Genome-scale metabolic network of the central carbon metabolism of *Enterococcus faecalis*

Carla Portela1,2, Silas G. Villas-Bôas2, Isabel Rocha1, Eugénio C. Ferreira1

1IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga-Portugal

2School of Biological Sciences, The University of Auckland, 34 Symonds Street, Auckland 1142, New Zealand

Introduction

E. faecalis is a gram-positive bacterium that is getting more attention due to its “two-face” behavior. This natural inhabitant of the mammalian gastrointestinal tract is also an opportunistic pathogen responsible for urinary tract infections, nosocomial infections, bacteremia and infective endocarditis. Its intrinsic physiological properties such as inherent antibiotic resistance and exceptional ability to adapt to harsh conditions provide this organism with an enormous advantage in the infection processes.

Objectives

We propose to reconstruct the genome scale metabolic network of the central carbon metabolism of *E. faecalis*. The model will support the interpretation and better understanding of the metabolomic and proteomic data. The reconstruction will be based initially on the genome sequencing information available as well as online databases and literature research.

Methods

BLAST search

MERLIN – MEtabolic models Reconstruction of genome-scale INformation

Results

Future directions

On-going activities are the addition of:
- Membrane transport reactions (of extracellular compounds to the inside of the cell)
- Metabolism products (that are secreted by the cell)
- Biomass equation

Simulations:
- Optimization of growth
- Minimal nutrient requirements
- Gene deletion

Extend model for full metabolic network

A metabolic network reconstruction is practically and endless process that may lead to even more accurate predictions of cell metabolism.

Conclusions

The metabolic model generated for this bacterium will allow the correlation of metabolite levels and fluxes, enabling identification of key control points in its metabolism. Additionally, the metabolomic data already generated by our group allowed the identification of key compounds/reactions in *E. faecalis* metabolism that were still unclear. As it has been previously shown for other organisms, the metabolic network reconstruction may serve as a valuable tool to predict the phenotypic behaviour under various genetic and environmental conditions as well as to perform metabolic engineering simulations (e.g. gene deletion experiments).

Acknowledgements

This work is supported by a PhD grant from the FCT (Portuguese Science Foundation): SFRH/BD/47016/2008 and funding from HRC (Health Research Council of New Zealand).

Contact

portela.carla@deb.uminho.pt