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Skin regeneration remains a challenge, requiring a well-orchestrated interplay of cell-cell and cell-
matrix signalling. Cell sheet (CS) engineering, which has the major advantage of allowing the retrieval
of the intact cell layers along with their naturally organized extracellular matrix (ECM), has been poorly
explored for the purpose of creating skin substitutes and skin regeneration. This work proposes the use of
CS technology to engineer cellular constructs based on human keratinocytes (hKC), key players in wound
re-epithelialization, dermal fibroblasts (hDFb), responsible for ECM remodelling, and dermal microvascu-
lar endothelial cells (hDMEC), part of the dermal vascular network and modulators of angiogenesis.
Homotypic and heterotypic three-dimensional (3-D) CS-based constructs were developed simultaneously
to target wound re-vascularization and re-epithelialization. After implantation of the constructs in mur-
ine full-thickness wounds, human cells were engrafted into the host wound bed and were present in the
neotissue formed up to 14 days post-implantation. Different outcomes were obtained by varying the
composition and organization of the 3-D constructs. Both hKC and hDMEC significantly contributed to
re-epithelialization by promoting rapid wound closure and early epithelial coverage. Moreover, a signif-
icant increase in the density of vessels at day 7 and the incorporation of hDMEC in the neoformed vas-
culature confirmed its role over neotissue vacularization. As a whole, the obtained results confirmed
that the proposed 3-D CS-based constructs provided the necessary cell machinery, when in a specific
microenvironment, guiding both re-vascularization and re-epithelialization. Although dependent on
the nature of the constructs, the results obtained sustain the hypothesis that different CS-based con-
structs lead to improved skin healing.

© 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Autologous and allogeneic traditional epidermal sheets, avail-
able for nearly three decades, have proved to be successful in the
re-epithelialization of split-thickness wounds [1-10]. It is well
known that these cells secrete a multitude of biologically relevant
molecules that contribute positively to wound healing [11,12].
However, various difficulties and drawbacks have been encoun-
tered in the use of these sheets, which have significantly compro-
mised their clinical application and outcomes. Among those, the 2-
3 week autograft production period [2] severely compromises pa-
tients’ recovery, impairing its application, for example, in the treat-
ment of extensive skin lesions. In addition to this, the instability
and the variable wound residence time [10,13], as well as failure
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to prevent wound contraction [13] are also limiting in traditional
epidermal sheets. Epidermal sheets from patients’ own hair folli-
cles, epidex, have been proposed recently [14], but the availability
of the grafts in clinically relevant sizes is still an important issue.
Some studies have also highlighted the limited action of keratino-
cytes in the formation of granulation tissue or dermal remodelling
in full-thickness wounds [15,16], and in the healing of full-thick-
ness burns in the absence of a well-vascularized dermal wound
bed [17], reinforcing the importance of a dermal component in skin
tissue engineering (TE) constructs.

Fibroblast sheets have acted as dermal elements in different
skin TE approaches; the first followed a two-step methodology in
which a keratinocyte sheet is transplanted onto full-thickness
wounds previously grafted with a fibroblast sheet [18,19]. How-
ever, the fragility of the sheet’s extracellular matrix (ECM) and
the delayed re-epithelialization associated with the two-step
implantation still represent significant limitations. Bi-layered skin
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analogues with a dermal and epidermal part, formed by assem-
bling superimposed mature fibroblasts sheets with keratinocytes
cultured on top, were developed to tackle those issues [20]. A step
forward was taken with the creation of endothelialized grafts,
aiming at a fast and efficient re-establishment of capillary flow at
an early stage of implantation. In a recently explored approach
using stacked cell sheets (CS) of fibroblasts, endothelial cells and
keratinocytes obtained under different culture conditions, the
importance of the co-culture of different cell components and its
effect on angiogenic factor secretion was stressed [21]. Moreover,
endothelial cells have been co-cultured with fibroblasts, forming
heterotypic sheets aiming to improve construct vascularization
[21,22]. Despite the exciting results obtained with these methodol-
ogies, the results refer to in vitro performance. Moreover, the pro-
duction of a consistent bilayer structure requires a significantly
wide time-frame to include the time needed from the isolation of
the different cell types to the consequent maturation steps prior
to implantation of the assembled construct, which could compro-
mise the time window in a future clinical setting.

From a similar perspective, CS engineering in thermo-respon-
sive surfaces has been proposed to obtain scaffold-free TE con-
structs. The value of this technology for treating cornea defects
[23], cardiac problems [24] and for periodontal ligament [25] and
bladder regeneration [26] has been well demonstrated. Nonethe-
less, the use of CS engineering technology in the creation of strat-
egies for skin TE has just started to be explored. To the best of the
present authors’ knowledge, it is limited to the in vitro generation
of keratinocytes CS, avoiding the use of dispase and allowing the
production of easily handled sheets [27], and more recently to
the creation of stem-cell-based constructs for the regeneration of
full-thickness skin wounds [28,29]. A major advantage of CS engi-
neering is the use of thermo-responsive surfaces that allow CS re-
trieval by temperature decrease with the ECM intact [30]. The
naturally adhesive character of this ECM promotes CS re-attach-
ment to other surfaces or tissues [31], as well the assembling of
three-dimensional (3-D) constructs of layered CS [30,32-39], thus
representing a major benefit. In fact, increased cellular residence
time on transplantation has been observed in studies using con-
structs created by CS engineering [29,40,41]. In this sense, using
this technology to facilitate wound healing, potentially promoting
skin regeneration of functional skin, can present several advanta-
ges worth exploring.

This particular work adds to the traditional sheet grafting ap-
proach the possibility of generating confluent and easily retrieved
CS in a shorter time-frame, as previously optimized by the present
authors for other cell types [29], and the subsequent creation of
stable constructs, as a result of the particular ECM adhesive charac-
ter, easily transplanted into the wound site without an intermedi-
ate maturation step. Cell isolation and expansion constraints,
particularly in the case of keratinocytes [42] and endothelial cells
[43], are also tackled in the approach proposed herein by the use
of hDFb in all the constructs, which produce an ECM-rich template
to co-culture hKC and hDMEC, thus avoiding prolonged culture
times. Thus, this study aims to take advantage of the unique fea-
tures of CS engineering technology to engineer relevant cellular-
based constructs for skin regeneration. In particular, the present
authors propose the use of human keratinocytes (hKC), which are
key players in wound re-epithelialization [44], dermal fibroblasts
(hDFb), mainly responsible for ECM remodelling [45], and dermal
microvascular endothelial cells (hDMEC), which are part of the der-
mal vascular network and modulators of angiogenic signalling
[46], to design homotypic and heterotypic CS. These cell types were
then used to assemble different CS-based constructs with distinct
designs expected to provide the necessary cell machinery within
a specific microenvironment defined by their native ECM, and to
attain cellular-based constructs capable of leading specific

wound-healing stages, such as re-vascularization and re-epithelial-
ization. Two CS of hDFb co-cultured with hDMEC were stacked in
order to assemble a construct where the hDMEC were both in-
between the hDFb and on one side of the construct, for direct inter-
action with the wound bed after transplantation, hypothesized as a
way of promoting faster inosculation. A second construct com-
bined a homotypic hDFb CS with a second CS of hDFb co-cultured
with hKC, located in the outer layer of the construct, hypothesized
as a way to contribute to the re-epithelialization of the wound. The
third construct was assembled with two heterotypic CS: a CS of
hDFb co-cultured with hKC, at the most exterior layer of the con-
struct, combined with a CS of hDFb co-cultured with hDMEC,
located between the hDFb of the two CS, to target both re-
epithelialization and neovascularization. Overall, it is hypothesized
that both the nature and design of engineered constructs created
through CS technology distinctively affect the progression of
wound healing, namely re-epithelialization and re-vascularization.

2. Materials and methods
2.1. Skin cells isolation and culture

Human KC, DMEC and DFb were harvested from human skin
samples obtained from abdominoplasties performed at Hospital
da Prelada (Porto, Portugal), after informed consent. Samples were
obtained under a collaboration protocol with the 3B’s Research
Group, approved by the ethical committees of both institutions.
Briefly, skin specimens were cut into small fragments and incu-
bated overnight in dispase (2.4 uml~') (BD Biosciences, USA) at
4°C. Epidermis was then peeled off and digested with 0.05%
Trypsin-EDTA (Invitrogen, USA) at 37 °C. The digested tissue was
filtered using a sterile 100 pm cell strainer (BD Biosciences, USA)
and centrifuged, and the isolated hKC were cultured in keratino-
cyte serum-free medium (KSFM) (Invitrogen, USA) with 1% antibi-
otic/antimycotic (Invitrogen, USA). The medium was changed
every 3 days. On dissociation from the epidermis, the dermis was
further digested in 0.1% collagenase type I (Sigma, USA) for 3 h at
37 °C, under agitation. Again, digested tissue was passed through
a 100 pm cell strainer, and the hDFb obtained were cultured in
o-MEM medium (Invitrogen, USA) supplemented with 10% fetal
bovine serum (FBS) (Invitrogen, USA) and 1% antibiotic/antimy-
cotic. hDMEC were obtained through the filtration and centrifuga-
tion of the discarded dispase solution, after dermis mechanical
dissociation. hDMEC were cultured in 0.7% gelatin (Sigma, USA)
coated flasks with endothelial growth medium (EGM2, Lonza,
USA). hDFb and hDMEC were used at passage 3-4, while hKC were
used at passage 1.

2.2. CS fabrication

The hDFb at a density of 5 x 10 cells cm~2 were plated in com-
mercially available UP cell 35 mm thermo-responsive dishes
(Nunc, Thermo Scientific, Denmark) and cultured for 5 days in al-
pha-MEM medium, supplemented with 10% FBS, 1% AB and
50 pg ml~! of ascorbic acid (Sigma, Germany) at 37 °C in a humid-
ified atmosphere with 5% CO, [29]. Heterotypic CS were fabricated,
combining a monolayer of hDFb with either hDMEC or hKC cul-
tured on top. In more detail, at day 3, 5 x 10° hDMEC or 8 x 10°
hKC were seeded on top of the hDFb monolayer and co-cultured
in EGM-2MV and in a mixture of KSFM/oa-MEM medium (1:1),
respectively, for a further 2 days. The same conditions were repli-
cated in tissue culture polystyrene (TCPS) coverslips (Sarstedt,
USA) for characterization without cell detachment.
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2.3. CS stacking and construct preparation

At day 5 of culture, constructs were prepared by CS stacking,
based on the methodology described by Haraguchi et al. [31], with
some modifications. Briefly, after removing the culture medium, a
poly(vinylidene difluoride) (Immobilon-P, DURAPORE; Millipore
Corporation, USA) membrane was placed over the cells and incu-
bated at room temperature for 10 min for CS detachment. The cul-
ture medium from a second thermo-responsive dish was aspirated,
and the first CS, spontaneously detached, was placed on the top of
the second. The construct was incubated for 20 min at 37 °C to pro-
mote CS adherence, generating a two-CS-stacked construct. In or-
der to confirm the robustness of the retrieved CS by temperature
reduction, a video showing the retrieval of the hDFb CS from the
thermo-responsive dishes and respective manipulation is provided
(Supplementary Material).

Three different constructs were created (Fig. 1): (i) two CS of
hDFb co-cultured with hDMEC (hDFb + hDMEC); (ii) hDFb CS com-
bined with a CS of hDFb co-cultured with hKC (hDFb + hKC); (iii) CS
of hDFb co-cultured with hDMEC plus a second CS of hDFb
co-cultured with hKC (hDFb + hDMEC + hKC).

2.4. Transplantation into full-thickness excisional wound model in
mice

Sixty Swiss Nu/Nu male mice (Charles River Laboratories,
France), after approval by the Direccdo Geral de Alimentacdo e
Veterindria, the Portuguese National Authority for Animal Health,
were randomly divided into three groups corresponding to three
types of CS-based constructs, and the control group. Four animals
were used per condition and per time point (3, 7, 14 and 21 days).
Mice were anaesthetized with a mixture of Imalgene (ketamine)
(75 mg kg~!) (Merial Portuguesa, Portugal) plus Domitor (mede-
tomidine) (1mgkg ') (Esteve Farma, LDA, Portugal). A
1-cm-diameter full-thickness excision was performed on each
mouse ~0.5 cm caudal to the intra-scapular region. After trans-
plantation, wounds were covered with Hydrofilm transparent
dressing (Hartmann, UK), and a final set of bandages was used in
order to avoid the dislocation of the transparent dressing and to
protect the whole treatment set. Control wounds were left empty
and dressed similarly. A subcutaneous injection of Depomedrol

(20 mg kg~ BW) (Pfizer, Portugal) was applied to the animals at
days 0, 7 and 14, in order to delay wound healing [47]. The animals
were kept separately and, at the established endpoints, were
euthanized by CO, inhalation, and the explants were processed
for histological analysis. All the surgical and necropsy procedures
were performed according to the applicable national regulations
respecting international animal welfare rules.

2.5. Histological analysis

The CS-based constructs created in vitro and the in vivo ex-
plants were fixed overnight in 3.7% (v/v) buffered formalin (Sigma,
USA), paraffin embedded and sectioned for posterior staining and
analysis. All samples were analysed using an Axioplan Imager
Z1m microscope (Zeiss, Germany), and images were acquired and
processed with AxioVision V.4.8 software (Zeiss, Germany).

2.5.1. Immunostaining

Immunolabelling of the CS in the TCPS prior to detachment was
performed after fixation with 3.7% (v/v) buffered formalin, perme-
abilization with 0.2% TritonX-100 blocking with 3% bovine serum
albumin (BSA) (Sigma). The primary antibodies, CD31 (mouse
anti-human, 1:30, Dako, Denmark), von Willebrand factor (VWF)
(rabbit anti-human/mouse, 1:200, Dako, Denmark), fibroblast sur-
face protein (FSP) (mouse anti-human, 1:80, Sigma, USA) and ker-
atin 14 (K14) (rabbit anti-human/mouse, 1:100, Covance, USA),
and the tagged secondary antibodies, rabbit anti-mouse Alexafluor
594 and donkey anti-rabbit Alexafluor 488 (1:500, invitrogen,
USA), were used. Cell nuclei were stained with DAPI (Invitrogen,
USA). Co-cultured hDMEC in the heterotypic CS were identified
by Dil-AC-LDL uptake.

For paraffin embedded samples, sections were re-hydrated and
incubated with antigen retrieval solution (Tris-EDTA buffer:
10 mM Tris base, 1 mM EDTA solution, 0.05% Tween 20, pH 9.0)
(all from Sigma, USA). Permeabilization was performed with 0.2%
TritonX-100, followed by blocking with 3% BSA (Sigma). Primary
antibodies against keratin 14 (rabbit-anti-human/mouse, 1:800,
Covance, USA), CD31 (human/mouse, 1:20, Abcam, UK), vWF and
FSP were used. Alexafluor 488 donkey anti-rabbit and Alexafluor
594 rabbit anti-mouse were used as secondary antibodies. Histo-
logical samples of day 3 in vivo explants were incubated with
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Fig. 1. Illustration of the composition of homotypic and heterotypic CS, composed of hDFb (hDFb-CS) and hDFb co-cultured with hDMEC (hDFb + hDMEC-CS) and with hKC
(hDFbs + hKC-CS) and the respective combinations generating distinct 3-D CS-based constructs.
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lectin from Ulex Europaeus Fluorescein (Sigma, USA) 1:100 in PBS
for 1h at 37 °C, and nuclei were counterstained with DAPI. For
CD31 detection, VECTASTAIN Elite ABC Kit (Vector Labs, USA)
was used, according to the manufacturer’s instructions. Nuclei
were counterstained with Mayer’s haematoxylin.

2.5.2. Chromogenic in situ hybridization (CISH)

Histological samples of in vivo explants were deparaffinized,
dehydrated, air dried, heated in a water bath at 95 °C in pre-treat-
ment 1% MES buffer (Sigma, USA) for 10 min and digested with
pepsin (4mgml~!) (Worthington, USA). After dehydration,
histological slides were air-dried and the positive DNA-biotin
labelled probe (Pan Path, Netherlands) was applied. Double-
stranded DNA denaturation was performed by incubating the slides
ona95 °Cheating block for 5 min, and hybridization was achieved at
37 °C overnight. Slides were then washed with PBS and with a strin-
gency wash buffer (Pan Path, Netherlands) at 37 °C. For detection,
streptavidin-peroxidase complex (Vector Labs, USA) was added for
20 min at RT. Revelation was completed with a DAB chromogen sub-
strate system (Vector Labs, USA). Mayer's haematoxylin was used for
counterstaining.

2.6. Image analysis

Analysis for the quantification of wound closure, vessel density
and diameter, and epidermal thickness was carried out on explant
images obtained using Image ] software (Wayne, Rasband, NIH,
USA), after processing and under the conditions detailed in each
of the sections below.

2.6.1. Wound closure

Planimetric digital images were taken on the day of surgery and
at days, 7, 14 and 21 post-surgery for all four animals per condition
and time point. The percentage of wound closure was then
calculated as

area of original wound — area of actual wound

% of wound closure = —
area of original wound

x 100

A wound was considered completely closed when the wound area
was equal to zero [48].

2.6.2. Quantification of the density of vessels

The number of vessels was quantified at days 7 and 14 post-
operative in the CD31 stained samples. Five non-consecutive tissue
sections per time point were randomly selected for each group.
Quantification and measurement were performed in high-power
fields, and only vessels with a diameter <50 pm were considered
[49]. The results of the number of vessels per field are expressed
as density of vessels.

2.6.3. Epidermal thickness measurement

The thickness of epidermal fraction of the neoskin was evalu-
ated at 7, 14 and 21 days post-operative in H&E routinely stained
histological sections. Four sections per group and time point were
analysed by randomly selecting five high-power fields and per-
forming five measurements of the epidermal thickness per field.

2.7. Statistical analysis

Four animals (n=4) were used in each group for each time
point. Standard deviation is reported as a measure of sample devi-
ation. Statistical analysis of wound closure was performed using
two-way analysis of variance (ANOVA) with Bonferroni post-tests.
The density of vessels data were analysed by one-way ANOVA with

Tukey’s post-tests, while the epidermal thickness data were ana-
lysed by Kruskal-Wallis test, with Dunn’s post-test (GraphPad
Prism 4.02). Significance levels between groups, determined using
post-tests, were set for P < 0.05.

3. Results

3.1. In vitro phenotypic characterization of single CS and 3-D CS-based
constructs

A set of single hDFb CS, as well as homotypic and heterotypic
CS, formed by hDFb with either hDMEC or hKC cultured on top,
were successfully achieved after 5 days of culture in thermo-
responsive culture dishes (Fig. 2iA) and harvested by temperature
decrease (Fig. 2iB), without the need for enzymatic treatment. The
different types of cells composing each of the homotypic and het-
erotypic CS and respective arrangement within the co-cultures was
confirmed by the expression of the specific markers by immuno-
histochemistry prior (Fig. 2iA) and after (Fig. 2iB) detachment.
hDMEC were identified by their capacity to uptake Dil-AC-LDL
and by the expression of VWF/CD31. After 2 days of culture on
top of a confluent layer of hDFb, hDMEC exhibiting the character-
istic cobblestone morphology were organized in colonies (Fig. 2iA).
The hKC expressing K14 displayed a random distribution on top of
cultured hDFb, distinguished as the cells only stained with DAPI in
Fig. 2iA and expressing FSP in Fig. 2iB. The co-cultured CS cross
sections (Fig. 2iB) allowed confirmation of the hKC and the hDMEC
on top of the hDFb embedded in their own ECM.

The adhesive nature of single CS, conferred by the ECM depos-
ited by the hDFb, allowed their assembly into different types of
3-D constructs. After stacking, the CS-based constructs showed
great stability, as revealed by the contiguous 2-CS layered struc-
ture (Fig. 2ii). The cross sections of the 3-D constructs generated
confirmed their desired design and the localization of the different
types of cells within the structure. The presence of hDMEC on the
upper part and between the two hDFb layers of the 3-D construct
composed of two single CS of co-cultured hDFb and hDMEC
(hDFb + hDMEC-CS) was confirmed by the expression of CD31
(Fig. 2ii). Similarly, the construct composed of one hDFb CS and a
second one of hDFb co-cultured with hKC (hDFb + hKC-CS) shows
the epidermal cells expressing K14 on the top of construct. Lastly,
the expected arrangement of the 3-D construct created by the
combination of a CS of co-cultured hDFb and hDMEC, and a second
CS of hDFb co-cultured with hKC (hDFb +hDMEC + hKC-CS),
resembling native skin organization with hDMEC embedded in
the hDFb matrix and hKC localized on the construct top layer, is
demonstrated (Fig. 2ii).

3.2. Effect of composition of CS-based skin constructs on wound
closure

The proposed CS-based constructs showed a different influence
over wound closure at different time points, as confirmed by
macroscopic analysis (Fig. 3i) and closure measurements
(Fig. 3ii). While for days 3 and 7 postoperative the percentage of
wound closure did not vary between the test conditions, at day
14 the 3-D constructs composed of the two CS of hDFb and hDMEC
led to the highest percentage of wound closure (82% + 8), signifi-
cantly different (P < 0.05) from the control (65% + 3). From day 14
onwards, wounds were progressively closing, reaching total
closure at day 21 postoperative for all the conditions. At the final
time point, the CS-based constructs combining the hDFb with
hKC (95% + 1) and the hDFb plus hDMEC and hKC (97% + 3), aided
a significantly (P < 0.05) higher wound closure percentage than the
control (78% £ 14) (Fig. 3ii).
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Fig. 2. Characterization by immunocytochemistry and Dil-AC-LDL uptake of (i) the different single CS, composed of major skin lineages, generated after 5 days of culture and
(ii) 3-D constructs formed by their stacking. The phenotype and arrangement of the cells (i)(A) prior to detachment, exhibiting the arrangement of hDMEC in colonies (CD31
in red; vWF in green) and of hKC (K14 in green) on top of hDFb monolayer (DAPI in blue) and (i)(B) after retrieval by temperature decrease within hDFb (FSP in red) ECM as
observed in the cross-section view. (ii) 3-D constructs formed by different combinations of two single CS, confirming their desired design and the localization of the different
types of cells, identified by the same markers, within the structure. * Identifies the topside of the CS and of the CS-based constructs. # Indicate single CS formed by hDFb and
hDMEC, ## single CS with co-cultured hKC and hDFb, and ### single CS formed only by hDFb. Scale bars represent 50 pm.

Detailed wound healing analysis, as visualized after H&E stain-
ing (Fig. 3iii), revealed the beginning of the formation of a neoepi-
dermis, noticeable underneath the eschar, at day 7 for all the
experimental groups (Fig. 3iiiF, ], N). In contrast, in the control con-
dition, a great extent of granulation tissue was visible, with an
eschar starting to form. A neoepidermis, similar to that observed
at day 7 for the experimental groups, was only noted at day 14
for the control (Fig. 3iiiB, C). The granulation tissue acted as a tem-
plate for a vascularized neodermis formation from day 7 onwards,
appearing to be more organized for the experimental groups from
day 14 postoperative (Fig. 3iiiG, K, O). Nonetheless, a complete re-
epithelialization of the wounds was observed for all the conditions
tested at day 21 (Fig. 3iiiD, H, L, P). In order to analyse the
re-epithelialization of the wounds in more detail, the thickness of
the neoepidermis at 7 (Fig. 4iA), 14 (Fig. 4iB) and 21 days
(Fig. 4iC) was measured. At 14 days postoperative, the CS-based
constructs containing hDFb plus hDMEC, in either the presence
or absence of hKC, led to a significantly thicker (P < 0.05) neoepi-
dermis than both the control and the CS-based construct contain-
ing hDFb and hKC (P<0.01 and P<0.001). At day 21, all the
experimental groups exhibited similar neoepidermis thickness,
significantly thicker (P < 0.05) than the control, and closer to the
thickness of healthy mouse epidermis (Fig. S1).

3.3. Human cells from CS-based constructs engraft into host neotissue
and enhance vascularization

The transplanted CS-based constructs immediately adhered to
the wound bed. In Fig. 5i, it is possible to observe the transplanted

CS on top of the wound, creating a continuous layer that overlaps
the wound margins, guaranteeing uniform integration into the
wound bed. At day 3, the human cells were distributed within
the wound site, with special prevalence at the wound margins
(Fig. 5iiA, B), independently of the experimental condition.
Although the design of the transplanted CS could not be clearly
identified, at day 3, clusters of human cells corresponding to the
skin cells that integrated the implanted CS-based constructs were
localized. The presence of hDMEC (Fig. 5 iiiA, D) and hKC
(Fig. 5iiiB, C), expressing human CD31 and K14, respectively, was
confirmed in the corresponding constructs. The predominance of
human cells at wound margins was even more evident at day 7;
human cells were mostly, but not exclusively, found in wound bor-
ders (Fig. 5iiD, E). In contrast to what was observed at day 3, groups
of human cells were only found on the top centre of the wound for
the hDFbs + hKC-CS group, in what appears to be the newly
formed epidermis. At day 14, isolated human cells were still visible
within the neoformed tissue (Fig. 5iiG-I), although in lower num-
bers. At day 21, almost no cells were found within the tissue (data
not shown).

The impact of the transplanted hDMEC over the progression of
wound healing and, in particular, over neovascularization, was
analysed by determining the density of the vessels within the
wounded area at days 7 and 14 (Fig. 6). An effect dependent on
the composition of the constructs over the density of vessels was
observed at day 7, but not at day 14 post implantation. At the ear-
lier time point, the density of vessels was significantly higher
(P<0.05) for the constructs containing CS of co-cultured hDFb
and hDMEC condition than for the CS-based constructs containing
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Fig. 3. Effect of the different 3-D CS-based constructs on wound healing. (i) Representative macroscopic images of the different conditions at the time of transplantation and
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Illustrative images of H&E-stained histological sections of the 3, 7, 14 and 21 day explants, highlighting the characteristics of wound healing progression with time. GT,
granulation tissue; ES, eschar; NE, neoepidermis; ND, neodermis. Scale-bar represents 50 pm.

hDFb and hKC (P<0.001) and the control (P<0.01) groups
(Fig. 6iA). Moreover, a significantly higher density of vessels was
also detected for the group of CS-based constructs combining
hDFb, hDMEC and hKC (P<0.05) in relation to the CS-based
constructs combining hDFb and hKC, but not in comparison with
the control (P> 0.05). At day 14, no significant differences in the
density of vessels were detected among the different groups
(Fig. 6iB). The contribution of the transplanted hDMEC for the for-
mation of new blood vessels was reinforced by the identification
within the neovasculature of human CD31 positive cells at day
14 (Fig. 6ii).

4. Discussion

Effective wound healing involves a well-orchestrated multidi-
rectional interaction between several cellular players and environ-
mental cues to progressively restore skin barrier function through
matrix deposition/remodelling, vascularization and re-epitheliali-
zation [50,51]. The present study explored the use of CS technology
to create CS formed by relevant skin lineages, which were then
assembled as different 3-D CS-based constructs. Moreover, it took
advantage of the possibility of accurately defining the composition
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Fig. 4. Effect of the different 3-D CS-based constructs on neoepidermis thickness. (i) Graphical representation evidencing the differences in the thickness of the neoepidermis
formed among the different groups at (A) 7, (B) 14 and (C) 21 days, and (ii) H&E histological pictures illustrating the quantified thickness differences. Scale bars correspond to

50 um. *P<0.05; **P < 0.01; ***P < 0.001.

and organization of the CS-based constructs to specifically target
re-vascularization and re-epithelialization during the progression
of wound healing.

One of the requirements for CS retrieval from thermo-respon-
sive surfaces is the deposition of a robust ECM that embeds cells
within their own matrix, forming a sheet [52]. The same skin sam-
ple allowed the three main skin lineages to be obtained to produce
the CS. However, both hKC and hDMEC are unable to form a thick
ECM in vitro and are also particularly sensitive in terms of culture
conditions [53,54]. Moreover, the selection of pure cultures of
hDMEC involves extensive cell manipulation, discouraged many
times owing to fibroblast contamination [43]. Similarly, the pro-
longed culture of KC leads to terminal differentiation [42]. In the
sequence of these constraints, and with the prospect of achieving
suitable constructs in a short time-frame, the present authors pro-
pose a strategy in which hDFb, in all the constructs, produce an
ECM-rich template to co-culture hKC and hDMEC. Either keratino-
cytes or endothelial cells were randomly distributed on the hDFb
and embedded in the ECM. Thus, on stacking and due to the natural
adhesiveness of the CS, cells deeply interact, as demonstrated by
the apparent fused layers observed in the cross section of the het-
erotypic constructs. The proposed approach not only guaranteed
the production of a robust CS and its retrieval from the thermo-
responsive dishes, but also the direct interaction of hKC and
hDMEC with the hDFb, the most important modulator of wound
healing signalling in vivo [51]. In fact, interactions between hKC
and hDFb are crucial for skin regeneration; hKC stimulate hDFb

to synthesize growth factors such as IL-1 alpha/beta, which in turn
affect hKC in a double paracrine manner [51]. Additionally, the role
of hDFb in neovascularization, namely in their differentiated form
as myofibroblasts, is widely acknowledged. Myofibroblasts are
known to deposit large amounts of ECM, the framework required
for new vessel formation by endothelial cells [55]. In addition,
through the release of different cytokines, such as bFGF and TGFp1,
as well as matrix metalloproteinases, myofibroblasts induce the
proliferation and migration of endothelial cells and, consequently,
angiogenesis/neovascularization [56].

Significant wound contraction is often associated with the ro-
dent model used here [57]. Despite the administration of a steroid
to attenuate wound contraction [58] and to delay the healing pro-
cess [47], considerable contraction was still observed. However,
the present authors consider that, as similar degree of contraction
was observed for all the conditions, direct comparison of the re-
sults between the experimental groups was not compromised.
CS-based constructs were designed considering not only the de-
scribed interplay between the cells involved, but particularly the
specific role of KC and endothelial cells in re-epithelialization
and neovascularization, respectively. Stable CS-based constructs
were obtained, and their compositions had different impacts on
the healing progression of mouse full-thickness excisional wounds.
Although a faster wound closure was observed with the construct
combining two CS of hDFb and hDMEC, the percentage of wound
closure at the end time point of the assay was significantly higher
in comparison with the control, for the conditions incorporating



3152 M.T. Cerqueira et al./Acta Biomaterialia 10 (2014) 3145-3155

(i) hDFb + hDMECs

(iii) hDFb + hDMECs

hDFb + hKC

20um

hDFb + hDMECs + hKC

hDFb + hKC hDFb + hDMECs + hKC
o
>
<
o
(i)
B WM g
. G s U o e ——
>~
<
(=]
D E
Lo ] o] Tl
. T e
>
<
a
e H )
Iwe | SE AR P S
2 _____________ = o \: \\.:
>
a
(=)

Fig. 5. Human cells successfully engrafted into the host tissue. (i) Macroscopic images of mouse wounds after CS transplantation clearly showing CS (arrowheads) covering
the wound and the wound margins. Identification of human cells by (ii) CISH in all the experimental groups and by (iii) immunohistochemistry at day 3 through the
expression of CD31 and K14, and lectin staining revealing their localization in the wound site. Nuclei were stained with DAPI (blue). WM, wound margins; WC, wound centre.

hKC. In a wound healing scenario, the thickness of the
neoepidermis correlates with the re-epithelialization process,
which implies increased keratinocyte proliferation and consequent
epidermis thickening and keratinization, gradually establishing
homeostasis [59]. No significant differences between the different
experimental conditions, in terms of epidermis thickness, were ob-
served at the end time point, suggesting re-establishment of the
homeostatic equilibrium. However, the progression of re-epitheli-
alization varied with the composition of the constructs. In agree-
ment with the wound closure rate, faster re-epithelialization,
traduced in a thicker epidermis, was observed when hKC inte-
grated the constructs formed with a second CS of hDFb co-cultured
with hDMEC. Additionally, a similar wound closure percentage and
epidermal thickness were observed for the groups containing
hDMEC, which suggests a contribution of these cells to re-epitheli-
alization. These observations meet previous findings [60] that
underlined the close interaction between the different cell types
forming the proposed constructs. The effect of the presence of

endothelial cells over KC migration, consequently enhancing
re-epithelialization, traduced in thicker neoepidermis, was demon-
strated. Moreover, both hDFb and hDMEC are able to express
factors, namely keratinocyte growth factor and hepatocyte growth
factor, that are known to stimulate KC proliferation and migration.
Unexpectedly, the constructs only combining hDFb and hKC did
not impact early re-epithelialization, which might be related to
the number of hKC used [5].

The rationale for the design of constructs containing hDMEC,
only in-between the hDFb and in-between and on one side of the
construct for the direct interaction with the wound bed after trans-
plantation, was to promote angiogenesis and faster neovasculari-
zation. Endothelial cells are known to constitutively express
vascular endothelial factors and to be able to respond to the wound
environment, enhancing neovascularization [61-63]. Furthermore,
as for other TE approaches, the incorporation of endothelial cells
within the 3-D CS-based constructs has been proved successful
in this respect. Both endothelial homotypic [64] and heterotypic
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Fig. 6. Effect of CS-based constructs over neovascularization. (i) Graphical representation of the distinct vessel density detected in the wounded area after (A) 7 and (B)
14 days of implantation of the constructs. Quantification was performed on the vessels positive for CD31. (ii) Immunolocalization of human endothelial CD31 positive cells

(arrow heads) within the neovasculature formed. *P < 0.05; **P < 0.01; ***P < 0.001.

CS obtained after co-culturing endothelial cells with fibroblasts on
thermo-responsive surfaces [39,64-66] have been used to create a
variety of pre-vascularized structures and to promote in vivo neo-
vascularization. The hDMEC cultured on top of the confluent hDFb
organized in colonies, which have been suggested to act as nucle-
ation sites for the later formation of tube-like structures in vitro
[67]. Moreover, there are indications that hDFb and endothelial cell
interaction in vitro promote the formation and maintenance of
capillary-like structures [21,64,68], as hDFb are thought to recreate
physiological conditions [64,69]. As one of the present authors’ ma-
jor aims was to propose a strategy with a minimum in vitro culture
period, thus accelerating the constructs’ readiness for transplanta-
tion, they were not able to demonstrate the in vitro formation of
capillary-like structures, in contrast to other studies that demon-
strated this event in prolonged in vitro culture [21,70]. However,
a significant increase in the number of vessels was observed within
the wounded area at early time points for both CS-based constructs
containing hDMEC in their composition. Two main mechanisms
may be contributing to this effect; the early trophic release of
angiogenic factors by the transplanted cells [60], and the later inte-
gration of human endothelial cells in the neovasculature. Regard-
ing the release of angiogenic factors, it would be expected that
an increase in the number of transplanted hDMEC would enhance
its release and, consequently, its effect. While the ratios between
hDFb and hDMEC were maintained among the CS, the construct
composed of two stacked CS of hDFb co-cultured with hDMEC con-
tained a higher number of hDMEC than the construct composed of
one CS of hDFb co-cultured with hDMEC and a second CS of hDFb
co-cultured with hKC. This higher total number of endothelial cells
did not result in a significant difference in vessel density between
the two conditions, which is in agreement with studies by Asakawa
et al. [64]. Moreover, the dynamic wound healing process with
consecutive steps, formation of granulation tissue, re-epithelializa-
tion and neodermis matrix deposition, leads to extensive remodel-
ling at the wound site. Thus, as a result of matrix remodelling and

displacement of the transplanted cells over time, the trophic re-
lease of angiogenic factors effect is overtaken by host mediated sig-
nalling at later time points. Thus, the contribution of the
transplanted hDMEC evolves from an indirect role within the heal-
ing environment to a direct function, as part of the neovasculature
as healing progresses.

The common outcome and limitation of in vivo xeno-
transplantation, which is a diminishing number of transplanted hu-
man cells with time, was also observed with the present approach.
Their dissociated distribution, and not in a CS organization, was ob-
served within the neotissue formed. However, and in accordance
with others, the cells transplanted as CS impacted wound healing
at early time points and, therefore, the way it progressed. This has
been proved to occur as a result of the trophic effect of the trans-
planted cells through paracrine interactions with resident cells
[29,51,60,71]. Overall, the present authors were able to confirm
the hypothesis that the combination of homotypic and heterotypic
CS, composed of the skin relevant cell lineages, into 3-D CS-based
structures provides the necessary cell machinery for wound healing,
specifically influencing re-vascularization and re-epithelialization.
These findings support the theory of cell action through paracrine
signalling and eliminates the need for long-term survival of the
transplanted cells.

5. Conclusion

The present authors demonstrated that different homotypic and
heterotypic CS, formed by skin cells, could be generated from ther-
mo-responsive surfaces and assembled into distinctly designed 3-D
constructs in a short time-frame, which is important when envi-
sioning rapid application in a clinical setting. Moreover, the findings
suggest that the composition of the 3-D constructs affected the
healing of full-thickness excisional wounds, leading to distinct out-
comes. Although absent at the end of the study, the transplanted hu-
man cells observed in the host wound bed and within the neotissue
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formed contributed to the progress of re-epithelialization and
neovascularization of the wounded tissue. While re-epithelializa-
tion was affected by the transplanted hKC and hDMEC, neovascular-
ization was directly influenced by the presence of hDMEC within the
constructs. Synergistic interaction of the different cells transplanted
within the ECM produced by the hDFb towards fast wound re-
epithelialization is suggested. Moreover, the contribution of hDMEC
to improving neotissue vascularization was also confirmed. Alto-
gether, these results warrant further studies using the proposed
strategy in the pursuit of improved skin regeneration.
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Appendix A. Figures with essential colour discrimination

All figures in this article, Figs. 1-6, are difficult to interpret in
black and white. The full colour images can be found in the on-line
version, at http://dx.doi.org/10.1016/j.actbio.2014.03.006
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