
A

Algebra-Coalgebra Duality in Brzozowski’s Minimization Algorithm

F. BONCHI, ENS Lyon, Université de Lyon LIP (UMR 5668)
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We give a new presentation of Brzozowski’s algorithm to minimize finite automata, using elementary facts
from universal algebra and coalgebra, and building on earlier work by Arbib and Manes on a categorical
presentation of Kalman duality between reachability and observability. This leads to a simple proof of its
correctness and opens the door to further generalizations. Notably, we derive algorithms to obtain minimal,
language equivalent automata from Moore, non-deterministic and weighted automata.

Categories and Subject Descriptors: F.1.1 [Theory of Computation]: Models of Computation; F.4.3 [Math-

ematical Logic and Formal Languages]: Formal Languages; I.1.2 [Symbolic and Algebraic Manipu-

lation]: Algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: algebra, automata, coalgebra, duality

1. INTRODUCTION
Duality plays a fundamental role in many areas of mathematics, computer science, sys-
tems theory and even physics. For example, the familiar concept of Fourier transform
is essentially a duality result: an instance of Pontryagin duality, see, for example the
standard textbook [Rudin 1962]. Another basic instance, known to undergraduates, is
the duality of a finite-dimensional vector spaces V over some field k, and the space
of linear maps from V to k, which is itself a finite-dimensional vector space. Building
on this self-duality, a fundamental principle in systems theory due to [Kalman 1959]
captures the duality between the concepts of observability and controllability (to be
explained below). The latter was further extended to automata theory (where control-
lability amounts to reachability) in [Arbib and Zeiger 1969], and in various papers
[Arbib and Manes 1974; 1975a; 1975c; 1975b; 1980a; 1980b] where Arbib and Manes
explored algebraic automata theory in a categorical framework; see also the excellent
collection of papers [Kalman et al. 1969] where both automata theory and systems
theory is presented.
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In a system with states and transitions triggered by actions, it may be the case that
an observer cannot discern the state of the system. Instead, he can see an observable
of some quantity or property that does not uniquely fix the state. However, if one can
use a sequence of observations following a prescribed course of actions to determine
the state then one says that the system is observable. Similarly, a system is said to
be controllable if a sequence of actions can drive it into a desired state irrespective of
the initial state. These concepts are natural for control theory but seem less related to
automata. It was a significant synthesis of [Arbib and Manes 1975a] to see that this
makes sense in automata theory as well.

The main contribution of the present paper is to exploit this duality to explain a
rather unexpected and surprising algorithm for minimizing automata due to [Brzo-
zowski 1962]: Starting with a (possibly non-deterministic) automaton that accepts a
language L, one reverses its transitions, makes it deterministic, takes the part that is
reachable, and then repeats all of this once more. The surprise is that the result will be
a minimal deterministic automaton that accepts L. Although we are presently not con-
cerned with complexity and performance, we briefly mention that although the worst
case complexity of the algorithm is exponential, it often performs well in practice, see
e.g. [Champarnaud et al. 2002; Tabakov and Vardi 2005].

Though an elementary description and correctness proof of the algorithm is not very
difficult (see for instance [Sakarovitch 2009, Cor. 3.14]), this proof does not really “ex-
plain” why it works. Here, we aim at supplying the conceptual reason and provide a
proof that the algorithm works because of the simple duality between reachability and
observability mentioned above. We first present a reformulation of Arbib and Manes’
duality result in terms of elementary algebra and coalgebra [Rutten 2000], from which
we will derive (the correctness of) Brzozowski’s algorithm as a corollary. We mention
that one of the first papers to study minimal realizations using category theory is
[Goguen 1972]. Although duality does not play a role there, our definitions of reacha-
bility and observability are essentially the same as in [Goguen 1972].

Our reasons for giving this new formulation of Brzozowski’s algorithm are the fol-
lowing.

First, the duality between reachability and observability is in itself a very beautiful
result that, unfortunately, it is not very well-known in the computer science commu-
nity. The work of Kalman [Kalman 1959; Kalman et al. 1969] is, of course, well known
in the systems community but not, for example, in the programming languages and
logics community.

Secondly, basic notions of algebra and coalgebra turn out to be the natural mathe-
matical settings for the modelling of reachability and observability, respectively, and
provide an elementary proof and understanding of the algorithm, paving also the way
to several extensions. The elementary proof (in sections 2–4) uses only the notions of
sets and functions. As a result, this part of the paper should be accessible to anyone
with a very basic understanding of automata. We then present a more formal, categor-
ical proof (in Section 9), which identifies the relevant categories and functors. While it
is not essential to understand the rest of the paper, it captures the essence of duality
most clearly.

Thirdly, our proof of Brzozowski’s algorithm is easy to generalise. The present pa-
per contains the straightforward generalisation of the algorithm to Moore automata in
Section 5. As an application of this generalisation we show how to use it to minimize
automata corresponding to expressions of Kleene algebra with tests (KAT) in Section 6
. The construction for Moore automata is then used to obtain Brzozowski-like algo-
rithms for non-deterministic automata (NDA) in Section 7, and weighted automata
(WA) in Section 8. More precisely, these algorithms take as input an NDA or a WA,
and produces as output a minimal Moore automaton that accepts the same (weighted)
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language as the original one. As for the deterministic case, the Brzozowski algorithms
for NDA and WA are based on performing twice the operations of reversing and deter-
minization but such operations now get a different interpretation. We emphasize that
the output automaton is not state-minimal as an NDA or a WA (as for example studied
in [Arbib and Manes 1975c]). In fact, as shown in Example 8.3 the state space of our
resulting deterministic and minimal Moore automaton may even be infinite.

This paper is an extended version of the paper [Bonchi et al. 2012], which only con-
tained the proof of correctness of Brzozowski’s algorithm and the straightforward ex-
tension to Moore automata; thus sections 6– 9 are new.

2. REACHABILITY AND OBSERVABILITY
Let 1 = {0}, 2 = {0, 1} and let A be any set. A deterministic automaton with inputs
from A is given by the following data:

1
i

##

2

X

f
;;

t
✏✏

XA

(1)

That is, a set X of states, a transition function t : X ! XA mapping each state x 2 X
to a function t(x) : A ! X that sends an input symbol a 2 A to a state t(x)(a), an initial
state i 2 X (formally denoted by a function i : 1 ! X), and a set of final (or accepting)
states given by a function f : X ! 2, sending a state to 1 if it is final and to 0 if it is
not.

We introduce reachability and observability of deterministic automata by means of
the following diagram:

1

"
✏✏

i

%%

2

A⇤ r //

↵
✏✏

X

f
88

t
✏✏

o // 2A
⇤

�
✏✏

"?

OO

(A⇤)A
rA
// XA

oA
// (2A

⇤
)A

(2)

in the middle of which we have our automaton (X, t, i, f).
On the left, we have the set A⇤ of all words over A. We view this as an automaton

with the empty word " as initial state and with transition function

↵ : A⇤ ! (A⇤)A ↵(w)(a) = w · a

On the right, we have the set 2A⇤ of all languages over A, also viewed as an automa-
ton. The transition function of this automaton is

� : 2A
⇤
! (2A

⇤
)A �(L)(a) = {w 2 A⇤ | a · w 2 L} (3)

where �(L)(a) is the so-called (left) a-derivative of the language L; and a final state
function

"?: 2A
⇤
! 2

that maps a language to 1 if it contains the empty word, and to 0 if it does not. Notice
that in the automaton on the left we do not care about a final state, only the initial
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state matters; this makes sense from the point of view of reachability, we only care
where we can get to from the initial state. Similarly for the automaton on the right,
we do not care about the initial state, only about the final state.

Horizontally, we have functions r and o that we will introduce next. First we define
xw, for x 2 X and w 2 A⇤, inductively by

x" = x xw·a = t(xw)(a)

i.e., xw is the state reached from x by inputting (all the letters of) the word w. With
this notation, we now define

r : A⇤ ! X o : X ! 2A
⇤

r(w) = iw o(x)(w) = f(xw)

Thus r sends a word w to the state iw that is reached from the initial state i 2 X
by inputting the word w; and o sends a state x to the language it accepts. That is,
switching freely between languages as maps and languages as subsets,

o(x) = {w 2 A⇤ | f(xw) = 1 } (4)

We think of o(x) as the semantics or the behavior of the state x.
The functions r and o are homomorphisms in the precise sense that they make the

triangles and squares of diagram (2) commute. In order to understand the latter, we
note that at the bottom of the diagram, we use, for f : V ! W , the notation

fA : V A ! WA

to denote the function defined by fA(�)(a) = f(�(a)), for � : A ! V and a 2 A.
One can readily see that the function r is uniquely determined by the functions i

and t; similarly, the function o is uniquely determined by the functions t and f . In
categorical terms, the unique existence of r is a consequence of A⇤ being an initial
algebra of the functor 1 + (A⇥�); similarly, the unique existence of o rests on the fact
that 2A⇤ is a final coalgebra of the functor 2⇥ (�)A.

Having explained diagram (2), we can now give the following definition.

Definition 2.1 (reachability, observability, minimality). A deterministic automaton
(X, t, i, f) is reachable if r is surjective, it is observable if o is injective, and it is minimal
if it is both reachable and observable.

Thus (X, t, i, f) is reachable if all states are reachable from the initial state, that
is, for every x 2 X there exists a word w 2 A⇤ such that iw = x; and (X, t, i, f) is
observable if different states recognize different languages, in other words, if they have
different observable behavior. This explains the use of the word “observable”, namely,
an automaton is observable if its states can be unambiguously identified with their
observable behaviour. Note that our definition of a minimal automaton coincides with
the standard one, and for a fixed language L, the minimal automaton accepting L is
unique up to isomorphism.

3. CONSTRUCTING THE REVERSE OF AN AUTOMATON
Next we show that by reversing the transitions, and by swapping the initial and fi-
nal states of a deterministic automaton, one obtains a new automaton accepting the
reversed language. By construction, this automaton will again be deterministic. More-
over, if the original automaton is reachable, the resulting one is observable.
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Our construction will make use of the following operation:

V

f
✏✏

2V

2(�) : 7!

W 2W
2

f

OO

which is defined, for a set V , by 2V = {S | S ✓ V } and, for f : V ! W and S ✓ W , by

2f : 2W ! 2V 2f (S) = {v 2 V | f(v) 2 S}
(In categorical terms, this is the contravariant powerset functor.)

The reverse construction. Given the transition function t : X ! XA of a deterministic
automaton, we apply, from left to right, the following three transformations:

X

t

✏✏

XA

X ⇥A

✏✏

X

2X⇥A

2X

OO (2X)A

2X

2

t

OO

The single, vertical line in the middle corresponds to an application of the operation
2(�) introduced above. The double lines, on the left and on the right, indicate isomor-
phisms that are based on the operations of currying and uncurrying. The end result
consists of a new set of states 2X together with a new transition function (which by
abuse of notation we denote by 2t)

2t : 2X ! (2X)A 2t(S)(a) = {x 2 X | t(x)(a) 2 S}
which maps any subset S ✓ X, for any a 2 A, to the set of all its a-predecessors. Note
that the reversed transition function 2t is again deterministic.

Initial becomes final. Applying the operation 2(�) to the initial state (function) of our
automaton X gives

1

i
✏✏

X

2

2X

2

i

OO

(where we write 2 for 21), by which we have transformed the initial state i into a final
state function 2i for the new automaton 2X . We note that according to this new function
2i, a subset S ✓ X is final (that is, is mapped to 1) precisely when i 2 S.

Reachable becomes observable. Next we apply 2(�) to the entire left hand-side of
diagram (2), that is, to both t and i and to ↵ and ", as well as to the functions r and rA.
This yields the following commuting diagram:

2

2X

2

i

99

2

t

✏✏

2

r
// 2A

⇤

2

↵

✏✏

2

"

OO

(2X)A
2

rA
// (2A

⇤
)A

(5)
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We note that for any language L 2 2A
⇤ , we have 2"(L) = "?(L) and, for any a 2 A,

2↵(L)(a) = {w 2 A⇤ | w · a 2 L}

The latter resembles the definition of �(L)(a) but it is different in that it uses w · a
instead of a · w. By the universal property (of finality) of the triple (2A

⇤
, �, "? ), there

exists a unique homomorphism rev : 2A
⇤ ! 2A

⇤ as shown here

2

2A
⇤

2

"

99

2

↵

✏✏

rev // 2A
⇤

�
✏✏

"?

OO

(2A
⇤
)A

revA
// (2A

⇤
)A

(6)

which sends a language L to its reverse

rev(L) = {w 2 A⇤ | wR 2 L }

where wR is the reverse of w.
Combining diagrams (5) and (6) yields the following commuting diagram:

2

2X

2

i

33

2

t

✏✏

2

r
// 2A

⇤

2

↵

✏✏

2

"

88

rev
// 2A

⇤

�
✏✏

"?

OO

(2X)A
2

rA
// (2A

⇤
)A

revA
// (2A

⇤
)A

Thus we see that the composition of rev and 2r (is the unique function that) makes the
following diagram commute:

2

2X

2

i

99

2

t

✏✏

O // 2A
⇤

�
✏✏

"?

OO

(2X)A
OA
// (2A

⇤
)A

O = rev � 2r
(7)

One can easily show that it satisfies, for any S ✓ X,

O(S) = {wR 2 A⇤ | iw 2 S} (8)

Final becomes initial. The following bijective correspondence

2

X

f

OO 1
f
✏✏

2X
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(again an instance of currying) transforms the final state function f of the original
automaton X into an initial state function of our new automaton 2X , which we denote
again by f . It will induce, by the universal property of (A⇤, ", ↵), a unique homomor-
phism R as follows:

1

"
✏✏

f

&&
A⇤ R //

↵
✏✏

2X

2

t

✏✏

(A⇤)A
RA
// (2X)A

(9)

Putting everything together. By now, we have obtained the following, new determin-
istic automaton:

1

"
✏✏

f

&&

2

A⇤
R

//

↵
✏✏

2X

2

i
77

2

t

✏✏

O
// 2A

⇤

�
✏✏

"?

OO

(A⇤)A
RA
// (2X)A

OA
// (2A

⇤
)A

(10)

where the above diagram is simply the combination of diagrams (9) and (7) above.
THEOREM 3.1. Let (X, t, i, f) be a deterministic automaton and let (2X , 2t, f, 2i) be

the reversed deterministic automaton constructed like above.
(1) If (X, t, i, f) is reachable, then (2X , 2t, f, 2i) is observable.
(2) If (X, t, i, f) accepts the language L, then (2X , 2t, f, 2i) accepts rev(L).

PROOF. As the operation 2(�) transforms surjections into injections (and since rev is
a bijection), reachability of (X, t, i, f) implies observability of (2X , 2t, f, 2i). The second
statement follows from the fact that we have

O(f) = {w 2 A⇤ | 2i(fw) = 1 }
= {wR 2 A⇤ | iw 2 f} [by identity (8)]
= rev({w 2 A⇤ | iw 2 f})
= rev(o(i))

We consider the following two automata. In the picture below, an arrow points to the
initial state and a double circle indicates that a state is final:

// x

b

⌫⌫

a
// z

b
yy

a
{{

y

b

OO

a

II

xy

a
✏✏

b // xyz

a,b

  

xz
boo

a
✏✏

// yz

b

""

a

;;

x
b

cc

a

||
y

b
//

a

OO

;

a,b

JJ
z

b
oo

a

OO
(11)
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The automaton on the left is reachable (but not observable, since y and z accept the
same language {a, b}⇤a + 1). Applying the reverse construction yields the automaton
on the right, which is observable (all the states accept different languages) but not
reachable (e.g., the state {x, y}, denoted by xy, is not reachable from the initial state
{y, z}). Furthermore, the language accepted by the automaton on the right, a{a, b}⇤, is
the reverse of the language accepted by the automaton on the left, which is {a, b}⇤a.

4. BRZOZOWSKI’S ALGORITHM
As an immediate consequence, we obtain the following version of Brzozowski’s algo-
rithm.

COROLLARY 4.1. Given a deterministic automaton accepting a language L,

(1) apply the reverse construction,
(2) take the reachable part,
(3) apply the reverse construction,
(4) take the reachable part.

The resulting automaton is the minimal automaton accepting L.

PROOF. The automaton obtained after steps (1) and (2) is reachable and accepts
rev(L). After step (3), the automaton is observable and accepts rev(rev(L)) = L. Finally,
taking reachability in step (4) yields a minimal automaton accepting L.

Note that in Corollary 4.1, if the original automaton is already reachable, then the
automaton obtained after step (2) is a minimal automaton accepting rev(L).

We saw that applying the reverse construction (step (1)) to the left automaton in
(11) resulted in the automaton on the right in (11). By taking the reachable part of the
latter (step (2)), we obtain the automaton depicted below on the left (where 1 = {y, z},
2 = {x, y, z} and 3 = ;):

2

a,b

  

// 1

b $$

a
::

3

a,b

II

// 2

b

��
a // 1, 2

b
yy

a

⌦⌦
(12)

The automaton on the right in (12) is obtained by, once more, reversing-determinizing
(step (3)) and taking the reachable part (step (4)). It is the minimization of the automa-
ton we started with.

Note that the original algorithm in [Brzozowski 1962] works with non-deterministic
automata, while Corollary 4.1 is restricted to deterministic automata. In Section 7, we
will show how to treat non-deterministic automata and in Section 8 we will further
generalize to weighted automata. First, in the next section, we extend our result to
deterministic Moore automata.

5. MOORE AUTOMATA
Moore automata generalise deterministic automata by allowing outputs in an arbi-
trary set B, rather than just 2. Formally, a Moore automaton with inputs in A and
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outputs in B consists of a set of states X, an initial state i : 1 ! X, a transition func-
tion t : X ! XA and an output function f : X ! B. Moore automata accept functions
in BA⇤ (that is functions � : A⇤ ! B) instead of languages in 2A

⇤ .
Here is in a nutshell how our story above can be generalised to Moore automata.

We can redraw diagram (2) by simply replacing 2 with B. We then define reachability,
observability, and minimality as before. Next, we adopt our procedure of reversing
transitions by using (the contravariant functor) B(�) instead of 2(�): for all sets V ,
BV = {� | � : V ! B} and, for all functions g : V ! W , the function Bg : BW ! BV

maps each � 2 BW to Bg(�) = � � g. Finally, all the results discussed above will also
hold for Moore automata. We note that although the output set B may be infinite, if
the state space X is finite, then the range of the output function B

0

= f [X] ✓ B is
also finite, and we can view the Moore machine as having output in B

0

. Consequently,
the state space BX

0

of the reversed Moore machine is also finite. The next example
illustrates the minimization of a Moore automaton.

We consider the following Moore automaton with inputs in A = {a, b} and output in
the subset B = { 1

3

, 2

3

, 1} of the rational numbers Q. In the picture below, the output
value r of a state x is indicated inside the circle by x/r:

// p/ 1

3

a //

b

$$

q/ 1

3

a

⌘⌘

b
✏✏

s/1
aoo

b
��

t/ 2

3

a

::

b
**

u/ 2

3

a

VV

bii

(13)

The automaton accepts a function in BA⇤ mapping every word w ending with ba to 1,
every word ending with b to 2

3

and every other word to 1

3

. Clearly, the automaton is
reachable from p. However, it is not observable, since, for example, the states p and q
accept the same function.

Applying the reverse construction (step (1)) yields a Moore automaton with BS as
set of states, where S = {p, q, s, t, u} is the set of states of the original automaton. The
output value of a state � : S ! B is given by �(p), where p is the initial state of the
original automaton. Further, the output function of the original automaton becomes
the new initial state, i.e., the function �

0

: S ! B mapping p and q to 1

3

, t and u to 2

3

,
and s to 1. The reachable part of the (finite) state space BS can be computed using a
standard least fixpoint algorithm that starts from the initial state �

0

, and iteratively
adds successor states until no new states are found. We obtain the following automaton
that has only five states.

// �
0

/ 1

3

a //

b

%%

�
1

/ 1

3

b //

a

%%

�
2

/1

a,b

◆◆

�
3

/ 2

3

a,b

MM

�
4

/ 1

3

a,b

MM

(14)

We do not spell out the full definition of the above states. As an example, the state �
1

consists of the map assigning p, q and s to 1

3

(that is �
0

(q)), and t, u to 1 (that is �
0

(s)).
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Note that the function in BA⇤ accepted by the state �
0

maps each word w 2 {a, b}⇤
to the same value where the reverse word wR is mapped by the function accepted by
the original automaton in (13). More precisely, it maps words which begin with ab to 1,
words which begin with b to 2

3

, and all other words to 1

3

.
If we repeat the reverse construction one more time (step (3)), and take the reach-

able automaton from the new initial state (step (4)), we obtain the minimal Moore
automaton equivalent to the one in (13):

// x/ 1

3

a

⌘⌘

b // y/ 2

3

b

⌘⌘ a
))

z/1
bii

a

gg
(15)

6. KLEENE ALGEBRA WITH TESTS
Kleene algebra with tests (KAT) are a simple, but powerful, extension of regular ex-
pressions and Kozen’s coinductive calculus of KAT [Kozen 1997; 2008] provides a
method for deriving a Moore automaton from a KAT expression. In this section, we
show how the algorithm above for Moore automata can be applied in order to obtain a
minimal automaton recognizing a KAT expression.

We will first recall the coalgebraic theory of Kleene algebra with tests from [Kozen
2008]. The proof of the existence of finite automata for KAT expressions in Section
6.4 is essentially the same as for the case of (classical) deterministic automata and
regular expressions. It can thereby be seen as a simplification of the proof given in
[Kozen 2008, Section 5.1].

6.1. Expressions
Let ⌃ be a set of primitive action symbols p, q 2 ⌃ and let T be a finite set of primitive
test symbols t 2 T . We define the set BExp of (Boolean) tests as the Boolean terms over
T :

b 2 BExp :: = t 2 T | b
1

b
2

| b
1

+ b
2

| b̄ | 0 | 1
The set of atoms ↵,� is At = 2T . Let ⌘ denote Boolean equivalence on the set BExp.
The quotient of BExp with respect to ⌘ is then a Boolean algebra B satisfying

B = (BExp/⌘ ) = 22
T

= 2At

(the second equality is actually an isomorphism). Note that the atoms of the Boolean
algebra B are (indeed) given by the set At. We denote the ⌘-equivalence class of b 2
BExp by [b] and define, for ↵ 2 At, ↵  b () ↵ 2 [b] 2 2At or, equivalently, ↵  b ()
↵+ b ⌘ b. Next we define the set Exp of KAT expressions e, f by

e 2 Exp :: = p 2 ⌃ | b 2 BExp | ef | e+ f | e⇤

6.2. Automata on guarded strings
We define the set GS of guarded strings x, y by

GS = (At⇥ ⌃)⇤At

We shall denote the elements of At⇥⌃ by roman letters a, b and the elements of GS by
strings x = a

1

a
2

· · · an↵ 2 GS for n � 0, ai 2 At⇥ ⌃ and ↵ 2 At.
An automaton on guarded strings consists of a set of states S together with an output

function
f : S ! 2At
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and a transition function

t : S ! SAt⇥⌃

mapping every s 2 S, for every a 2 At ⇥ ⌃, to a next state t(s)(a) 2 S, also denoted by
sa = t(s)(a) Such automata are, in other words, coalgebras (S, hf, ti) of the set functor
F (S) = 2At ⇥ SAt⇥⌃.

The carrier of the final coalgebra of this functor consists, as usual, of the set

(2At)(At⇥⌃)

⇤ ⇠= 2At(At⇥⌃)

⇤ ⇠= 2(At⇥⌃)

⇤At = 2GS

that is, the set of languages over guarded strings. It carries an automaton structure

f : 2GS ! 2At and t : 2GS ! (2GS)At⇥⌃

given, for a language K 2 2GS and a 2 At⇥ ⌃ by

f(K) = {↵ 2 At | ↵ 2 K} = K \At

t(K)(a) = Ka = {x 2 GS | ax 2 K}

The latter is the familiar derivative (or left quotient) of languages (over the alphabet
At⇥ ⌃).

6.3. The automaton of KAT expressions
By using (a slight variation of) the syntactic Brzozowski derivatives, also the set Exp
of KAT expressions can be supplied with an automaton structure

f : Exp ! 2At and t : Exp ! ExpAt⇥⌃

First we define the output f(e) by induction on the structure of d, e 2 Exp:

f(p) = ; f(b) = {↵ 2 At | ↵  b } f(de) = f(d)\f(e) f(d+e) = f(d)[f(e) f(e⇤) = At

Next we define the a-derivative ea = t(e)(a) 2 Exp, for e 2 Exp and a = h↵, qi 2 At⇥⌃,
again by induction on the structure of e:

pa = ph↵,qi =

⇢
1 if p = q
0 if p 6= q

(de)a = (de)h↵,qi =

⇢
daf + ea if ↵ 2 o(d)
daf if ↵ 62 o(d)

ba = 0 (e+ f)a = ea + fa (e⇤)a = eae
⇤

By finality, there now exists a unique homomorphism

Exp

ht,fi
✏✏

//o
2GS

ht,fi
✏✏

2At ⇥ ExpAt⇥⌃ // 2At ⇥ (2GS)At⇥⌃

which assigns to each KAT expression the language (of guarded strings) that it de-
notes.

6.4. Finite automata for KAT expressions
For every e 2 Exp and w 2 (At ⇥ ⌃)⇤, we define the repeated derivative ew by e" = e
and ewa = (ew)a.
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PROPOSITION 6.1. For e, f 2 Exp and w 2 (At ⇥ ⌃)⇤, the repeated derivatives
(ef)w, (e+ f)w and (e⇤)w are of the form

(ef)w = et
1

f + · · ·+ etkf + fu
1

+ · · ·+ ful

(e+ f)w = ew + fw
(e⇤)w = ev

1

e⇤ + · · ·+ evme⇤

for k, l,m � 0, ti, ui, vi 2 (At⇥ ⌃)⇤.

PROOF. The proof is by straightforward induction on the syntactic structure of KAT
expressions.

By the fact that the repeated derivatives of basic KAT expressions p 2 ⌃ and b 2 BExp

are contained in {0, 1} and by Proposition 6.1, we can construct for any KAT expression
e 2 Exp a finite automaton with e as designated (initial) state. This automaton is
essentially the subautomaton generated by e quotiented with idempotence. This means
that in the repeated derivatives of e we remove double occurrences of expressions g in
sums of the form · · · + g + · · · + g + · · · . Modulo this reduction, there are only finitely
many repeated derivatives. For instance, suppose by induction that we have proved
that the number of repeated derivatives of expressions e and f is bounded by ]we  N
and ]wf  M . Then it follows from Proposition 6.1 that the total number ]wef of
repeated derivatives of ef (with double occurrences of expressions removed) is bounded
by 2N+M .

Note that it is very easy to come up with much sharper bounds for ]we, but all we
wanted to show here is the existence of finite automata for KAT expressions. Also note
that the procedure described in the paragraph above does not amount to taking the
quotient of Exp with respect to the equivalence induced by the axioms ACI (associativ-
ity - commutativity - idempotency) of +. For instance, for primitive test symbols p 6= q,
the KAT expressions p + q and q + p will not be identified; our procedure yields two
different (but bisimilar) automata for these expressions.

6.5. Brzozowski meets Kozen: a minimization algorithm for KAT
In this section, we show how to obtain a minimal automaton on guarded strings corre-
sponding to a KAT expression e.

We will use the following two KAT expressions, over the one letter alphabets ⌃ = {p}
and T = {b}, to illustrate the algorithm

E = (bp)⇤b F = b+ bp(bp)⇤b

The expressions above denote, respectively, the following two simple imperative pro-
grams

while b
p;

if b
then {

p ;
while b

p;
}

else skip;

Intuitively, it is easy to see that the two programs are equivalent. We will show that
the automaton corresponding to the expression F can be minimized to the automaton

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



A:13

corresponding to E. The subautomata generated by E and F in the automaton of KAT
expressions are the following:

// F/b
b,p

//

b,p
##

E/b b,p

mm

b,p

✏✏

0/0

b,p

RR

b,p

mm

// E/b b,p

mm

b,p

✏✏

0/0

b,p

RR

b,p

mm

By applying reverse construction (step (1)) to the automaton on the left and then
taking its reachable part (step (2)), we obtain the following automaton.

// �
0

/b

b,p

MM

b,p
//
0/0

b,p

LL

b,p

◆◆

where �
0

: {F,E, 0} ! B is the function defined by

�
0

(F) = b �
0

(E) = b �
0

(0) = 0

and 0 : {F,E, 0} ! B is the function mapping every state to 0.
In this particular example, when we execute steps (3) and (4) for the above automa-

ton, we recover an isomorphic automaton. This is as expected, since the automaton
above is precisely the automaton for the expression E where the while loop is com-
pletely folded.

7. NON-DETERMINISTIC AUTOMATA
A non-deterministic automaton with input from a finite alphabet A is given by a finite
set X of states, a transition function t : X ! P!(X)A that sends a state x 2 X and
an input symbol a 2 A to a finite set of states t(x)(a), a set of initial states given by
a function i : 1 ! P!(X), and a set of final (or accepting) states given by a function
f : X ! 2 which sends a state to 1 if it is final and to 0 if it is not.

In order to find a minimal deterministic automaton recognizing the same language
of a non-deterministic automaton, we could first determinize the original automaton
and then apply Brzozowski’s algorithm in Corollary 4.1. Next we show how one can
directly construct, from a non-deterministic automaton, a deterministic one recogniz-
ing the reverse language. Once we have this automaton, we can apply Theorem 3.1
and obtain a minimal deterministic automaton recognizing the language of the au-
tomaton we start with. This saves one determininization step since determinization of
the original automaton and step (1) of Corollary 4.1 are essentially combined into one
determinization step.

7.1. The reverse of a non-deterministic automaton
Our construction will make use of the following lower inverse operation:

V

f

✏✏

P!(V )

7!

P!(W ) P!(W )

f⇧

OO
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which is defined, for f : V ! P!(W ) and S ✓ W , by

f⇧ : P!(W ) ! P!(V ) f⇧(S) = {v 2 V | f(v) \ S 6= ;}

(In topological terms, f⇧ is the lower inverse of a multifunction f .) Note that f⇧(;) = ;
and that f⇧(U

1

[ U
2

) = f⇧(U
1

) [ f⇧(U
2

).
Now, given the transition function t : X ! P!(X)A of our non-deterministic automa-

ton, we apply, from left to right, the following three transformations:

X

t
✏✏

P!(X)A

X ⇥A

✏✏

P!(X)

P!(X ⇥A)

P!(X)

OO
P!(X)A

P!(X)

t⇧

OO

The single, vertical line in the middle corresponds to an application of the lower in-
verse operation introduced above. The double lines on the left indicate the isomor-
phism based on the operations of currying and uncurrying, whereas the double lines
on the right indicate the isomorphism between P!(X ⇥ A) and P!(X)A which holds
since we assume A to be finite. The end result consists of a deterministic transition
function on the set of states P!(X), which by abuse of notation we simply denote by t⇧

(in analogy with the notation 2t used in Section 3). Concretely,

t⇧ : P!(X) ! P!(X)A where t⇧(S)(a) = {x 2 X | t(x)(a) \ S 6= ;}

which maps any subset S ✓ X, for any a 2 A, to the set of all states that have an
a-transition to a state in S. Note that this lower inverse construction yields a deter-
ministic transition function.

If we apply this lower inverse construction to the initial states i : 1 ! P!(X) of our
original non-deterministic automaton, we obtain the function i⇧ : P!(X) ! P!(1) ⇠= 2
with i⇧(S) = 1 if and only if i(⇤) \ S 6= ;, where 1 = {⇤}. Thus we have transformed
the set of initial states i into a final state map i⇧ for the new deterministic automaton
on P!(X), according to which a subset S ✓ X is final (that is, is mapped to 1) precisely
when it contains some initial state of the original automaton.

As a last step, we transform the final state function f : X ! 2 of the original non-
deterministic automaton X into an initial state of our new deterministic automaton
P!(X), as before, by using the bijective correspondence between functions from X to 2
and elements of 2X .

Putting everything together we now have constructed a deterministic automaton
which recognizes the reverse of the language accepted by the original automaton.

THEOREM 7.1. Let (X, t, i, f) be a non-deterministic automaton accepting the lan-
guage L. Then the language accepted by the deterministic automaton (P!(X), t⇧, f, i⇧)
is rev(L).

PROOF. We show that, for all x 2 X and for all w 2 A⇤

t(x)(w) \ f 6= ; () x 2 t⇧(f)(wR) (16)

Note that here we are using the inductive extensions of t and t⇧ to words, with t(q)(") =
{q} and t⇧(S)(") = S. Also note that equation (16) is a slightly more general statement
than the theorem, since we are not requiring x to be an initial state.

The proof is by induction on the length of words w 2 A⇤. For the empty word ", note
that

t(x)(") \ f 6= ; () {x} \ f 6= ; () x 2 f () x 2 t⇧(f)(").
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Take a 2 A and w 2 A⇤.

t(x)(aw) \ f 6= ; ()
 

S
y2t(x)(a)

t(y)(w)

!
\ f 6= ; (definition of t on words)

() 9y2t(x)(a) t(y)(w) \ f 6= ;

() 9y2t(x)(a) y 2 t⇧(f)(wR) (induction hypothesis)

() t(x)(a) \ t⇧(f)(wR) 6= ;

() x 2 t⇧(t⇧(f)(wR))(a) (definition of t⇧)

() x 2 t⇧(f)(wRa) (definition of t⇧ on words)

() x 2 t⇧(f)((aw)R)

Now, by replacing step (1) in Corollary 4.1, by the lower inverse construction, we
obtain the original Brzozowski algorithm [Brzozowski 1962] for non-deterministic au-
tomata. Indeed, since (P!(X), t⇧, f, i⇧) is deterministic and accepts rev(L), by taking
its reachable part (step (2)), and by reversing it (step (3)), we obtain a deterministic
automaton that is observable and accepts rev(rev(L)) = L. By taking its reachable part
again (step (4)), we obtain a deterministic automaton that is minimal and accepts L.

Example 7.2. We apply this algorithm to the following automaton (taken
from [Adámek et al. 2012]):

✏✏

1a,b
(( b // 2

b
''

a
◆◆

3
aoo b

ll

which recognizes the language L = {wb | |w|b � 1} consisting all words ending in a
b and containing at least two b’s. Applying the lower inverse construction and taking
reachability we obtain the automaton

✏✏

;a,b
66 3

b //aoo 23
b //

a
◆◆

123

a,b

✏✏

which recognizes the reverse language rev(L) = {bw | |w|b � 1}. We can now reverse
(step (3)) and take the reachable part (step (4)), obtaining the following deterministic
automaton

✏✏

~ b //a
((

?
b //

a
◆◆

}

b

��

a

dd

which is the minimal deterministic automaton recognizing the language L = {wb |
|w|b � 1}.

8. WEIGHTED AUTOMATA
Next we will generalize the above construction for non-deterministic automata to
weighted automata over certain semirings.
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8.1. Semirings and semimodules
Recall that a semiring is a tuple (S,+, ·, 0, 1) where (S,+, 0) and (S, ·, 1) are monoids,
the former of which is commutative, and multiplication distributes over finite sums:

r · 0 = 0 = 0 · r r · (s+ t) = r · s+ r · t (r + s) · t = r · t+ s · t

We just write S to denote a semiring. In this section we require a semiring to be com-
mutative, which means that the monoid (S, ·, 1) is also commutative.

Examples of commutative semirings are: every field, the Boolean semiring 2,
the semiring (N,+, ·, 0, 1) of natural numbers, and the tropical semiring (N [
{1},min,+,1, 0). The semiring of languages (P!(A⇤),[, ·, ;, ") with concatenation as
multiplication is an example of a non-commutative semiring.

For a semiring S, an S-semimodule is a commutative monoid (M,+, 0) with a left-
action S ⇥ M ! M denoted by juxtaposition rm for r 2 S and m 2 M , such that for
every r, s 2 S and every m,n 2 M the following laws hold:

(r + s)m = rm+ sm r(m+ n) = rm+ rn
0m = 0 r0 = 0
1m = m r(sm) = (r · s)m

Every semiring S is an S-semimodule, where the action is taken to be just the semir-
ing multiplication. Semilattices are another example of semimodules (for the Boolean
semiring S).

An S-semimodule homomorphism is a monoid homomorphism h : M
1

! M
2

such
that h(rm) = rh(m) for each r 2 S and m 2 M

1

. S-semimodule homomorphisms are
also called linear maps. The set of all linear maps from a S-semimodule M

1

to M
2

is
denoted by Lin(M

1

,M
2

).
Free S-semimodules over a set X exist and can be constructed using the functor

V : Set ! Set defined on sets X and maps h : X ! Y as follows:

V (X) = {' : X ! S | ' has finite support },

V (h(')) =
�
y 7!

P
x2h�1

(y) '(x)
�
,

where a function ' : X ! S is said to have finite support if '(x) 6= 0 holds only for
finitely many elements x 2 X. One can think of V (X) as consisting of all formal linear
combinations of elements of X. In fact, V (X) is the free S-semimodule on X when
equipped with the following pointwise S-semimodule structure:

('
1

+ '
1

)(x) = '
1

(x) + '
2

(x) (s'
1

)(x) = s · '
1

(x) .

Free semimodules enjoy the following universal property: for every function h : X ! M
from a set X to a semimodule M , there exists a unique linear map h] : V (X) ! M that
is called the linear extension of h. In the following, we will often identify a function
with its linear extension (and thus we will often use h in place of h]). A basis of an
S-semimodule M is a subset X of M such that the linear extension of the function
X ,! M is an isomorphism (that is, V (X) and M are isomorphic as S-semimodules).

Similarly to vector spaces, we define for an S-semimodule M over a commutative
semiring S its dual space M? to be the set Lin(M, S) of all linear maps between M and
S, endowed with the S-semimodule structure obtained by taking pointwise addition
and monoidal action: (g + h)(m) = g(m) + h(m), and (sh)(m) = s · h(m). Note that
S ⇠= V (1) and that S? = Lin(S, S) ⇠= S.

Unlike vector spaces, not all S-semimodules are free semimodules (just as not all
modules over a ring are free modules). An important observation in [Worthington 2009]
is that for a commutative semiring S, if M = V (X) is a free S-semimodule with finite
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non-empty set X as basis, then the dual space M? is a free S-semimodule with as basis
the following set (of the same cardinality as X):

{x? 2 Lin(M, S) | x 2 X and x?(y) = 1 if x = y, and 0 otherwise} .
That is, x? : M ! S is the projection on the x-component. By considering elements of M
as column vectors, the elements of M? are row vectors. For a linear map h : M

1

! M
2

between S-semimodules M
1

and M
2

the transpose hT : M?
2

! M?
1

is the map defined by

hT (') = ' � h
for every ' 2 M?

2

= Lin(M
2

, S). It is easy to see that hT (') 2 M?
1

. Note that in matrix-
notation hT is indeed the linear map given by the transposed matrix of h. From the
commutativity of S it follows that (g � h)T = hT � gT . Finally, we note that V (X) and
V (X)? are isomorphic, since they are freely generated from bases of the same cardi-
nality.

8.2. The reverse of a weighted automaton
A weighted automaton with finite input alphabet A and weights over a semiring S is
given by a set of states X, a function t : X ! V (X)A (encoding the transition relation in
the following way: the state x 2 X can make a transition to y 2 X with input a 2 A and
weight s 2 S if and only if t(x)(a)(y) = s), a final state function f : X ! S associating
an output weight with every state, and an initial state function i : 1 ! V (X).

It will be convenient to describe weighted automata using matrix-vector notation.
The initial state function i is then a column vector, and the final state function f is a
row vector. The transition function t can be seen as an A-indexed collection of maps
ta : X ! V (X) which by linearity uniquely determines a linear map t]a : V (X) ! V (X).
Hence t corresponds to an A-indexed collection of X ⇥ X-matrices ta where ta(y, x) =
t(x)(a)(y) for all x, y 2 X. We denote matrix multiplication by �. Given a state vector
v in V (X), the next state vector after reading letter a is given by the product ta � v,
and the output of a state vector v is the product f � v. The inductive extension of t
from letters to words amounts to matrix-multiplication with ta

0

...an = tan � . . . � ta
0

for
a
0

. . . an 2 A+ and t" is equal to the identity matrix. Like Moore automata, weighted
automata recognize functions in SA⇤ which are usually referred to as formal power
series (over S), and hereafter denoted by � and ⇢. More precisely, the formal power
series recognized by a weighted automaton (X, t, i, f) is the function that maps w 2 A⇤

to f(t(i)(w)) 2 S, or in matrix notation w 7! f � tw � i.
Notice that if we take S to be the Boolean semiring then weighted automata are

precisely non-deterministic automata (because V and P! are naturally isomorphic).
Next we recall from [Worthington 2009] how to construct from a weighted automa-

ton (X, t, i, f) a deterministic Moore automaton recognizing the reverse language. The
state space of this reverse Moore automaton will be V (X)?. Given the transition func-
tion t : X ! V (X)A of a weighted automaton, we apply, from left to right, the following
three transformations:

X

t
✏✏

V (X)A

X ⇥A

✏✏

V (X)

V (X ⇥A)?

V (X)?

OO
(V (X)?)A

V (X)?

tT

OO

Again, we abuse notation and simply write tT for the end result, ignoring the isomor-
phisms. As before, the double lines on the left indicate the isomorphism based on the
operations of currying and uncurrying, whereas the double lines on the right indicate
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the isomorphism between V (X ⇥ A)? and (V (X)?)A obtained from the isomorphism
V (X ⇥A) ⇠= V (X)A (for A and X finite sets) and the fact that M? ⇠= M whenever M is
free. The single, vertical line in the middle corresponds to an application of the trans-
pose operation to the linear extension of the function X ⇥ A ! V (X). The end result
consists of a deterministic transition function on the set of states V (X)?:

tT : V (X)? ! (V (X)?)A tT (')(a)
⇣X

sixi

⌘
=
X

si · '(t(xi)(a))

where ' 2 V (X)?, a 2 A and
P

sixi is an element in V (X) expressed as a formal
sum. In the special case of non-deterministic automata, transposing is easily seen to
correspond to reversal of transitions.

If we transpose the (linear extension of the) initial state function i : 1 ! V (X) of our
original weighted automaton, we obtain the (linear) function iT : V (X)? ! V (1)? ⇠= S
with iT (') = '(i(⇤)), where 1 = {⇤}. This function will give the output weight associ-
ated to each state in the reverse Moore automaton.

As a last step, we transpose the (linear extension of the) final state function f : X !
S of the original weighted automaton we obtain the map fT : S ! V (X)? (recall that
S? ⇠= S) defined by fT (s) (

P
sixi) =

P
s · sif(xi). Because of linearity we can restrict its

domain to the multiplicative unit of S and obtain the initial state of the reverse Moore
automaton as the linear map fT (1) :

P
sixi 7!

P
sif(xi) = f ] (

P
sixi). Note that fT is

indeed the column vector obtained by transposing the row vector f .

THEOREM 8.1. Let (X, t, i, f) be a weighted automaton over a commutative semiring
S and a finite input alphabet A recognizing a formal power series � : A⇤ ! S. The
reverse Moore automaton constructed above (V (X)?, tT , fT , iT ) recognizes the power
series �R which is defined for all w 2 A⇤ by

�R(w) = �(wR)

where wR is the reversed string of w.

PROOF. We need to show for all w 2 A⇤ that (using matrix notation)

f � tw � i = iT � tTwR � fT . (17)

Since f � tw � i is in S, i.e., it is a 1⇥1-matrix, it is equal to its own transpose, and hence
(17) follows if we can show that tTw = tTwR for all w 2 A⇤. We prove this by induction
on the length of w. For w = ", tT" and t"R are both equal to the identity matrix. For the
induction step, we have for a 2 A and u 2 A⇤:

tTau = (tu � ta)T = tTa � tTu
(IH)
= tTa � tTuR = tTuRa = tT

(au)R .

Now, by replacing step (1) in Corollary 4.1, by the reverse Moore automaton construc-
tion, we obtain a Brzozowski algorithm for weighted automata. Indeed, starting with
a weighted automaton (X, t, i, f) which recognizes �, the reverse Moore automaton
(V (X)?, tT , fT , iT ) recognizes �R, by taking its reachable part (step (2)), and reversing
it (step (3)), we obtain a Moore automaton that is observable and recognizes �. By tak-
ing its reachable part again (step (4)), we obtain a Moore automaton that is minimal
and recognizes �.

Example 8.2. We illustrate this algorithm with an example over the semiring of
real numbers and the alphabet A = {a, b}. Take X = {x, y, z}, i = (1 0 0)

T and f =
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(1 2 2), with the transition function represented below

x
a, 1

2 //

a, 1
2

✏✏

y b,1
hh

z b,1
hh

ta =

0

B@
0 0 0
1

2

0 0
1

2

0 0

1

CA tb =

 
0 0 0
0 1 0
0 0 1

!

This weighted automaton recognizes the power series � that assigns 1 to ", 2 to words
in ab⇤ and 0 to any other word. The reverse Moore automaton has initial state fT =

(1 2 2)
T , output map (represented as a vector) iT = (1 0 0), and transition function

tT : V (X)? ! (V (X)?)A as represented below. Recall that V (X)? ⇠= V (X) and tT is
determined by its action on the basis vectors x?, y?, z? which we simply denote x, y, z.

x y b,1
hh

a, 1
2oo

z

a, 1
2

OO

b,1
hh

tTa =

0

@
0 1

2

1

2

0 0 0

0 0 0

1

A tTb =

 
0 0 0
0 1 0
0 0 1

!

The reachable part of the reverse Moore automaton is depicted here:

✏✏

x/1
a //

b %%

y/2
a,b

//
0/0

a,b

TT

z/0

b

TT

a

99

where x = fT = (1 2 2)
T , y = (2 0 0)

T , z = (0 2 2)
T and 0 = (0 0 0)

T .
We can now easily see that this new automaton recognizes the power series ⇢ that

assigns 1 to ", 2 to words in b⇤a and 0 to any other word. It is easy to see that in-
deed ⇢(w) = �(wR), for any w 2 A⇤. Now, we have a deterministic Moore automaton
and we can execute steps (3) and (4) in order to obtain the minimal Moore automaton
recognizing the power series �.

✏✏

~/1
a //

b

99
}/2

b

⌦⌦
a // ?/0

a,b

⌦⌦

where ~, } and ? stand for the functions {x,y, z,0} ! R represented as vectors as,
respectively, (1 2 0 0)

T , (2 0 2 0)
T and (0 0 0 0)

T .

Example 8.3. We give another example of the construction with an example over
the semiring of real numbers and a singleton alphabet A = {a}. Take X = {x, y, z},
i = (1 0 1)

T and f = (1 1 2), with transition function represented below (we omit the
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label a)

x1

66
y

1

hh

1oo

z1

66

1

OO

t =

 
1 1 1
0 1 0
0 0 1

!

This weighted automaton recognizes the power series � that maps an into 3 + n. Since
A = {a}, each word w is equal to its reversed wR and thus �R = �. The reverse Moore
automaton has initial state fT = (1 1 2)

T , final state function iT = (1 0 1) and tran-
sition function:

x1

66

1

✏✏

1 // y
1

hh

z1

66

tT =

 
1 0 0
1 1 0
1 0 1

!

Differently from the example above, the reachable part of the reverse Moore automaton
is now infinite (below, x = fT = (1 1 2)

T , y = (1 2 3)
T and z = (1 3 4)

T ).

✏✏

x/3 //
y/4 //

z/5 // . . .

However, since V (X)? is generated from a finite basis (for the properties discussed at
the end of Section 8.1), then also the reachable states might be finitely generated. This
is indeed the case of the above example where z can be expressed as linear combination
of x and y (z = 2y � x). Intuitively, the above infinite Moore automaton can be finitely
represented by the following weighted automaton

x

1

44 y

�1

tt
2

hh

having as initial state function i = (1 0)
T and final state function f = (3 4). Now, by

applying steps (3) and (4) to the obtained Moore automaton (or to its finite representa-
tion), we get the exactly the same automaton (since, in this special case, � = ⇢).

We conclude this section by remarking that in general, and not unexpectedly, we
cannot apply the algorithm above to all semirings. In particular, in the example above,
if we would have taken the automaton to be over the semiring of natural numbers, then
the reachable part of the reverse Moore automaton would not be finitely based (like the
two states weighted automaton above). Note that as we remarked above z = 2y � x

which requires negative coefficients. In general, we will be able to guarantee that the
reachable part of the reverse Moore automaton is finitely based only for Noetherian
semirings [Ézik and Maletti 2011; Bonsangue et al. 2012].

9. ADJUNCTIONS OF AUTOMATA: A CATEGORICAL PERSPECTIVE
In this section we will make explicit the categorical picture that underlies Theorem 3.1.
The main observation here is that the dual self-adjunction on the category Set (induced
by the contravariant powerset functor) extends to one on the category of deterministic
automata. We will also see that Brzozowski’s minimisation algorithm can be described
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succinctly in terms of functors between categories of automata. From this categori-
cal picture the Brzozowski algorithm for Moore automata is an immediate and easy
generalisation.

9.1. Self-dual adjunction of Set
The category of sets and functions is denoted by Set. There is an adjunction between
Set and Setop induced by the contravariant powerset functor 2(�) : Set ! Setop (as il-
lustrated on the left in (18)) which means that there is a natural bijection between
morphisms as shown on the right in (18). Recall that a morphism X ! Y in Setop is a
morphism Y ! X in Set, i.e. a function from Y to X. The op-notation indicates the con-
travariance. In particular, the functor 2op does exactly the same as 2; the op-superscript
just keeps track of the direction.

Set

2

&&

? Setop

2

op

cc

X ! 2Y in Set

2X ! Y in Setop
(18)

In terms of set functions, the bijection of morphisms is given by taking exponential
transpose which we denote by f 7! f̂ (in both directions):

f : X ! 2Y in Set

f̂ : Y ! 2X in Set
given by: y 2 f(x) () x 2 f̂(y) (19)

9.2. Categories of automata
We denote by DA the category of deterministic automata and automaton morphisms.
A deterministic automaton is both a 1 + (A ⇥ �)-algebra (initial state plus transition
structure) and a 2⇥ (�)A-coalgebra (output function plus transition structure), and an
automaton morphism is a function that respects both structures. That is, an automaton
morphism between automata (X, t, i, f) and (Y, s, j, g) is a map h : X ! Y such that the
following diagram commutes:

1

i

✏✏

j

))

2

X

t

✏✏

f
55

h // Y

s

✏✏

g

OO

XA hA
// Y A

(20)

For example, in diagram (2) (on page 3) the reachability map r is a morphism of 1 +
(A ⇥ �)-algebras, and the observability map o is a morphism of 2 ⇥ (�)A-coalgebras,
but not vice versa.

The category DA has neither initial nor final objects, since automaton morphisms
must preserve the accepted language. For a given language L ✓ A⇤ we will therefore
restrict our attention to the full subcategory DA(L) of DA which has as its objects all
the deterministic automata that accept L. The category DA(L) has both an initial object
and a final object that are obtained as follows. Consider again the diagram (2) which
has on the left the initial 1+(A⇥�)-algebra (A⇤,↵, ") and on the right the final 2⇥(�)A-
coalgebra (2A

⇤
,�, "?). The initial object of DA(L) is obtained by adding to (A⇤,↵, ")

as output function �L, the characteristic function of L. The final object of DA(L) is
obtained by adding the language L as initial state to (2A

⇤
,�, "?). The reachability and
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observability maps are now both DA(L) morphisms, and hence they are the initial,
respectively final, morphism in DA(L):

1

"

✏✏
i

&&

L

%%

2

A⇤

�L ..

↵

✏✏

r // X

t

✏✏

f

88

o // 2A
⇤

�

✏✏

✏?

OO

(A⇤)A
rA // XA oA // (2A

⇤
)A

(21)

The notions of reachability and observability can now be formulated in terms of ini-
tiality and finality:

— An automaton in DA(L) is reachable if the initial morphism r is surjective.
— An automaton in DA(L) is observable if the final morphism o is injective.

Note that the final morphism from the initial object (A⇤,↵, ",�L) assigns to a word
w 2 A⇤ the set of all words u 2 A⇤ such that wu 2 L. So the kernel of the final
observability map is nothing but the Myhill-Nerode equivalence of L, and the image
is a minimal automaton that accepts L which has as its states the set {�(L)(w) | w 2
A⇤} of all derivatives of L. The picture in (21) thus nicely captures the well known
equivalence:

(1) L is regular iff
(2) the set of derivatives of L is finite iff
(3) the Myhill-Nerode equivalence has finite index.

9.3. Self-dual adjunction of DA
The definition of the reverse automaton in Section 3 defines a map 2 on the objects of
DA using the contravariant powerset functor 2 on Set. It can easily be verified that by
taking 2(f) = 2f = f�1 for an automaton morphism f , that 2 is a contravariant functor
on DA. We will now show that the functor 2 lifts the self-dual adjunction on Set to DA.

PROPOSITION 9.1. The functor 2 is a lifting of the contravariant powerset functor 2
to the category DA, which means that the following diagram commutes (U denotes the
forgetful functor which sends an automaton to its state set):

DA

2

((

?

U

✏✏

DAop

2

op

ff

U

✏✏

Set

2

((

? Setop

2

op

ff

In particular, 2 induces a self-dual adjunction on DA.

PROOF. The commutativity of the diagram is clear from the definition of the reverse
automaton. To see that we indeed have an adjunction on DA we have to show that for
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all X = hX, t, i, fi and Y = hY, s, j, gi in DA there is a natural bijection of morphisms:

X ! 2
op

(Y) in DA

2(X ) ! Y in DAop

(22)

The above follows by showing that the bijection via exponential transpose given in
(19) restricts to one between DA-morphisms, that is, we have to prove that a function
h : X ! 2Y is an DA-morphism exactly when its exponential transpose ĥ : Y ! 2X is.

First we note that in the construction of the reverse automaton, the final state func-
tion is turned into the initial state function by taking exponential transpose. (This was
left implicit in Section 3.) Thus we want to prove that for all functions h : X ! 2Y , the
following diagrams

X
h //

t

✏✏

2Y

2

s

✏✏

XA hA
// (2Y )A

1

i

✏✏

ĝ

  

X
h // 2Y

2

X

f
>>

h // 2Y

2

j

OO

(i) (ii) (iii)
commute if and only if

Y
ˆh //

s

✏✏

2X

2

t

✏✏

Y A
ˆhA
// (2X)A

1

j

✏✏

ˆf

  

Y
ˆh // 2X

2

Y

g
>>

ˆh // 2X

2

i

OO

(i’) (ii’) (iii’)
commute. This will be easy to prove using the following fact: For any function e : Z !
Y , the exponential transpose of ĥ � e is equal to 2e � h, i.e.,

Z
e�! Y

ˆh�! 2X

X
h�! 2Y

2

e

�! 2Z
(23)

since for all x 2 X, z 2 Z:

x 2 ĥ(e(z)) () e(z) 2 h(x) () z 2 e�1(h(x)) = 2e(h(x)).

Now [(iii) , (ii’)] and [(ii) , (iii’)] are easily obtained from (23):

f = 2j � h () f̂ = ĥ � j and
g = 2i � ĥ () ĝ = h � i.

To see that [(i) , (i’)] holds, note that the commutativity of these diagrams can be
formulated parametric in a 2 A. We will use the notation ta for the transition function
for label a, i.e., ta : X ! X where ta(x) = t(x)(a). We have:

(i) commutes () for all a 2 A : 2sa � h = h � ta
(i’) commutes () for all a 2 A : 2ta � ĥ = ĥ � sa.

By taking transposes on both sides (and using ˆ̂
h = h) it follows by (23) that (i) com-

mutes iff (i’) does.
Since the reverse automaton accepts the reverse language, the above adjunction

restricts to one between DA(L) and DA(rev(L))op.
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COROLLARY 9.2. There is a lifting of adjunctions:

DA(L)

2

))

?

✏✏

DA(rev(L))op

2

op

ii

✏✏

Set

2

))

? Setop

2

op

hh

The functor 2 maps the initial object of DA(L) to the final object of DA(rev(L)) and
surjections to injections, hence using the definitions of reachability and observability
given below (21), Theorem 3.1(1) is immediate. We restate the duality result in the
present setting.

COROLLARY 9.3. Let A be the initial object in DA(L), Z the final object in
DA(rev(L)), and let X be an automaton in DA(L). The initial reachability morphism
r : A ! X in DA(L) is mapped by 2 to the final morphism 2(r) : 2(X ) ! 2(A) = Z in
DA(rev(L)). Consequently, if X is reachable, then 2(X ) is observable:

r : A ⇣ X 27! o : 2(X ) ⇢ Z

9.4. Functorial reachability and observability
The subcategories of reachable and observable automata and their relationship play a
central role in Brzozowski’s algorithm. It is well known that we can make an automa-
ton reachable by restricting to its reachable states, and we can make it observable by
dividing out by the kernel ⇠ of the final observability morphism o, that is, x ⇠ y iff
o(x) = o(y). (The relation ⇠ is also known as observational equivalence, bisimilarity
or language equivalence.) These operations are functors, in fact, they are a so-called
coreflector and reflector, respectively (cf. [Adámek et al. 2009]). More precisely, the in-
clusion functor rDA ,! DA of reachable DAs into DAs has a right adjoint R which sends
a DA to its reachable part; and the inclusion functor oDA ,! DA of observable DAs into
DAs has a left adjoint O which sends a DA to its observable quotient.

The coreflector R and reflector O restrict in the expected way to observable and
reachable automata that accept a given language L. Clearly, applying O to a reachable
automaton, or applying R to an observable automaton, yields a minimal automaton
accepting the same language. This is illustrated in the following diagram where mDA
denotes the full subcategory of minimal automata. (The restriction of R to oDA(L) we
denote also by R, similarly for O):

DA(L)

Ruu

a
O ))

a

rDA(L)

O ((

44

a

oDA(L)

Rvv

jj

a

mDA(L)

ii 55

(24)

9.5. Brzozowski’s algorithm, categorically
The composition R � O (and also O � R) describes the direct way of minimising an
automaton, namely by taking the quotient with observational equivalence and mak-
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ing it reachable. Brzozowski’s algorithm avoids the quotient construction by replacing
it with taking reachability in the dual category of DA(rev(L)). As we already know,
this works thanks to the fact that 2 transforms reachability into observability (cf.
Theorem 3.1(i) and Corollary 9.3). In categorical terms, Corollary 9.3 says that the
functor 2 restricts to 2: rDA(L) ! oDA(rev(L))op. Dually, the functor 2

op restricts to
2
op

: rDA(rev(L))op ! oDA(L). Brzozowski’s algorithm is thus the traversal of the fol-
lowing diagram from DA(L) to mDA(L) following the solid edges: R � 2op �Rop � 2. (Note
that Rop can simply be thought of as doing the same as R.)

DA(L)
2 //

O

✏✏

DA(rev(L))op

Rop

✏✏

oDA(L)

R

✏✏

rDA(rev(L))op
2

op

oo

mDA(L)

(25)

9.6. Generalisation to Moore automata and weighted automata
The generalisation of Brzozowski’s algorithm to Moore automata described in Section 5
is immediate in the categorical picture, since for every set B the contravariant Hom-
functor B(�) = Set(�, B) induces a self-dual adjunction on Set via exponential trans-
pose; B = 2 is just a special case. All technical results such as (23) hold for an arbitrary
set B.

The Brzozowski-style algorithm for weighted automata (of which NDAs are a special
case) described in Section 8 can be explained categorically as follows. The key obser-
vation is that the language semantics of weighted automata is obtained by viewing a
weighted automaton X = (X, t, i, f) as a Moore automaton X ] = (V (X), t], i, f ]) in the
category SMod of S-semimodules and S-semimodule homomorphisms. We denote the
corresponding category as SMoore. We refer the reader to [?] for a detailed explana-
tion of this construction on linear weighted automata (which are Moore automata over
vector spaces), and to [Silva et al. 2010] for a novel perspective of this construction as
a generalized powerset construction. Moore automata over SMod are reversed using
the contravariant Hom-functor S(�) = SMod(�, S) which sends an S-semimodule to its
dual space, and which lifts to a dual adjunction of Moore automata over SMod. The
construction of the reverse Moore machine of a weighted automaton is formally the
composition S � (�)]. The situation is summarized here:

WA(L)

✏✏

(�)

]

// SMoore(L)

S(�)

**

?

✏✏

SMoore(rev(L))op

S(�)

op

jj

✏✏

U // Moore(rev(L))op

✏✏

Set SMod

S(�)

**

? SModop

S(�)

op

ii
// Set

In the Brzozowski-style algorithm for weighted automata, we take the reachable
part of the reverse Moore automaton. Note, however, that taking reachability is not
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a legal operation in SMoore, since the reachable part of the state space may not be
a (sub)semimodule. Therefore, we first forget the semimodule structure on the state
space, and simply view the reverse Moore automaton as an “unstructured” Moore au-
tomaton over Set (the corresponding category is denoted by Moore). When the semir-
ing S is infinite, this step may result in an infinite state space. Summarizing, the
Brzozowski-style algorithm for weighted automata is obtained as the functor compo-
sition R � B

op� Rop � U � S � (�)] where U denotes the functor forgetting semimodule
structure.

9.7. Duality via Boolean algebras
We briefly describe the duality between automata and Boolean automata that
gives rise to a different approach to finding the minimal automaton that ac-
cepts a language L, cf. [Gehrke 2009; Gehrke et al. 2008; Roumen 2011].

DA

P
((

⇠
=

✏✏

BAutop

At

gg

✏✏

Set

P
((

⇠
= CABAop

At

gg

A Boolean automaton is a deterministic automaton (X, t, i, f)
where X is a complete, atomic Boolean algebra and t and f are
Boolean algebra homomorphisms. A morphism of Boolean au-
tomata is an automaton morphism which is also a Boolean ho-
momorphism. In [Roumen 2011], it is shown that the discrete
duality between Set and complete atomic Boolean algebras
(CABA) can be lifted to one between DA and Boolean automata
(BAut), as illustrated in the diagram below. Here we write P for
the contravariant functor that sends a set to its powerset alge-
bra, and At for the operation that sends a Boolean algebra to
its set of atoms. The lifting P is essentially the same as 2, only now we take the Boolean
algebra structure on the new state space 2X into account. It can easily be verified that
the reverse automaton is, in fact, a Boolean automaton. In the other direction, given a
Boolean automaton (X, t, i, f) a (set-based) automaton is obtained by taking the atoms
of X and restricting the reversed transition function 2t to atoms.

Note that the above is a dual equivalence, so for any automaton X 2 DA, (At�P)(X ) ⇠=
X . A minimal deterministic automaton accepting a given language L ✓ A⇤ can now be
obtained as the dual of the Boolean automaton Xr (accepting rev(L)) generated by the
subset of right-derivatives of L in the Boolean algebra of all languages. In particular,
minimisation via BAut is not the same as Brzozowski’s algorithm, since taking the
reachable part of P(X ) is not a valid operation in BAut, as in general, the reachable
part of the state space is not a Boolean subalgebra of 2X . For example, the reachable
part of the automaton on the right of (11) consist of the states {x, y, z}, {y, z}, ; which
do not form a Boolean algebra.

Another approach to minimisation via duality is given in [Bezhanishvili et al. 2012]
which uses finite Boolean algebras with operators (FBAO) as the dual category. In fact,
FBAO is just the subcategory of BAut consisting of finite Boolean automata, and their
duality between partially observable deterministic automata and FBAO is a restric-
tion of the above one to finite sets. Instead of taking the reachable part in the dual
category (which is not valid in FBAO, as remarked above), their construction takes the
subalgebra of modally definable subsets. This subalgebra is the image of the initial
morphism in the category of all Boolean algebras with operators, and so it is a categor-
ical analogue of taking reachability which is taking the image of the initial morphism
in DA(L).
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10. DISCUSSION
We have given a new description and a new correctness proof of Brzozowski’s algorithm
[Brzozowski 1962] for the minimization of deterministic automata. The novel proof
relies on the duality between reachability and observability, a principle which has been
originally introduced in systems theory [Kalman 1959] and then extended to automata
theory [Arbib and Zeiger 1969; Arbib and Manes 1975a; 1980b]. Our formulation uses,
albeit implicitly, standard elements of universal algebra and coalgebra [Rutten 2000].

In addition, we have shown how to generalise the algorithm to deterministic Moore
automata, and applied it in the context of KAT expressions, non-deterministic and
weighted automata. It is important to remark here that our minimimal realizations
are Moore (deterministic) automata: our work does not concern notions of minimal
(or canonical) non-deterministic automata or weighted automata. In this context, we
mention that our Definition 2.1 is essentially the same as that of [Goguen 1972] which
contains one of the first categorical treatments of minimal realizations, although dual-
ity does not play a role there. Finally, we have provided a categorical perspective where
the dual adjunction underlying our construction is made precise, and Brzozowski’s al-
gorithm is shown to be functorial.

The duality between reachability and observability has been studied also in other
contexts. In [Bidoit et al. 2001], this duality is used to establish several analogies
between concepts from observational (coalgebraic) and constructor-based (algebraic)
specifications. In the present paper, we have highlighted how Brzozowski’s algorithm
integrates both concepts.

Yet another approach, similar in spirit to ours, can be found in [Bezhanishvili et al.
2012], where a Stone-type duality between automata and their logical characterization
is taken as a basis for minimization. We briefly discussed this work in Section 9.7, but
the precise connection between that work and the present paper, remains to be better
understood.

Stone-type dualities between automata and formal languages have previously been
studied using the Boolean algebra structure of formal languages, see e.g. [Gehrke 2009;
Gehrke et al. 2008; Roumen 2011]. Our picture does not involve Boolean algebras,
and is in our view closer to the original formulation of Brzozowski than the Boolean
algebra-based approaches.

Crucial for our work was the combined use of both algebra and coalgebra. Notably,
it was important to include in the definition of automaton an initial state, which is
in essence an algebraic concept. In coalgebra, one typically models automata without
initial states. In that respect, so-called well-pointed coalgebras [Adámek et al. 2012],
which are coalgebras with a designated initial state, may have some relevance for the
further generalization of Brzozowski’s algorithm.

A somewhat different notion of non-deterministic Moore automata has recently been
introduced in [Castiglione et al. 2011]. It basically consists of a non-deterministic au-
tomaton with output in a set that comes equipped with a commutative and associative
operator. Interesting for our context is their variant of Brzozowski’s algorithm for the
construction of a minimal deterministic Moore automaton that is equivalent to a given
non-deterministic one. It would be interesting to study if our algorithm extends also to
coherent non-deterministic Moore automata [Castiglione et al. 2011].

Brzozowski’s minimization algorithm has also been combined with Brzozowski’s
method for deriving deterministic automata from regular expressions in [Watson
2000]. It would be useful to investigate how such a combination can be generalized
to, for example, Kozen’s calculus of Kleene algebras with tests [Kozen 1997], which
would simplify the procedure we present in the current paper, eliminating one half of
the Brzozowski’s algorithm. All that is required for our approach is to construct from
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a KAT expression an automaton accepting the guarded language denoted by the re-
verse of the input expression (represented as a function). Defining such an algorithm
remains as future work.

Recently, in [Silva et al. 2010], we have presented a generalisation of the pow-
erset construction for the determinisation of many different types of automata.
Examples include Rabin’s probabilistic automata [Rabin 1963] and weighted au-
tomata [Schützenberger 1961], to which our method applies in spite of the fact that
the resulting deterministic (Moore) automaton is infinite. We would like to combine
the results of the present paper with those of [Silva et al. 2010] to generalise Brzo-
zowski’s algorithm to probabilistic automata.
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