
SABS : Spark ABStraction

A Tutorial

Victor Cacciari Miraldo

Universidade do Minho

1 Introduction

SABS is a predicate abstraction laboratory that is beeing developed at University
of Minho, Portugal. Our goal is not to produce a industrial software model
checker, such as SLAM [BMR01] or SATABS [CKSY05], but to have a tool to
study and compare the diferent techniques (and combination of techniques) that
can be used to perform the predicate abstraction of a program, in our case, a
SPARK program.

This document is a both a tutorial on the usage of SABS and a (small)
explanation of its implementation. Some knowledge on Predicate Abstraction
and Program Veri�cation is assumed, we refer the reader to [MLPF13] for some
background on the techniques implemented by SABS.

2 Installation

SABS is obtainable through the AVIACC project website1, tools section. Af-
ter downloading the source, the folowing commands should con�gure and build
SABS on most systems:

cabal configure; cabal build

Assuming the repository is cloned under a path p, the resulting executable will
be in p/dist/build/sabs/sabs.

Note that SABS is part of a bigger project, a Spark bounded model checker
is also included in this package, for more information on SPARK-BMC check
[Lou13].

3 Command Line Interface

The command line interface is pretty straight forward. The ��help argument has
the following output:

1 http://wiki.di.uminho.pt/twiki/bin/view/Research/Aviacc/WebHome

http://wiki.di.uminho.pt/twiki/bin/view/Research/Aviacc/WebHome


sabs
-i FILE --input=FILE Input file
-e PROC --entry=PROC Entry Point for Abstraction
-c --cover-only Compute covers, only

--full-cover Do not simply the covers of a direct abstraction
-b --boolean-program Compute a Boolean Program, Entry point must be specified.

--basicblock Reads the program from a basicblock file
--bbheuristic= direct | cartesian Set's the basic-block heuristic to be used
--cfheuristic= trivial | slam Set's the controw-flow heuristic to be used

-s ints | bvs --solver=ints | bvs Set's the solver to be used while abstracting
-V --version Print version
-h --help Show help

More options are available through annotations inside the code, such options
will be presented and discussed in chapter 6.

4 Architecture

In order to understant the provided options, some knowledge of the architecture
is needed. Figure 1 describes the important components. Blue labels represent
input/output, gray labels are intermediate representations for data, dashed lines
are used to represents plug-in components.

Parser

Simpli�er

Abstract Model

Abstractor

Boolean Simpli�er
Direct Abstraction

Cartesian AbstractionSolver

Integers

Bitvectors

AST

SSA

Transition Rel.

SPARK Source BasicBlock �le

Covers

Boolean Program

Fig. 1. SABS architecture



5 Using SABS

This chapter will present a high-level overview of the input/output options to-
gether with some output formating options. It aims at providing the user with
what is needed for constructing abstractions.

SABS accepts input in two forms: (A) a SPARK package body �le or (B)
a BasicBlock (bb) �le. A bb-�le consists in a list of variable declarations, a
basic-block and instrumentation code. For instance:

Listing 1.1. Sample BasicBlock �le

x : INTEGER;

y : INTEGER;

x := 3;

y := y + 1;

--% assert y <= x;

--% assert y mod 2 = 0;

--% assert y >= 0;

--% assert x >= 0;

In order to input a bb-�le to SABS we should invoke it with the option
��basicblock . If we wish to input a SPARK package body we just need to
specify the entry point of the abstractor, that's done with the option �e . The
simplest way to invoke SABS, then, is:

sabs ��basicblock -i myfile.bb

or
sabs -i mypackage.adb -e myfunc

For the rest of this document, I'll use the �le tutorial.bb to refer to the code
presented in listing 1.1.

5.1 Producing Boolean Programs

The most direct usage of SABS is to produce a boolean program of a given piece
of code. The option -b or ��boolean-program does just that. For instance, to
produce a boolean program out of our tutorial program the following command
would su�ce:

sabs ��boolean-program -i tutorial.bb

5.2 Producing Covers

In order to produce a boolean program, we have to produce a transition rela-
tion �rst, and then simplify it into a boolean program. It's possible to get this
intermediate output from SABS with the �ag -c or ��cover-only . Obviously,
the output will depend on the abstraction used (direct or cartesian) and as of
the current version, this option is only allowed when the input is a bb-�le.



Covers for Cartesian Abstraction Running the command:

sabs -i tutorial.bb ��basicblock ��bbheuristic=cartesian ��cover-only

will output:

//b1 : (y <= x)
//b2 : ((y mod 2) = 0)
//b3 : (y >= 0)
//b4 : (x >= 0)
>>> 1
ON : F
OFF: (!b3 & !b4) | (b1 & !b3)
UND: (!b1 & b3) | (b3 & b4)
>>> 2
ON : (!b1 & b2 & !b4) | (!b1 & b2 & b3) | (b1 & b2 & !b3) | (b1 & b2 & b4) | (b2 & !b3 & !b4) | (b2 & b3 & b4)
OFF: (!b2 & !b3 & !b4) | (!b2 & b3 & b4) | (!b1 & !b2 & !b4) | (!b1 & !b2 & b3) | (b1 & !b2 & !b3) | (b1 & !b2 & b4)
UND: F
>>> 3
ON : (b1 & b2 & !b3) | (b2 & !b3 & !b4)
OFF: (!b1 & b3) | (b3 & b4)
UND: (!b2 & !b3 & !b4) | (b1 & !b2 & !b3)
>>> 4
ON : F
OFF: (!b3 & !b4) | (!b1 & !b4) | (!b1 & b3) | (b1 & !b3) | (b1 & b4) | (b3 & b4)
UND: F
[ 128 solver calls ]

The given output is, in fact, the disjunction Swp(P,E(l)) for every literal l,
where P is the basic block in the input �le. Let's analyze the covers associated
with the variable b1:

>>> 1
ON : F
OFF: (!b3 & !b4) | (b1 & !b3)
UND: (!b1 & b3) | (b3 & b4)

The ON part corresponds to Swp(P,E(b1))−UNDET , OFF is Swp(P,E(¬b1))−
UNDET and UND is equivalent to the UNDET-cover, formaly Swp(P,E(b1)) ∩
Swp(P,E(¬b1)). Note that we have ON : F in our example, and this does not look
like a cover. It's the simpli�cation of the empty cover. SABS will try to simplify
boolean expressions (where applicable) before giving the output. We can skip
this process by providing the �ag ��full-cover , this may produce very large
outputs, though!

Now, what does that output mean? It's very simple to interpret it. For in-
stance, whenever ON (OFF ) holds before the execution of the basicblock, we
can ensure that b1 will be true (false) after the execution. If UND holds, on the
other hand, we can't say anything about b1, it can be both true or false.

Covers for Direct Abstraction Running the command:

sabs -i tutorial.bb ��basicblock ��bbheuristic=direct ��cover-only

will output:

//b1 : (y <= x)
//b2 : ((y mod 2) = 0)
//b3 : (y >= 0)
//b4 : (x >= 0)



Produced AT:
!b4 & !b3 & b2 & !b1 --> b4 & !b3 & !b2 & b1
!b4 & !b3 & b2 & b1 --> b4 & !b3 & !b2 & b1
b4 & !b3 & b2 & b1 --> b4 & !b3 & !b2 & b1
!b4 & !b3 & !b2 & !b1 --> b4 & !b3 & b2 & b1
!b4 & !b3 & !b2 & b1 --> b4 & !b3 & b2 & b1
b4 & !b3 & !b2 & b1 --> b4 & !b3 & b2 & b1
!b4 & b3 & b2 & !b1 --> b4 & b3 & !b2 & !b1
b4 & b3 & b2 & !b1 --> b4 & b3 & !b2 & !b1
b4 & b3 & b2 & b1 --> b4 & b3 & !b2 & !b1
!b4 & b3 & b2 & !b1 --> b4 & b3 & !b2 & b1
b4 & b3 & b2 & !b1 --> b4 & b3 & !b2 & b1
b4 & b3 & b2 & b1 --> b4 & b3 & !b2 & b1
!b4 & b3 & !b2 & !b1 --> b4 & b3 & b2 & !b1
b4 & b3 & !b2 & !b1 --> b4 & b3 & b2 & !b1
b4 & b3 & !b2 & b1 --> b4 & b3 & b2 & !b1
!b4 & !b3 & !b2 & !b1 --> b4 & b3 & b2 & b1
!b4 & b3 & !b2 & !b1 --> b4 & b3 & b2 & b1
b4 & b3 & !b2 & !b1 --> b4 & b3 & b2 & b1
!b4 & !b3 & !b2 & b1 --> b4 & b3 & b2 & b1
b4 & !b3 & !b2 & b1 --> b4 & b3 & b2 & b1
b4 & b3 & !b2 & b1 --> b4 & b3 & b2 & b1
[ 112 solver calls ]

The output is very di�erent than the one produced by the cartesian method.
This is due to the fact that direct abstraction produces an assignment table
(AT), such assignment table can be seen as a transition relation. SABS outputs
this transition relation interpretation.

Let's take the �rst line of the produced AT as an example. Such line is in
fact, telling us that:

¬E(b4) ∧ ¬E(b3) ∧ E(b2) ∧ ¬E(b1) ∧ LP ∧ E(b4) ∧ ¬E(b3) ∧ ¬E(b2) ∧ E(b1)

is SAT, where LP is the logic encoding of the suplied basic block P . That is, there
exists a transition from the state (¬b4,¬b3, b2,¬b1) to the state (b4,¬b3,¬b2, b1),
in the abstract model of P .

Theoretically, we would want to construct the projection of such transition
relation in respect to one variable, that's a cover for the given variable. By means
of a shell script, called pi , we can extract such projections.

To �nd out which pre-states will, certainly, turn b1 on, or o�, we could runthe
command:

sabs -i tutorial.bb ��basicblock ��bbheuristic=direct ��cover-only | pi 1

which would return

pi b1 = !b4 & !b3 & b2 & !b1 , !b4 & !b3 & b2 & b1 , b4 & !b3 & b2 & b1 , !b4 & !b3 & !b2 & !b1 , ...
pi !b1 = !b4 & b3 & b2 & !b1 , b4 & b3 & b2 & !b1 , b4 & b3 & b2 & b1 , !b4 & b3 & !b2 & !b1 , ...

Since we're not producing actual covers here, the �ag ��full-cover makes
no sense, and will be silently ignored if the user had it suplied. Note that the pi

tool is a simple script, and it is not installed automatically, you should create a
�le and add it to the search path. The code for pi is available as anex 1.2



6 Annotations

It's possible to control SABS behavior from inside the code, annotating each
source �le (both SPARK packages and bb-�les) with "set" options. In this chap-
ter we'll discuss each of those options.

6.1 Controw-Flow Options

In case a SPARK package body is given as input, SABS will start deconstructing
the code. This code may have controw-�ow instructions, and we can control how
SABS handle those options through:

%set cfheuristic := slam | trivial ;

slam controw-�ow heuristic will abstract each controw �ow conditions c with ∗,
adding an assume statement before the next branch that guarantees that we
continue through that branch only when c (or ¬c, in the else case) would
be valid in the actual program. For instance:

if c then

-- ...

else

-- ...

end if

if (*) {

assume (G(c))

// ...

} else {

assume (G(!c))

// ...

}

The G function is de�ned in [BMR01].
trivial controw-�ow heuristic will add every controw-�ow predicate to our set

E of predicates, therefore, every controw �ow predicate will be abstracted
by a (single) boolean variable.

6.2 Basic Block Options

Whenever sabs reaches a basicblock in the code it has two options, read all
assignments together (default behaviour) or read and abstract one by one. This
can be controled by adding a line in the beginning of our �le:

%set bbgroup := true | false ;

After determining the basic block, SABS will continue to abstract such block.
Two abstractors are available. A cartesian abstractor and a direct abstractor.
The cartesian abstractor can also receive an aditional parameter regarding the
maximum cube size to be considered.

%set bbheuristic := direct | cartesian | cartesian <int> ;



6.3 Solver Options

The solver to be used can also be changed, both by CLI or by annotations. Note
that annotations take precedence over command line parameters. There are two
solvers available, an unbound integers and a bitvector solver. To change such
option:

%set solver := ints | bvs ;

6.4 Optimization Switches

During the computation of a cover, some optimizations may take place. We allow
the user to turn those optimizations on or o�. It is important to note that the
applicable optimizations depends on the abstraction method beeing used.

Direct Abstraction allows us to detect invalid states through:

%set optimization := invstate ;

An invalid state is any state (b1, · · · , bn) such that
∧

1≤i≤n bi is unsat. For
example, consider the program x := 10; with predicates π1 ≡ x ≥ 0 and π2 ≡
x ≤ 100. The state ¬π1∧¬π2 is impossible to be reached by the original program,
therefore should be ignored (with some care, more on this problem can be found
on [MLPF13]).

This is implemented by �rst determining which post-states of the current
program are not invalid, and later on calculating which pre-states lead to each
post-state. Note that for each invalid post-state that is left behind we're saving
2n solver calls, where n is the number of predicates in E.

6.5 Cartesian Abstraction

The Cartesian method o�ers us a di�erent kind of optimizations. We can generate
the possible states in a smart way. Let's recall the de�nition of SψV .

SψV =
∨
{c ∈ CV | |= E(c)→ ψ}

Let's consider that we generate cubes in order of increasing size, during the
generation of a cube c ∈ SψV , two formulas can be checked to stop the generation
of cubes bigger than c:

Prime Implicants. If c → ψ then for every cube c′ such that c ⊂ c′ can be
safely ignored, since c′ → ψ too. We just need to add c to our set. Using this
optimization we'll generate the prime implicants of our formula only.

Prune Impossible. If c → ¬ψ then for every cube c′ such that c ⊆ c′ can be
safely pruned, since c′ → ¬ψ, therefore it's impossible for such cubes c′ to
imply φ.

Those optimizations can be turned on (together or individually) by:

%set optimization := priming, pruning ;



A Pi

Listing 1.2. pi tool

1 #! /bin/bash

2

3 #returns a "cover", the variable is specified for

4 fieldsep='\n'
5 ret_cover="old"
6 covers="undefined"
7

8 function readStdin () {
9 buffer=""

10 while read line
11 do
12 end=$(echo $line | grep "solver calls")
13 if [ -z "$end" ]
14 then
15 buffer="${buffer}${line}\n";
16 fi
17 done
18 covers=$buffer
19 }
20

21 #get 's the projection for the variable given as parameter $1.

22 function projection () {
23 matchBi="(\$2 ~ \".*b$1 .*\") && (\$2 !~ \".*! b$1 .*\")"
24 matchNBi="(\$2 !~ \".*[^!] b$1 .*\") && (\$2 ~ \".*!b$1.*\")"
25 awkProg="BEGIN { pbi = \"pi b$1 = \"; pnbi = \"pi !b$1 = \"; }
26 { if ($matchBi)
27 pbi = pbi \", \" \$1;
28 else if ($matchNBi)
29 pnbi = pnbi \", \" \$1;
30 }
31 END { printf \"%s$fieldsep\", pbi;
32 printf \"%s\n\", pnbi;
33 }"
34

35 echo -e $covers | grep "\-\->" | awk -F "-->" "$awkProg"
36 }
37

38 # Calculates the projection of a transition table , for a given variable.

39 if [ $# -ne 1 ]

40 then
41 echo "Usage: assignment_table_producer | pi <bool_var >"
42 exit
43 else
44 readStdin
45 if [ "$1" == "all" ]
46 then
47 n=`echo -e $covers | grep "^//" | wc -l`
48 echo $n
49 for var in $(seq $n); do
50 projection $var
51 done
52 else
53 projection $1
54 fi
55 fi

References

BMR01. Thomas Ball, Todd Millstein, and Sriram K. Rajamani. Automatic Predi-

cate Abstraction of C Programs. In PLDI'01, pages 203�213, 2001.



CKSY05. Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav.

SATABS: SAT-based predicate abstraction for ANSI-C. In Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS 2005), volume

3440 of Lecture Notes in Computer Science, pages 570�574. Springer Verlag,
2005.

Lou13. Cláudio Lourenço. A Bounded Model Checker for SPARK Programs. PhD
thesis, Informatics Department, Minho University, Portugal, 2013.

MLPF13. Victor C. Miraldo, Cláudio B. Lourenço, Jorge S. Pinto, and Maria João

Frade. Experimenting with predicate abstraction. In INFórum 2013, 2013.


	SABS : Spark ABStractionA Tutorial

