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Abstract 

Pheno-metabolomics is a bioinformatic field of study related with the establishment of links between 

metabolic data, genotype and phenotype, generated using high-throughput methods. The knowledge 

obtained in this field has been a major contribution towards the understanding of the vast genetic 

diversity of Saccharomyces cerevisiae strains that adapted to different ecological niches and are used 

for most distinct biotechnological applications. Only a holistic approach covering molecular biology, 

phenotypic characterization, analytical chemistry, signal processing and bioinformatics could 

provide detailed information on the vast and dynamical relationships between genomics, phenomics 

and metabolomics. The main objectives of this thesis are the exploration of genetic, phenotypic and 

metabolic diversity of a S. cerevisiae strain collection and the assessment of the available 

bioinformatic and computational approaches for subsequent data fusion. 

We have constituted a strain collection comprising 172 S. cerevisiae strains of worldwide 

geographical origins and technological uses (winemaking – commercial and natural isolates –, 

brewing, bakery, distillery – sake, cachaça –, laboratorial strains and strains from particular 

environments – pathogenic, isolates from fruits, soil and oak exudates). Their phenotype was 

screened by considering 30 physiological traits that are important from an oenological point of view. 

Growth in the presence of potassium bisulphite, growth at 40 ˚C and resistance to ethanol were the 

phenotypes that contributed the most to strain variability, as revealed by principal component 

analysis (PCA). Mann-Whitney test exposed significant associations between phenotypic results and 

strains technological group. Naïve Bayesian classifier identified three of the 30 phenotypic tests – 

growth in iprodion (0.05 mg/mL), cycloheximide (0.1 µg/mL) and potassium bisulphite (150 mg/L) 

–, that provided more information for the assignment of an isolate to the group of commercial 

strains. Results show the usefulness of computational approaches to simplify strain selection 

procedures. 

For subsequent genetic analysis, the usefulness of interdelta sequence amplification for the 

characterization of our strain collection was evaluated. Experiments were carried out in two 

laboratories, using varying combinations of Taq DNA polymerase and thermal cyclers for the 

analysis of 12 S. cerevisiae strains. Data were obtained by microfluidic electrophoresis and the 

reproducibility of the technique was evaluated by non-parametric statistical tests. We showed that 

the source of Taq DNA polymerase and the technical differences between laboratories had the 

highest impact on reproducibility. We also concluded that the comparative analysis of interdelta 

patterns was more reliable and reproducible when fragment sizes were compared and when was 

based on a smaller fraction of bands with intermediate sizes between 100 and 1000 bp. 

To obtain most reproducible genetic data, 11 polymorphic microsatellites were then used for the 

characterization of the 172 S. cerevisiae strains of our collection. Data were computationally related 
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with the previously obtained results of 30 phenotypic tests. We found 280 alleles, whereas 

microsatellite ScAAT1 contributed the most to intra-strain variability, together with the alleles 20, 9 

and 16, from microsatellites ScAAT4, ScAAT5 and ScAAT6, respectively. Computational models 

were developed and cross-validated to predict the strain’s technological group from the 

microsatellite allelic profile. Associations between microsatellites and specific phenotypes were 

scored using information gain ratio, and significant findings were confirmed by permutation tests 

and estimation of false discovery rates. The phenotypes associated with higher number of alleles 

were the capacity to resist to sulphur dioxide and the galactosidase activity. Our results 

demonstrated the capacity of computational modelling to estimate, from microsatellite allelic 

combinations, both the phenotype and the belonging of a strain to a certain technological group. 

The genomic constitution of S. cerevisiae was shaped through the action of multiple independent 

rounds of domestication and microevolutionary changes for the adaptation to environmental 

conditions. We evaluated genome variations among four isolates of the commercial winemaking 

strain S. cerevisiae Zymaflore VL1. These isolates were obtained in vineyards surrounding wineries 

where this strain was applied during several years, and the experiments were accomplished in 

comparison to the commercial reference strain. Comparative genome hybridization showed 

amplification of 14 genes among the recovered isolates that were related with mitosis, meiosis, 

lysine biosynthesis, galactose and asparagine catabolism. The occurrence of microevolutionary 

changes was supported by DNA sequencing due to the finding of 1198 SNPs and 113 InDels. 

Phenotypic screening revealed 14 traits that distinguished the recovered isolates from the reference 

strain, which was unable to grow at 18 ˚C, but evidenced some growth in the presence of CuSO4 

(5mM) and SDS 0.01% (v/v). The metabolite profiles revealed differences in the production of 

succinic acid, benzene ethanol, 2-methyl-1-butanol and isobutanol. 

Our approaches were then expanded to include also metabolic analysis. Individual must 

fermentations were performed with the 172 strains and from the combined data of fiber optics 

spectroscopy, physiological and molecular results, a sub-group of 24 strains was chosen. High-

performance liquid chromatography analysis revealed variable results, with glucose, fructose and 

acetic acid contributing the most for inter-strain variability. Metabolites relevant to aromatic profiles 

were determined by gas chromatography-mass spectrometry and PCA showed substantial variance 

between the amounts of alcohols and esters produced. Partial least squares regression (PLS-R) was 

used in pairwise comparison approaches to predict strains’ metabolic profiles, using phenotypic and 

genetic data, and relevant associations were identified for 9 of the 24 metabolites. Data were then 

projected onto a common system of coordinates, revealing a sub-set of 17 statistical relevant multi-

dimensional modules (md-modules), combining sets of most-correlated features of noteworthy 

biological importance. The combination of PLS-R and md-modules identification revealed to be a 

successful approach for a better understanding of the S. cerevisiae pheno-metabolome. 
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Resumo  

A feno-metabolómica é uma área da bioinformática que estuda as relações entre dados metabólicos, 

genótipo e fenótipo, gerados por métodos de alto débito. O conhecimento obtido neste campo tem 

dado um grande contributo para a compreensão da vasta diversidade genética entre estirpes de 

Saccharomyces cerevisiae que estão adaptadas a diferentes nichos ecológicos e que são usadas para 

distintas aplicações biotecnológicas. Apenas uma abordagem holística englobando biologia 

molecular, caracterização fenotípica, química analítica, processamento de sinal e bioinformática 

pode fornecer informação detalhada sobre as vastas e dinâmicas relações entre genómica, fenómica 

e metabolómica. Os principais objetivos desta tese são a exploração da diversidade genética, 

fenotípica e metabólica de uma coleção de estirpes de S. cerevisiae e a avaliação das abordagens 

bioinformáticas e computacionais disponíveis para subsequente fusão de dados. 

Uma coleção de 172 estirpes de S. cerevisiae foi constituída, contendo isolados de distintas 

localizações geográficas e usos tecnológicos (vínicas – comerciais e isolados naturais –, cerveja, 

pão, bebidas destiladas – saké, cachaça –, estirpes de laboratório e estirpes de ambientes 

particulares – patogénicas, isoladas de frutos, solo e carvalho). O seu fenótipo foi avaliado 

considerando 30 testes fenotípicos que são importantes de um ponto de vista enológico. 

Crescimento na presença de bissulfito de potássio, crescimento a 40 ˚C e resistência ao etanol 

foram os fenótipos que mais contribuíram para a variabilidade entre estirpes, como revelado pela 

análise de componentes principais (PCA). O teste Mann-Whitney revelou associações 

significativas entre os resultados fenotípicos e o grupo tecnológico das estirpes. O classificador 

naïve Bayesian identificou 3 entre 30 testes fenotípicos – crescimento em iprodiona (0.05 mg/mL), 

cicloheximida (0.1 µg/mL) e bissulfito de potássio (150 mg/L) –, que contribuíram com mais 

informação para a atribuição de um isolado ao grupo de estirpes comerciais. Os resultados mostram 

a utilidade das abordagens computacionais para simplificar métodos de seleção de estirpes. 

Para a subsequente análise genética, a utilidade da amplificação de sequências interdelta para a 

caracterização da nossa coleção de estirpes, foi avaliada. As experiências foram realizadas em dois 

laboratórios, usando combinações diferentes de Taq ADN polimerase e termocicladores para a 

análise de 12 estirpes de S. cerevisiae. Os dados foram obtidos por eletroforese microfluídica e a 

reprodutibilidade da técnica foi avaliada usando métodos estatísticos não paramétricos. Mostramos 

que a origem da Taq ADN polimerase e as diferenças técnicas entre laboratórios apresentaram o 

maior impacto na reprodutibilidade. Concluiu-se também que a análise comparativa entre padrões 

de interdelta é mais fiável e reprodutível quando se comparam tamanhos de fragmentos, e quando 

nos baseamos numa fração mais pequena de bandas com tamanhos intermédios entre 100 e 1000 

pares de base.  

De modo a obter dados genéticos reprodutíveis, 11 microssatélites polimórficos foram usados para 

a caracterização da nossa coleção de 172 estirpes de S. cerevisiae. Os resultados foram 

relacionados computacionalmente com os de 30 testes fenotípicos obtidos anteriormente. A 

caracterização genética identificou 280 alelos, sendo o microssatélite ScAAT1 o que mais 
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contribuiu para a variabilidade entre estirpes, em conjunto com os alelos 20, 9 e 16 dos 

microssatélites ScAAT4, ScAAT5 e ScAAT6, respetivamente. Foram criados e validados modelos 

computacionais de modo a prever o grupo tecnológico de uma estirpe a partir do seu perfil alélico 

de microssatélites. As associações entre microssatélites e fenótipos foram avaliadas usando o rácio 

information gain ratio, e os resultados significativos foram confirmados por permutações e cálculo 

da taxa false discovery rate. Os fenótipos associados a um maior número de alelos foram a 

capacidade de resistir ao dióxido de enxofre e a atividade de galactosidase. Os resultados 

demonstram a capacidade da modelação computacional para prever, a partir das combinações 

alélicas, tanto o fenótipo como a atribuição de uma estirpe a um determinado grupo tecnológico. 

A constituição genómica de S. cerevisiae foi moldada pela ação de várias rondas independentes de 

domesticação e por alterações microevolutivas, para adaptação a condições ambientais. Avaliamos 

variações genómicas entre quatro isolados da estirpe vínica comercial S. cerevisiae Zymaflore 

VL1. Estes isolados foram obtidos em quintas nos arredores de adegas onde esta estirpe foi usada 

durante vários anos, e as experiências foram realizadas em comparação com a estirpe comercial de 

referência. Hibridização genómica comparativa mostrou amplificação de 14 genes entre os isolados 

recuperados da natureza relacionados com mitose, meiose, biossíntese da lisina, galactose e 

catabolismo da asparagina. A existência de alterações microevolutivas foi fortificada por 

sequenciação de ADN devido à identificação de 1198 SNPs e 113 inserções/deleções. A avaliação 

fenotípica revelou 14 características que distinguiram os isolados recuperados da natureza da 

estirpe de referência que não cresceu a 18 ˚C, mas mostrou algum crescimento na presença de 

CuSO4 (5mM) e SDS 0.01% (v/v). Os perfis metabólicos revelaram diferenças na produção de 

ácido succínico, benzeno-etanol, 2-metil-1-butanol e isobutanol. 

A nossa abordagem anterior foi expandida de modo a incluir também análises metabólicas. 

Fermentações em mosto foram realizadas individualmente com as 172 estirpes, e da análise 

combinada de dados de espectroscopia de fibra ótica, resultados fisiológicos e moleculares, um 

subgrupo de 24 estirpes foi escolhido. A análise por HPLC (high-performance liquid 

chromatography) revelou resultados variáveis em que glucose, frutose e ácido acético contribuíram 

mais para a variabilidade entre estirpes. Os metabolitos relevantes para os perfis aromáticos foram 

determinados por GC-MS (gas chromatography-mass spectrometry) e a análise por componentes 

principais mostrou variância substancial entre as quantidades de álcoois e esteres produzidos. A 

regressão por mínimos quadrados parciais (PLS-R) foi usada numa abordagem par-a-par para 

prever o perfil metabólico das estirpes, usando dados fenotípicos e genéticos e identificou 

associações relevantes com 9 dos 24 metabolitos. Os resultados foram depois projetados num 

sistema de coordenadas comuns, revelando um subconjunto de 17 módulos multidimensionais com 

importância estatística (módulos md), que combinam conjuntos de características mais relacionadas 

e com interesse biológico. A combinação da PLS-R com a identificação de módulos md revelou ser 

uma abordagem adequada para uma melhor compreensão do feno-metaboloma de S. cerevisiae.  
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Motivation 

Pheno-metabolomics is a post-genomic bioinformatic field of study concerned with the 

bridging of genotype to phenotype and the establishment of links between genomic and 

metabolic data that are generated through high-throughput methods. Only a holistic 

approach between molecular biology, analytical chemistry, signal processing and 

bioinformatics provides detailed information on the vast and dynamic relationships 

between genomics, phenomics and metabolomics. 

Saccharomyces cerevisiae is considered a model organism par excellence, and was the first 

sequenced eukaryotic entity, which provided a vast amount of knowledge on its molecular 

and cellular biology. However, the variability existing between S. cerevisiae strains will 

only be completely understood using the knowledge derived from the integration of several 

“omics” approaches, to explore the molecular mechanisms and their relations and to 

predict how cells will function under given conditions or perturbations. 

 

 

Objectives 

In global terms, this thesis aims to use computational models and bioinformatic approaches 

to describe and find genetic, phenotypic and metabolic relations among the vast diversity 

of S. cerevisiae strains that are adapted to different ecological niches and are used for 

diverse biotechnological applications.  

 

For this purpose, experimental work was divided in the following detailed objectives: 

- To constitute a S. cerevisiae strain collection comprising isolates from worldwide 

geographical origins and also from different technological applications or origins; 

 

- To conduct an extensive phenotypic characterization of all the isolates, using traits 

that are important from an oenological point of view, and conclude about 

associations between phenotypic variability and strains technological or 

geographical origin; 
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- To perform genetic and genomic characterization in yeast isolates and obtain a 

global view of strain´s diversity by using computational approaches to find 

correlations with the previously observed phenotypic variability; 

 

- To collect metabolic data from different platforms (HPLC, GC-MS and fiber optics 

spectroscopy), perform statistical computing and signal processing of all 

experimental data, followed by data fusion between the different information 

sources, to explore and understand the S. cerevisiae pheno-metabolome relation 

network. 

 

 

Thesis outline 

 Chapter I presents the context, motivation and objectives of this thesis, as well as its 

global structure.  

 

 In Chapter II an overview of the literature related with the theme of the thesis is 

given, with special focus on the use of  S. cerevisiae as a model to be used in genetic, 

phenotypic and metabolic studies. Although several yeast technological groups have 

been considered in the experimental section of this thesis (baker, beer, clinical, natural 

isolates, etc.), the majority of strains were from winemaking environments, so 

emphasis was given to the analysis of this group. In this chapter, systems biology as a 

field of huge and rapid development in recent years was also explored, and finally, the 

most powerful methods for data analysis and transformation were summarized, also as 

bioinformatic approaches for data fusion. Priority was given to the literature published 

in the last 15 years (since 2000), but including always the original references for the 

technique or process referred. 

 

 Chapter III focuses on the constitution of our strain collection, comprising 172 

isolates of S. cerevisiae from different geographical and technological origins. An 

extensive phenotypic screen was devised to characterize all strains, and statistical 

methods were applied to relate the phenotypic diversity with the strains provenience, 
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to establish a computational approach to simplify strain selection procedures by 

choosing the most informative phenotypes to be tested.  

 

 In Chapter IV interdelta sequence typing using microfluidics was tested as a method 

for the genetic characterization of S. cerevisiae strains. Twelve strains were typed 

using microfluidic electrophoresis (Caliper LabChip
®

), and the factors that affect 

interlaboratory reproducibility were assessed. Two independent laboratories, two 

thermal cyclers and two different Taq DNA polymerases were experienced, and the 

reproducibility of the technique was evaluated using non-parametric statistical tests. 

 

 Chapter V comprises the genetic characterization of the 172 S. cerevisiae isolates 

using a set of 11 highly polymorphic S. cerevisiae specific microsatellite loci. High 

genetic variability was computationally associated with the strains’ phenotypic profile 

obtained in chapter III, and genotype-phenotype associations were scored using 

information gain ratio, and significant findings were confirmed by permutation tests 

and estimation of false discovery rate. Results showed the importance of these 

methods to simplify strain selection programs, by partially replacing laborious 

phenotypic screens through a preliminary selection of the microsatellite allelic 

combination. 

 

 This strain collection, characterized phenotypic and genetically in chapters III and V, 

respectively, included also some isolates that were recovered from nature after some 

years of adaptation to environmental conditions. Having as basis that these strains 

underwent genomic changes during their permanence in nature and that this can also 

be involved in phenotypic variability, in Chapter VI we devised a study to evaluate 

genome variations among four isolates of the commercial strain Zymaflore VL1 that 

were re-isolated from vineyards surrounding wineries where these strains were used 

during several years. We were able to show that the transition of these isolates from 

nutrient-rich musts to nutritionally scarce natural environments induced 

microevolutionary changes. 
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 Chapter VII is placed at the end of thesis experimental timeline, as it is the final step 

of the pheno-metabolomic characterization of our strain collection. In this chapter 

results from individual must fermentations are shown, as performed with all strains, 

and from the combined data (fiber optics spectroscopy, phenotypes and microsatellite 

data) a sub-group of 24 heterogeneous strains were chosen for metabolic 

characterization, using HPLC and GC-MS approaches. Computational analysis 

allowed an holistic characterization of the S. cerevisiae pheno-metabolome. 

 

 In Chapter VIII the overall conclusions and significance of the work are presented. 

Suggestions for future work are also exposed.  

 

 Chapter IX lists all the bibliographical references cited along the thesis. 

 

 Chapters X and XI presents, as supporting material, supplementary data not shown in 

the other chapters, also as the pdf versions of the chapters already published. 
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1. Saccharomyces cerevisiae as an eukaryotic model: origin 

and domestication 

 

Yeast, mainly Saccharomyces cerevisiae, has been the model par excellence for system 

biology approaches, mainly in pioneering projects, due to easiness of genetic manipulation. 

With just approximately 6000 genes located on 16 chromosomes (Goffeau et al. 1996), this 

yeast is easy to grow in culture and to manipulate genetically. The S. cerevisiae 

laboratorial strain S288c became, in 1996, the first sequenced eukaryotic genome (Goffeau 

et al. 1996), result of an international effort between European, Japanese and American 

research groups. This yeast has been the eukaryotic model of choice for pioneer studies 

using system biology tools, including high-throughput genome sequencing, transcriptional 

profiling, metabolomics, carbon flux estimations, proteomics, in silico genome-scale 

modelling and bioinformatics driven data integration (Nielsen and Jewett 2008). Seven 

years after S. cerevisiae genome sequencing, extensive annotation was performed based on 

fundamental biochemistry, peer-review literature and available transcription data, and 

resulted in the publication of the first genome-scale metabolic model for S. cerevisiae 

(Förster et al. 2003). In 2004, another in-silico S. cerevisiae metabolic model was 

published, this time comprising 750 genes and 1149 reactions – iND750 (Duarte et al. 

2004). With this model, 83% of correct predictions were obtained regarding 4154 growth 

phenotypes. 

S. cerevisiae wine yeasts are predominantly diploid (Bradbury et al. 2005), homothallic 

(Thornton and Eschenbruch 1976, Mortimer 2000), and mostly heterozygous (65%), with 

variable sporulation ability (Johnston et al. 2000). Yeasts from the species S. cerevisiae 

combine several advantages for applications in industry (Nevoigt 2008): (i) they hold the 

GRAS (generally recognized as safe) status from the American Food and Drug 

Administration; (ii) extensive knowledge about their physiology and biochemistry is 

available; (iii) the tools needed for genetic engineering are optimized; (iv) easiness of 

scaling-up to industrial magnitudes; (v) tolerance to low pH, high sugar and ethanol 

concentrations, thereby decreasing the risk of bacterial contamination; (vi) ability to grow 

both anaerobically and aerobically; (vii) aptitude to utilize a wide range of sugars. 
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More than 200 commercial S. cerevisiae strains are available to be applied in winemaking, 

being a common practice among wineries to use these strains as fermentation starters. 

These commercial strains are usually obtained in other winemaking regions, since natural 

S. cerevisiae strains are widely distributed in a particular viticulture area and also in 

consecutive years, constituting an evidence for the existence of specific native strains 

representative of an ecological niche (Torija et al. 2001, Lopes et al. 2002, Schuller et al. 

2005, Valero et al. 2007). 

Many speculations have been made regarding the origin of S. cerevisiae, mainly because 

its natural history has been disguised due to a long association with domestication. This 

species has continuously evolved in a close link with the production of alcoholic beverages 

(Martini 1993, Mortimer 2000), and research on the last decade indicates that wine strains 

were domesticated from wild S. cerevisiae isolates (Fay and Benavides 2005, Legras et al. 

2007), followed by dispersal. The diversifying selection imposed after yeast expansion into 

new environments led to strain diversity due to unique pressures (Diezmann and Dietrich 

2009, Borneman et al. 2011, Dunn et al. 2012). This agrees with findings that wine and 

sake strains are phenotypically more variable than would be expected from their genetic 

relatedness, being the contrary the case for strains collected from oak-trees (Kvitek et al. 

2008). 

It is thought that the first use of S. cerevisiae has been for the production of wine and only 

latter for bread and beer (Mortimer 2000, McGovern 2003). This tight association with 

winemaking has been evidenced by the finding of S. cerevisiae DNA in pottery jars 

concealed in the tomb of King Scorpion I in 3150 BC (Cavalieri et al. 2003) and in ancient 

wine containers found in China (Mcgovern et al. 2004). Recent phylogenetic analyses of S. 

cerevisiae strains showed that the species as a whole consists of both “domesticated” and 

“wild” populations, whereby the genetic divergence is associated with both ecology and 

geography. Sequence comparison of 70 S. cerevisiae isolates confirmed the existence of 

five well defined lineages and some mosaics, suggesting the occurrence of two 

domestication events during the history of association with human activities, one for sake 

strains and one for wine yeasts (Liti et al. 2009, Schacherer et al. 2009, Liti and Schacherer 

2011).  

 



Chapter II | General Introduction 

_______________________________________________________________________ 

11 

 

2. Dissecting the phenotypic heterogeneity of Saccharomyces 

cerevisiae winemaking strains 

 

The phenotypic diversity of S. cerevisiae strains has been explored for decades in selection 

programs. It is consensual among winemakers that the choice of the wine yeast strain has a 

major impact on the sensory characteristics of wines, and this selection have created 

unique and interesting oenological traits that are now common among commercial yeasts. 

However, these characteristics are not widely distributed nor can be found in combination 

in one single strain. The majority of industrial fermentations are now controlled by the 

winemaker by inoculating them with starter yeasts. The advantages of fermentations 

containing S. cerevisiae starter cultures rely on the fact that they are rapid, produce wines 

with desirable organoleptic characteristics through successive processes and harvests, and 

are associated with reduced off-flavors development (Fleet 1998, Schuller 2010). The 

selection of the best starter yeast to use should rely on the wine style and/or grape variety. 

Certain oenological criteria are normally used to perform this strain selection, which can be 

technological (influencing the efficiency of the fermentation process), or qualitative 

criteria (affecting the chemical composition and the sensorial profile of wine) (Zambonelli 

1998).  

The most important criteria used to select S. cerevisiae strains are reviewed below (adapted 

from Robinson 1994, Mannazzu et al. 2002, Schuller 2010, Bird 2013): 

 

- Fermentation rate – in winemaking, during fermentation, yeasts transform sugars 

(glucose) present in the grape juice into ethanol and carbon dioxide (CO2) as a by-product. 

The fermentation rate is normally one of the first criteria to be used when selecting strains. 

It is important that fermentation rate is expressed at maximum level in order to ensure 

good ethanol production, and also that a prompt start of fermentation is guaranteed. Stuck 

fermentations (the ones that stop before all the available sugar in the wine has been 

converter to alcohol and CO2) or development of wine faults (unpleasant characteristics 

that normally lead to wine spoilage) are also concerns to account when considering 

relevant characteristics of the best winemaking strains.  
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- Fermentation temperature – optimum S. cerevisiae fermentation temperature 

ranges between 25 and 30 ˚C. However, industrial fermentations are normally carried out 

around 18-28 ˚C, depending on the type of wine produced, so yeast strains capable to 

ferment at this temperature range are desired. Fermentations at higher temperatures 

normally cause the loss of some wine flavors, and some winemakers choose to lower the 

temperature in order to bring out more fruity flavors. In this way, a good fermentation 

performance at low temperatures is usually searched as a good characteristic of 

fermentative strains. 

 

- Glycerol production – glycerol is produced early in fermentation by S. cerevisiae 

as combination of acetaldehyde with the bisulphite ion (obtained from sodium sulphate, 

sodium sulphite or bisulphite, ammonium sulphite, or magnesium/calcium sulphite), or by 

growing the cell at pH values around 7 or above, by the increased activity of the aldehyde 

dehydrogenase which has its optimal activity at pH 8.75. Glycerol is one of the most 

important by-products of fermentation (only surpassed in its importance by ethanol and 

carbon dioxide), contributing to wine sweetness, body and fullness. Concentrations around 

5-8 g/L are usually desirable, being the threshold taste level in white wines of 5.2 g/L. 

Other fermentation by-products are equally important and influence largely the wine 

aromatic profile. In this sub-chapter only the primary metabolites are described, being the 

ones associated with esters, higher alcohols and other volatile compounds, described more 

in detail in the sub-chapter “Yeast metabolome” of the general introduction. 

 

- Acetaldehyde production – this by-product has a duality regarding its interest, 

because, although desirable in certain wines such as sherry, dessert and port wines, it 

causes an undesirable oxidized taste in ordinary table wines. The choice of strains capable 

of producing this metabolite should rely in the type of wine, being an important 

characteristic only when selecting strains dedicated to wine ageing. 

 

- Acetic acid – this acid is considered as the main component of volatile acidity. 

Acetic acid in wine can be produced by yeasts as a by-product of fermentation, or due to 

spoilage of finished wines. A balance should be acquired regarding the amount of acetic 
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acid present in wine; although high concentrations are responsible for a “vinegar” tasting 

in wine, consistent amounts contribute to a “complex” taste. Some countries have legalized 

the amount of acetic acid allowed in wine, being these values around 1000 – 1500 mg/L. 

However, in order to obtain a balanced taste, strains should be selected to produce no more 

than 200 – 700 mg/L of acetic acid (Corison et al. 1979, Dubois 1994, Eglinton and 

Henschke 1999b). 

 

- Malic acid degradation and production – this compound is the main organic acid 

in grape must and wine. S. cerevisiae strains are reported to degrade up to 45% of the 

malic acid present in must, but average values are of up to 20%. Whether degradation or 

production is desirable depends on the must characteristics. Yeasts producing this acid are 

used to lower the high titratable acidity typical of wines produced in cool climate regions. 

S. cerevisiae strains producing malic acid are usually also cryotolerant strains, and may be 

required to inoculate musts in warm regions. 

 

- Succinic acid – produced early in fermentation, this acid is created as a by-product 

of nitrogen metabolization by yeasts. Usually found in concentrations of 500 – 1200 mg/L, 

succinic acid is a minor acid in the overall wine acidity, although the combination with one 

molecule of ethanol creates the ester mono-ethyl succinate, responsible for a mild, fruity 

aroma. 

 

- Hydrogen sulphide – due to being detrimental to wine quality, yeast strains 

characterized by low production of this metabolite are usually selected already in a first 

phase. Hydrogen sulphide reacts with ethanol and forms ethyl mercaptans and dissulphites, 

molecules that contribute to wine faults and unpleasant aromas. The taste threshold of this 

compound is very low (50 – 80 µg/L), and low producing strains are normally selected in a 

medium containing bismuth indicator (BiGGY agar medium), based on the strains colony 

color. 
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- Sulphur dioxide tolerance and production – this compound is largely used as an 

antioxidant and antimicrobial agent in winemaking, being the tolerance to this metabolite 

an important criterion for yeast selection. Production of this compound by S. cerevisiae 

strains is also common, ranging the values between 20 – 300 mg/L. 

 

- Stress resistance – very important criterion to be considered when selecting 

strains, since it can influence all the criteria referred previously, and others. Yeasts exposed 

to stressful environments (such as osmotic, acidic, etc.), undergo transcriptional and 

metabolic alterations, also associated with morphological and physiological 

differentiations, which interfere with the fermentation process (Carrasco et al. 2001, 

Kvitek et al. 2008, Diezmann and Dietrich 2009). 

 

 

The identification of the genetic and metabolic basis responsible for the phenotypic 

heterogeneity observed among S. cerevisiae strains remains still a challenge, since it were 

only partially characterized and also due to the fact that some particular phenotypes are 

associated with several genes which increases the complexity. Some studies attempted to 

perform this identification, however only limited to specific physiological traits (reviewed 

by Kvitek et al. 2008 and Camarasa et al. 2011), such as thermotolerance (McCusker et al. 

1994, Steinmetz et al. 2002, Sinha et al. 2006), ethanol resistance (Hu et al. 2007), 

sporulation efficiency (Primig et al. 2000, Deutschbauer and Davis 2005, Ben-Ari et al. 

2006, Gerke et al. 2006, Magwene et al. 2011), drug responses (Perlstein et al. 2006, 

Perlstein et al. 2007, Kim et al. 2009), and morphology (Nogami et al. 2007).  

New approaches have tried to fill the gap between genetic and phenotypic variation by the 

study of phenotypes collection and their relation with specific genomic patterns. The main 

differences in these new techniques are related with the determination of phenotypes by 

high-throughput approaches, and with recurrence to new platforms, both regarding 

genomics technology, instrumentation or computational data analysis. These approaches 

are globed in a large “omics” field called phenomics (Yvert et al. 2013) that will be 

analyzed later in this general introduction.   
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3. Genetic constitution of Saccharomyces cerevisiae and 

molecular methods for strain characterization 

 

Exploring S. cerevisiae genetic diversity, mainly in indigenous fermentative strains, has 

been an important concern since many years ago, towards the understanding of relations 

with specific phenotypes as a contribution for strains selection programs. Many methods 

were used in the past 40 years for S. cerevisiae intra-strain genetic characterization, being 

developed mainly with different purposes: monitor population dynamics during 

fermentation of food and beverages (Granchi et al. 1999, Nadal et al. 1999, Pulvirenti et al. 

2001, Granchi et al. 2003), strain selection for their use as pure cultures (Dequin 2001, 

Cocolin et al. 2004) and characterization of clinical S. cerevisiae isolates (Zerva et al. 

1996, McCullough et al. 1998). The main genetic methods used for yeast strain 

characterization are summarized in the following paragraphs. 

 

 Early years 

Initial studies (before 1980) characterizing wine yeast genotypes were done using 

traditional tools, in which strains that showed characteristics of interest were crossed and 

spore segregation ratios were determined in tetrads (Thornton and Eschenbruch 1976, 

Cummings and Fogel 1978) or random spore progeny analysis (Spencer et al. 1980, 

Bakalinsky and Snow 1990). However, these methods were limited when sporulation was 

poor or the spores were not viable, and in this way, new methods were necessary to look at 

genetic diversity in large number of strains. In the end of the ´80s, methods based on 

metabolic products such as fatty acid analysis with gas chromatography (Tredoux et al. 

1987, Augustyn and Kock 1989) and fatty acid methyl ester (FAME) analysis (Kock et al. 

1985, Botha and Kock 1993) were used to investigate strain diversity, in alternative to 

direct genetic exploration methods.  

 

 Electrophoresis-based techniques 

With advances in molecular methods, new spectra of genetic tools for the characterization 

of S. cerevisiae strains became available. 
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Chromosome pulsed-field gel electrophoresis was, during many years, a method of 

excellence to separate DNA molecules and to analyze structural variation in yeast 

genomes. The first use of this technique to be applied to yeast genomes (Carle and Olson 

1985), consisted in the electrophoretic separation of chromosomal DNA molecules, 

followed by the identification of the bands by DNA-DNA hybridization, using probes 

derived from cloned genes. This method revealed considerable variability in the 

chromosomal constitution of commercial yeast strains (Blondin and Vezinhet 1988) and 

turned to be a useful method for yeast strain identification (Degré et al. 1989, Vezinhet et 

al. 1990, Yamamoto et al. 1991, Querol et al. 1992, Guillamon et al. 1996, Fernández-

Espinar et al. 2001, Schuller et al. 2004). 

 

Restriction fragment length polymorphism (RFLP) analysis of mitochondrial DNA 

(mtDNA) was also used with success to distinguish and characterize S. cerevisiae strains 

(Dubourdieu et al. 1984, Lee and Knudsen 1985, Vezinhet et al. 1990). Digestion of 

mtDNA with restriction enzymes (being the combinations HinfI/RsaI and HinfI/HaeIII the 

most used ones) generates high polymorphism, due to the fact that mtDNA is very variable 

between species and strains in size and organization, having highly conserved species 

specific regions, but also other regions that evolve 10 times more rapidly than nuclear 

DNA (Vezinhet et al. 1990, Querol et al. 1992, Guillamon et al. 1996, Fernández-Espinar 

et al. 2001, Lopez et al. 2001, Martinez et al. 2004, Schuller et al. 2004). 

 

 

 PCR-based methods 

With the development of polymerase chain reaction (PCR), S. cerevisiae strains were 

discriminated using quicker methods, based on the detection of polymorphisms in DNA 

fragment sizes or specific banding patterns, without the need of using restriction enzymes. 

All these techniques are based on the use of oligonucleotides as primers, which bind to 

target sequences in each yeast DNA strand. 
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Random amplified polymorphic DNA (RAPD) 

RAPD technique was first used in 1990 (Williams et al. 1990), and is characterized by the 

use of just one primer, with the characteristics of being short (about ten nucleotides) and 

with an arbitrary sequence. This, together with a low annealing temperature (37 ˚C) during 

PCR, allows the amplification of diverse fragments of DNA distributed all the way along 

the genome. From this, results a pattern of amplified PCR products of different molecular 

weights, characteristic of each strain (Bruns et al. 1991, Paffetti et al. 1995). The main 

advantage of this technique is that previous information about the DNA sequence is not 

necessary to design the primer. However, because it relies on an intact DNA template 

sequence, it has some limitations when using degraded DNA samples in the amplification. 

Also, its resolving power is much lower in comparison with other targeted methods. 

RAPD has been applied with success in several projects regarding yeast strains 

characterization (Baleiras Couto et al. 1995, Quesada and Cenis 1995, Romano et al. 1996, 

Tornai-Lehoczki and Dlauchy 2000, Pérez et al. 2001, Cadez et al. 2002). 

 

Multi-locus sequence typing (MLST) 

Genetic characterization recurring to MLST allows the characterization of yeast isolates 

using DNA sequences of internal fragments (450-500 bp) of multiple housekeeping genes. 

It has been used in the past for identification of bacterial pathogens and in 2006, MLST 

was applied to the analysis of S. cerevisiae isolates (Ayoub et al. 2006). This method, 

being based on direct sequence data of alleles from different polymorphic loci, has the 

advantage of more reliability than electrophoretic methods, allowing the high-throughput 

data debit and an easy sharing of results between laboratories. The main limitations of 

MLST are the high cost and the fact that being the yeast housekeeping genes highly 

conservative, it lacks the discriminatory power obtained when differentiating bacterial 

strains for example.  

 

Interdelta sequences typing 

Delta sequences are flanking sequences (300 bp) of retrotransposons Ty1 and Ty2 

(Cameron et al. 1979). They are found in terminal chromosomal regions, but occur also as 

single elements dispersed throughout the genome. About 300 delta elements were 

described in the genome of the laboratory strain S288c. A PCR-based protocol, relying on 
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the amplification of interdelta regions was proposed (Ness et al. 1993), since the number 

and location of the delta elements have a certain intraspecific variability. Primers are 

designed to amplify DNA regions between neighboring delta sequences and the PCR 

reaction therefore produces a mixture of differently sized fragments, specific for each 

strain. Legras and Karst (Legras and Karst 2003) optimized the technique in 2003 by 

designing two new primers (δ12 and δ21) that hybridize very close to the binding sites of 

primers δ1 and δ2, which were initially referred by Ness. The use of primers δ12 and δ21 

or of δ12 with δ2 reveals greater polymorphism, with the appearance of a higher number of 

bands, resulting in a higher discriminatory power. Schuller (Schuller et al. 2004) tested the 

combination of δ12 with δ2 and was able to distinguish twice the number of strains that 

were discriminated by the initial primer pair δ1 and δ2. 

As shown by Fernández-Espinar (Fernández-Espinar et al. 2001) this method requires 

standardization of DNA concentration. Due to the low annealing temperature (43 ˚C), 

“ghost bands” may be present, which is another disadvantage. Increasing the annealing 

temperature to 55 ˚C, reduces the number of “ghost bands”, but also reduces the total 

number of bands obtained, and consequently the discriminatory power (Ciani et al. 2004). 

Analysis of PCR profiles obtained by interdelta sequences amplification were associated 

with a good discriminating power for the analysis of commercial strains (Lavallee et al. 

1994). In the past years, however, some questions have been raised regarding 

reproducibility between laboratories and also the influence of the DNA concentration in 

the electrophoretic profile obtained. Despite these limitations, this technique continues to 

be widely used in the present to characterize yeast strains (Pramateftaki et al. 2000, Lopes 

et al. 2002, Cappello et al. 2004, Ciani et al. 2004, Demuyter et al. 2004, Pulvirenti et al. 

2004, Xufre et al. 2011, Bleykasten-Grosshans et al. 2013). 

 

Microsatellite typing 

Microsatellites or single sequence repeats (SSR) are short DNA sequences that have been 

shown to exhibit a substantial level of size polymorphism in several eukaryotic genomes 

(Richard et al. 1999), displaying also a high amount of intra-species variation. PCR 

amplification of these regions is a method highly discriminative for the molecular typing of 

indigenous S. cerevisiae populations (Pérez et al. 2001, Schuller et al. 2004, Schuller et al. 

2005, Schuller and Casal 2005). Microsatellites are considered good genetic markers for 
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several reasons such as: (i) high polymorphism, with an extensive allelic variation in repeat 

number; (ii) co-dominant inheritance, allowing the discrimination between homozygous 

and heterozygous individuals; (iii) selective neutrality; (iv) their amplification by PCR-

based methods allow precise data comparison between laboratories once that data are 

obtained by capillary electrophoresis; (v) high reproducibility. 

Perez (Perez et al. 2001) has selected six polymorphic microsatellite loci (ScAAT1, 

ScAAT2, ScAAT3, ScAAT4, ScAAT5 and ScAAT6), which generated 44 genotypes (with 

a total of 57 alleles) from 51 strains originated from spontaneous fermentations. The 

referred publication reports the simplicity of this molecular technique, allowing multiplex 

PCR reactions in a precise and reproducible way. In 2005, another set of microsatellite loci 

for the typing of S. cerevisiae strains has been described (Legras et al. 2005), including the 

highly polymorphic loci ScYOR267c, C4, C5, C11 and ScYPL009c. 

The importance of microsatellites as generators of variability and for identification 

purposes can be extrapolated to other yeast species, such as Candida albicans (Sampaio et 

al. 2003, Garcia-Hermoso et al. 2010), C. parapsilosis (Sampaio et al. 2010), C. glabrata 

(Foulet et al. 2005), S. bayanus (Masneuf-Pomarède et al. 2007), and also with clinical 

applications (Correia et al. 2004, Vaz et al. 2011) and for evolutionary studies (Sampaio et 

al. 2005). The applications of microsatellites as genetic markers are transversal to several 

other fields ranging from paternity analyses, to construction of genetic maps (Dib et al. 

1996), population genetic studies (Tautz 1989) and human diseases research (Desselle et 

al. 2012, Manasatienkij and Rangabpai 2012, Buecher et al. 2013, Heinimann 2013).  

Microsatellites have also been used to study human evolution, as an important form of 

genetic variation. The first microsatellite study of global human variation used 30 

microsatellite markers and 148 individuals from 14 different populations (Bowcock et al. 

1994). Since then, several microsatellite markers have been described for human 

populations, and in publications from the year 2002, already 377 markers were being used 

for human characterization (Rosenberg et al. 2002). More recently, multi-dimensional 

scaling detected 240 intra-populations and 93 inter-populations pairs regarding genetic and 

geographical relatedness (Pemberton et al. 2013), using 5795 individuals and 645 

microsatellite loci, being this, one of the largest data sets in terms of number of populations 

characterized. 



PhD Thesis | Ricardo Franco-Duarte 

_______________________________________________________________________ 

20 

 

4. Yeast genomics: methods and applications 

 

Genomics focusses on the identification of genes and their functions and the assemblage of 

DNA sequences in order to analyze genome structures (Ge et al. 2003). The diversifying 

selection that yeasts undergo after expansion into new environments and during adaptation 

to stressful conditions is known to lead to strain diversity (Diezmann and Dietrich 2009, 

Dunn et al. 2012, Borneman et al. 2013), resulting many times in adaptive genomic 

changes, such as gene amplifications, chromosomal-length variations, chromosomal 

rearrangements (especially amplifications and deletions) and copy-number increases 

(Dunham et al. 2002, Pérez-Ortin et al. 2002, Carro et al. 2003, Schacherer et al. 2007, 

Borneman et al. 2008, Carreto et al. 2008, Diezmann and Dietrich 2009, Liti et al. 2009, 

Dunn et al. 2012, Salinas et al. 2012, Bleykasten-Grosshans et al. 2013, Ibáñez et al. 

2014).  

In the past, genetic characterization of biological organisms was made recurring to 

techniques such as pulsed-field gel electrophoresis (PFGE), restriction fragment length 

polymorphism (RFLP), RAPD, mtDNA restriction fragment analysis, micro-/minisatellites 

and interdelta sequences amplification, as referred previously. However, besides the fact 

that some of these techniques are still used in some particular cases, they don´t give 

information about the entire genome, and when trying to predict a certain hypotheses, 

important variation can often go undetected. In last years, genomic techniques such as 

genome sequencing and comparative genome hybridization on array (aCGH) were 

developed, allowing the fast debit of large amounts of data, and an holistic view of the 

genome. Whole genome sequencing is the process whereby the complete DNA sequence 

of an organism’s genome is determined at a single time. Recently, the decreased price of 

genome sequencing and the appearance of new sequencing technologies, led to the 

development of new fields such as comparative genomics (Rubin 2000) and metagenomics 

(Tringe et al. 2005). The two main methods applied to yeast genomics are reviewed below. 
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Comparative genomic hybridization on array (aCGH) 

With the development of comparative genomic hybridization (CGH), scanning genomic 

variations, in terms of DNA copy number, became a possibility (Kallioniemi et al. 1992, 

du Manoir et al. 1993). This technique was originally developed for the evaluation of 

differences between solid tumors and normal tissues, in terms of chromosomal differences. 

In its original form, CGH was only able to detect unbalanced chromosomal abnormalities, 

because other changes such as reciprocal translocations, inversions or ring chromosomes 

do not affect copy number. It was with the development of DNA microarrays and with its 

conjugation with CHG techniques, that the new form of array CGH (aCGH) was 

developed, allowing a locus-by-locus measurement of copy number variations (CNV) 

(Schena et al. 1995, Pinkel and Albertson 2005, de Ravel et al. 2007). The main advantage 

of aCGH in comparison to CGH was the increased resolution achieved by the use of 

microarrays with large number of probes (Ylstra et al. 2006). In this method, a slide 

arrayed with small DNA segments is used, consisting of the DNA sequences of the genes 

or regions of interest. The experimental procedure (Figure II-1, adapted from Theisen 

2008) consists first in the extraction of DNA both from the test and reference samples (step 

1-2). The test DNA is then labelled with a fluorescent dye of a specific color (usually Cy3 

or Cy5), while the reference DNA is labelled with the other fluorochrome: Cy5 or Cy3. At 

this phase, dye swap hybridization is mandatory, in which a reciprocal DNA labelling is 

performed, in order to account and reduce dye bias in the experiment. Then, the two 

genomic DNA samples are denatured, mixed together and applied on the microarray for 

hybridization with the respective single-strand probes (step 3-4). Digital imaging systems 

are used to capture fluorescent intensities (step 5), providing information about the relative 

copy number of DNA sequences in the test genome, in relation to the reference genome 

(step 6).  

Under ideal experimental conditions, the intensity of an array is linearly proportional to the 

abundance of the corresponding DNA sequence in the sample. The log2 ratio between the 

test and reference intensities reflects the relative copy number in the test sample compared 

to that in the reference sample. However, the major technical challenge of aCGH is 

generating hybridization signals that are sufficiently intense and specific so that copy 

number changes can be detected. Several factors can interfere with the fluorescent intensity 
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(Pinkel and Albertson 2005), namely base composition, proportion of repetitive sequence 

content and amount of DNA in the array element available for hybridization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II-1: Diagram of the comparative genomic hybridization on array (aCGH) procedure 

(adapted from Theisen 2008). 

 

 

In order to correct all the deviations caused by this technical bias, attention should be given 

to data normalization. Several methods have been proposed, however two have been 

adopted by the majority of authors in recent years: global-median normalization and 

Lowess normalization (Berger et al. 2004, Staaf et al. 2007, van Hijum et al. 2008). 

Genomic variation between S. cerevisiae strains has been inferred by aCGH by several 

authors (Hauser et al. 2001, Dunham et al. 2002, Infante et al. 2003, Dunn et al. 2005, 

Carreto et al. 2008, Kvitek et al. 2008, Dunn et al. 2012, Ibáñez et al. 2014). Following, a 

more detailed analysis of the most important publications will be summarized. 
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In 2005, a pioneer study using this technique (Dunn et al. 2005) detected intra-strain 

differences among S. cerevisiae isolates, and extended the found amplifications and 

deletions to the phenotypic level. This research team, in 2012, using the same experimental 

method found copy number changes among wine strains (both commercial and from 

natural environments) of S. cerevisiae from different geographical origins (Dunn et al. 

2012). Eighty-three strains of S. cerevisiae were characterized by aCGH, and copy number 

amplifications were detected, mainly in subtelomeric regions and in transposable elements, 

in comparison with the reference S288c strain. Another key publication in this area was 

published by Carreto (Carreto et al. 2008), that expanded the genomic characterization of 

S. cerevisiae strains using aCGH, to isolates from other technological origins, and detected 

copy number variations in 16 strains. These results were also in accordance with the strains 

technological origin – laboratorial, commercial, environmental or clinical. Results showed 

that the absence of about one third of the Ty elements determined genomic differences in 

wine strains, in comparison to laboratorial and clinical strains, whereas sub-telomeric 

instability related with depletions was associated with the clinical phenotype. Some of the 

variable genes between the analyzed groups were related with metabolic functions 

connected to cellular homeostasis or transport of different solutes such as ions, sugars and 

metals. Very recently, a similar analysis was performed with fermentative strains (Ibáñez 

et al. 2014) isolated from different types of beverages: masato, mescal, cachaça, sake, wine 

and sherry wine. Results showed genomic alterations, in the form of copy number changes, 

between strains from different fermentative origins, mainly in subtelomeric regions, but 

also in intra-chromosomal gene families involved in metabolic functions. Despite an 

absence of a deeper analysis to understand how this variability could relate with possible 

phenotypic differences (not determined in this publication), these results reflect possible 

mechanisms that these strains use to adapt to fermentative conditions. 

 

 

Next-generation sequencing 

DNA sequencing was first described by Maxam, Gilbert (Maxam and Gilbert 1977) and 

Sanger in 1977 (Sanger et al. 1977), and already in that year the first complete genome was 

sequenced, corresponding to the bacteriophage φX174 (Sanger et al. 1978).  



PhD Thesis | Ricardo Franco-Duarte 

_______________________________________________________________________ 

24 

 

In the last forty years, DNA sequencing underwent by tremendous development, and at 

each step more sophisticated sequencing instruments and bioinformatic softwares have 

provided automation, more accuracy and higher throughput. Sanger method was the most 

widely used sequencing method for 25 years, although always with the constant need for 

higher speed and precision. In 1986, the California Institute of Technology announced the 

first semi-automated DNA sequencing machine, which automated the enzymatic chain 

termination procedure (Smith et al. 1986). In the following year the pioneer fully 

automated sequencing machine, the ABI 370, was produced by Applied Biosystems
®

. In 

1995, Fleischmann team published the first complete genome of a free-living organism, the 

bacterium Haemophilus influenzae (Fleischmann et al. 1995). The complete genome 

sequence of S. cerevisiae is known since 1996 (Goffeau et al. 1996), however this 

sequence corresponds to the laboratorial strain S288c, and it became clear that the 

evaluation of the intra- and inter-strain variation of this species required the sequencing of 

a much higher number of strains. This was of particular importance considering the 

phenotypic variation that was well-known for this species. In this way, the sequencing of 

other strains seemed advisable, due mainly to the polymorphisms described in yeast 

strains, and has been performed in the previous years. Three key studies accomplished this 

(Liti et al. 2009, Schacherer et al. 2009, Liti and Schacherer 2011) and showed that the S. 

cerevisiae species as a whole consists of both “domesticated” and “wild” populations, 

whereby the genetic divergence is associated with both ecology and geography. With the 

genome sequencing of 70 S. cerevisiae isolates, they confirmed the existence of five well 

defined lineages and some mosaics, suggesting the occurrence of two domestication events 

during the history of association with human activities, one for sake strains and one for 

wine yeasts. Results showed also that S. cerevisiae isolates associated with vineyards and 

wine production form a genetically differentiated group, that is distinct from ‘wild’ strains 

isolated from soil and oak tree habitats, and also from strains derived from other 

fermentations, such as palm wine and sake or clinical strains. As reviewed by Borneman 

(Borneman et al. 2013), near 100 whole genome sequences of S. cerevisiae strains were 

available in 2013, from different geographical and technological origins, with a large 

predominance of industrial strains. With the data obtained from these projects it was 

possible to better understand the genomic differences between S. cerevisiae strains, mainly 

through the finding of numerous strain-specific open reading frames (Argueso et al. 2009, 
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Novo et al. 2009, Dowell et al. 2010, Wenger et al. 2010, Borneman et al. 2011, Damon et 

al. 2011, Engel and Cherry 2013). This was not possible with other technologies, such as 

aCGH, which indicates the usefulness of genome sequencing. 

All these advances in the number of genomes sequenced were only possible due to 

innovative sequencing technologies, that allowed a shift in the way DNA was sequenced. 

In 2005 the concept of “sequencing-by-synthesis” was introduced (Margulies et al. 2005), 

an alternative non-Sanger strategy, which increased the throughput of data, decreased the 

costs, and paved the way for the so called “next-generation” sequencing (NGS) era, using 

technologies of massive parallel sequencing, producing millions of sequences concurrently 

(Church 2006, Hall 2007). The impact of NGS on biological research has been very high in 

the last years, allowing applications that were previously not feasible due to time and costs 

constraints. NGS with high-throughput debit of data has been applied to various fields of 

research, including (adapted from Tucker et al. 2009): (i) mutation and CNV detection; 

(ii) disease risk and rare variant studies; (iii) cancer research by detection of mutations 

contributing to cancer phenotype; (iv) population genomics; (v) pharmacogenomics;  

(vi) metagenomics; (vii) transcriptional analysis; (viii) epigenetics.  

Several massively parallel sequencing methods have become available in recent years, 

allowing larger-scale production of genomic sequences, increasing rapidly in the last years 

the number of human genomes sequenced with such instrumentation (Mardis 2008, 

Shendure and Ji 2008, Tucker et al. 2009). Currently (2014), several commercial platforms 

are available for next-generation sequencing, differing in their configurations, sequencing 

chemistry, maximum read length, duration of run and costs: Roche 454, GS FLX Titanium, 

Illumina MiSeq, Illumina HiSeq, Illumina Genome Analyzer IIX, Life Technologies 

SOLiD4, Life Technologies Ion Proton, Complete Genomics, Helicos Biosciences 

Heliscope, and Pacific Biosciences SMRT. This chapter will focus only on Illumina 

Sequencing Technology, with particular emphasis on the Illumina HiSeq platform, since 

this technology was used in the experimental section of this thesis – chapter VI.  

Illumina sequencing apparatus was introduced in 2006 and is based on massive parallel 

sequencing-by-synthesis on arrays (Bentley 2006), using reversible terminator-based 

sequencing chemistry. Figure II-2 describes the workflow of the sequencing process using 

this technology (adapted from Illumina Inc.).  
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Figure II-2: Illumina Genome Analyzer Workflow (from Illumina Inc.). 

See the text below for details 

 

 

In a first step DNA is fragmented, denatured and ligated to sequencing adaptors (steps A to 

D). The interior surfaces of the glass flow cell have covalently attached oligonucleotides 

complementary to the specific adaptors used, that will hybridize forming a “bridge” 

(Figure II-2 – steps E and F).  Amplification is primed from the 3’ end and continues until 

it reaches the 5’ end. The original strand is removed, and after some rounds of 

amplification, millions of identical strain clusters are formed on the cell surface (step G). 
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The clusters are denatured and sequencing primers, polymerase, and fluorescently labelled 

nucleotides, each with their 3’OH chemically inactivated, are added (step H). The 

inactivation of the 3’OH ensures that only a single base is incorporated per cycle. Each 

base-incorporation is followed by an imaging step to identify the incorporated nucleotide at 

each cluster. The fluorescent group is then removed, unblocking the 3’ end of the next base 

to be incorporated (step I). This process is obtained by a chemical method previously 

described and typical of the Illumina technology (Fedurco et al. 2006, Turcatti et al. 2008). 

The process is repeated, and base calls are generated (steps J-K). Illumina Genome 

sequencer, in particular Illumina HiSeq platform, produces single reads of 150 bp, 

generating 600 gigabytes of sequencing data per run in a maximum of 11 days. 
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5. Metabolomics 

 

Metabolome analysis was originally proposed in 1998 (Oliver et al. 1998) with the 

objective of identifying and quantifying the entire collection of intracellular and 

extracellular metabolites. Before this, metabolite profiling had already been used for 

medical and diagnostic purposes (Horning and Horning 1971, Gates and Sweeley 1978) as 

well as microbial classification and characterization (Frisvad and Filtenborg 1983). Only in 

2001 technological advances led to the development of methods to screen a high number of 

intracellular metabolites in the context of functional genomics (Fiehn 2001, Trethewey 

2001). However, increases in the levels of mRNA do not always correlate with increases in 

protein levels (Gygi et al. 1999), therefore changes observed in the transcriptome or in the 

proteome do not obligatorily correspond to alterations in metabolite concentrations. In this 

way, characterization of the metabolome constitutes an important complement to assess 

genetic function (Oliver et al. 1998, Hellerstein 2004, Villas-Boas et al. 2005). The main 

drawback of metabolomics is that a direct link between genes and metabolites is not 

always easy to establish, once that a same metabolite can participate in many different 

pathways. This was reviewed by Förster (Förster et al. 2003), who showed that in S. 

cerevisiae there are less metabolites than genes (1500 metabolites in opposition to 6000 

genes). However, with improved methods of analytical determination, a much higher 

number of metabolites could be detected and analyzed. The complete analysis of a 

metabolome is virtually impossible due to the high variance of chemical structures and 

properties, from ionic inorganic species to hydrophilic carbohydrates, volatile alcohols and 

ketones, amino and non-amino organic acids, hydrophobic lipids and complex natural 

products (reviewed by Villas-Boas et al. 2005). 

 

5.1. The winemaking yeast metabolome 

S. cerevisiae is the universally preferable wine yeast to initiate alcoholic fermentation, 

being selected for its capacity to rapidly, completely and efficiently convert grape sugars to 

ethanol, carbon dioxide and other minor, but sensorially important, metabolites, without 

the development of off-flavors (Pretorius 2000). Many of the volatile compounds produced 

during fermentation contribute to the development of flavors and aromas, essential to the 
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commercial importance of wine. Different strains of S. cerevisiae are well known to impart 

significantly different aroma profiles to the final product. Beyond ethanol and CO2., during 

alcoholic fermentation, other quantitatively important metabolites are produced by yeast, 

as illustrated in Figure II-3 and summarized in the paragraphs that follow (reviewed by 

Lambrechts and Pretorius 2000, Swiegers et al. 2005, Swiegers and Pretorius 2005). 

 

 

 

Figure II-3: Main metabolic compounds produced by Saccharomyces cerevisiae during 
fermentation (adapted from Swiegers and Pretorius 2005). 
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Volatile Acids 

Volatile acidity of a wine normally describes a group of volatile organic acids of short 

length carbon chain. The volatile acid content is usually between 500 and 1000 mg/L (10-

15% of the total acid content) with acetic acid constituting more than 90% of the total 

volatile acidity of wine (Henschke and Jiranek 1993a, Radler 1993). This acid is the most 

relevant volatile acid for winemaking, due to the fact that at elevated concentrations it 

confers a vinegar-like character to the wine. Other volatile acids are produced as a result of 

fatty acid metabolism, mainly propionic and hexanoic acid (Lambrechts and Pretorius 

2000). Acetic acid optimal concentration on wine is between 0.2 and 0.7 g/L (Corison et 

al. 1979, Dubois 1994) and concentrations should not be higher than 1.5 g/L (Eglinton and 

Henschke 1999) according to the European legislation (International organization of vine 

and wine). S. cerevisiae has been reported to produce acetic acid heterogeneously, in 

concentrations ranging from 100 mg/L up to 2 g/L (Radler 1993). 

  

Higher alcohols 

Higher alcohols (also known as fusel alcohols) are secondary metabolites produced by 

yeasts during fermentation. They can have either positive or negative impacts on wine 

aroma and flavour. Although optimal levels of higher alcohols can impart a fruity character 

to the wine (below 300 mg/L), excessive amounts (above 400 mg/L) are responsible for a 

strong, pungent smell and taste (Swiegers and Pretorius 2005). Higher alcohols usually 

include all molecules with more than two carbon atoms and with higher molecular weight 

and boiling point than ethanol, and can be divided into two categories: aliphatic and 

aromatic alcohols. The aliphatic alcohols include propanol, isoamyl alcohol, isobutanol 

and active amyl alcohol, whereas aromatic alcohols consist of 2-phenylethyl alcohol and 

tyrosol. 

The pathway of higher alcohols production is summarized in Figure II-4. Branched-chain 

higher alcohols, isoamyl alcohol, active amyl alcohol and isobutanol are synthesized 

during fermentation through the Ehrlich pathway, which involves the degradation of the 

branched-chain amino acids, leucine, isoleucine, and valine. Several factors have been 

reported as influencing the production of higher alcohols by yeasts during fermentation (as 

reviewed by Henschke and Jiranek 1993a): fermentation by different yeast strains, 
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concentration of aminoacids (the precursors of higher alcohols), ethanol concentration, 

fermentation temperature, pH, composition of grape must, aeration, level of solids and 

grape variety and maturity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II-4: Biosynthesis of higher alcohols by wine yeasts (adapted from 
Swiegers et al. 2005). 

 

 

 

Carbonyl compounds 

Aldehydes are important to wine flavor contributing with aroma descriptors such as 

“apple-like", "citrus-like" and "nutty-like" depending on their chemical structure. Due to 

their low sensory threshold values, aldehydes are important to the aroma and bouquet of 

wine. The major carbonyl compound found in wine is acetaldehyde (more than 90% of the 

total aldehyde content of wine), with concentrations ranging from 10 mg/L to 300 mg/L 

and a sensory threshold value of 100 mg/L (Hinreiner et al. 1955). 
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The precursors of aldehydes, the 2-keto acids, are formed as intermediates in both the 

anabolic and catabolic formation of amino acids or higher alcohols (reviewed by 

Lambrechts and Pretorius 2000). Conditions which favor higher-alcohol production also 

favor the formation of aldehydes. 

Other important carbonyl compound usually present in wine is diacetyl, responsible by a 

“butter” or “butterscotch” aroma. 

 

Volatile phenols 

Volatile phenols can be very important to the taste, color and odor of wines, although they 

are better known for their contribution to off-flavors. Acetovanillone, ethyl vanillate and 

methyl vanillate are described as contributing with a vanilla and spicy character to wine, 

although some other volatile phenols such as 4-ethyl guaiacol and 4-ehtylphenol produce a 

“pharmaceutical” odor, especially in white wines (Ribereau-Gayon et al. 2000). Vinyl- and 

ethylphenols result from the microbiological transformation of trans-ferulic and trans-p-

coumaric acids, the non-volatile, odorless precursors present in all wines (Lambrechts and 

Pretorius 2000). 

 

Esters 

Esters can be produced by yeasts during fermentation, or later during aging by chemical 

reactions. Esters have a significant effect in wine flavors, mainly when some particular 

ones are produced during fermentation: (i) ethyl acetate – fruity, solvent-like aroma; (ii) 

isoamyl acetate – pear-drops aromas; (iii) isobutyl acetate – banana aroma; (iv) ethyl 

caproate – apple aroma; (v) 2-phenylethyl acetate – honey, fruity, flowery aromas 

(Swiegers et al. 2005). The production of the main esters – ethyl acetate and isoamyl 

acetate –, by wine yeasts is schematized in Figure II-5. Esters have a high commercial 

importance since its concentration in wine is generally well above their sensory threshold 

levels. Many times the sensorial description of a wine is made using esters aroma 

properties. 
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Figure II-5: Biosynthesis of esters by wine yeasts (adapted 

from Swiegers et al. 2005). 

 

 

 

 

Sulphur compounds 

Sulphur compounds are also important molecules contributing negatively to wine flavors, 

although they can exert, exceptionally, a positive contribution. Sulphur-containing flavour 

compounds have high reactivity and extremely low threshold values and can be divided in 

five categories: sulphides, polysulphides, heterocyclic compounds, thioesters and thiols. 

According to Swiegers et al (2005) many sulphur compounds are normally associated with 

negative descriptors, such as cabbage, rotten eggs, sulphurous, garlic, onion and rubber, 

whereas some can contribute with positive aromas such as strawberry, passion fruit and 

grapefruit. 
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The most important and best known sulphur compound in wine is hydrogen sulphide 

(H2S), a very unpleasant volatile tiol that imparts a “rotten egg” aroma to wine. This 

compound can be formed metabolically by yeast during fermentation from inorganic 

sulphur compounds sulphate and sulphite, or organic sulphur compounds cysteine and 

glutathione. Figure II-6 summarizes the sulphur metabolism with particular emphasis in the 

production of H2S. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II-6: Biosynthesis of sulphur compounds by wine yeasts (adapted from Swiegers et al. 

2005). 

Roman numerals indicate the following enzymes: I – Aspartate kinase; II – Aspartate semi-

aldehyde dehydrogenase; III – Homoserine dehydrogenase; IV – Hemoserine kinase;  

V – Threonine synthase; VI – Homoserine O-transacetylase; VII – Sulphate permeases;  

VIII – ATP sulfurylase; IX – APS kinase; X – PAPS reductase; XI – Sulphite reductase;  

XII – Serine acetyltransferase; XIII – O-acetylthomoserine and O- acetylserine sulphydrylase; 

XIV – Homocysteine methyltransferase; XV – S-adenosylmethionine synthetase; XVI – S-

adenosylmethionine demethylase; XVII – Adenosylmocysteinase; XVIII – Methionyl-tRNA 

synthetase; XIX – β-Cystathionine synthase; XX – β-Cystathionase; XXI – Cysteine synthase; 

XXII – γ-Cystathionine synthase; XXIII – γ-Cysthationase; XXIV – γ-Glutamylcysteine 

synthetase; XXV – Glutathione synthetase; XXVI – γ-Glutamyltranspeptidase; XXVII – 

Cysteinylglycine dipeptidase. 
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5.2. Bioanalytical methods for metabolome analysis 

Adequate tools to study metabolomics, aiming at quantifying all the metabolites and 

chemicals of a cell, just recently started to emerge (Castrillo and Oliver 2006).  

Different strategies have been used to study the metabolome of an organism, with different 

authors using different approaches. Fiehn (2002) divided the approaches for metabolome 

analysis in (i) target analysis, (ii) metabolite profiling, (iii) metabolomics, and (iv) 

metabolic fingerprinting. In 2005, in a publication of reference in the field (Villas-Boas et 

al. 2005), the methods of metabolome analysis were revised and divided in just two main 

parts, as shown in Figure II-7: target analysis – quantitative analysis of a class of 

compounds that are related to a specific pathway or to intersecting pathways; and 

metabolite profiling – rapid analysis, often not quantitative, of a large number of different 

metabolites with the objective of identifying a specific metabolite profile that characterizes 

a given sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II-7: Metabolome analysis in the context of functional genomics (from Villas-Boas 

et al. 2005). 

Nu – nucleus; Cit – cytoplasm 
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The author even divides metabolite profiling in: metabolic fingerprinting – covers the 

scanning of a large number of intracellular metabolites detected by a selected analytical 

technique or by a combination of different techniques in a defined situation; and metabolic 

footprinting – approach proposed by Allen et al. (2003), which is technically similar to 

fingerprinting, but is focused on the measurement of all extracellular metabolites present in 

a culture medium. 

In general terms, and also in the scope of this thesis, every metabolomic experiment 

follows certain steps, since the sampling until data validation: 

 Sampling; 

 Sample preparation; 

 Sample analysis including metabolite separation detection; 

 Data export; 

 Data analysis 

 

 

Figure II-8 shows a schematic diagram of the steps generally used during metabolic 

characterization, and adopted in the analysis performed in the experimental chapters of this 

thesis, as adapted from the literature. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II-8: Workflow for a metabolic analysis. 
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In this chapter we will only focus on the technological platforms used for sample analysis. 

The remaining steps of metabolic characterization are not in the scope of this thesis, and 

detailed information about them can be found in the following publications (both regarding 

the original references for methods description or good reviews about the mentioned 

subject): 

 Sampling: Theobald et al. 1993, Gonzalez et al. 1997, Buchholz et al. 2002, Maharjan 

and Ferenci 2003, Gulik et al. 2012; 

 Sample preparation: Pawliszyn 1997, Villas-Boas et al. 2005, Dettmer et al. 2007, Kim 

et al. 2013; 

 Data export and analysis: Shulaev 2006, Deutsch 2008, Tautenhahn et al. 2008, Deutsch 

2010, Koh et al. 2010, Castillo et al. 2011, Martens et al. 2011, O’Callaghan et al. 2012. 

Several analytical platforms are available for the determination of the metabolic profile of 

an organism: gas-chromatography (GC) or liquid-chromatography (LC) coupled to mass-

spectroscopy (MS) (Birkemeyer et al. 2003, Kleijn et al. 2007, Fiehn 2008, Akande et al., 

2012, Gika et al., 2014), capillary electrophoresis (CE) coupled to MS (Soga et al. 2003, 

Monton and Soga 2007, Tanaka et al. 2007, Ramautar et al. 2009), infrared and Raman 

spectroscopy (Ellis and Goodacre 2006), nuclear magnetic resonance (NMR) spectroscopy 

(Salek et al. 2007, Barton et al. 2008, Bjerrum et al. 2010) and direct injection MS (DIMS) 

(Allen et al. 2003, Mackenzie et al. 2008). Being the study of an organism metabolome a 

very complex process, no single application can determine the complete set of metabolites 

of a sample, which led to the development of several approaches combining some of the 

mentioned technologies (Dunn et al. 2005b, Pope et al. 2007, Dunn et al. 2011, Castro et 

al. 2014).  

Following, a brief review of the main technologies for metabolome analysis will be 

presented, with particular focus on the ones with broader applicability in metabolome 

analyses. 

 

Gas chromatography – Mass spectrometry 

GC coupled to MS has been extensively used in metabolome analysis mainly in complex 

biological mixtures (Kind and Fiehn 2007, Lommen et al. 2007, Mas et al. 2007). A gas-

chromatography system includes a gas supply, an injector and a column inside an oven, 
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which are then connected to the mass spectrometer. GC analysis can be performed using 

constant flow, constant pressure or a flow program. 

Within the vast set of advantages of GC-MS combined use, one can be easily highlighted 

due to its importance: while MS provides individual mass spectra that can differentiate 

between chemically diverse metabolites, GC has high separation efficiency. Other 

advantages can be enhanced: sensitivity, robustness, easiness of use, low cost, ample linear 

range and commercial and public libraries available (Villas-Boas et al. 2005, Hollywood et 

al. 2006, Dettmer et al. 2007, Garcia et al. 2008). The main disadvantage of this technique 

is that GC-MS requires volatile analytes. Since a large number of metabolites is non-

volatile, time-consuming derivatization steps are required (Halket et al. 2005, Wittmann 

2007, Lu et al. 2008). 

Recently, some technologies were conjugated with GC-MS in order to optimize the 

technique´s performance, as for example GC-GC time of flight (TOF)-MS (Koek et al. 

2008, Mondello et al. 2008). With this method, two different GC columns are conjugated, 

improving the metabolite detection coverage, and TOF-MS provides a very fast scanning 

rate and additional sensitivity for improved detection. However, this method is still very 

expensive, so it is not yet routinely used. Other example is the connection of flame 

ionization detector (FID) – GC-FID. This conjugated technology is rapid, highly sensitive 

and has a lower cost, so it can be used for routine samples analysis (Jumtee et al. 2009). 

 

Liquid chromatography – Mass spectrometry / High performance liquid chromatography 

Combination of LC with MS, despite initial hesitations, revolutionized analytical 

determination of metabolome, by enabling the analysis of non-volatile or thermally labile 

high molecular compounds for which GC-MS approaches were not suitable. This 

technique allows metabolite separation by LC followed by electrospray ionization (ESI) or, 

less typically, atmospheric pressure chemical ionization (APCI) (Bakhtiar et al. 2002). LC 

separations compatible with ESI are desirable and common due to the polar and ionizable 

nature of most metabolites (van der Werf et al. 2007). 

The main differences of this technique in comparison with GC-MS are the lower 

temperatures required and the fact that sample volatility is not needed, which simplifies 

sample preparation. Applications of LC-MS in metabolomics are mainly focused on 
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clinical applications (Bakhtiar et al. 2002), but this technique was also applied in the 

detection of a very high number of commercially available compounds of the in silico 

metabolome of Bacillus subtilis and Escherichia coli, and in the determination of full 

metabolome coverage of S. cerevisiae (van der Werf et al. 2007). 

In a typical determination by LC-MS, samples are injected into the solvent stream using 

the injector and are separated within the column to which the stationary phase is 

chemically bound. Therefore, the eluent arising from the column can pass through a flow 

cell in a spectrometer for non-destructive detection of compounds with spectrometric 

features (a chromophore or a fluorophore). 

Developments in LC-MS technology were obtained by improvements in mass analyzers 

and in the ionization technique, leading to the emergency of new platforms such as fast 

LC-MS, LC-MALDI-MS, LC-ESI-MS-MS, LC-NMR-MS, hydrophilic interaction liquid 

chromatography (HILIC)-MS, reverse phase LC-MS and ion mobility spectrometry 

(Verhoeckx et al. 2004, Smilde et al. 2005, Bajad et al. 2006, Edwards et al. 2007, Bruce 

et al. 2008, Holčapek et al. 2012). High performance liquid chromatography (HPLC) is a 

technique derived from LC, but in which the operational pressures are significantly higher. 

While ordinary liquid chromatography relies on the force of gravity to pass the mobile 

phase through the column, pressures used in HPLC are typically between 50 and 350 bars. 

A typical HPLC instrument, used routinely in many laboratories, includes a sampler, 

pumps, and a detector. Sample mixture is brought by the sampler into the column, being 

the desired flow delivered by the pumps. The detector generates a signal proportional to 

the amount of sample component emerging from the column, hence allowing to quantify 

its components. A digital microprocessor controls the HPLC instrument and provide data 

analysis. Several modifications are nowadays used in HPLC analytical determinations, 

such as the use of monolithic columns (Núñez et al. 2008, Heideloff et al. 2010, Du et al. 

2011, Kadi et al. 2011) or the use of higher temperatures – high temperature liquid 

chromatography (Heinisch and Rocca 2009, Teutenberg 2009, Cunliffe et al. 2011). 

 

Capillary electrophoresis – Mass spectrometry 

CE-MS is an analytical chemistry technique combining the separation process of capillary 

electrophoresis with mass spectrometry detection. The original interface between capillary 
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zone electrophoresis and mass spectrometry was developed and first published in 1989 by 

Joseph Loo (Loo et al. 1989). The advantages of CE, in comparison with GC and LC, 

include higher separation efficiencies, extremely small sample injection volumes, rapid 

method development, low reagent costs and the ability to separate cations, anions and 

uncharged molecules in a single run. CE-MS has been used to study the metabolome of 

several organisms, both for target and non-target analysis with good results in detection 

and quantification of different metabolite classes (Perrett and Ross 1992, Perret et al. 1994, 

Lehmann et al. 1997, Perrett et al. 1997, Soga and Imaizumi 2001, Terabe et al. 2001, 

Soga et al. 2002), including analysis of inorganic ions (Kobayashi et al. 1998), organic 

acids (Shirao et al. 1994), amino acids (Soga and Heiger 2000), nucleotides and 

nucleosides (Cohen et al. 1987), vitamins (Schreiner et al. 2003), thiols (Carru et al. 2003), 

carbohydrates (Soga and Heiger 1998) and peptides (Perret et al. 1994). 

The main limitations of CE are the lack of sensitivity due to small sample injection 

volumes, especially when coupled to MS, the limited number of commercial libraries 

available, and also the poor retention time reproducibility. 

  

Nuclear magnetic resonance spectroscopy 

NMR spectroscopy is another powerful method for metabolomics which is characterized 

by the application of strong magnetic fields and radio frequency pulses to the atoms nuclei. 

For atoms with either an odd atomic number (e.g., 
1
H) or odd mass number (e.g., 

13
C), the 

presence of a magnetic field will cause the nucleus to possess spin, termed nuclear spin. 

The nuclei will then absorb the radio frequency energy and will be promoted from low-

energy to high-energy spin states, and the subsequent emission of radiation during the 

relaxation process is detected (Dunn and Ellis 2005). The main advantage of the use of 

NMR spectroscopy in comparison with other methods is the fact that it can be performed 

in a non-invasive manner. The sensitivity of NMR-based methods is however reduced, 

although, being these methods quantitative it compensates the reduction of sensibility (Pan 

and Raftery 2007). Another disadvantage is related with a lower limit of detection of about 

1-5 µM and a requirement for relatively large sample sizes (~500 µL). NMR spectroscopy 

is however preferable over other methods for the quantification of compounds that are less 

tractable such as sugars, amines, volatiles ketones and non-reactive compounds. 
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The first known application of NMR towards metabolism characterization dates from the 

early 1970s with the use of isotope-tracer analysis to help decipher ethanol metabolism 

(Wilson and Burlingame 1974). NMR has been very useful for structure characterization of 

unknown compounds and was applied with success to the analysis of metabolites in 

biological fluids and cells extracts (Shockcor et al. 1996). 

NMR spectroscopy has been employed in several fields, such as the analysis of plant-cell 

extracts, such as Arabidopsis and tobacco, to analyze cold stresses on worms, to determine 

disease biomarkers of environmentally stressed red abalone and to determine the mode of 

action of biochemicals (reviewed in Dunn and Ellis 2005, Bothwell and Griffin 2011). 

Regarding yeasts metabolism, one key and highly cited publication in this area showed that 

a number of S. cerevisiae strains with similar growth rates had markedly different 
1
H NMR 

spectra (Raamsdonk et al. 2001). These different spectra were then used to distinguish 

glycolytic mutants from oxidative phosphorylation ones. This work was recently extended 

to the identification of extracellular metabolite profiles and metabolic footprints of S. 

cerevisiae (Bundy et al. 2007). 

 

Fourier transform - Infrared spectroscopy 

FT-IR spectroscopy is an analytical technique that enables metabolome quantification in a 

non-destructive way, as well as in NMR spectroscopy. With this technique, basically, when 

a sample is irradiated with electromagnetic radiation, chemical bonds at specific 

wavelengths absorb the light and vibrate in one of a number of ways, such as stretching or 

bending vibrations. These vibrations can then be correlated with single bonds or functional 

groups, allowing the identification of unknown compounds. The measured signal is 

digitalized and sent back to the computer where Fourier transformation takes place, 

consisting in a mathematical conversion employed to translate signals between time (or 

space) and frequencies. This technique has been successfully applied for quality control 

and identification of filamentous fungi and yeasts (Gordon et al. 1997, Kummerle et al. 

1998, Mariey et al. 2001, Wenning et al. 2002, Naumann et al. 2005, Fischer et al. 2006). 

Santos (2010) has review the applicability of this method for the identification and 

characterization of filamentous fungi and yeasts, and concluded about its main advantages: 

(i) simple sample preparation procedure; (ii) short time of analysis; and (iii) reliability of 

the data. 
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5.3. Fiber optics spectroscopy for the metabolomic analysis of biological 

systems 

Fiber optics spectroscopy is a powerful multivariate and reproducible methodology, 

holding future potential to be used in systems biology approaches, being a non-destructive, 

very simple but precise approach, allowing the obtainment of vast amounts of information 

in one measurement (Mariey et al. 2001, Rösch et al. 2005). Fiber optics spectroscopy 

basically measures vibrations and rotations of molecular functional groups that result from 

the energy transferred when radiation interacts with a sample. This interaction results in an 

increase of molecular energy, which can produce three different transitions, according to 

the wavelength of the incident radiation: electronic excitation, vibrational change and 

rotational change. Spectra will change considering the sample molecular groups and can 

then, in this way, be related to its chemical composition.  

In the case of yeasts, cell morphology is related with their physiology and metabolism 

(Treskatis et al. 1997) and therefore it was possible to differentiate and catalogue different 

metabolic states based on cellular morphologies by using fiber optics spectroscopy. Fluids, 

cells or tissues can be analyzed to obtain metabolic fingerprints, and in theory, any sample 

can be virtually analyzed by spectroscopy.  

Spectroscopic methods have been applied with success in industrial applications to 

characterize proteins, lipids, carbohydrates, membranes, pharmaceuticals, human tissues, 

among others (reviewed in Jimaré Benito et al. 2008). Regarding the identification of 

microorganisms, these methods are of great value as alternative to molecular biology, since 

they don´t require, in general, the destruction of the sample. However, a careful validation 

of these methods to be applied to yeast characterization and identification is still needed, 

once that several limitations have been found in the past (Fonseca 2013). 

Several methods for spectroscopic analysis are available and their subdivision is not 

always easy, depending if one considers the type of radiative energy, the nature of the 

interaction or the type of material under analysis. Regarding the nature of the interaction 

between the energy and the material under analysis, three types of spectroscopy can be 

recognized (Pavia et al. 2001): (i) spectroscopy by absorption – energy from the radiative 

source is absorbed by the material; (ii) spectroscopy by transmission – measurement of 

energy released by the material; (iii) spectroscopy by dispersion – energy is redirected 
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when interacts with the material. Regarding the measurement techniques, optical 

spectroscopy are divided in terms of spectral regions: ultraviolet (UV; 190-380 nm), 

visible (VIS; 380-750 nm), shortwave near-infrared (SW-NIR; 750-1100 nm), near-

infrared (NIR; 1100-2500 nm), infrared (IR; 2500 nm-1 mm) (Workman and Springsteen 

1998). Nowadays, spectroscopic techniques focus mainly on the spectrum regions of UV-

VIS and IR (Pavia et al. 2001). IR spectroscopy is broadly used to identify functional 

groups (alcohols, aldehydes, phenols, etc.), being an easy and feasible method to ensure the 

quality control of a sample along a time period (Stuart 2004). NIR spectroscopy has been 

widely used in bioprocess monitoring due to the ease of sampling and inexpensive and 

robust instrumentation (Casale et al. 2006, Jimaré Benito et al. 2008, Liu et al. 2011, Chen 

et al. 2012, Jiang et al. 2012, Bao et al. 2013, Jiang et al. 2013). Despite a limitation 

regarding its sensitivity to water, it continues to be one of the methods of choice in food 

and chemical applications, due to association with specific vibrations of functional groups 

(Roggo et al. 2007). UV-VIS spectroscopy presents advantages in relation to spectroscopy 

using IR spectra, due to lower radiation penetration, being easier to monitor surfaces and 

identify microorganisms. However, combination of several spectral regions, especially of 

UV, VIS and SWNIR should be preferred, since it combines the molecular spectroscopy of 

UV/VIS with the high frequency vibrational spectroscopy of the SWNIR. 

Several studies report advantages of spectroscopy for industrial applications, in particular 

by the combination with chemometrics, in order to monitor physical or chemical properties 

during processing of certain products (Jaumot et al. 2004, Berrueta et al. 2007, Roggo et 

al. 2007, Wynne et al. 2007, Huang et al. 2008, Egidio et al. 2010). Modern wine industry 

requires fast and reliable methods to ensure quality control and to guarantee the 

consistency of the final product. Spectroscopy has been recognized as a rapid, non-

destructive technique to be applied to various types of samples (reviewed by Osborne et al. 

(1993) and Deaville and Flinn (2000)).  
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6. Phenomics: unravelling genetic-phenotypic relations 

 

Research had focus in the recent past mostly in genomes characterization, and a 

considerable progress was achieved by the understanding of genetic patterns of diversity in 

many organisms, as described in the previous chapters and in many publications 

(Schacherer et al. 2009, Via et al. 2010, Liti and Schacherer 2011, Engel and Cherry 

2013). However, the interpretation of the phenotypic consequences of genetic variation is 

not an easy task, mainly limited by the lack of attention given to phenotypic 

characterization in terms of quantitative characteristics. Phenomics is the area that aims to 

link the genetic variation and the phenotypic diversity observed in an organism. In this 

way, phenomics can be defined as the large genome-scale study of relations between 

phenotypes and their molecular underpinnings in genetics, protein interactions and so forth 

(Schork 1997, Freimer and Sabatti 2003, Fernandez-Ricaud et al. 2007, Lussier and Liu 

2007, Houle et al. 2010).  

When phenomics started to be studied, only a moderate number of phenotypes was used 

(Warringer et al. 2003, Kvitek et al. 2008, Ratnakumar et al. 2011, Warringer et al. 2011, 

Chen et al. 2012b). However, with the recent advances in technology, instrumentation and 

computational data analysis, extensive phenotypic characterization was performed in large 

sets of individuals. The phenotypic method continues to be the crucial step in phenomics 

characterization, because a quantitative method is required in which all the subjectivity is 

eliminated. New methods of automated phenotypic characterization, such as Biolog´s 

OmniLog
®

, contributed largely to fill this gap. 

Phenomics is particularly difficult to be studied in organisms that have adapted to varying 

environmental conditions, due to phenotypic plasticity, a phenomenon characterized by the 

ability of a given genotype to exhibit different phenotypes in various environments 

(Pigliucci 2001). A gene-environment interaction occurs when the phenotypic effect of an 

allele is environment dependent. Several studies, both in yeasts and other organisms as 

well, have identified roles of single genes affecting plasticity and how they interact with 

each other (Mackay 2001, Remold and Lenski 2004, Kent et al. 2009, Gerke et al. 2010). 

In biomedical research, understanding the mechanistic connections between genotype and 

phenotype has far-reaching implications for the treatment of diseases (Fernandez-Ricaud et 
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al. 2007). As stated by Bilder (Bilder 2008), massive efforts were done to understand the 

complexity of the human genome, but there is still insufficient effort in the recognition of 

the phenome intricacy, being the complexity of the genome very small compared to the 

one of the phenome. Freimer and Sabatti (Freimer and Sabatti 2003) preview that the 

human phenome project will occupy scientists for this entire century.  

Yeast constitutes an attractive model to study phenomics with because cells can be easily 

manipulated and a vast repertoire of tools is available for genetic modifications. Almost 

any genotype can be constructed and the phenotypic features can be easily observed. Yeast 

phenotypic variation can be categorized as qualitative or quantitative. While qualitative 

traits are Mendelian and controlled by a single locus with a discrete effect, quantitative 

ones comprise a continuous distribution of a measurable character. Examples of 

quantitative traits in S. cerevisiae include for example stress tolerance, such as heat (Parts 

et al. 2011) and ethanol (Hu et al. 2007).  

The higher number of research projects characterizing yeast phenomics are based on these 

quantitative traits, that are controlled by multiple genetic loci, referred to as quantitative 

trait loci – QTL (Lander and Botstein 1989, Lynch and Walsh 1998). A QTL contains a 

cluster of closely linked genes that contribute to the quantitative trait (Mackay 2001). The 

main advantages of approaches using QTL analysis are that no a priori hypothesis on gene 

function and sequence variation is required and are often capable of detecting multiple 

genes that affect the value of a single quantitative trait (Marullo et al. 2007a). S. cerevisiae 

provides an ideal model for QTL analysis due to high recombination rate, richly annotated 

genome and the fact that genes can be directly manipulated in their genomic context. 

Figure II-9 represents a schematic overview of QTL mapping in S. cerevisiae. This 

mapping is typically performed by crossing two strains that differ in the trait of interest, as 

reviewed by Swinnen et al. (2012). In particular, a haploid parental strain possessing the 

trait (trait
+
 parent strain) is mated with another haploid parental strain lacking the trait 

(trait
-
 parent strain) – step A. After mating, the diploid hybrid strain is sporulated to yield 

segregants that are genetically different – step B. Segregants with a phenotypic expression 

comparable to the trait
+
 parent will be selected – step C. 
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Figure II-9: Overview of QTL mapping in Saccharomyces cerevisiae (adapted from Swinnen et al. 

2012).  

See text for details 

 

 

Providing that a minimal number of segregants with a comparable phenotypic expression 

as the trait
+
 parent have been selected, the unknown positions of the QTL can be inferred 

from molecular markers located closely to them, which will co-segregate in the cross and 

thus, also shows a deviation from random segregation in the selected segregants. This is 

based on the principle of meiotic recombination which implies that any enrichment in 

genetic determinants crucial for the phenotypic trait under study in the selected segregants 

can be inferred from the enrichment of genetic markers that co-segregate with them. The 

significance of this enrichment must be evaluated by means of statistical analysis.  

QTL mapping was used to elucidate complex mechanisms in yeasts, in particular to the 

analysis of sporulation efficiency (Deutschbauer and Davis 2005), thermotolerance 

(Steinmetz et al. 2002, Sinha et al. 2006) and drug resistance (Perlstein et al. 2007). In 

biotechnology, QTL mapping helped to understand genotype-phenotype relations in wine 



Chapter II | General Introduction 

_______________________________________________________________________ 

47 

 

(Marullo et al. 2007b, Marullo et al. 2009) and sake (Katou et al. 2009) fermentations, and 

also regarding ethanol production (Hu et al. 2007). Particularly in winemaking, QTL 

mapping was successfully applied to dissect relevant phenotypes (Marullo et al. 2007a, 

Ambroset et al. 2011, Salinas et al. 2012, Beltran et al. 2013, Pais et al. 2013), or such as 

the production of aromatic compounds (Katou et al. 2009, Steyer et al. 2012). In these 

studies, clusters of genes were identified as related with particular fermentation traits, such 

as malic and succinic acid production, ethanol accumulation, nitrogen metabolism and 

residual sugar, among others. 

QTL mapping, however, has some disadvantages mainly at population level, as reviewed 

by Swinnen et al. (2012): (i) it does not consider epistasis, i.e., when one gene depends on 

the presence of one or more genes to control a phenotype; (ii) different genetic elements 

may control the same trait in different strains; (iii) many times the complexity of the QTL 

defining a specific trait at the population level can be so high that reliable identification 

usually becomes exceedingly difficult. Due to these facts, some alternatives to the use of 

QTL mapping have been searched to explore the genotype-phenotype landscape.  

In the recent past, some researchers started to use statistical and probabilistic models 

applied to the study of interactions between the genotype and the phenotype (O’Connor 

and Mundy 2009, MacDonald and Beiko 2010, Mehmood et al. 2011), also as gene 

knockout approaches (Hillenmeyer et al. 2008). However, no single method is still 

considered as the method of choice for phenomics studies, so QTL mapping continues to 

be widely used.  
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7. Data mining and machine learning methods for computational 

and systems biology applications 

 

Systems biology represents the integrative study of entire pathways and processes at a 

molecular level by combining different “omics” approaches. It involves the understanding 

of a biological system through mathematical and computational modelling of interactions 

between system components. Often, the results are expressed in qualitative and 

quantitative terms, stored in databases and used to predict the outcome of complex 

processes. Although the systems biology concept exists long ago, just in the last decade it 

was possible to develop high-throughput technologies that allow the generation of precise 

data, together with the mathematical power to analyze it. These changes were the key to 

start understanding, with greater detail and precision, the dynamical phenomena observed 

in the living world. 

For this concept to arise, a paradigm shift in biological research was necessary (Bull et al. 

2000). In the past, research focused on the study of individual genes or proteins and 

combined simultaneous analysis of genes or cellular components started during the 1990’s. 

This new approach of biological systems characterization in a holistic way led to the 

suggestion of the term “Systems Biology” (Ideker et al. 2001, Kitano 2002). The main 

drawback of systems biology analysis is that knowing all the genes, proteins and 

metabolites existing within a cell in a certain moment, is not sufficient to understand how 

the cell operates, how the components interact and the mechanisms necessary for the cell 

to answer to environmental changes. One of the main advantages of systems biology 

approaches is the overcome of limitations of using a single omic approach, which only by 

itself can lead to erroneous interpretations, related with missing data, false positives or 

false negatives (Marcotte et al. 1999, Ge et al. 2001, Pilpel et al. 2001, Vidal 2001, 

Mrowka et al. 2003, Nestler 2003). The terms “mathematical” and “computational”, 

applied to the models used in systems biology, had been in the past the basis of some 

controversy in the scientific community (Fisher and Henzinger 2007, Hunt et al. 2008). It 

was later accepted that this “dichotomy” between mathematical and computational models 

could only be solved in the context of the biological model to be used. In this way, biology 

holds the questions that lead to the model, being the answer always included in an iterative 
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process, in which the obtained knowledge about the system leads to new open questions 

that adapt the initial model with new variables. This iteration continues until an agreement 

is established between the results obtained and the model predictions (Klipp et al. 2005). 

 

 

7.1. Systems biology in a biotechnology context 

Microbial fermentation was already used in 1920 for the production of citric acid, being 

this the first biotechnological production process. Other compounds with a high market 

importance have been also produced using fermentation processes, such as glycerol, 

ethanol, ergosterol, succinic acid, etc. With the development of genetic engineering it was 

possible to use fermentation technologies to produce also compounds not produced 

natively by microbes, such as pharmaceutical proteins, foods, beverages, bioethanol and 

vaccines (Manuel et al. 2007, Rodríguez-Moyá and Gonzalez 2010, Hong and Nielsen 

2012, Jang et al. 2012, Otero et al. 2013). S. cerevisiae is at the forefront of research in this 

field, being the eukaryotic model with more experimental and computational data available 

regarding systems biology methods. Biotechnological products derived from S. cerevisiae 

fermentations, mainly wine, are expected to have their value highly increased in future 

years, and above the value of the general market. Winemaking represents today a multi-

billion euro industry that benefits tremendously from systems biology research (Nielsen 

and Jewett 2008, Rossouw et al. 2008, Borneman et al. 2009). This is particularly the case 

for studies evaluating the impact of different yeast strains in central areas of wine 

production, and also of different fermentation behaviors and their relation with the 

composition of the wine produced, regarding for example flavour compounds such as 

volatile acids, higher alcohols, esters, volatile thiols and phenols (Ugliano and Henschke 

2009). 

With the development of “omics” technologies such as genomics, transcriptomics, 

proteomics and metabolomics, yeast research applied to the winemaking industry increased 

enormously, mainly with the goal of defining phenotypic variation at the molecular level, 

and also to assign genetic contributors to variation. Several high-throughput studies using 

yeasts continue to be published, being one of the examples the assembly of a 

comprehensive double gene deletion library and the corresponding genetic interactions, by 
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Costanzo and Baryshnikova (Costanzo et al. 2010, Baryshnikova et al. 2011). Other 

relevant research projects consisted in the study of gene deletion combinations and how it 

resulted in different phenotypes than expected (Bendert and Pringle 1991, Avery and 

Wasserman 1992, Boone et al. 2007, Costanzo et al. 2010). In 2007, systems biology was 

used to produce a computational model of S. cerevisiae metabolic pathways, using 

genomic and metabolic data available at the time (Famili et al. 2003). This model was an 

important advance regarding biotechnological applications, since it was possible to predict 

the effects of specific mutations in the yeast metabolism. Borneman et al. (2012) reviewed 

the most relevant publications from 2009 to 2012, regarding the use of “omics” approaches 

and their application in wine and vine biotechnology, in particular regarding: (i) vine 

development – Mica et al. 2009, Fernandez et al. 2010, Toffali et al. 2010, Ali et al. 2011, 

Fortes et al. 2011, Guillaumie et al. 2011, Fasoli et al. 2012, Lijavetzky et al. 2012;  

(ii) disease resistance – Polesani et al. 2010, Milli et al. 2012; (iii) development of 

viticulture practices regarding for example water and light deficit – Grimplet et al. 2009, 

Sreekantan et al. 2010, Tillett et al. 2011. 

 

 

7.2. Data mining methods 

Data obtained from “omics” experiments typically consists of thousands of variables and 

samples. The multidimensionality and the fact that this type of data are multi-variate makes 

it often difficult to comprehend, visualize and interpret. In this way, several analytical 

methods are used to extract relevant information, and to correlate sets of data. The choice 

of the method has always to settle on the aim of the analysis, on the type of data, number 

of variables, etc. Knowledge from other areas is often applied in combination with these 

data analysis methods, as for example mathematical models, statistics, numerical analysis, 

applied mathematics and computational biology (Wold 1995). 

Data mining is defined as the process of discovering patterns in data recurring to 

computational processes. Usually data mining involves several steps such as data 

management, data pre-processing, data modelling, structure inferences, visualization and 

online updating. Data mining is many times referred as knowledge discovery, and Agrawal 

et al. (1993) described three types of knowledge discovery: (i) classification – division of 
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the data into classes, which can then be used to make predictions about new unclassified 

data; (ii) associations – finding patterns in data in a way that after the establishment of 

association rules, this will be used to infer certain data based on other data; (iii) sequences 

– knowledge about data for which some type of order (such as time for example) is 

involved. 

Due to the enormous volume of data generated nowadays by analytical methods for 

instance, data mining by hand is impossible, being machine learning methods a crucial tool 

to perform this task. Machine learning can then be defined as a way of automatically use 

“training” data to build or alter a model which can later be used to make predictions about 

new unseen data (Mitchell 1997, Witten et al. 2011). 

 

Supervised versus unsupervised learning 

Supervised machine learning is defined as an inference of functions from labelled training 

data. Supervised algorithms are usually used in sets of data whose classes are already 

known, and knowledge is applied to build up their profiles and predict the class of new 

data. Examples of supervised machine algorithms are Bayesian statistics, decision trees, 

kernel estimators and naïve Bayesian classifiers. Unsupervised learning, on the contrary, 

tries to find hidden structure in unlabeled data, without training data-sets. Approaches to 

unsupervised learning include clustering methods (hierarchical clustering, k-means 

clustering, etc.), self-organizing maps, Gaussian models and hidden Markov models. Both 

types of machine learning are widely used, and the choice between them has to settle on 

the type of data available and the type of question to be answered. 

In the following sub-chapters some of the methods used for data mining and classification 

will be reviewed, focusing mainly on the ones used during the experimental procedures 

described in this thesis.  

 

7.2.1. Data pre-processing – data normalization 

Data pre-processing is an intermediate step between raw results and data analysis. The 

most common method during data pre-processing is normalization, which belongs to the 

family of data transformation techniques computed sample-wise. During normalization 
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samples are “scaled” in order to get all data on approximately the same scale, to facilitate 

and improve data analysis (Shurubor et al. 2005). Some methods that are usually 

considered as “normalization” in some books and reviews, such as the injection of internal 

standards in metabolic analysis, are actually used before data are obtained, so will not be 

considered in this sub-chapter. 

Several types of data normalization methods are usually chosen, regarding the type of data 

considered (Shurubor et al. 2005, van den Berg et al. 2006, Craig et al. 2006), such as 

mean normalization, area normalization, unit vector normalization, maximum 

normalization, range normalization, peak normalization, pareto scaling, etc. 

Regarding metabolic studies, metabolites can range in concentrations over many orders of 

magnitude. The classical case of normalization – mean normalization – consists in dividing 

each observation of a data matrix column/row by its average value. This will center all the 

data around the value 1. However, this type of normalization assumes that all the values 

are equally proportional to a numerical factor, which not always happens with this kind of 

data. In these cases, maximum normalization is often used, since all values have the same 

sign (positive values), being each observation divided by the maximum absolute value on 

that row/column, instead of the average value. Each column will be independent from the 

others, and will have its values centered between 0 and 1. Normalization is mandatory for 

metabolic analysis, and can´t be excluded. Without it, with the data analysis methods that 

follows, the most abundant metabolites and the ones with higher concentrations would be 

selected as the most influencing, which could not be true. 

 

7.2.2 Principal component analysis (PCA) 

PCA is the most popular technique of data transformation by reducing its dimensionality in 

order to better understand and interpret its structure. It was invented by Pearson in 1901 

(Pearson 1901), and developed to its present stage by Hotelling in 1933 (Hotelling 1933). 

It consists in a linear transformation that chooses new coordinate systems (PC-1,  

PC-2, …, PC-n) for the data set, in such a way that the greatest variance by any projection 

of the data is found along the first axis (PC-1), also called first principal component, the 

second largest variance along the second principal component, and so on (Jackson 1991). 

Although it reduces the dimension of data, PCA retains the characteristics of the dataset 
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that most contributes for the variance. By plotting the principal components, important 

sample and variable relationships can be revealed, leading to interpretation of certain 

groupings, similarities or differences between samples. With PCA, valuable information 

can be inferred from the dataset which, without this transformation, would not be possible, 

in particular the variables that better describe differences between samples. 

PCA can be done by eigen values decomposition of a data covariance (or correlation) 

matrix, singular value decomposition (SVD) of a data matrix or nonlinear iterative partial 

least squares (NIPALS) (Jolliffe 2002, Abdi and Williams 2010). Although small 

differences are obtained when using any of the 3 methods to perform data decomposition, 

not major variances are perceived, differing mainly in terms of computation memory and 

time required. 

Mathematically, PCA model can be written as 

 

X = T.P
T
 + E                                                    (Equation II-1) 

 

in which X is the data matrix representing samples and variables, being decomposed into a 

score matrix (T) and a transposed loading matrix (P
T
). Factor E in equation II-1 consists in 

the error matrix, in which the residuals are contained, i.e., the part of data that are not 

“explained” by the model. The number of principal components chosen to explain the data 

has always to consider the amount of variance captured and is usually accepted a number 

of components so that >90% of the total variance is captured.  

PCA has been applied in many areas, with particular relevance in metabolomics (Wishart 

2007, Rossouw and Bauer 2009, Worley and Powers 2013) and genomics (Dai et al. 2006, 

Jonnalagadda and Srinivasan 2008). 

 

7.2.3. Hierarchical cluster analysis (HCA) 

HCA, as well as PCA, is an unsupervised method for data analysis widely used, for 

example, in modelling metabolomic and genomic data (Fiehn 2001, Goodacre et al. 2004, 

Tikunov et al. 2005, Mahle et al. 2010, Ibáñez et al. 2014). Algorithms used to perform 
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HCA can be: (i) agglomerative – begin with each element as a separate cluster and merge 

them in successively larger clusters; or (ii) divisive – begin with the whole set of data and 

divide it into successively smaller clusters (Jewett et al. 2007). Data clustered by HCA is 

presented by a tree-shaped projection called dendogram, being a key-step in this method 

the choice of the similarity cut-off, which divides the dendogram into separated clusters. 

This choice can be done using several algorithms, being one of the most common the 

Euclidean distance, which is computed to find the square distance between each variable, 

then sums all the squares and finds the square root of the sum. 

The main disadvantage of using HCA to analyze data is that it does not provide 

information about the reason for which a certain cluster is formed. 

 

7.2.4. k-means clustering 

k-means algorithm consists also in a clustering data method, but in this case it assigns each 

point to the cluster whose center is its nearest. The center of the cluster is calculated as the 

arithmetic mean of all the points in the cluster (Webb 2002). As first explained by 

Macqueen (1966), this method consists in the following steps: (i) randomly generation of k 

clusters and determination of the clusters centers; (ii) assignment of each point to the 

nearest cluster center; (iii) computation of the new cluster centers; (iv) repetition of steps 

(i)-(iii) until the assignment hasn’t changed. The main advantages of this algorithm are the 

simplicity and speed of analysis, making it adequate to run on large datasets. The main 

disadvantages are related with the fact that it does not yield the same result in each run, 

since the outcome of clusters depend on the initial random assignments. 

Mathematically, k-means clustering can be explained by the following equation: 

 

                                 (Equation II-2) 

 

In Equation II-2, given a set of observations (x1, x2, …, xn) consisting of a d-dimensional 

vector, the algorithm aims to partition the n observations into k sets, being each set S={S1, 

S2, …, Sk}, and µi the means of points within each set. This partition has the objective of 

minimizing the within-cluster sum of squares. 
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This approach was used mainly in the analysis of transcriptomic data (Moulos et al. 2009, 

Raman et al. 2011), but is not widely applied to metabolomics, although with some 

successful attempts (Hageman et al. 2006, Cuperlović-Culf et al. 2009).  

 

7.2.5. Partial least squares regression (PLS-R) 

PLS regression, in opposition to the other previously mentioned methods, is not only a 

classification process, but also makes predictions. This method consists in a supervised 

prognostic regression model based on estimated latent variables (new variables obtained as 

linear combinations of the original ones) to be applied to the synchronized analysis of two 

data sets (Abdi 2001, Wold et al. 2001, Keun 2006). PLS methods were first developed by 

Herman Wold (Wold 1973) with the improvement of being very robust and powerful to 

predict a set of dependent variables – matrix Y – from large sets of independent variables 

(called predictors) – matrix X, considering the same set of observations. 

Several modifications to the original PLS model have been reported over the years, 

although the general underlying model of PLS can be represented mathematically in the 

following way, to be applied to a matrix of predictors X (n x m) and a matrix of responses 

Y (n x p) (Abdi 2001, Wold et al. 2001, Boulesteix and Strimmer 2007): 

 

X = T.R
T
 + F (Equation II-3) 

Y = T.S
T
 + G                   (Equation II-4) 

 

where T are an (n x l) matrix giving the latent components (also called latent variables or 

scores) for the n observations, R and S are (m x l) and (p x l) loading matrices (X-loadings 

and Y-loadings, respectively), matrices F and G are the error terms matrices, and  

T
 indicates transposition. 

Equations II-3 and II-4 decompose matrices X and Y in loadings and scores in a similar 

way as PCA (Equation II-1). PLS-R will then maximize the covariance between X and Y 

latent components, being the relationships between X and Y calculated in a way that: 

 

    Y = X.J + r                    (Equation II-5) 
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being J a matrix of regression coefficients and r a matrix of model residuals. 

The matrix of latent components T can be written as a linear transformation of X: 

 

T = X.W           (Equation II-6) 

 

with W being a (p x c) matrix of weights. 

The latent components are then used for prediction in place of the original variables, i.e. 

once T is constructed, S
T
 is obtained as the least squares solution of Equation II-3: 

 

    S
T
 = (T

T
.T)

-1
.T

T
.Y                   (Equation II-7) 

 

Replacing information of Equation II-7 in the Equation II-5, matrix J of regression 

coefficients is obtained: 

 

    J = W.S
T 

= W.(T
T
.T)

-1
.T

T
.Y       (Equation II-8) 

 

and finally the fitted response matrix Ŷ may be written as: 

 

    Ŷ = T.(T
T
.T)

-1
.T

T
.Y         (Equation II-9) 

 

The basic idea of the PLS method is that the response Y should be taken into account for 

the construction of the components T. In detail, the PLS components are defined such that 

they have high covariance with the response. PLS is, in this way, called a supervised 

method, in contrast for example to PCA, which does not use the response for the 

construction of the new components. This constitutes the better explanation for the fact that 

PLS is better fitted for prediction problems than PCA. 

Several algorithms of PLS-R are available for data calibration and prediction, changing in 

the way they predict the factor and loading matrices (Abdi 2001, Boulesteix and Strimmer 

2007): (i) N-way partial least squares (N-PLS) creates a single model where all columns 

contribute to the loadings of the model; (ii) partial least squares 1 (PLS-1) built a model 

based on a single column and reflects only the covariance between the block and that 
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single column; (iii) unfolded-partial least squares (U-PLS) works similarly to PLS-1, but 

firstly the second-order data are vectorised or unfolded along one of the data dimensions. 

 

7.2.6. Naïve Bayesian classifier 

Naïve Bayesian classifier is one of the simplest supervised machine learning methods, 

however with great power to build predictive models from labelled training sets (Mozina et 

al. 2004, Yager 2006, Kirk et al. 2012). This classifier is based upon the direct application 

of Bayes theorem and works under the assumption that the attributes are statistically 

independent from each other. 

The main difference between naïve Bayesian classifier and the general Bayesian algorithm 

is that the estimation of the likelihood is performed by means of the simplistic (naïve) 

assumption that the attributes are independent of each other, given the class. 

Mathematically, naïve Bayesian classifier can be represented as an attempt to classify 

unclassified data into one of m categories C = (C1, …, Cm). The basis to perform this 

classification is the already known classifications of similar data – training set. In detail, 

given an unclassified feature X = (x1, …, xn) the classifier predicts that X belongs to the 

category C if and only if: 

 

P (Ci | X) > P(Cj | X)  for all j≠ i             (Equation II-10)   

 

Naïve Bayesian classifier was in the past compared with other learning algorithms such as 

rule learners and decision trees (Clark and Nibblett 1989, Cestnik 1990, Langley et al. 

1992), and results showed that naïve Bayesian classifier had the same effectiveness as 

other more complex methods. 

 

7.2.7. k-nearest neighbor classifier  

k-nearest neighbor (kNN) algorithm is a non-parametric pattern recognition method used 

for classification and regression (Altman 2013). This classifier should be one of the first 

choices when little or no prior knowledge is available regarding the data set. This method 

was introduced in 1951 (Silverman and Jones 1989), with several changes and adaptations 

introduced in the following years. 
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kNN algorithm works in a simple way based on minimum distance from the query instance 

to the training samples, in order to determine the k-nearest neighbors. After k nearest- 

neighbors are gathered, the algorithm takes the simple majority to be the prediction of the 

query instance. The k-nearest neighbors are taken from a set of objects for which the 

correct classification is known, almost as a training set, although no training step is 

required by this classifier. 

 

 

7.3. Data fusion - matrix factorization methods 

Data fusion corresponds to approaches combining data from different sources into a single 

and more complete description. With advances in analytical platforms that generate 

thousands of gigabytes of data in a few minutes, the search for more powerful data analysis 

methods has become more and more important, in particular for methods that allowed the 

integration of data from different origins such as genomic, phenotypic and metabolic. The 

major challenge that data fusion approaches faces is the fact that data from different origins 

have also different units and scales and, in this way, cannot simply be aggregated into a 

single database. Several authors addressed this challenge mainly in the field of genomics, 

after the advent of microarrays, in order to monitor expression of all genes in the genome 

(Eisen et al. 1999, Golub 1999, Tamayo et al. 1999, Alizadeh et al. 2000, Perou et al. 

2000). With the referred methods, genes and samples are clustered together as sharing 

similar expression patterns, although the full structure inherent to the data is not assessed. 

An important advance was obtained with the use of non-negative matrix factorization 

(NMF) methods that decompose the matrices in parts, reducing the dimension of 

expression data from thousands of genes to a significantly reduced number of metagenes 

(Kim and Tidor 2003, Brunet et al. 2004, Kim and Park 2007, Devarajan 2008, Gui et al. 

2010, Lussier and Li 2012). These methods were used widely in genomic approaches in the 

last few years, although only relating genomic results with a clinical outcome, not being 

able to relate genetic profiles with other “omic” data, as for example analysis of the 

produced metabolites. 

The foremost breakpoint was achieved by the development of new matrices factorization 

methods, associated with the projection of multiple types of genomic data into a common 
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coordinates system (Zhang et al. 2012). In this publication, multi-dimensional genomic 

data such as gene expression, miRNA expression and DNA methylation results were used, 

and a powerful matrix factorization framework identified correlated multi-dimensional 

modules (md-modules). From a mathematical point of view this method can be 

summarized briefly considering a matrix X (m x n) that is factorized into two non-negative 

matrices in a way that: 

 

X = W.H                                 (Equation II-11) 

 

being W (m x k) a matrix containing the basis vectors, and H (k x n) a matrix containing 

the coefficient vectors. All the elements in the matrices have to be non-negative and are 

computed in a way that X was as close as possible to W. H, i.e., the sum over all matrices 

of squared differences between matrices X and W. H is as small as possible. The k basis 

vectors in W can be called the “building blocks” of the data, and the k coefficient vectors 

in H describe how strongly each “building block” is present in the data set. With this 

method it was possible to break down the massive data sets into smaller modules that 

exhibit similar patterns. 
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Introduction 

 

Most European wine producers use commercial starter yeasts to guarantee the 

reproducibility and the predictability of wine quality. The advantages of fermentations 

containing Saccharomyces cerevisiae starter cultures relies on the fact that they are rapid 

and produce wine with desirable organoleptic characteristics through successive processes 

and harvests (Fleet 1998, Schuller 2010). In these fermentations the winemaker has control 

over the microbiology of the process, because it is expected that the inoculated yeast strain 

predominates and suppresses the indigenous flora. Currently, there are about 200 

commercial S. cerevisiae winemaking strains available, and it is a common practice among 

wineries to use commercial starter yeasts that were obtained in other winemaking regions. 

S. cerevisiae strains from diverse natural habitats harbor a vast amount of phenotypic 

diversity (Camarasa et al. 2011), driven by interactions between yeast and the respective 

environment. In grape juice fermentations, strains are exposed to a wide array of biotic and 

abiotic stressors (Bisson 1999), which may lead to strain selection and generate naturally 

arising strain diversity. Outside the wineries, this diversifying selection occurs due to 

unique pressures imposed after expansion into new habitats (Frezier and Dubourdieu 1992, 

Sabate et al. 1998, Lopes et al. 2002, Schuller et al. 2005, Valero et al. 2007). This agrees 

with findings showing that wine and sake strains are phenotypically more diverse than 

would be expected from their genetic relatedness (Kvitek et al. 2008). 

Recent phylogenetic analyses of S. cerevisiae strains showed that the species as a whole 

consists of both “domesticated” and “wild” populations. DNA sequence analysis revealed 

that domesticated strains derived from two independent clades, corresponding to strains 

from winemaking and sake. “Wild” populations are mostly associated with oak trees, 

nectars or insects (Greig and Leu 2009, Liti et al. 2009, Schacherer et al. 2009). Although 

some S. cerevisiae strains are specialized for the production of alcoholic beverages, they 

were derived from natural populations that were not associated with industrial 

fermentations. This was proposed once that the oldest lineages and the majority of 

variation were found in strains from sources unrelated to wine production (Fay and 

Benavides 2005). 
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The phenotypic diversity of S. cerevisiae strains has been explored for decades in strain 

selection programs to choose the ones that enhance the wine´s sensorial characteristics and 

confer typical attributes to specific wines. These strains are used as commercial ones by 

winemakers to efficiently ferment grape musts and produce desirable metabolites, 

associated with reduced off-flavors (Briones et al. 1995, Ramirez et al. 1998). Strain 

selection approaches are mentioned in many studies aiming to characterize S. cerevisiae 

isolates obtained from winemaking regions worldwide. The most relevant physiological 

tests refer to fermentation rate and optimum fermentation temperature, stress resistance 

(ethanol, osmotic and acidic), killer phenotype, sulphur dioxide (SO2) tolerance and 

production, hydrogen sulphide (H2S) production, glycerol and acetic acid production, 

synthesis of higher alcohols (e.g. isoamyl alcohol, n-propanol, isobutanol), β-galactosidase 

and proteolytic enzyme activity, copper resistance, foam production and flocculation 

(Mannazzu et al. 2002). 

In our previous work (Franco-Duarte et al. 2009) we evaluated the phenotypic and genetic 

variability of 103 S. cerevisiae strains from the Vinho Verde wine region (Northwest 

Portugal). We then applied several data mining procedures to estimate a strain´s 

phenotypic behavior based on its genotypic data. We used mainly taxonomic tests and 

strains from winemaking environments of one geographical origin. This study was, to our 

best knowledge, the first attempt to computationally associate genotypic and phenotypic 

data of S. cerevisiae strains. We used subgroup discovery techniques to successfully 

identify strains with similar genetic characteristics (microsatellite alleles) that exhibited 

similar phenotypes. 

Within the present study we expanded the strain collection to 172 isolates from worldwide 

geographical origins and technological groups (wine, bread, sake, etc.) and included 30 

tests with biotechnological relevance for the selection of winemaking strains. 

Our objective was to gain a deeper understanding of the phenotypic diversity of a global 

strain collection and to infer computational models that predict the biotechnological 

potential or geographic origin of a strain from its phenotypic profile. 
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Material and Methods 

 

Strain collection 

A S. cerevisiae strain collection was constituted, comprising 172 strains with different 

geographical origins and technological applications or origins (Figure III-1 and 

supplementary data S1). This collection includes strains used for winemaking (commercial 

and natural isolates that were obtained from winemaking environments), brewing, bakery, 

distillery (sake, cachaça) and ethanol production, laboratory strains and also strains from 

particular environments (e.g. pathogenic strains, isolates from fruits, soil and oak 

exudates). The complete genome sequence of thirty strains is currently available (Liti et al. 

2009) (their original strain code is mentioned in the map of Figure III-1). All strains were 

coded (Zn) and stored at -80 ˚C in cryotubes containing 1 mL glycerol (30% v/v).  

 

Phenotypic characterization 

Phenotypic screening was performed considering a wide range of physiological traits that 

are also important from an oenological point of view. 

In a first set of phenotypic tests, strains were inoculated into replicate wells of 96-well 

microplates. Isolates were grown overnight in YPD medium (yeast extract 1% w/v, 

peptone 1% w/v, glucose 2% w/v), and the optical density (A640) was then determined and 

adjusted to 1.0. After washing with peptone (1% w/v), 15 μL of this suspension were 

inoculated in quadruplicate in microplate wells containing 135 μL of white grape must of 

the variety Loureiro, to a cellular density of 5×10
6
 cells/mL (A640 = 0.1). Final optical 

density was determined after 22 h (30 ˚C, 200 rpm) in a microplate spectrophotometer. All 

microplates were carefully sealed with parafilm, and no evaporation was observed for 

incubation temperatures of 30 ˚C and 40 ˚C. 
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This approach included the following tests: growth at various temperatures (18, 30 and 40 

˚C), evaluation of ethanol resistance (6, 10 and 14%, v/v), tolerance to several stress 

conditions caused by extreme pH values (2 and 8), osmotic/saline stress (0.75 M KCl and 

1.5 M NaCl). Growth was also assessed in the presence of potassium bisulphite (KHSO3, 

150 and 300 mg/L), copper sulphate (CuSO4, 5 mM), sodium dodecyl sulphate (SDS, 

0.01%, w/v), the fungicides iprodion (0.05 and 0.1 mg/mL) and procymidon (0.05 and 0.1 

mg/mL), as well as cycloheximide (0.05 and 0.1 µg/mL). These tests were carried out 

using Loureiro grape must supplemented with the mentioned compounds. The growth in 

finished wines was determined by adding glucose (0.5 and 1%, w/v) to a commercial white 

wine (12.5% v/v alcohol content). Galactosidase activity was evaluated by adding 

galactose (5% w/v) to Yeast Nitrogen Base (YNB, Difco
TM

, Ref. 239210), using test tubes 

with 5 mL culture medium and 5×10
6
 cells/mL, followed by 5 to 6 days of incubation at 26 

˚C. 

Other tests were performed using solid media. Overnight cultures were prepared as 

previously described, adjusted to an optical density (A640) of 10.0 and washed. One µL of 

this suspension was placed on the surface of the culture media mentioned below. Hydrogen 

sulphide production was evaluated using BiGGY medium (SIGMA-ALDRICH, Ref. 

73608) (Jiranek et al. 1995), followed by incubation at 27 ˚C for 3 days. The colony color, 

which represents the amount of H2S produced was then analyzed, attributing a score from 

0 (no color change) to 3 (dark brown colony). Ethanol resistance (12%, v/v) and the 

combined resistance to ethanol (12, 14, 16 and 18%, v/v) and sodium bisulphite (Na2S2O5; 

75 and 100 mg/L) was evaluated by adding the mentioned compounds to Malt Extract 

Agar (MEA, SIGMA-ALDRICH, Ref. 38954), and growth was visually scored after 

incubation (2 days at 27 ˚C). 

All phenotypic results were assigned to a class between 0 and 3 (0: no growth (A640 = 0.1) 

or no visible growth on solid media or no color change of the BiGGY medium; 3: at least 

1.5 fold increase of A640, extensive growth on solid media or a dark brown colony formed 

in the BiGGY medium; scores 1 and 2 corresponded to the respective intermediate values) 

as shown in table III-S2. 
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Data analysis 

The phenotypic variability was evaluated by principal component analysis (PCA), 

available in the Unscrambler X software (Camo). The BioNumerics software (Applied 

Maths) was used for clustering, dendogram drawing and calculation of cophenetic 

correlation coefficients. Mann-Whitney test was applied to the phenotypic data set, 

including Bonferroni correction, to find relevant associations between phenotypic data and 

the strain’s technological or geographical group. A set of standard predictive data-mining 

methods, such as naïve Bayesian classifier and k nearest-neighbors algorithm (Tan et al. 

2006), as implemented in the Orange data mining suite (Demsar et al. 2004, Curk et al. 

2005), were used for the inference of prediction models. For prediction scoring, area under 

the receiver operating characteristics (ROC) curve (AUC) was used (Hanley and McNeil 

1982), which estimates the probability that the predictive model would correctly 

differentiate between distinct locations or distinct technological applications or origins, 

given the associated pairs of strains. 

 

 

Results 

 

Phenotypic characterization of the strain collection 

A S. cerevisiae collection was constituted with 172 strains obtained from different 

geographical origins as shown in the map in Figure III-1. As detailed in supplementary 

data S1, the technological applications or environments from where the strains were 

derived were: wine and vine (74 isolates), commercial wine strains (47 isolates), other 

fermented beverages (12 isolates), other natural environments – soil woodland, plants and 

insects (12 isolates), clinical (9 isolates), sake (6 isolates), bread (4 isolates), laboratory (3 

isolates), beer (1 isolate), and four isolates with unknown origin.  

A phenotypic screen was devised to evaluate strain specific patterns for a set of 

physiological tests, including also tests that are important for winemaking strain selection. 

The first group of tests was performed in microplates using supplemented grape must, 
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whereas a high reproducibility was obtained between experimental replicates. The second 

set of tests consisted in the evaluation of growth in solid culture media (BiGGY medium, 

Malt Extract Agar supplemented with ethanol and sodium metabisulphite). Galactosidase 

activity was evaluated by growth evaluation using Yeast Nitrogen Base supplemented with 

galactose, as indicated in the materials and methods section. After incubation, growth was 

evaluated by visual scoring (solid media) or by A640 determination (liquid media). Table 

III-1 summarizes the number of strains belonging to each of the phenotypic classes. 

Similarities between strains were evident, but each strain showed a unique phenotypic 

profile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PhD Thesis | Ricardo Franco-Duarte 

_______________________________________________________________________ 

70 

 

Table III-1: Number of strains belonging to different phenotypic classes, regarding values of 

optical density (Class 0: A640=0.1; Class 1: 0.2<A640<0.4; Class 2: 0.5<A640<1.0; Class 3: 

A640>1.0), growth patterns in solid media, or color change in BiGGY medium. 

 

Phenotypic test Type of 

medium 

Phenotypic class of growth 

0 1 2 3 

30 ˚C liquid (must) 0 0 4 168 

18 ˚C liquid (must) 51 120 1 0 

40 ˚C liquid (must) 28 14 80 50 

pH 2 liquid (must) 101 68 3 0 

pH 8  liquid (must) 0 0 19 153 

KCl (0.75 M) liquid (must) 0 2 146 24 

NaCl (1.5 M) liquid (must) 84 79 9 0 

CuSO4  (5 mM) liquid (must) 124 45 3 0 

SDS (0.01% w/v) liquid (must) 139 32 1 0 

Ethanol 6 % (v/v) liquid (must) 0 2 36 134 

Ethanol 10 % (v/v) liquid (must) 17 28 85 42 

Ethanol 14 % (v/v)  liquid (must) 82 35 50 5 

Ethanol 12 % (v/v)  solid (MEA) 150 20 1 1 

Ethanol 12 % (v/v) + Na2S2O5 (75 mg/L) solid (MEA) 159 13 0 0 

Ethanol 12 % (v/v) + Na2S2O5 (100 mg/L) solid (MEA) 169 3 0 0 

Ethanol 14 % (v/v) + Na2S2O5 (50 mg/L) solid (MEA) 148 24 0 0 

Ethanol 16 % (v/v) + Na2S2O5 (50 mg/L) solid (MEA) 163 9 0 0 

Ethanol 18 % (v/v) + Na2S2O5 (50 mg/L) solid (MEA) 165 7 0 0 

KHSO3 (150 mg/L) liquid (must) 34 11 26 101 

KHSO3 (300 mg/L) liquid (must) 57 19 29 67 

Wine supplemented with glucose (0.5% w/v) liquid  103 45 24 0 

Wine supplemented with glucose (1% w/v) liquid  115 41 16 0 

Iprodion (0.05 mg/mL) liquid (must) 1 0 28 143 

Iprodion (0.1 mg/mL) liquid (must) 1 1 13 157 

Procymidon (0.05 mg/mL) liquid (must) 0 0 7 165 

Procymidon (0.1 mg/mL) liquid (must) 1 0 9 162 

Cycloheximide (0.05 µg/mL) liquid (must) 3 0 7 162 

Cycloheximide (0.1 µg/mL) liquid (must) 2 1 19 150 

H2S production solid (BiGGY)   1 11 105 55 

Galactosidase activity liquid (YNB) 0 21 98 53 

MEA: Malt Extract Agar 

YNB: Yeast Nitrogen Base 
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A total of 5160 phenotypic data points was obtained, from 172 strains and 30 tests. The 

concentrations of the added compounds were chosen to obtain a wide range of tolerance 

patterns. As expected, all strains grew well at 30 ˚C, contrary to the growth at 40 ˚C, where 

a large phenotypic diversity was observed. Most strains were able to grow well at pH 8, 

contrarily to the pH value of 2. As expected, cellular growth decreased with increasing 

concentrations of ethanol (6 - 14% v/v, liquid media), whereas only five isolates were able 

to grow well at the highest ethanol concentration of 14% (v/v). When ethanol was 

combined with sodium metabisulphite in solid culture media, growth was reduced with 

increasing concentrations of ethanol (12 to 18%, v/v) or sodium metabisulphite (50 to 100 

mg/L). Resistance to sulphur dioxide, which is an antioxidant and bacteriostatic agent used 

in vinification, was tested by growth in the presence of wine must supplemented with 

potassium bisulphite (KHSO3). For the concentrations of 150 and 300 mg/L, 101 and 67 

strains achieved the highest class of growth, respectively. Resistance to the fungicides 

iprodion, procymidon and to cycloheximide was rather high at the indicated 

concentrations. Hydrogen sulphide production was tested using BiGGY medium. The 

majority of the strains were intermediate H2S producers with the exception of one strain 

(from the group of wine and vine strains) that did not produce H2S. 

A global view of strain´s phenotypic diversity is shown in Figure III-2 and in 

supplementary data S2. Principal component analysis (PCA) of phenotypic data (Figure 

III-2) show the segregation of all 172 strains (scores) and the loadings for phenotypic 

variables in the first two principal components. The phenotypes responsible for the highest 

strain variability (Figure III-2A) were associated with growth patterns in the presence of 

potassium bisulphite (KHSO3), at 40 ˚C, in a finished wine supplemented with glucose 

(0.5%, w/v), and resistance to ethanol in liquid media (10 and 14%, v/v). PC-1 (31%) and 

PC-2 (15%) explained 46% of strain variability and segregated strains by phenotypic 

behavior into some patterns, as shown in Figure III-2B. The group of sake strains ( ) and 

the group of natural strains ( ) tended to be separated by the second principal component, 

accumulating in the lower part of the PCA, indicating that they were influenced by the 

presence of ethanol in the medium (higher resistance), and by the growth in the presence of 

potassium bisulphite (300 mg/L, lower resistance).  
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Figure III-2: Principal component analysis of phenotypic data for 172 strains: 

A:  30 phenotypic tests (loadings).  

B:  172 strains (scores) distribution. Symbols represent strains’ technological applications or 

origin:  - wine and vine;  - commercial wine strain;  - clinical;  - natural isolates;  - sake; 

 - other fermented beverages;  - beer;  - bread;  - laboratory;  - unknown biological 

origin. 
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Strains isolated from vines or wine ( ) showed a heterogeneous phenotypic behavior since 

they were dispersed throughout the PCA plot for both components. A similar tendency was 

observed for commercial strains ( ); however, the majority of strains tended to 

concentrate in the upper part of the PCA, indicative of a trend to higher KHSO3 resistance 

and lower ethanol resistance. The nine clinical strains ( ) were distributed in both PCA 

components, showing no discriminant results in any of the phenotypic tests. 

UPGMA (Unweighted Pair Group Method with Arithmetic Mean) algorithm was used to 

hierarchical cluster the 172 strains. The dissimilarity between two strains was measured 

using Euclidean distance (supplementary data S2). The combined phenotypes of wine 

strains did not separate this group of strains that were rather scattered throughout all the 

clusters. Commercial strains ( ) tended to be more predominant in the clusters shown in 

the lower part of the dendogram, where some of the clusters are constituted only by 

commercial strains. 

We further analyzed phenotypic diversity through k-means clustering algorithm. Using 

silhouette score (Rousseeuw 1987) we identified 3 distinct clusters (Table III-2), composed 

of 38, 90 and 44 strains, respectively. The phenotypes that most distinguished the strains, 

as indicated by high values of information gain to classify strains into clusters, were 

growth at the highest and lowest temperatures tested (18 and 40 ˚C). Cluster 2 was 

constituted of strains that didn´t grow at both 18 and 40 ˚C, whereas cluster 1 and 3 

included strains that grew at both temperatures, but with more pronounced growth at 40 ˚C, 

in particular for strains of cluster 3. Other tests that were also relevant for the cluster 

separation included growth in the presence of NaCl (1.5M), KHSO3 (150 and 300 mg/L), 

ethanol 6% (v/v) and at pH 2. The strain cluster membership is displayed in the phenotypic 

data PCA visualization (supplementary data S3). 
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Table III-2: Phenotypic tests mostly contributing for the division of strains into three clusters, in 

terms of information gain, obtained with k-means clustering algorithm.  

Numbers in the last three columns represent the most characteristic value in terms of phenotypic class 

of strains included in the clusters, for the mentioned phenotypic tests. 

 

Phenotypic test Information gain 
Cluster 

1 2 3 

18 ˚C 0.33 1 0 1 

40 ˚C 0.33 2 0 3 

NaCl (1.5M) 0.26 0 0 1 

KHSO3 (300 mg/L) 0.23 3 0 3 

Ethanol 6% (v/v) – liquid medium 0.23 3 2 3 

pH 2 0.21 0 0 1 

KHSO3 (150 mg/L) 0.21 3 0 3 

Total number of strains  38 90 44 

 

 

 

Statistical analysis 

The number of strains belonging to each group of technological applications or 

environment varies between 1 and 74. To assess a possible influence of a sample bias, due 

to an unequal number of representatives from each group, we determined the 95% 

confidence intervals for average Manhattan distance (Grimshaw et al. 1995) between two 

strains in a selected group (composed by at least 5 strains). The distance was estimated 

based on the strains’ entire phenotypic profile. The lower and upper bound of each 

confidence interval were determined by percentiles of average distances for 10000 

bootstraps samples. For example, with this analysis we showed that while the group of 

commercial strains (47 isolates) includes 31 commercial strains isolated in France, this 

should not bias our statistical analysis on utility of strains. Namely, the 95% confidence 

interval for average distances between pairwise combinations of commercial strains from 
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France (6.37, 8.01) overlaps with the confidence interval of commercial strains from other 

geographical origins (4.97, 8.13). The inclusion of a higher number of strains from France 

does not change the limits of the confidence interval of the group of commercial strains. A 

similar result was observed for the group of wine and vine strains that includes numerous 

strains from Portugal: the 95% confidence interval for average distances between pairwise 

combinations of strains from Portugal (8.12, 9.83) overlaps with the same interval for wine 

and vine strains from other geographical locations (8.06, 9.59). 

Mann-Whitney test is mostly used to identify statistically significant associations between 

two data sets in which data instances in each group are measured on ordinal level and when 

there are an unequal number of members in the classes to be compared. This test was used 

to search for relationships between phenotypic results for the 172 strains and their shared 

geographical origin or technological application group. After the dichotomization of 

variables (geographical origin and technological application or origin), Mann-Whitney test 

was performed for each phenotypic variable and p-values were computed and further 

adjusted using Bonferroni correction. Statistical analysis using Mann-Whitney test 

revealed 300 associations between phenotypes and technological application or origin of 

strains, whereas statistical significance was found for 11 associations (Bonferroni adjusted 

p-value lower than 0.1). For each phenotypic test, we computed the probability of each 

phenotypic class (0-3) according to its contribution to the observed association. The most 

significant associations between a phenotypic class and a technological group are reported 

in Table III-3.  

 

 

 

 

 

 

 

 

 



PhD Thesis | Ricardo Franco-Duarte 

_______________________________________________________________________ 

76 

 

Table III-3: Relevant associations (adjusted p < 0.1) between phenotypic results and strain´s 

technological application or origin, obtained using Mann-Whitney test and after Bonferroni 

correction. 

 

Phenotypic test 

Class of 

phenotypic 

result 

Technological 

group 

Adjusted  

p-value 

% of strains 

sharing positive 

association * 

Iprodion (0.05 mg/mL) 2 Commercial 3.24x10
-8

 82.0 

Iprodion (0.05 mg/mL) 3 Wine and vine 0.015 56.4 

KHSO3 (150 mg/L) 2, 3 Commercial 0.001 59.3 

Wine supplemented with 

glucose (0.5%, w/v) 
0 Commercial 0.075 57.0 

Wine supplemented with 

glucose (0.5%, w/v) 
2 Natural isolate 0.002 87.2 

Wine supplemented with 

glucose (1%, w/v) 
2 Natural isolate 0.041 89.5 

Ethanol 14% (v/v) - liquid 

medium 
0 Commercial 0.004 64.5 

Cycloheximide                     

(0.1 µg/mL) 
2 Commercial 0.007 75.6 

Procymidon (0.1 mg/mL) 2 
Other fermented 

beverages 
0.005 92.4 

SDS (0.01%, w/v) 0 Commercial 0.078 45.3 

CuSO4 (5 mM) 0 Commercial 0.075 50.6 

*
 
Percentage of strains that share the phenotypic result and belong to the described group or that didn´t share 

the phenotypic result nor belong to that group 
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Two associations were found for the resistance to iprodion, whereas class 3 and 2 were 

associated with strains collected from wine/vineyards and with commercial strains, 

respectively. Capacity to grow in the presence of potassium bisulphite (150 mg/L, classes 2 

and 3) was associated with commercial wine strains. Natural isolates (87% – 89%) were 

associated with class 2 of growth in wine supplemented with glucose, both at 0.5 and 1% 

(w/v), contrarily to 57% of commercial strains that were unable to grow in wine 

supplemented with glucose (0.5%, w/v). The lower ability of commercial strains to grow at 

higher ethanol concentrations was also supported by the finding of one significant 

association for absent growth (class 0) in liquid medium containing ethanol (14%, v/v). 

About half of the strains included in this group shared the inability to grow in must 

containing SDS (0.01%, w/v) and CuSO4 (5 mM), but grew well in cycloheximide-

supplemented must (76% of strains, class 2). An identical approach was undertaken to find 

associations between the phenotypic results and the geographical origin of strains, but no 

statistically relevant results were obtained (data not shown). 

 

Prediction of technological group based on phenotypic results 

Our next objective was to construct a model that would predict a strain´s technological 

group from its phenotypic profile. K-nearest neighbor algorithm (kNN) and naïve Bayesian 

classifiers (Tan et al. 2006), as implemented in the Orange data mining suite were used for 

modelling. 

The predictive performance of both classifiers was evaluated in terms of area under the 

Receiver-Operating-Characteristics (ROC) curve, using 5-fold cross validation (Hanley 

and McNeil 1982). Table III-4 shows the confusion matrix of naïve Bayesian 

classifications in test data sets of cross-validation; kNN results are not shown, as these 

were similar for both modelling techniques. Cross validated AUC score was 0.70. Correct 

assignments were found for the larger groups of commercial wine strains and strains 

obtained from wine and vineyards, where 36 (77%) and 54 (73%) strains, respectively, 

were accurately allocated. 
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Table III-4: Confusion matrix indicating the technological application or origin of 172 strains and 

their predictions as obtained with naїve Bayesian classifier (AUC=0.70). 
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Beer 1 
0 

(0%) 
0 0 0 0 1 0 0 0 0 

Bread 4 0 
0 

(0%) 
0 0 0 3 0 0 0 1 

Clinical 9 0 0 
0 

(0%) 
2 0 1 0 0 1 5 

Commercial wine 

strain 
47 0 0 3 

36 

(77%) 
0 2 1 0 0 5 

Laboratory 3 0 0 1 0 
0 

(0%) 
0 1 0 1 0 

Natural isolate 12 0 1 2 2 0 
2 

(17%) 
2 0 0 3 

Other fermented 

beverages 
12 0 0 1 1 0 2 

3 

(25%) 
1 0 4 

Sake 6 0 0 0 0 0 1 1 
2 

(33%) 
0 2 

Unknown 

biological origin 
4 0 0 1 0 0 0 1 0 

1 

(25%) 
1 

Wine and vine 74 0 1 3 8 1 2 3 1 1 
54 

(73%) 

 

 

The same computational technique was also used to explore which phenotypes mostly 

contributed to the assignment of a strain to the commercial wine group. Figure III-3 

represents a nomogram that shows naïve Bayesian classifier results (Mozina et al. 2004). 

Three phenotypes were considered by the classifier as the ones contributing more 

positively to build the model, having the remaining ones a smaller impact.  
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Figure III-3: Nomogram showing naïve Bayesian classifier results for the prediction of 

commercial strains based on phenotypic classes of growth for each test: 

A:  Performance of three phenotypic tests that contributed in a positive way to predict 

commercial strains;  

B:  Probability of predicting commercial strains when considering the entire phenotypic profile 

(grey circle), or only the three phenotypic tests mentioned in panel (A) by the dots (black 

circle). 

 

 

 

To predict the commercial potential of a strain, the contribution of each phenotype was 

scored in the scale from -100 to 100, and the individual scores were summed-up to read-

out the probability of the predicted class. For the present data set, growth in must 

containing the fungicide iprodion (0.05 mg/mL), in cycloheximide (0.1 µg/mL) and in the 

presence of potassium bisulphite (150 mg/L) were the three features with the most relevant 

contribution for the mathematical assignment of a strain to the commercial group (Figure 

III-3A). The probability of a strain to be assigned to the group of commercial strains is 

0.27 (27%) when considering the strains entire phenotypic profile and increases to 0.95 

(95%) when only the three phenotypic results mentioned in Figure III-3A are taken into 

consideration, as shown in the probability scale present in Figure III-3B. 



PhD Thesis | Ricardo Franco-Duarte 

_______________________________________________________________________ 

80 

 

Discussion 

 

Within our previous work (Franco-Duarte et al. 2009) we developed computational 

techniques to relate the genotypes and phenotypes of 103 S. cerevisiae strains from a 

winemaking region. The isolates were characterized regarding their allelic combinations 

for 11 microsatellites and phenotypic screens included mainly taxonomic criteria but also 

some tests with biotechnological relevance. Subgroups were found for strains sharing 

allelic combinations and specific phenotypes such as low ethanol resistance, growth at 30 

˚C and growth in media containing galactose, raffinose or urea. Herein, we aim to extend 

the work to a phenotypically most heterogeneous strain collection of 172 S. cerevisiae 

isolates from worldwide origins, to computationally relate the phenotype with the strain´s 

origins and to make predictions about a strain´s biotechnological potential based on 

phenotypic data. The group of phenotypic tests used herein was based on approaches that 

are generally applied for the selection of S. cerevisiae winemaking strains (Mannazzu et al. 

2002). 

The collection of 172 strains from worldwide geographical origins revealed a high 

phenotypic diversity (Figures III-2 and S2, and Table III-2), which is in agreement with 

previous studies (Brandolini et al. 2002, Agnolucci et al. 2007, Kvitek et al. 2008, Franco-

Duarte et al. 2009, Salinas et al. 2010, Camarasa et al. 2011, Warringer et al. 2011). A 

significantly higher phenotypic diversity was observed in the present study compared to 

our results from 2009 using 103 Portuguese wine yeast strains (Franco-Duarte et al. 2009).  

In particular, the inclusion of new tests compared to our previous study allowed a more 

detailed analysis of the phenotypic variability of strains associated with winemaking 

environments. Recent studies aimed to describe the elements that shaped the genomes of S. 

cerevisiae strains, suggesting that populations comprise distinct domesticated and natural 

groups, as well as mosaics within these groups, based on strain´s origin and application 

(Schacherer et al. 2007, Liti et al. 2009, Goddard et al. 2010). Clinical isolates for 

example, do not derive from a common ancestor, but rather represent multiple events in 

which environmental strains opportunistically colonize humans (Schacherer et al. 2007, 

Muller and McCusker 2009). 
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Genetic rearrangements and intra-strain variation are characteristic for this species (Dunn 

et al. 2005, Schuller et al. 2007), which might explain the rather high phenotypic 

variability that was described in recent studies. Camarasa et al. (2011) showed that some 

phenotypes (resistance to high sugar concentrations, ability to complete fermentation and 

low acetate production) were able to distinguish groups of strains according to their 

ecological niches, providing evidence for phenotypic evolution driven by environmental 

adaptation. This high phenotypic variation in stressful conditions was also revealed by 

Kvitek et al. (2008) showing the existence of unique features shared by strains from 

similar habitats. Our data are in agreement with the previously mentioned studies regarding 

the high phenotypic diversity. They also confirm the findings of Legras and co-workers 

(Legras et al. 2007), that found population substructures of S. cerevisiae strains according 

to their technological application or origin, using multilocus microsatellite typing. In the 

work of Legras, only 28% of the diversity was associated with geographical origins, which 

suggests local domestication events. We herein investigated the utility of data mining to 

improve our understanding of relations between phenotypes and the strains’ technological 

application or origin. The developed models can also be useful to optimize screening tests 

and to find commercial wine yeast candidates from strain collections. 

Using Mann-Whitney test, 11 significant associations were found between a particular 

phenotypic result and a technological group (Table III-3). The most significant results were 

found for the resistance to iprodion, growth in potassium bisulphite and in wine 

supplemented with glucose. Iprodion is a dicarboximide contact fungicide used to control a 

wide variety of fungal pests on vegetables, ornamentals, pome and stone fruit, root crops, 

cotton and sunflowers. S. cerevisiae shows higher resistance to this fungicide than other 

yeast species such as Candida albicans. In this species, iprodion stimulates glycerol 

synthesis and inhibits the cell growth for several days, contrarily to S. cerevisiae where a 

low toxicity was observed (Chiai et al. 2002, Cadez et al. 2010). Our results showed that 

iprodion resistance (0.05 mg/mL) was higher in strains from wine and vineyards in 

comparison to commercial wine strains. The higher iprodion resistance among strains 

obtained from wineries and vineyards might be explained by the evolution of this trait 

upon recurrent exposure, which does not apply for commercial wine strains that are added 

to clarified musts that should not contain this fungicide. The low ethanol resistance of 
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commercial wine strains in liquid media containing 14% (v/v) ethanol was somehow 

unexpected, because these strains are usually selected for high ethanol resistance. This 

could be explained by the fact that the mathematical relations were observed for ethanol 

concentrations above the values that usually occur in wines (10-13%, v/v). Results showed 

also that commercial strains tended to a better growth in media containing potassium 

bisulphite, a compound used as wine antiseptic and antioxidant, reflecting also an adaptive 

mechanism among this group of strains. 

We found that the large phenotypic variability between strains could be associated with the 

technological application or origin of the strains (Table III-3) rather than their geographical 

origin, once that no relevant relations were found for the last analysis. The naïve Bayesian 

classifier was used to assign a strain to their technological group, based on their phenotypic 

profile (Table III-4). This association was achieved for the majority of strains belonging to 

the commercial and wine and vine groups (77% and 73%, respectively). The cross-

validated performance of this method yielded an AUC score of 0.70, that is considered as 

moderate (Hanley and McNeil 1982) and lies in between the values of an arbitrary and 

perfect classification (AUC=0.5 and 1.0, respectively). Poor results were obtained for the 

remaining groups, which is due to the corresponding small number of isolates. These 

results demonstrate the potential of the predictive models to classify strains based on 

results of phenotypic screens. 

Bayesian classifier used the strains phenotypic profiles for prediction of commercial 

strains, and identified 3 of the 30 phenotypic tests (growth in musts containing iprodion 

(0.05 mg/mL), cycloheximide (0.1 µg/mL) or potassium bisulphite (150 mg/L)) as the ones 

providing more information for the assignment of strains to the commercial group. When 

using only 3 tests, rather than the entire phenotypic profile, the probability of a strain to be 

classified as commercial increases significantly (from 27% to 95%). 

In conclusion, our results demonstrate the usefulness of computational approaches to 

describe phenotypic variability among groups of S. cerevisiae strains that also might occur 

as adaptive mechanisms in specific environments. The herein developed models can make 

predictions about the biotechnological potential of strains and simplify the selection of 

candidate strains to be used as commercial wine strains. 
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Introduction 

 

Biotechnological processes conducted by Saccharomyces cerevisiae strains are gaining 

increasing importance. Tracking inoculated strains throughout productive processing is 

necessary for quality assurance in fermentative processes such as bioethanol production or 

wine fermentation. Besides, yeast has been identified as an emerging human pathogen 

capable of causing clinically relevant infections in immune compromised patients (Aucott 

et al. 1990, Hazen 1995). Therefore, quick and accurate methods for yeast strains 

delimitation that rely on high-throughput genotyping methods, based on microfluidic 

systems, can be of interest in both industrial and clinical contexts. 

Numerous molecular methods have been developed for yeast strain characterization, such 

as chromosome separation by pulsed field electrophoresis (Carle and Olson 1985, Blondin 

and Vezinhet 1988), restriction fragment length polymorphism analysis of mitochondrial 

DNA (mtDNA RFLP) (Dubourdieu et al. 1984, Vezinhet et al. 1990, Querol et al. 1992, 

Lopez et al. 2001),  random amplified polymorphic DNA (RAPD) (Corte et al. 2005), PCR 

fingerprinting followed by enzymatic restriction of amplified DNA (Baleiras Couto et al. 

1996), multilocus sequence typing (MLST) (Ayoub et al. 2006), microsatellite analysis 

(Hennequin et al. 2001, Perez et al. 2001, Legras et al. 2005), real-time PCR (Martorell et 

al. 2005, Hierro et al. 2006) and PCR-amplification of inter-delta sequences (Ness et al. 

1993, Legras and Karst 2003). Delta sequences are flanking sequences (300 bp) of 

retrotransposons Ty1 and Ty2 that occur in terminal chromosomal regions, but can also be 

found as single elements dispersed throughout the genome. About 300 delta elements were 

described in the genome of the laboratory strain S288c. Since the number and location of 

delta elements have a certain intraspecific variability they are appropriate genetic markers 

for the identification of polymorphisms. Amplification of interdelta regions between 

neighboring delta sequences results in a mixture of differently sized strain-specific 

fragments. This PCR-based method is easy to perform, cheap and rapid, and therefore 

suitable for the characterization of high number of strains.  

More recently, the interdelta method was improved by the use of alternative primers (δ12 

and δ21) (Legras and Karst 2003) that bind close to the initially described binding sites for 
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primers δ1 and δ2 (Ness et al. 1993). The combined use of these improved primer 

combinations (δ12 / δ21 or δ12 / δ2) revealed greater banding pattern polymorphism and 

improved discriminatory power (Legras et al. 2005). The use of primer pairs δ12 / δ2 

showed the same discriminatory power of other methods for strain delimitation, such as 

mtDNA RFLP, microsatellite analysis and karyotyping (Schuller et al. 2004). However, 

this method requires careful standardization of DNA concentration (Fernández-Espinar et 

al. 2001). Occasional non-reproducible “ghost bands” are present due to the low annealing 

temperature (43 ˚C), which is a disadvantage of the interdelta method. Increasing the 

annealing temperature to 55 ˚C reduced ghost bands, but leads to poorer banding pattern 

and consequently reduced discriminatory power (Ciani et al. 2004). In summary, PCR 

profiling analysis of delta sequences is associated with good discriminatory power for the 

analysis of commercial strains (Lavallee et al. 1994), but the use of this typing method for 

routine analysis of yeast strains requires careful evaluation (Pramateftaki et al. 2000, Lopes 

et al. 2002, Cappello et al. 2004, Ciani et al. 2004, Demuyter et al. 2004). It is therefore 

advisable to use additional methods such as mtDNA RFLP or microsatellite analysis to 

confirm ambiguous results. 

Fluorescent primers and automated DNA sequencers improve significantly banding 

patterns containing weakly amplified fragments (Terefework et al. 2001), decreasing 

experimental error and increasing data throughput, scoring and reliability (Papa et al. 

2005). When interdelta sequences are amplified with fluorescent primers, followed by 

capillary electrophoresis, the resolution of the obtained profiles is considerably increased 

in comparison with standard agarose gel electrophoresis (Tristezza et al. 2009). 

The efficiency of PCR amplification is affected by numerous factors namely annealing 

temperature, the concentration of MgCl2, primers and template DNA. Even slight 

variations in these parameters may affect results, compromising data comparisons and data 

sharing between experiments and laboratories (Viljoen et al. 2005). The optimal reaction 

conditions need to be optimized for each PCR application. 

Microfluidics are gaining notoriety across broad research fields, e.g., forensics, clinical and 

genetic analysis (Tudos et al. 2001, Verpoorte 2002, Ryley and Pereira-Smith 2006). 

Miniaturized reactions economize DNA samples, reagents and analytical time 

considerably, and increase sensitivity, throughput and automation possibilities (Lion et al. 
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2004, Whitesides 2006). In the microfluidic chips for DNA analysis of the Calliper’s 

LabChip
®

 system, DNA samples are electroosmotically transported and fragmented inside 

the chip, separated by capillary electrophoresis and finally analyzed using fluorescence 

detection (Mark et al. 2010). 

Genome-wide studies of yeast inter-strain variability require bio-databanks for biodiversity 

conservation, sustainable development of genetic resources and equitable sharing of 

genotypic data among laboratories. We consider interdelta sequences amplification as a 

very useful method for high-throughput characterization of S. cerevisiae strains, which is 

easy to perform, cheap and rapid in comparison to other molecular methods. The aim of 

this study is to evaluate the factors that affect interlaboratory reproducibility of interdelta 

sequence typing for yeast strain delimitation using microfluidics electrophoresis (Calliper’s 

LabChip
®

).  

 

 

Materials and Methods 

 

Yeast strains and culture 

S. cerevisiae strains used in this work were collected in the Vinho Verde wine region 

(northwest Portugal) during grape harvest campaigns in consecutive years (2001-2003). 

From a collection of 300 isolates, the 12 strains with highest genetic heterogeneity, 

according to their allelic microsatellite combinations for loci ScAAT1-ScAAT6 (Schuller 

and Casal 2007), were selected using neuronal networks (Aires-de-Sousa and Aires-de-

Sousa 2003). Strains were named as follows: R8, R16, R20, R21, R30, R58, R60, R61, 

R62, R81, R88 and R101. 

 

Interdelta sequences amplification and analysis 

Yeast cells were cultivated (36 h, 28 ˚C, 160 rpm) in 1 mL of YPD medium (yeast extract 

1% w/v, peptone 1% w/v, glucose 2% w/v) and the DNA isolation was performed as 

described (Lopez et al. 2001) with a modified cell lysis procedure, using 25 Units of 
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lyticase (SIGMA; Ref. L2524). DNA was quantified (Nanodrop, Thermo Scientific) and 

used for PCR amplification. DNA amplification was performed recurring to primers δ12 

(5’ - TCAACAATGGAATCCCAAC - 3’) and δ2 (5’ - GTGGATTTTTATTCCAAC - 3’) 

(Legras and Karst 2003). Thirty μL of reaction mixture were prepared with 120 ng of 

DNA, Taq buffer (10 mM Tris-HCl, 50 mM KCl, 0.08% Nonidet P40), 50 pmoles of each 

primer, 0.4 mM of each dNTP, 3 mM MgCl2 (MBI Fermentas) and 1.0 U of Taq DNA 

polymerase. After initial denaturation (95 ˚C for 2 min), the reaction mixture was cycled 

35 times using the following settings: 95 ˚C for 30 s, 43.2 ˚C for 1 min, 72 ˚C for 1 min, 

followed by a final extension at 72 ˚C during 10 min. Characteristic PCR profiles of the 12 

strains are shown in Figure IV-1. 

An experimental strategy was devised to study the reproducibility of the interdelta 

sequence amplification as a typing method for yeast strains, using 96-well PCR plates and 

the following combinations of Taq DNA polymerase, thermal cyclers and laboratories: 

Plate 1 - commercial Taq (MBI Fermentas Ref. EP0402), BioRad MyCycler thermal 

cycler, laboratory A (8 replicates per strain); Plate 2 - in-house cloned and produced Taq, 

BioRad MyCycler thermal cycler, laboratory A (8 replicates per strain); Plate 3 - in-house 

cloned and produced Taq, Eppendorf Mastercycler thermal cycler, laboratory A (8 

replicates per strain); Plate 4 - commercial Taq (MBI Fermentas Ref. EP0402) or in-house 

cloned and produced Taq (4 replicates per strain), BioRad MyCycler thermal cycler, 

laboratory B. This approach resulted in 32 replicates for each strain and a total of 384 

electrophoretic banding patterns. Both laboratories used the same DNA samples and the 

same in-house cloned Taq. Amplifications were carried out with the same PCR buffer 

(MBI Fermentas, Ref. B33). PCR products were analyzed using a high-throughput 

automated microfluidic electrophoresis system (Caliper LabChip
®

 90 Electrophoresis 

System) and a 96-well plate format, according to the manufacturer’s instructions.  

 

Statistical analysis of electrophoretic data 

The size (bp) and concentration (ng of DNA) of each band was determined using the   

LabChip
®

 HT software (version 2.6) and exported to the software SPSS for the 

composition of a matrix containing data for each band of the 32 replicates banding patterns 



 Chapter IV | Genotyping of Saccharomyces cerevisiae strains by 

interdelta sequence typing using automated microfluidics 

_______________________________________________________________________ 

89 

 


























j
n

i
nkN

c
HNS

t

j
n

j
R

i
n

i
R 11

.
)1(

2
1

2



from each strain. Each band was analyzed and compared in terms of fragment sizes (bp), 

absolute DNA concentration (ng/µL) and relative DNA concentrations (%) (absolute 

concentration value was divided by the sum of all concentration values of all bands 

contained in a replicate banding pattern). An exploratory data analysis was performed, 

where normality distribution (Kolmogorov-Smirnov and Shapiro-Wilk tests) and variance 

homogeneity (Levene's test) were tested using SPSS. After several unsuccessful 

transformations of the data, non-parametric tests were performed, such as “Kruskall-Wallis 

one-way analysis of variance” test, to check for the equality of treatment medians among 

the different groups. More precisely, the null hypothesis (H0) assuming equality of all 

medians was tested against the alternative hypothesis (H1), which assumes that at least two 

of the strains show differences in their medians, as outlined below: 

 

H0: θ1=θ2=⋯=θ12      vs     H1: ∃(i,j):θi≠θj for some i≠j,   (Equation IV-1) 

 

where θi represents the median concentration (or percentage of concentration) for the i
th

 

strain, i=1,…,12. 

In cases where the test produced statistical significant differences between strains, multiple 

pairwise comparisons were performed to trace the origin of such differences. The method 

proposed by Conover and Iman (1979) searches for comparative magnitudes of the means 

based on the rank data, and assumes the t-student distribution.  

The test is based on the following expression: 

 

      

             (Equation IV-2) 

 

with t1-(α/2) the (1-α/2) quantile of a t-student distribution with (N-k) degrees of freedom, 

being k the number of groups, Hc the value for the test statistic of the Kruskall-Wallis test 

corrected for ties and S
2
 the corresponding variance. 
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Results 

 

Electrophoretic profile of the S. cerevisiae strains 

Interdelta fragments of 12 genetically heterogeneous strains were amplified, using primers 

δ12 and δ2 and were analyzed using automated microfluidics electrophoresis (Caliper 

LabChip
®

 90 Electrophoresis System). In order to evaluate the inter-laboratorial 

reproducibility of the banding patterns and to determine which combination of Taq DNA 

polymerase and thermal cycler produced the most reproducible banding patterns between 

both laboratories, the experimental design included different combinations of the 

mentioned factors, as described in the Materials and Methods section. Unique banding 

patterns were obtained for each strain (Figure IV-1). The most common band was present 

in 9 out of the 12 strains and had a size of approximately 400 bp. Quantitative and 

qualitative analysis of each band was performed using the software package of the 

electrophoresis system, using the values of the co-injected internal markers (gel bands at 

15 and 7000 bp) as a reference. The analysis presented herein is based on the length of the 

amplified fragments (bp), and the absolute and relative (%) values of DNA concentration 

(ng/µL) of each band, as outlined in the Material and Methods section.  

 

 

 

 

 

 

 

 

 

 

 

Figure IV-1: Electrophoretic profile of the PCR-amplified interdelta regions of 12 

Saccharomyces cerevisiae strains. 

Amplification was performed using primers δ12 and δ2, and PCR products were 

analyzed in the Caliper LabChip
®
 90 Electrophoresis System. The darker bands at 15 

and 7000 bp represent co-injected internal markers.  
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Figure IV-2 shows an example of 32 replicate banding patterns of a representative strain, 

tested under the conditions indicated in the first paragraph of Material and Methods 

section. Fragment sizes showed high reproducibility between replicates of the same 

condition and between conditions. Considerable differences were observed when, for each 

experimental condition, DNA concentrations were compared. The most intense banding 

patterns were obtained in laboratory A, using in-house cloned and produced Taq and the 

Eppendorf thermal cycler (condition C), followed by conditions B and A. The in-house 

produced Taq polymerase (C) amplified PCR products more efficiently than commercial 

Taq (B). This agrees with the slightly stronger banding patterns of condition E compared to 

condition D in laboratory B. These trends were similar for the other eleven strains (data not 

shown). One of eight replicates of condition A (corresponding to the 8
th

 lane of Figure IV-

2) failed amplification for most strains due to lateral evaporation of the PCR reaction 

mixture during cycling in the 96-well plates. These replicates were excluded from further 

analysis.  

 

 

 

 

 

 

 

 

 

 

Figure IV-2: Replicates of the interdelta banding patterns of Saccharomyces cerevisiae 

strain R81, obtained under different amplification conditions: 

A: commercial Taq, BioRad thermal cycler, laboratory A;  

B: in-house Taq, BioRad thermal cycler, laboratory A;  

C: in-house  Taq, Eppendorf thermal cycler, laboratory A;  

D: commercial Taq, BioRad thermal cycler, laboratory B;  

E: in-house Taq, BioRad thermal cycler, laboratory B. 
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Reproducibility of PCR-based interdelta typing  

Our main goal in this study was to identify statistically significant differences between the 

banding patterns of yeast strains, generated under conditions A-E (see Materials & 

Methods), to enhance reproducibility of interdelta sequence analysis between laboratories. 

In the first step of the statistical analysis the data was verified for normality between the 12 

strains and the corresponding homogeneity of variances. Kolmogorov-Smirnov and 

Shapiro-Wilk tests were used to investigate the normality assumption. The results (data not 

shown) revealed that our data did not follow a normal distribution since all p-values were 

approximately zero (<0.001) and, therefore, smaller than any of the usual levels of 

significance considered (1%, 5% and 10%). Homogeneity of variances between strains was 

tested using Levene's test. This condition was also not satisfied by the data (data not 

shown), as p-values were approximately zero (<0.001) for both variables in the study. In an 

attempt to satisfy both normality and homogeneity of variances, data were transformed 

using logarithm of base 2 and inverse values of absolute or relative concentrations. New 

variables were created in SPSS, both for absolute and relative values. Once again, the 

normality and homogeneity of variance assumptions were rejected (data not shown), which 

lead us to use non-parametric tests. 

The Kruskall-Wallis one-way analysis of variance was used to test equality of medians 

among the groups of strains corresponding to each of the previously mentioned condition 

(A-E), using the equation IV-1 shown in the Material and Methods section. The median 

was the measure of centrality for this test. It was expected that, in case of reproducibility, 

all strains should have similar results, meaning that the values of concentration (absolute or 

relative) and of fragment sizes (bp) should not differ in terms of the median values. 

However, the Kruskall-Wallis test rejected the equality of medians between groups, 

because once again the p-values were approximately 0 (<0.001). The following approach 

consisted in searching for differences in terms of the median values of fragment sizes (bp) 

and concentration values (absolute and relative) between strains. This approach was 

repeated for the distinct experimental conditions used (A-E) in order to search for the 

factors that most affect the reproducibility of the technique among the conditions A-E. 

Based on the results from the Kruskall-Wallis one-way analysis of variance, we assumed 

that at least two strains showed a difference in the medians. In order to identify the strains 
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that led to the rejection of the equality of the medians, Multiple Pairwise Comparisons, 

pooling the data for all 32 replicates per strain, were performed. All 3892 values (the total 

number of observations regarding all experiments, i.e. all bands of the 32 replicates of the 

12 strains), were ordered by increasing numbers and a rank score was calculated for 

identical values of absolute and relative concentrations. Then, equation IV-2 shown in the 

Material and Methods section was applied for pairwise strain comparisons, based on a t-

student distribution to search for the origins of the differences between experimental 

conditions. The results of this test are summarized in Table IV-1, for each pair compared, 

for each strain and using the fragment size (bp), as well as absolute and relative DNA 

concentration values. Statistical significant differences were observed when comparing all 

3892 records against each other, being the significant ones (based on a t-student 

significance test) represented with grey squares in Table IV-1 

In the bottom part of this table (last three lines), overall percentages are represented 

considering the differences between strains and between conditions, both for fragment size 

base pairs and absolute and relative DNA concentration values. The inter-laboratory 

banding patterns reproducibility was rather low as observed by the distribution of grey 

squares in the corresponding main columns. Significant differences were found between 

strains analyzed in the two laboratories. 
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Table IV-1: Comparison between experimental conditions (enzymes, thermal cyclers and 

laboratories) for each strain, based on the fragment sizes (bp), absolute and relative DNA 

concentration of each band of each strain, using Multiple Pairwise Testing based on a t-student 

distribution 
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The lack of reproducibility of these experiments between laboratories was not visible when 

analyzing the intervals of overall percentages. One could see that these intervals were very 

comprehensive (including 0 and 100%) and that this analysis was inconclusive for these 

comparisons. The reasons for this could be due to strain specific effects and also to the 

extreme values included in the statistical analysis. For example, strain R101 was associated 

with 0% of statistically significant differences regarding absolute DNA concentration, 

while for strain R88, regarding fragment size, 100% of significant differences were 

obtained.  The cloned and in-house produced Taq increased reproducibility between 

laboratories relative to commercial Taq. The comparison between Taq polymerases 

produced data heterogeneity between laboratories. Low and high reproducibility was found 

between enzymes for laboratory 1 and 2, respectively (columns 3 and 4). This was shown 

by the higher number of grey squares in column 3 in comparison to column 4 and also by 

the intervals of overall percentages of significant differences (75-100% comparing to 8-

50% regarding fragment length; 16-100% comparing to 0-42% regarding absolute 

concentration values; 83-100% in comparison to 0-58% regarding relative concentration 

values). 

Regarding the different thermal cyclers used, experimental variation in laboratory 2 lead to 

more reproducible results, as shown by the comparison of fragment sizes. This 

reproducibility was not so evident when comparing absolute and relative concentration 

values. 

When analyzing all conditions together, the comparison of absolute DNA concentration 

values produced the most reproducible results, followed by fragment size and relative 

DNA concentration values. Relative concentration values should not be used however, 

because in replicate analysis of strains under different experimental conditions, distinct 

numbers of fragments were obtained, affecting the ratios of relative concentration.  
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Comparison of different experimental conditions for strains delimitation 

To identify the experimental condition that best differentiate the 12 yeast strains, statistical 

analysis of the differences between group medians for each experimental condition was 

performed. For each experimental condition (from A to E), the percentage of significant 

differences between strains was calculated (excluding the comparisons between the same 

strain for each experimental condition). Figure IV-3 shows that combination C (in-house 

cloned Taq, Eppendorf thermal cycler, laboratory 2) led to the highest percentages 

regarding size, absolute and relative DNA concentration values. This suggests that this is 

the most suitable combination of experimental conditions for strain delimitation using 

interdelta banding patterns. Regarding fragment size and relative DNA concentration, these 

percentages were almost 100%, meaning that the 12 electrophoretic patterns would 

correspond to 12 different strains. 

 

 

 

 

 

 

 

 

 

Figure IV-3: Comparison between the tested conditions for the 

delimitation of 12 yeast strains, regarding fragment sizes (in bp), 

absolute and relative DNA concentration values. Percentages indicate 

the differences found between strains when performing statistical 

analysis of the differences between group medians considering each 

experimental condition:  

A: commercial Taq, BioRad thermal cycler, laboratory A;  

B: in-house Taq, BioRad thermal cycler, laboratory A;  

C: in-house Taq, Eppendorf thermal cycler, laboratory A;  

D: commercial Taq, BioRad thermal cycler, laboratory B;  

E: in-house Taq, BioRad thermal cycler, laboratory B. 
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On the contrary, combinations A (Commercial Taq, BioRad thermal cycler, laboratory 2), 

D (Commercial Taq, BioRad thermal cycler, laboratory 1), and E (in-house Taq, BioRad 

thermal cycler, laboratory 1) were less capable of differentiating strains with only 28.79%, 

51.52% and 40.91% of correctly delimited strains regarding fragment sizes, respectively. 

Similar results were observed when comparisons were performed based on absolute and 

relative DNA concentrations. In general terms, the use of in-house cloned Taq polymerase 

led to better results than the use of commercial Taq polymerase, as can be observed when 

comparing combinations A and D (commercial Taq) with combinations B, C and E (in-

house Taq). Regarding the laboratories where the PCR reactions were carried out, the 

strain patterns in laboratory 2 were better separated than those obtained in laboratory 1 

(combinations A, B and C versus combinations D and E). The best results regarding strains 

differentiation were obtained when using relative DNA concentration values (100% with 

combinations B and C), however the latter produced biased results. This is explained by 

the fact that, to calculate the relative DNA concentration values, the absolute values were 

divided by the sum of all concentration values of all bands contained in a banding pattern. 

In replicate analysis of different experimental conditions, distinct number of fragments 

were obtained affecting the ratios of relative concentration, leading to overestimated strain 

delimitation. Regarding this, we consider that the percentages obtained for the analysis of 

absolute DNA concentrations are more realistic to delimitate strains than relative DNA 

concentration value. Fragment length analysis is the preferable measure for typing of yeast 

strains using interdelta fragments amplification, even though the reproducibility associated 

was smaller compared to absolute values of concentration (Table IV-1), but producing 

more consistent results without introducing biases in the reproducibility of the technique.  

 

Determination of identical banding patterns for each strain in all conditions 

To gain further insight into the reproducibility of the interdelta sequence typing method, 

we tried to identify for each strain the bands that were amplified across the A-E 

experimental conditions. Strain R60, which showed a very different banding pattern was 

excluded from this analysis. As shown in Table IV-2, three to seven bands in the range of 

100 – 900 bp were apparent in all 32 replicates of each strain.  



 

 

 

PhD Thesis | Ricardo Franco-Duarte 

_______________________________________________________________________ 

 

T
a
b

le
 I

V
-2

: 
F

ra
g
m

en
t 

si
ze

s 
(b

p
, 
av

er
ag

e 
v
al

u
e 

an
d
 s

ta
n
d
ar

d
 d

ev
ia

ti
o
n
) 

th
at

 w
er

e 
p
re

se
n
t 

in
 a

ll
 3

2
 r

e
p

li
ca

te
s 

o
f 

ea
ch

 s
tr

ai
n

. 

 

A
ve

ra
g

e 
si

ze
 

(b
p

) 

o
f 

re
p

ro
d

u
ci

b
le

 

fr
a

g
m

en
ts

 

 
 

 
 

S
tr

a
in

s 
 

 
 

 
 

 

R
8

 
R

1
6

 
R

2
0

 
R

2
1

 
R

3
0

 
R

5
8

 
R

6
1

 
R

6
2

 
R

8
1

 
R

8
8

 
R

1
0

1
 

9
7

 
9

7
 ±

 2
,1

 
9

6
 ±

 2
,4

 
 

9
6
 ±

 2
,1

 
9
6
 ±

 2
,1

 
9
6
 ±

 2
,2

 
9
6

 ±
 1

,9
 

9
6

 ±
 2

 
9

6
 ±

 2
,1

 
9

6
 ±

 1
,9

 
1

0
7

 ±
 1

,8
 

1
3

4
 

 
1

3
4

 ±
 2

 
 

 
 

 
 

 
 

1
3

4
 ±

 1
,9

 
 

1
6

1
 

 
 

1
5
6
 ±

 1
,7

 
 

 
 

1
6

7
 ±

 2
 

1
5

7
 ±

 1
,3

 
 

 
1

6
2

 ±
 3

 

1
8

8
 

 
 

 
 

 
 

1
8
9

 ±
 2

,1
 

 
 

 
1

8
6

 ±
 1

,3
 

2
0

5
 

 
 

 
 

 
2
0
5
 ±

 1
,7

 
 

 
 

 
 

2
3

1
 

 
 

2
3
2
 ±

 2
 

 
 

 
 

 
2

3
1

 ±
 1

,5
 

2
3

1
 ±

 4
,4

 
 

2
6

2
 

2
6

2
 ±

 2
,1

 
 

 
 

 
 

 
 

 
 

 

2
8

5
 

 
 

 
 

2
8
5
 ±

 2
 

 
 

 
 

 
 

3
2

0
 

 
 

 
 

 
 

 
 

3
2

6
 ±

 3
,5

 
 

3
1

4
 ±

 4
 

3
4

8
 

3
4

8
 ±

 8
,7

 
 

 
 

3
4
9
 ±

 4
,5

 
 

 
3

4
7

 ±
 4

,4
 

 
 

3
4

6
 ±

 4
,4

 

3
7

1
 

 
 

 
 

 
 

 
 

3
7

1
 ±

 3
,7

 
 

 

4
2

5
 

4
2

5
 ±

 4
 

4
2

5
 ±

 7
 

4
2
7
 ±

 5
,7

 
4
2
7
 ±

 3
,5

 
4
2
4
 ±

 3
,7

 
4
2
7
 ±

 3
,9

 
 

4
2

3
 ±

 3
,4

 
4

2
6

 ±
 3

,2
 

 
4

2
1

 ±
 4

,8
 

4
5

8
 

 
 

4
5
3
 ±

 6
,2

 
4
6
2
 ±

 3
,5

 
 

 
 

 
 

 
 

4
8

6
 

 
 

 
 

4
8
2
 ±

 5
,8

 
 

 
 

4
8

9
 ±

 5
,3

 
 

 

5
3

1
 

 
 

 
 

 
5
3
1
 ±

 1
3
,2

 
 

 
 

 
 

6
8

0
 

 
 

 
 

 
 

 
 

6
8

0
 ±

 8
,7

 
 

 

7
2

1
 

 
 

7
2
1
 ±

 1
8
,5

 
 

 
 

 
 

 
 

 

8
9

9
 

8
9

9
 ±

 1
5

,6
 

 
 

 
 

 
 

 
 

 
 



 Chapter IV | Genotyping of Saccharomyces cerevisiae strains by 

interdelta sequence typing using automated microfluidics 

_______________________________________________________________________ 

99 

 

The respective standard deviations were rather low, ranging from 1.3 to 15.6 bp. 

Additional bands were mostly found for fragment sizes between 1000 and 1500 bp or 

below 100 bp, and were not represented because of lack of reproducibility. Some 

intermediate fragments were also not included in Table IV-2 because they were 

represented only in some experimental conditions. Reproducibility would approximate to 

100%, if only the bands included in Table IV-2 would be used for comparison of fragment 

sizes. 

 

 

 

Discussion 

 

The improved interdelta method (Legras and Karst 2003) is suitable for the typing of yeast 

strains (Schuller et al. 2004). This method is rapid and less expensive than other methods 

and is suitable for high-throughput analysis of large strain collections using microfluidic 

electrophoresis. We have designed an inter-laboratory approach to evaluate the 

performance and the reproducibility of the PCR-based interdelta sequences amplification 

as a high-throughput typing method for the genetic characterization of yeast strains. The 

data described herein shows that this method can contribute to the constitution of bio-

databanks for equitable sharing of genotypic data among laboratories in the context of 

biodiversity conservation and sustainable development of genetic resources. 

As outlined in the Materials and Methods section, interdelta sequences of 12 strains were 

amplified, under varying conditions (Taq DNA polymerase, thermal cycler and 

laboratory). Interdelta sequences typing showed the reproducibility necessary for 

implementation as a typing method for multiple (4 or 8) replicates of one strain, under 

identical experimental conditions. The use of the microfluidic LabChip
®

 system greatly 

contributed to achieve very precise data with a high resolution, as reported in previous 

works (Papa et al. 2005, Tristezza et al. 2009).  
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Although the DNA samples used for interdelta fragments amplification were the same for 

both laboratories, the accomplishment of experiments in different laboratories, the use of 

different Taq DNA polymerases and thermal cyclers reduced reproducibility. In fact, the 

same isolate could be considered as a different strain if typed in different laboratories, due 

to the experimental variation associated with the conditions A-E. The highest variability 

was associated to the source of Taq DNA polymerase and to laboratory specific technical 

details, whereas the effect of the thermal cycler was low. Even if the laboratories used the 

same thermal cyclers and the same Taq enzyme, differences were evident, suggesting that 

technical detail is a major variable to take into consideration. Differences between 

commercial and in-house Taq are most probably attributable to specific activity and to 

differences in preparation methods. 

Reproducibility of PCR-based interdelta sequences amplification is affected by numerous 

factors, mainly annealing temperature and the concentration of MgCl2, which leads to the 

appearance of ghost bands. Despite these limitations, this method is most indicated for the 

typing of large strain collections, and a high reproducibility is achieved for replicates 

within the same experimental conditions. When considering interlaboratory experiments, a 

careful standardization of all the factors that can interfere with the PCR reaction is 

mandatory, in order to eliminate variability caused by the source of Taq DNA polymerase 

and minor experimental differences between laboratories. This study also demonstrates 

that, for reliable data sharing between laboratories, comparative interdelta sequence 

analysis should be based on a reduced number of bands that lead to reproducible banding 

pattern profiles. 
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Introduction 

 

Large-scale genome sequencing projects of S. cerevisiae strains are essential to understand 

individual variation and to study the mechanisms that explain relations between genotype 

and phenotype. Revealing such associations will help to increase our understanding about 

genetic and phenotypic strain diversity that is particularly high in the case of winemaking 

strains. Relational studies of genetic and phenotypic variability should help to decipher 

genotype-phenotype relationships and elucidate genetic adaptations involved in phenotypes 

that are relevant to thrive in stressful industrial environments. They should also contribute 

towards strain improvement strategies through breeding and genetic engineering, taking 

into consideration diversity of the wild strains. 

Recent phylogenetic analyses of S. cerevisiae strains showed that the species as a whole 

consists of both “domesticated” and “wild” populations, whereby the genetic divergence is 

associated with both ecology and geography. Sequence comparison of 70 S. cerevisiae 

isolates confirmed the existence of five well defined lineages and some mosaics, 

suggesting the occurrence of two domestication events during the history of association 

with human activities, one for sake strains and one for wine yeasts (Liti et al. 2009, 

Schacherer et al. 2009, Liti and Schacherer 2011). S. cerevisiae isolates associated with 

vineyards and wine production form a genetically differentiated group, distinct from ‘wild’ 

strains isolated from soil and oak tree habitats, and also from strains derived from other 

fermentations, such as palm wine and sake or clinical strains. Recent research indicates 

that wine strains were domesticated from wild S. cerevisiae (Fay and Benavides 2005, 

Legras et al. 2007), followed by dispersal, and the diversifying selection imposed after 

yeast expansion into new environments, due to unique pressures, led to strain diversity 

(Diezmann and Dietrich 2009, Dunn et al. 2012, Borneman et al. 2013). The interactions 

between S. cerevisiae and humans are considered as a driver of yeast evolution that led to 

the development of genetically, ecologically and geographically divergent groups (Legras 

et al. 2007, Goddard et al. 2010, Sicard and Legras 2011). The limited knowledge about 

the mechanisms responsible for the fixation of specific genetic variants due to ecological 

pressures can be extended by combining genetic and phenotypic characteristics. Recent 

studies show that groups of strains can be distinguished on the basis of specific traits that 
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were shaped by the species´ population history. Wine and sake strains are phenotypically 

more diverse than would be expected from their genetic relatedness and the contrary is the 

case for strains collected from oak-trees (Kvitek et al. 2008). Wine yeasts and other strains 

accustomed to grow in the presence of musts with high sugar concentrations are able to 

efficiently ferment synthetic grape musts, contrary to isolates from oak trees or plants that 

occur in environments with low sugar concentrations. Commercial wine yeasts were 

differentiated by their fermentative performances as well as their low acetate production 

(Camarasa et al. 2011). West African population shared low-performance alleles 

conferring unique phenotypes regarding mitotic proliferation under different stress 

resistance environments. Other phenotypes differentiated lineages from Malaysia, North 

America and Europe, whereby the frequency of population specific traits could be mapped 

onto a corresponding population genomics tree based on low coverage genome sequence 

data (Warringer et al. 2011). 

The global genetic architecture underlying phenotypic variation arising from populations 

adapting to different niches is very complex. Most phenotypic traits of interest in S. 

cerevisiae strains are quantitative, controlled by multiple genetic loci referred to as 

quantitative trait loci (QTL). Genome regions associated with a given trait can be detected 

by QTL analysis, using pedigree information or known population structure to make 

specific crosses for particular phenotypes. The crosses are then genotyped using single 

nucleotide polymorphisms (SNPs) or other markers across the whole genome and 

statistical associations of the linkage disequilibrium between genotype and phenotype are 

identified (Dequin and Casaregola 2011, Liti and Louis 2012, Salinas et al. 2012, Swinnen 

et al. 2012, Borneman et al. 2013). QTL mapping was successfully applied to dissect 

phenotypes that are relevant in winemaking such as fermentation traits (Ambroset et al. 

2011) or aromatic compounds production (Katou et al. 2009, Steyer et al. 2012). QTLs that 

were relevant for oenological traits and wine metabolites were mapped to genes related to 

mitochondrial metabolism, sugar transport and nitrogen metabolism. Strong epistatic 

interactions were shown to occur between genes involved in succinic acid production 

(Salinas et al. 2012). The genotype-phenotype landscape has also been explored by several 

studies using statistical and probabilistic models (O’Connor and Mundy 2009, MacDonald 
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and Beiko 2010, Mehmood et al. 2011), as well as gene knockout approaches (Hillenmeyer 

et al. 2008). 

Current methods to infer genomic variation and determine relationships between S. 

cerevisiae strains include microsatellite analyses (Legras et al. 2005, Franco-Duarte et al. 

2009, Muller and McCusker 2009, Richards et al. 2009), detection of genetic alterations 

using comparative genome hybridization – aCGH (Winzeler et al. 2003, Carreto et al. 

2008, Kvitek et al. 2008, Dunn et al. 2012), and SNPs detection by tiling arrays 

(Schacherer et al. 2009). 

Within our previous work (Franco-Duarte et al. 2009) we evaluated the phenotypic and 

genetic variability of 103 S. cerevisiae strains that were isolated from vineyards of the 

Vinho Verde wine region (Northwest Portugal). We used a set of 11 polymorphic 

microsatellite loci and through subgroup discovery-based, data mining successfully 

identified strains with similar genetic characteristics (microsatellite alleles) that exhibited 

similar, mostly taxonomic phenotypes, allowing also to make predictions about the 

phenotypic traits of strains. Within this study, we aim to investigate whether such 

computational associations can be established in a larger collection of diverse 172 S. 

cerevisiae strains obtained from worldwide geographical origins and distinct technological 

uses (winemaking, brewing, bakery, distillery, laboratory, natural, etc.). In this study we 

used 30 physiological traits, most of them being important from an oenological point of 

view. 

 

 

Material and Methods 

 

Strain collection and phenotypic characterization 

The S. cerevisiae strain collection used in this work consists of 172 strains of different 

geographical origins and technological applications or environments (supplementary data 

S1, strains Z1-Z187). The collection includes strains used for winemaking (commercial 

and natural isolates that were obtained from winemaking environments), brewing, bakery, 
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distillery (sake, cachaça) and ethanol production, laboratory strains and also strains from 

particular environments (e.g. pathogenic strains, isolates from fruits, soil and oak 

exudates). The collection further includes a set of sequenced strains (Liti et al. 2009). All 

strains were stored at -80 ˚C in cryotubes containing 1 mL glycerol (30% v/v). 

Phenotypic screening was performed considering a wide range of physiological traits that 

are also important from an oenological point of view (discussed previously in chapter III). 

In a first set of phenotypic tests, strains were inoculated into replicate wells of 96-well 

microplates. Isolates were grown overnight in YPD medium (yeast extract 1% w/v, 

peptone 1% w/v, glucose 2% w/v), and the optical density (A640) was then determined and 

adjusted to 1.0. After washing with peptone water (1% w/v), 15 μL of this suspension were 

inoculated in quadruplicate in microplate wells containing 135 μL of white grape must of 

the variety Loureiro, supplemented with the compounds mentioned below. The initial 

cellular density was 5×10
6
 cells/mL (A640 = 0.1) and the final optical density was 

determined in a microplate spectrophotometer after 22 h of incubation (30 ˚C, 200 rpm). 

All microplates were carefully sealed with parafilm, and no evaporation was observed for 

incubation temperatures of 30 ˚C and 40 ˚C. As referred in chapter III (table III-1), this 

approach included the following tests: growth at various temperatures (18, 30 and 40 ˚C), 

evaluation of ethanol resistance (6, 10 and 14%, v/v) and tolerance to several stress 

conditions caused by extreme pH values (2 and 8), osmotic/saline stress (0.75 M KCl and 

1.5 M NaCl). Growth was also assessed in the presence of potassium bisulphite (KHSO3, 

150 and 300 mg/L), copper sulphate (CuSO4, 5 mM), sodium dodecyl sulphate (SDS, 

0.01%, w/v), the fungicides iprodion (0.05 and 0.1 mg/mL) and procymidon (0.05 and 0.1 

mg/mL), as well as cycloheximide (0.05 and 0.1 µg/mL). The growth in finished wines 

was determined by adding glucose (0.5 and 1%, w/v) to a commercial white wine (12.5% 

v/v alcohol). Galactosidase activity was evaluated by adding galactose (5% w/v) to Yeast 

Nitrogen Base (YNB, Difco
TM

, Ref. 239210), using test tubes with 5 mL culture medium 

and the same initial cell concentration (5×10
6
 cells/mL), followed by 5 to 6 days of 

incubation at 26 ˚C, and subsequent visual evaluation of growth. Other tests were 

performed using solid media. Overnight cultures were prepared as previously described, 

adjusted to an optical density (A640) of 10.0 and washed. One µL of this suspension was 

placed on the surface of the culture media mentioned below. Hydrogen sulphide 
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production was evaluated using BiGGY medium (SIGMA-ALDRICH, Ref. 73608) 

(Jiranek et al. 1995), followed by incubation at 27 ˚C for 3 days. The colony color, which 

represents the amount of H2S produced was then analyzed, attributing a score from 0 (no 

color change) to 3 (dark brown colony). Ethanol resistance (12%, v/v) and the combined 

resistance to ethanol (12, 14, 16 and 18%, v/v) and sodium bisulphite (Na2S2O5, 75 and 100 

mg/L) was evaluated by adding the mentioned compounds to Malt Extract Agar (MEA, 

SIGMA-ALDRICH, Ref. 38954) and growth was visually scored after incubation (2 days 

at 27 ˚C). All phenotypic results were assigned to a class between 0 and 3 before the 

statistical analysis (0: no growth in liquid media (A640 = 0.1) or no visible growth on solid 

media; 3: A640 ≥ 1.0, extensive growth on solid media or a dark brown colony formed in the 

BiGGY medium; scores 1 and 2 corresponded to A640 between 0.2 and 0.4, and between 

0.5 and 1.0, respectively, and to intermediate values of growth and color changes in solid 

medium and BiGGY medium), as shown in chapter III (table III-1). 

 

Genetic characterization 

After cultivation of a frozen aliquot of yeast cells in 1 mL YPD medium (yeast extract 1% 

w/v, peptone 1% w/v, glucose 2% w/v) during 36 h at 28 ˚C (160 rpm), DNA isolation was 

performed as previously described (Schuller et al. 2004) and used for microsatellite 

analysis. 

Genetic characterization was performed using eleven highly polymorphic S. cerevisiae 

specific microsatellite loci: ScAAT1, ScAAT2, ScAAT3, ScAAT4, ScAAT5, ScAAT6, 

ScYPL009c, ScYOR267c, C4, C5 and C11 (Field and Wills 1998, Perez et al. 2001, 

Techera et al. 2001, Legras et al. 2005, Schuller et al. 2007, Schuller et al. 2012). 

Multiplex PCR mixtures and cycling conditions were optimized and performed in 96-well 

PCR plates as previously described (Franco-Duarte et al. 2009). 

 

Data analysis 

We have estimated the number of repeats for the alleles from each locus based on the 

genome sequence of strain S288c available in the Saccharomyces Genome Database 
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(http://www.yeastgenome.org) and the results obtained for the size of microsatellite 

amplicons of this strain. 

Principal component analysis (PCA), available in the The Unscrambler
®

 X software 

(Camo) was used for microsatellite variability analysis. A set of standard predictive data-

mining methods, as implemented in the Orange data mining suite (Demsar et al. 2013) 

were used to study the relations between the genetic constitutions of strains and their 

geographical origins or technological applications. Alleles that were present in less than 

five strains were removed, and k-nearest neighbor algorithm (kNN) (Tan et al. 2006) was 

used for inference. The modelling approach was tested in 5-fold cross validation, each time 

fitting the model on 80% of the data and testing it on the remaining 20%. Results were 

reported in terms of cross-validated area under the receiver operating characteristics curve 

(AUC), which estimates the probability that the predictive model would correctly 

differentiate between distinct technological applications of the strains (Hanley and McNeil 

1982). 

The strength of associations between microsatellites and specific phenotypes was scored 

using information gain ratio as implemented in the Orange data mining suite, using default 

parameters, and significant findings were confirmed by permutation tests and estimation of 

false discovery rate. Data was first pre-processed to filter out features with only a single, 

constant value, in which the distribution was too skewed or when more than 95% of strains 

shared the same value. This was done both for microsatellite and phenotypic data. Filtering 

procedure reduced our data set to retain 40 from initial 295 microsatellite features, and 60 

from initial 83 phenotypic ones. We have then considered the resulting data set to test 

40x60=2400 associations between microsatellites and phenotypes. For each microsatellite-

phenotype feature pair we computed information gain ratio (IGR), a score that estimates 

the degree of correlation between two categorical variables (Quinlan 1986). Each IGR 

estimate was compared to its null distribution obtained from 100,000 computations of IGR 

for that particular feature combination on permuted data. We then tested the null 

hypothesis (IGR equals zero) and obtained p-values as proportion of permutation 

experiments where IGR was greater or equal to the score obtained from original data set. 

Permutation procedure was repeated for all microsatellite-phenotype pairs and the 

computed p-values were corrected with false discovery rate procedure (FDR – Benjamini 
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and Hochberg 1995). We here report on pairs of correlated microsatellites and phenotypic 

features with FDR below 0.2. 

 

 

Results 

 

Strain collection and genetic characterization 

A S. cerevisiae collection was constituted including 172 strains from different geographical 

origins and technological origins, as follows: wine and vine (74 isolates), commercial wine 

strains (47 isolates), other fermented beverages (12 isolates), other natural environments – 

soil woodland, plants and insects (12 isolates), clinical (9 isolates), sake (6 isolates), bread 

(4 isolates), laboratory (3 isolates), beer (1 isolate), and 4 isolates with unknown origin 

(supplementary data S1). 

All 172 strains were genetically characterized regarding allelic combinations for previously 

described microsatellites ScAAT1, ScAAT2, ScAAT3, ScAAT4, ScAAT5, ScAAT6, 

ScYPL009c, ScYOR267c, C4, C5 and C11 (Field and Wills 1998, Perez et al. 2001, 

Techera et al. 2001, Legras et al. 2005, Schuller et al. 2007, Schuller and Casal 2007 

Schuller et al. 2012). As shown in Table V-1, a total of 280 alleles were obtained, and 

microsatellites ScAAT1 and ScAAT5 were the most and least polymorphic with 39 and 5 

alleles, respectively. 
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The genetic diversity of the collection is illustrated on the principal component analysis 

(PCA) plot in Figure V-1. Some patterns of genetic relatedness between strains sharing the 

same technological origin became evident as shown in the panel A. Sake strains ( ) were 

located in the right part of the PCA plot, due to larger sizes of alleles of loci ScYOR267c 

and C4. For this group of strains, we have identified nine unique alleles, from which three 

were present in more than one strain and belong to three different loci (ScAAT6, C4 and 

ScYOR267c). Strains from fermented beverages other than wine were separated by PC-2, 

being located in the upper part of the PCA plot, indicating that they share a combination 

between smaller alleles of microsatellite C4 and bigger alleles of ScYOR267c. These 

twelve strains are marked in the PCA plot inside the area surrounded by a dotted line. 

Twelve unique alleles were found for these strains, two of them (C4-58 and ScYPL009c-

57) being present in six of the twelve strains. On the contrary, the group of wine strains 

(both natural isolates and commercial strains), showed heterogeneous distribution across 

the two components, being preferentially located in the left side of the PCA plot. The nine 

clinical strains were distributed across both components with no discriminant results in any 

locus. The 172 strains (scores) were also segregated in the first two components of the 

PCA constructed from the allelic combination for 11 loci. Loci ScYOR267c and C4 had 

the highest weight in strain variability, followed by ScYPL009c and ScAAT4, although 

within a smaller extent (panel B). 
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Figure V-1: Principal component analysis of microsatellite data: 

A: distribution of 172 strains according to their allelic combinations for 11 loci (scores); 
Symbols represent strains’ technological applications or origin:  - wine and vine;  - commercial 

wine strain;  - clinical;  - natural isolates;  - sake;  - other fermented beverages;  - beer;  

 - bread;  - laboratory;  - unknown biological origin. Sake strains and strains from other 

fermented beverages are surrounded by full-lined and dotted lines, respectively.  

B: contribution of microsatellite loci (loadings) to the separation of strains shown in panel A. 
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To reveal the weight of different alleles on the strains’ genetic variability, the profile of the 

11 microsatellites was represented for each strain as a vector where the values 0, 1 and 2 

corresponded to the absence of an allele, the presence of a heterozygous allele or the 

presence of two copies of the allele, respectively. We assumed that all strains were diploid, 

because aneuploidy loci were rarely detected (< 3%). In addition, the DNA content of a 

representative set of homozygous strains corresponded to a diploid strain (flow cytometry 

analysis, data not shown). A total of 48160 data points were generated and the segregation 

of the 280 alleles in the two components of the PCA is shown in Figure V-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V-2: Principal component analysis of a Boolean matrix of 280 alleles from 11 

microsatellites in 172 Saccharomyces cerevisiae strains. 
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Alleles ScAAT4-20, ScAAT5-9 and ScAAT6-16 had highest weight in strain variability 

due to their positioning in the right and upper part of the PCA plot. Among the 11 

microsatellite loci, 54 alleles were identified by PCA as contributing to the highest strain 

variability among 172 strains (Table V-1). Loci ScAAT1, ScAAT3, ScAAT4 and 

ScYPL009c were the ones with higher number of variable alleles (6), in opposition to loci 

C5 and C11 with 3 alleles each. 

 

Prediction of the technological group based on microsatellite alleles 

We have examined the relations between strains’ technological group and the 

corresponding genotypes and scored them for their predictive value. Computational models 

were constructed to predict the strains’ technological application or origin from 

microsatellite data. Alleles that were present in less than five strains were removed, 

reducing the total number of alleles from 280 to 153. In 71% of the cases the removed 

alleles were present in only one or two strains. The k-nearest neighbor algorithm was used 

for inference as implemented in the Orange data mining software. A good prediction model 

was obtained both in terms of area under the receiver-operating-characteristics curve 

(AUC) (Hanley and McNeil 1982) and classification accuracy (0.8018 and 0.547 

respectively). Table V-2 shows the confusion matrix of the kNN cross-validation 

classifications, where the report on averaged posterior AUCs estimated only on test data 

that is not included in the training of the model. For the strains derived from winemaking 

environments (commercial and natural wine strains), 47% and 72% of strains were 

correctly assigned, respectively. Interestingly, the majority of “false” assignments didn´t 

fall out of the wine strains group, occurring for commercial wine strains that were assigned 

to the natural wine strains (21 of 47 strains) or natural wine strains that were catalogued as 

commercial wine strains (16 of 74 strains). If all wine strains were grouped in one single 

category, the proportion of correct assignments would increase to 93% (112 of 121 

strains). For the groups of strains isolated from sake, natural environments, other 

fermented beverages and bread, the proportion of correct assignments were 67%, 42%, 

50% and 50% respectively, which is rather high considering the relatively small number of 

isolates included in these groups (6, 12, 12 and 4, respectively).  
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The high number of correct assignments even for small groups of strains, and a very high 

AUC score, both reinforce the validity of the modelling technique, confirming a strong 

relation between our genotype profiles and strain groups. On the other side and with only 

22% of correct assignments, our approach was not successful on the identification of 

clinical strains, which was expected due to the absence of a common ancestor for this 

group and since pathogenic S. cerevisiae strains arise from different origins (Liti and 

Schacherer 2011). 

 

Associations between microsatellites and phenotypes 

The 172 S. cerevisiae strains were characterized phenotypically, considering 30 

physiological traits that are important from an oenological point of view, in four replicates, 

measuring A640 after 22h of growth. A high reproducibility was obtained between the four 

replicates, with an average standard deviation of 0.08. Results were catalogued with a 

number between 0 and 3 (0: no growth in liquid media (A640 = 0.1) or no visible growth on 

solid media or no color change of the BiGGY medium; 3: at least 1.5 fold increase of A640, 

extensive growth on solid media or a dark brown colony formed in the BiGGY medium; 

scores 1 and 2 corresponded to the respective intermediate values), resulting in a total of 

5160 data points as summarized in chapter III (table III-1). Our objective was to identify 

subsets of strains sharing similar phenotypic results and allelic combinations. To test the 

associations between phenotypic results and microsatellite alleles we analyzed pairwise 

relationships between corresponding variables (each microsatellite variable versus each 

phenotypic feature). First we binarized all phenotypic features in order to analyze the 

relationship more precisely (which phenotypic value is associated with a certain 

microsatellite), then the constant features (shared by more than 95% of strains) were 

removed. Information gain ratio (IGR) was computed, between microsatellite predictor and 

binarized phenotypic response variable, and repeated again using permutated phenotypic 

data as described in the methods section. p-values were reported after correction using 

false discovery rate (FDR) procedure, and the pairs for which FDR was below 0.2 are 

marked in Figure V-3.  
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Figure V-3: Significant associations (black circles) between microsatellites and phenotypes, 

obtained with Orange data mining suite. 

Each association was calculated between a microsatellite allele (numbers following black circles; 

number of repetitions) of the microsatellite represented at the top, and a phenotypic class (0-3). 

Marked associations refer to significant p-values obtained after false discovery rate correction 

(corrected p-value below 0.2), using information gain ratio associations compared against data 

from permutation test (see methods for details). LM – liquid medium; SM – solid medium.  
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In supplementary data S4, the exact FDR adjusted p-values are shown, for associations 

between all phenotypic and genetic data. Significant associations were obtained between 

microsatellites ScAAT1, ScAAT2, ScAAT5, ScAAT6, ScYPL009c, C4 and C5, and for 13 

phenotypic classes. For the classes in which significant associations with microsatellite 

alleles were found, between 1 and 8 relations were established with a particular 

microsatellite allele (numbers following black circles). For nine phenotypic tests and 

classes a single association was established: “40 ˚C = 1”, “40 ˚C = 3”, “SDS (0.01%, w/v) 

= 0”, “KHSO3 (150 mg/L) = 2”, “Ethanol 10%, v/v (liquid medium)= 0”, “Ethanol 10%, 

v/v (liquid medium)= 2”, “Ethanol 10%, v/v (liquid medium)= 3”, “Ethanol 12%, v/v + 

Na2S2O5 75 mg/L (solid medium) =1” and “wine supplemented with glucose 1% = 0”. The 

phenotypes with the highest number of allelic associations were “KHSO3 (300 mg/L) = 3“ 

and “galactosidase activity = 1”, with 8 associated alleles each. Twenty-two microsatellite 

alleles had an association with at least one phenotype. For two alleles, three significant 

associations were obtained (ScAAT2-13 and C4-21), being the highest number of 

associations with phenotypes (7) found for microsatellites ScAAT1 and ScAAT2, in 

opposition to ScAAT5, ScAAT6 and ScYPL009c with only 3 links established, each. 

These numbers are not related with the total number of alleles and the range of allele sizes 

shown in Table V-2 

 

 

Discussion 

 

In our previous work (Franco-Duarte et al. 2009) we developed a method to 

computationally associate the genotype and phenotype of 103 S. cerevisiae strains, mainly 

from the Vinho Verde winemaking region, using microsatellite data obtained with 11 

polymorphic markers and phenotypic results from a set of 24 taxonomic tests. Herein, we 

aim to investigate whether such associations can be established in a worldwide collection 

of 172 S. cerevisiae strains from different geographical origins and technological uses 

(winemaking, brewing, bakery, distillery, laboratory, natural, etc.). We have considered 30 

physiological traits that are mainly used in S. cerevisiae winemaking strain selection 

programs (Mannazzu et al. 2002). Phenotypic analysis revealed a high diversity, similar to 
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other studies that showed high variability within domesticated and natural populations of S. 

cerevisiae, describing also mosaic strains, depending on their origin and application 

(Brandolini et al. 2002, Agnolucci et al. 2007, Kvitek et al. 2008, Liti et al. 2009, 

Schacherer et al. 2009, Goddard et al. 2010, Salinas et al. 2010, Camarasa et al. 2011, 

Warringer et al. 2011). In addition, we showed significant associations between phenotypic 

results and strains’ technological application or origin by the Mann-Whitney test (Mendes 

and Franco-Duarte et al. 2013). Part of the high phenotypic variability and intra-strain 

variation can also be explained by the existence of genetic rearrangements that are 

characteristic of S. cerevisiae, being particularly high in the case of winemaking strains 

(Schuller et al. 2007). Large-scale genome sequencing projects are now underway to 

provide data for an in-depth understanding of relationships between genotype and 

phenotype. 

The collection of 172 S. cerevisiae strains obtained from different geographical origins and 

technological groups also revealed high genetic diversity (Figure V-1, Figure V-2 and 

Table V-1), with a total of 280 alleles obtained with 11 polymorphic microsatellites. PCA 

components of Figure V-2 explains only a small part of the total variance (PC-1 – 7% and 

PC-2 – 5%) which seems to indicate that all the microsatellite alleles are important to 

differentiate between strains, but also revealed a group of 54 alleles that are the most 

relevant to explain variability among strains. Microsatellite ScAAT1 was the most 

polymorphic one with 39 alleles, followed by ScAAT3 and C5 with 19 alleles each, 

confirming the data of our previous study (Franco-Duarte et al. 2009). Herein, we also 

observed some patterns of distribution according to the strains technological application or 

origin, when considering the PCA of genetic data, in particular for sake strains and strains 

from fermented beverages other than wine. Clinical strains, that are opportunistic 

environmental strains colonizing human tissues (Schacherer et al. 2007, Muller and 

McCusker 2009) didn´t show any discriminant distribution with PCA, which was expected, 

because they do not share a common ancestor (Liti and Schacherer 2011). Sake strains and 

strains obtained from fermented beverages other than wine showed some unique alleles in 

loci ScAAT6, C4, ScYOR267c, and ScAAT1, ScAAT5, ScAAT6, C4, ScYPL009c, 

ScYOR267c, respectively. These results highlight the existence of alleles that are 
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representative of a specific technological group, which justifies the approach used in this 

research. 

Regarding microsatellite distribution in human populations (5795 individuals and 645 

microsatellite loci), multi-dimensional scaling detected 240 intra-population and 92 inter-

population pairs regarding genetic and geographical relatedness (Pemberton et al. 2013). In 

our study we demonstrate that strains’ allelic combination and the respective technological 

application or origin (Table V-2) are strongly related, as the later can be predicted from the 

proposed genotypic characterization. Regarding winemaking strains (both natural and 

commercial) the approach was able to predict the technological application or origin for 

93% of the strains. The AUC score of the model was 0.802, between the values of an 

arbitrary and perfect classification (AUC=0.5 and 1.0, respectively) and can be considered 

as moderately high (Mozina et al. 2004). These results demonstrate the potential of the 

approach to predict the technological origin of a strain from the entire microsatellite 

profile, even for groups of strains with small sample size (sake or bread, 6 and 4 strains, 

respectively). 

The genetic and phenotypic profile of strains obtained with 11 markers and 30 phenotypic 

tests was used to computationally score and rank genotype-phenotype associations. 

Associations were scored using information gain ratio (Quinlan 1986) and significant 

results were shown in form of p-value after false discovery rate procedure. Thirty two 

associations, representing thirteen phenotypic classes and 22 microsatellite alleles were 

significantly established. The phenotypic classes with more associations were related with 

high capacity to resist to the presence of KHSO3 during fermentation, and to the 

galactosidase activity. These two phenotypes were associated with 8 alleles each. These 

results are valuable to select strains that are resistant to sulphur dioxide, an antioxidant and 

bacteriostatic agent used in vinification (Beech and Thomas 1985), being this resistance 

tested by the capacity of strains to grow in a medium supplemented with KHSO3. The 

association between 8 alleles and the strains moderate galactosidase activity, although not 

directly related with winemaking, could be also a beneficial criterion to choose S. 

cerevisiae strains capable of hydrolyze galactose, in alternative to the use of glucose as 

carbon source, pointing to an improved evolutionary capacity of these strains. The most 

polymorphic locus ScAAT1, revealed also the highest number of associations with 
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phenotypes, but this was not observed for other polymorphic loci. Seven phenotype-

genotype associations were found for each of the alleles ScAAT2–13 and C4–21, which 

can be considered as the most informative to predict strains’ biotechnological potential 

regarding the associated phenotypes. 

The prediction of the technological group from allelic combinations and the presence of 

statistically significant associations between phenotypes and alleles both demonstrate that 

computational approaches can be successfully used to relate genotype and phenotype of 

yeast strains. Microsatellite analysis revealed to be an efficient marker to evaluate genetic 

relatedness in yeasts and can be employed in the industry as a quick and cheap analysis. 

Although microsatellite analysis is the most accurate method for S. cerevisiae strain 

characterization, the 11 tested microsatellites are spread on only 9 chromosomes and might 

provide for a rather coarse representation of a genotype. Taking into account that the 

discovered associations apply to a smaller fraction of the genome, this study could be 

beneficially complemented with an extended search to monitor other genomic regions. 

These findings may become particularly important for the simplification of strain selection 

programs, by partially replacing phenotypic screens through a preliminary selection based 

on the strain’s microsatellite allelic combinations. 
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Introduction 

 

Saccharomyces cerevisiae strains from diverse natural habitats harbor a vast amount of 

phenotypic (Gasch et al. 2000, Kvitek et al. 2008, Franco-Duarte et al. 2009, Liti et al. 

2009, Camarasa et al. 2011, Warringer et al. 2011, Mendes and Franco-Duarte et al. 2013) 

and genetic diversity (Schuller et al. 2005, Franco-Duarte et al. 2009, Dequin and 

Casaregola 2011, Franco-Duarte et al. 2011, Roberts and Oliver 2011, Borneman et al. 

2013) driven by interactions between yeast and the respective environment. During the 

long history of association between S. cerevisiae strains and human activity, the genomic 

makeup of this yeast is thought to have been shaped through the action of multiple 

independent rounds of wild yeast domestication. Recently published results showed that 

the species as a whole consists of both “domesticated” and “wild” populations, whereby 

the genetic divergence is associated with both ecology and geography (Liti et al. 2009, 

Schacherer et al. 2009, Liti and Schacherer 2011). Sequence comparisons by low coverage 

whole genome sequencing and high-density arrays showed evidence about the existence of 

a few well-defined geographically isolated lineages, and many mosaic lineages, suggesting 

the occurrence of two domestication events during the history of association with human 

activities, one for sake strains and one for wine yeasts. “Wild” populations are mostly 

associated with oak trees, nectars or insects (Greig and Leu 2009, Liti et al. 2009, 

Schacherer et al. 2009), while winemaking S. cerevisiae isolates form a genetically 

differentiated group, distinct from “wild” strains and also from strains associated with 

other fermentations (sake and palm wine) or clinical strains. This is sustained by the fact 

that the oldest lineages and the majority of variation were found in strains from sources 

unrelated to wine production (Fay and Benavides 2005). 

The diversifying selection imposed after yeast expansion into new environments, due to 

unique pressures, lead to strain diversity (Diezmann and Dietrich 2009, Dunn et al. 2012, 

Borneman et al. 2013), resulting many times in adaptive genomic changes, such as gene 

amplifications, chromosomal-length variations, chromosomal rearrangements (especially 

amplifications and deletions) and copy-number increases (Adams et al. 1992, Goto-

Yamamoto et al. 1998, Dunham et al. 2002, Pérez-Ortin et al. 2002, Carro et al. 2003, 

Schacherer et al. 2007, Borneman et al. 2008, Diezmann and Dietrich 2009, Liti et al. 
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2009, Dunn et al. 2012, Bleykasten-Grosshans et al. 2013). Retrotransposons are known 

by their key role in the generation of genomic variability in S. cerevisiae, mediating 

chromosomal rearrangements that are bounded by transposon-related sequences at the 

breakpoints (Dunham et al. 2002). S. cerevisiae strains contain several copies (between 2 

and 30) of retrotransposons, being associated with karyotype alterations in natural and 

industrial strains, as reviewed in (Bleykasten-Grosshans and Neuvéglise 2011). 

Genomic variation between S. cerevisiae strains has been inferred by several methods in 

the past years, such as microsatellite amplification (Howell et al. 2004, Legras et al. 2007, 

Franco-Duarte et al. 2009, Muller and McCusker 2009, Richards et al. 2009), comparative 

genome hybridization (aCGH) (Dunham et al. 2002, Winzeler et al. 2003, Dunn et al. 

2005, Carreto et al. 2008, Kvitek et al. 2008, Dunn et al. 2012), and single-nucleotide 

polymorphisms (SNPs) detection after sequencing (Liti et al. 2009, Schacherer et al. 

2009), among others. Recent findings showed copy number amplifications, as revealed by 

aCGH, among wine strains (both commercial and from natural environments) of S. 

cerevisiae from different geographical origins, mainly in subtelomeric regions and in 

transposable elements, in comparison with the reference S288c strain (Dunn et al. 2012). 

Also, intra-strain differences were revealed by aCGH (Dunn et al. 2005), by the findings of 

deletions and amplifications of single genes in different isolates of the same strain, being 

these differences extended to the phenotypic level. In a similar work, the characterization 

of genome variability was also expanded to strains from other technological origins 

(Carreto et al. 2008), and aCGH was used to detect copy number variations in 16 yeast 

strains, according to their origin – laboratorial, commercial, environmental or clinical. 

Results showed that the absence of about one third of the Ty elements determined genomic 

differences in wine strains, in comparison to laboratorial and clinical strains, whereas sub-

telomeric instability related with depletions was associated with the clinical phenotype. 

Some of the variable genes between the analyzed groups were related with metabolic 

functions connected to cellular homeostasis or transport of different solutes such as ions, 

sugars and metals. 

With the development of “next-generation” sequencing, an exponential increase was 

observed in the number of strains with its whole genome sequenced. In 2012, as reviewed 

by Borneman et al. ( 2013), near 100 whole genome sequences of S. cerevisiae strains 
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were available, from different geographical and technological origins, with a large 

predominance of industrial strains. These sequencing projects were a major breakthrough 

in the understanding of genomic differences between strains, mainly through the finding of 

numerous strain-specific open reading frames, especially for wine strains (Argueso et al. 

2009, Novo et al. 2009, Dowell et al. 2010, Wenger et al. 2010, Borneman et al. 2011, 

Damon et al. 2011, Engel and Cherry 2013). 

Within our previous work we showed that commercial winemaking S. cerevisiae strains 

are disseminated from the wineries where they are used and can be recovered from 

locations in close proximity (10-200m) (Valero et al. 2005). In this study, 100 isolates of 

the commercial strain Zymaflore VL1 were recovered from vineyards next to wineries 

where this strain was used during several years. The permanence of these isolates in 

natural environments induced genetic changes that were not found among a control group 

of isolates that derived from clonal expansion of the commercial reference strain (Schuller 

et al. 2007). These changes were mostly related with chromosomal size variations, mainly 

for smaller chromosomes, loss of heterozygosity, microsatellite expansion and differences 

in the interdelta sequence amplification patterns. Also, the fermentative capacity of some 

isolates was affected, pointing to a possible adaptive mechanism induced by genetic 

changes. The objective of the present work was to undertake a deeper genomic 

characterization of some recovered isolates of the commercial strain Zymaflore VL1, using 

aCGH and SNP analysis. Besides, we performed an extensive phenotypic analysis using 

both oenological and taxonomic tests, being the metabolic profile (HPLC and GC-MS) of a 

must fermented by these isolates also assessed. 
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Material and Methods 

 

Strain isolates 

One hundred isolates of the commercial S. cerevisiae strain Zymaflore VL1 were obtained 

in our previous work (Schuller et al. 2007), from spontaneous fermentations of grape 

samples obtained in three different vineyards, located close to wineries where this strain 

has been used for winemaking in consecutive years. Strain Zymaflore VL1 is a non-

indigenous diploid yeast that was originally isolated from the region of Gironde, France. 

From the set of 100 isolates, four natural isolates (VL1–018, VL1–020, VL1–099 and 

VL1–108) were chosen for further characterization. The original commercial VL1 

reference strain, kindly provided by Lallemand, was used as a reference. These isogenic 

isolates showed identical mitochondrial DNA restriction fragment length polymorphisms, 

although with small differences regarding their karyotype, microsatellite allele sizes and 

interdelta sequence amplification patterns. The DNA content of these isolates was identical 

to the reference strain, as determined by flow cytometric analysis (data not shown).  

 

DNA isolation 

After cultivation of a frozen aliquot (-80 ˚C, 30% v/v glycerol) of yeast cells in 1 mL YPD 

medium (yeast extract 1% w/v, peptone 1% w/v, glucose 2% w/v) during 36 h at 28 ˚C 

(160 rpm), DNA isolation was performed as previously described (Schuller et al. 2004). 

DNA was then quantified (Nanodrop ND-1000) and used for comparative genome 

hybridization arrays and for DNA sequencing. 

 

Comparative Genome Hybridization on Array (aCGH)  

For comparative genome hybridization array experiments, DNA-microarrays were 

produced as referred in (Carreto et al. 2008), being the array design and spotting protocol 

deposited in the ArrayExpress database under the accession code A-MEXP-1185. The 

labelling protocol was also performed as referred (Carreto et al. 2008), whereby ULS-Cy3 

labelled DNA of each of the four isolates (VL1-018, VL1-020, VL1-099 and VL1-108) 
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was combined with ULS-Cy5 labelled DNA from the commercial reference strain that was 

kindly provided by Lallemand. Dye-swap hybridizations were performed for each isolate, 

ruling out potential bias introduced by inherent differences in dye incorporation. To ensure 

microarray data baseline robustness, differentially labelled DNA from the S288c strain 

were co-hybridized, in a total of six self-self experiments, and used as controls. Images 

were obtained using Agilent G2565AA microarray scanner, and the fluorescence was 

quantified by image analysis using QuantArray software (PerkinElmer). Data was analyzed 

with BRB-ArrayTools v3.4, using median normalization. The relative hybridization signal 

of each ORF was derived from the average of the two dye-swap hybridizations, and 

deviations from the 1:1 normalized log2 ratio were taken as indicative of changes in DNA 

copy number. The significance of these changes was evaluated using multi-class 

significance analysis (SAM) and hierarchical clustering, as implemented in the TM4 

software (MeV). SAM analysis indicated the ORFs with significant copy number alteration 

in at least one of the strains, with a FDR (90
th

 percentile) of 0.336. 

 

DNA sequencing and SNP detection 

Genomic DNA of the five isolates were processed to be sequenced according to the 

manufacture´s protocols (Only et al. 2009), in paired-end 104 bp mode, and sequenced 

using an Illumina HiSeq2000 analyzer. Samples were tagged and multiplexed using a 

custom barcode of 6 bp length. All de-multiplexed reads were aligned to the sacCer3 

assembly of the yeast reference genome using BWA (Li and Durbin 2009) with default 

parameters. All possible variants including frameshift insertions/deletions (InDels) and 

SNPs were then called from the aligned sequences by SAMtools (Li et al. 2009), using 

Annovar (Wang et al. 2010). 

 

Phenotypic characterization 

Phenotypic screening was performed considering a wide range of physiological traits that 

are also important from an oenological point of view, considering a previously established 

experimental design (Mendes and Franco-Duarte et al. 2013) that included evaluation of 

growth by (i) measurement of optical density (A640) after 22h of growth in 96-well 
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microplates containing white grape must plus the compound under analysis, or (ii) visual 

evaluation of growth in solid YPD with the compound to be tested. Thirty phenotypic tests 

were considered, as shown in Table V-3, and all results were assigned to a class between 0 

and 3 (0: no growth (A640 = 0.1) or no visible growth on solid media or no color change of 

the BiGGY medium; 3: at least 1.5 fold increase of A640, extensive growth on solid media 

or a dark brown colony formed in the BiGGY medium; scores 1 and 2 corresponded to the 

respective intermediate values). 

 

Fermentation media and conditions 

Triplicate fermentations (18 ˚C, 150 rpm) of each of the five isolates were carried out with 

grape must of the variety Loureiro, using Erlenmeyer flasks (100 mL) with rubber stoppers 

that were perforated with a syringe needle for CO2 release. The fermentative progress of 

each isolate was recorded by weight loss determination due to CO2 liberation. Samples 

were collected and frozen (-20 ˚C) for metabolic analysis when fermentation ended 

(constant weight, when no more CO2 was released). 

 

Bioanalytical methods 

High-performance liquid chromatography with refractive index (HPLC-RI) was used to 

quantify fructose, glucose, ethanol, glycerol and organic acids (malic, acetic and succinic). 

Prior to analysis, supernatant samples were filtered through a 0.22 µm pore filter, and then 

analyzed in an EX Chrome Elite HPLC, using a Rezex
®

 Ion Exclusion column. Column 

and refractive index detector temperatures were 60 ˚C and 40 ˚C, respectively, and the flow 

rate was 0.50 mL/min from 0 to 9 minutes and from 15 to 35 minutes of run length, and 

0.25 mL/min from 10 to 14 minutes. 

Higher alcohols, esters and fatty acids were determined by GC-MS. Analyses were 

performed by solid phase microextraction (SPME), using a 

divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber, and 4-methyl-2-

pentanol as internal standard. Samples were analyzed using a Thermo-Finnigan Trace-GC 

with a single Quadrupole Trace-DSQ Mass Selective Detector (Thermo Electron 

Corporation, USA), equipped with a Zebron ZB-FFP capillary column. The injector 



 Chapter VI |Intra-strain phenotypic and genomic variability of the commercial S.  

cerevisiae strain Zymaflore VL1 recovered from vineyard environments  

_______________________________________________________________________ 

131 

 

temperature was set to 260 ˚C and the flow rate to 0.8 mL/min, with helium used as the 

carrier gas. GC-MS concentrations of volatile compounds were normalized using 

maximum normalization, and differences between the isolates were represented using 

principal component analysis (PCA) of the Unscrambler X software (Camo Inc.). 

 

Statistical analysis 

Statistical analyses were performed with the data set obtained from HPLC quantification, 

using two-sample paired t-test, comparing always each set of data with the reference strain 

data set, and considering as significant, results in which p < 0.05. 

 

 

Results 

 

Genomic changes revealed by aCGH profiles 

Comparative genome analysis of the isolates was conducted using microarrays containing 

70 mer probes designed from the genome sequence of strain S288c, targeting 6388 ORFs. 

Genomic DNA of the recovered isolates of the commercial winemaking strain S. cerevisiae 

Zymaflore VL1 (VL1–018, VL1–020, VL1–099 and VL1–108) were fluorescently labelled 

and competitively hybridized with the DNA of the VL1 reference strain that was kindly 

provided by Lallemand. Hybridizations were performed in duplicate, in reverse Cy-dye 

labelling (dye-swap) design (see Methods). Figure VI-1 shows the global genome 

variability of the hierarchical cluster analysis of the aCGH data, showing that isolate VL1-

018 was most differentiated from the remaining isolates that grouped into 2 clusters (VL1-

108 and VL1-020/VL1-099). 
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Figure VI-1: Hierarchical clustering of the aCGH profiles. 

All the four natural isolates were used in the hierarchical 

clustering analysis, in comparison to the commercial reference 

strain, using Pearson correlation with average linkage of the 

normalized aCGH data. 

 

 

Multi-class significance analysis (SAM, MeV software) was used to evaluate genomic 

changes between re-isolated yeasts and the reference strain using S288c chromosomal 

coordinates. ORF copy number alterations occurred in all four recovered isolates, in 

comparison with the VL1 reference strain. All genome alterations, represented in the 

respective karyoscopic maps (Figure VI-2) corresponded to copy numbers amplifications, 

whereas deletions were not detected. The 22 amplified ORFs showed a stochastic 

distribution among 10 chromosomes, so that each of the recovered isolates had a unique 

amplification pattern. As summarized in Table VI-1, copy number increases (between 1.5 

and 2.0 fold) were associated with 14 annotated ORFs in isolates VL1-020 and VL1-099, 

mainly related with mitosis (SHE1), meiosis (HFM1), lysine biosynthesis (LYS14), 

galactose (GAL1) and asparagine catabolism (ASP3-2). ASP3-2 amplification might be a 

response to nitrogen starvation (Bon et al. 1997), whereas GAL1 amplification, which is 

expressed in the beginning of the galactose catabolism, might be important for the 

improved use of galactose as alternative carbon source. Nine ORFs with increased copy 

numbers (between 1.5 and 1.8 fold) corresponded to amplified Ty elements, in isolates 

VL1-018 (1), VL1-099 (2) and VL1-108 (6). 
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Figure VI-2: Graphical representation of gene copy number alterations for the 17 

chromosomes (from I to XVI; plus mitochondrial DNA - M) of natural isolates, in comparison 

to the original reference strain, obtained by SAM analysis of aCGH data. 

Using annotated ORF coordinates of strain S288c, global chromosome plots are shown, 

indicating also ORFs with copy number changes, as detected by SAM analysis of aCGH data. 

For each chromosome the telomere and the centromere are marked, together with the locations 

of the Ty elements (relative to the S288c genome). Fold change alterations, in terms of copy 

number, are represented by the distance of the symbols to the basal line, for each of the natural 

isolates, in comparison to the reference strain. 
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Table VI-1: Genes with amplified copy number changes, as detected by SAM analysis of aCGH data. 

 

Strain 
Systematic 

Name 

Classical 

Name 
Main functions 

Chromo

-some 

Fold 

Change 

VL1 - 018 YMR046C - Ty element 13 1.7 

VL1 - 020 YBL031W SHE1 Mitotic spindle protein 2 1.7 

  YOR019W NA 
Unknown function; may interact with 

ribosomes 
15 1.9 

  YGL251C 
HFM1/ 

MER3 
Meiosis specific DNA helicase involved in the 

conversion of double-stranded breaks 
7 1.5 

  YOR155C ISN1 
Catalyzes the breakdown of inosine 5'-

monophosphate to inosine 
15 1.6 

  YDR034C LYS14 
Transcriptional activator involved in regulation 

of genes of the lysine biosynthesis pathway 
4 1.7 

  YBR020W GAL1 

Phosphorylates alpha-D-galactose to alpha-D-

galactose-1-phosphate in the first step of 

galactose catabolism 

2 1.9 

VL1 - 099 YDR120C TRM1 tRNA methyltransferase 4 1.6 

  YLR407W NA Unknown function 12 1.7 

  YOR260W 
GCD1/ 

TRA3  

Gamma subunit of the translation initiation 

factor eIF2B 
15 1.7 

  YKL102C NA 

Dubious open reading frame unlikely to encode 

a functional protein; deletion confers sensitivity 

to citric acid 

11 1.6 

  YOR257W 
CDC31 

/DSK1 

Calcium-binding component of the spindle pole 

body half-bridge; binds multiubiquitinated 

proteins and is involved in proteasomal protein 

degradation 

15 1.7 

  YHR212C NA 
Dubious open reading frame; unlikely to 

encode a functional protein 
8 1.7 

  YLR157C ASP3-2 

Cell-wall L-asparaginase II involved in 

asparagine catabolism; expression induced 

during nitrogen starvation 

12 1.7 

  YPL218W SAR1 

GTPase, GTP-binding protein of the ARF 

family; required for transport vesicle formation 

during ER to Golgi protein transport 

16 2.0 

 YHL009W-A - Ty element 8 1.6 

 YHL009W-B - Ty element  1.6 

VL1 - 108 YBL005W-A - Ty element 2 1.5 

 YDR170W-A - Ty element 4 1.7 

 YDR210C-C - Ty element 4 1.5 

 YGR161C-C - Ty element 7 1.5 

 YMR046C - Ty element 13 1.7 

 YNL284C-A - Ty element 14 1.8 

NA - not available 
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Sequence analysis of isolates recovered from vineyards 

To investigate the extent of variation to which natural isolates differ from the reference 

strain, we sequenced DNA from the recovered isolates and from the reference strain by 

Illumina sequencing. Short sequence reads (104 bp) were processed and aligned to the 

reference genome of strain S288c using BWA and SAMtools. Functional annotation of 

genetic variants between each of the tested genomes and strain S288c were called using 

ANNOVAR. Quantification of SNPs and InDels was performed by comparison of each 

recovered isolate with the reference strain and strain S288c (Table VI-2). Exclusive 

nucleotide polymorphisms were also identified for each isolate, whereas each natural 

isolate showed again a unique genomic pattern. 

 

Table VI-2:- Number of nucleotide variants (SNPs and InDels) in natural isolates of VL1 strain. 

 

Strain 

 

SNPs 
Frameshift  

insertion 

Frameshift  

deletion 

VL1 - 018 

variation to S288c 10002 112 103 

variation to the reference strain 295 20 11 

unique variations 95 5 2 

VL1 - 020 

  

variation to S288c 11317 111 120 

variation to the reference strain 326 19 14 

unique variations 84 4 7 

VL1 - 099 

   

variation to S288c 11419 93 102 

variation to the reference strain 286 8 14 

unique variations 78 3 7 

VL1 - 108 

variation to S288c 11744 113 118 

variation to the reference strain 291 17 10 

unique variations 41 5 4 

VL1 –  

reference strain 

variation to S288c 11833 108 17 

unique variations 111 2 6 
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Our results show that both the reference strain and the recovered isolates differ from the 

strain S288c by some thousands of SNPs (between 10,002 and 15,540). Intra-strain 

differences between natural isolates and the VL1 reference strain were in the range of 286 

to 326 SNPs: isolate VL1-020 was the one with more SNPs identified (326), having isolate 

VL1-099 the smallest number (286) of single nucleotides variation. VL1 intra-strain 

variation of recovered isolates revealed between 8 - 20 frameshift insertions and 10 - 14 

frameshift deletions, respectively. A total of 111 unique SNPs was quantified in the 

reference strain, which were not present in any of the natural isolates, together with two 

exclusive frameshift insertions located on chromosome II (position 456733 bp, AIM3, 

molecular function unknown) and chromosome IV (position 1379049 bp, TOM3, 

ubiquitin-protein ligase), and six frameshift deletions (chromosome II – 272545 bp, 

KAP104, protein import to nucleus; chromosome VIII – 556890 bp, 556922 bp and 556974 

bp, right arm telomeric region;  chromosome XII – 65944 bp, ENT4, actin filament 

organization; and chromosome XV – 453472 bp, ALG8, glucosyl transferase). 

The distribution of SNPs and InDels per chromosome in the natural isolates is shown in 

Figure VI-3. The majority of SNPs (between 94 and 102) was detected in chromosome II, 

being similarly distributed in the remaining chromosomes (3 to 30 polymorphisms per 

chromosome and per isolate). In chromosome II, 1 to 2 frameshift deletions were identified 

for all the isolates (panel B), but no frameshift insertion was detected (panel C). The 

general profile of frameshift deletions (panel B) revealed predominance in some 

chromosomes, being completely absent in four chromosomes (I, III, IX and mitochondrial 

- M).  Frameshift insertions (panel C) were detected in most of the chromosomes, with the 

exception of chromosomes II, XIII and XVI, in which no insertion was observed. 

 

 

 

 

 

 

 

 

 

http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=4842
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Figure VI-3: Number of SNPs and InDels per chromosome (chr I to XVI plus mitochondrial – 

M) in the natural isolates, in comparison to the reference strain: 

A: SNPs;  

B: frameshift deletions;  

C: frameshift insertions. 
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Phenotypic characterization 

To evaluate the extent of phenotypic variation, a screening approach was devised, taking 

into consideration 30 phenotypic tests, including also tests that are important for 

winemaking strain selection. High-throughput testing in microplates was performed using 

supplemented grape must, and optical density (A640) was measured after 22h of incubation. 

Growth in solid culture media (BiGGY medium, Malt Extract Agar supplemented with 

ethanol and sodium metabisulphite) was evaluated by visual scoring. The patterns of 

phenotypic variation are summarized in Table VI-3. Fourteen phenotypic traits 

distinguished the group of recovered isolates from the reference strain which was unable to 

grow at 18 ˚C, but evidenced some growth in the presence of CuSO4 (5 mM) and SDS 

0.01% (v/v). Variable growth patterns were found between some of the natural isolates in 

relation to the reference strain, regarding KCl (0.75 M), NaCl (1.5 M), KHSO3 (300 mg/L), 

wine supplemented with glucose (0.5% and 1% w/v), ethanol (14, 16 and 18%) + Na2S2O5, 

cycloheximide (0.05 and 1 µg/mL) and galactosidase activity. Although the main 

differences were observed between the natural isolates and the reference strain, already 

small changes are observed among the four natural isolates, for example in terms of 

ethanol resistance. For the analyzed tests, phenotypic differences were limited to the 

transition from one phenotypic class to another, and also presented a stochastic distribution 

of variation among the isolates, as previously observed for aCGH results and sequence 

analysis. This fact points to a larger population size, increasing owing to new mutations. 

Contrarily, genetic variability of the population declines rapidly as soon as it goes through 

a bottleneck. 
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Table VI-3:- Phenotypic classes regarding values of optical density (Class 0: A640=0.1; Class 1: 

0.2<A640< 0.4; Class 2: 0.5<A640<1.0; Class 3: A640>1.0), growth patterns in solid media, or color 

change in BiGGY medium, for 30 phenotypic tests.  

Highlighted cells indicate the differences observed between the isolates for the mentioned test. 

 

Phenotypic test 
Type of  

medium 

V
L

1
 -

 0
1

8
 

V
L

1
 -

 0
2

0
 

V
L

1
 -

 0
9

9
 

V
L

1
 -

 1
0

8
 

V
L

1
 -

 r
ef

er
en

ce
 

 

30 ˚C liquid (must) 3 3 3 3 3  

18 ˚C liquid (must) 1 1 1 1 0  

40 ˚C liquid (must) 3 3 3 3 3  

pH 2 liquid (must) 0 0 0 0 0  

pH 8 liquid (must) 2 2 2 2 2  

KCl (0.75 M) liquid (must) 2 3 2 2 2  

NaCl (1.5 M) liquid (must) 1 1 1 0 1  

CuSO4  (5 mM) liquid (must) 0 0 0 0 1  

SDS (0.01% w/v) liquid (must) 0 0 0 0 1  

Ethanol 6% (v/v) liquid (must) 3 3 3 3 3  

Ethanol 10% (v/v) liquid (must) 2 2 2 2 2  

Ethanol 14% (v/v) liquid (must) 1 1 1 1 1  

Ethanol 12% (v/v) solid (MEA) 2 2 2 2 2  

Ethanol 12% (v/v) + Na2S2O5 (75 mg/L) solid (MEA) 3 3 3 3 3  

Ethanol 12% (v/v) + Na2S2O5 (100 mg/L) solid (MEA) 0 0 0 0 0  

Ethanol 14% (v/v) + Na2S2O5 (50 mg/L) solid (MEA) 3 3 2 3 3  

Ethanol 16% (v/v) + Na2S2O5 (50 mg/L) solid (MEA) 3 3 2 3 3  

Ethanol 18% (v/v) + Na2S2O5 (50 mg/L) solid (MEA) 1 1 1 1 1  

KHSO3 (150 mg/L) liquid (must) 3 3 3 3 3  

KHSO3 (300 mg/L) liquid (must) 1 1 2 2 2  

Wine supplemented with glucose (0.5% w/v) liquid 1 1 0 0 0  

Wine supplemented with glucose (1% w/v) liquid 1 1 0 0 1  

Iprodion (0.05 mg/mL) liquid (must) 3 3 3 3 3  

Iprodion (0.1 mg/mL) liquid (must) 3 3 3 3 3  

Procymidon (0.05 mg/mL) liquid (must) 3 3 3 3 3  

Procymidon (0.1 mg/mL) liquid (must) 3 3 3 3 3  

Cycloheximide (0.05 µg/mL) liquid (must) 1 2 2 1 2  

Cycloheximide (0.1 µg/mL) liquid (must) 1 1 1 1 2  

H2S production solid (BiGGY) 2 2 2 2 2  

Galactosidase activity liquid (YNB) 1 2 3 3 3  

MEA: Malt Extract Agar 

YNB: Yeast Nitrogen Base 
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Fermentative profiles and metabolic characterization 

Triplicate fermentations were carried out with each of the five isolates, using white grape 

must. HPLC and GC-MS analysis were performed with samples obtained from the end of 

fermentation (at constant weight, when no more CO2 was released) to evaluate the 

chemical compounds associated with the differences observed in the previous analyses. A 

very good reproducibility was obtained between the three fermentation replicates, and 

almost no differences were obtained regarding fermentation profile and time (Figure VI-4), 

with the exception of a small delay in the maximum CO2 release for isolate VL1-099.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI-4: Fermentation profiles of four natural isolates, in comparison with the original 

reference strain.  

Values were averaged from 3 biological replicates ± standard deviation. Fermentations were 

carried out at 18 ˚C (150 rpm) using white grape must. 
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Strain-dependent differences could be observed concerning organic acids (malic, succinic 

and acetic), fructose, glycerol and ethanol (Figure VI-5). Malic acid concentration ranged, 

for all the isolates, between 6.3 – 7.1 g/L, whereas acetic and succinic acids ranged 

between 0.57 – 0.65 g/L and 0.39 – 0.44 g/L, respectively. Final concentrations of ethanol, 

glycerol and fructose ranged between 159 – 175 g/L, 6.64 – 8.07 g/L and 5.4 – 35.2 g/L, 

respectively. Statistical significance (two paired sample t-test) was obtained only for the 

isolates VL1-099 and VL1-108, and only for the concentrations of malic acid, ethanol 

and/or glycerol. Other compound that explained variability between isolates was fructose, 

although not in a statistically significant way, although this sugar was still present in values 

around 30 g/L, indicating that these isolates don´t assimilate fructose in large amounts. 

Isolate VL1-108 produced higher amounts of ethanol and showed a reduced fructose 

concentration compared to the remaining isolates. 

Aromatic compounds from the final fermentation stage were quantified by GC-MS after 

solid phase microextraction. Principal component analysis (PCA) of the GC-MS data 

(Figure VI-6) shows the segregation of the six isolates (scores; panel A) and the loadings 

for aromatic compounds (panel B) in the first two PCA components, that explain 91% of 

the observed variability between isolates. The consideration of further components didn´t 

improved the explanation of variability. Panel A shows that the global aromatic profile of 

isolates VL1-108 and VL1-018 was very similar and most different from the reference 

strain. Isolate VL1-099 was the one with more similarities to the reference strain, due to its 

position in the PCA plot. These differences can be explained by some of the loadings of 

panel B, which have the most discrimination power due to their position far from the center 

of coordinates, namely: benzene ethanol (AI), 2-methyl-1-butanol (J) and isobutanol (G), 

followed by ethyl lactate (P) in a smaller extent. 
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Figure VI-5: Concentration of (A) succinic, acetic and malic acids, (B) fructose, glycerol and 

ethanol, from the end of fermentations performed with natural and control isolates. 

Values were averaged from 3 biological replicates ± standard deviation, and refer to 

extracellular metabolites in the fermented must. Fermentations were carried out at 18 ˚C (150 

rpm) using white grape must. Statistical significance was determined using two-sample paired  

t-test. The symbol * indicates statistical significance as related to the reference (p < 0.05). 
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Figure VI-6: Principal component analysis of GC-MS data for the five isolates. 

Values were averaged from 2 biological replicates, and refer to extracellular metabolites present in 

the must at the end of fermentations that were carried out at 18 ˚C (150 rpm) using white grape 

must. 

A: five Saccharomyces cerevisiae isolates analyzed by GC-MS (scores); 

B: concentration of 41 volatile compounds determined by GC-MS (loadings).  

Letters indicates the following compounds: (A) – Dimethyl sulphide; (B) – Ethyl isobutyrate;  

(C) – Propyl acetate; (D) – Isobutyl acetate; (E) – Ethyl butyrate; (F) – Ethyl 2-methylbutyrate;  

(G) – Isobutanol; (H) – Isoamyl acetate; (I) – Methyl hexanoate; (J) – 2-methyl-1-butanol; (K) – 3-

methyl-1-butanol; (L) – Ethyl hexanoate; (M) – Hexyl acetate; (N) – Ethyl heptanoate; (O) – Ethyl 

trans-2-hexenoate; (P) – Ethyl lactate; (Q) – Hexanol; (R) – Methyl octanoate; (S) – Ethyl 

octanoate; (T) – Isoamyl hexanoate; (U) – Octyl acetate; (V) – Ethyl nonanoate; (W) – Methyl 

decanoate; (X) – Butyric acid; (Y) – Ethyl decanoate; (Z) – Isovaleric acid; (AA) – Diethyl 

succinate; (AB) – Ethyl phenylacetate; (AC) – 2,4,6-trichloro anisole; (AD) – Phenylethyl acetate; 

(AE) – Ethyl dodecanoate; (AF) – Hexanoic acid; (AG) – Guaiacol; (AH) – Ethyl 

dihydrocinnamate; (AI) – Benzene ethanol; (AJ) – Ethyl guaiacol; (AK) – Octanoic acid;  

(AL) – Ethyl cinnamate; (AM) – 4-ethyl phenol; (AN) – Decanoic acid; (AO) – Dodecanoic acid. 

 

 

 

 

.
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Discussion 

 

S. cerevisiae has been used for a long time as a model to study responses to environmental 

stress. Changed environmental conditions require an efficient adaptation to the new 

settings, mediated by changed gene expression to maintain cellular homeostasis. Yeast 

strains cultivated for longer periods under specific conditions present chromosomal 

rearrangements, chromosomal length variations or other genomic changes such as gene 

amplifications or copy number changes (Rachidi et al. 1999, Dunham et al. 2002, Brion et 

al. 2013). These alterations, being either neutral, beneficial, or detrimental, are known to 

lead to phenotypic diversity, as reviewed by Bisson (Bisson 2012). The loss of one or two 

copies of a gene can be compensated by the level of expression of the remaining copy, or 

by the amplification of a homolog from another chromosome. Another contributing factor 

is the mobile Ty elements in S. cerevisiae that can be excised and inserted along the 

genome, which leads to phenotypic diversity when inserted into a gene or a regulatory 

region. 

In the present study, four isolates of the commercial strain S. cerevisiae Zymaflore VL1, 

recovered from the environment of two vineyards that are located in close proximity to the 

wine cellars where this commercial yeast was used in large quantities for at least five 

years. The commercial strain Zymaflore VL1 was initially isolated from a French wine 

region. These strains were characterized for genomic changes such as gene 

amplifications/deletions, and sequence analysis. aCGH results showed amplification of 14 

ORFs, corresponding ten of them to annotated ORFs (Figure VI-2 and Table VI-1). The 

main functions of the amplified genes were related with mitosis (SHE1), meiosis (HFM1), 

lysine biosynthesis (LYS14), galactose (GAL1) and asparagine catabolism (ASP3-2). The 

existence of additional copies of GAL1 in natural isolates indicates adaptation to an 

environment with less amounts of glucose. In nature, galactose occurs by hydrolysis of 

Galactan, a polymer found in hemicellulose. The galactose metabolism genes are induced 

in S. cerevisiae, in the presence of galactose (Gasch et al. 2000), and glucose absence 

(Adams 1972). The derepression of galactose metabolism genes in environments without 

glucose available has been previously described in detail in S. cerevisiae (Matsumoto and 

Oshima 1981, St John and Davis 1981, Yocum et al. 1984). In the reference VL1 strain, no 

http://en.wikipedia.org/wiki/Hydrolysis
http://en.wikipedia.org/wiki/Polymer
http://en.wikipedia.org/wiki/Hemicellulose
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amplification of GAL1 was identified, due to high glucose concentrations in the media used 

for the production of commercial yeasts, whereby the GAL genes underlie glucose 

repression (Johnston 1999). Copy number amplification of gene ASP3-2 is in agreement 

with the previously shown increased expression during nitrogen starvation (Jones and 

Mortimer 1973). These changes suggest that the recovered isolates could use asparagine as 

alternative nitrogen source during their presence in nature. Variable copy number of this 

gene was shown previously to be specific of S. cerevisiae, mainly from laboratory and 

industrial origins, being absent in other 128 fungal species (League et al. 2012). ASP3-2 

and four of the amplified Ty elements (YBL005W-A, YDR210C-C, YGR161C-C, 

YHL009W-A) showed also copy number amplifications in other wine strains (Carreto et 

al. 2008). Results obtained in the mentioned study showed that the amplification of several 

Ty elements were characteristic for wine strains, contrarily to the clinical strains. The 

amplification of these transposable elements strengthened the importance of 

retrotransposition in yeast adaptation, since Ty sequences play a role in fragments 

mobilization throughout the genome. 

To obtain a thorough understanding of the genomic differences between natural isolates 

and the reference strain, we sequenced the respective genomes and quantified SNPs and 

InDels (Table VI-2 and Figure VI-3). Several studies point to the existence of several 

thousands of SNPs between S. cerevisiae strains, mainly between isolates from different 

technological origins. In our study, VL1 isolates showed to be different from the 

laboratorial strain S288c - between 10,002 and 15,540 SNPs, and between 22 and 33 

InDels. When compared to other strains, the differences were significantly different, as for 

example CEN.PK113-7D (21,899 SNPs and 420 InDels) (Nijkamp et al. 2012), YJM789 

(60,000 SNPs and 6000 InDels) (Wei et al. 2007), M22 (1,367,559 SNPs and 71,913 

InDels) and YPS163 (1,703,911 SNPs and 57,860 InDels) (Doniger et al. 2008). However, 

intra-strain differences between the group of isolates obtained from nature and the 

reference strain consisted in just a few hundreds of SNPs, and a maximum of 20 InDels per 

isolate. Although wine strains showed to form a phylogenetic distinct group, some strain-

specific differences were discovered in the past years in several genome sequencing 

projects. These differences, mainly in the form of insertions, were reported to be 

predominant in many wine strains – EC1118 (Novo et al. 2009), QA23, AWRI796, VL13, 
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VIN13, FostersB, FostersO, RM11 (Borneman et al. 2011), Kyokai 7 (Akao et al. 2011), 

being absent in the laboratorial strain S288c, and, in some cases, were related with traits 

relevant for winemaking (Galeote et al. 2010). In our reference strain – Zymaflore VL1 – 

we detected a total of 111 unique SNPs and 8 InDels that were not detected in strain 

S288c. The identified isolate-specific InDels corresponded to two frameshift insertions (in 

chromosome II and IV), and to six frameshift deletions (chromosomes II, VIII, XII and 

XV). Regarding the comparison between natural isolates and the reference strain, the 

highest number of SNPs and frameshift insertions were detected in chromosome II, with a 

stochastic distribution among all natural isolates. Amplifications within this chromosome 

are not frequently reported in S. cerevisiae strains, with the exception of strain Fosters O, 

where most of gene copy number increases occurred on chromosome II (Borneman et al. 

2011). These results showed the small extent of intra-strain variability that could have 

occurred as a result of adaptation to natural conditions, since they were not shared by the 

reference strain. 

The genomic differences found in the natural isolates, identified both by SNP analysis and 

aCGH, may provide the basis for novel phenotypic characteristics. In order to further 

investigate this link between the genomic changes and phenotypic traits, a phenotypic 

screen was devised to evaluate specific patterns for a set of physiological tests, including 

also tests that are important for winemaking strain selection. This experimental plan was 

previously applied with success for the characterization of several strains from different 

origins (Mendes and Franco-Duarte et al. 2013), and was based on approaches that are 

generally applied for the selection of winemaking strains (Mannazzu et al. 2002). Our 

results showed phenotypic differences in 14 from the 20 tests considered, being able to 

distinguished natural isolates from the reference strain (Table VI-3). In three tests, all the 

four natural isolates presented discriminatory results, that distinguished them from the 

reference strain: capacity to ferment must at 18 ˚C, and inability to grow in the presence of 

CuSO4 (5 mM) and SDS (0.01% w/v). Copper has been used for a long time as an 

antimicrobial agent in vineyards. Although copper resistance has been previously 

suggested as a consequence of environmental adaptation, arisen through positive selection, 

our results show that original VL1 strain had a slightly higher copper resistance compared 

to the re-isolated strains. This seems somehow contradictory, since copper was used in the 
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vineyards from where these strains were obtained. Also the resistance to the detergent SDS 

has been previously reported in wine strains (Kvitek et al. 2008), and is in agreement with 

the use of detergents in the washing of fermentation vessels. This resistance was not shared 

by the natural isolates. Our findings are in agreement with previously reported  generation 

of intra-strain phenotypic variability (Kvitek et al. 2008, Camarasa et al. 2011, Mendes 

and Franco-Duarte et al. 2013), that occur in altered environmental conditions, and that 

was associated with differences in the genomic expression patterns. In these studies some 

phenotypes were able to distinguish groups of strains according to the ecological niches, 

providing evidence for phenotypic evolution driven by environmental adaptation to 

different conditions. For example Kvitek and co-workers (Kvitek et al. 2008) compared 

gene copy-number variations and phenotypic profiles during stress resistance in S. 

cerevisiae strains, and described positive relations between genomic alterations and the 

degree of phenotypic alterations. 

The observed phenotypic differences were also evident when the metabolomic profiles of 

VL1 isolates, obtained at the end of must fermentations, were compared. HPLC analysis 

revealed statistical significant differences regarding the production of malic acid, ethanol 

and/or glycerol among some natural isolates in comparison to the reference strain (Figure 

VI-5). Isolate-dependent differences regarding aromatic profiles were obtained by GC-MS 

analysis (Figure VI-6). The corresponding PCA showed that three alcohols differentiated 

the natural isolates from the reference strain: benzene ethanol (=2-phenylethanol), 2-

methyl-1-butanol and isobutanol (=2-methyl-1-propanol), due to their presence in different 

concentrations at the end of the fermentation. These compounds are three of the major 

fusel alcohols produced during must fermentation, resulting from transamination of the 

corresponding amino acid in the Ehrlich pathway. In the present work, these alcohols were 

increased in the end of the fermentation performed by the commercial reference strain, 

being a differentiating factor among the natural isolates in which just one or two of these 

three compounds appeared to be increased. The VL1 reference strain, as a commercialized 

strain used in winemaking, should have the capacity to produce compounds with favorable 

aromatic contributions. Benzene ethanol and 2-methy-1-butanol are desired in finished 

wines due to their odor descriptors as roses, sweet, fragrant, flowery and honey-like for the 

first (Meilgaard 1975, Ferreira et al. 2000, Silva-Ferreira and Pinho 2003, Cullere et al. 
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2004, Escudero et al. 2004, Siebert et al. 2005) and banana, sweet, aromatic and cheese in 

the case of the second one (Meilgaard 1975, Escudero et al. 2004, Moreno et al. 2005). On 

the contrary, 2-methyl-1-propanol is a non-desired alcohol in the end of the fermentation 

and has odor descriptors related to alcohol aroma, estery and fusel odors (Meilgaard 1975, 

Etiévant and Etievant 1991, Diedericks 1996). This compound revealed to be 

discriminating between the reference strain and the natural isolates mainly VL1-099 and 

VL1-020. The aromatic profiles of these two isolates are in agreement with the higher 

number of CNV detected by aCGH, and also with the previously shown changes in the 

microsatellite patterns in the case of isolate VL1-020 (additional presence of allele 219 of 

microsatellite ScAAT5) and interdelta amplification patterns in isolate VL1-099 (one 

additional band with a length around 200bp), that were unique in these isolates. These 

results give a new insight into the mechanisms of microevolution that act together and 

generate variations of phenotypes, that might be (or not) related to the strain’s adaptation 

to environmental conditions. 

 

 

Conclusions 

Our results showed that isogenic isolates of the commercial wine yeast strain Zymaflore 

VL1 recovered from nature present genetic differences in comparison with the reference 

strain. We identified ORFs amplification, with an apparent stochastic distribution, 

corresponding to Ty elements and also to gene amplifications with various functions that 

could reflect adaptive mechanisms to environmental conditions. One of these amplified 

genes was ASP3-2, which is related with previous reports of increased expression during 

nitrogen starvation. Some SNPs were also identified in natural isolates and these 

differences could be related to mechanisms involved in the generation of intra-strain 

phenotypic variability, evidenced by dissimilarities identified in 14 phenotypic tests, and in 

the metabolomic profiles of must-fermentations accomplished by VL1 isolates. We 

hypothesize that the transition from nutrient-rich musts to nutritionally scarce natural 

environments induces adaptive responses and microevolutionary changes promoted by Ty 

elements. 
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Introduction 

 

The metabolome, as the final downstream product of the genome, is defined as the 

assemblage of metabolites found within a cell, tissue, or organism. The metabolome of 

Saccharomyces cerevisiae is constituted by 584 metabolites, in a network containing 1175 

metabolic reactions (Förster et al. 2003). Whereas the study of transcriptome, proteome or 

genome is currently well established, the study of metabolome includes the analysis of a 

wide range of chemical species, with concentrations ranging from pM to mM, which is a 

major hurdle for appropriate bioanalytical approaches. Due to being multi-scale and multi-

variate, the analysis of yeast metabolome challenged all the analytical technologies 

available for its study. The determination of the metabolomics profile of an organism has 

been performed using several analytical platforms, such as gas-chromatography (GC) or 

liquid-chromatography (LC) coupled to mass-spectroscopy (MS) (Birkemeyer et al. 2003, 

Kleijn et al. 2007, Fiehn 2008), capillary electrophoresis (CE) coupled to MS (Soga et al. 

2003, Monton and Soga 2007, Tanaka et al. 2007, Ramautar et al. 2009), infrared and 

Raman spectroscopy (Ellis and Goodacre 2006), nuclear magnetic resonance (NMR) 

spectroscopy (Salek et al. 2007, Barton et al. 2008, Bjerrum et al. 2010) and direct 

injection MS (DIMS) (Allen et al. 2003, Mackenzie et al. 2008). As a result of the 

metabolome complexity, no single application can determine the complete set of 

metabolites of a sample, which led to the development of several approaches combining 

some of the mentioned technologies (Dunn et al. 2005, Kell et al. 2005, Dunn et al. 2011, 

Castro et al. 2014). The combined use of GC–MS has been one of the mostly used 

approaches to characterize yeasts metabolome, with the possibility to elucidate stress 

responses in S. cerevisiae with high resolution and sensitivity (Ding et al. 2010). 

In winemaking, the most relevant families of compounds produced by yeasts cover a large 

number of metabolites, including primary (e.g. sugars, organic acids, amino acids) and 

secondary metabolites (e.g. flavonoids and anthocyanins). These compounds play an 

important part in the flavour and aroma of wine (Lambrechts and Pretorius 2000, Majdak 

et al. 2002, Regodón Mateos et al. 2006), and commercial strains are selected for their 

ability to contribute to the sensorial profile of the final wine (Suárez-Lepe and Morata 

2012, Richter et al. 2013, Rodríguez-Palero et al. 2013). 
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S. cerevisiae is one of the most versatile microorganisms for biotechnological applications, 

therefore most suitable to study metabolomics. The development of data-fusion approaches 

between genomics and metabolomics (qualitative and quantitative information) is one of 

the major hurdles for the development of holistic characterization methodologies in 

biotechnology (Becker and Palsson 2008). Current methods to infer genomic variation in S. 

cerevisiae strains include, among others, microsatellite amplification (Howell et al. 2004), 

comparative genome hybridization on array (aCGH) (Carreto et al. 2008) and single-

nucleotide polymorphisms (SNPs) detection after sequencing (Liti et al. 2009, Schacherer 

et al. 2009). Recently developed high-throughput genomic technologies, especially with 

the decreasing costs of sequencing, had significantly simplified the characterization of 

biological systems at multiple levels (Via et al. 2010). 

The study of relationships between multi-level data types has been hampered due to a lack 

of appropriate data resources. Within our previous work (Franco-Duarte et al. 2009, 

chapter III, Mendes and Franco-Duarte et al. 2013 - chapter V) we contributed to the 

development of new approaches for the study of these pairwise relations. In the mentioned 

publications we evaluated the phenotypic and genetic diversity of groups of S. cerevisiae 

strains from different geographical and technological origins, and estimated strains 

phenotypic characteristics based on genotypic data by computational statistical modelling. 

Subgroup discovery techniques successfully identified strains with similar genetic 

characteristics (microsatellite alleles) that exhibited similar phenotypes. Several other tools 

became available in the last decade (Kim and Tidor 2003, Brunet et al. 2004, Boulesteix 

and Strimmer 2007, Kim and Park 2007, Devarajan 2008, Hutchins et al. 2008) able to 

relate pair-wise genomic variables. 

Partial least squares regression (PLS-R - reviewed on Boulesteix and Strimmer 2007) is 

particularly used in spectroscopy and chromatography with successful outcomes, for 

example in the discrimination of bacterial (Preisner et al. 2007) and yeast strains 

(Kuligowski et al. 2012), allowing the prediction of dependent variables from a large set of 

independent variables (called predictors). Although PLS-R is an informative method for 

the exploration of common features between two data sets, with this method alone not 

much is known about pheno-metabolomic diversity. Therefore, the development of new 
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approaches for the analysis of shared features between more than two data sets together 

was needed. 

With the advances in bioinformatic resources, the search for more powerful data analysis 

techniques has emerged, incorporating integration methods that address multi-dimensional 

genomic, phenotypic and metabolomic data. A particular challenge was the fact that 

different types of genomic data (such as SNPs, microsatellite data, etc.) have different 

scales and units, and cannot simply be aggregated into multiple datasets. A recent 

breakpoint was achieved by the development of new matrices factorization methods, 

associated with projection of multiple types of genomic data into common coordinates 

system (Zhang et al. 2012). With these methods it was possible to break down massive 

data sets into smaller modules that exhibit similar patterns, having the potential to reveal 

new insights into metabolite formation pathways, which would be overlooked with only a 

single type of data. 

The objective of the present work was to undertake a holistic characterization of the 

metabolomic diversity of a S. cerevisiae wine strain collection by combining genetic, 

phenotypic and metabolic data using the above mentioned computational approaches. 

Statistical computing was performed to relate all the experimental results, contributing to a 

better insight of the S. cerevisiae pheno-metabolome. 

 

 

Material and Methods 

 

Strain collection 

A S. cerevisiae collection was constituted (chapter III), including 172 strains from different 

geographical origins and technological applications/origins, as follows: wine and vine (74 

isolates), commercial wine strains (47 isolates), other fermented beverages (12 isolates), 

other natural environments – soil woodland, plants and insects (12 isolates), clinical (9 

isolates), sake (6 isolates), bread (4 isolates), laboratory (3 isolates), beer (1 isolate), and 4 

isolates with unknown origin (supplementary data S1). All 172 strains were genetically 
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characterized previously (chapter V), regarding allelic combinations for described 

microsatellites ScAAT1, ScAAT2, ScAAT3, ScAAT4, ScAAT5, ScAAT6, ScYPL009c, 

ScYOR267c, C4, C5 and C11, and phenotypically (chapter III) for the capacity to grow in 

96-well microplate experiments considering the following tests: growth at various 

temperatures (18, 30 and 40 ˚C), evaluation of ethanol resistance (6, 10 and 14%, v/v), 

tolerance to several stress conditions caused by extreme pH values (2 and 8), 

osmotic/saline stress (0.75 M KCl and 1.5 M NaCl), growth in the presence of potassium 

bisulphite (KHSO3, 150 and 300 mg/L), copper sulphate (CuSO4, 5 mM), sodium dodecyl 

sulphate (SDS, 0.01%, w/v), the fungicides iprodion (0.05 and 0.1 mg/mL) and 

procymidon (0.05 and 0.1 mg/mL), cycloheximide (0.05 and 0.1 µg/mL), growth in 

finished wines supplemented with glucose (0.5 and 1%, w/v), galactosidase activity, H2S 

production and combined resistance to ethanol (12, 14, 16 and 18%, v/v) and sodium 

bisulphite (Na2S2O5, 75 and 100 mg/L) in malt extract agar. All genotypic results were 

catalogued in a binary data matrix, being phenotypic results assigned to a class between 0 

and 3, considering the amount of growth in the mentioned compounds  

 

Must Fermentations 

Individual fermentations with each of the 172 strains were carried out at 18 ˚C using white 

grape must in Erlenmeyer flasks (100 mL) with rubber stoppers that were perforated with a 

syringe needle for CO2 release. When glucose concentration was below 5 g/L, samples 

were collected and frozen (-20 ˚C) for fiber optics spectroscopy and metabolic analysis. 

From the combined data of fiber optics spectroscopy, genetic and phenotypic data, a sub-

set of 24 strains was constituted, by choosing the ones with most heterogeneous results, 

and that were used for additional fermentations. These fermentations were carried out 

under the same experimental conditions, in triplicate, and the fermentative profile of each 

strain replica was monitored by weight loss determination of the flasks due to CO2 

liberation.  
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Fiber optics spectroscopy  

Spectral analysis of all finished fermentations was performed by transmittance fiber optics 

UV-VIS-SWNIR spectroscopy (200 to 1200 nm), using a highly sensitive scientific-grade 

spectrometer (Ocean Optics, QE65000). Spectra were obtained at room temperature after 

stabilization of the light source, and measurements were taken with linear and electric dark 

correction. Twenty spectra replicates were recorded for each sample. 

 

Bioanalytical analysis 

High-performance liquid chromatography with refractive index (HPLC-RI) was used to 

quantify fructose, glucose, ethanol, glycerol and organic acids (tartaric, malic, acetic and 

succinic), in a EX Chrome Elite HPLC, using a Rezex
®

 Ion Exclusion column. Column 

and refractive index detector temperatures were 60 ˚C and 40 ˚C, respectively, and the flow 

rate was 0.50 mL/min for 0-9 min, 0.25 mL/min for 10-14 min and 0.50 mL/min for 15-35 

min. 

Relevant metabolites that account for inter-strain differences and that are related to volatile 

compounds (higher alcohols, esters, fatty acids) were determined by gas chromatography – 

mass spectrometry (GC-MS). Analyses were performed by solid phase microextraction 

(SPME), using a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) 

50/30 µm (Supelco, Sigma) fiber for 15 minutes under continuous agitation and heating at 

40 ˚C, and 3-octanol (Sigma-Aldrich, 99% purity) as internal standard. Compounds were 

then desorbed from the SPME fiber directly and analyzed using a Varian CP-3800 gas 

chromatography (Walnut Creek, CA, USA), equipped with a Varian Saturn 2000 mass 

selective detector, as previously described (Silva-Ferreira and Guedes de Pinho 2003). 

 

Integrative data exploration from multiple experiments 

Principal component analysis (PCA), available in the Unscrambler
®

 X software was used 

for metabolic variability analysis. Associations between metabolic data and phenotypic and 

genetic results were investigated using partial least squares regression (PLS-R), using the 

PLS Toolbox of Matlab 7.7.0 (Mathworks Inc., Natick, MA, USA). 
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In addition to PLS-R, a method of matrix factorization was used, as adapted from Zhang et 

al. (2012), to integrate data of the 24 strains from several experiments: metabolic data 

obtained from GC-MS and HPLC, phenotypic results catalogued in four growth classes 

and microsatellite allelic presence/absence. Briefly, with this method each of the 

experimental data matrices Xi (n, vi), where n corresponds to the selected strains and v to 

the variables measured in each experiment i, was normalized and then scaled so that the 

sum of squares of each matrix was the same. Matrices were then projected onto a common 

lower-dimensional space, in which each heterogeneous variable was weighted highly in the 

same projected direction forming a multi-dimensional module (md-module). In this way, 

each of the data matrices was decomposed in a common basis matrix (W) and in different 

coefficient matrices Hi (H1, H2, …, Hn) in a way that: 

 

Xi ≈ W * Hi                 (Equation VII-1) 

 

Matrices W and Hi have non-negativity constraints (W ≥ 0 and Hi ≥ 0), and were computed 

in a way that Xi was as close as possible to W * Hi, i.e., the sum over all matrices of 

squared differences between matrices Xi and W * Hi was as small as possible. With this as 

basis, data from different experimental proveniences could be plotted in a same lower-

dimensional space. Regarding the special position of two data instances two main 

conclusions can be retrieved: (i) the closer the variables come, the higher similarity in the 

impact on the projection, and the more related they are to each other; (ii) the influence of a 

certain variable in the spatial projection is as high as their apartness from the origin. As 

follows, data from different matrices are projected onto a common coordinate system and 

correlative relationships can be inferred in the form of md-modules. 
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Results  

 

Must fermentations and fiber optics spectroscopic analysis 

A S. cerevisiae collection was constituted previously and a deep phenotypic and genetic 

characterization was performed (chapter III and chapter V), revealing extensive intra-strain 

variability and statistical significant associations between both data sets. In the present 

work these data matrices were used for the search for associations with the strains 

metabolic profile. 

Fermentations were carried out with each of the 172 strains. When glucose concentration 

was below 5 g/L, samples were frozen and used for further analysis. Final products 

obtained from 83 strains that completed fermentation were analyzed by transmittance fiber 

optics UV-VIS-SWNIR spectroscopy. Principal component analysis (PCA) was used to 

illustrate the variability obtained (Figure VII-1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VII-1: Principal component analysis of transmittance fiber optics 

UV-VIS-SWNIR spectroscopy data obtained with final fermentation 

products. 

Symbols represent strains’ technological applications or origin:  - wine and 

vine;  - commercial wine strain;  - natural isolates;  - other fermented 

beverages;  - beer;  - bread;  - unknown biological origin. 
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Almost 100% of total variance is explained by PC-1 (88.1%) and PC-2 (11%). Strains were 

in general segregated into groups according to their technological application/origin, with 

the exception of natural wine strains ( ) that formed three groups, mostly associated with 

geographical origins: (i) the four strains from wine and vine located at the right part of 

PCA plot correspond to wine strains isolated in France, being the other two groups 

constituted by strains from Portugal; (ii) the central group of wine strains (19 isolates) is 

composed by isolates from the Vinho Verde wine region, isolated in 2007; (iii) strains from 

natural wine environments located at the left of the PCA (11 isolates) were obtained in the 

Portuguese wine regions Bairrada and Douro, and also in the Vinho verde wine region but 

in this case isolated in 2000. Fiber optics UV-VIS-SWNIR spectroscopy data of the final 

fermentation products were then combined with data from microsatellite allelic profiles 

and phenotypic results (chapters III and V), to establish a new sub-set of 24 most 

heterogeneous strains to be characterized regarding their metabolic profile. 

New fermentations were carried out with this group of strains, in triplicate, using white 

grape must, and bioanalytical characterization was performed with samples obtained at the 

end of fermentation, to evaluate the chemical compounds that might be associated with the 

differences observed in previous analysis. 

 

Bioanalytical analysis 

High-performance liquid chromatography (HPLC) and gas chromatography – mass 

spectrometry (GC-MS) analysis were accomplished with samples obtained at the end of 

fermentation, to evaluate the chemical compounds and conclude about the metabolic 

profiles of the 24 strains. A very good reproducibility was obtained between the three 

fermentation replicates. Strain-dependent differences could be observed concerning 

organic acids (tartaric, malic, succinic and acetic), glycerol, fructose and ethanol (Figure 

VII-2). 
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Figure VII-2: HPLC analysis results obtained with 24 Saccharomyces cerevisiae strains: 

A: concentration of tartaric ( ), succinic ( ), acetic ( ) and malic acids ( ); 

B: concentration of fructose ( ), glycerol ( ) and ethanol ( ); 

C: PCA plot of HPLC data showing the distribution of the 24 S. cerevisiae strains (scores) in the 

two first principal components. Symbols represent strains  technological applications or origin:  

 - wine and vine;  - commercial wine strain;  - natural isolates;  - other fermented beverages; 

 - bread;  - unknown biological origin; 

D: PCA plot of HPLC data showing the distribution of the quantified compounds (loadings) in the 

two first principal components.  

 

 

 



PhD Thesis | Ricardo Franco-Duarte 

_______________________________________________________________________ 

160 

 

Tartaric acid concentration ranged, for most strains, between 0.9 and 1.3 g/L, whereas 

malic, acetic and succinic acids ranged between 5.2 – 7.3 g/L, 0.2 – 0.8 g/L,  and 0.5 – 0.8 

g/L, respectively (panel A). Final concentrations of ethanol, glycerol and fructose ranged 

between 80.9 - 133.7 g/L, 5.4 - 8.9 g/L and 0.3 - 5.9 g/L, respectively (panel B). PCA plots 

of HPLC data (panel C and D) explained 83% of strain variance in the first two 

components (PC-1 – 66%, PC-2 – 17%), and showed that strain variability was mainly 

influenced by fructose, glucose and acetic acid concentrations. These results evidenced that 

yeast strains variability depends mainly on their technological application or origin:  

(i) strains from fermented beverages other than wine ( ) showed the highest 

concentrations of fructose and glucose, which is in agreement with a poor capacity to 

ferment wine must; (ii) acetic acid discriminated strains along the second PCA component, 

and was highest in a natural isolate (panel C,  ), and lower in strains from unknown 

biological origins ( ); (iii) wine and vine natural strains ( ) were located near the PCA 

origin, due to lower values of glucose and fructose obtained (fermentation capacity in the 

tested medium) revealed by the first principal component, and low acetic acid 

concentration present in the end of fermentation, as determined by the second principal 

component. 

GC-MS analysis after solid phase microextraction (SPME) was used to determine aromatic 

compounds from the final fermentation stage. Table VII-1 shows the concentration of the 

13 quantified volatile compounds, including also the respective sensorial thresholds and 

odor descriptors. 
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Concentrations above the sensorial detection threshold described for wines were detected 

for 8 of the 13 compounds: ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl 

decanoate, 2-phenylethyl acetate, hexanoic acid, octanoic acid and decanoic acid. For ethyl 

hexanoate and ethyl octanoate this was observed for all the 24 strains. A large variance 

among strains was also observed for other compounds, being some of them produced in 

concentrations above the sensorial threshold by a small number of strains, such as hexanoic 

acid (4 strains) and decanoic acid (6 strains). Hexyl acetate, ethyl dodecanoate, butanoic 

acid, dodecanoic acid and cis-3-hexenol were produced in concentrations below the 

detected threshold by all strains. 

The PCA plotted in Figure VII-3 segregated the 24 strains (panel A – scores;  

panel B – loadings) according to the aromatic profiles, and the first two components 

explained 70% of the observed variability between isolates (PC-1 – 53%, PC-2 – 17%), 

being the further components ignored since they did not improved the explanation of 

variability. A clear separation of strains according to the type of compound produced was 

revealed by PCA: esters were located in the upper part of the PCA, whereas acids were 

predominant in the lower part, under influence of the second principal component. This 

division was not related with the strains technological origin, but particular groups of 

strains showed a different behavior regarding these compounds: (i) wine strains (both 

natural –  –, and commercial – ) showed intermediate concentrations of both esters and 

acids; (ii) strains from unknown biological origin ( ) showed a high production of esters, 

with a particularly high production (predominantly hexyl acetate) by one of the isolates;  

(iii) some strains from fermented beverages other than wine ( ) positioned in the right part 

of the PCA plot mainly due to high production of decanoic acid and ethyl decanoate, 

among others; (iv) natural isolates ( ) and isolates from bread ( ) were positioned near the 

plot origin, showing no significant influence by any particular compound. The position of 

wine strains as intermediate producers of both esters and volatile acids, in opposition for 

example to strains from other fermented beverages, is in agreement with the importance of 

both families of compounds in the aromatic profiles.  
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Figure VII-3: Principal component analysis of GC-MS data: 

A: distribution of 24 strains according to the quantified concentrations of 13 metabolic 

compounds (scores).  

Symbols represent strains’ technological applications or origin:  - wine and vine;  

 - commercial wine strain;  - natural isolates;  - other fermented beverages;  - bread; 

 - unknown biological origin; 

B: contribution of the metabolic compounds (loadings) to the positioning of strains shown 

in panel A.  
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Integrative approaches using PLS regression 

Prediction models of yeast strains metabolic profiles, based on the phenotypic and genetic 

data, were developed by PLS regression. The PLS models were developed using the entire 

phenotypic data and the complete microsatellite allelic profile, and were used to predict the 

metabolic response of the 24 yeast strains group in comparison with data obtained by 

HPLC and GC-MS. 

Figure VII-4 shows the models’ predictions for which a correlation factor (corr) above 

0.99 was obtained. Using phenotypic results obtained with 30 tests, high correlation factors 

were obtained by the PLS-R model (panel A) for the production of ethyl octanoate (corr = 

0.996) and acetic acid (corr = 0.996), meaning that the presence or absence of these 

molecules can be predicted by the phenotypic features of the 24 yeast strains used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VII-4: PLS models obtained with data from 24 Saccharomyces cerevisiae strains. 

Only models with correlation factors (corr) above 0.99 are shown: 

A: prediction of metabolic compounds (HPLC and GC-MS analysis) using phenotypic 

data; 

B: prediction of metabolic compounds (HPLC and GC-MS analysis) using microsatellite 

allelic data. 
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The regression vectors consisting of the PLS coefficients contributing for these models, 

presented in supplementary data S5, show the phenotypic results most associated with 

these relations, both in a positive way (positive coefficients indicate that higher or lower 

production of the mentioned compound indicate the higher or lower impact of the 

phenotypic test in the production of these molecules) or in a negative way (negative PLS 

coefficients indicate the higher or lower negative effect on the production of that 

compound under the mentioned phenotypic test). Considering the 12 strongest relations 

(PLS coefficients higher than 0.10 or lower than -0.10) some interesting associations were 

established: (i) increased concentrations of ethyl octanoate detected in the GC-MS were 

associated with high capacity to grow in the presence of ethanol (both ethanol 6% (v/v) or 

ethanol 14% (v/v) + Na2S2O5 (50 mg/L)), in the presence of iprodion (0.05 mg/mL) and 

cycloheximide (0.1 µg/mL), and with a higher galactosidase activity; (ii) interestingly, the 

other tested concentration of iprodion (0.1 mg/mL) had a negative effect in the 

concentration of ethyl octanoate, as well as the presence of KCl (0.75 M) and CuSO4 (5 

mM); (iii) the concentration of acetic acid determined by HPLC had a positive association 

with growth in ethanol 14% (w/v) and iprodion (0.05 mg/mL), but a negative contribution 

from KCl (0.75 M) and iprodion (0.1 mg/mL).  

A similar analysis was performed considering the allelic presence/absence, and high 

correlations (correlation factor above 0.99) were obtained by the model for the 

concentrations of succinic acid, octanoic acid, dodecanoic acid and glycerol, all with 

maximum correlation factor (1.000), and also for hexanol (corr = 0.999), 3-methyl-1-

butanol (corr = 0.998) and ethyl butanoate (corr = 0.994) (Figure VII-4B).  The regression 

vectors consisting of the PLS coefficients contributing for these prediction models are 

presented in supplementary data S5. In this table, the PLS coefficients for each of the 

microsatellite alleles obtained in the analysis of the 24 strains are presented, as indicators 

of associations with metabolic compounds analyzed by GC-MS or HPLC. Associations 

with PLS coefficients higher than 0.05 or lower than -0.05 are marked (12 strongest 

correlations). No association within this set were obtained for the microsatellites ScAAT2, 

ScAAT4, ScAAT5, ScAAAT6 or ScYPL009c. The remaining microsatellites were 

associated with metabolic compounds concentrations as follows: (i) alleles C4-254 showed 

two associations within the sub-set of strongest relations, being linked with high 
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concentrations of octanoic and dodecanoic acids; (ii) all the remaining marked alleles were 

associated with only one metabolic compound; (iii) no association within this sub-set was 

found for succinic acid, glycerol, 1-hexanol and 3-methyl-1-butanol; (iv) dodecanoic acid 

had the highest number of marked associations (5), all with positive PLS coefficients, with 

a stochastic distribution in several microsatellites. 

 

 

Pheno-metabolome characterization by the discovery of multi-dimensional modules 

Using data from phenotypic results (30 tests with results catalogued in classes from 0-3; 

chapter III), microsatellite allelic profiles (295 alleles, results binarized; chapter V), HPLC 

data (concentration of 8 compounds – Figure VII-2) and GC-MS data (concentration of 13 

compounds – Table VII-1), across 24 strains, a common basis matrix (W) was composed, 

as described in the methods section. The projection of matrix W is shown in supplementary 

data S6, showing how variables correlate between each other. As closer to each, more 

similar is their impact on the projection and when they are more apart from the origin, the 

correlation coefficient increases. With this approach we attempted to explore how variables 

correlate in a way that we can group them in terms of similar behavior in certain 

conditions. After parameter optimizations, the 4 large matrices were broken down into 100 

basic building blocks, from which 100 multi-dimensional correlated modules (md-

modules) were obtained, consisting of sub-sets of most related data obtained from the 

projection presented in supplementary data S6. In Table VII-2, the 17 statistical relevant 

md-modules are represented, being constituted by features of at least two sub-sets of data, 

together with the strains characterizing them and the weight of each feature in the module. 

The statistical parameters of these modules were tested, as well as the constitution of each 

one in terms of number of strains (modules with less than 3 strains were excluded) – table  

VII-2 and supplementary data S7. 
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Discussion 

Metabolomics aim to determine the differences in the complete set of cell, body fluids, or 

tissues’ metabolites. In recent years research has focused in the investigation of 

relationships between metabolic pathways and phenotypic and genetic fingerprints. 

However, systematic analysis of such multi-dimensional data, in order to reveal relevant 

biological patterns, is still a difficult task. A great number of tools were developed for 1- 

or, at most, 2-dimensional data, with satisfactory results. In our previous work we 

developed computational methods to explore and find associations between phenotypes 

and genotypes of S. cerevisiae yeasts from different origins (Franco-Duarte et al. 2009; 

chapter III – Mendes and Franco-Duarte et al. 2013, and chapter V). In the present work 

we expanded our analysis to be applied to multi-dimensional data, incorporating the 

metabolic characterization of the yeast collection. 

A S. cerevisiae collection was constituted previously (chapter III – Mendes and Franco-

Duarte et al. 2013), comprising 172 strains with different geographical origins and 

technological applications. Individual fermentations were performed with all the 172 

strains, from which 83 completed fermentation (glucose concentration below 5 g/L). 

Fermented musts were analyzed by fiber optics UV-VIS-SWNIR spectroscopy, which 

revealed to be a robust technique for the characterization of fermentations performed by 

strains from different technological origins, with the advantage to cover several spectral 

regions (from ultraviolet to infrared spectrums). Although within a small extent, this 

technique was already used with success for the identification of microorganisms (Silva et 

al. 2008, Castro et al. 2009), and for the monitoring of fermentations (Silva et al. 2009), 

despite the wide use in analytical chemistry. Due to the robustness of this technique, 

spectroscopic data, in combination with genetic and phenotypic results, was used to select 

a more restricted sub-set of 24 heterogeneous strains (underlined numbers in 

supplementary data S1). 

New fermentations were carried out with this sub-group of strains, and samples obtained at 

the end of fermentation were evaluated in terms of chemical composition by HPLC and 

GC-MS. HPLC analysis revealed a opposite contribution of acetic acid and sugars (glucose 

and fructose) regarding the PC-components (PCA, figure VII-2), which is in agreement 

with reported effects of acetic acid on the fermentation yield and yeast growth, coupled to 
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an increase in ethanol yield (Maiorella et al. 1983, Taherzadeh et al. 1997, Thomas et al. 

2002). Acetic acid is an important end-product of energy metabolism (Tielens et al. 2010), 

and due to the enhanced production of its precursor acetyl-CoA, is used as an antimicrobial 

agent in the food and beverage industries (Luck and Jager 1997). Results obtained in 

several organisms showed the association of acetic acid with the capacity to survive to 

unfavorable conditions (Tielens et al. 2002). In this way, the significant presence of acetic 

acid in the end of fermentation, mainly in natural isolates in opposition to wine strains, is 

in agreement with the survival of these strains in environmental conditions. 

GC-MS analysis revealed as an accurate method to determine aromatic compounds from 

the final fermentation stage, being performed after samples SPME. This method was able 

to detect concentrations above the sensorial detection thresholds in 8 compounds, from the 

13 quantified (Table VII-1). The main limitation of using GC-MS approaches is that the 

identification of compounds in a unsupervised way is very difficult, due to the inexistence 

of an universal spectral library (Wishart 2007). PCA of these results revealed a clear 

separation between acids and esters, in terms of concentrations produced by the 24 strains 

(Figure VII-3). Esters, produced by yeasts during alcoholic fermentation, are known to 

have a significant influence on the fruity aromas of the final product as documented in 

Table VII-1, both in the case of ethyl acetate esters and fatty acid esters (Mason and 

Dufour 2000, Ribéreau-Gayon 2000). In the case of volatile fatty acids, their concentration 

influenced also the PCA position of wine strains. Concentration of these compounds in 

wine are reported as being usually between 500 and 1000 mg/L (Swiegers et al. 2005). The 

concentration of volatile acids is of particular relevance, being associated with unpleasant 

odors and tastes in concentrations above 300 mg/L, such as a pungent smell and taste. In 

concentrations below that level, volatile acids can have a positive impact with fruity and 

floral aromas (González Álvarez et al. 2011), mainly due to the obstruction of their esters 

hydrolysis.  

Prediction models of strains metabolic profiles, from the phenotypic and genetic data, were 

developed by PLS regression, with high correlations obtained for some compounds. PLS-R 

is a multivariate technique widely used to analyze GC-MS data (Noble and Ebeler 2002, 

Cozzolino et al. 2009, Saurina 2010, González Álvarez et al. 2011), and also in 

chemometrics (Martens 2001) and microarray data analysis (Nguyen and Rocke 2002), 
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being a well-established tool for two-dimensional data analysis, with the advantage of 

being applicable to matrices with many continuous response variables (Braak and Jong 

1998, Jong et al. 2001, Boulesteix and Strimmer 2007, Frank and Friedman 2014). This 

method has been widely applied to the characterization of wines, mainly in the 

discrimination of attributes and detection of adulterations, as reviewed in (Saurina 2010). 

A more holistic matrix factorization approach was also assessed and adapted from Zhang 

et al. (2012) to project data onto a common system of coordinates, in which the most 

related variables were weighted together and placed apart from the axis origin. From this 

analysis, a sub-set of 17 statistical significant multi-dimensional modules (md-modules) 

were revealed (Table VII-2), combining sets of most-correlated features of significant 

biological relevance. A deeper analysis of these 17 md-modules, mainly from a biological 

point of view, endorsed some interesting outcomes: 

i) only one module combines features from all data sub-sets – phenotypic, genetic, HPLC 

and GC-MS: module 3. This module includes strains from different technological groups - 

commercial wine strain, strains from other fermented beverages and natural isolates –, and 

shows good correlation between capacity to grow in cycloheximide, iprodion and at 18 ˚C, 

with the allele C5-111 and with the results obtained in the metabolic characterization for 

the compounds fructose, ethyl dodecanoate, dodecanoic acid and ethyl butanoate; 

ii) three of the 17 modules contain only strains from wine environments: 29, 34 and 47. 

Good capacity to grow in cycloheximide and at 18 ˚C was a transversal feature to the three 

modules, which was already shown in our previous work to be a phenotypic trait 

associated with wine strains (Mendes and Franco-Duarte et al. 2013). Cycloheximide is an 

inhibitor of protein synthesis, and it was shown that spontaneous mutants of S. cerevisiae 

that are resistant to this compound can be isolated from industrial fermentations (Perez et 

al. 2000); 

iii) in md-module 29 it was possible to associate the phenotypic characteristics of growth 

in cycloheximide, iprodion, 18 ˚C and ethanol 6% (w/v) of the four mentioned wine 

strains, with the results obtained in the GC-MS quantification for 2-phenylethyl acetate. 

This compound contributes to the fruity and flowery aroma of wines (Lilly et al. 2000), but 

may mask some varietal aromas if present in high concentrations. The formation of this 

ester is especially promoted when fermentation is slow, and in particular conditions such as 
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the absence of oxygen and low temperatures (Ribéreau-Gayon 2000). These facts are in 

agreement with the relations found with phenotypic characteristics of module 29, 

especially the temperature of 18 ˚C (strains having the highest growth at this temperature 

were integrated in this module) and the presence of ethanol (strains obtaining the highest 

growth class in the presence of 6% (w/v) ethanol); 

iv) when analyzing each sub-set of data isolated it was possible to conclude that some 

features were present in the md-modules in a higher proportion than others: good capacity 

to grow (highest phenotypic class) in cycloheximide (both at 0.05 or 0.1% w/v) – 19 

occurrences; good capacity to grow (highest phenotypic class) in iprodion (0.05 or 0.1% 

w/v) – 13 occurrences; capacity to grow at 18 ˚C (phenotypic class 1) – 9 occurrences; 

presence of homozygous alleles ScAAT6-256 and ScAAT5-256 – 7 and 4 occurrences 

respectively; good production of the compounds 2-phenylethyl acetate and ethyl butanoate 

(4 occurrences each), and also of the compounds ethyl hexanoate and ethyl octanoate (3 

occurrences each).  

The adaptation of the method described in Zhang et al. (2012) revealed to be a successful 

way to reduce our data set complexity and to combine multi-scale information from 

different analytical origins. By identifying these md-modules it was possible to break down 

data sets into smaller blocks, and search for correlated patterns.  

 

 

 

Conclusion 

In this chapter we adapted powerful data analysis techniques to the results obtained with 

the selected S. cerevisiae strain collection, in order to address a deep lack in today´s 

science: analytical methods allow the debit of several gigabytes of data in just a few 

minutes, but data analysis is not capable to scrutinize them in a proper way, ignoring a 

large part of its potential. The focus of this work was to develop and adapt already existing 

strategies to combine multi-scale data from different origins (phenotypes, microsatellites 

and metabolic data) in order to obtain a holistic view of the S. cerevisiae pheno-
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metabolome, which was not yet routinely possible with the current state of the art methods. 

We consider our approach to be successful, by the combined use of both PLS regression 

and new approaches of matrix factorization that allow the identification of multi-

dimensional correlated modules with significant biological relevance, being of great 

importance to be applied in biotechnology.  
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Pheno-metabolomics constitute an innovative area with the objective of establish links 

between genomic, phenotypic and metabolic data generated using high-throughput 

methods, by the use of bioinformatic approaches. Interdisciplinarity and the connection 

between different areas of scientific knowledge became a strong driver for the solution of 

complex problems. In the particular case of Saccharomyces cerevisiae, only a holistic 

approach will allow the understanding of the vast diversity of strains that adapted to 

different ecological niches and are used for most diverse biotechnological applications. 

In this thesis, S. cerevisiae strains from different technological applications and origins 

were used and a pheno-metabolomic characterization was performed. The following 

paragraphs summarize the main findings of our research and, whenever appropriate, 

personal perspectives for future approaches and for the application of the knowledge 

obtained are included. 

The 172 S. cerevisiae strains constituting the strain collection established with isolates 

obtained from different technological applications or environments were characterized 

phenotypically, using traits that are important from an oenological point of view. The 

developed mathematical models were able to predict a strain´s technological group and 

also its probability to be a candidate for commercial uses, having as basis only three 

phenotypic tests. These results demonstrate how strain selection programs could be 

simplified by the use of the mentioned computational models. However, some difficulties 

have still to be overtaken, before these methodologies could be implemented: 

 the battery of phenotypic tests should be enlarged, so that new tests can be evaluated 

in terms of their contribution to the models;  

 data analysis methods should be refined, mainly to be used for the evaluation of 

phenotypic variability, in order to overcome most of their limitations;  

 the mentioned models should be tested in strains selection programs to predict their 

biotechnological potential using only the three phenotypic tests referred, confirming, in 

this way, their feasibility. 

Our next goal was the genetic characterization of our strain collection. For this, two 

methods were evaluated for the assessment of the genetic profile of S. cerevisiae isolates: 

interdelta sequence typing using microfluidics and determination of microsatellite length 

polymorphisms. We showed that the source of Taq DNA polymerase and the technical 
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differences between laboratories had negative impact on reproducibility of interdelta 

sequences typing. Although with our findings an increase in the banding patterns 

reproducibility was obtained, we chose not to characterize the entire collection with this 

method due to the interlaboratorial variability observed. In this way, microsatellite allelic 

patterns were preferably chosen, and a set of 11 microsatellite loci specific of S. cerevisiae 

were used. A high genetic variability was obtained, and results were used to be 

computationally associated with specific phenotypes, being the associations scored using 

information gain ratio and confirmed by permutation tests and estimation of false 

discovery rates. Our findings display microsatellite analysis as an efficient method to 

evaluate genetic relatedness in yeasts. Models show a high potential to be applied in the 

biotechnology industry, due to the capacity of computational analysis to estimate, in a 

quick and cheap way, a certain phenotype using genetic data. This knowledge can then be 

used as a tool for preliminary yeast selection. Although we consider the used genetic 

characterization approaches as successful to fulfil the objectives of the present work, 

results opened doors for some future research, that should focus on the following:  

 PCA revealed some limitations, mainly to evaluate genetic differences when 

considering the 280 alleles obtained with 11 microsatellite loci, in which only 12% of the 

variance was explained by the first two principal components. More advanced methods for 

data mining should be, in this way, developed to extract relevant information from the 

data; 

 mathematical models to establish genetic-phenotypic links should be refined in order 

to be able to make predictions for other phenotypic features;  

 extrapolation of the mathematical models to be applied to other strains and to strains 

from other origins is needed. 

Comparative genomics was performed with four isolates of the commercial winemaking 

strain S. cerevisiae Zymaflore VL1 that were re-isolated from vineyards surrounding 

wineries were this strain was applied during several years. The objective of this 

characterization was to understand the genomic changes that strains undergo when 

adapting to new environments and compare them with the published observations of gene 

amplifications, chromosomal length variations, copy number changes and chromosomal 

rearrangements mediated by transposable elements. The main highlight of our results was 
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the finding of genomic alterations in the four isolates adapted to natural conditions, in 

addition to phenotypic and metabolic diversity, that were not shared by the reference 

strain, corroborative of the hypothesis of microevolutionary changes. The explanations for 

the mechanisms used by the strains to adapt to environmental conditions have been 

explored by several authors in the last years. In order to completely answer these questions, 

some future approaches have to be considered in addition to the results obtained herein: 

 other methods of genomic characterization should be assessed, as for example DNA 

sequencing of all the isogenic isolates mentioned in chapter IV. With current advances and 

low-prices of whole-genome sequencing, this method is a very promising approach for 

comparative genomic characterization in a large set of isolates;  

 a considerable investment in computational data analysis is needed, especially 

considering DNA sequencing, once that the comparative sequence analysis between strains 

is still difficult; 

 the models mentioned in this thesis are very promising to be applied with sequencing 

data, although the genomic polymorphisms have to be vectorised in order to be compared 

with phenotypic and metabolic data, which constitutes a difficult and laborious task, but 

that, when routinely established, will completely change the current state of the art;  

 validation of the findings on a larger set of individuals is advisable, because the 

amount of samples is very crucial for precise statistical multivariate analysis. 

Individual must fermentations were performed with a sub-group of 24 most heterogeneous 

strains, chosen for metabolic characterization by bioanalytical determination of metabolites 

production. In this chapter, the pheno-metabolomic characterization of our strain collection 

was completed by the combined use of PCA, PLS and matrix factorization approaches, 

which allowed the fusion of multivariate data. After careful pre-processing, multi-scaled 

data were adapted and analyzed, using the methodology suggested by Zhang (2012). The 

possibility to combine multivariate data is not yet a routinely implemented task, due to the 

available data analysis tools. The final step of this characterization was the identification of 

17 statistical significant multi-dimensional models, which combines sets of most-correlated 

features of significant biological relevance. Our findings could be applied to the 

understanding of S. cerevisiae metabolic formation pathways and how they relate with the 
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strains’ phenome. In spite of the advances obtained with these results, there are still many 

key-points to be improved in future work:  

 development of new computational tools which can describe complex relationships 

between “omics”, and elucidate about how changes in genotype influence the 

phenotype;  

 development of robust methods for chromatograms processing in mass spectrometry 

analysis, since none state-of-the-art approaches are fully optimized for automatic 

processing;  

 perform also proteome and transcriptome characterization, and test if the mentioned 

modelling approaches are adequate for other “omic” data. 

As a final viewpoint, future research should be focused in the use of predictive 

methodologies, applying them to practical questions, by using the methods mentioned and 

developed in this thesis, which proved to be adequate tools for high-throughput data 

analysis. Furthermore, this knowledge should be expanded to the recognition of patterns in 

time-course data, not investigated in the ambit of the present thesis. 
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Supplementary data S1 

Geographical origin and technological application/origin of the 172 Saccharomyces cerevisiae strains. 

Underlined numbers indicate the sub-group of 24 strains used in chapter VII to perform metabolomic 

characterization. 

Strain 

Code 

Geographical 

Origin 
Technological application or origin 

Provided 

by 
(Liti et al. 2009) 

Z1 France Laboratory Liti, G. 97 Y55 

Z2 USA Laboratory Liti, G. 17 SK1 

Z3 Italy Clinical Liti, G. 303 YJM978 

Z4 Italy Clinical Liti, G. 304 YJM981 

Z5 Italy Clinical Liti, G. 308 YJM975 

Z6 UK Clinical Liti, G. 284 322134S 

Z7 UK Clinical Liti, G. 287 378604X 

Z8 UK Clinical Liti, G. 288 273614N 

Z9 Finland Natural isolate Liti, G. 84 DBVPG1788 

Z10 Netherlands Natural isolate Liti, G. 91 DBVPG1373 

Z11 France Commercial wine strain Liti, G. 174 YIIc17_E5 

Z12 Netherlands Other fermented beverages Liti, G. 155 DBVPG6040 

Z13 Ireland Beer Liti, G. 248 NCYC361 

Z14 USA Natural isolate Liti, G. 182 YPS606 

Z15 USA Natural isolate Liti, G. 104 YPS128 

Z16 Australia Bread Liti, G. 258 YS2 

Z17 Netherlands Bread Liti, G. 259 YS4 

Z18 Singapore Bread Liti, G. 262 YS9 

Z19 USA Wine and vine Liti, G. 181 BC187 

Z20 Malaysia Natural isolate Liti, G. 278 UWOPS03-461.4 

Z21 Malaysia Natural isolate Liti, G. 279 UWOPS05-217.3 

Z22 Malaysia Natural isolate Liti, G. 280 UWOPS05-227.2 

Z23 Japan Saké Liti, G. 251 K11 

Z24 Indonesia Saké Liti, G. 252 Y9 

Z25 USA Wine and vine Liti, G. 345 RM11 

Z26 Ethiopia Bread Liti, G. 92 DBVPG1853 

Z27 Ivory Coast Other fermented beverages Liti, G. 253 Y12 

Z28 West Africa Other fermented beverages Liti, G. 247 NCYC110 

Z29 West Africa Other fermented beverages Liti, G. 60 DBVPG6044 

Z30 Unknown geographical origin Unknown biological origin Liti, G. 3 DBVPG6765 

Z31 Portugal Unknown biological origin Liti, G. OV 382 

Z32 Chile Wine and vine Liti, G. 220 L-1374 

Z33 Chile Wine and vine Liti, G. 221 L-1528 

Z34 Hawaii Natural isolate Liti, G. 271 UWOPS87-2421 

Z35 Australia Natural isolate Liti, G. 150 DBVPG1106 

Z36 Bahamas Natural isolate Liti, G. 270 UWOPS83-787.3 

Z37 Portugal Clinical Carreto, L. 
 

Z38 Portugal Clinical Carreto, L. 
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Strain 

Code 

Geographical 

Origin 
Technological application or origin 

Provided 

by 
(Liti et al. 2009) 

Z39 Portugal Clinical Carreto, L. 
 

Z40 Portugal – Bairrada Wine and vine Carreto, L. 
 

Z41 Portugal – Bairrada Wine and vine Carreto, L. 
 

Z42 Portugal – Bairrada Wine and vine Carreto, L. 
 

Z43 Portugal – Bairrada Wine and vine Carreto, L. 
 

Z44 France Commercial wine strain – MAC2338 
  

Z45 France - Rhône Valley Commercial wine strain – JCY254 Lalvin 
  

Z46 France Commercial wine strain – Fermol Rouge AEB 
  

Z47 USA Commercial wine strain – Lalvin 522 
  

Z48 Japan Saké Goto-Yakamoto, N. 
 

Z49 Japan Saké Goto-Yakamoto, N. 
 

Z50 Japan Saké Goto-Yakamoto, N. 
 

Z51 Japan Saké Goto-Yakamoto, N. 
 

Z52 Unknown geographical origin Natural isolate Kurtzman, C.P. 
 

Z53 Africa Other fermented beverages Kurtzman, C.P. 
 

Z54 Indonesia Natural isolate Kurtzman, C.P. 
 

Z55 West Africa Other fermented beverages Kurtzman, C.P. 
 

Z56 French Guiana Unknown biological origin Kurtzman, C.P. 
 

Z57 Turkey Wine and vine Kurtzman, C.P. 
 

Z58 Indonesia Other fermented beverages Kurtzman, C.P. 
 

Z59 Philippines Other fermented beverages Kurtzman, C.P. 
 

Z60 Ivory Coast Other fermented beverages Kurtzman, C.P. 
 

Z61 Brazil Other fermented beverages Brandão, R. 
 

Z62 Brazil Other fermented beverages Brandão, R. 
 

Z63 Brazil Other fermented beverages Brandão, R. 
 

Z64 Turkey Wine and vine Huseyin, E.  

Z65 Turkey Wine and vine Huseyin, E.  

Z66 Turkey Wine and vine Huseyin, E.  

Z67 Turkey Wine and vine Huseyin, E.  

Z68 Turkey Wine and vine Huseyin, E.  

Z69 Turkey Wine and vine Huseyin, E.  

Z70 Turkey Wine and vine Huseyin, E.  

Z71 Turkey Wine and vine Huseyin, E.  

Z72 France Wine and vine 
  

Z73 France Wine and vine 
  

Z74 France Wine and vine 
  

Z75 France Wine and vine 
  

Z76 France Wine and vine 
  

Z77 France Wine and vine 
  

Z78 France Wine and vine 
  

Z79 France Wine and vine 
  

Z80 France Wine and vine 
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Strain 

Code 

Geographical 

Origin 
Technological application or origin 

Provided 

by 
(Liti et al. 2009) 

Z81 France Wine and vine 
  

Z82 France Wine and vine 
  

Z83 France Wine and vine 
  

Z84 France Wine and vine 
  

Z85 France – Bordeaux Commercial wine strain – VL3 
 

 

Z86 Unknown geographical origin Laboratory – S288c 
 

 

Z87 Unknown geographical origin Unknown biological origin 
 

 

Z88 Portugal – Vinho Verde Wine and vine 
  

Z89 Portugal – Vinho Verde Wine and vine 
  

Z90 Portugal – Vinho Verde Wine and vine 
  

Z91 Portugal – Vinho Verde Wine and vine 
  

Z92 Portugal – Vinho Verde Wine and vine 
  

Z93 Portugal – Vinho Verde Wine and vine 
  

Z94 Portugal – Vinho Verde Wine and vine 
  

Z95 Portugal – Vinho Verde Wine and vine 
  

Z96 Portugal – Vinho Verde Wine and vine 
  

Z97 Portugal – Vinho Verde Wine and vine 
  

Z98 Portugal – Vinho Verde Wine and vine 
  

Z99 Portugal – Vinho Verde Wine and vine 
  

Z100 Portugal – Vinho Verde Wine and vine 
  

Z101 Portugal – Vinho Verde Wine and vine 
  

Z102 Portugal – Vinho Verde Wine and vine 
  

Z103 Portugal – Vinho Verde Wine and vine 
  

Z104 Portugal – Vinho Verde Wine and vine 
  

Z105 Portugal – Vinho Verde Wine and vine 
  

Z106 Portugal – Bairrada Wine and vine 
  

Z107 Portugal – Bairrada Wine and vine 
  

Z108 Portugal – Bairrada Wine and vine 
  

Z109 Portugal – Bairrada Wine and vine 
  

Z110 Portugal – Bairrada Wine and vine 
  

Z111 Portugal – Vinho Verde Wine and vine 
  

Z112 Portugal – Vinho Verde Wine and vine 
  

Z113 Portugal – Vinho Verde Wine and vine 
  

Z114 Portugal – Vinho Verde Wine and vine 
  

Z115 Portugal – Vinho Verde Wine and vine 
  

Z116 Portugal – Vinho Verde Wine and vine 
  

Z117 Portugal – Vinho Verde Wine and vine 
  

Z118 Portugal – Vinho Verde Wine and vine 
  

Z119 Portugal – Vinho Verde Wine and vine 
  

Z120 Portugal – Vinho Verde Wine and vine 
  

Z121 Portugal – Vinho Verde Wine and vine 
  

Z122 Portugal – Vinho Verde Wine and vine 
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Strain 

Code 

Geographical 

Origin 
Technological application or origin 

Provided 

by 
(Liti et al. 2009) 

Z123 Portugal – Vinho Verde Wine and vine 
  

Z124 Portugal – Vinho Verde Wine and vine 
  

Z125 Portugal – Vinho Verde Wine and vine 
  

Z126 Portugal – Vinho Verde Wine and vine 
  

Z128 Portugal – Vinho Verde Wine and vine 
  

Z129 Portugal – Vinho Verde Wine and vine 
  

Z130 Minho Commercial wine strain – Lalvin QA23 
  

Z131 Sangiovese (=grape variety) Commercial wine strain – Lalvin BM 45 
  

Z132 France – Bordelais Commercial wine strain – Maurivin AWRI R2 
  

Z133 France – Vallée du Rhône Commercial wine strain – Lalvin ICV D80 
  

Z134 France – Languedoc Commercial wine strain – K1 
  

Z135 South Africa – Stellenbosch Commercial wine strain – Anchor Vin13 
  

Z136 France – Vallée du Rhône Commercial wine strain – ICV D47 
  

Z137 France – Languedoc Commercial wine strain – ICV D254 
  

Z138 Spain – Valencia Commercial wine strain – Enolevure K34 
  

Z139 France – Champagne Commercial wine strain – Uvaline BL 
  

Z140 France – Val de Loire Commercial wine strain – Uvaline Arôme 
  

Z141 France – Champagne Commercial wine strain – Maurivin PDM 
  

Z142 France – Bordeaux-Gironde Commercial wine strain – Zymaflore 
  

Z143 France – Limoux Languedoc 
Commercial wine strain – Vitilevure 

Chardonnay   

Z144 France – Bordeaux-Gironde Commercial wine strain – Zymaflore  
  

Z145 France – Bordelais Commercial wine strain – Zymaflore F10 
  

Z146 France – Bordeaux-Gironde Commercial wine strain – Zymaflore F15 
  

Z147 Portugal – Dão Commercial wine strain – Zymaflore QD145 
  

Z148 Portugal – Bairrada Commercial wine strain – Zymaflore BA11 
  

Z149 Unknown geographical origin Commercial wine strain – Siha 3 
  

Z150 Unknown geographical origin Commercial wine strain – Siha 6 
  

Z151 Germany – Pfalz Commercial wine strain – Siha 7 
  

Z152 Germany – Baden Commercial wine strain – Siha 8 
  

Z153 Unknown geographical origin Commercial wine strain – Fermol Premier 
  

Z154 Unknown geographical origin 
Commercial wine strain – Fermol Reims 
Champagne   

Z155 Unknown geographical origin Commercial wine strain – Uvaferm 228 
  

Z156 France – Alsace Commercial wine strain – Uvaferm CS 2 
  

Z157 France – Champagne Commercial wine strain – Lalvin EC1118 
  

Z158 France – Burgund 
Commercial wine strain – Lalvin Bourgoblanc 

Cy3079   

Z159 Unknown geographical origin Commercial wine strain – ALB 
  

Z160 France – Vallée du Rhône Commercial wine strain – Uvaferm L 2056 
  

Z161 France – Alsace Commercial wine strain – Fermichamp 
  

Z162 France – Champagne Commercial wine strain – Fermicru LS2 
  

Z163 South Africa – Stellenbosch Commercial wine strain – Anchor Vin 13 
  

Z164 France – Narbonne Commercial wine strain – Uvaferm 71 B 
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Strain 

Code 

Geographical 

Origin 
Technological application or origin 

Provided 

by 
(Liti et al. 2009) 

Z165 France – Bordeaux Commercial wine strain – Uvaferm BDX 
  

Z166 France – Bourgogne Commercial wine strain – Levuline BRG 
  

Z167 France – Rhone Valley Commercial wine strain – Lalvin ICV D254 
  

Z168 France – Rhone Valley Commercial wine strain – Lalvin ICV D47 
  

Z169 Unknown geographical origin Commercial wine strain – Danstil 493 EDV 
  

Z184 France Commercial wine strain – VL1 
  

Z185 Portugal – Bairrada Wine and vine 
  

Z186 Portugal – Bairrada Wine and vine 
  

Z187 Portugal – Douro Wine and vine 
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Supplementary data S2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phenotypic variation of 172 strains 

under 30 growth conditions. 

Strains are organized according to 

UPGMA-based hierarchical 

clustering (cophenetic correlation 

factor = 0.75), using Euclidean 

distance correlation to estimate 

phenotypic profile similarities. 

Symbols represent strains’ 

technological applications or 

origin:  – wine and vine;  

 – commercial wine strain;  

 – clinical;  – natural isolates;  

 – sake;  – other fermented 

beverages;  – beer;  – baker;  

 – laboratory;  – unknown 

biological origin. 
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Supplementary data S3 

 

 

 

 

 

 

 

 

 

 

PCA representation of the three strain clusters, obtained with k-means clustering 

algorithm. The symbols represent the belonging of the 172 strains shown in the 

phenotypic data PCA (Figure III-2B) to each cluster:  – cluster 1 (38 strains);     

 – cluster 2 (90 strains);  – cluster 3 (44 strains). 
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Supplementary data S5 

PLS coefficients for the prediction of metabolic compounds using phenotypic results and 

microsatellite allelic patterns. 

Part A: PLS coefficients for the prediction of metabolic compounds using 30 phenotypic tests. 

The 12 strongest associations – PLS coefficients higher than 0.10 or lower than -0.10 –, are 

underlined. 

Phenotypic test 
Ethyl  

octanoate 

Acetic 

 acid 

30 ˚C 0.015 0.044 

18 ˚C -0.083 -0.026 

40 ˚C 0.034 0.038 

pH 2 -0.091 0.023 

pH 8 0.092 0.017 

KCl (0.75 M) -0.163 -0.135 

NaCl (1.5 M) 0.083 -0.038 

CuSO4  (5 mM) -0.189 -0.080 

SDS (0.01% w/v) -0.016 0.092 

Ethanol 6% (v/v) 0.170 -0.054 

Ethanol 10% (v/v) -0.078 0.006 

Ethanol 14% (v/v) 0.018 0.136 

Iprodion (0.05 mg/mL) 0.122 0.109 

Iprodion (0.1 mg/mL) -0.190 -0.203 

Procymidon (0.05 mg/mL) 0.000 0.000 

Procymidon (0.1 mg/mL) -0.013 -0.033 

Cycloheximide (0.05 µg/mL) 0.010 0.050 

Cycloheximide (0.1 µg/mL) 0.102 0.017 

KHSO3 (150 mg/L) 0.031 -0.006 

KHSO3 (300 mg/L) 0.067 -0.031 

Wine supplemented with glucose (0.5% w/v) 0.031 -0.084 

Wine supplemented with glucose (1% w/v) 0.028 0.048 

H2S production 0.064 -0.021 

Ethanol 12% (v/v) -0.029 -0,006 

Ethanol 14% (v/v) + Na2S2O5 (50 mg/L) 0.107 -0.081 

Ethanol 16% (v/v) + Na2S2O5 (50 mg/L) 0.056 0.020 

Ethanol 18% (v/v) + Na2S2O5 (50 mg/L) 0.056 0.020 

Ethanol 12% (v/v) + Na2S2O5 (75 mg/L) 0.013 -0.049 

Ethanol 12% (v/v) + Na2S2O5 (100 mg/L) -0.043 -0.069 

Galactosidase activity 0.130 -0.120 
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Part B: PLS coefficients for the prediction of metabolic compounds using microsatellite alleles. 

The 12 strongest associations – PLS coefficients higher than 0.05 or lower than -0.05 –, are 

underlined. 
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ScAAT1 - 12 -0.002 0.024 0.040 0.005 0.012 0.016 0.015 

ScAAT1 - 14 -0.002 -0.009 0.003 0.001 0.007 0.015 0.001 

ScAAT1 - 16 -0.001 0.031 0.043 -0.017 -0.006 -0.026 -0.027 

ScAAT1 - 24 0.003 -0.023 -0.057 0.002 0.014 0.005 -0.004 

ScAAT1 - 25 -0.010 -0.005 -0.012 -0.001 -0.008 -0.006 0.018 

ScAAT1 - 26 0.008 -0.008 0.004 0.001 0.001 0.018 0.024 

ScAAT1 - 27 -0.004 -0.009 -0.009 -0.002 -0.001 0.004 0.000 

ScAAT1 - 29 0.009 -0.002 -0.003 0.006 -0.012 0.005 0.008 

ScAAT1 - 30 -0.004 -0.009 -0.009 -0.002 -0.001 0.004 0.000 

ScAAT1 - 31 -0.009 0.003 -0.001 0.005 -0.014 -0.010 -0.041 

ScAAT1 - 32 -0.004 -0.028 -0.032 0.008 -0.038 -0.023 -0.011 

ScAAT1 - 34 -0.002 0.007 0.001 -0.005 0.000 -0.013 0.002 

ScAAT1 - 39 0.007 0.012 0.006 0.008 0.005 -0.007 -0.006 

ScAAT1 - 41 0.005 -0.001 0.004 -0.002 0.012 0.004 0.009 

ScAAT1 - 42 0.005 -0.001 0.004 -0.002 0.012 0.004 0.009 

ScAAT1 - 49 -0.002 0.000 -0.008 -0.002 0.004 -0.002 0.005 

ScAAT2 - 5 0.007 0.012 0.006 0.008 0.005 -0.007 -0.006 

ScAAT2 - 7 -0.006 0.007 -0.007 0.000 0.007 0.007 -0.012 

ScAAT2 - 8 0.007 0.004 0.015 0.004 0.001 0.010 0.007 

ScAAT2 - 9 -0.016 0.019 0.026 0.006 0.000 -0.005 -0.013 

ScAAT2 - 11 0.009 -0.002 -0.003 0.006 -0.012 0.005 0.008 

ScAAT2 - 12 0.009 0.026 0.047 -0.015 0.009 -0.012 0.007 

ScAAT2 - 13 -0.003 0.005 -0.001 0.000 -0.003 0.002 -0.021 

ScAAT2 - 14 0.001 -0.016 -0.032 -0.003 0.003 0.009 0.040 

ScAAT2 - 15 0.009 -0.015 -0.014 0.005 -0.012 0.017 0.009 

ScAAT2 - 16 -0.009 -0.022 -0.004 -0.006 0.016 -0.006 -0.024 

ScAAT2 - 17 -0.003 -0.017 -0.025 0.002 -0.012 -0.011 0.002 

ScAAT2 - 19 -0.004 -0.009 -0.009 -0.002 -0.001 0.004 0.000 

ScAAT2 - 22 -0.002 0.007 0.001 -0.005 0.000 -0.013 0.002 

ScAAT3 - 6 -0.003 0.005 -0.001 0.000 -0.003 0.002 -0.021 

ScAAT3 - 9 -0.003 0.005 -0.001 0.000 -0.003 0.002 -0.021 

ScAAT3 - 11 0.004 0.004 -0.001 0.001 0.009 0.006 0.017 
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ScAAT3 - 14 0.007 0.003 0.016 0.003 0.039 0.014 0.007 

ScAAT3 - 16 -0.008 -0.023 -0.013 0.002 -0.012 -0.023 -0.042 

ScAAT3 - 17 -0.003 -0.017 -0.025 0.002 -0.012 -0.011 0.002 

ScAAT3 - 19 -0.004 0.041 0.040 -0.010 -0.003 -0.018 -0.004 

ScAAT3 - 21 0.014 -0.016 -0.018 0.006 0.010 -0.002 -0.005 

ScAAT3 - 22 -0.005 -0.004 0.021 -0.005 -0.018 0.005 0.016 

ScAAT3 - 23 -0.006 -0.009 -0.025 -0.006 -0.013 0.033 0.056 

ScAAT3 - 26 0.007 0.012 0.006 0.008 0.005 -0.007 -0.006 

ScAAT4 - 1 0.005 -0.001 0.004 -0.002 0.012 0.004 0.009 

ScAAT4 - 6 -0.003 0.004 -0.003 0.000 0.003 0.004 -0.006 

ScAAT4 - 7 -0.006 -0.002 0.001 0.006 -0.012 -0.012 -0.021 

ScAAT4 - 10 0.007 0.004 0.015 0.004 0.001 0.010 0.007 

ScAAT4 - 11 -0.003 -0.017 -0.025 0.002 -0.012 -0.011 0.002 

ScAAT4 - 12 -0.014 0.027 0.010 -0.008 0.020 -0.011 0.019 

ScAAT4 - 13 -0.003 0.004 -0.003 0.000 0.003 0.004 -0.006 

ScAAT4 - 14 0.004 0.003 -0.003 0.006 0.004 -0.003 -0.006 

ScAAT4 - 20 -0.008 -0.002 0.011 -0.013 -0.011 0.000 -0.023 

ScAAT4 - 21 0.019 -0.017 -0.011 0.006 -0.006 0.019 0.018 

ScAAT5 - 2 -0.003 0.005 -0.001 0.000 -0.003 0.002 -0.021 

ScAAT5 - 3 -0.003 0.005 -0.001 0.000 -0.003 0.002 -0.021 

ScAAT5 - 6 -0.006 -0.002 0.001 0.006 -0.012 -0.012 -0.021 

ScAAT5 - 7 0.007 0.004 0.015 0.004 0.001 0.010 0.007 

ScAAT5 - 8 0.002 0.010 0.015 -0.007 -0.001 -0.010 0.009 

ScAAT5 - 9 0.003 0.001 0.013 0.000 -0.014 -0.006 -0.012 

ScAAT5 - 10 0.020 0.000 0.004 0.008 0.033 0.017 0.029 

ScAAT5 - 11 -0.017 -0.023 -0.029 -0.006 -0.010 0.002 0.018 

ScAAT5 - 13 -0.003 0.000 -0.016 -0.004 0.009 -0.004 0.009 

ScAAT5 - 21 -0.014 0.020 0.028 -0.008 0.016 0.011 0.000 

ScAAT5 - 22 -0.006 0.003 0.002 0.003 -0.010 0.006 0.005 

ScAAT5 - 23 0.008 -0.023 -0.020 0.003 -0.010 -0.014 -0.019 

ScAAT5 - 31 0.005 -0.001 0.004 -0.002 0.012 0.004 0.009 

ScAAT5 - 35 0.007 0.012 0.006 0.008 0.005 -0.007 -0.006 

ScAAT5 - 42 -0.002 0.007 0.001 -0.005 0.000 -0.013 0.002 

ScAAT6 - 16 -0.012 0.001 0.008 -0.007 0.001 0.025 0.009 

ScAAT6 - 17 -0.006 0.003 0.002 0.003 -0.010 0.006 0.005 

ScAAT6 - 18 0.008 -0.023 -0.020 0.003 -0.010 -0.014 -0.019 

ScAAT6 - 26 0.005 -0.001 0.004 -0.002 0.012 0.004 0.009 

ScAAT6 - 30 0.007 0.012 0.006 0.008 0.005 -0.007 -0.006 
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ScAAT6 - 37 -0.002 0.007 0.001 -0.005 0.000 -0.013 0.002 

C4 - 20 0.012 -0.045 -0.023 -0.006 -0.015 0.035 0.007 

C4 - 21 0.010 0.009 0.000 -0.004 0.025 0.004 -0.016 

C4 - 22 0.003 0.002 0.026 0.001 0.002 0.025 0.029 

C4 - 23 -0.011 -0.005 0.016 0.000 -0.003 0.008 -0.010 

C4 - 24 -0.031 0.067 0.050 -0.013 0.017 -0.009 0.012 

C4 - 25 -0.005 -0.010 -0.024 -0.003 -0.012 -0.024 0.004 

C4 - 26 0.014 -0.008 -0.011 0.015 -0.005 -0.009 -0.001 

C4 - 40 0.007 0.012 0.006 0.008 0.005 -0.007 -0.006 

C4 - 53 0.003 -0.022 -0.025 0.005 -0.023 -0.018 -0.028 

C4 - 58 -0.003 0.000 -0.016 -0.004 0.009 -0.004 0.009 

C5 - 3 -0.006 0.017 0.057 -0.006 0.003 -0.012 0.026 

C5 - 4 0.025 -0.020 -0.015 0.010 0.002 0.030 0.017 

C5 - 5 -0.003 0.005 -0.001 0.000 -0.003 0.002 -0.021 

C5 - 10 0.003 -0.006 -0.013 0.005 -0.003 -0.010 -0.004 

C5 - 11 -0.013 -0.014 -0.021 -0.003 -0.009 -0.002 0.018 

C5 - 12 0.009 -0.020 -0.016 0.006 0.014 0.014 -0.025 

C5 - 13 -0.003 0.004 -0.003 0.000 0.003 0.004 -0.006 

C5 - 14 0.001 0.009 -0.004 -0.004 -0.009 0.042 0.052 

C5 - 15 -0.004 -0.001 0.003 0.001 -0.004 0.015 0.010 

C5 - 17 -0.004 -0.001 0.003 0.001 -0.004 0.015 0.010 

C5 - 18 -0.007 0.000 -0.002 -0.005 0.013 -0.021 -0.031 

C5 - 22 -0.003 -0.017 -0.025 0.002 -0.012 -0.011 0.002 

C5 - 23 -0.002 -0.004 0.010 -0.003 0.005 -0.023 -0.030 

C5 - 24 -0.003 -0.017 -0.025 0.002 -0.012 -0.011 0.002 

C5 - 25 -0.002 0.000 -0.008 -0.002 0.004 -0.002 0.005 

C5 - 27 0.006 0.046 0.052 -0.010 0.005 -0.012 -0.022 

C5 - 30 0.007 0.012 0.006 0.008 0.005 -0.007 -0.006 

C5 - 31 -0.002 0.007 0.001 -0.005 0.000 -0.013 0.002 

C11 - 1 0.004 -0.001 -0.002 0.003 -0.006 0.003 0.004 

C11 - 4 0.014 -0.050 -0.029 0.000 -0.011 0.015 -0.016 

C11 - 9 0.007 0.004 0.015 0.004 0.001 0.010 0.007 

C11 - 19 0.004 -0.014 -0.016 0.008 -0.015 -0.017 -0.001 

C11 - 22 -0.002 -0.004 0.010 -0.003 0.005 -0.023 -0.030 

C11 - 24 -0.026 0.034 -0.007 -0.001 -0.007 -0.018 -0.023 

C11 - 25 -0.008 -0.001 0.007 0.003 -0.008 0.031 0.020 

C11 - 26 -0.006 0.002 0.007 -0.002 -0.005 0.006 0.002 

C11 - 27 -0.010 -0.005 -0.012 -0.001 -0.008 -0.006 0.018 
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C11 - 29 0.002 0.010 0.015 -0.007 -0.001 -0.010 0.009 

C11 - 46 -0.001 0.003 0.000 -0.002 0.000 -0.006 0.001 

C11 - 47 -0.001 0.003 0.000 -0.002 0.000 -0.006 0.001 

ScYOR267c - 44 0.007 0.012 0.006 0.008 0.005 -0.007 -0.006 

ScYOR267c - 50 -0.002 -0.009 0.003 0.001 0.007 0.015 0.001 

ScYOR267c - 52 -0.009 -0.013 -0.015 0.001 0.014 -0.029 -0.059 

ScYOR267c - 55 -0.005 -0.009 -0.017 -0.004 0.003 0.002 0.005 

ScYOR267c - 56 -0.003 0.002 0.004 -0.001 0.012 0.023 0.013 

ScYOR267c - 59 0.005 -0.001 0.004 -0.002 0.012 0.004 0.009 

ScYOR267c - 63 -0.008 -0.020 -0.004 -0.003 -0.030 -0.006 0.018 

ScYOR267c - 66 -0.003 0.001 -0.012 -0.006 -0.010 0.046 0.052 

ScYOR267c - 67 0.009 -0.024 -0.024 0.002 -0.008 -0.008 0.017 

ScYOR267c - 68 0.006 0.046 0.052 -0.010 0.005 -0.012 -0.022 

ScYOR267c - 69 -0.008 -0.002 -0.007 0.004 -0.007 -0.014 -0.016 

ScYOR267c - 73 -0.002 0.007 0.001 -0.005 0.000 -0.013 0.002 

ScYOR267c - 75 0.007 0.004 0.015 0.004 0.001 0.010 0.007 

ScYOR267c - 86 0.007 -0.012 -0.026 0.011 -0.006 -0.019 -0.009 

ScYPL009c - 57 -0.003 0.000 -0.016 -0.004 0.009 -0.004 0.009 

ScYPL009c - 65 0.004 0.008 0.012 0.004 0.004 0.014 0.001 

ScYPL009c - 68 -0.011 0.009 -0.002 0.001 -0.008 -0.021 -0.025 

ScYPL009c - 73 0.004 -0.001 -0.002 0.003 -0.006 0.003 0.004 

ScYPL009c - 76 -0.008 -0.001 0.007 0.003 -0.008 0.031 0.020 

ScYPL009c - 79 -0.004 -0.004 0.002 0.000 0.005 0.016 -0.020 

ScYPL009c - 80 -0.020 0.008 0.003 -0.006 -0.010 -0.021 0.038 

ScYPL009c - 81 0.015 -0.013 -0.019 0.000 0.019 -0.005 -0.021 

ScYPL009c - 82 0.005 0.012 0.034 -0.011 -0.008 -0.013 -0.006 

ScYPL009c - 83 0.002 -0.018 -0.026 0.005 -0.018 -0.008 0.007 

ScYPL009c - 86 0.014 -0.016 -0.018 0.006 0.010 -0.002 -0.005 
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Supplementary data S6 
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Projection of common basis matrix W, composed by combined information from phenotypic 

results (phen), microsatellite allelic profiles (ms), HPLC data (hplc) and GC-MS data (gcms). 

Legend: ms1–“ScAAT1-159”; ms2–“ScAAT1-171”; ms3–“ScAAT1-195”; ms4–“ScAAT1-201”; 

ms5–“ScAAT1-204”; ms6–“ScAAT1-213”; ms7–“ScAAT1-216”; ms8–“ScAAT1-219”;  

ms9–“ScAAT2-360”; ms10–“ScAAT2-369”; ms11–“ScAAT2-375”; ms12–“ScAAT2-378”;  

ms13–“ScAAT2-381”; ms14–“ScAAT2-390”; ms15–“ScAAT3-232”; ms16–“ScAAT3-241”;  

ms17–“ScAAT3-247”; ms18–“ScAAT3-259”; ms19–“ScAAT3-268”; ms20–“ScAAT4-290”;  

ms21–“ScAAT4-305”; ms22–“ScAAT4-311”; ms23–“ScAAT4-329”; ms24–“ScAAT4-332”;  

ms25–“ScAAT5-210”; ms26–“ScAAT5-219”; ms27–“ScAAT5-222”; ms28–“ScAAT5-256”;  

ms29–“ScAAT5-256”; ms30–“ScAAT5-259”; ms31–“ScAAT5-262”; ms32–“ScAAT6-256”;  

ms33–“ScAAT6-259”; ms34–“ScAAT6-262”; ms35–“C4-242”; ms36–“C4-245”; ms37–“C4-248”; 

ms38–“C4-251”; ms39–“C4-254”; ms40–“C4-257”; ms41–“C4-260”; ms42–“C5-111”; ms43–“C5-

113”; ms44–“C5-127”; ms45–“C5-129”; ms46–“C5-141”; ms47–“C11-189”; ms48–“C11-193”; 

ms49–“C11-197”; ms50–“C11-201”; ms51–“C11-211”; ms52–“C11-215”; ms53–“ScYPL009c-

256”; ms54–“ScYPL009c-265”; ms55–“ScYPL009c-298”; ms56–“ScYPL009c-301”;  

ms57–“ScYPL009c-304”; ms58–“ScYPL009c-307”; ms59–“ScYPL009c-310”; ms60–“ScYOR267-

278”; ms61–“ScYOR267c-287”; ms62–“ScYOR267c-290”; ms63–“ScYOR267c-311”;  

ms64–“ScYOR267c-320”; ms65–“ScYOR267c-323”; ms66–“ScYOR267c-329”; phen1–“18˚C”; 

phen2–“40˚C”; phen3–“pH 2”; phen4–“pH 8”; phen5–“KCl 0.75M”; phen6–“NaCl 1.5M”;  

phen7–“CuSO4 5mM”; phen8–“SDS (0.01% w/v)”; phen9–“Ethanol 6% (v/v)-liquid medium”; 

phen10–“Ethanol 10% (v/v)-liquid medium”; phen11–“Ethanol 14% (v/v)-liquid medium”;  

phen12–“Iprodion (0.05 mg/mL)”; phen13–“Iprodion (0.1 mg/mL)”; phen14–“Procymidon (0.1 

mg/mL)”; phen15–“Cycloheximide (0.05 µg/mL)”; phen16–“Cycloheximide (0.1 µg/mL)”;  

phen17–“KHSO3 (150 mg/L)”; phen18–“KHSO3 (300 mg/L)”; phen19–“Wine supplemented with 

glucose (0.5% w/v)”; phen20–“Wine supplemented with glucose (1% w/v)”;  

phen21–“Galactosidase activity”; phen22–“H2S production”; phen23–“Ethanol 12% (v/v)-solid 

medium”; phen24–“Ethanol 14% (v/v) + Na2S2O5 (50 mg/L)”; phen25–“Ethanol 12 % (v/v) + 

Na2S2O5 (75 mg/L)”; phen26–“Ethanol 12% (v/v) + Na2S2O5 (100 mg/L)”; hplc1–“Tartaric acid”; 

hplc2-“Glucose”; hplc3–“Malic acid”; hplc4–“Fructose”; hplc5–“Succinic acid”;  

hplc6–“Glycerol”; hplc7–“Acetic acid”; hplc8–“Ethanol”; gcms1–“Hexyl acetate”; gcms2–

“Butanoic acid”; gcms3–“Hexanoic acid”; gcms4–“Octanoic acid”; gcms5–“Decanoic acid”;  

gcms6–“Dodecanoic acid”; gcms7–“cis-3-hexenol”; gcms8–“Ethyl butanoate”; gcms9–“Ethyl 

hexanoate”; gcms10–“Ethyl octanoate”; gcms11–“Ethyl decanoate”; gcms12–Ethyl dodecanoate”; 

gcms13–“2-phenylethyl acetate”; gcms14–“3-methyl-1-butanol2; gcms15–“1-hexanol”;  

gcms16–“Phenylethanol”. 
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Research Article

Genotyping of Saccharomyces cerevisiae
strains by interdelta sequence typing using
automated microfluidics

Amplification of genomic sequences flanked by delta elements of retrotransposons TY1

and TY2 is a reliable method for characterization of Saccharomyces cerevisiae strains. The
aim of this study is to evaluate the usefulness of microfluidic electrophoresis (Caliper

LabChips) to assess the factors that affect interlaboratory reproducibility of interdelta

sequence typing for S. cerevisiae strain delimitation. We carried out experiments in two

laboratories, using varying combinations of Taq DNA polymerases and thermal cyclers.

The reproducibility of the technique is evaluated using non-parametric statistical tests

and we show that the source of Taq DNA polymerase and technical differences between

laboratories have the highest impact on reproducibility, whereas thermal cyclers have

little impact. We also show that the comparative analysis of interdelta patterns is more

reliable when fragment sizes are compared than when absolute and relative DNA

concentrations of each band are considered. Interdelta analysis based on a smaller

fraction of bands with intermediate sizes between 100 and 1000 bp yields the highest

reproducibility.

Keywords:

Capillary electrophoresis / Interdelta sequences / Non-parametric methods /
Saccharomyces cerevisiae DOI 10.1002/elps.201000640

1 Introduction

Biotechnological processes conducted by Saccharomyces
cerevisiae strains are gaining increasing importance. Track-

ing inoculated strains throughout productive processing is

necessary for quality assurance in fermentative processes

such as bioethanol production or wine fermentation.

Besides, yeast has been identified as an emerging human

pathogen capable of causing clinically relevant infections in

immune compromised patients [1, 2]. Therefore, quick and

accurate methods for yeast strains delimitation that rely on

high-throughput genotyping methods based on microflui-

dics systems can be of interest in both industrial and clinical

contexts.

Numerous molecular methods have been developed for

yeast strain characterization, such as chromosome separa-

tion by pulsed field electrophoresis [3, 4], restriction frag-

ment length polymorphism analysis of mitochondrial DNA

(mtDNA RFLP) [5–8], random amplified polymorphic DNA

(RAPD) [9], PCR fingerprinting followed by enzymatic

restriction of amplified DNA [10], multi locus sequence

typing (MLST) [11], microsatellite analysis [12–14], real-time

PCR [15, 16] and PCR-amplification of inter-delta sequences

[17, 18]. Delta sequences are flanking sequences (300 bp) of

retrotransposons TY1 and TY2 that are dispersed through-

out the genome (particularly in terminal chromosomal

regions), but can also be found as single elements. About

300 delta elements were described in the genome of the

laboratory strain S288c. Since the number and location of

delta elements have a certain intraspecific variability, they

are appropriate genetic markers for the identification of

polymorphisms. Amplification of interdelta regions between

neighboring delta sequences results in a mixture of differ-

ently sized strain-specific fragments. This PCR-based

method is easy to perform, cheap and rapid, and therefore

suitable for the characterization of high number of strains.

More recently, the interdelta method was improved by

the use of alternative primers (d12 and d21) [17] that bind
close to the initially described binding sites for primers d1
and d2 [18]. The combined use of these improved primer

combinations (d12/d21 or d12/d2) revealed greater banding

pattern polymorphism and improved discriminatory power

[13]. The use of primer pairs d12/d2 showed the same

discriminatory power of other methods for strain delimita-

tion, such as mtDNA RFLP, microsatellite analysis and

karyotyping [19]. However, this method requires careful

standardization of DNA concentration [20]. Occasional
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non-reproducible ‘‘ghost bands’’ are present due to the low

annealing temperature (431C), which is a disadvantage of

the interdelta method. Increasing the annealing tempera-

ture to 551C reduced ghost bands but leads to poorer

banding pattern and consequently reduced discriminatory

power [21]. In summary, PCR profiling analysis of delta

sequences is associated with good discriminatory power for

the analysis of commercial strains [22], but the use of this

typing method for routine analysis of yeast strains requires

careful evaluation [21, 23–26]. It is therefore advisable to use

additional methods such as mtDNA RFLP or microsatellite

analysis to confirm ambiguous results.

Fluorescent primers and automated DNA sequencers

improve significantly banding patterns containing weakly

amplified fragments [27], decreasing experimental error and

increasing data throughput, scoring and reliability [28].

When interdelta sequences are amplified with fluorescent

primers, followed by capillary electrophoresis, the resolution

of the obtained profiles is considerably increased in

comparison with standard agarose gel electrophoresis [29].

The efficiency of PCR amplification is affected by

numerous factors, namely annealing temperature, the

concentration of MgCl2, primers and template DNA. Even

slight variations in these parameters may affect results

compromising data comparisons and sharing between

experiments and laboratories [30]. The optimal reaction

conditions need to be optimized for each PCR application.

Microfluidics are gaining notoriety across broad

research fields, e.g. forensics, clinical and genetic analysis

[31–33]. Miniaturized reactions economize DNA samples,

reagents and analytical time considerably, and increase

sensitivity, throughput and automation possibilities [34, 35].

In the microfluidic chips for DNA analysis of the Caliper’s

LabChips system, DNA samples are electroosmotically

transported and fragmented inside the chip, separated by

capillary electrophoresis and finally analyzed using fluores-

cence detection [36].

Genome-wide studies of yeast inter-strain variability

require bio-databanks for biodiversity conservation,

sustainable development of genetic resources and equitable

sharing of genotypic data among laboratories. We consider

interdelta sequences amplification as a very useful method

for high-throughput characterization of S. cerevisiae strains,
which is easy to perform, cheap and rapid in comparison to

other molecular methods. The aim of this study is to eval-

uate the impact of two different Taq polymerases on the

interlaboratory reproducibility of interdelta sequence typing

for yeast strain delimitation using microfluidics electro-

phoresis (Caliper’s LabChips). Besides, we also evaluate the

impact of different thermal cyclers on the patterns obtained.

The study demonstrates that the reproducibility of the

technique is most affected by the source of Taq DNA poly-

merase and technical differences between laboratories such

as different operators. Interlaboratory reproducibility is

highest when fragment sizes between 100 and 1000 bp are

compared, rather than absolute and relative DNA concen-

trations of each band.

2 Materials and methods

2.1 Yeast strains and culture

S. cerevisiae strains used in this work were collected in the

Vinho Verde wine region (northwest Portugal) during

three consecutive vintages (2001–2003). From a collection

of 300 isolates, the 12 strains with highest genetic

heterogeneity, according to their allelic microsatellite

combinations for loci ScAAT1-ScAAT6 [37], were selected

using neuronal networks [38]. Strains were named as

follows: R8, R16, R20, R21, R30, R58, R60, R61, R62, R81,

R88 and R101.

2.2 Interdelta sequences amplification and analysis

Yeast cells were cultivated (36 h, 281C, 160 rpm) in 1 mL of

YPD medium (yeast extract 1% w/v, peptone 1% w/v,

glucose 2% w/v) and the DNA isolation was performed as

previously described [6]. Briefly, cells were suspended in a

sorbitol-containing buffer in the presence of lyticase for cell

wall degradation. Cells were then lysed by SDS addition,

followed by DNA purification with sodium acetate and

isopropanol to eliminate proteins, polysaccharides, RNA or

other cell constituents. Subsequently, DNA was precipitated

with ethanol, resuspended in TE and quantified (Nanodrop,

Thermo Scientific). DNA amplification was performed

recurring to primers d12 (50-TCAACAATGGAATCCCAAC-
30) and d2 (50-GTGGATTTTTATTCCAAC-30) [17]. Thirty

microliter of reaction mixture was prepared with 120 ng of

DNA, Taq buffer (10 mM Tris-HCl, 50 mM KCl, 0.08%

Nonidet P40), 50 pmoles of each primer, 0.4 mM of each

dNTP, 3 mMMgCl2 (MBI Fermentas) and 1.0 U of Taq DNA
polymerase. After initial denaturation (951C for 2 min), the

reaction mixture was cycled 35 times using the following

settings: 951C for 30 s, 43.21C for 1 min, 721C for 1 min,

followed by a final extension at 721C during 10min.

Characteristic PCR profiles of the 12 strains are shown in

Fig. 1.

An experimental strategy was devised to study the

reproducibility of the interdelta sequence amplification as a

typing method for yeast strains using 96-well PCR plates

and the following combinations of Taq DNA polymerase,

thermal cyclers and laboratories: plate 1 – commercial Taq
(MBI Fermentas recombinant Taq, Ref. EP0402), BioRad

MyCycler thermal cycler, laboratory 1 (eight replicates per

strain); plate 2 – in-house cloned and produced Taq, BioRad
MyCycler thermal cycler, laboratory 1 (eight replicates per

strain); plate 3 – in-house cloned and produced Taq,
Eppendorff Mastercycler thermal cycler, laboratory 1 (eight

replicates per strain); plate 4 – commercial Taq (MBI

Fermentas recombinant Taq Ref. EP0402) or in-house

cloned and produced Taq (four replicates per strain), BioRad
MyCycler thermal cycler, laboratory2. This approach resul-

ted in 32 replicates for each strain and a total of 384 elec-

trophoretic banding patterns. The four microplates thus
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included the following conditions to be compared:

A – commercial Taq, BioRad thermal cycler, laboratory 1;

B – in-house Taq, BioRad thermal cycler, laboratory 1;

C – in-house Taq, Eppendorff thermal cycler, laboratory

1; D – commercial Taq, BioRad thermal cycler, laboratory 2;

E – in-house Taq, BioRad thermal cycler, laboratory 2. Both

laboratories used the same DNA samples and the same in-

house cloned and commercial Taq enzymes. Amplifications

were carried out with the same PCR buffer (MBI Fermentas,

Ref. B33). PCR products were analyzed using a high-

throughput automated microfluidic electrophoresis system

(Caliper LabChips 90 Electrophoresis System) and a 96-well

plate format, according to the manufacturer’s instructions.

The tolerance of the sizing resolution for this system is

715% (from 25 to 100 bp), 710% (from 100 to 150 bp),

75% (from 150 to 700 bp) and 710% (from 700 to

1000 bp).

2.3 Statistical analysis of electrophoretic data

The size (bp) and concentration (ng of DNA) of each

band was determined using the LabChips HT software

(version 2.6) and exported to the software SPSS 18.0 package

for the composition of a matrix containing data for

each band of the 32 replicates banding patterns from each

strain. Each band was analyzed and compared in terms

of fragment sizes (bp), absolute DNA concentration

(ng/ml) and relative DNA concentrations (%) (absolute

concentration value was divided by the sum of all

concentration values of all bands contained in a replicate

banding pattern). An exploratory data analysis was

performed, where normality distribution (Kolmogorov–

Smirnov and Shapiro–Wilk tests) and variance homogeneity

(Levene’s test) were tested using SPSS 18.0. After several

unsuccessful transformations of the data, non-parametric

tests were performed, such as ‘‘Kruskal–Wallis one-way

analysis of variance’’ test, to check for the equality of

treatment medians among the different groups. More

precisely, the null hypothesis (H0) assuming equality of all

medians was tested against the alternative hypothesis (H1),

which assumes that at least two of the strains show

differences in their medians, as outlined below:

H0 : y1 ¼ y2 ¼ � � � ¼ y12 versus

H1 : 9ði;jÞ : yi 6¼ yj for some i 6¼ j
ð1Þ

where yi represents the median concentration (or percen-

tage of concentration) for the ith strain, i5 1,y,12.

In cases where the test produced statistical significant

differences between strains, multiple pairwise comparisons

were performed to trace the origin of such differences. The

method proposed by Conover and Iman [39] searches for

comparative magnitudes of the means based on the rank

data and assumes the t-student distribution. The test is

based on the following expression:

Ri

ni
� Rj

nj

����
���� � t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ðN � 1�HCÞ

N � k

1

ni
1

1

nj

� �
1�a

2

s
ð2Þ

with t1�(a/2) the (1�a/2) quantile of a t-student distribution
with (N�k) degrees of freedom, k the number of groups, Hc

the value for the test statistic of the Kruskal–

Wallis test corrected for ties and S2 the corresponding

variance.

3 Results

3.1 Electrophoretic profile of the S. cerevisiae strains

Interdelta fragments of 12 genetically heterogeneous strains

were amplified, using primers d12 and d2 and were

analyzed using automated microfluidics electrophoresis

(Caliper LabChips 90 Electrophoresis System). To evaluate

the inter-laboratorial reproducibility of the banding patterns

and to determine which combination of Taq DNA polymer-

ase and thermal cycler produced the most reproducible

banding patterns between both laboratories, the experi-

mental design included different combinations of the

mentioned factors, as described in Section 2. Unique

banding patterns were obtained for each strain (Fig. 1).

The most common band was present in 9 out of the 12

strains and had a size of approximately 400 bp. Quantitative

Figure 1. Electrophoretic profile of the PCR-
amplified interdelta regions of 12 S. cerevi-
siae strains. Amplification was performed
using primers d12 and d2, and PCR products
were analyzed in the Caliper LabChips 90
Electrophoresis System. The darker bands
at 15 and 7000 bp represent co-injected
internal markers.
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and qualitative analysis of each band was performed using

the software package of the electrophoresis system, using

the values of the co-injected internal markers (gel bands at

15 and 7000 bp) as a reference. The analysis presented

herein is based on the length of the amplified fragments

(bp), and the absolute and relative (%) values of DNA

concentration (ng/mL) of each band, as outlined in Section 2.

Figure 2 shows an example of 32 replicate banding

patterns of a representative strain tested under the condi-

tions indicated in the first paragraph of Section 2. Fragment

sizes showed high reproducibility between replicates of the

same condition and between conditions. Considerable

differences were observed when, for each experimental

condition, DNA concentrations were compared. The most

intense banding patterns were obtained in laboratory 1,

using in-house cloned and produced Taq and the Eppendorff

thermal cycler (condition C), followed by condition B and A.

The in-house produced Taq polymerase (C) amplified PCR

products more efficiently than commercial Taq (B). This

agrees with the slightly stronger banding patterns of

condition E compared to condition D in laboratory 2. These

trends were similar for the other 11 strains (data not shown).

One of eight replicates of condition A (corresponding to the

8th lane of Fig. 2) failed amplification for most strains due

to lateral evaporation of the PCR reaction mixture during

cycling in the 96-well plates. These replicates were excluded

from further analysis.

3.2 Reproducibility of PCR-based interdelta typing

Our main goal in this study was to identify statistically

significant differences between the banding patterns of yeast

strains, generated under conditions A–E (see above), to

enhance reproducibility of interdelta sequence analysis

between laboratories. In the first step of the statistical

analysis, the data were verified for normality between the 12

strains and the corresponding homogeneity of variances.

Kolmogorov–Smirnov and Shapiro–Wilk tests were used to

investigate the normality assumption. The results (data not

shown) revealed that our data did not follow a normal

distribution since all p-values were approximately zero

(o0.001) and, therefore, smaller than any of the usual

levels of significance considered (1, 5 and 10%). Homo-

geneity of variances between strains was tested using

Levene’s test. This condition was also not satisfied by the

data (data not shown), as p-values were approximately zero

(o0.001) for both variables in the study. In an attempt to

satisfy both normality and homogeneity of variances, data

were transformed using logarithm of base 2 and inverse

values of absolute or relative concentrations. New variables

were created in SPSS, both for absolute and relative values.

Once again, the normality and homogeneity of variance

assumptions were rejected (data not shown), which lead us

to use non-parametric tests.

The Kruskal–Wallis one-way analysis of variance was

used to test equality of medians among the groups of strains

corresponding to each of the previously mentioned condi-

tion (A–E), using the formula (1) shown in Section 2. The

median was the measure of centrality for this test. It was

expected that, in case of reproducibility, all strains should

have similar results, meaning that the values of concentra-

tion (absolute or relative) and of fragment sizes (bp) should

not differ in terms of the median values. However, the

Kruskal–Wallis test rejected the equality of medians

between groups because once again the p-values were

approximately 0 (o0.001). The following approach consisted

in searching for differences in terms of the median values of

fragment sizes (bp) and concentration values (absolute and

relative) between strains. This approach was repeated for the

distinct experimental conditions used (A–E) in order to

search for the factors that most affect the reproducibility of

the technique among the conditions A–E. Based on the

results from the Kruskal–Wallis one-way analysis of

variance, we assumed that at least two strains showed a

difference in the medians. To identify the strains that lead to

the rejection of the equality of the medians, Multiple Pair-

wise Comparisons, pooling the data for all 32 replicates per

strain, were performed. All 3892 values (the total number of

observations regarding all experiments, i.e. all bands of the

32 replicates of the 12 strains) were ordered by increasing

numbers and a rank score was calculated for identical values

of absolute and relative concentrations. Then, the formula

(2) shown in Section 2 was applied for pairwise strain

Figure 2. Replicates of the interdelta band-
ing patterns of S. cerevisiae strain R81,
obtained under different amplification
conditions. (A) Commercial Taq, BioRad
thermal cycler, laboratory A; (B) in-house
Taq, BioRad thermal cycler, laboratory A;
(C) in-house Taq, Eppendorff thermal
cycler, laboratory A; (D) commercial Taq,
BioRad thermal cycler, laboratory B; (E) in-
house Taq, BioRad thermal cycler, labora-
tory B.
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comparisons, based on a t-student distribution to search for

the origins of the differences between experimental condi-

tions. The results of this test are summarized in Table 1, for

each pair compared, for each strain and using the fragment

size (bp), as well as absolute and relative DNA concentration

values. Statistical significant differences were observed

when comparing all 3892 records against each other, being

the significant ones (based on a t-student significance test)

represented with gray squares in Table 1. In the bottom part

of this table (last three lines), overall percentages are

represented considering the differences between strains and

between conditions, both for fragment size base pairs and

absolute and relative DNA concentrations values. The inter-

laboratory banding patterns reproducibility was rather low

as observed by the distribution of gray squares in the

corresponding main columns. Significant differences were

found between strains analyzed in the two laboratories. The

lack of reproducibility of these experiments between

laboratories was not visible when analyzing the intervals of

overall percentages. One could see that these intervals were

very comprehensive (including 0 and 100%) and that this

analysis was inconclusive for these comparisons. The

reasons for this could be due to strain-specific effects and

also to the extreme values included in the statistical. For

example, strain R101 was associated with 0% of statistically

significant differences regarding absolute DNA concentra-

tion, while for strain R88, regarding fragment size 100% of

significant differences were obtained. The cloned and in-

house produced Taq increased reproducibility between

laboratories relative to commercial Taq. The comparison

between Taq polymerases produced data heterogeneity

between laboratories. Low and high reproducibility was

found between enzymes for laboratory 1 and 2, respectively

(columns 3 and 4). This was shown by the higher number of

gray squares in column 3 in comparison to column 4, and

also by the intervals of overall percentages of significant

Table 1. Comparison between experimental conditions (enzymes, thermal cyclers and laboratories) for each strain, based on the

fragment sizes (bp), absolute and relative DNA concentration of each band of each strain, using Multiple Pairwise Testing

based on a t-student distribution

Shaded squares represent statistical significant differences. Each square is associated with one pair of comparisons.
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differences (75–100% compared to 8–50% regarding frag-

ment length; 16–100% compared to 0–42% regarding

absolute concentration values; 83–100% in comparison to

0–58% regarding relative concentration values).

Regarding the different thermal cyclers used, experi-

mental variation in laboratory 2 lead to more reproducible

results, as shown by the comparison of fragment sizes. This

reproducibility was not so evident when comparing absolute

and relative concentration values.

When analyzing all conditions together, the comparison

of absolute DNA concentration values produced the most

reproducible results, followed by fragment size and relative

DNA concentration values. Relative concentration values

should not be used, however, because in replicate analysis of

strains under different experimental conditions, distinct

numbers of fragments were obtained, affecting the ratios of

relative concentration.

3.3 Comparison of different experimental conditions

for strains delimitation

To identify the experimental condition that best differentiate

the 12 yeast strains, statistical analysis of the differences

between group medians for each experimental condition

was performed. For each experimental condition (from A to

E), the percentage of significant differences between the

strains was calculated (excluding the comparisons between

the same strain for each experimental condition). Figure 3

shows that combination C (in-house cloned Taq, Eppendorff
thermal cycler, laboratory 2) lead to the highest percentages

regarding size, absolute and relative DNA concentration

values. This suggests that this is the most suitable

combination of experimental conditions for strain delimita-

tion using interdelta banding patterns. Regarding fragment

size and relative DNA concentration, these percentages were

almost 100, meaning that the 12 electrophoretic patterns

would correspond to 12 different strains. On the contrary,

combinations A (Commercial Taq, BioRad thermal cycler,

laboratory 2), D (Commercial Taq, BioRad thermal cycler,

laboratory 1) and E (in-house Taq, BioRad thermal cycler,

laboratory 1) were less capable of differentiating strains with

only 28.79, 51.52 and 40.91% of correctly delimited strains

regarding fragment sizes, respectively. Similar results were

observed when comparisons were performed based on

absolute and relative DNA concentrations. In general terms,

the use of in-house cloned Taq polymerase led to better

results than the use of commercial Taq polymerase, as can

be observed when comparing combination A and D

(commercial Taq) with combinations B, C and E (in-house

Taq). Regarding the laboratories where the PCR reactions

were carried out, the strain patterns in laboratory 2 were

better separated than those obtained in laboratory 1

(combinations A, B and C versus combinations D and E).

The best results regarding strains differentiation were

obtained when using relative DNA concentration values

(100% with combinations B and C); however, the latter

produced biased results. This is explained by the fact that, to

calculate the relative DNA concentration values, the absolute

values were divided by the sum of all concentration values of

all bands contained in a banding pattern. In replicate

analysis of different experimental conditions, distinct

numbers of fragments were obtained affecting the ratios

of relative concentration, leading to overestimated strain

delimitation. Due to this, we consider that the percentages

obtained for the analysis of absolute DNA concentrations are

more realistic to delimitate strains than relative DNA

concentration value. Fragment length analysis is the

preferable measure for typing of yeast strains using

interdelta fragments amplification, even though the repro-

ducibility associated was smaller compared to absolute

values of concentration (Table 1), but producing more

consistent results without introducing biases in the

reproducibility of the technique.

3.4 Determination of identical banding patterns for

each strain in all conditions

To gain further insight into the reproducibility of the

interdelta sequence typing method, we tried to identify for

each strain the bands that were amplified across the A–E

experimental conditions. Strain R60, which showed a very

different banding pattern was excluded from this analysis.

As shown in Table 1, three to seven bands in the range of

100–900 bp were apparent in all 32 replicates of each strain.

The respective standard deviations were rather low, ranging

from 1.3 to 15.6 bp. Additional bands were mostly found for

fragment sizes between 1000 and 1500 bp or below 100 bp

and were not represented because of lack of reproducibility.

Some intermediate fragments were also not included in

Table 2 because they were represented only in some

Figure 3. Comparison between the tested conditions for the
delimitation of 12 yeast strains, regarding fragment sizes (in bp),
absolute and relative DNA concentration values. Percentages
indicate the differences found between strains when performing
statistical analysis of the differences between group medians
considering each experimental condition: (A) Commercial Taq,
BioRad thermal cycler, laboratory A; (B) in-house Taq, BioRad
thermal cycler, laboratory A; (C) in-house Taq, Eppendorff
thermal cycler, laboratory A; (D) commercial Taq, BioRad
thermal cycler, laboratory B; (E) in-house Taq, BioRad thermal
cycler, laboratory B.
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experimental conditions. Reproducibility would approxi-

mate to 100%, if only the bands included in Table 2 would

be used for comparison of fragment sizes.

4 Discussion

The improved interdelta method [17] is suitable for the

typing of yeast strains [19]. This method is simple, rapid and

less expensive than others, such as sequencing and

microsatellite amplification. Although less rigorous than

other techniques as multi locus sequence typing or

microsatellite amplification, the PCR-based interdelta meth-

od is suitable for high-throughput analysis of large strain

collections using microfluidic electrophoresis. The amplifi-

cation of interdelta regions results in a mixture of differently

sized specific fragments. As previously shown by BLAST

analysis [17], the sequences of fragments obtained by

amplification with primers d12 and d21 matched the

predicted interdelta regions. We have designed an inter-

laboratory approach to evaluate the performance and the

reproducibility of this method as a high-throughput typing

approach for the genetic characterization of yeast strains.

The comparative approaches that we describe herein can

contribute to the constitution of bio-databanks for equitable

sharing of genotypic data among laboratories in the context

of biodiversity conservation and sustainable development of

genetic resources. However, it is crucial to find a set of

parameters leading to most reproducible patterns between

laboratories.

As outlined in Section 2, interdelta sequences of 12

strains were amplified, under varying conditions (Taq DNA

polymerase, thermal cycler and laboratory). Interdelta

sequence typing showed the reproducibility necessary for

implementation as a typing method for multiple (4 or 8)

replicates of one strain, under identical experimental

conditions. The use of the microfluidic LabChips system

greatly contributed to achieve very precise data with a high

resolution, as reported in previous works [28, 29].

In general, DNA amplification depends on numerous

factors such as the method of DNA isolation, the concen-

trations of DNA, primers, MgCl2, dNTPs, the Taq poly-

merase and the annealing temperature. In the present work,

only one DNA extraction was performed for each strain, and

the same DNA was used by both laboratories, being there-

fore no variable in our experiments. Our (unpublished)

results showed that the DNA extraction protocol used is the

most appropriate and leads to much better results than an

extraction method using phenol. DNA quantification was

performed in the NanodropTM system, which allowed

unambiguous evaluation of the DNA quality. In recent

publications [17, 19, 23, 26, 29, 40], DNA concentration

values were in the range of 0.1–2.5 ng/mL (final concentra-

tion). Fernandez-Espinar (2001) showed that the optimal

DNA quantities ranged from 0.6 to 2.5 ng/mL (final

concentration). The highest number of bands was amplified

using the concentration of 2.5 ng/mL, which is similar to the

concentration used throughout this work (4 ng/mL). In the

publications mentioned above, optimal MgCl2 concentra-

tions ranged from 1.5 to 3.0 mM, whereas the primer and

dNTP concentrations were in the range of 1 to 1.67 mM and

200 to 400 mM, respectively. In our (unpublished) optimi-

zation approaches, we found that more fragments were

amplified when using 3.0 mM MgCl2, 400 mM dNTPs and

Table 2. Fragment sizes (bp, average value and standard deviation) that were present in all 32 replicates of each strain

Strains

Average size (bp)

of reproducible

fragments

R8 R16 R20 R21 R30 R58 R61 R62 R81 R88 R101

97 9772.1 9672.4 9672.1 9672.1 9672.2 9671.9 9672 9672.1 9671.9 10771.8

134 13472 13471.9

161 15671.7 16772 15771.3 16273

188 18972.1 18671.3

205 20571.7

231 23272 23171.5 23174.4

262 26272.1

285 28572

320 32673.5 31474

348 34878.7 34974.5 34774.4 34674.4

371 37173.7

425 42574 42577 42775.7 42773.5 42473.7 42773.9 42373.4 42673.2 42174.8

458 45376.2 46273.5

486 48275.8 48975.3

531 531713.2

680 68078.7

721 721718.5

899 899715.6
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1.67 mM of each primer. We suppose that these higher

concentrations of primers and dNTPs are necessary to

amplify a group of fragments, contrarily to a PCR reaction

where just one single band is amplified.

The main objective of the present work was to show

the extent of variation due to factors such as the DNA

polymerase or the thermal cycler. A commercial Taq DNA

polymerase and an in-house cloned and produced Taq were

used, and different amplification patterns were found. In

our (unpublished) optimization approaches, several

commercial Taq enzymes were tested, whereas the Taq
polymerase used in this study revealed to be most

suitable for interdelta amplification. The choice of the

polymerase is therefore important before setting up

PCR reactions. Several factors can contribute to the differ-

ences found between the commercial and the in-house

cloned Taq, such as the preparation method (residual

salt content), and/or an inaccurately measured enzymatic

activity of the in-house Taq. Besides, this Taq might

be less purified and contain residual cellular compounds

that could contribute to better performance. All references

regarding interdelta amplification report a quite low

annealing temperature (predominantly 43–461C) [17–20, 22,
26, 29, 41]. Higher temperatures (551C) lead to a more

stable fragment profile, but reduce significantly the

number of bands that are amplified [21]. Our previous

(unpublished) data revealed that 43.21C was the best

temperature to achieve both a high number of amplified

bands and increased reproducibility of the electrophoretic

profiles.

Although the DNA samples used for interdelta frag-

ments amplification were the same for both laboratories, the

accomplishment of experiments in different laboratories,

the use of different Taq DNA polymerases and thermal

cyclers reduced reproducibility. In fact, the same isolate

could be considered as a different strain if typed in different

laboratories, due to the experimental variation associated

with the conditions A–E. The highest variability was asso-

ciated with the source of Taq DNA polymerase and to

laboratory-specific technical details, whereas the effect of the

thermal cycler was low. Both laboratories used the same

aliquot of Taq polymerase. If different batches from the

same supplier were used in both laboratories, it is possible

that the reproducibility would be even more affected.

Despite the mentioned limitations, PCR amplification of

interdelta sequences is most indicated for the typing of large

strain collections, and a high reproducibility is achieved for

replicates within the same experimental conditions. When

considering interlaboratory experiments, a careful standar-

dization of all the factors that can interfere with the PCR

reaction is mandatory to eliminate variability caused by the

source of Taq DNA polymerase and minor experimental

differences between laboratories. This study also demon-

strates that, for reliable data sharing between laboratories,

comparative interdelta sequence analysis should be based on

a reduced number of bands that lead to reproducible

banding pattern profiles.
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Abstract

Saccharomyces cerevisiae strains from diverse natural habitats harbour a vast amount of phenotypic diversity, driven by
interactions between yeast and the respective environment. In grape juice fermentations, strains are exposed to a wide
array of biotic and abiotic stressors, which may lead to strain selection and generate naturally arising strain diversity. Certain
phenotypes are of particular interest for the winemaking industry and could be identified by screening of large number of
different strains. The objective of the present work was to use data mining approaches to identify those phenotypic tests
that are most useful to predict a strain’s potential for winemaking. We have constituted a S. cerevisiae collection comprising
172 strains of worldwide geographical origins or technological applications. Their phenotype was screened by considering
30 physiological traits that are important from an oenological point of view. Growth in the presence of potassium
bisulphite, growth at 40uC, and resistance to ethanol were mostly contributing to strain variability, as shown by the principal
component analysis. In the hierarchical clustering of phenotypic profiles the strains isolated from the same wines and
vineyards were scattered throughout all clusters, whereas commercial winemaking strains tended to co-cluster. Mann-
Whitney test revealed significant associations between phenotypic results and strain’s technological application or origin.
Naı̈ve Bayesian classifier identified 3 of the 30 phenotypic tests of growth in iprodion (0.05 mg/mL), cycloheximide (0.1 mg/
mL) and potassium bisulphite (150 mg/mL) that provided most information for the assignment of a strain to the group of
commercial strains. The probability of a strain to be assigned to this group was 27% using the entire phenotypic profile and
increased to 95%, when only results from the three tests were considered. Results show the usefulness of computational
approaches to simplify strain selection procedures.
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Introduction

Most European wine producers use commercial starter yeasts to

guarantee the reproducibility and the predictability of wine

quality. The advantages of fermentations containing Saccharomyces

cerevisiae starter cultures relies on the fact that they are rapid and

produce wine with desirable organoleptic characteristics through

successive processes and harvests [1,2]. In these fermentations the

winemaker has control over the microbiology of the process,

because it is expected that the inoculated yeast strain predominates

and suppresses the indigenous flora. Currently, there are about

200 commercial S. cerevisiae winemaking strains available, and it is

a common practice among wineries to use commercial starter

yeasts that were obtained in other winemaking regions.

S. cerevisiae strains from diverse natural habitats harbour a vast

amount of phenotypic diversity [3], driven by interactions between

yeast and the respective environment. In grape juice fermenta-

tions, strains are exposed to a wide array of biotic and abiotic

stressors [4], which may lead to strain selection and generate

naturally arising strain diversity. Outside the wineries, this

diversifying selection occurs due to unique pressures imposed

after expansion into new habitats [5–9]. This agrees with findings

showing that wine and sake strains are phenotypically more

diverse than would be expected from their genetic relatedness

[10].

Recent phylogenetic analyses of S. cerevisiae strains showed that

the species as a whole consists of both ‘‘domesticated’’ and ‘‘wild’’

populations. DNA sequence analysis revealed that domesticated

strains derived from two independent clades, corresponding to

strains from winemaking and sake. ‘‘Wild’’ populations are mostly

associated with oak trees, nectars or insects [11–13]. Although

some S. cerevisiae strains are specialized for the production of
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alcoholic beverages, they were derived from natural populations

that were not associated with industrial fermentations. This was

proposed once that the oldest lineages and the majority of

variation were found in strains from sources unrelated to wine

production [14].

The phenotypic diversity of S. cerevisiae strains has been explored

for decades in strain selection programmes to choose the ones that

enhance the wine’s sensorial characteristics and confer typical

attributes to specific wines. These strains are used as commercial

ones by winemakers to efficiently ferment grape musts and

produce desirable metabolites, associated with reduced off-flavours

[15,16]. Strain selection approaches are mentioned in many

studies aiming to characterize S. cerevisiae isolates obtained from

winemaking regions worldwide. The most relevant physiological

tests refer to fermentation rate and optimum fermentation

temperature, stress resistance (ethanol, osmotic and acidic), killer

phenotype, sulphur dioxide (SO2) tolerance and production,

hydrogen sulphide (H2S) production, glycerol and acetic acid

production, synthesis of higher alcohols (e.g. isoamyl alcohol, n-

propanol, isobutanol), b-galactosidase and proteolytic enzyme

activity, copper resistance, foam production and flocculation [17].

In our previous work [18] we evaluated the phenotypic and

genetic variability of 103 S. cerevisiae strains from the Vinho Verde
wine region (Northwest Portugal). We then applied several data

mining procedures to estimate a strain’s phenotypic behaviour

based on its genotypic data. We used mainly taxonomic tests and

strains from winemaking environments of one geographical origin.

This study was, to our best knowledge, the first attempt to

computationally associate genotypic and phenotypic data of S.
cerevisiae strains. We used subgroup discovery techniques to

successfully identify strains with similar genetic characteristics

(microsatellite alleles) that exhibited similar phenotypes.

Within the present study we expanded the strain collection to

172 isolates from worldwide geographical origins and technolog-

ical groups (wine, bread, sake, etc.) and included 30 tests with

biotechnological relevance for the selection of winemaking strains.

Our objective was to gain a deeper understanding of the

phenotypic diversity of a global strain collection and to infer

computational models that predict the biotechnological potential

or geographic origin of a strain from its phenotypic profile.

Results

Phenotypic characterization of the strain collection
A Saccharomyces cerevisiae collection was constituted with 172

strains obtained from different geographical origins as shown in

the map in Figure 1. As detailed in Table S1 (supplementary data),

the technological applications or environments from where the

strains were derived were: wine and vine (74 isolates), commercial

wine strains (47 isolates), other fermented beverages (12 isolates),

other natural environments – soil woodland, plants and insects (12

isolates), clinical (9 isolates), sake (6 isolates), bread (4 isolates),

laboratory (3 isolates), beer (1 isolate), and four isolates with

unknown origin.

A phenotypic screen was devised to evaluate strain-specific

patterns for a set of physiological tests, including also tests that are

important for winemaking strain selection. The first group of tests

were performed in microplates using supplemented grape must,

whereas a high reproducibility was obtained between experimental

replicates. The second set of tests consisted in the evaluation of

growth in solid culture media (BiGGY medium, Malt Extract Agar

supplemented with ethanol and sodium metabisulfite). Galactosi-

dase activity was evaluated by growth evaluation using Yeast

Nitrogen Base supplemented with galactose, as indicated in the

materials and methods section. After incubation, growth was

evaluated by visual scoring (solid media) or by A640 determination

(liquid media). Table 1 summarizes the number of strains

belonging to each of the phenotypic classes. Similarities between

strains were evident, but each strain showed a unique phenotypic

profile.

A total of 5160 phenotypic data points were obtained, from 172

strains and 30 tests. The concentrations of the added compounds

were chosen to obtain a wide range of tolerance patterns. As

expected, all strains grew well at 30uC, contrary to the growth at

40uC, where a large phenotypic diversity was observed. Most

strains were able to grow well at pH 8, contrarily to the pH value

of 2. As expected, cellular growth decreased with increasing

concentrations of ethanol (6–14% v/v, liquid media), whereas only

five isolates were able to grow well at the highest ethanol

concentration of 14% (v/v). When ethanol was combined with

sodium metabisulfite in solid culture media, growth was reduced

with increasing concentrations of ethanol (12 to 18%, v/v) or

sodium metabisulfite (50–100 mg/L). Resistance to sulphur

dioxide, which is an antioxidant and bacteriostatic agent used in

vinification, was tested by growth in the presence of wine must

supplemented with potassium bisulphite (KHSO3). For the

concentrations of 150 and 300 mg/L, 101 and 67 strains achieved

the highest class of growth, respectively. Resistance to the

fungicides iprodion, procymidon and to cycloheximide was rather

high at the indicated concentrations. Hydrogen sulphide produc-

tion was tested using BiGGY medium. The majority of the strains

were intermediate H2S producers with the exception of one strain

(from the group of wine and vine strains) that did not produce

H2S.

A global view of strain’s phenotypic diversity is shown in

Figures 2 and S1. Principal component analysis (PCA) of

phenotypic data (Figure 2) show the segregation of all 172 strains

(scores) and the loadings for phenotypic variables in the first two

PCA components. The phenotypes responsible for the highest

strain variability (Figure 2a) were associated with growth patterns

in the presence of potassium bisulphite (KHSO3), at 40uC, in a

finished wine supplemented with glucose (0.5%, w/v), and

resistance to ethanol in liquid media (10 and 14%, v/v). PC-1

(31%) and PC-2 (15%) explained 46% of strain variability and

segregated strains by phenotypic behaviour into some patterns, as

shown in Figure 2b. The group of sake strains (dark dot) and the

group of natural strains (dark square), tended to be separated by

the second component, accumulating in the lower part of the

PCA, indicating that they were influenced by the presence of

ethanol in the medium (higher resistance), and by the growth in

the presence of potassium bisulphite (300 mg/L, lower resistance).

Strains isolated from vines or wine (dark star) showed a

heterogeneous phenotypic behaviour since they were dispersed

throughout the PCA plot for both components. A similar tendency

was observed for commercial strains (light star); however, the

majority of strains tended to concentrate in the upper part of the

PCA, indicative of a trend to higher KHSO3 resistance and lower

ethanol resistance. The nine clinical strains were distributed in

both PCA components, showing no discriminant results in any of

the phenotypic tests.

UPGMA (Unweighted Pair Group Method with Arithmetic

Mean) algorithm was used to hierarchical cluster the 172 strains.

The dissimilarity between two strains was measured using

Euclidean distance (Figure S1). The combined phenotypes of

wine strains did not separate this group of strains that were rather

scattered throughout all the clusters. Commercial strains (light star)

tended to be more predominant in the clusters shown in the lower

Prediction of Winemaking Yeast Potential
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part of the dendogram, where some of the clusters are constituted

only by commercial strains.

We further analysed phenotypic diversity through k-means

clustering algorithm. Using silhouette score [19] we identified 3

distinct clusters (Table 2), composed of 38, 90 and 44 strains

respectively. The phenotypes that most distinguished the strains, as

indicated by high values of information gain to classify strains into

clusters, were growth at the highest and lowest temperature tested

(18 and 40uC). Cluster 2 was constituted of strains that didn’t grow

at both 18 and 40uC, whereas cluster 1 and 3 included strains that

grew at both temperatures, but with more pronounced growth at

40uC, in particular for strains of cluster 3. Other tests that were

also relevant for the cluster separation included growth in the

presence of NaCl (1.5 M), KHSO3 (150 and 300 mg/L), ethanol

6% (v/v) and at pH 2. The strain cluster membership is displayed

in the phenotypic data PCA visualization (supplementary

Figure S2).

Statistical analysis
The number of strains belonging to each group of technological

applications or environment varies between 1 and 74. To assess a

possible influence of a sample bias, due to an unequal number of

representatives from each group, we determined the 95%

confidence intervals for average Manhattan distance [20] between

two strains in a selected group (composed by at least 5 strains). The

distance was estimated based on the strain’s entire phenotypic

profile. The lower and upper bound of each confidence interval

were determined by percentiles of average distances for 10000

bootstraps samples. For example, with this analysis we show that

while the group of commercial strains (47 isolates) includes 31

commercial strains isolated in France, this should not bias our

statistical analysis on utility of strains. Namely, the 95% confidence

interval for average distances between pairwise combinations of

commercial strains from France (6.37, 8.01) overlaps with the

confidence interval of commercial strains from other geographical

origins (4.97, 8.13). The inclusion of a high number of strains from

France does not change the limits of the confidence interval of the

group of commercial strains. A similar result was observed for the

group of wine and vine strains that includes numerous strains from

Portugal: the 95% confidence interval for average distances

between pairwise combinations of strains from Portugal (8–12,

9.83) overlaps with the same interval for wine and vine strains

from other geographical locations (8.06, 9.59).

Mann-Whitney test is mostly used to identify statistically

significant associations between two data sets in which data

instances in each group are measured on ordinal level and when

there is an unequal number of members in the classes to be

compared. This test was used to search for relationships between

phenotypic results for the 172 strains, and their shared geograph-

ical origin or technological application group. After the dichoto-

mization of variables (geographical origin and technological

application or origin), Mann-Whitney test was performed for each

phenotypic variable and p-values were computed and further

adjusted using Bonferroni correction. Statistical analysis using

Mann-Whitney test revealed 300 associations between phenotypes

and technological application or origin of strains, whereas

statistical significance was found for 11 associations (Bonferroni

adjusted p-value lower than 0.1). For each phenotypic test, we

computed the probability of each phenotypic class (0–3) according

to its contribution to the observed association. The most significant

associations between a phenotypic class and a technological group

are reported in Table 3. Two associations were found for the

resistance to iprodion, whereas class 3 and 2 were associated with

strains collected from wine/vineyards and commercial strains,

respectively. Capacity to grow in the presence of potassium

bisulphite (150 mg/mL, classes 2 and 3) was associated with

commercial wine strains. Natural isolates (87%–89%) were

associated with class 2 of growth in wine supplemented with

glucose, both at 0.5 and 1% (w/v), contrarily to 57% of

commercial strains that were unable to grow in wine supplement-

ed with glucose (0.5%, w/v). The lower ability of commercial

strains to grow at higher ethanol concentrations was also

supported by the finding of one significant association for absent

growth (class 0) in liquid medium containing ethanol (14%, v/v).

Figure 1. Geographical location of 172 yeast strains. Underlined identifiers indicate the original designation of sequenced strains [12]. Symbols
represents the strains technological applications or origin: black star – wine and vine; grey star – commercial wine strain; black square – clinical; grey
square – natural isolates; black circle – sake; grey circle – other fermented beverages; black pentagon – beer; grey pentagon- baker; black rectangle –
laboratory; grey rectangle – unknown biological origin.
doi:10.1371/journal.pone.0066523.g001
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About half of the strains included in the groups shared the inability

to grow in must containing SDS (0.01%, w/v) and CuSO4

(5 mM), but grew well in cycloheximide-supplemented must (76%

of strains, class 2). An identical approach was undertaken to find

associations between the phenotypic results and the geographical

origin of strains, but no statistically relevant results were obtained

(data not shown).

Prediction of technological group based on phenotypic
results
Our next objective was to construct a model that would predict

strain’s technological group from its phenotypic profile. K-nearest

neighbour algorithm (kNN) and naı̈ve Bayesian classifiers [21], as

implemented in the Orange data mining software were used for

modelling.

The predictive performance of both classifiers was evaluated in

terms of area under the Receiver-Operating-Characteristics

(ROC) curve, using 5-fold cross validation [22]. Table 4 shows

the confusion matrix of naı̈ve Bayesian classifications in test data

sets of cross-validation; kNN results are not shown, as these were

similar for both modelling techniques. Cross validated AUC score

was 0.70. Correct assignments were found for the larger groups of

commercial wine strains and strains obtained from wine and

vineyards, where 36 (77%) and 54 (73%) strains respectively, were

accurately allocated. The same computational technique was also

used to explore which phenotypes mostly contributed to the

assignment of a strain to the commercial wine group. Figure 3

represents a nomogram that shows naı̈ve Bayesian classifier results

[23]. Three phenotypes were considered by the classifier as the

ones contributing more positively to build the model, having the

remaining ones a smaller impact. To predict the commercial

potential of a strain, the contribution of each phenotype was

scored in the scale from 2100 to 100, and the individual scores

were summed-up to read-out the probability of the predicted class.

For the present data set, growth in must containing the fungicide

Table 1. Number of strains belonging to different phenotypic classes, regarding values of optical density (Class 0: A640 = 0.1; Class
1: 0.2,A640.0.4; Class 2: 0.5,A640.1.0; Class 3: A640.1.0), growth patterns in solid media, or colour change in BiGGY medium.

Phenotypic test Type of medium Phenotypic class of growth

0 1 2 3

30uC liquid (must) 0 0 3 168

18uC liquid (must) 51 120 1 0

40uC liquid (must) 28 14 80 50

pH 2 liquid (must) 101 68 3 0

pH 8 liquid (must) 0 0 19 153

KCl (0.75 M) liquid (must) 0 2 146 24

NaCl (1.5 M) liquid (must) 84 79 9 0

CuSO4 (5 mM) liquid (must) 124 45 3 0

SDS (0.01% w/v) liquid (must) 139 32 1 0

Ethanol 6% (v/v) liquid (must) 0 2 36 134

Ethanol 10% (v/v) liquid (must) 17 28 85 42

Ethanol 14% (v/v) liquid (must) 82 35 50 5

Ethanol 12% (v/v) solid (MEA) 150 20 1 1

Ethanol 12% (v/v) + Na2S2O5 (75 mg/L) solid (MEA) 159 14 0 0

Ethanol 12% (v/v) + Na2S2O5 (100 mg/L) solid (MEA) 169 3 0 0

Ethanol 14% (v/v) + Na2S2O5 (50 mg/L) solid (MEA) 148 24 0 0

Ethanol 16% (v/v) + Na2S2O5 (50 mg/L) solid (MEA) 163 9 0 0

Ethanol 18% (v/v) + Na2S2O5 (50 mg/L) solid (MEA) 165 7 0 0

KHSO3 (150 mg/L) liquid (must) 34 11 26 101

KHSO3 (300 mg/L) liquid (must) 57 19 29 67

Wine supplemented with glucose (0.5% w/v) liquid 103 45 24 0

Wine supplemented with glucose (1% w/v) liquid 115 41 16 0

Iprodion (0.05 mg/mL) liquid (must) 1 0 28 143

Iprodion (0.1 mg/mL) liquid (must) 1 1 13 157

Procymidon (0.05 mg/mL) liquid (must) 0 0 7 165

Procymidon (0.1 mg/mL) liquid (must) 1 0 9 162

Cycloheximide (0.05 mg/mL) liquid (must) 3 0 7 162

Cycloheximide (0.1 mg/mL) liquid (must) 2 1 19 150

H2S production solid (BiGGY) 1 11 105 55

Galactosidase activity liquid (YNB) 0 21 98 53

MEA: Malt Extract Agar.
doi:10.1371/journal.pone.0066523.t001
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Figure 2. Principal component analysis of phenotypic data for 172 strains. (a) 230 phenotypic tests (loadings). Numbers indicate
phenotypic tests, as mentioned in Table 1: (1) 230uC; (2) 218uC; (3) 240uC; (4) – pH 2; (5) – pH 8; (6) – KCl (0.75 M); (7) – NaCl (1.5 M); (8) – CuSO4

(1.5 M); (9) – SDS (0.01%); (10) – ethanol 6% (v/v) liquid medium; (11) – ethanol 10% (v/v) liquid medium; (12) – ethanol 14% (v/v) liquid medium; (13)
– ethanol 12% (v/v) solid medium; (14) – ethanol 12% (v/v) solid medium + Na2S2O5 (75 mg/L); (15) – ethanol 12% (v/v) solid medium + Na2S2O5

(100 mg/L); (16) – ethanol 14% (v/v) solid medium + Na2S2O5 (50 mg/L); (17) – ethanol 16% (v/v) solid medium + Na2S2O5 (50 mg/L); (18) – ethanol
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iprodion (0.05 mg/mL), in cycloheximide (0.1 mg/mL) and in the

presence of potassium bisulphite (150 mg/mL) were the three

features with the most relevant contribution for the mathematical

assignment of a strain to the commercial group (Figure 3a). The

probability of a strain to be assigned to the group of commercial

strains is 0.27 (27%) when considering the strains entire

phenotypic profile and increases to 0.95 (95%) when only the

three phenotypic results mentioned in Figure 3a are taken into

consideration, as shown in the probability scale present in

Figure 3b.

Discussion

Within our previous work [18] we developed computational

techniques to relate the genotypes and phenotypes of 103

Saccharomyces cerevisiae strains from a winemaking region. The

isolates were characterized regarding their allelic combinations for

11 microsatellites and phenotypic screens included mainly

taxonomic criteria but also some tests with biotechnological

relevance. Subgroups were found for strains sharing allelic

combinations and specific phenotypes such as low ethanol

resistance, growth at 30uC and growth in media containing

galactose, raffinose or urea. Herein, we aim to extend the work to

a phenotypically mostly heterogeneous strain collection of 172 S.

cerevisiae isolates from worldwide origins, to computationally relate

the phenotype with the strain’s geographical origins and to make

predictions about a strain’s biotechnological potential based on

phenotypic data. The group of phenotypic tests used herein was

based on approaches that are generally applied for the selection of

S. cerevisiae winemaking strains [17].

The collection of 172 strains from worldwide geographical

origins revealed a high phenotypic diversity (Figures 2, S2 and

Table 2), which is in agreement with previous studies [3,10,18,24–

27]. A significantly higher phenotypic diversity was observed in the

present study compared to our results from 2009 using 103

Portuguese wine yeast strains [18]. In particular, the inclusion of

new tests compared to our previous study allowed a more detailed

analysis of the phenotypic variability of strains associated with

winemaking environments. Recent studies aimed to describe the

elements that shaped the genomes of S. cerevisiae strains, suggesting

that populations comprise distinct domesticated and natural

groups, as well as mosaics within these groups, based on the

strain origin and application [12,28,29]. Clinical isolates for

example, do not derive from a common ancestor, but rather

represent multiple events in which environmental strains oppor-

tunistically colonize humans [28,30].

Genetic rearrangements and intra-strain variation is character-

istic for this species [31,32], which might explain the rather high

phenotypic variability that was described in recent studies.

Camarasa [3] showed that some phenotypes (resistance to high

sugar concentrations, ability to complete fermentation and low

acetate production) were able to distinguish groups of strains

according to their ecological niches, providing evidence for

phenotypic evolution driven by environmental adaptation. This

high phenotypic variation in stressful conditions was also revealed

by Kvitek et al., showing the existence of unique features shared by

strains from similar habitats [10]. Our data are in agreement with

the previously mentioned studies regarding the high phenotypic

diversity. They also confirm the findings of Legras and co-workers

[33], that found populational substructures of S. cerevisiae strains

according to their technological application or origin, using

multilocus microsatellite typing. In the work of Legras only 28%

of the diversity was associated with geographical origins, which

suggests local domestication events. We herein investigated the

utility of data mining to improve our understanding of relations

between phenotypes and the strains technological application or

origin. The developed models can also be useful to optimize

screening tests and to find commercial wine yeast candidates from

strain collections.

Using Mann-Whitney test, 11 significant associations were

found between a particular phenotypic result and a technological

application or origin of the strains (Table 3). The most significant

results were found for the resistance to iprodion, growth in

potassium bisulphite and in wine supplemented with glucose.

Iprodion is a dicarboximide contact fungicide used to control a

wide variety of fungal pests on vegetables, ornamentals, pome and

stone fruit, root crops, cotton and sunflowers. S. cerevisiae shows a

higher resistance to this fungicide than other yeast species such as

Candida albicans. In this species iprodion stimulates glycerol

synthesis and inhibits the cell growth for several days, contrarily

to S. cerevisiae where a low toxicity was observed [34,35]. Our

results showed that iprodion resistance (0.05 mg/mL) was higher

in strains from wine and vineyards compared to commercial wine

strains. The higher iprodion resistance among strains obtained

from wineries and vineyards might be explained by the evolution

of this trait upon recurrent exposure, which does not apply for

commercial wine strains that are added to clarified musts that

should not contain this fungicide. The low ethanol resistance of

commercial wine strains in liquid media containing 14% (v/v)

18% (v/v) solid medium + Na2S2O5 (50 mg/L); (19) – KHSO3 (150 mg/L); (20) – KHSO3 (300 mg/L); (21) – wine supplemented with glucose 0.5% (w/v);
(22) – wine supplemented with glucose 1% (w/v); (23) – Iprodion (0.05 mg/mL); (24) – Iprodion (0.1 mg/mL); (25) – Procymidon (0.05 mg/mL); (26) –
Procymidon (0.1 mg/mL); (27) – Cycloheximide (0.05 mg/mL); (28) – Cycloheximide (0.1 mg/mL); (29) – H2S production; (30)– galactosidase activity. (b)
– 172 strains (scores) distribution. Symbols represents the strains technological applications or origin: black star – wine and vine; grey star –
commercial wine strain; black square – clinical; grey square – natural isolates; black circle – sake; grey circle – other fermented beverages; black
pentagon – beer; grey pentagon- baker; black rectangle – laboratory; grey rectangle – unknown biological origin.
doi:10.1371/journal.pone.0066523.g002

Table 2. Phenotypic tests mostly contributing for the division
of strains into three clusters, in terms of information gain,
obtained with k-means clustering algorithm.

Phenotypic test Information gain Cluster

1 2 3

18uC 0,33 1 0 1

40uC 0,33 2 0 3

NaCl (1.5M) 0,26 0 0 1

KHSO3 (300 mg/L) 0,23 3 0 3

Ethanol 6% (v/v) – liquid
medium

0,23 3 2 3

pH 2 0,21 0 0 1

KHSO3 (150 mg/L) 0,21 3 0 3

Total number of strains 38 90 44

Numbers in the last three columns represent the most characteristic value in
terms of phenotypic class of strains included in the clusters, for the mentioned
phenotypic tests.
doi:10.1371/journal.pone.0066523.t002
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ethanol was somehow unexpected, because these strains are

usually selected for high ethanol resistance. This could be

explained by the fact that the mathematical relations were

observed for ethanol concentrations above the values that usually

occur in wines (10–13%, v/v). Results showed also that

commercial strains tended to a better growth in media containing

potassium bisulphite, a compound used as wine antiseptic and

antioxidant, reflecting also an adaptive mechanism among this

group of strains.

We found that the large phenotypic variability between strains

could be associated with the technological application or origin of

the strains (Table 3) rather than their geographical origin, once

that no relevant relations were considered for the last analysis. The

naı̈ve Bayesian classifier was used to assign a strain to their

technological application or origin group, based on their

phenotypic profile (Table 4). This association was achieved for

the majority of strains belonging to the commercial and wine and

vine groups (77% and 73% respectively). The cross-validated

performance of this method yielded an AUC score of 0.70, that is

Table 3. Relevant associations (adjusted p,0.1) between phenotypic results and strain’s technological application or origin,
obtained using Mann-Whitney test and after Bonferroni correction.

Phenotypic test
Class of phenotypic
result Technological group/origin

Adjusted
p-value

% of strains sharing
positive association *

Iprodion (0.05 mg/mL) 2 Commercial 3.2461028 82.0

Iprodion (0.05 mg/mL) 3 Wine and vine 0.015 56.4

KHSO3 (150 mg/L) 2, 3 Commercial 0.001 59.3

Wine supplemented with glucose (0.5%, w/v) 0 Commercial 0.075 57.0

Wine supplemented with glucose (0.5%, w/v) 2 Natural isolate 0.002 87.2

Wine supplemented with glucose (1%, w/v) 2 Natural isolate 0.041 89.5

Ethanol 14% (v/v) – liquid medium 0 Commercial 0.004 64.5

Cycloheximide (0.1 mg/mL) 2 Commercial 0.007 75.6

Procymidon (0.1 mg/mL) 2 Other fermented beverages 0.005 92.4

SDS (0.01%, w/v) 0 Commercial 0.078 45.3

CuSO4 (5 mM) 0 Commercial 0.075 50.6

*Percentage of strains that share the phenotypic result and belong to the described group or that didn’t share the phenotypic result nor belong to that group.
doi:10.1371/journal.pone.0066523.t003

Figure 3. Nomogram showing naı̈ve Bayesian classifier results for the prediction of commercial strains based on phenotypic classes
of growth for each test. (a) Performance of three phenotypic tests that contributed in a positive way to predict commercial strains; (b) Probability
of predicting commercial strains when considering the entire phenotypic profile (grey circle), or only the three phenotypic tests mentioned in panel
(a) by the blue dots (black circle).
doi:10.1371/journal.pone.0066523.g003
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considered as moderate [22] and lies in between the values of an

arbitrary and perfect classification (AUC =0.5 and 1.0, respec-

tively). Poor results were obtained for the remaining groups, which

is due to the corresponding small number of isolates. These results

demonstrate the potential of the predictive models to classify

strains based on results of phenotypic screens.

Bayesian classifier used the strains phenotypic profiles for

prediction of commercial strains, and identified 3 of the 30

phenotypic tests (growth in musts containing iprodion (0.05 mg/

mL), cycloheximide (0.1 mg/mL) or potassium bisulphite

(150 mg/mL)) as the ones providing more information for the

assignment of strains to the commercial group. When using only 3

tests, rather than the entire phenotypic profile, the probability of a

strain to be classified as commercial increases significantly (from

27% to 95%).

In conclusion, our results demonstrate the usefulness of

computational approaches to describe phenotypic variability

among groups of S. cerevisiae strains that also might occur as

adaptive mechanisms in specific environments. The herein

developed models can make predictions about the biotechnolog-

ical potential of strains and simplify the selection of candidate

strains to be used as commercial wine strains.

Materials and Methods

Strain collection
A Saccharomyces cerevisiae strain collection was constituted,

comprising 172 strains with different geographical origins and

technological applications or origins (Figure 1 and Table S1 –

supplementary data). This collection includes strains used for

winemaking (commercial and natural isolates that were obtained

from winemaking environments), brewing, bakery, distillery (sake,

cachaça) and ethanol production, laboratory strains and also

strains from particular environments (e.g. pathogenic strains,

isolates from fruits, soil and oak exudates). The complete genome

sequence of thirty strains is currently available [12] (their original

strain code is mentioned in the map of Figure 1). All strains were

coded (Zn) and stored at 280uC in cryotubes containing 1 mL

glycerol (30% v/v).

Phenotypic characterization
Phenotypic screening was performed considering a wide range

of physiological traits that are also important from an oenological

point of view.

In a first set of phenotypic tests, strains were inoculated into

replicate wells of 96-well microplates. Isolates were grown

overnight in YPD medium (yeast extract 1% w/v, peptone 1%

w/v, glucose 2% w/v), and the optical density (A640) was then

determined and adjusted to 1.0. After washing with peptone (1%

w/v), 15 mL of this suspension were inoculated in quadruplicate in

microplate wells containing 135 mL of white grape must of the

variety Loureiro, to a cellular density of 56106 cells/mL (A640

= 0.1). Final optical density was determined after 22 h (30uC, 200
rpm) in a microplate spectrophotometer. All microplates were

carefully sealed with parafilm, and no evaporation was observed

for incubation temperatures of 30uC and 40uC. As shown in

Table 1, this approach included the following tests: growth at

various temperatures (18, 30 and 40uC), evaluation of ethanol

resistance (6, 10 and 14%, v/v), tolerance to several stress

conditions caused by extreme pH values (2 and 8), osmotic/saline

stress (0.75 M KCl and 1.5 M NaCl). Growth was also assessed in

the presence of potassium bisulfite (KHSO3, 150 and 300 mg/L),

copper sulphate (CuSO4, 5 mM), sodium dodecyl sulphate (SDS,

0.01%, w/v), the fungicides iprodion (0.05 and 0.1 mg/mL) and
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procymidon (0.05 and 0.1 mg/mL), as well as cycloheximide (0.05

and 0.1 mg/mL). These tests were carried out using Loureiro

grape must supplemented with the mentioned compounds. The

growth in finished wines was determined by adding glucose (0.5

and 1%, w/v) to a commercial white wine (12.5% v/v alcohol

content). Galactosidase activity was evaluated by adding galactose

(5% w/v) to Yeast Nitrogen Base (YNB, DifcoTM, Ref. 239210),

using test tubes with 5 mL culture medium and 56106 cells/mL,

followed by 5 to 6 days of incubation at 26uC.
Other tests were performed using solid media. Overnight

cultures were prepared as previously described, adjusted to an

optical density (A640) of 10.0 and washed. One ml of this

suspension was placed on the surface of the culture media

mentioned below. Hydrogen sulphide production was evaluated

using BiGGY medium (SIGMA-ALDRICH, Ref. 73608) [36],

followed by incubation at 27uC for 3 days. The colony colour,

which represents the amount of H2S produced was then analysed,

attributing a score from 0 (no colour change) to 3 (dark brown

colony). Ethanol resistance (12%, v/v) and the combined

resistance to ethanol (12, 14, 16 and 18%, v/v) and sodium

bisulphite (Na2S2O5; 75 and 100 mg/L) was evaluated by adding

the mentioned compounds to Malt Extract Agar (MEA, SIGMA-

ALDRICH, Ref. 38954), and growth was visually scored after

incubation (2 days at 27uC).
All phenotypic results were assigned to a class between 0 and 3

(0: no growth (A640 = 0.1) or no visible growth on solid media or

no colour change of the BiGGY medium; 3: at least 1.5 fold

increase of A640, extensive growth on solid media or a dark brown

colony formed in the BiGGY medium; scores 1 and 2

corresponded to the respective intermediate values) as shown in

table S2.

Data analysis
The phenotypic variability was evaluated by principal compo-

nent analysis (PCA), available in the Unscrambler X software

(Camo). The BioNumerics software (Applied Maths) was used for

clustering, dendogram drawing and calculation of cophenetic

correlation coefficients. Mann-Whitney test was applied to the

phenotypic data set, including Bonferroni correction, to find

relevant associations between phenotypic data and the strain’s

technological or geographical origin. A set of standard predictive

data-mining methods, such as naı̈ve Bayesian classifier and k
nearest-neighbours algorithm [21], as implemented in the Orange

data mining suite [37,38], were used for the inference of prediction

models. For prediction scoring, area under the receiver operating

characteristics (ROC) curve (AUC) was used [22], which estimates

the probability that the predictive model would correctly

differentiate between distinct locations or distinct technological

application or origins, given the associated pairs of strains.

Supporting Information

Figure S1 Phenotypic variation of 172 strains under 30
growth conditions. Strains are organized according to

UPGMA-based hierarchical clustering (cophenetic correlation

factor = 0.75), using Euclidean distance correlation to estimate

phenotypic profile similarities. Symbols represents the strains

technological applications or origin: black star – wine and vine;

grey star – commercial wine strain; black square – clinical; grey

square – natural isolates; black circle – sake; grey circle – other

fermented beverages; black pentagon – beer; grey pentagon-

baker; black rectangle – laboratory; grey rectangle – unknown

biological origin.

(TIF)

Figure S2 PCA representation of the three strain
clusters, obtained with k-means clustering algorithm.
The symbols represent the belonging of the 172 strains shown in

the phenotypic data PCA (Figure 2b) to each cluster: circles –

cluster 1 (38 strains); lines – cluster 2 (90 strains); squares – cluster

3 (44 strains).

(TIF)

Table S1 Origin and technological application of the
172 Saccharomyces cerevisiae strains.

(DOCX)

Table S2

(XLSX)
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Brandao, Laboratório de Fisologia e Bioquı?mica de Microorganismos

Brazil, Huseyin Erten, Cukurova University Turkey.

Author Contributions

Conceived and designed the experiments: IM RD DS. Performed the

experiments: IM RD EF JN. Analyzed the data: RD IM LU. Contributed

reagents/materials/analysis tools: DS BZ. Wrote the paper: RD IM DS.

Revised the final manuscript: SD.

References

1. Fleet GH (1998) Yeasts – What reactions and interactions really occur in natural

habitats. Food Technol. Biotechnol. 36: 285–289.

2. Schuller D (2010) Better yeast for better wine – genetic improvement of

Saccharomyces cerevisiae wine strains. In: Rai M, Koevics G, editors. Progress in

mycology. Jodhpur: Scientific Publishers (India). 1–51.

3. Camarasa C, Sanchez I, Brial P, Bigey F, Dequin S (2011) Phenotypic landscape

of Saccharomyces cerevisiae during wine fermentation: Evidence for origin-

dependent metabolic traits. PloS one 6: e25147.

4. Bisson LF (1999) Stuck and sluggish fermentations. Am J Enol Vitic 50: 107–

119.

5. Frezier V, Dubourdieu D (1992) Ecology of yeast strains Saccharomyces cerevisiae
during spontaneous fermentation in Bordeaux winery. Am J Enol Vitic 43: 375–

380.

6. Lopes CA, Broock M Van, Querol A, Caballero AC (2002) Saccharomyces cerevisiae
wine yeast populations in a cold region in Argentinean Patagonia. A study at

different fermentation scales. J Appl Microbiol 93: 608–615.

7. Sabate J, Cano J, Querol A, Guillamo JM (1998) Diversity of Saccharomyces strains
in wine fermentations: analysis for two consecutive years. Lett Appl Microbiol

26: 452–455.

8. Schuller D, Alves H, Dequin S, Casal M (2005) Ecological survey of Saccharomyces
cerevisiae strains from vineyards in the Vinho Verde Region of Portugal. FEMS

Microbiol Ecol 51: 167–177.

9. Valero E, Cambon B, Schuller D, Casal M, Dequin S (2007) Biodiversity of

Saccharomyces yeast strains from grape berries of wine-producing areas using

starter commercial yeasts. FEMS Yeast Res 7: 317–329.

10. Kvitek DJ, Will JL, Gasch AP (2008) Variations in stress sensitivity and genomic

expression in diverse Saccharomyces cerevisiae isolates. PLoS Genet 4: 31–35.

11. Greig D, Leu JY (2009) Natural history of budding yeast. Curr Biol 19: 886–890.

12. Liti G, Carter DM, Moses AM, Warringer J, Parts L, et al. (2009) Population

genomics of domestic and wild yeasts. Nature 458: 337–341. Available: http://

w w w . p u b m e d c e n t r a l . n i h . g o v / a r t i c l e r e n d e r .

fcgi?artid = 2659681&tool = pmcentrez&rendertype = abstract. Accessed 2

March 2012.

13. Schacherer J, Shapiro JA, Ruderfer DM, Kruglyak L (2009) Comprehensive

polymorphism survey elucidates population structure of Saccharomyces cerevisiae.
Nature 458: 342–345.

14. Fay JC, Benavides J (2005) Evidence for domesticated and wild populations of

Saccharomyces cerevisiae. PLoS Genet 1: 66–71.

Prediction of Winemaking Yeast Potential

PLOS ONE | www.plosone.org 9 July 2013 | Volume 8 | Issue 7 | e66523



15. Briones AI, Ubeda JF, Cabezudo MD, Martin-Alvarez P (1995) Selection of

spontaneous strains of Saccharomyces cerevisiae as starters in their viticultural

area. In: Charalambous G, editor. Food flavours: generation, analysis and

process influence. Amsterdam: Elsevier Science. 1597–1622.

16. Ramirez M, Perez F, Regodon JA (1998) A simple and reliable method for

hybridization of homothallic wine strains of Saccharomyces cerevisiae. Appl Environ
Microbiol 64: 5039–5041.

17. Mannazzu I, Clementi F, Ciani M (2002) Strategies and criteria for the isolation

and selection of autochthonous starter. In: Ciani M, editor. Biodiversity and

biotechnology of wine yeasts. Trivandrum: Research Signpost. 19–35.

18. Franco-Duarte R, Umek L, Zupan B, Schuller D (2009) Computational

approaches for the genetic and phenotypic characterization of a Saccharomyces
cerevisiae wine yeast collection. Yeast 26: 675–692.

19. Rousseeuw PJ (1987) Silhouettes: A graphical aid to the interpretation and

validation of cluster analysis. Journal of Computational and Applied Mathe-

matics 20: 53–65. Available: http://linkinghub.elsevier.com/retrieve/pii/

0377042787901257.

20. Grimshaw SD, Efron B, Tibshirani RJ (1995) An Introduction to the Bootstrap.

Technometrics 37: 341.

21. Tan P, Steinbach M, Kumar V (2006) Introduction to data mining. Pearson Ed.

Boston: Pearson Addison Wesley.

22. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver

operating characteristic (ROC) curve. Radiology 143: 29–36.

23. Mozina M, Demsar J, Kattan M, Zupan B (2004) Nomograms for visualization

of naive Bayesian classifier. Lecture Notes in Computer Science 3202: 337–348.

24. Agnolucci M, Scarano S, Santoro S, Sassano C, Toffanin A, et al. (2007) Genetic

and phenotypic diversity of autochthonous Saccharomyces spp. strains

associated to natural fermentation of ‘‘Malvasia delle Lipari’’. Lett Appl

Microbiol 45: 657–662.

25. Brandolini V, Tedeschi P, Capece A, Maietti A, Mazzotta D, et al. (2002)

Saccharomyces cerevisiae wine strains differing in copper resistance exhibit different

capability to reduce copper content in wine. World J Microbiol Biotechnol 18:

499–503.

26. Salinas F, Mandakovic D, Urzua U, Massera A, Miras S, et al. (2010) Genomic

and phenotypic comparison between similar wine yeast strains of Saccharomyces
cerevisiae from different geographic origins. J Appl Microbiol 108: 1850–1858.

27. Cubillos F a, Zia A, Gjuvsland A, Jared T, Warringer J, et al. (2011) Trait

variation in yeast is defined by population history. PLoS Genet 7: e1002111.
Ava i l ab l e : h t tp ://www.pubmedcen t ra l . n ih . gov/a r t i c l e r ende r .

fcgi?artid = 3116910&tool = pmcentrez&rendertype = abstract. Accessed 8 No-

vember 2012.
28. Schacherer J, Ruderfer DM, Gresham D, Dolinski K, Botstein D, et al. (2007)

Genome-wide analysis of nucleotide-level variation in commonly used
Saccharomyces cerevisiae strains. PLoS One 2: e322.

29. Goddard MR, Anfang N, Tang R, Gardner RC, Jun C (2010) A distinct

population of Saccharomyces cerevisiae in New Zealand: evidence for local
dispersal by insects and human-aided global dispersal in oak barrels. Environ

Microbiol 12: 63–73. Available: http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt =Citation&list_uids = 19691498.

30. Muller LH, McCusker JH (2009) Microsatellite analysis of genetic diversity
among clinical and nonclinical Saccharomyces cerevisiae isolates suggests

heterozygote advantage in clinical environments. Mol Ecol 18: 2779–2786.

31. Schuller D, Pereira L, Alves H, Cambon B, Dequin S, et al. (2007) Genetic
characterization of commercial Saccharomyces cerevisiae isolates recovered from

vineyard environments. Yeast 24: 625–636.
32. Dunn B, Levine RP, Sherlock G (2005) Microarray karyotyping of commercial

wine yeast strains reveals shared, as well as unique, genomic signatures. BMC

genomics 6: 53. doi:10.1186/1471-2164-6-53.
33. Legras J-L, Merdinoglu D, Cornuet J-M, Karst F (2007) Bread, beer and wine:

Saccharomyces cerevisiae diversity reflects human history. Mol Ecol 16: 2091–2102.
34. Chiai NO, Ujimura MF, Shima MO, Otoyama TM, Chiishi AI, et al. (2002)

Efects of iprodione and fludioxonil on glycerol synthesis and hyphal
development in Candida albicans. Biosci Biotechnol Biochem 66: 2209–2215.

35. Cadez N, Zupan J, Raspor P (2010) The effect of fungicides on yeast

communities associated with grape berries. FEMS Yeast Res 10: 619–630.
36. Jiranek V, Langridge P, Henschke PA (1995) Validation of bismuth-containing

indicator media for predicting H2S-producing potential of Saccharomyces
cerevisiae wine yeasts under enological conditions. Am J Enol Vitic 46: 269–273.

37. Curk T, Demsar J, Xu Q, Leban G, Petrovic U, et al. (2005) Microarray data

mining with visual programming. Bioinformatics 21: 396–398.
38. Demsar J, Zupan B, Leban G (2004) Orange: from experimental machine

learning to interactive data mining. White Paper (www.ailab.si/orange), Faculty
of Computer and Information Science, University of Ljubljana.

Prediction of Winemaking Yeast Potential

PLOS ONE | www.plosone.org 10 July 2013 | Volume 8 | Issue 7 | e66523


	PhD Thesis - Ricardo Franco-Duarte.pdf
	Tese PhD_Ricardo Franco-Duarte
	FINAL mais uma
	tese_supp data
	tese_paper interdelta
	tese_paper fenotipos2

	erros
	erros 2
	Página em branco




