell counts at baseline. Despite the fact that some 
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reports show no alterations on the suppressive capacity of Treg during HIV-infection [51], 

recently, the reports by Pion et al. [52] and by Angin et al. [53], have described in vitro that HIV-

infected Treg show impaired suppressive capacity and a decreased expression of genes critical to 

Treg function. We have no information on the suppressive function of the Treg cells from our 

patients which is a weakness of the present study. We observed that Treg percentages at 

baseline positively correlate with the percentages of CD4+ T cells with an activation phenotype 

(HLA-DR+) and undergoing proliferation (Ki67+; data not shown). In vitro studies should be 

performed to evaluate Treg suppressive capacity from individuals with the highest Treg 

percentages among the ones with less that 200 CD4+

Taken together, our data shows that the evolution of Treg proportions and of its 

subpopulations in the onset of HAART varies differently accordingly to the baseline state of 

immunosuppression. Moreover, we show for individuals with very low CD4

 T cells/μL.  

+ T cell counts at 

baseline that the Treg percentage is extremely diverse which might explain some of the 

controversy on the data previously published by others. In addition we show that the Treg cell 

subsets are disrupted due to lymphopenia and the normal proportion of these Treg cell subsets is 

not recovered, even when the CD4+ T cell counts rise to numbers similar to non-infected 

individuals. Our work adds to others that very low nadir leads to disruptions at different levels of 

the T cells and that part of these alterations are not recovered during HAART. Further studies 

should be carried out to evaluate the suppressive capacity of Treg in HIV-infected individuals with 

very low numbers of CD4+

 

 to determine if the great diversity in percentage is associated with 

diversity also in function. Finally, these patients, as well as other cohorts, have to be followed for 

longer periods to clearly define the role of Treg, and other cells on the quality of the immune 

reconstitution of HIV-infected patients under HAART. 
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2.4 Newly Detected Spinal Cord Lesions in a Patient Infected with HIV, with a History of Cerebral  

Toxoplasmosis under Correct Treatment – a Case of Immune Reconstitution Inflammatory 

Syndrome and regulatory T cells deregulation? 

A Case report 

 

2.4.1. Abstract 

 

Background: Patients infected with HIV, especially in advanced stages of AIDS, are frequently 

affected by neurological disorders. Neurological disorders in AIDS patients might be a 

consequence of several mechanisms like: direct HIV infection of cells from the central nervous 

system (CNS); infection of the central nervous system by opportunistic pathogens; or immune 

reconstitution inflammatory syndrome (IRIS). Despite the great prevalence of toxoplasmic 

encephalitis, only few cases of neuro-IRIS related to this AIDS defining condition have been 

described. 

Case presentation: We present a case of a patient infected with HIV that upon being successfully 

treated for a cerebral toxoplasmosis unexpectedly deteriorated two months after antiretroviral 

therapy initiation and developed lesions in the spinal cord. Since this patient was included in our 

longitudinal cohort, it was possible to follow the values of regulatory CD4+

Conclusions: The case presented is strongly suggestive of a paradoxical toxoplasmosis-IRIS with 

the involvement of the spinal cord. The rarity, not only of the toxoplasmosis related IRIS, but also 

the localization of the lesions (spinal cord), renders this presentation a case of particular interest. 

In what concerns Treg and Treg subsets, although we have found a large diversity of the values 

and in their evolution over time after antiretroviral treatment initiation between all patients (case 

and controls), the variation of those values in the case seems to be more pronounced than in 

controls, and more pronounced in the first three months of antiretroviral therapy coinciding with 

the manifestations of IRIS. 

 T cells (Treg) and Treg 

subsets from the moment of antiretroviral treatment onset and throughout all events that 

occurred thereafter. We have also been able to compare the results obtained with those 

presented by nine matched patients also from the longitudinal cohort as controls. 

Keywords: CNS inflammation, HIV/AIDS, IRIS, Toxoplasmosis, myelophaty 
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2.4.2. Introduction 

 

The vast majority of untreated HIV-infected patients suffer from a gradual decrease of the 

CD4+ T cell counts rendering patients highly susceptible to several opportunistic diseases that 

can occur in almost all the body systems including the central nervous system (CNS). Agents that 

are known to be involved in neurological complications in AIDS patients are on one hand the HIV 

itself [1] and on the other hand opportunistic pathogens [2]. Furthermore, in patients initiating 

HAART and within the first weeks or months, the recovery of the CD4+

 IRIS was first reported in 1992 [4]. Since then, it became a distinct clinical condition 

affecting a growing number of patients due to the increasing use of HAART worldwide [5]. The 

frequency of IRIS among HIV-infected patients starting HAART, in a meta-analysis involving 54 

cohort studies from 22 countries (of high, high-middle, low-middle, and low income), was 

estimated at 16% (11,1 – 22,9%) with 4,5% (2,1 – 8,6%) mortality [6]. IRIS is a challenging 

condition as the clinical features are nonspecific and consequently, there is no consensual case 

definition. Since the immunopathogenesis of IRIS is poorly understood, the optimal preventive 

and treatment strategies are still controversial [7]. 

 T cells might be followed 

by an aberrant pathogen-specific immune response, leading to a heightened inflammatory 

process and, consequently, to a worsening of the state of health of the patient. This process has 

been defined as immune reconstitution inflammatory syndrome (IRIS). IRIS occurs following the 

restoration of the host defenses against an active living and replicating pathogen (previously 

subclinical and undiagnosed opportunistic infection – unmasking IRIS) or against a non-active 

residual pathogen/antigens (opportunistic infection previously diagnosed and correctly treated – 

paradoxical IRIS) [3].  

Several immune events occur during immune restoration that might, independently or 

synergistically, lead to IRIS [7 and references therein]. Data from numerous reports suggest 

deregulated CD4+

During IRIS, a powerful and aberrant pathogen-specific immune response by 

conventional T cells occurs, and some events concerning these cells could in part explain this 

exacerbated antigen-specific immune reaction in a IRIS scenario: 1) due to the previous 

encounter between immune cells and specific antigens of the pathogen, occurred an expansion 

of memory T cell (CD4

 T and/or natural killer (NK) cell responses as responsible for the exacerbated 

inflammation response and consequent tissue damage [7 and references therein].  

+ and CD8+ T cells residing in lymphoid tissues) which specificities are 
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limited in diversity [8]; 2) this limited diversity might be even enhanced in lymphopenic scenarios 

as these situations lead to a homeostatic proliferation of T cells that are T cell receptor (TCR) 

stimulation dependent [9]; 3) moreover, these latter memory T cells, expanded during 

proliferation lymphopenia-induced are more permissive to commit into effector T cells as a result 

of the activation by present antigens [10]; 4) since that the first rapidly peripheral increase in 

CD4+ T cells after HAART initiation is caused by a redistribution of memory CD4+ and CD8+

The regulatory T cells (Treg), a subset of CD4

 T cells 

from lymphoid tissues to the periphery [11], the highly specific and asymmetrical expanded 

memory T cells already resided within tissues reach the periphery [12]; and also, 5) a potential 

contribution to be considered is an autoimmune response - self-antigens derived from debris 

and/or from the uptake of dying cells by antigen presenting cells could turn T and B cell 

responses able to perpetuate tissue damage [13]. 

+ T cells, are essential to blunt the immune-

response, helping to maintain the immune system homeostasis and protecting the host from 

exaggerated immune-mediated damage. These cells have also been suggested to be involved in 

IRIS deregulated immune response by several reports [7,14-17]. It is known that after HAART 

initiation, a rapid rebound of conventional T cells is not always followed by a parallel raise of Treg 

which could lead to a decreased proportion of Treg in respect to the conventional CD4+ T cells 

[14]. However, Treg proportion has also been demonstrated to raise in patients suffering from 

IRIS suggesting that although present, Treg might be dysfunctional [15,16,17], or that the new 

conventional CD4+

 IRIS affecting the CNS (CNS-IRIS) presents, compared with other IRIS-associated organ, 

the aggravating circumstance that the CNS is of poor access to clinical investigation and that 

CNS-IRIS is associated with greater morbidity and mortality, frequently resulting in severe 

neurologic disability or even death [3]. CNS-IRIS is estimated to occur in 0.9 to 1.5% of patients 

during the first months on HAART [18]. Despite the fact that toxoplasmic encephalitis is the most 

prevalent opportunistic infection of the CNS among AIDS patients, only few cases of unmasking 

and, even less of paradoxical toxoplasmic encephalitis-IRIS have been reported [7,19-24]. In 

addition, the involvement of the spinal cord in AIDS associated toxoplasmosis is rare [19,25,26], 

and only one case report of paradoxical toxoplasmic medullar-IRIS has been published [19]. The 

strong ability of Toxoplasma gondii to evade the immune system (with mechanisms to reduce its 

visibility to the immune system by decreasing the expression of immunogenic surface proteins 

and maintaining a low-metabolism), and to hamper an immune response (favoring the expansion 

 T cells might be refractory to Treg function [14].  
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of Treg and interfering with the MHC class I and class II antigen presentation pathway and 

interferon-γ signaling) could explain the low predisposition of this pathogen to cause CNS-IRIS 

[7,19,20,27,28]. Hence we consider important to present here a strongly suggestive case of 

paradoxical toxoplasmosis IRIS with spinal cord involvement. Moreover it was interesting to 

investigate the dynamic of Treg and its subsets in parallel with all events occurred after HAART 

onset. 

 

2.4.3. Case presentation 

  

Four months after HIV diagnosis and three months after HAART onset, a 37-year-old man 

presented (Figure 1), in a routine medical appointment, decreased sensory sensation of the right 

lower limb that lasted for about 1 month. The beginning of the hyposensitivity had been 

somewhat abrupt but progressively worsening. At the moment of the medical appointment, it 

extended to the entire right lower limb and half of the abdomen. He showed no fever, headaches, 

vomiting, vertigo, numbness, weakness, seizures, other neurologic, and neither symptom of the 

respiratory, digestive, or urinary systems.  

  

 

 

 

 

 

 

 

 

Figure 1. Events chronology. The color arrows point out crucial events and will be used in the Figures 8-12. 

 

When HIV infection was diagnosed (four months before), the patient presented 

headache, psychomotor retardation and left hemiparesis, and a diagnosis of cerebral 

toxoplasmosis was made, based on: diagnosis of HIV infection, advanced immunodeficiency 

(CD4+ T cell count of 20/mm3, and a plasma HIV-1 load of 301000 copies/ml), a computed 

tomography scan (CT) showing scattered lesions in the brain parenchyma with perilesional 
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edema, mass effect, and some with ring contrast enhancement (Figure 2), a positive serology for 

toxoplasmosis, and a clinical and radiologic improvement after specific anti-toxoplasmosis 

treatment without corticosteroid therapy (a CT scan, performed 14 days after the initiation of the 

anti-toxoplasmose theraphy showed scattered smaller lesions with only little residual edema and 

no ring contrast enhancement – Figure 3). 

 

 

 

  

 

Figure 2. First brain CT, after contrast injection. Multiple hypo-density lesions, perilesional edema and sulcal 
effacement suggesting mass effect. After contrast injection, some of these lesions revealed ring enhancement. 

 

HAART (with tenofovir, emtricitabine and darunavir boosted with ritonavir) was initiated 

one month after HIV diagnosis, toxoplasmosis diagnosis, and specific anti-toxoplasmosis 

treatment onset (Figure 1). Toxoplasmosis treatment was maintained during two and an half 

months and then changed to suppressive therapy whereas prophylaxis for other primary 

opportunistic infections was maintained. 
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Figure 3. Brain CT realized after 14 days under specific anti-toxoplasma therapy, after contrast injection. 
Improvement of previous lesions is seen. No more mass effect, or ring contrast enhancement were seen. 

 

Three months after HAART initiation, in the above mentioned routine medical 

appointment, the patient stated that he was always taking his medication correctly: HAART, 

suppressive therapy for toxoplasmosis, and primary prophylaxis for Mycobacterium avium 

complex disease. Despite a slight sequelar left hemiparesis, the mental status of the patient was 

normal, no papilledema or neck stiffness were present, and the cranial nerves exam was normal, 

but an upper right unilateral sensory level at D-9 was present with loss of touch sensation and of 

the ability to feel pain bellow this level across the entire right lower limb and right hemi-abdomen. 

The position sensation was normal, and normal muscular force and reflexes were present in the 

correspondent area. The patient was immediately admitted to the hospital to be studied: 

- A cerebral CT scan was performed (Figure 4) revealing the previous lesions (a couple 

revealing worsening with a slight ring contrast enhancement and perilesional edema, others 

revealing improvement), and some new lesions. A magnetic resonance imaging (MRI) of the 

dorsal spinal cord (Figure 5) revealed myelitis: multiple areas of high signal intensity on the T2-

weighted images (one of them, at D4, presenting contrast enhancement on T1-weighted images), 



 
 

129 

located between D3 and D9, mainly peripheral and on the left side, and probably a posterolateral 

lesion on the right side at D7-D8. 

 

 

 

Figure 4. Brain CT after contrast injection. Several hypo-density lesions, some of them with slight perilesional edema 
and ring enhancement after contrast enhancement. 

 

- The CD4+ T cell count was 128/mm3 and the plasma HIV-1 viral load, 121 copies/ml. 

The cerebrospinal fluid (CSF) evaluation revealed the following values: 5 cells/ml; 58 mg/dl of 

protein; 51 mg/dl of glucose; negative results for stain and cultures for bacteria (Gram and acid-

fast) and fungi; negative results for the cryptococcal antigen; a nonreactive Venereal Disease 

Research Laboratory (VDRL) test; and the results from the polymerase chain reactions (PCR) to 

identify other common agents (JC virus, BK virus, cytomegalovirus, herpes simplex virus, human 

herpesviruses 6, varicella-zoster virus, and enterovirus) were also negative. A CSF PCR for 

Toxoplasma gondii was not performed due to technical limitations. The CSF PCR for Epstein-Barr 

virus was positive; but a normal CSF lymphocyte phenotype assay and a whole-body positron 

emission tomography scan (PET) revealing neither hyper metabolic cerebral nor medullar lesions, 

ruled out a CNS lymphoma. Serological HTLV-1/II antibody assay was also negative. 
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Figure 5.  Spinal cord MRI A and B. Area of high signal intensity on the T2-weighted images, peripheral and on the 
left side on D4. Axial and sagittal planes respectively. C. Areas of high signal intensity on the T2-weighted images 

(sagittal plane), below D4. D. Area presenting contrast enhancement on T1-weighted images on coronal plane (D4). 
E. Area of high signal intensity on the T2-weighted images on coronal plane (D4). 

 

Although the clinical and laboratory information suggested a potential case of CNS-IRIS, 

the toxoplasmosis suppressive treatment was changed to initial treatment by precaution, and 

HAART and prophylaxis for opportunistic infections maintained. Corticosteroid therapy was not 

A 

 

B 

 

 

C 

D 

 

E 
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administered. One month after the anti-toxoplasmosis treatment re-initiation, the clinical status of 

the patient was stable, and indeed, a new brain and medullar MRI performed was similar to that 

performed one month before (images not shown). A stereotactic brain or medulla biopsy was 

considered of relevance. However, while we were waiting for the possibility to perform this 

intervention, the patient showed a slight spontaneous improvement of the symptoms, the biopsy 

was delayed and a new brain and medulla MRI was schedule to four months later (the patient 

was maintained under surveillance). In fact, the patient steadily improved his clinical status 

confirmed by the brain and medullar MRI performed. That MRI revealed the disappearance of 

some previous lesions and the improvement of the others (one of them now with clastic aspect – 

image not shown) in the brain and the complete resolution of the lesions in the medulla (Figure 

6). The patient presented then fully sensory recovery of the right lower limb, only maintaining the 

sequelar left hemiparesis. The CD4+ T cell count was 244/mm3

 

 and HIV viral load below the 

detection limit (20 copies/ml). He maintained HAART and suppressive treatment for 

toxoplasmosis. 

 

Figure 6. Brain and medullar (T2-weighted images) MRI A: Improvement of previous brain lesions  
B: Absence of spinal cord lesions. 

 



132 
 

0M 1M 2M 3M 6M 9M 12
M

16
M

20
M

0

100000

200000

300000

400000

Case
Controls

H
IV

 V
L 

(c
op

ie
s/

m
l)

The evaluation of Treg and its subsets percentages was performed over time on HAART 

and analyzed in parallel with the clinical course of the case, and in other nine patients as 

controls. The nine controls were individuals also from our longitudinal cohort (subchapter 2.1) 

with similar characteristics (gender, age, CD4+

 

 T cell count at baseline) as the individual of the 

clinical case (Figure 7), but for which neither opportunistic infections were diagnosed at baseline 

neither the control-patients developed signs of IRIS. 

 

 

 

 

 

 

 
Figure 7. Demographic characterization of the clinical case and control group 

 

HAART resulted in a rapid decline of the plasma viral load and in an improvement of 

CD4+ T cells count both in the clinical case and controls (Figure 8). Both the decrease in HIV viral 

load and the increase in CD4+

 

 T cells of the case seemed to be similar to those of controls.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Decrease in HIV viral load and increase in CD4+

 

 T cells under HAART in clinical case and controls. The 
color arrows point out crucial events in the clinical case and are defined in the Figure 1. 
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Concerning the total Treg percentage on total CD4+

 

 T cells (Figure 9), we noted in the 

clinical case, a decline in the first month of HAART immediately followed by a pointy rise, peaking 

at third month of HAART. This peak was coincident with the peak of symptoms of IRIS. After the 

third month, the Treg percentages progressively went back to the value observed before IRIS 

symptoms manifestation coinciding with clinical recovery. From 6 months on, Treg percentages 

of the case did not greatly differ from the majority of the individuals in the control group (Figure 

9).  

 

 

 

 

 

Figure 9. Total Treg frequency on total CD4+

 

 T cells, we noted a sharp decline in the first month of HAART 
immediately followed by a pointy rise, peaking at third month. The color arrows point out crucial events in the clinical 

case and are defined in the Figure 1. 

As Treg can be separated into functionally and phenotypically different subpopulations 

[33] we next, analyzed the Treg subsets (Figure 10) over time. And we also analyzed the dynamic 

of percentages of cycling Treg (Ki67+) and of recent thymus emigrants Treg (using the markers 

CD45RA+CD31+

    

 ) among Treg [34]. 

 

 

 

Figure 10. The naïve Treg (CD45RA+ on Treg) and non naïve Treg (CD45RA-

 

 on Treg), percentage on Treg, dynamic 
over time. The color arrows point out crucial events in the clinical case and are defined in the Figure 1. 

We found that the first decrease, in the first month, in Treg percentage was synchronized 

with a sharply decrease in naïve Treg percentage (CD45RA+
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expectable, with an increase on memory Treg percentage (CD45RA-

 

 on Treg) (Figure 10). We also 

found an increase in the percentage of cycling Treg and a decrease in percentage of recent 

thymus emigrants Treg (Figure 11). The high proliferation rate of Treg could have augmented the 

conversion rate of naïve Treg in memory Treg [33].  

Figure 11. The dynamic of percentages of cycling Treg (Ki67+) and recent thymus emigrants Treg (CD45RA+CD31+

 

), 
on Treg, over time. The color arrows point out crucial events in the clinical case and are defined in the Figure 1. 

During the second month (1 to 2 months of HAART), we noted that almost all Treg in 

clinical case seemed to be non naïve Treg (activated plus non suppressive Treg) (Figure 10), the 

percentage of cycling Treg decreased and that the percentage of recent thymus emigrants Treg 

was maintained at a very low level (Figure 11). Still, there was an increase in the Treg percentage 

(on total CD4+

After the second month and until the third month on HAART, when the symptoms 

peaked, we noted a progressive increase in naïve Treg over a decrease in non naïve Treg, that 

the percentage of cycling Treg continued to decrease and that the percentage of recent thymus 

emigrants Treg begun to increase.  

 T cells). It is worth to note that IRIS-related symptoms initiated at the end of the 

second month when practically all Treg were non-naïve Treg (Figure 10). 

After the third month on HAART, the Treg and Treg subsets changes were less evident 

showing a tendency to stabilize. Yet it is worth noting the sustained increase verified on 

percentage of recent thymus emigrants Treg and percentage of naïve Treg (Figures 10 and 11). 

It is also worth to note that in the reported case, the percentage of cycling CD4+ T cells 

(Ki67+ on CD4+

 

 T cells) (Figure 12) showed the highest peak comparing to controls. That peak 

was noted at the end of the first month, one month before the symptoms appearance. 
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Figure 12. Ki67+ on CD4+

  

 T cells (%) over time. The color arrows point out crucial events in the clinical case and are 
defined in the Figure 1. 

2.4.4. Discussion 

 

 Although no firm conclusions can be drawn, we are strongly convinced this patient 

presented a case of paradoxical toxoplasmosis-IRIS with the involvement of the spinal cord. 

The initial event was clearly due to toxoplasmic encephalitis – the high incidence of this 

disease among immunecompromised HIV-patients, the presence of typical brain lesions, the 

positivity of toxoplasma serology, and the improvement under specific anti-toxoplasma therapy, 

strongly support our diagnosis. We did not use corticosteroid therapy that could cause the false 

feeling of improvement as its use would decrease brain swelling whether or not the mass was 

caused by infection. Although CSF PCR for T. gondii was not performed, its negativity would not 

exclude the diagnosis because the sensitivity of the exam is only 50% [29].  

The diagnosis of a CNS-IRIS, since there are no specific biomarkers, is presently made 

on the basis of a multi-parametric assessment [7] that was identified in this patient, namely: 1) a 

high pathogen load as revealed by the multiple brain lesions; 2) a positive response to HAART 

with evidence of controlled HIV replication (the HIV load decreased from 301000 to 121 

copies/ml in 3 months) and a immunological improvement (the CD4+ T cell count increased from 

20 to 128 cells/mm3 in 3 months); 3) a short temporal gap (2months) between HAART initiation 

and the disease worsening; 4) an inflammatory reaction causing the worsening of previous 

lesions and the appearance of new lesions revealed in neurologic imaging studies; 5) the 

exclusion of other differential diagnosis through negative results on specific tests; and 6) clinical 

and radiologic improvement without particular empiric therapies. Yet, an incomplete anti-

toxoplasma medication compliance could lead to a worsening of the first disease - still we 

consider that if it happened, a marked worsening of all the previous lesions would be present 
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instead of the appearance of new lesions while other were stabilized, and also the patient stated 

that he had correctly took his medication. 

 Regarding the pathogen causing the CNS-IRIS, although our perception is to consider 

toxoplasma the causative agent, we cannot exclude a CNS-IRIS related to HIV itself. The most 

common cause of myelopathy in AIDS patients is vacuolar myelopathy caused by HIV (even if 

asymptomatic) [30,31] and only few cases of myelitis by toxoplasma were described [19 and 

reference therein,25,26]. The appearance at MRI of a vacuolar myelopathy caused by HIV could, 

however, be quite different (although it is more frequent at thoracic medulla, also the portion of 

medulla more affected in this case); usually it is more diffuse, and with atrophy [31] 

characteristics not present herein. Although rare, a reduced number of reports described the 

occurrence or worsening of HIV-associated neurocognitive disorder after HAART initiation [7 and 

reference therein], but as far as we know, cases of HIV-associated myelo-CNS-IRIS have not been 

described. On the other hand, at least one case of toxoplasma-associated myelo-CNS-IRIS has 

already been described [19]. We consider that an under-diagnosed involvement of the spinal cord 

by T. gondii could be present in this patient when the symptoms only revealed brain involvement, 

and that the inflammation caused by IRIS rendered the spinal cord involvement clinically evident. 

A critical question is if it could be a miscellaneous-IRIS: a toxoplasmic cerebral IRIS plus 

a HIV medullar IRIS. It seems to us a quite unlikely coincidence. A negative CSF HIV load could 

help to dismiss this diagnosis although a positive value would not however confirm the diagnosis 

since we know that HIV could be present in CSF and not causing cerebral or medullar lesions 

[32]. 

A excisional brain or medullar biopsy could probably dispel any doubt; the demonstration 

of an inflammatory perivascular infiltrate dominated by CD8+ T cells and macrophages that is 

typical of IRIS triggered by not only HIV, but also by toxoplasma, would provide evidence about 

the existence of an IRIS [7]. The demonstration, on the spinal cord, of a granulomatous 

inflammation and of scarce toxoplasma pseudocysts (or bradyzoites) surrounded by 

inflammation, and an attenuated immunoperoxidase reaction meaning sequelae of effective 

antitoxoplasmosis therapy, would dissipate any doubt about the causative agent of myelo-IRIS. 

However, as this is most probably a case of paradoxical-IRIS, and given that HAART was initiated 

one month after the onset of specific anti-toxoplasma therapy, the chance to detect replicative 

forms of toxoplasma – tachyzoites would be very low, and we very probably would not see any 

toxoplasma pseudocysts nor immunoperoxidase reaction, that is what happened in the clinical 
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case reported by Cabral et al [22]. In the other four cases of paradoxical toxoplasmosis-IRIS 

described in the literature [19,23,24], however, tachyzoites have been found in brain or in spinal 

cord biopsies what could be explain by the simultaneous onset of anti-toxoplasma and 

antiretroviral therapies. The demonstration of vacuolation in the spinal white matter in association 

with a few lipid-laden macrophages within the vacuoles or the myelin sheath are 

neuropathological findings of HIV-related vacuolar myelopathy [30] but in a case of HIV-myelo-

IRIS, those findings could also not be present as the specific treatment (HAART) has already been 

taken for three months. 

The decision to postpone the biopsy, as soon as the patient showed signals of 

improvement, was based on inherent risks for the patient of the invasive procedure. The use of 

MRI imaging in association with the clinical and laboratory data, and a good clinical judgment 

prevented the performance of an unnecessary and perilous brain or medullar biopsy.  

During the probable CNS-IRIS event, we also did not use corticosteroid therapy because 

we were frightened that an undiagnosed condition could worsen due to the impairment of 

immune function and also that it could facilitate the occurrence of other opportunistic infections. 

As our patient did not reveal severe manifestations and the efficacy of corticosteroids in IRIS is 

not consensual, we choose not to use them. Accordingly, in all cases of CNS-IRIS related to 

toxoplasmosis described, but one [19], the clinical outcome was favorable with no corticosteroid 

treatment. Concerning HIV vacuolar myelopathy and myelo-HIV-IRIS, as far as we know, data 

concerning the use of corticosteroids in those conditions do not exist. In HIV vacuolar 

myelopathy, the prognosis is often bad even continuing the specific therapy (HAART) what did not 

happen in our case, the patient’s health state improved with the maintenance of HAART. 

To our knowledge, this clinical case of paradoxical toxoplasmosis IRIS is the sixth 

reported [19,20,21,22,23,24], and only the second with spinal cord involvement [19]. 

An early diagnosis and therapy of HIV infection will avoid severe immunodeficiency and 

opportunistic infections and, consequently IRIS related conditions after HAART onset. A very close 

monitoring is recommendable in cases of CNS-IRIS, including when CNS toxoplasmosis is 

present. Although both the biopsy and steroids therapy might be of use and need to be 

considering for these patients, they were both not necessary in the present case. 

Concerning the brief analysis of Treg and its subsets performed at several time-points of 

the clinical case and controls, the more pronounced changes, Treg and Treg subsets related, in 
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the reported case comparing to controls, indicate that probably changes in this CD4+

The peak of IRIS-related symptoms in the reported case, however coincides with the peak 

in Treg percentages. Unfortunately, the characterization of Treg in naïve and memory does not 

allow us to infer about the suppressive function of Treg. It will be of paramount importance to 

well characterize in terms of function Treg subsets since these Treg could be non-suppressive. It 

will be also of importance to determine the responsiveness of the new CD4

 T cells 

subset contributed for IRIS. 

+ T cells to Treg since 

the Treg detected could be functional but trying to counter CD4+

  

 T cells that are in a state of 

refractoriness.  Another hypothesis would be that the observed peak of Treg at third month was a 

feedback reactive increase in Treg trying to counteract the exaggerated inflammation. A high 

dynamic rate of conversion of Treg (naïve to memory, and on the memory subset from activated 

to non-supressive and probably consequently, death by apoptosis [33]) could probably explain 

both the changes in the Treg subsets and the inability of those cells to counterbalance the strong 

immune response against the microbial agent, in this case, Toxoplasma gondii. 
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3.1. Final Remarks, General Discussion and Conclusions 
 

The Acquired Immunodeficiency Syndrome (AIDS) is a disease of the human immune 

system caused by a virus – the human immunodeficiency virus (HIV). AIDS was first recognized 

in 1981 [1,2] and dramatically evolved to a global pandemic. In 2012, globally, an estimated 

35.3 (32.2–38.8) million people were living with HIV, there were 2.3 (1.9–2.7) million new HIV 

infections, and the number of AIDS deaths was 1.6 (1.4–1.9) million [3]. 

 In the beginning, in the 1980s and early 1990s, AIDS was a virtual death sentence; 

patients had to endure numerous hospitalizations to treat opportunistic infections before they 

eventually succumbed to the illness. Those terrible times still remain in the memory of patients’ 

family members and health care professionals who, at the time, began to take care of patients 

suffering from this disease. 

 Fortunately, huge advances were made until now in this field, being the emergence of 

drugs with potent antiretroviral activity, and their use in combination (highly active antiretroviral 

therapy or HAART), started from 1996, the most important landmark on the evolution of the 

disease that had markedly reduced morbidity and mortality AIDS-related. HIV infection is now 

considered a chronic disease easy to stabilize, at least, when patients are early diagnosed, where 

therapy and laboratory support are available, and when patients adhere to treatment and health 

care. There is a striking contrast between how we felt as physicians in the 1980s and early 

1990s and the confidence we experience today in the increase over time of the expectancy and 

quality of life of patients suffering from this disease, making it closer and closer to ones of those 

not infected by HIV.  

Some issues related to this infection, even if patients are maintained many years under 

effective therapy, however, remain to be solved and are still a concern for patients and their 

physicians: the impossibility to achieve a complete eradication of the virus; the persistence of a 

residual immune activation and inflammation accounting for faster aging and for a number of 

non-AIDS-related co-morbidities [4,5]; and also the inability of some patients to reconstitute their 

immune system maintaining an increased risk of suffering from AIDS-related and non-AIDS-

related complications and death [6-10]. 

A percentage of HIV-patients that initiate HAART (ranging between 15-40% depending on 

the study), although being virological suppressed during several years, do not reach a normal 

(700-1100 cells/mm3), a near normal (> 500 cells/mm3) or, at least, a satisfactory CD4+ T cells 

count (a number higher than a threshold of 250-350 cells/mm3, a level that would enable 
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patients to be protected from more severe opportunistic infections), and therefore are more 

prone to suffer from AIDS-related and non-AIDS-related complications and death [6-10]. These 

patients have been referred in many ways; as immunological non-responders or discordant, or 

inadequate or incomplete responders. There is no agreement on the definition of immunological 

response failure and several definitions have been reported including a diverse range of patients 

– some authors give more importance to the value of CD4+ T cells reached, others to the 

increase in percentage or to the difference (in numbers) compared to baseline level. Several 

scientific explanations may support that incomplete recovery (reviewed in Subchapter 1.1) [6-16]. 

Immunological response failure is a subject which is hard to deal with at a clinical basis, patients 

do not understand why their CD4+

T regulatory T cells (Treg) (reviewed in Subchapter 1.2) are a subset of CD4

 T cells count stop to increase and do not reach a optimal level 

although they correctly adhere to medication. And also for physicians, it is difficult to explain to 

their patients the reasons for that to happen, to prove and demonstrate why it happens, and 

above all, to offer effective solutions to protect patients from the increased risk for AIDS-related 

and non-AIDS-related complications and death.  

+ T cells that 

are able to suppress potentially excessive immune responses, therefore being essential for the 

maintenance of the immune system’s equilibrium. The role of these cells has been for long 

discussed as potentially important not only in HIV infection progression but also in immune 

recovery under effective HAART. Moreover, these cells have also been proposed to be an 

important factor/intervener in the immune reconstitution inflammatory syndrome (IRIS). Despite 

a great number of reports concerning the role of Treg in the HIV infection, their precise role 

remains to be clarified. A huge amount of uncertainty and ambiguity subsist concerning the 

effective role of Treg in the HIV infection scenario. Two mainly opposite roles in this situation 

have been endorsed to Treg: a beneficial role by dampening the immune activation/inflammation 

[17-19]; and a detrimental role by fading HIV-specific CD4+ and CD8+ T cell responses [20-22]. 

Also, supporting a beneficial effect of this T cell subset, it has been suggested that Treg could 

suppress HIV-replication in conventional CD4+ T cells [23]. On the other hand, it has also been 

advocated that Treg may inhibit lymphopenia-induced proliferation [24,25], can lead to a more 

intense gut microbial translocation accounting for the augmented immune activation [26,27], or 

may account for exacerbated fibrosis of lymphoid tissues (by increasing levels of TGF-α1 and so 

exacerbating collagen deposition) jeopardizing therefore the immune reconstitution process [28].  
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The uncertainty found in the numerous papers about the real role of these cells in HIV 

infection progression could be driven by several factors such as: 1) Treg may be beneficial or 

detrimental depending on the disease stage; 2) studies may have been characterizing and 

measuring Treg with distinct methods by using different markers/gating strategies; 3) it is not yet 

clarified if HIV itself or HIV infection scenario modifies the potency of suppressive activity of Treg; 

4) also, it remains ill-defined what is the dynamic and redistribution of the different Treg subsets 

that have distinct suppressive activity and probably different roles in HIV infection [29-31]; 5) it is 

also not known how and when plasticity of Treg can occur leading to modifications or even loss of  

their suppressive function and even became pro-inflammatory cells; and 6) it is not known if the 

relationship between Treg and beneficial or detrimental effect on HIV infection disease depends 

more on Treg absolute number or Treg percentage; it could be that, for example concerning the 

beneficial effect of Treg decreasing immune activation, the most important would be absolute 

numbers instead of Treg percentages [19,32,33]. 

It is of paramount importance to know exactly what the Treg role in HIV infection is, so 

that with the possibility to manipulate them, an improvement in HIV infection disease 

management could be achieved. 

Having all this in consideration, and the fact that the majority of the studies addressing 

Treg in HIV infection are cross-sectional or small longitudinal studies, we endeavor a work 

involving HIV-infected patients selected from the hospital where they underwent medical care. 

Thereby, the main goals of this thesis were to know: i) if and how, in untreated HIV-infected 

patients, Treg and their subsets are disturbed and how this is related to disease severity; ii) how, 

in HIV-infected patients under HAART, Treg and their subsets behave over time; iii) if Treg 

influence the immune recovery in patients under HAART; and also iv) if the deregulation of Treg 

or their subsets were implicated in IRIS. 

Thus, we constituted 2 cohorts; a cohort for a single-moment evaluation and a cohort for 

a prospective longitudinal evaluation of Treg as well as several other parameters. A control group 

composed by healthy individuals not HIV-infected was also constituted (these cohorts were 

described at Subchapter 2.1). The constitution of these cohorts initiated a more profound and 

serious collaboration between the hospital (HJUU)/the clinicians/the patients and the research 

laboratory (ICVS). For the moment these studies are completed or close to be completed but the 

material and information generated, as well as the dynamic between the hospital and the ICVS 

will allow several other studies to be performed. These studies present in this thesis were 
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performed with the results of the evaluation of 53 patients from the cross-sectional cohort (all of 

them aviremic under effective HAART for more than a year) (described at Subchapter 2.2), and 

the longitudinal study (described at Subchapter 2.3) that presented the results of the evaluation 

of the first two years under treatment of 81 patients (patients adherent to therapy and aviremic at 

the 24 month time-point). Moreover, one of the patients of the longitudinal cohort presented IRIS 

toxoplasmosis-related (presented in the subchapter 2.4), allowing us to analyze Treg and Treg 

subsets dynamics of this patient before, and throughout this pathologic process.  

It is worth noting that as far as we know, and concerning Treg cells in the HIV infection 

context, our cohort is the longitudinal cohort with the highest number of patients for such a 

period (from the 100 patients recruited, 77 are still in the study, 83 completed two years, 59 

completed three years, and 11 completed four years of follow-up).  

 

Among chronically HIV-infected untreated patients, the ones in advance stage of the disease 

present higher Treg percentage and higher diversity of these values 

Some disagreement exists on the reported evaluation of Treg percentages from HIV-

infected patients. However, the majority of the studies show that the absolute number of Treg is 

decreased in HIV-infected individuals, but in a lower proportion than the whole CD4+ T cell 

population, resulting in a increased blood Treg percentage on CD4+

 Taking into account our results we consider that part of the contradictory data published 

concerning Treg percentages (Treg percentages similar or lower than healthy individuals) 

[21,29,30,38,39] may be explained by the use of different Treg markers and/or distinct gating 

strategies [21,39], from the use of FOXP3 mRNA measured by quantitative reverse transcriptase 

polymerase chain reaction  (qRT-PCR) [21] in T cells to define Treg instead of flow cytometry (a 

distinct FOXP3 mRNA expression per cell may occur thus do not enabling the correct evaluation 

about the number of Treg) [21], from different biological samples analyzed (whole blood, fresh 

peripheral blood cells, or cryopreservated blood [29,39]), or also from heterogeneity in the HIV 

population studied between studies (acute infected, untreated long-term viremic, or aviremic 

under treatment patients, and elite controllers - EC - or long-term non-progressors patients - 

LTNP) [30,38]. 

 T cells comparing to healthy 

controls [20,32,34,35, reviewed in 36,37]. 

In our study, we employed the currently used and apparently the most reliable multicolor 

antibodies cocktail for Treg markers - CD3+CD4+CD127lowCD25highFOXP3+ [40-43] (although the 
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purity of Treg reached using such strategy remains under debate [44]). Also, all the samples 

were processed on the day of the collection so all the analysis was performed on fresh blood and 

in similar conditions for all individuals at all time-points. And, probably, more importantly, the 

study included a great number of individuals (n=81) that were all chronically HIV-infected without 

HAART (baseline) and presenting a wide range of CD4+

We found that these 81 patients displayed a significant higher Treg percentage median 

comparing to control individuals. Interestingly and looking to the data more behind the median 

level, we noticed that Treg percentage range was much wider in HIV patients than healthy 

controls. So, even being chronically infected and naïve for treatment, the values for Treg 

percentage were extremely diverse. When patients were stratified according to their nadir counts 

of CD4

 T cells (however, all of them presented 

progressive disease and criteria to initiate HAART considering the National and International 

Guidelines [45-48]). 

+ T cell count, we noticed that in the strata of those with lowest nadir (<200 cells/mm3

Previous studies had already showed an inverse relationship between Treg percentage 

and CD4

), 

those findings (higher Treg median and wider range of Treg percentages) were much more 

evident than when the data from all individuals were analyzed as a whole. In fact, only in this 

strata the Treg baseline median was significantly higher than that of control group. Thus, a link 

between high Treg percentage (and also high range of values) and more advanced disease 

seems to exist.  

+ T cells counts [14,24,34,49-51], and even some authors [19,52] had already noted a 

high variability inter-individual in Treg percentages. But, in our study when we stratified the 

sample by CD4+ T cells, we showed clearly negative correlation - as lower was the CD4+

Concerning to the link between high Treg proportions among CD4

 T cells 

counts at baseline, the higher the Treg percentage and the variability between individuals. The 

reason why HIV-infected patients in advanced stages of the disease, have so distinct Treg 

percentages remains to be elucidated. We are hopeful that through the analysis of all the patients 

and their clinical and laboratorial data collected from this cohort, we can be able, in the future to 

clarify, or at least provide more information that will contribute to clarify, the mechanisms behind 

this phenomenon. 

+ T cells and low CD4+ 

T cells; although it might indicate that Treg play a detrimental role, or that high levels of Treg are, 

at least, not an advantage for a good evolution of the disease, the nature of our study does not 

allow us to conclude that.  
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The questions about the real role of Treg in the progression of HIV infection cannot be 

answered by a static view of the Treg in a given moment of the disease evolution as we did when 

we analyzed patients on the day they initiated HAART. With such analysis it is not possible to 

determine whether the alterations detected existed prior to the progression of the disease, or 

emerged after the progression of the disease by a negative feedback loop trying to control the 

disturbances generated by the disease. To answer this question it will be necessary to perform in 

the future a longitudinal study including patients since the moment of infection and during the 

progressive disease without treatment to clarify the precise role of Treg in the progression of the 

disease. Also, studies aiming the interrelationship between Treg and specific anti-HIV immune 

response and between Treg and immune activation over time will be necessary for that 

clarification. Only in that way we will be able to understand the temporal order of events and 

characterize the direction and the magnitude of potential cause-and-effect relationships between 

Treg and HIV disease progression. We must not forget, however, that such a study could face 

ethical problems and couldn’t certainly be done up to an advanced stage of the disease. 

Currently, it is advocated that HAART begins earlier and earlier in the disease course once that 

was shown to be beneficial to patients [45].  

 

In addition to causing alteration on the proportion of total Treg among the CD4+

Concerning the analysis of Treg subsets in untreated HIV-infected patients, a disturbance 

in Treg subsets homeostasis was consistently found by other studies [29-31]. However, the 

heterogeneity in the HIV population studied, the heterogeneity of the characterization methods to 

identify Treg subsets [53-55] and/or different proportions utilized (Treg subsets on Treg versus 

Treg subsets on CD4

 T cells, HIV 

infection disturbs the subsets distribution within Treg 

+ T cells) by the authors of the diverse studies turn the comparison not 

straightforward. Simonetta et al [29], and Serana et al [30] found that the effector (CD45RA-

FOXP3high) or central memory (CD45RA-CCR7+) Treg cells, respectively, were the ones more 

affected in untreated HIV-infected patients. Contrary, Zhou et al [31] found to be the naïve Treg 

those more affected in the patients (although they used a different approach to identify Treg 

subsets). We also used a different Treg subset identification strategy based on CD45RA 

expression that allowed us to identify naïve (CD45RA+) Treg, and memory (CD45RA-) Treg [55] 

and contrary to other authors we used Treg proportions on total Treg instead of Treg subsets on 

CD4+ T cells. We found that in chronically untreated HIV-infected patients, in those most 
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immunosuppressed (<200 CD4+ T cell/mm3), the percentage of naïve Treg on total Treg are 

lower comparing to healthy controls. As already mentioned above, although an accurate 

comparison between studies is not possible, one explanation to the differences found could be 

the more advance stage of the disease in our patients and in the ones evaluated by Zhou [31] 

than those analyzed in the studies of Simonetta [29] and Serana [30]. The percentage of cycling 

Treg (Ki67+ Treg) on Treg in the most immunosuppressed untreated HIV-infected patients (<200 

CD4+ T cell/mm3

It has been advanced that phenotypically and functionally distinct Treg subsets may exert 

different suppressive effects, or even being ones beneficial and others deleterious in the HIV 

infection context [29,57]. The accurate characterization of Treg subsets, rather than an 

evaluation of the total Treg population, may lead to a deeper understanding of the Treg role in 

HIV infection.  

) was also different from the one in healthy individuals, being higher in patients. 

Other studies have also found this disturbance [31,56]. 

 

HAART tend to normalize total Treg proportion on CD4+

According to most studies, providing that reliable Treg markers/gating strategy were 

used, Treg percentage value tends to normalize reaching, after a certain time of treatment, 

values similar to the ones of controls [32,34,50,58]. Some of those studies showed a transient 

early increase of Treg percentage just after the therapy onset (probably explained by the 

liberation of Treg from lymphatic tissues to periphery due to the down-regulation of adhesion 

molecules associated in turn with a decline in viral replication) and before the consistent 

decrease [34,50]. Some studies, however, postulated that Treg expansion persists despite viral 

control under HAART [20,35,49,59,60]. Explanations for that discrepancy have already been 

proposed in subchapter 2.3: heterogeneity of patients included (treated but not aviremic, short 

time vs long-term under treatment, low nadirs vs high nadirs at baseline), or suboptimal 

combination of Treg cell markers. 

 T cells but not the high variability inter-

individual and the proportions of the Treg subsets 

In our longitudinal study we found that upon therapy initiation, in those patients more 

imunosupressed (<200 CD4+ T cells/mm3), who presented at baseline a Treg median percentage 

higher than the one of healthy individuals; Treg percentage progressively decreased reaching for 

the majority of the patients values within the normal range. We did not find the initial transitory 
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increase after HAART initiation suggested by others [34,50]. Also, the Treg percentage range that 

was wider in HIV patients tended to become progressively more restricted along the treatment. 

Both in our cross-sectional study (involving patients under treatment for several years 

and at least 1 year) and in 24M time-point of the longitudinal study, we found that, comparing to 

a control group of healthy individuals, although Treg median percentage were not different from 

the one of healthy controls, a heterogeneous distribution of Treg percentages among HIV-infected 

individuals under HAART persists upon several years of therapy (in the cross-sectional study, the 

media time under HAART was of 6,5 years, ranging from one to 14 years) and with 24M of 

therapy (longitudinal study). And, although the median Treg percentage was not significantly 

different, the number of patients with a Treg percentage ≥10% was sign ificantly superior to those 

within the healthy group. In our cross-sectional study, we tried to see if this highly diversity in 

Treg percentages values was explained by some factor such age, years under HAART, infection 

by hepatitis C virus, or overall immune activation, but no impact of these variables in Treg 

percentage was found. Also, all the patients were virological suppressed not suffering from 

opportunistic infections or other AIDS-related conditions that could explain so different values. 

Also the alterations seen in Treg subsets in patients at baseline of the longitudinal study 

(lower naïve Treg and high proliferation of Treg than ones of healthy controls) persisted despite 

24M under HAART in those patients more imunossupressed (<200 CD4+ T cells/mm3

The studies already referenced [29-31] found a tendency for HAART to promote the 

normalization of Treg subsets, although a persistent lower value of activated/effector Treg cells 

count was found in the study of Simonetta et al [29], and a persistent high Treg proliferation was 

found by Zhou et al [31]. 

). 

Stratifying by nadir values and following-up patients for longer periods will be necessary to 

determine if more time under HAART would completely restore Treg homeostasis in all patients, 

only in those less imunosupressed or in none of them (being those alterations irreversible despite 

many years under HAART). This information could help to define cut-offs for HAART initiation. 

 

Treg percentages at treatment initiation do not seem to represent an additional variable affecting 

T cell reconstitution 

The role of Treg in the immune recovery process in HIV-infected patients upon effective 

HAART remains to be elucidated. Some cross-sectional studies [14,24,56,61] including our 
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cross-sectional study suggested a negative role of Treg percentage in the immune reconstitution 

after HAART, but also the contrary was shown [16].  

A cross-sectional study provides only a static view in a given moment of the immune 

recovery. A longitudinal cohort study involving a population of patients, from the moment they 

initiate HAART, followed-up at the same several time-points of their evolution, and evaluated using 

a gating strategy for a reliable set of Treg and functionally distinct Treg subsets markers, was 

needed to better understand the temporal order of events. Only with such study, it was possible 

to determine the definition of the direction and the magnitude of potential cause-and-effect 

relationships between factors, namely Treg and its functional subsets, taking place in the 

immune reconstitution process just before HAART onset and during the treatment. The majority 

of the studies have been performed comparing groups of patients with control groups but they 

are not longitudinal studies. Longitudinal studies concerning this matter are few and include a 

small number of patients [31,32,34,49,50,51,59,60,62]. 

Concerning to the probably link found in our cross-sectional study between higher Treg 

percentages and a poorer immune reconstitution in a given time-point, we hypothesized that a 

high percentage of Treg at the onset of HAART could be an additional predictor of worse immune 

reconstitution. This hypothesis was not confirmed, at least after 24 months of treatment in our 

longitudinal study. However, a correlation analysis showed that high Treg percentages at baseline 

correlated with lower CD4+ T cells count at the 24 months time-point. Nevertheless, we found 

that individuals with higher Treg frequency at baseline have also lower CD4+ T cell counts at 

baseline. And those patients consistently showed a lower CD4+ T cell counts throughout the 

follow-up period (as it would be expected according to CD4+ T cell counts at baseline). Performing 

a multivariate analysis, in fact, we found that although Treg percentage at baseline seemed to be 

a good negative predictor of immune recovery, it lost its power when we introduced the nadir of 

CD4+ T cell in the model, showing that the high Treg percentage is linked to a low CD4+ T cell 

count, and what predicts the number of CD4+ T cells after a given period of time is the CD4+ T 

cells count at baseline and not the Treg percentage at baseline. Thus, Treg percentage seems to 

be no more than an indirect negative predictor of CD4+ T cells reconstitution as its value is linked 

to of CD4+ T cells count that itself is the direct predictor of the CD4+

Apparently, the results found in our longitudinal study failed in demonstrating a link 

between high Treg and poor immune reconstitution (under HAART) suggested by our previous 

 T cells count after a given 

period under effective HAART. 
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cross-sectional study. However, while in the cross-sectional study, we analyzed patients with CD4+ 

T cell counts under 500 cells/mm3 at baseline, and patients who were for a long time under 

HAART (media of time under HAART=6,5 years; range: 1–14 years), in the longitudinal study, we 

analyzed patients showing a diverse range of CD4+ T cell counts, at baseline (ranging from 8 to 

1033 cells/mm3), and after only 2 years under HAART. We consider of relevance to keep the 

follow-up of these patients at least up to the 5 years under HAART to clearly understand if the 

disturbed percentage of Treg among the CD4+

 

 T cells is an additional factor contributing for 

incomplete immune reconstitution. 

Treg and Treg deregulation seem to be involved in IRIS 

IRIS’s immune-pathogenesis is poorly understood; it is characterized by an exaggerated 

immune-response against a specific pathogen (already present when HAART was initiated) that 

occurs after the restoration of the host defenses [63]. Treg are cells that are able to 

suppress/reduce exacerbated immune responses being essential for the maintenance of the 

immune system’s equilibrium. Thus, It has been suggested that Treg may be involved in IRIS 

pathogenesis: i) due to a rapid rebound of conventional T cells after HAART initiation that is not 

followed by a parallel raise of Treg, which could lead to a decreased on Treg percentages and 

thus to an unbalanced proportion of CD4+ T conventional/Treg [51]; ii) although present, Treg 

might be dysfunctional [58,64,65]; or iii) the new conventional CD4+

Taking advantage of the fact that one of the patients of our longitudinal cohort developed 

toxoplasmosis-paradoxal IRIS, we analyzed Treg and Treg subsets dynamics before, throughout 

and after that pathologic process (described at subchapter 2.4). A small control group was also 

composed to allow us to search for differences and consistent pattern in our case that would help 

to understand the pathologic condition. We noticed a high variability inter-individual between all 

the patients (the case and other patients). However a more pronounced variation of Treg/Treg 

subsets during IRIS was noticed in our case which seems to indicate that a deregulation in 

Treg/Treg subsets could be involved in IRIS. Unexpectedly, the peak of IRIS-related symptoms 

and the peak of Treg percentage among CD4

 T cells might be refractory to 

Treg function [51]. 

+ T cells occurred simultaneously. We also noted 

that at that peak, almost all of Treg were memory Treg. It remains to know about the suppressor 

function of those cells. To better clarify this event, it would be of central importance to identify 

and quantify the phenotypically and functionally distinct Treg subsets. Unfortunately we 
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characterized the different Treg subsets based only on CD45RA expression that allowed us to 

divide Treg between naives and memory but do not allowed us to know about the functional 

potency of the Treg subsets involved. The use of the expression of CD45RA or CD45RO 

combined with FOXP3 (low vs high) would allow us to know better about the functional power of 

the subsets present in our case. Memory Treg comprises both activated Treg (those supposedly 

more suppressive – CD45-FOXP3high) and nonsupresive Treg (those supposedly without 

suppressive function – CD45RA-FOXP3low

 

) [53]. It will be also important to test the responsiveness 

of T cells to these Treg to understand all the factors involved in this process. Another hypothesis 

would be that the observed peak of Treg at the third month was a feedback reactive increase in 

Treg trying to counteract the exaggerated inflammation.   

Final remarks 

Despite the occurrence of major breakthroughs in recent years to the understanding of 

the role of Treg in HIV disease, much remains to be investigated before it will be possible to 

manipulate these cells in the right direction to use in clinical practice in benefit of our patients 

suffering from this disease.  

We have given, with this work a small contribution to the knowledge of the relationship 

Treg/HIV infection. In addition we think that we can still do a lot with the cohorts that we 

gathered. We think that to characterize the subsets of Treg, know them in terms of function, 

distribution and dynamics in the context of this disease will be of extreme importance. Try to 

understand why the higher but also more varied percentages presented by patients in more 

advanced stages of the disease occur will be also one of our next goals. We may further deeply 

study the relationship between Treg (and its subsets) and the appearance of IRIS in patients 

initiating HAART in advanced stages of the disease. Perceive as a lack of standardization (or his 

delay) after HAART, either in variability of the percentages of Treg, either in the proportions of 

different subsets may be important in immune reconstitution process under HAART will certainly 

help us to improve medical care to our patients. HIV causes a steady imbalance mainly at the 

level of the cell-mediated immunity being Treg and its subsets also affected. These alterations 

and disturbances may be irreversible even under HAART mainly if the therapy onset is delayed. 

These findings further reinforce the need to initiate HAART early in the course of the disease. 
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Annexes 

Annex 1 

 

 

Declaro que o sangue que me foi colhido, poderá ser utilizado para investigação no 

estudo “Reconstituição e Homeostasia do Sistema Imunitário e na Infecção por HIV”, que me foi 

explicado pelo técnico abaixo assinado, poderá ser utilizado neste e apenas neste estudo ou 

outro da mesma instituição exclusivamente para efeitos de investigação cientifica. 

TERMO DE CONSENTIMENTO INFORMADO 

Fui informada/o de que a amostra de sangue não será identificada, tendo apenas como 

informação o género e a idade, pelo que os resultado não me serão divulgados. 

Fui também informada/o de que, mesmo concordando agora, poderei no futuro retirar 

esta autorização, e também de que, qualquer que seja  a minha decisão, agora ou no futuro, não 

serei prejudicado no meu direito à assistência na doença. 

Nome completo do dador: _______________________________ 

 

Local: Instituto de Investigação em Ciências da Vida e Saúde, Escola de Ciências da Saúde, 

Universidade do Minho, Campus Gualtar  

 

Data: ____/ ____/ ____ 

 

Assinatura do dador: ___________________________________ 

Assinatura do Técnico: __________________________________  
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Annex 4 

Protocolo – Doutoramento 

Dinâmica da reconstituição e homeostase do sistema imune em indivíduos com infecção 
VIH/SIDA - tratados 

 

 

 

 

 

 

Data da colheita:_______________________ 

Identificação do doente:___________________________________________________ 

 História anterior 

Modo de transmissão: ____________________________________________________  

Data provável de Infecção: ________________________________________________ 

Data do diagnóstico: _____________________________________________________ 

Infecções/patologias oportunistas: 

          Data dos diagnósticos/ quais: 

 ________________________________________________________________ 

 ________________________________________________________________ 

 ________________________________________________________________ 

 ________________________________________________________________ 

 ________________________________________________________________ 

Autocolante do doente 
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 ________________________________________________________________ 

 ________________________________________________________________ 

Outros Antecedentes: ____________________________________________________ 

 ________________________________________________________________ 

 ________________________________________________________________ 

Co-infecção VHC/VHB: __________________________________________________ 

TARV actual (sim/não/qual): ______________________________________________ 

Regular? _______________________________________________________________ 

Data de início do esquema actual: ___________________________________________ 

Datas e esquemas anteriores, motivo da mudança: 

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________ 

Últimos CD4 e CV VIH (data e valores): 

______________________________________________________________________ 

Outras notas: 

 

 

 

   



 
 

173 

Annex 5 

Formulário de Consentimento Informado 

Nome do Estudo: Reconstituição e Homeostasia do Sistema Imune na Infecção por VIH 

Investigador Principal: Ana Aboim Horta 

Convidamo-lo a participar num estudo de investigação com a duração de cerca de três anos. 

O VIH infecta e destrói essencialmente um determinado tipo de células de defesa do nosso 

organismo, as células T CD4

Introdução 

+ ou como são mais conhecidos, os CD4, impedindo assim o 

desenvolvimento de respostas de defesa apropriadas contra diversos agentes infecciosos. Desta 

forma, indivíduos infectados com o VIH, principalmente aqueles em que o número de CD4 se 

encontra abaixo de 200 células/mm3 (o valor normal é de 700 a 1000/mm3

Quando temos uma infecção, o nosso sistema imune (as nossas defesas) entra em acção na 

tentativa de eliminar o agente infeccioso e, quando este objectivo é conseguido, tem que existir 

uma outra fracção do nosso sistema imune que faça parar essa defesa pois ela, em excesso, 

pode causar dano ao nosso organismo. Tem que haver sempre um equilíbrio entre as diversas 

fracções do nosso sistema imune e nestes doentes infectados por VIH, questões fundamentais 

vão surgindo: i) como é que o sistema imune destes pacientes recupera com a terapia 

antirretroviral após um tão grande desequilíbrio; ii) que tipo de homeostase ou equilíbrio é 

atingido; iii) como é que factores como o próprio indivíduo, a sua idade e o seu sexo ou o início 

da doença clínica afectam o novo equilíbrio do sistema imune. 

), são muito 

susceptíveis a diversas doenças infecciosas podendo adoecer e mesmo morrer devido a essas 

infecções. O aparecimento de medicamentos com actividade antirretrovírica potente (actividade 

contra o VIH), e o seu uso em combinação no tratamento da infecção pelo VIH, veio, a partir de 

1996, reduzir de forma marcada a morbilidade e a mortalidade associadas a esta doença e 

aumentar a esperança de vida destes pacientes. Estes medicamentos impedem o vírus de se 

multiplicar e, assim, de destruir as células de defesa, ficando o doente capaz de evitar as 

infecções. 

Estudos recentes sugerem que durante as fases iniciais da terapia antirretroviral os pacientes, 

juntamente com um aumento dos CD4, mostram também uma maior predisposição para o 

desenvolvimento de respostas inflamatórias exuberantes contra infecções (respostas de defesa 

exageradas). Essas infecções podiam já estar identificadas e a ser tratadas com eficácia 

previamente ao início da terapêutica antirretrovírica mas, após o início desta, voltam a piorar (por 
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exemplo uma Tuberculose que já estava a ser tratada e em que o indivíduo já tinha melhorado e 

não apresentava sintomas, volta a piorar após o início da terapêutica antirretrovírica) ou podem 

ser provocadas por agentes ainda não identificados mas presentes antes do início da terapêutica 

antirretrovírica. Neste último caso, o baixo número de células de defesa, a apatia do sistema 

imune perante esses agentes infecciosos eram responsáveis pela ausência de sintomas e o 

doente apesar de já ter a infecção não a sentia. Ao iniciar a terapêutica, a recuperação das 

nossas defesas vai ser responsável pelo reconhecimento desses agentes, e por uma forte 

resposta à sua presença, o que provoca o aparecimento de sintomas de forma muito acentuada. 

Estas respostas exuberantes, apesar de permitirem o reconhecimento dessa infecção poderão 

ser perigosas. 

A compreensão dos mecanismos base desta resposta imune exacerbada que acompanha a 

recuperação dos CD4 é pois essencial e, até à data, inexistente. Estes conhecimentos poderão 

ser utilizados para reconhecer os doentes em que isso poderá mais provavelmente ocorrer para, 

assim, podermos estar mais alertas e mesmo, talvez, evitá-lo. 

Este estudo tem como objectivo estudar e recuperação imune através da caracterização de 

células e tentar perceber porque é que o nosso sistema imune, por vezes, não recupera de 

forma equilibrada. Pretende também identificar os agentes infecciosos contra os quais o nosso 

sistema imune, em recuperação, responde de forma mais exagerada. 

Objectivo do estudo 

Todos os doentes, infectados por VIH que necessitem de terapêutica antirretrovírica conforme as 

orientações internacionais e nacionais. Só poderão entrar no estudo os doentes que nunca 

fizeram terapêutica no passado ou o fizeram apenas durante um período inferior a três meses e 

há mais de um ano.  

Que doentes podem entrar no estudo? 

Se participar neste estudo, necessitará de fazer o seguinte: 

O que lhe irá ser pedido? 

- Visitar o seu médico no dia em que iniciar a medicação, uma vez por mês nos primeiros três 

meses, de três em três meses até ao fim do primeiro ano e depois, de quatro em quatro meses, 

até ao fim do estudo (o plano das visitas embora mais pesado, não difere muito do dos doentes 

que não entrarem no estudo, estes são vistos normalmente de 3/3 ou 4/4 meses podendo no 

início ter mais uma consulta intermédia). 
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- Tomar a medicação conforme a orientação do seu médico. A medicação que irá tomar será a 

mesma que tomaria caso não entrasse no estudo e segue as orientações internacionais. 

- Se for mulher em idade fértil deverá concordar em utilizar métodos de controlo da natalidade 

aceitáveis durante o estudo. São considerados métodos contraceptivos aceitáveis os dispositivos 

intra-uterinos (DIU), o diafragma com espermicida, os preservativos e a abstinência sexual. Os 

contraceptivos orais isoladamente não são considerados aceitáveis de controlo da natalidade. Se 

engravidar durante o estudo deverá comunicar imediatamente ao seu médico pois a medicação 

poderá ter que ser ajustada. 

- Nalgumas visitas poderá ter que vir em jejum de oito horas. 

Quando comparecer no centro para as visitas, o investigador (o médico) ou outro pessoal do 

estudo envolvido (enfermeiro do estudo) poderão realizar um ou mais dos seguintes 

procedimentos: 

O que sucederá durante as visitas do estudo?  

- Questioná-lo sobre sintomas que tenha sentido. 

- Efectuar um exame físico completo. 

- Colher as amostras de sangue ou de urina requeridas para o estudo. Além das análises que 

faria mesmo que não entrasse no estudo, realizará colheita de sangue para caracterização das 

células de defesa e caracterização genotípica para identificação de factores genéticos de 

susceptibilidade genética a infecções (pode ter herdado uma maior sensibilidade às infecções). 

- Nalgumas visitas poder-lhe-á ser pedida a realização de alguns exames imagiológicos ou outros 

no sentido de procurar outras infecções coexistentes. 

Uma vez que visitarei o médico do estudo mais vezes do que o que seria realizado caso não 

entrasse no estudo, que serei observado e me serão realizados estudos analíticos/imagiológicos 

de forma mais regular do que o normal, poderão ser detectados infecções/problemas mais 

precocemente/atempadamente.  

Que benefícios poderei obter da minha participação no estudo?  

As informações colhidas durante o estudo poderão ajudar-me a mim e a outras pessoas no 

futuro. 

Ao assinar este documento, declaro que: 

Li este consentimento informado. 

- Tive a oportunidade de colocar perguntas e obtive as respectivas respostas. 

- Compreendo que a minha participação no estudo é voluntária e consinto-a. 
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- Posso optar por não participar no estudo ou abandonar o estudo em qualquer momento, desde 

que comunique o facto ao médico do estudo. Não serei penalizado nem perderei o direito a 

quaisquer benefícios que, noutras circunstâncias, me seriam devidos. 

- Autorizo que os meus dados pessoais e de saúde sejam recolhidos e tratados, desde que a 

minha privacidade seja resguardada. 

Irei receber uma cópia assinada deste consentimento informado 

Nome completo do participante (maiúsculas): 

______________________________________________________ 

Local:__________________________________________Data____/ ____/ ____ 

Assinatura do participante: 

 

Nome do investigador (maiúsculas): 

_________________________________________________________ 

Local:__________________________________________Data____/ ____/ ____ 

 

Assinatura do investigador: 

 

________________________________________________________________ 
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Annex 6 
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Annex 7 

Protocolo – Doutoramento 
Dinâmica da reconstituição e homeostase do sistema imune em indivíduos com infecção 
VIH/SIDA 
 
 

 

 

 

 

Profissão: _______________________ 

 História anterior 

 

Modo de transmissão: ____________________________________________________  

Data provável de Infecção: ________________________________________________ 

Data da última análise negativa: ____________________________________________ 

Data da 1ª análise positiva: ________________________________________________ 

Sintomatologia de primoinfecção? ________________________ Data: ____________ 

Infecções/patologias oportunistas: 

          Quais, data de diagnóstico, data do início do tratamento: 

 ________________________________________________________________ 

 ________________________________________________________________ 

 ________________________________________________________________ 

 ________________________________________________________________ 

 

Outros Antecedentes: ____________________________________________________ 

 ________________________________________________________________ 

 

Co-infecção VHC/VHB: __________________________________________________ 

 

TARV e data (baseline): 

______________________________________________________________________ 

 

Autocolante do doente 
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Protocolo de seguimento – Clínica/Exame Objectivo 

 -30 d Baseline 1ºMês 2ºMês 3ºMês 6ºMês 9ºMês 12ºMês 

DATA         

Adesão X X X X X X X X 

Astenia X X X X X X X X 

Anorexia X X X X X X X X 

Hipersud. X X X X X X X X 

Febre X X X X X X X X 

Alt.comport. X X X X X X X X 

Cefaleias X X X X X X X X 

Alt.visão X X X X X X X X 

Disfagia X X X X X X X X 

Dor torácica X X X X X X X X 

Tosse X X X X X X X X 

Expectoração X X X X X X X X 

Hemoptises X X X X X X X X 

Dispneia X X X X X X X X 

Náuseas X X X X X X X X 

Vómitos X X X X X X X X 

Disfagia X X X X X X X X 

Diarreia X X X X X X X X 

Obstipação X X X X X X X X 

Dor abdom. X X X X X X X X 

Parestesias X X X X X X X X 

         

Peso X X X X X X X X 

Altura X X X X X X X X 

TA X X X X X X X X 

Pulso X X X X X X X X 

Temp. ax. X X X X X X X X 

Déficites focais X X X X X X X X 

Sinais mening. X X X X X X X X 

Candid. orof. X X X X X X X X 

Aftas X X X X X X X X 

Outra (cav.buc.) X X X X X X X X 

Gânglios X X X X X X X X 

Ex. ocular X X X X X X X X 

Freq. Resp. X X X X X X X X 

Alt. Pele X X X X X X X X 

Qual X X X X X X X X 

Ausc. Pulm X X X X X X X X 

Ausc. Card X X X X X X X X 

Palp. Abdom. X X X X X X X X 

Alt. MS X X X X X X X X 

Alt. MI X X X X X X X X 
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 16º Mês 20º Mês 24º Mês 28ºMês 32ºMês 36ºMês 

DATA       

Adesão X X X X X X 

Astenia X X X X X X 

Anorexia X X X X X X 

Hipersud. X X X X X X 

Febre X X X X X X 

Alt.comport.  X X X X X X 

Cefaleias X X X X X X 

Alt.visão X X X X X X 

Disfagia X X X X X X 

Dor torácica X X X X X X 

Tosse X X X X X X 

Expectoração X X X X X X 

Hemoptises X X X X X X 

Dispneia X X X X X X 

Náuseas X X X X X X 

Vómitos X X X X X X 

Disfagia X X X X X X 

Diarreia X X X X X X 

Obstipação X X X X X X 

Dor abdom. X X X X X X 

Parestesias X X X X X X 

       

Peso X X X X X X 

Altura X X X X X X 

TA X X X X X X 

Pulso X X X X X X 

Temp. ax. X X X X X X 

Déficites focais X X X X X X 

Sinais mening. X X X X X X 

Candid. orof. X X X X X X 

Aftas X X X X X X 

Outra (cav.buc.) X X X X X X 

Gânglios X X X X X X 

Ex. ocular X X X X X X 

Freq. Resp. X X X X X X 

Alt. Pele X X X X X X 

Qual X X X X X X 

Ausc. Pulm X X X X X X 

Ausc. Card X X X X X X 

Palp. Abdom. X X X X X X 

Alt. MS X X X X X X 

Alt. MI X X X X X X 
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Protocolo de seguimento – Análises/exames  (SA – se aplicável) 
 -15d Baseline 1ºMês 2ºMês 3ºMês 6ºMês 9ºMês 12ºMês 

DATA         

Hgb X  X X X X X X 

Leucócitos X  X X X X X X 

Neutróf. X  X X X X X X 

Linfócitos X  X X X X X X 

Plaquetas X  X X X X X X 

VS X  X SA X X SA X 

Tpo Protr. X    SA X SA X 

INR X    SA X SA X 

AST X  X X X X X X 

ALT X  X X X X X X 

Bil. Total X  X X X X X X 

Bil. Dta X  X X X X X X 

DHL X  X X X X X X 

FA X  X X X X X X 

GGT X    X X X X 

Amilase X    X X SA X 

Lipase X    X X SA X 

Ureia X  X X X X X X 

Creatinina X  X X X X X X 

Ác. úrico X     X  X 

Proteínas Tot. X     X  X 

Albumina X     X  X 

Globulina X     X  X 

PCR X  X SA X X X X 

Glicose X    X X  X 

Col. Total X    X X  X 

Col. HDL X    X X  X 

Col. LDL X    X X  X 

TGS X    X X  X 

Lactato X     X  X 

Fósforo/Ca/VD X     X  X 

Anti-VHC X        

RNAVHC  SA   SA SA  SA 

Genótipo  SA       

Atg. HBs X        

AntiHBs X        

AntiHBc X        

AtgHBe X        

AntiHBe X        

DNAVHB  SA   SA   SA 

Genótipo  SA       

AntiHAV IgG X        

CV VIH X   X SA X SA X 

CD4 X  X X X X X X 

CD8 X  X X X X X X 
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 16º Mês 20º Mês 24º Mês 28ºMês 32ºMês 36ºMês 

DATA       

Hgb X X X X X X 

Leucócitos X X X X X X 

Neutróf. X X X X X X 

Linfócitos X X X X X X 

Plaquetas X X X X X X 

VS SA SA X SA SA X 

Tpo Protr. SA  X  SA X 

INR SA    SA X 

AST X X X X X X 

ALT X X X X X X 

Bil. Total X X X X X X 

Bil. Dta X X X X X X 

DHL X X X X X X 

FA X X X X X X 

GGT SA SA X SA SA X 

Amilase SA SA X SA SA X 

Lipase SA SA X SA SA X 

Ureia X X X X X X 

Creatinina X X X X X X 

Ác. úrico SA SA X SA SA X 

Proteínas Tot. SA SA X SA SA X 

Albumina SA SA X SA SA X 

Globulina SA SA X SA SA X 

PCR SA SA X SA SA X 

Glicose SA SA X SA SA X 

Col. Total SA SA X SA SA X 

Col. HDL SA SA X SA SA X 

Col. LDL SA SA X SA SA X 

TGS SA SA X SA SA X 

Lactato SA SA X SA SA X 

Fósforo SA SA X SA SA X 

Anti-VHC   SA   SA 

RNAVHC   SA   SA 

Genótipo       

Atg. HBs       

AntiHBs       

AntiHBc       

AtgHBe       

AntiHBe       

DNAVHB   SA   SA 

Genótipo       

AntiHAV IgG       

CV VIH X SA X SA X X 

CD4 X X X X X X 

CD8 X X X X X X 
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Protocolo de seguimento – Outras análises/exames  
 -30d Baseline 1ºMês 2ºMês 3ºMês 6ºMês 9ºMês 12ºMês 

DATA         

VDRL X    X   X 

MHA-TP X    X   X 

Serol. VVZ X       X 

Serol. VHS1 X       X 

Serol. VHS2 X       X 

Serol. CMV X       X 

Serol. EBV X       X 

Serol. Toxopl. X       X 

LCR-células  X SA SA SA SA SA SA 

LCR-proteínas  X SA SA SA SA SA SA 

LCR-glicose  X SA SA SA SA SA SA 

LCR-cript.(atgdc)  X SA SA SA SA SA SA 

LCR-bact  X SA SA SA SA SA SA 

LCR-BK  X SA SA SA SA SA SA 

LCR PCR JC  X SA SA SA SA SA SA 

LCR PCR EBV  X SA SA SA SA SA SA 

LCR PCR CMV   X SA SA SA SA SA SA 

LCR PCR Tox  X SA SA SA SA SA SA 

LCR PCR BK  X SA SA SA SA SA SA 

LCR PCR VIH  X SA SA SA SA SA SA 

PCR/HC sg? 
HSV,BKv,PvB19 
HTLV2 

 
 SA SA SA SA SA SA 

Mantoux X X(10-14d)   X   X 

Quantiferon X    X SA  X 

Rx 
 
 

X    X   X 

Ecografia Abd. 
 
 
 

X     X  X 

Fibroscan X     X  X 

TAC SA SA SA SA SA SA SA SA 

RMN SA SA SA SA SA SA SA SA 

TAC Timo X       X 

Outros: 
HLAB5701 
Teste Resist. VIH 
Ex ginecológico 
Ex. oftalmol.(SA) 
Osteodensit. (SA) 
ECG (SA) 
UrinaII 
 

X 
SA 
UII 

SA SA SA 
SA 
UII 

SA 
SA 
UII 
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 16º Mês 20º Mês 24º Mês 28ºMês 32ºMês 36ºMês 

DATA       

VDRL   SA   SA 

MHA-TP   SA   SA 

Serol. VVZ   SA   SA 

Serol. VHS1   SA   SA 

Serol. VHS2   SA   SA 

Serol. CMV   SA   SA 

Serol. EBV   SA   SA 

Serol. Toxopl.   SA   SA 

LCR-células SA SA SA SA SA SA 

LCR-proteínas SA SA SA SA SA SA 

LCR-glicose SA SA SA SA SA SA 

LCR-cript.(atg,dc) SA SA SA SA SA SA 

LCR-bact SA SA SA SA SA SA 

LCR-BK SA SA SA SA SA SA 

LCR PCR JC SA SA SA SA SA SA 

LCR PCR EBV SA SA SA SA SA SA 

LCR PCR CMV  SA SA SA SA SA SA 

LCR PCR Tox SA SA SA SA SA SA 

LCR PCR BK SA SA SA SA SA SA 

LCR PCR VIH SA SA SA SA SA SA 

PCR/HC sg? 
HSV,BKv,PvB19 
HTLV2 

SA SA SA SA SA SA 

Mantoux   X   X 

Quantiferon   X   X 

Rx 
 
 

  X   X 

Ecografia Abd. 
 
 
 

  X   X 

Fibroscan   X   X 

TAC SA SA SA SA SA SA 

RMN SA SA SA SA SA SA 

TAC Timo   X   X 

Outros: 
Ex. oftalmológico 
Urina II 
 
 
 
 
 
 
SA: se aplicável 

SA SA 
SA 
UII 

SA SA 
SA 
UII 
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Infecções/patologias oportunistas após início da TARV: 
Doenças AI: 
 
Patologia 
Data do início dos sintomas 
Data do diagnóstico 
Data do início do tratamento específico 
Corticoterapia? 
______________________________________________________________________
______________________________________________________________________
______________________________________________________________________
______________________________________________________________________
______________________________________________________________________
______________________________________________________________________
______________________________________________________________________
______________________________________________________________________ 
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