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Abstract

The work described here has the goal of providing new mathematical results about

the formation of spatio-temporal patterns in dynamic neural fields (DNFs) that can be

applied and tested in the domains of cognitive modelling and cognitive robotics. Specif-

ically, the conditions for the existence and stability of multiple localized excitations in

one-dimensional fields with external input were analysed. These multi-bump solutions

represent the core of an original dynamic field model of fast sequence learning that was

developed and subsequently tested in a real-world robotics experiment.

While the existence and the stability of different types of patterns in DNFs have

been addressed in many theoretical studies in the past, little attention has been paid

thus far on the initial and input conditions that guarantee the evolution of these pat-

terns. Following Laing et al. (2002), we apply a connectivity function with oscillatory

rather than monotonic decay to study analytically and numerically the formation of

multiple regions of excitation when several localized inputs are applied simultaneously

or sequentially to the field. For the existence and stability proofs, we extend the ideas

of Amari’s original work on pattern formation in fields with connectivity functions of

lateral inhibition type.

Based on the mathematical results, a novel model of multi-item memory of se-

quential events is proposed that exploits the processing mechanism of self-sustained

activity in recurrently connected neural populations modelled by DNFs. A threshold

accommodation dynamics is applied to establish a stable multi-bump solution with a

gradient of excitation that represents in its relative activation strengths the temporal

order and the relative timing of sequence elements. In line with findings in neurophys-

iological studies with monkeys, this memory representation pre-activates to varying

degrees corresponding neural populations in a decision field. The competitive dynam-
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ics of this field allows recalling all sequence elements in the correct order and with the

correct timing.

The working memory model was extended to integrate also the sequence learning

part in the modelling. Neural populations in a perceptual field represent in their self-

sustained activation patterns the sensory cue (e.g., colour) that defines the sequence.

The challenge for many modelling approaches to represent repeated elements is au-

tonomously solved by the field dynamics since repeated sensory cues automatically

activate different neuronal subpopulations. The memory of previous sequence demon-

strations also preshapes the perceptual field. This preshaping mechanisms affects the

time course of suprathreshold population activity and is thus fundamental to adjust

the relative activation strengths of the memory gradient in successive sequence demon-

strations. The numerical simulation show that the purely activation based learning

principles implemented in the model are able to acquire and represent the order and

timing of a sequence in just very few demonstration-executing cycle. To directly test the

assumptions about the time course of population activity in the various interconnected

field layers and to verify the model predictions, we conducted a robotics experiment.

The learning model was integrated in the dynamic field based control architecture of

the humanoid robot ARoS. In the experiment, ARoS had to learn a short musical se-

quence from human demonstrations to subsequently execute the piece of music on a

keyboard. The successful results of the real-time robotics implementation are discussed

in relation to theoretical ideas and experimental findings about sequencing and timing

in humans and other animals.



Resumo

O objetivo deste trabalho é fornecer novos resultados matemáticos sobre a formação

de padrões espaço-temporais em campos dinâmicos neuronais (DNFs) que podem ser

aplicados e testados nos domínios da modelação cognitiva e robótica cognitiva. Em

particular, foram analisadas as condições para a existência e a estabilidade de múltiplas

regiões localmente excitadas num campo unidimensional com uma entrada externa.

Estas múltiplas regiões representam o base de um modelo de campos dinâmicos que

foi desenvolvido para aprendizagem de sequências e posteriormente analisado numa

experiência robótica em ambiente real.

Embora haja vários estudos sobre a existência e a estabilidade dos diferentes

tipos de padrôes em DNFs, pouca atenção tem sido dada sobre as condições iniciais

e de entrada que garantem a evolução desses padrões. Tendo por base Laing et al.

(2002), aplicou-se uma função de conectividade com decaimento oscilatório em vez de

um decaimento monótono permitindo o estudo analítico e numérico da formação de

múltiplas regiões de excitação quando várias entradas localizadas são aplicadas num

campo dinâmico simultaneamente ou sequencialmente. Nas demonstrações da existên-

cia e estabilidade, foram estendidas as ideias do trabalho original de Amari em formação

de padrões em campos dinâmicos com funções de conectividade do tipo inibição lateral.

Tendo por base os resultados matemáticos, foi elaborado um novo modelo de

memória de sequências de eventos que explora o mecanismo de processamento da ativi-

dade auto-sustentada em populações neuronais com ligações recorrentes modeladas por

DNFs. Uma solução multi-picos estável com um gradiente de excitação é obtida a par-

tir de uma dinâmica de adaptação do limiar de ativação do campo. Este gradiente

representa, na sua força de ativação, a ordem temporal e o tempo relativo entre os

elementos de sequência. De acordo com resultados obtidos em estudos neurofisiológicos
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com macacos, esta representação de memória pré-ativa, em níveis diferentes, as popu-

lações neuronais correspondentes no campo de decisão. A dinâmica competitiva deste

campo permite recordar todos os elementos da sequência na ordem correta e com os

intervalos de tempo corretos.

O modelo de memória de trabalho foi estendido para integrar também a parte de

aprendizagem da sequência na modelagem. Os padrões de ativação auto-sustentadas

das populações neuronais no campo percetual representam o estímulo sensorial (por ex-

emplo, cor) que define a sequência. O desafio para muitas abordagens de modelização

de representar elementos repetidos é autonomamente resolvido pela dinâmica do campo

que, de forma automática, representa elementos repetidos em diferentes subpopulações

neuronais. A memória da sequência posteriormente demonstrada também pré-ativa

o campo percetual. Este mecanismo de pré ativação afeta o tempo que a população

demora a ficar ativa e é, portanto, essencial para ajustar as forças de ativação relati-

vas do gradiente de memória em demonstrações sucessivas da sequência. As simulações

numéricas mostram que os princípios de aprendizagem baseados puramente em ativação

que foram implementados no modelo são capazes de adquirir e representar a ordem e

o tempo de uma sequência ao fim de poucas demonstrações. Para testar diretamente

os pressupostos sobre as evoluções temporais de atividade da população nos diferentes

campos interligados e verificar as previsões do modelo, foi realizada uma experiên-

cia robótica. O modelo de aprendizagem foi integrado numa arquitetura dinâmica no

robô humanoide ARoS. Na experiência o ARoS teve de aprender uma curta sequên-

cia musical, a partir de demonstrações executadas por um humano e, posteriormente,

reproduzi-la num teclado. A experiência de implementação robótica em tempo real foi

bem sucedida. Os respetivos resultados são discutidos em comparação com as ideias

teóricas e resultados experimentais obtidos em experiências sobre sequências e tempo

em seres humanos e outros animais.
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Chapter 1

General introduction

Dynamic neural fields (DNFs) have been introduced in the 1970’s by Wilson and Cowan

(1973) and Amari (1977) as a mathematical model of the formation of activity patterns

in neural tissue that abstract from the fine biophysical details of neural firing. Typi-

cally, a continuum description of neural populations is used so that the mean neural

firing activities can be described by scalar fields in terms of time and one or two space

variables. Dynamic neural field models are very popular for two main reasons. They

offer the right level of complexity to explain key aspects of neural population dynamics

as observed in numerous neurophysiological studies (e.g., Erlhagen et al., 1999; Jancke

et al., 1999), and at the same time, DNF models are simple enough to allow analytical

treatment that contributes to a better understanding of neural processing mechanisms.

In recent years, the analysis of the existence and stability of coherent structures in neu-

ral field such as spatial localized activity bumps, spatially or spatiotemporal oscillation

patterns, and travelling waves has been a very active area of research in the emerging

field of mathematical neuroscience (for a review see Coombes, 2005).

A directly related line of research that drives the development of a dynamic

field theory is the modelling of cognitive processes. The architecture of dynamic field

models reflects the hypothesis supported by anatomical and psychological findings that

strong recurrent interactions in local populations of neurons form a basic mechanism for

cortical information processing. The recurrent excitatory and inhibitory inputs from

neighbouring neurons cause non-trivial dynamic behaviour in neural populations. Most

importantly, population activity which is initiated by time-dependent external signals

3
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may become self-sustained in the absence of any external input. Such attractor states

of the population dynamics may be used by the nervous systems to guide complex

behaviour that goes beyond a simple mapping of sensory input onto motor output.

Persistent neural activity is observed in many brain regions, but seems to be particular

prominent in prefrontal areas. The prefrontal cortex (PFC) is commonly believed to be

crucially involved in higher cognitive processes like working memory, decision making or

planning of goal-directed behaviour (Miller, 2000). Dynamic field models have applied

the attractor paradigm to a large variety of neurocognitive phenomena in the domains

of perception, cognition and action (e.g., Erlhagen and Schöner, 2002, for an overview

see Schöner, 2008).

More recently, researchers have started to exploit the theoretical concepts and

neural processing mechanisms offered by dynamic field models to endow autonomous

robots with human-like cognitive functionalities. Implementing and testing dynamic

field models in robots that are controlled in closed-loop by sensory information is seen as

an excellent opportunity to get feedback about hidden model assumptions and missing

links to the sensory and motor surfaces. The humanoid robot ARoS developed at

the University of Minho is a good example of the dynamic field approach to cognitive

robotics. ARoS is able to coordinate its actions and decisions with human partners in

order to achieve common goals in a shared task. The control architecture consisting

of a large number of coupled dynamic neural fields is inspired by the neurocognitive

mechanisms and neural circuits supporting human joint action (Bicho et al., 2011).

This doctoral thesis presents results that contribute to all three research areas

of dynamic field theory described above: mathematical analysis, cognitive modelling,

and robotics implementations. The specific research topic of the thesis is the mod-

elling of a multi-item working memory function formalized by self-sustained and stable

multi-bump solutions in dynamic fields. Working memory refers to the distinct memory

ability of humans to retain information in storage for short time intervals. It is funda-

mental for cognitive tasks such as remembering the order of a series of sensory cues or

the planning and performing of action sequences. In DNF models, the memory state

can be represented by a stimulus induced bump attractor of localized field activity.

To implement a working memory function the field dynamics must be bistable. The
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bump attractor must coexist with a stable resting state of neural population activity

(representing the absence of stimulus information), such that the memory state can be

switched on and off by transient inputs.

The main goal of the mathematical analysis presented in this thesis is to con-

tribute to a more rigorous understanding of the formation of single- and multi-bump

solutions in the presence of external inputs to the dynamic field. While many math-

ematical studies have addressed in the past the existence and stability of localized

activity patterns, surprisingly little attention has been paid to the initial and input

conditions that guarantee the evolution of these patterns. For applications of DNF

theory that are based on complex architectures of coupled dynamic fields this ques-

tion is central. In his original paper, Amari (1977) performed a stability analysis for

a single bump with stationary input. Since in his field model recurrent inhibition is

spatially more widespread than excitation (lateral inhibition type interactions) stable

multi-bump solutions do not exist. Strong competition between regions with high ac-

tivity mediated by lateral inhibition will destroy multi-bump patterns whenever small

spatial perturbation to the activation profiles are applied. More recently, Laing et al.

(2002) proposed and analysed a connectivity function that supports the stable persis-

tence of multiple regions of high activity, and thus may serve as a basis to implement

a multi-item memory function.

In the second part of the thesis, dedicated to applications of DNF theory, the

obtained mathematical results are applied in a modelling study. It aims at testing

the hypothesis that the memories of order and timing information of sequential events

share a common neural substrate. In an analysis by synthesis approach, the sequence

model is then tested in a real-world robotics experiment. The robot ARoS learns from

observing a human teacher to memorize and execute on a keyboard a short musical

sequence.
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1.1 Dynamic Neural Fields

1.1.1 Dynamic Neural Field Equation

The neuronal activity of the population (or field) is described by the following non-

linear partial integro-differential equation proposed by Amari (1977)

τ
∂u(x, t)
∂t

= −u(x, t) +
∫ ∞
−∞

w(x− y)f (u(y, t)) dy − h+ S(x, t). (1.1)

This equation describes neuronal activity on a single layer of interconnected neurons

along a one-dimensional infinite domain. The function u(x, t) represents the membrane

potential or activity of a neuron at time t and spatial position x. The function S(x, t)

represents a time-varying external input with spatial structure. The parameter h >

0 determines the resting level to which the field activity converges without external

stimuli, and the parameter τ > 0 defines the time scale of the field dynamics. The

output function f(u) gives the firing rate or firing probability as a function of u.

For the mathematical analysis of pattern formation, Amari chooses the Heaviside

step as output function

f(u) = H0(u) =

 0, u ≤ 0

1, u > 0
. (1.2)

It represents a simplification of real neural firing which typically shows a more

gradual increase of the rate with increasing u. In Amari’s model, a neuron can be either

active or inactive, but only active neurons contribute to the current interaction with

in local neural population. It is important to stress that the choice of the Heaviside

function facilitates the mathematical analysis. However, the main results about the

existence and stability of localized excitation also hold for a field with a smooth firing

rate function of sigmoidal type (Kishimoto and Amari, 1979).

The coupling function w(x, x′) = w(x − x′) describes the distance dependent

connectivity strength from neurons at position x to those at position x′. Amari (1977)

studied the dynamics of pattern formation in equation (1.1) when the coupling function

is of lateral inhibition type. In general, a lateral inhibition type connectivity w(x)

satisfies the following properties:

(H1) w(x) is symmetric, i.e., w(−x) = w(x) for all x ∈ R;



7

(H2) w is both continuous and integrable on R;

(H3) w(x) > 0 on an interval (−x, x), and w(−x) = w(x) = 0;

(H4) w(x) < 0 on (−∞,−x) ∪ (x,∞);

(H5) w(x) is decreasing on (0,∞).

Lateral inhibition establishes excitatory connections for nearby neuronal elements

and inhibitory connections for neuronal elements separated by a distance greater than

a certain position, x. One example of a coupling function that satisfies conditions

(H1)− (H5) is a Gaussian function with a constant global inhibition

w(x) = wexce

(
− x2

2σ2
exc

)
− winh, (1.3)

where wexc > 0 and σexc > 0 define, respectively, the amplitude and standard deviation,

and winh > 0 represents the constant inhibition for distant neurons (Erlhagen and

Bicho, 2006) (Figure 1.1, left). Another example is a “Mexican-hat” type function given

by the difference of two Gaussian functions, that can also be added with a constant

global inhibition

w(x) = wexce

(
− x2

2σ2
exc

)
− winh1e

(
− x2

2σ2
inh

)
− winh2 , (1.4)

where wexc > winh1 > 0 and σexc > σinh > 0 and winh2 > 0 (Figure 1.1, right).

−50 0 50
−1

0

2

w
(x

)

x
x̄ 0−50 50

x
x̄

2

−1

0

w
(x

)

Figure 1.1: The coupling function, w(x), defined in (1.3) for wexc = 2, σexc = 4 and winh = 0.5 (left).

The coupling function, w(x), defined in (1.4) for wexc = 2.5, σexc = 0.05, winh1 = 0.5, σinh = 0.003

and winh2 = 0.5 (right).
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Motivated by labelling studies showing that the spatial coupling between groups

of neurons in the prefrontal cortex forms approximate periodic stripes (Gutkin et al.,

2000), Laing et al. (2002) proposed a coupling function with oscillatory rather than

monotonic decay

w(x) = e−k|x| (k sin |x|+ cos(x)) . (1.5)

where the parameter k > 0 controls the rate at which the oscillations of w decay

with distance.

In this thesis, we study the formation of one or more excited regions in dynamics

fields using an adapted version of the connection function proposed by Laing et al.

(2002):

w(x) = Ae−k|x| (k sin |αx|+ cos(αx)) , (1.6)

where the parameters A > 0 and 0 < α ≤ 1 are added to control the amplitude

and the zero crossings, respectively. The oscillations of w decay more rapidly as k

increases (compare Figure 1.2). The larger the value α, the smaller the distance between

consecutive zeros of w (compare Figure 1.3).

The coupling functions w(x) in (1.5) and (1.6) satisfy (H1), (H2) and the following

properties:

(H6) w(x) is an oscillatory function that tends to zero as x→ ±∞;

(H7) w(0) > 0, and w(x) changes sign infinitely often on (0,∞).

1.1.2 Stable states of the field dynamics

Dynamic field theory provides a basis for characterizing the representational states

underlying behaviour through the notion of activation fields spanned over a metric

dimension such as movement amplitude and direction, position and orientation in space,

or frequency and colour (Erlhagen et al., 1999; Johnson et al., 2008). For example,

consider the situation in which a neural field is applied over a spatial dimension coding

the feature colour (hue), that is, the neurons are tuned to represent different colours.

When an object with a specific colour is presented, a subpopulation representing the

respective hue value will become highly active whereas surrounding neurons encoding
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Figure 1.2: The coupling function, w(x), defined in (1.6) for A = 2, α = 0.3 and k = 0.1(left) and

k = 0.3(right).
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Figure 1.3: The coupling function, w(x), defined in (1.6) for A = 2, k = 0.1 and α = 0.3 (left) and

α = 0.8 (right).

other hue values remain at a low firing rate. The activity of each neuron is defined

by the interplay between inputs from neighbouring neurons and external input from

the vision system. To understand the processing of visual information in the neuronal

population it is important to characterize the stable states of the field dynamics. To

get an overview, it is convenient to follow Amari (1982) and define the average activity

of a pool of N interconnected neurons in response to an external input. Its dynamic

behaviour is governed by

du

dt
= −u− h+Wfp(u) + S. (1.7)
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where W is the average interaction strength, S the average external input that the

pool receives, and fp denotes the output function of the pool. The output function

with threshold 0 can be the Heaviside function used by Amari or any other nonlinear

transfer function with saturation like, for instance, a smooth sigmoidal function with

slope parameter β

fp(u) = 1
1 + e−βu

, (1.8)

or a ramp function

fp(u) =


0, u < 0

βu, 0 ≤ u < 1
β

1, u ≥ 1
β

, (1.9)

where β > 0 controls the slope. Depending on the strengths of W and S, the neuron

pool can have two types of dynamic behaviour. Assuming that fp is given by (1.9), if

S = 0 and W > h, the dynamics is bistable, having three fixed points at ua1 = −h,

ur = h
βW−1 and ua2 = W − h. Since the slope at ua1 and at ua2 is negative, these fixed

points are asymptotically stable states, also called attractor states. On the other hand,

as the slope at uar is positive, this fixed point is an unstable state, also called repeller

(Perko, 1996, for a discussion in the context of DFT see Schöner, 2009). Excitatory

input, S > h, shifts the rate of change upwards by a constant amount, generating a

new attractor at uas = W − h+ S. In this case, the dynamics is monostable with one

stable state at a high excitation level (see Figure 1.4). If S − h < 0, the dynamics is

also monostable with, however, a fixed point at a negative baseline or resting level.

Thus in general, depending on the strengths of the neural connectivity and the

external input, patterns of activation can be in different attractor states (Johnson et al.,

2008; Schöner, 2009):

• Resting state: in the absence of inputs, the attractor is at the resting level of the

activation, a negative activation value (−h) by convention.

• Input-driven state: a localized input, S(x), can form bumps in the field. When

weak localized input is presented that does not reach the threshold for triggering

the recurrent interaction within the neuronal pool, the solution remains sub-

threshold, u(x) = S(x)− h. For stronger inputs, the recurrent interactions cause

an amplification of the field response at stimulated sites, leading to a self-stabilized



11

u

S

du

dt

ua1 ur ua2 uas

du

dt
= −u+Wfp(u)− h+ S

du

dt
= −u+Wfp(u)− h

Figure 1.4: The rate of change of activation du
dt

is plotted as a function of u for the case of the ramp

function (1.9). The fixed points are ua1 = −h, ur = h
βW−1 and ua2 = W − h, if S = 0 (dashed line)

and aas = W − h+ S if S > h (solid line).

activation peak. If the input is removed, the suprathreshold activity will decay

back to the stable resting state.

• Self-sustaining state: under appropriate conditions on the connectivity function

W , and the parameter h, the field dynamics is bistable with the stable resting

state coexisting with a localized activation pattern or bump that is self-sustained

without supporting external input. A sufficiently strong transient input desta-

bilises the resting state and a bump evolves. The self-sustained pattern is only

marginally stable, that is, external perturbations of the activation profile may

change the bump position (Amari, 1977). The bump can be destabilized by in-

creasing the global inhibition, −h < 0, in the field. Suprathreshold activity will

converge to the stable resting state of the field dynamics.
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1.1.3 Single bump versus multiple bumps

In dynamic field models, strong recurrent excitation counterbalanced by lateral inhibi-

tion gives rise to stimulus-selective attractor states of neural populations that may serve

a working memory function. Higher brain areas such as the PFC that show persistent

activity are known to be involve in other cognitive functions as well (Miller, 2000). For

instance, decision making defined as the process to choose an option between different

alternatives in ambiguous sensorimotor tasks is believed to be mediated by the same

neural processing mechanisms that support working memory. Indeed, in dynamic fields

of Amari type a strong winner-takes-all competition between sufficiently active neural

subpopulations is mediated by lateral inhibition. If two different groups of neurons

at resting state receive transient external input, their activities first ramp up together

before diverging from each other due to the increasing influence of the feedback inhibi-

tion. One population reaches finally a stable bump state which stores the decision in

working memory whereas the activity of the other population declines. Normally, the

population that gets the strongest overall input will win the competition (Figure 1.5,

left). In the unlikely case of exactly equal input strengths, the decision may be forced

by a noise term added to the field dynamics (Erlhagen and Schöner, 2002).

It is important to note that for dynamic fields of lateral inhibition type multi-

bump solutions may exist. For the coupling function (1.3), each suprathreshold bump

contributes an additional inhibitory input proportional to its width to other field sites.

If the globally inhibitory input, −h, in equation (1.1) is adequately chosen, a limited

number of bumps of equal width may exist simultaneously in the field (Erlhagen and

Bicho, 2006). They are however not stable to small spatial perturbations (Laing et al.,

2002; Laing and Troy, 2003; Murdock et al., 2006). From an application point of view

even more important, multi-bumps cannot be generated by a temporal sequence of

localized inputs to the field. The first input will trigger a localized activity pattern

that occupies the total area of suprathreshold activity that the recurrent interactions

permit. The strong additional inhibition at field sites that receive subsequent inputs

prevent the evolution of suprathreshold activity that may compete with the existing

bump to establish an equal width multi-bump pattern.

Laing et al. (2002) have shown analytically and in simulations that the field
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dynamics may stabilize multiple regions of suprathreshold activity when a coupling

function with an oscillatory pattern of lateral inhibition and lateral excitation (1.6) is

used (Figure 1.5, right). The open question how multiple inputs that are presented si-

multaneously or sequentially may generate these multi-bump excitations from different

initial conditions is addressed in this thesis.

0
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0x

t
x

t

u
(x
,t

)

u
(x
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Figure 1.5: The initial temporal evolution of activation is shown when at time t = 0 two localized

inputs of different strengths are presented. For a coupling function of lateral inhibition type (1.3), only

one suprathreshold pattern will be ultimately stabilized (left), whereas for the coupling function of type

(1.6) two suprathreshold activation patterns may coexist (right).

1.1.4 The role of subthreshold activation

When weak localized input is applied, the field activation remains below the threshold

for triggering the recurrent interactions within the neural population. Consequently,

the field activity will decay back to the stable resting state when the external input is

removed. While this input-driven state obviously does not represent a working memory

function, it may play nevertheless an important functional role in cognitive architectures

of interconnected neural fields that model for instance decision processes.

Imagine for example a sensorimotor task in which a decision has to be made to

reach towards one of two possible targets located at different positions in space. The

neural population activation patterns in the fields represent in this example the param-

eter movement direction. The decision in which direction to reach is not dependent on

the visual input alone but may also be biased for instance by movement history. Input

from a neural field reflecting in its activation pattern the memory trace of previous

reaching movements may thus preshape the neural populations in the decision field. A

subpopulation which gets this additional subthreshold input is more likely to evolve
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a suprathreshold excitation and thus to win the competition even if the visual input

for the two target directions is equally strong. In models of action preparation, the

movement is initiated when a fixed excitation threshold has been reached. Since the

level of prior activation affects the rate at which the activation bump rises, all classical

effects of task environment on reaction time can be modelled (Erlhagen and Schöner,

2002).

The concept of preshaping as a simple from of learning has been used in vari-

ous applications. An example on the perceptual level is the fast learning of labels for

different objects (Faubel and Schöner, 2008). The dynamic field architecture consists

of various interconnected two-dimensional feature label fields that get input from the

camera system. Bumps of suprathreshold activation represent objects over a small

number of features like colour, shape and size ratio and the associated labels as the

second field dimension. The activation of all label feature fields is integrated in a de-

cision field. Learning within the distributed network takes place in a form of laying a

memory trace of the existing bump activations of each feature dimension in associated

preshaped fields whenever an object has been correctly classified. The preshaped in-

put from previous trials to the feature label fields in turn increases the probability to

correctly classify objects when they are presented in different poses.

The preshaping of neural populations by past experience plays also an important

role in the dynamic field model of learning the order and timing of demonstrated

sequences presented in Chapter 7. Subthreshold input from a sequence memory layer

allows the learning system to deal with noisy and potentially ambiguous input signals

and to iteratively adjust the precise timing of suprathreshold activation bumps.

1.2 The dynamic neural field approach to robotics

Over the last years, there is an increased interest by part of the robotics community to

apply the neuro-plausible processing mechanisms offered by dynamic field theory for

the development of brain-inspired control architectures. The main goal is to advance

towards a new generation of robots with high-level cognitive capacities by implement-

ing neurophysiological mechanisms supporting human cognition. Real-time cognitive

processes are seen as patterns of neuronal activity that continuously change under the
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influence of multiple external (e.g., sensory information) and internal (e.g., memory

representations) forces. This neurodynamics view on cognition strongly contrasts with

the classical artificial intelligence (AI) approach that implements cognitive behaviour

as a sequence of logical operations performed on discrete symbols without temporal

dimension (Levesque and Lakemeyer, 2008). Although the AI framework still dom-

inates the thinking in the robotics community, it is now widely recognized that the

serial planning of complex robot behaviour based on the manipulation of symbols has

notoriously problems to cope with real-time interactions in ever changing environments

(for discussion see Erlhagen and Bicho, in press).

DNFs have been first introduced into the domain of robotics in navigation tasks to

endow the so-called attractor dynamics approach with memory and decision (Schöner

et al., 1995, Bicho and Schöner, 1997, Bicho, 2000, for follow up studies Bicho et al.,

2008, 2009). In the DNF-based control architectures, the fields are spanned over the

heading direction of the robot relative to an arbitrary but fixed frame of reference. The

path planning field integrates on-line information about the target location and the

location of obstacles coming from on-board sensors. In addition, it receives input from

an object memory field that contains self-stabilized activation peaks. They represent

the locations of previously detected obstacles that are currently invisible to the sensors

due to occlusion. This memorized information is coupled into the movement planning

field in the form of inhibitory input, defining undesirable heading directions. Since the

field dynamics supports the existence of a single localized activation bump, decision

can be made and stabilized even in navigation tasks with several potential targets.

The implementations on vehicles equipped with low-level sensors and controlled by

non-linear attractor dynamics demonstrate that the navigation behaviour in cluttered

environments is quite smooth and robust.

The approach has been later extended to human-robot interaction tasks with the

goal to endow the robot with human-like social competences like imitation learning,

action understanding and goal inference (Erlhagen and Bicho, 2006). In the robotics

community, robot learning by observing an human expert executing a specific task is

considered an efficient means to reduce the huge search space in which the robot has

to find a solution for a specific problem (Schaal, 1999). DNF architectures that mimic
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the neural processing circuits supporting human observational learning and imitation

have been applied in simple object manipulation tasks. As a key idea, these archi-

tectures implement a direct mapping between neural population representing in their

self-stabilized firing patterns a direct mapping between observed motor acts (e.g., a

specific grasping behaviour) and corresponding representations in the motor system of

the observer (e.g., Andry, 2004; Erlhagen et al., 2006). The capacity to understand

the actions of others and infer their goals is fundamental for many joint action task in

which two or more agents have to coordinate their decisions to achieve a common goal.

The DNF-based control architecture for joint action developed by the group at UM uses

action simulation as a core mechanism to achieve this demanding goal (Bicho et al.,

2011). The neuronal representation of an observed motor act (e.g., reaching towards

a specific object) activates representations of entire motor sequences directed towards

a final goal (e.g., reaching, grasping and placing an object at a specific position). The

self-sustaining properties of the neuronal population dynamics governed by DNFs al-

low the system to cope with missing sensory information (e.g., due to occlusion) and

to anticipate the action outcomes ahead of their realization. Based on this prediction,

the robot then may timely select a complementary behaviour that best serves the team

performance (Bicho et al., 2010, 2011).

The thesis work makes two novel contributions to the DNF approach to cognitive

robotics. The capacity to organize sequence of behaviours is fundamental for a robot

that is supposed to efficiently work in human environments. Many of our daily routine

tasks are sequential in nature (e.g., making coffee, preparing the dinner table etc.).

The proposed sequence model allows the robot to rapidly learn and memorize short se-

quences of observed sensorimotor events. Different to other bio-inspired approaches, the

learning does not take place as a change in the synaptic connections between different

neuronal populations which normally requires a larger number of training experiments

(see the neural network approaches by e.g. Elman, 1990; Botvinick and Plaut, 2004;

Sousa et al., 2014). In the model, sequential information is reflected by the amplitude

of suprathreshold population activity which can be adapted in very few or even only

one trial. Moreover, the model does not only learn the order but simultaneously also

the timing of sequence elements. Thus far, the important influence of action timing
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on fluent and efficient joint action has been to a large extent ignored by the robotics

community. We use the fast acquisition of a short musical sequence demonstrated by

a human teacher as an example to test the novel predictions of the DNF model in

real-world robotics experiments.

1.3 Thesis outline

Part II of the thesis presents analytical and numerical work on the conditions that

support the formation of stable multi-bump solutions in response to stationary and

transient external input. The analytical studies focus on one-bump and two-bump

solutions. All mathematical proofs are only outlined in part II and presented in detail

in part V of the thesis. The analytical work is complemented by numerical studies of

multi-bump solutions. Part II is organized in four chapters:

• Chapter 2 presents the state of the art of existence and stability studies of local

excitations in one-dimensional neural fields.

• Chapter 3 presents a study of the existence and stability of one-bump solutions

with and without input.

• Chapter 4 presents a study of the existence and stability of two-bump solutions

with and without input.

• Based on the insight from the analysis of two-bumps, Chapter 5 presents analyt-

ical and numerical work on the existence and stability of N -bump solutions, for

N ≥ 2.

Part III introduces dynamic neural field models of sequence representation which

build on the existence of stable multiple-bumps to implement a working memory func-

tion. A real-world robotics experiment of sequence learning is also presented. Part III

is organized in four chapters:

• Chapter 6 introduces some basic notations and concepts of sequence representa-

tion and learning in the cognitive science that will be used throughout this part

of the thesis.
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• Chapter 7 presents a dynamic neural field model which exploits the existence of

multiple bumps with varying levels of activation to implement a working memory

of sequential events.

• Chapter 8 presents an extension of the dynamic neural field model presented in

Chapter 7 that is applied to learn and memorize precisely timed sequences of

events.

• Chapter 9 validates the theoretical model in a human-robot experiment in which

the humanoid robot ARoS learns to execute a musical sequence.

Part IV presents a discussion of results and conclusions for future work.

Part V corresponds to the Appendixes in which all proofs of the Theorems pre-

sented in Part III are given. The numerical method used for the simulation studies of

the field dynamics is also sketched.
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Mathematical analysis of

multi-bump solutions
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Chapter 2

Existence and stability of local

excitations in one-dimensional

neural fields: state of the art

In this chapter, we briefly review the state of the art of studies of local excitation

solutions in one-dimensional neural fields, without and with external input (for a recent

overview of techniques and results see Coombes, 2005).

2.1 One-bump solution in the absence of external input

In the absence of external input S(x, t) (i.e. S(x, t) = 0), Amari (1977) studied the

existence and the stability of stationary solutions of (1.1), i.e. solutions given by

u(x, t) =
∫
w(x− y)f (u(y, t)) dy − h. (2.1)

For a given distribution u(x), Amari defines its region of excitation to be the set

R[u] = {x|u(x) > 0} .

A pattern u(x) whose excited region is a finite, open interval,

R[u] = (x1, x2)

is a localized excitation with boundaries at field sites x1 and x2. Amari calls a local

excitation solution an a-solution, where a = x2 − x1 is the width of the excited region.
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In this case, if R[u] is connected, the pattern is referred as a single-bump, or one-bump

solution and has the form R[u] = (0, a). Amari also defines R[u] = ∅, i.e., u(x) ≤ 0

for all x so that no region is excited and calls it a ∅-solution. On the other hand,

R[u] = (−∞,∞), i.e., u(x) > 0 for all x on the whole line is called a ∞-solution.

In order to discuss the existence of one-bump solutions, Amari defines

W (x) =
∫ x

0
w(y)dy (2.2)

as the integral of w(x) and the related quantities Wm = max
x>0

W (x) and W∞ =

lim
x→∞

W (x). It follows from the hypothesis (H1) and (H2) that W (x) is continuous

and odd.

If (2.1) has an one-bump solution, u(x), whose activation is positive over the interval

(0, a), then the solution satisfies

u(x) =
∫ a

0
w(x− y)dy − h = W (x)−W (x− a)− h. (2.3)

At the point x = a, since W (x) is odd and u(0) = u(a) = 0, the equation (2.3) reduces

to

W (a) = h. (2.4)

In turn, if a > 0 and h > 0 satisfy (2.4), then

u(x) = W (x)−W (x− a)− h. (2.5)

is a single-bump solution of (2.1) for which R[u] = (0, a). For a given h ≥ 0, (2.4)

may have zero, one or two positive solutions, depending on the values of h, Wm and

W∞. In Figure 2.1 we show the integral W (x) corresponding to the coupling function

illustrated in Figure 1.1. In this case, W (x) is monotonically increasing for x > 0 until

it reaches the maximum Wm, and then monotonically decreases. Thus,

W∞ = lim
x→∞

W (x) = −∞, (2.6)

which implies that the inhibitory connections exist between neurons at any distance in

the field. If 0 < h < Wm, there are two values, a1 and a2, which satisfy (2.4), that is,

there are two one-bump solutions with different widths for the same value of h. Note

that solutions of (1.1) are translationally invariant, that is, if u(x) is a solution, also

u(x− a) is a solution for all a > 0.
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Figure 2.1: The W (x) corresponding to the coupling functions, w(x), illustrated in Figure 1.1.

To analyse the stability of the bumps, Amari reduces the neural field equation to

an ordinary differential equation with respect to the boundaries of the excited region.

He uses a perturbation approach to show that an one-bump solution of width a is stable

if and only if

dW (a)
da

= w(a) < 0. (2.7)

When two solutions of (2.4) exist, as illustrated in Figure 2.1, the solution of

smaller width corresponding to a1 is unstable and the solution of larger width corre-

sponding to a2 is stable. Note that stability refers here to wave form stability since

small external perturbation to the field may change the location of the bumps within

the field (for follow up studies of stable bumps based on Amari’s ideas see, e.g., Pinto

and Ermentrout, 2001; Guo and Chow, 2005a,b).

Depending on the parameter h, a field with a localized initial excitation can show

two types of behaviour (Figure 2.2). If h > Wm the dynamics is monostable, all initial

excitation converges to the stable resting state (−h). If 0 < h < Wm, the field dynamics

is bistable. An initial localized excitation of a width larger than a1 converges to the

stable bump of width a2. Initial excitation that is not sufficiently strong or is too narrow

will return to resting state over time. This bistable behaviour of the dynamic is crucial

for the implementing a memory function in the applications of DNF theory, since a

transient localized input of sufficient strength may switch between the two attractors.
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Figure 2.2: Stable resting state h as single attractor (monostable, left panel). Stable bump (top right)

and stable resting state (bottom right) coexist as attractors (bistable, rights panels). Dashed lines

represent the initial excitation.

2.2 Two-bump solutions in the absence of external input

Laing and Troy (2003) extended the analysis of the Amari model to the case of two-

bumps. They defined a two-bump solution as a solution whose region of excitation

is the union of two disjoint, finite, open intervals with R[u] = (0, a) ∪ (b, c). Thus, a

solution u(x) is called a two-bump solution if there are values 0 < a < b < c <∞ such

that 
u > 0 on(0, a) ∪ (b, c),

u(0) = u(a) = u(b) = u(c) = 0,

u < 0 otherwise.

(2.8)

The general form of an equal-width two-bump solution, c = a+ b, is

u(x) = W (x)−W (x− a) +W (x− b)−W (x− a− b)− h. (2.9)

Consequently, the necessary conditions for the existence of such solutions are

2W (b)−W (a+ b)−W (b− a) = 0 (2.10)

and

W (a)−W (b) +W (a+ b)− h = 0. (2.11)

It was shown by Laing and Troy (2003) that there is an interval of values for

a and corresponding values for b > a such that condition (2.10) is satisfied. Since
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it is not easy to determine the sign of h for these values of a and b, Murdock et al.

(2006) investigated the existence of two-bump solutions, with the focus on the sign of

h. Assuming that h = |W (p)| with p ∈ {a, b, c}, they determined parameter values

that satisfy the conditions (2.10) and (2.11). They start their proof by introducing the

following definition of a quasi-solution.

Definition 1 Given a triple of positive numbers, τ = (a, b, c), with a < b < c, and

h ≥ 0, the function uτ (x) = W (x)−W (x− a) +W (x− b)−W (x− c)−h is defined. If

p ∈ {a, b, c}, h = |W (p)|, and uτ satisfies uτ (0) = uτ (a) = uτ (b) = uτ (c) = 0, then uτ
is said to be a p-quasi-solution of (1.1).

If w is chosen as a “Mexican hat” coupling function with W∞ ≥ 0, the authors prove

the non-existence of a a-quasi-solutions and the existence of both a b-quasi-solutions

and a c-quasi-solutions. However, it is not easy to determine the interval of values of

a and b that satisfy the two conditions (2.10) and (2.11). In this thesis, we prove for

the coupling function with several zeros-crossing defined in (1.6) that there are specific

values of a and b that satisfy the two conditions if h = |W (a)|.

2.2.1 Stability of two-bump solutions

The study of the stability of local excitation pattern determines the dynamical proper-

ties of the field. For the stability analysis we adopt the approach introduced by Amari

(1977) for one-bumps and latter applied by Laing and Troy (2003) for two-bumps. The

approach derives equations for the change in width of the two excited regions under

small perturbation, and uses linear stability analysis to derive the stability conditions.

Let the excited region at time t be

R[u(x, t)] = (x1(t), x2(t)) ∪ (x3(t), x4(t)) (2.12)

and let

c1 = ∂u (x1, t)
∂x

, − c2 = ∂u (x2, t)
∂x

, c3 = ∂u (x3, t)
∂x

, −c4 = ∂u (x4, t)
∂x

, (2.13)

be the spatial slopes of u(x, t) at the boundaries x1, x2, x3 and x4 of the excited region.

After a short time dt, u(x, t) changes to u(x, t + dt) and the intervals of the excited
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region become (x1(t+ dt), x2(t+ dt)) and (x3(t+ dt), x4(t+ dt)) that satisfy

u (xi(t+ dt), t+ dt) = 0

where xi(t+ dt) = xi + dxi (i = 1, 2, 3, 4).

Assuming that dxi and dt are infinitesimally small, we differentiate u (xi, t) for i =

1, 2, 3, 4 and obtain

d

dt
u (xi, t) = ∂u (xi, t)

∂x

dxi
dt

+ ∂u (xi, t)
∂t

, i = 1, 2, 3, 4 (2.14)

We thus have

dxi
dt

= − 1
∂u(xi,t)
∂x

∂u (xi, t)
∂t

, i = 1, 2, 3, 4 (2.15)

Since u (xi, t) = 0 at time t, we have from (1.1)

∂u(xi,t)
∂t =

∫ x2
x1
w(xi − y)dy +

∫ x4
x3
w(xi − y)dy − h

= W (xi − x1)−W (xi − x2) +W (xi − x3)−W (xi − x4)− h
(2.16)

Substituing (2.13) into (2.15) and using (2.16), we have

dx1
dt

= 1
c1

[W (x1 − x2)−W (x1 − x3) +W (x1 − x4) + h] , (2.17)

dx2
dt

= 1
c2

[W (x2 − x1) +W (x2 − x3)−W (x2 − x4)− h] , (2.18)

dx3
dt

= 1
c3

[−W (x3 − x1) +W (x3 − x2) +W (x3 − x4) + h] , (2.19)

dx4
dt

= 1
c4

[W (x4 − x1)−W (x4 − x2) +W (x4 − x3)− h] . (2.20)

Let

a(t) = x2(t)− x1(t), b(t) = x3(t)− x1(t), c(t) = x4(t)− x1(t), (2.21)

where a(t) is the width of the first bump, b(t)−a(t) is the distance between the bumps,

and c(t)− b(t) is the width of the second bump.

Using (2.21) and by subtracting (2.18) from (2.17), (2.19) from (2.17), and (2.20)

from (2.17), we have:
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da

dt
=
( 1
c1

+ 1
c2

)
[W (a)− h] + 1

c1
[W (c)−W (b)] + 1

c2
[W (c− a)−W (b− a)] ,

(2.22)
db

dt
=
( 1
c1

+ 1
c3

)
[−W (b)] + 1

c1
[W (a) +W (c)− h] + 1

c3
[W (b− a)−W (c− b) + h] ,

(2.23)
dc

dt
=
( 1
c1

+ 1
c4

)
[W (c)− h] + 1

c1
[W (a)−W (b)] + 1

c4
[W (c− b)−W (c− a)] .

(2.24)

Considering that the two bumps have equal width, we have

c(t) = a(t) + b(t), ∀t > 0. (2.25)

Then, dcdt = da
dt + db

dt implies that c3 = c2 and c4 = c1. Thus, the condition (2.25) reduces

(2.22)-(2.24) to

da

dt
= 1
c1

[W (a) +W (a+ b)−W (b)− h] + 1
c2

[W (a) +W (b)−W (b− a)− h] , (2.26)

db

dt
= 1
c1

[W (a) +W (a+ b)−W (b)− h] + 1
c2

[W (b− a)−W (a)−W (b) + h] , (2.27)

Subtracting (2.27) and (2.26) we obtain

db

dt
− da

dt
= 2
c2

[W (b− a)−W (a)−W (b) + h] , (2.28)

The equations (2.26) and (2.28) describe the change of the lengths of the bumps

and the distance between the bumps, respectively. The stationary lengths of (2.26) and

(2.28) are given by

W (a) +W (a+ b)−W (b)− h = 0, (2.29)

W (a) +W (b)−W (b− a)− h = 0, (2.30)

in agreement with (2.10) and (2.11).

We define G and H to be the right hand sides of (2.26) and (2.28), respectively.

The Jacobian matrix J of (2.26) and (2.28) at (a, b, a+ b) is given by

J =

 Ga Gb

Ha Hb

 , (2.31)
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where Ga, Gb, Ha and Hb are partial derivatives evaluated at (a, b, a+ b). They

are given by

Ga = 1
c1

[w(a) + w(a+ b)] + 1
c2

[w(a) + w(b− a)] , (2.32)

Gb = 1
c1

[w(a+ b)− w(b)] + 1
c2

[w(b)− w(b− a)] , (2.33)

Ha = − 2
c2

[w(b− a) + w(a)] , (2.34)

Hb = 2
c2

[w(b− a)− w(b)] . (2.35)

The eigenvalues, λ, of J satisfy

λ2 − (Ga +Hb)λ+GaHb −GbHa = 0. (2.36)

If the two eigenvalues have negative real part, then (a, b, a+b) is a stable solution

with respect to perturbations that preserve the equal-width condition. However, if at

least one eigenvalue has positive real part, then (a, b, a+ b) is unstable.

Note that if the trace of J is negative and the determinant of J is positive we can

conclude that both eigenvalues of the Jacobian matrix have negative real parts, that

is, (a, b, a+ b) is a stable solution if the following conditions hold

Ga +Hb < 0 (2.37)

and

GaHb −GbHa > 0. (2.38)

We have,

Ga +Hb = 1
c1

[w(a) + w(a+ b)] + 1
c2

[w(a) + 3w(b− a)− 2w(b)] , (2.39)

and

GaHb−GbHa = 2
c1c2

[2w(a+ b)w(b− a)− 2w(a)w(b) + [w(a)− w(b)] [w(a+ b) + w(b− a)]] .

(2.40)

For lateral inhibition type of coupling, Laing and Troy (2003) found that families

of two-bump solutions exist, but none of the solutions is stable. By using a coupling

function with three positive zeros, they found that both stable and unstable two-bump

solutions may co-exist.
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2.3 Multi-bump solutions in the absence of external input

N -bump solutions refer to a solution with N > 1 disjoint, finite connected intervals of

excitation (Laing et al., 2002; Laing and Troy, 2003). Thus, a solution u(x) of (2.1) is

called N-bump solution if there are values a0 < a1 < a2 < a3 < ... < a2N−1 such that
u > 0 on (a0, a1) ∪ ... ∪ (a2N−2, a2N−1)

u (a0) = u (a1) = ... = u (a2N−1) = 0,

u < 0 otherwise.

(2.41)

In (Laing et al., 2002), the authors investigated for a specific coupling function given by

(1.5) the existence and stability of N -bump solutions, for a smooth, sigmoidal transfer

function f , using Fourier techniques. For the case of the Heaviside function f , they

conjecture that both stable and unstable N -bump stationary solutions might exist for

N ≥ 1. Following this conjecture, we study, in Chapter 5, analytically and numerically

the existence and the stability of N-bump solutions for the Amari model with specific

coupling function of type (1.6).

2.4 One-bump solution with external input

Kubota et al. (2009) extended the results of the Amari’s study of bumps in a lateral

inhibition type field with stationary localized input to the case of inputs with arbitrary

shape. They examined the conditions for the existence of a localized excitation with

R[u] = (x∗1, x∗2) when arbitrary time invariant input S(x) is applied. A stationary

solution of local excitation with R[u] = (x∗1, x∗2) is

u(x) =
∫ x∗

2
x∗

1
w(x− y)dy − h+ S(x)

= W (x− x∗1)−W (x− x∗2)− h+ S(x).
(2.42)

Defining G(x) ≡ G[x;x∗1, x∗2] = −W (x− x∗1) +W (x− x∗2) + h, the three conditions for

the existence of steady local excitation solution are:

Steady condition 1: S(x) = G(x), if x = x∗1, x
∗
2;

Steady condition 2: S(x) > G(x), if x∗1 < x < x∗2;

Steady condition 3: S(x) < G(x), if x < x∗1, x
∗
2 < x.
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Note that the conditions for the existence of steady local excitations are satisfied

for all coupling function w(x) with w(x) = w(−x) and w(0) > 0.

According to Kubota et al. (2009), a steady solution of local excitation with R[u] =

(x∗1, x∗2) is:

• stable if S∗x1 > S∗x2 and w(a∗) (S∗x1 − S∗x2) + S∗x1S
∗x2 < 0;

• unstable if S∗x1 < S∗x2 and w(a∗) (S∗x1 − S∗x2) + S∗x1S
∗x2 > 0;

where S∗xi = d(Sxi)
dx , i = 1, 2.

2.5 Conclusion

In this chapter, we reviewed the existence and stability studies of one-bump and two-

bump solutions of the Amari model in the absence of external input. We also presented

the definition of N -bump solution that we is used in the following chapters. For a field

with external input, we summarized the results of a recent study that generalize Amari’s

original analysis to the case of an arbitrary stationary input pattern.



Chapter 3

Analysis of one-bump solutions

In this chapter, we analyse and compare the conditions for the existence and stability

of one-bump solutions of (1.1) with coupling function of class (1.6) in the absence of

external input, S(x, t) = 0,∀t > 0, and in the presence of an unimodal symmetric input.

For the following analysis, we assume that f is the Heaviside firing rate function (1.2)

and h is a fixed positive constant. We discuss the field response to a stationary or a

transient unimodal symmetric input in terms of its width.

For the particular coupling function defined by (1.6) we add the following condi-

tion:

(H8) w has infinite positive zeros at values zn = −arctan( 1
k )

α + nπ
α for all n ∈ N.

The integral of w(x) defined in (1.6), for x ≥ 0 is

W (x) = −p1
(
e−kx (p3 sin (αx) + p2 cos(αx))− p2

)
(3.1)

where p1 = A
k2+α2 , p2 = αk + k and p3 = k2 − α.

3.1 One-bump in the absence of external input

Following Amari (1977), the conditions for the existence of an one-bump solution are

given by the following theorem:

Theorem 1 Suppose that hypotheses (H1) and (H2) hold. The equation u(x) = W (x)−

W (x−a)−h defines a one-bump solution with R[u] = (0, a) if and only if the following

31
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three conditions are satisfied

(i) W (x)−W (x− a)− h = 0, if x = a,

(ii) W (x)−W (x− a)− h > 0, if x ∈
(
a
2 , a

)
,

(iii) W (x)−W (x− a)− h < 0, if x > a.

The proof of this Theorem is given in Appendix A.

For a coupling function of lateral inhibition type, one can conclude that u(x) =

W (x) − W (x − a) − h defines an one-bump solution if the condition (2.4) (that is

equivalent to condition (i) of Theorem 1) is satisfied. However, for a coupling function

w(x) given by (1.6) this is not true. For example, consider A = 2, α = 0.3, k = 0.08

with h = W (11.5) (Figure 3.1, left) and A = 2, α = 0.3, k = 0.05 with h = W (9)

(Figure 3.1, right) we have that the solutions of W (a) = h are a = 11.5 and a = 9,

respectively. These solutions satisfy the condition (2.4) but u(x) is not negative for all

x > a as we can confirm in Figure 3.2.

For a given h > 0, if (H1), (H2), (H6), (H7) and (H8) hold the equation defined in

condition (i) of Theorem 1 may have zero, one, two or more solutions. Figure 3.1 (left)

illustrates that there is no solution if h > W (z1), there is one solution if h = W (z1) or

h < W (z2), there are exactly two positive solutions if W (z3) < h < W (z1) and there

are at least three solutions if W (z2) ≤ h ≤W (z3).

0 z1 z2 z3 z4 z5

0
W (0.15)

W (11.5)

W (10)

6.5

x
0 z1 z2 z3 z4 z5

0

W (9)

x

Figure 3.1: Plot of W (x) given by (3.1) with A = 2, α = 0.3, k = 0.08 (left) and k = 0.05 (right). The

lines are defined by h = W (0.15), h = W (10), h = W (11.5) and h = 6.5 (left) and h = W (9) (right).

Let a be a value that satisfies condition (i). From the two examples of Figure 3.2

we conjecture that when h < W (z3) or W (z2) < 0, u(x) = W (x) − W (x − a) − h
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Figure 3.2: Plot of solution (2.3) when W is given by (3.1) with A = 2, α = 0.3, k = 0.08 (left) and

k = 0.05 (right). The value of h is W (11.5) (left) and W (9) (right).

may not define an one-bump solution. In order to derive a necessary condition for the

existence of one-bump solutions, we add the following hypothesis:

(H9) W (z2) > 0.

Note that W (z2) is negative if the value of k is sufficiently small, i.e., when the

oscillations of w are more pronounced.

Theorem 2 Assume that hypotheses (H1), (H2), (H6)− (H9) hold. Let a ∈ (z1, z2) be

a solution of W (a) = h. If h > W (z3) then

u(x) = W (x) +W (x− a)− h (3.2)

defines a stable one-bump solution.

The proof of this Theorem is given in Appendix A.

For an one-bump solution of width a if we choose α = π
a and h = W

(
π
α

)
, then

π
α ∈ (z1, z2) holds and the stability condition (2.7) is satisfied. Suppose W (z2) > 0, to

conclude that u(x) = W (x) +W (x− a)−h defines an one-bump solution, by Theorem

2, h > W (z3) must hold. Consider the following two important properties of (3.1).

Lemma 1 Let n be a natural number, x be any non-negative real number, and W is

defined by (3.1). Then

W

(
x+ nπ

α

)
=


−e−

knπ
α W (x) + p1p2

(
1 + e−

knπ
α

)
, if n is odd

e−
knπ
α W (x) + p1p2

(
1− e−

knπ
α

)
, if n is even

, (3.3)



34

and

W

(
x− nπ

α

)
=


−e

knπ
α W (x) + p1p2

(
1 + e

knπ
α

)
, if n is odd

e
knπ
α W (x) + p1p2

(
1− e

knπ
α

)
, if n is even

, (3.4)

hold, if x− nπ
α > 0.

The proof of this Lemma is given in Appendix A.

Lemma 2 Assume that W is defined by (3.1) and that (H1) holds. Then W
(
π
α

)
>

W (z3).

The proof of this Lemma is given in Appendix A.

In conclusion, if we choose k such that W (z2) > 0, α = π
a and h = W

(
π
α

)
, the

conditions (2.4) and (2.7) are satisfied and by Lemma 2 h > W (z3). Consequently, by

Theorem 2, u(x) = W (x) +W (x− a)− h defines a stable one-bump solution.

3.2 One-bump with external input

Assume that the external input S(x) has an unimodal and symmetric shape centered

at x = 0 and thus satisfies the following characteristics:

(SH1) S(x) is continuous on R and symmetric, i.e., S(−x) = S(x) for all x ∈ R.

(SH2) S(x) > 0 on an interval (−x, x), S(x) < 0 on (−∞,−x)∪ (x,∞) , and S(−x) =

S(x) = 0

(SH3) S(x) is increasing on (−∞, 0] and is decreasing on [0,∞).

An example of external input with unimodal and symmetric shape localized around

x = 0 is given by

S(x) = Sse

(
− x2

2σ2

)
− Si, (3.5)

where Ss > 0 and σ > 0 describe the amplitude and the standard deviation,

respectively, and Si > 0 is a constant. Note that the constant negative part, −Si, could

be also integrated in the globally inhibitory parameter h of the field dynamics. We use

it in the definition of the Gaussian input to define a finite input width.
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Considering, without loss of generality, a∗ = x∗2 − x∗1 the length of a localized

excitation in the field, a stationary solution of local excitation with R[u] = (0, a∗) is

thus given by
u(x) =

∫ a∗

0 w(x− x′)dx′ + h+ S
(
x− a∗

2

)
= W (x)−W (x− a∗) + h+ S

(
x− a∗

2

)
.

(3.6)

Defining G(x) ≡ G[x; a∗] = −W (x) + W (x − a∗) − h, the three conditions for the

existence of steady local excitation solution described in Section 2.4 become:

Steady condition 1: S
(
x− a∗

2

)
= G(x), if x = a∗;

Steady condition 2: S
(
x− a∗

2

)
> G(x), if 0 < x < a∗;

Steady condition 3: S
(
x− a∗

2

)
< G(x), if x > a∗.

The steady condition 1 corresponds to the following condition given by Amari

(1980). The width a∗ = x∗2 − x∗1 of the equilibrium local excitation has to satisfy

h− S
(
a∗

2

)
= W (a∗). (3.7)

3.2.1 Stability of one-bump solutions with input

Now we analyze the stability of a local excitation which is not necessarily an equilibrium

solution with R[u] = (x∗1(t), x∗2(t)). Following the approach taken by Amari (1977), the

motion of the boundaries of the excited region is given by

dx∗i
dt

= − 1
τci

[W (x∗2 − x∗1)− h+ S (xi)] , i = 1, 2, (3.8)

where ci = ∂u(xi,t)
∂x .

Let a∗ = x∗2 − x∗1, and S(x) a function that satisfies (SH1), (SH2) and (SH3). Sub-

tracting dx∗
2

dt from dx∗
1

dt , we have

da∗

dt
= 1
τ

( 1
c1

+ 1
c2

)[
W (a∗)− h+ S

(
a∗

2

)]
. (3.9)

The equilibrium length of (3.9) is given by

W (a∗)− h+ S

(
a∗

2

)
= 0. (3.10)

in agreement with (3.7). Moreover, an equilibrium a∗ is stable if
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w (a∗) + 1
2S
′
(
a∗

2

)
< 0 (3.11)

and unstable if

w (a∗) + 1
2S
′
(
a∗

2

)
> 0, (3.12)

where S′
(
a∗

2

)
denotes the derivative of the external input at x = a∗

2 . From (SH3)

we have S′
(
a∗

2

)
< 0. Thus, the condition w(a∗) < 0 is sufficient to conclude that a∗ is

the width of a stable one-bump solution.

3.3 Field response to an unimodal and symmetric exter-

nal input

When the initial state of the field is u(x) = −h < 0 (∅-solution), depending on the

strength of the stationary input, two situations may occur:

• the field remains in the off-state if S(0) ≤ h;

• the field develops one or more localized bumps if S(0) > h.

Using the coupling function defined in (1.6), the excited region created by an

external input with S(0) > h depends on the input shape. Figure 3.3 (top) shows

snapshots of local excitation pattern in the presence of a stationary input given by

(3.5) with equal amplitude but three different widths is applied. Depending of the

input width, the localized patterns converge to different stable states when the input

is removed (Figure 3.3, bottom). They converge to the stable resting state (left), an

one-bump solution (middle) and a two-bump solution (right). Figure 3.4 shows the

plot of the solutions of equation (3.7) for the three cases.

Theorem 3 gives the necessary conditions on the input shape that guarantees

that there is an unique a∗ ∈ (z1, z2) of (3.7) for h = W
(
π
α

)
.

Theorem 3 Assume that hypotheses (H1), (H2), (H6) − (H9), and (SH1) − (SH3)

hold. If S(0) > W
(
π
α

)
, S

( z1
2
)
> 0 and S

( z2
2
)
< 0 then the equation

W

(
π

α

)
− S

(
x

2

)
= W (x) (3.13)

has an unique positive solution a∗ that belongs to (z1, z2).
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Figure 3.3: Activity u (solid lines) with h = W (10), w defined in (1.6) with A = 2, k = 0.08 and α = π
10

and invariant external input S(dashed lines) with Ss = 8 and Si = 0.5 and different widths, σ = 0.4

(left), σ = 3 (middle), σ = 13 (right). S(x) 6= 0 (top) and S(x) = 0 (bottom).

The proof of this Theorem is given in Appendix A.

Note that since w(x) < 0 for z1 < x < z2 the equilibrium local excitation of

width a∗ is stable.

The following numerical example shows the range of input widths that lead to a

stable one-bump. Consider the coupling function w given by (1.6) with A = 2, k = 0.08,

and α = π
10 , h = W (10), and S(x) given by (3.5) with Ss = 8, Si = 0.5 and σ > 0. In

this example, S(0) = 7.5 > W (10), thus by Theorem 3 if S
( z1

2
)
> 0 and S

( z2
2
)
< 0

there exists a value a∗ ∈ (z1, z2) such that W (10)− S
(
a∗

2

)
= W (a∗). Figure 3.5 shows

the values of S
( z1

2
)
and S

( z2
2
)
as a function of σ ∈ [0, 6]. Since S

( z1
2
)
> 0 at σ > 1.1156

and S
( z2

2
)
< 0 at σ < 3.2389,we can conclude that for 1.1156 < σ < 3.2389 there exists

a∗ ∈ (z1, z2) such that W (10)− S
(
a∗

2

)
= W (a∗).

It is easy to see that the excitation pattern generated by the input is in the basis

of attractor of the equilibrium width solution a = π
α when the input is removed. Let

a∗(t) be the width of the excited region at time t, the equation with S(x, t) = 0 that

describes the change of width is given by

da∗

dt
= 1
τc

[W (a∗)− h] (3.14)
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Figure 3.4: An example of the intersection of h − S
(
x
2

)
(dashed lines) with W (x) (solid line) defined

in (3.1) with A = 2, α = π
10 and k = 0.08, and h = W (10). The input parameters are Ss = 8, Si = 0.5,

and σs ∈ {0.4, 3, 13}.
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σ

Figure 3.5: Representation of the values of S
(
z1
2

)
and S

(
z2
2

)
for each σ ∈ [0, 6].

with c = ∂u
(
−a

∗
2

)
∂x = −∂u

(
a∗
2

)
∂x > 0.

The width increases if da∗

dt > 0, decreases if da∗

dt < 0 and does not change if
da∗

dt = 0. Let h = W
(
π
α

)
and W (z2) > 0, the width increases if a∗ < π

α , decreases

if a∗ > π
α and does not change if a∗ = π

α . In all cases, the width will tend to the

equilibrium width a = π
α .
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3.4 Conclusion

In this chapter, we studied the formation of a stable one-bump in response to an

unimodal symmetric input. Choosing α = π
a , k such that W (z2) > 0 and h =

(
π
α

)
,

by Lemma 2 and Theorem 2 there exists a stable one-bump solution with width a.

To create this solution with a transient unimodal symmetric input, we can conclude

from the analysis presented in Sections 3.2 and 3.3 that the shape of S must satisfy

S(0) > W
(
π
α

)
, S

( z1
2
)
> 0 and S

( z2
2
)
< 0. This means that the amplitude of S must

be larger than h and the width of S should neither be too small nor too large.
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Chapter 4

Analysis of two-bump solutions

In this chapter, we extend the study of one-bump solutions to two-bump solutions for

a specific value of h, h = W
(
π
α

)
. We start with a proof of the existence of specific

values for the bump widths and the distance between bumps that satisfy the necessary

conditions for the existence of two-bump solutions in the absence of external input.

We then analyse the stability of such solutions. This is followed by the study of the

existence and stability of two-bump solutions in the presence of a bimodal symmetric

input. In the last section of this chapter, we qualitatively discuss the field dynamics

when the field has already one excited region and a second localized input is applied.

4.1 Two-bumps in the absence of external input

The following Theorem proves that there exist specific values of the width a and the

distance b that satisfy the two conditions, (2.10) and (2.11) if h = W
(
π
α

)
and the

coupling function is defined by (1.6).

Theorem 4 Assume that the coupling function w is given by (1.6). If h = W
(
π
α

)
and

τ a triple of the form (a, b, a+ b), then there exists an a-quasi-solution uτ of (1.1).

The proof of this Theorem is given in Appendix A.

4.1.1 Stability of an a-quasi-solution

As described in Subsection 2.2.1, two-bump solutions are stable if conditions (2.37) and

(2.38) are satisfied.

41
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a ∈ I1 a ∈ I2

b ∈ I1 w(a+ b) > 0, w(b− a) > 0 w(a+ b) < 0, w(b− a) < 0 w(b) < 0

b ∈ I2 w(a+ b) < 0, w(b− a) < 0 w(a+ b) > 0, w(b− a) > 0 w(b) > 0

w(a) < 0 w(a) > 0

Table 4.1: Study of the sign of w(a), w(b), w(a+ b) and w(b− a).

For w defined in (1.6) and considering its zeros we have:

if x ∈ (z2n−1, z2n) for some n ∈ N, then w(x) < 0, (4.1)

if x ∈ (z2n, z2n+1) for some n ∈ N, then w(x) > 0. (4.2)

In order to proceed with the analysis of the signs of the trace and the determinant

of the Jacobian J , we chose I1 of the form (4.1) and I2 of the form (4.2).

Using the inequalities in the Table 4.1, we conclude that:

• the trace is positive and the determinant is positive when a ∈ I1 and b ∈ I1. In

this case, the solution is not stable;

• the trace is negative and the determinant is positive when a ∈ I1 and b ∈ I2. In

this case, the solution is stable.

In the all other cases, the determinant can be either positive or negative. It is

thus impossible to conclude about the stability.

Consider h = W
(
π
α

)
, by Theorem 4 there exists a triple (a, b, c), with a = π

α ,

b > a (W (b) = p1p2) and c = b+ π
α , that satisfies the conditions (2.10) and (2.11). This

solution is stable if b ∈ (z2, z3). Under this conditions, depending of the value of p3 we

have b = −
arctan

(
p2
p3

)
α + 2π

α if p3 < 0, or b = −
arctan

(
p2
p3

)
α + 3π

α if p3 > 0, or π
2α + 2π

α if

p3 = 0.

Now consider A = 2, α = π
10 , k = 0.08. For these values (H1) is satisfied.

Assuming h = W (10) by Lemma 2 and as a consequence of Theorem 2 we can conclude

that u(x) = W (x) +W (x− 10)− h defines an one-bump solution. On the other hand,

by Theorem 4 if a = 10 and b = −arctan( 10π+100
8−125π )
α + 20 we have that u(0) = u(a) =

u(b) = u(a+ b) = 0. However, Figure 4.1 shows that (2.9) is not a two-bump solution.
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Figure 4.1: Plot of (2.9) when W is given by (3.1) with A = 2, α = π
α
, k = 0.08. The value of h is

W (10) and a = 10, b = −
arctan( 10π+100

8−125π )
α

+ 20.

In order to ensure the existence and the stability of two-bump solution we replace

(H9) by the following hypothesis:

(H10) W (z2) > p1p2(
1+e

2kπ
α

) , with p1 = A
k2+α2 , p2 = αk + k.

Theorem 5 Assume that the coupling function w is given by (1.6), and that hypothesis

(H10) holds. If a = π
α and b ∈ (z2, z3) such that W (b) = p1p2, then

u(x) = W (x)−W (x− a) +W (x− b)−W (x− a− b)−W
(
π

α

)
(4.3)

defines a stable two-bump solution.

The proof of this Theorem is in Appendix A.

4.2 Two-bumps with external input

Now consider that the external input S(x) has a bimodal and symmetric shape. It thus

satisfies (SH1) and the following characteristics:

(SH4) S(x) > 0 on (−x2,−x1)∪ (x1, x2), S(−x2) = S(−x1) = S(x1) = S(x2) = 0, and

S(x) < 0 on (−∞,−x2) ∪ (−x1, x1) ∪ (x2,∞);

(SH5) S(x) is increasing on
(
−∞,−x2−x1

2

)
and on

(
0, x2−x1

2

)
, and is decreasing on(

−x2−x1
2 , 0

)
and on

(
x2−x1

2 ,∞
)
.
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Without restriction, consider a bimodal input localized around x = 0 given by

S2(x) = S(x− xc) + S(x+ xc) (4.4)

where S is given by (3.5) and xc is a positive constant.

The stationary solution of local excitation with equal width a∗ = x∗2−x∗1 = x∗4−x∗3
and distance between bumps b∗ − a∗ = x∗3 − x∗2 is defined by

u(x) =
∫ x∗

2
x∗

1
w(x− x′)dx′ +

∫ x∗
4

x∗
3
w(x− x′)dx′ − h+ S(x)

= W (x− x∗1)−W (x− x∗2) +W (x− x∗3)−W (x− x∗4)− h+ S(x).
(4.5)

Since u(x∗1) = u(x∗2) = u(x∗3) = u(x∗4) = 0, it follows that

W (x−x∗1)−W (x−x∗2)+W (x−x∗3)−W (x−x∗4)−h+S(x) = 0, if x = x∗1, x
∗
2, x
∗
3, x
∗
4. (4.6)

Since S(x) is symmetric with respect to x = 0, the excited region of u(x) is(
−a+b

2 ,− b−a
2

)
∪
(
a+b

2 , b−a2

)
and the four equations (4.5) can be reduced to

W (a∗) +W (b∗)−W (b∗ − a∗)− h+ S

(
b∗ − a∗

2

)
= 0, (4.7)

and

W (a∗)−W (b∗) +W (a∗ + b∗)− h+ S

(
b∗ − a∗

2

)
= 0. (4.8)

4.2.1 Stability of two-bump solutions with input

In the following we examine the stability of a steady local excitation solution with

R[u] = (x∗1, x∗2) ∪ (x∗3, x∗4). By the approach similar to Subsection 4.1.1, the motion of

the boundaries of the excited region are given by

dx∗i
dt

= − 1
τci

[W (x∗i − x∗1)−W (x∗i − x∗2) +W (x∗i − x∗3)−W (x∗i − x∗4)− h+ S (xi)]

(4.9)

where ci = ∂u(xi,t)
∂x .

Let a∗ = x∗2 − x∗1, b∗ = x∗3 − x∗1, c∗ = x∗4 − x∗1, and assuming that the two excited

regions and S are symmetrical with respect to the x axis and with equal width, i.e.,

c∗ = a∗ + b∗, x4 = −x1, x3 = −x2, S (x∗1) = S (x∗4) and S (x∗2) = S (x∗3), we have

da∗

dt
= 1
τc1

[
W (a∗)−W (b∗) +W (a∗ + b∗)− h+ S

(
a∗ + b∗

2

)]
+

1
τc2

[
W (a∗) +W (b∗)−W (b∗ − a∗)− h+ S

(
b∗ − a∗

2

)]
,

(4.10)
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db∗

dt
= 1
τc1

[
W (a∗)−W (b∗) +W (a∗ + b∗)− h+ S

(
a∗ + b∗

2

)]
+

1
τc2

[
W (a∗)−W (b∗) +W (b∗ − a∗)− h− S

(
b∗ − a∗

2

)]
,

(4.11)

Subtracting (4.11) from (4.10) we obtain

db∗

dt
− da∗

dt
= − 2

τc2

[
W (a∗) +W (b∗)−W (b∗ − a∗)− h+ S

(
b∗ − a∗

2

)]
, (4.12)

The stationary lenghts of (4.10) and (4.12) are given by

W (a∗) +W (b∗)−W (b∗ − a∗)− h+ S
(
b∗−a∗

2

)
= 0

W (a∗)−W (b∗) +W (a∗ + b∗)− h+ S
(
a∗+b∗

2

)
= 0

(4.13)

We define G∗ and H∗ to be the right sides of (4.10) and (4.12), respectively. The

Jacobian matrix J of (4.10) and (4.12) at (a∗, b∗, a∗ + b∗) is defined as

J =

 G∗a∗ G∗b∗

H∗a∗ H∗b∗

 , (4.14)

where G∗a∗ , G∗b∗ , H∗a∗ and H∗b∗ are partial derivatives evaluated at (a, b, a+b), and

are given by

G∗a∗ = 1
τc1

[w(a∗) + g1 (a∗, b∗)] + 1
τc2

[w(a∗) + g2 (a∗, b∗)] , (4.15)

G∗b∗ = 1
τc1

[−w(b∗) + g1 (a∗, b∗)] + 1
τc2

[w(b∗)− g2 (a∗, b∗)] , (4.16)

H∗a∗ = − 2
τc2

[w(a∗) + g2 (a∗, b∗)] , (4.17)

H∗b∗ = − 2
τc2

[w(b∗)− g2 (a∗, b∗)] . (4.18)

where g1 (a∗, b∗) = w(a∗ + b∗) + 1
2S
′
(
a∗+b∗

2

)
, and g2 (a∗, b∗) = w(b∗ − a∗) −

1
2S
′
(
b∗−a∗

2

)
. The eigenvalues, λ, of J satisfy

λ2 − (G∗a∗ +H∗b∗)λ+G∗a∗H∗b∗ −G∗b∗H∗a∗ = 0. (4.19)

If the two eigenvalues have negative real parts, then (a∗, b∗, a∗ + b∗) is a stable

solution with respect to symmetric perturbations of an equal width two-bump solution.

Thus, (a∗, b∗, a∗ + b∗) is a stable solution if the trace

G∗a∗ +H∗b∗ < 0 (4.20)
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and the determinant

G∗a∗H∗b∗ −G∗b∗H∗a∗ > 0. (4.21)

We have,

G∗a∗ +H∗b∗ = 1
τc1

[w(a∗) + g1 (a∗, b∗)] + 1
τc2

[w(a∗)− 2w(b∗) + 3g2 (a∗, b∗)] , (4.22)

and

G∗a∗H∗b∗ −G∗b∗H∗a∗ = 4
τ2c1c2

[w(a∗)− w(b∗)] [g1 (a∗, b∗) + g1 (a∗, b∗)]

+ 8
τ2c1c2

w(a∗ + b∗)g (a∗, b∗)

− 2
τ2c1c2

[
4w(a∗)w(b∗) + S′

(
b∗ − a∗

2

)
S′
(
a∗ + b∗

2

)]
.

(4.23)

If

w(a∗) < 0, w(b∗) > 0 and w(a∗ + b∗) < 0, (4.24)

and

S′
(
b∗ − a∗

2

)
> 0 and S′

(
a∗ + b∗

2

)
< 0, (4.25)

the conditions (4.20) and (4.21) are satisfied.

4.3 Field response to a bimodal symmetric external input

When the field is initially at resting state u(x) = −h < 0, depending on the input

strength, two situations may occur:

• the field remains in the off-state if S
(
x2−x1

2

)
≤ h;

• the field develops one or more localized bumps in the field if S
(
x2−x1

2

)
> h.

Using the coupling function defined in (1.6), the excited region created by a

external input with S
(
x2−x1

2

)
> h depends on the relative location of the input bumps.

As a concrete example, Figure 4.2 (top panels) shows that two identical inputs given

by (4.4) produce different patterns depending on the value of xc, that is, the relative

locations of the two inputs to the field. As show in Figure 4.2 (bottom panels), the

excitation pattern converges to an one-bump (left), a two-bump (middle) and a three-

bump solution (right).
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Figure 4.2: Activity u (solid lines) with h = W (10), w defined in (1.6) with A = 2, k = 0.1 and α = π
10

and invariant external stimulus S2 (dashed lines) with Ss = 8, Si = 0.5, σ = 2 and different value of

xc, xc = 5 (left), xc = 8 (middle), xc = 20 (right). S2(x) 6= 0 (top) and S2(x) = 0 (down).

Suppose h = W
(
π
α

)
and that hypothesis (H10) holds. By Theorem 5, u(x) =

W (x) −W (x − a) + W (x − b) −W (x − a − b) − h with a = π
α and b ∈ (z2, z3) such

that W (b) = p1p2, defines a stable two-bump solution. Given the results of Figure 4.2,

a crucial question is what conditions on the input guarantee that a stable two-bump

evolve when the input is removed. We know that if a∗ ∈ (z1, z2), b∗ ∈ (z2, z3) and

a∗ + b∗ ∈ (z2, z3) the conditions (4.24) are satisfied. Thus, we introduce the subset Ω

of R2 (see Figure 4.3) as

Ω =
{

(x, y) ∈ R2|x > z1 ∧ x+ z1 < y < x+ z2 ∧ −x+ z3 < y < −x+ z4
}
. (4.26)

z1
π
α

z2
z2

z3

Ω

y = −x+ z3

y = x+ z2

y = x+ z1

y = −x+ z4

x

y

Figure 4.3: Region Ω ⊂ R2.
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The following Theorem 6 gives the necessary conditions for the existence of values

(a∗, b∗) ∈ Ω that satisfy the conditions (4.7) and (4.8) if h = W
(
π
α

)
.

Theorem 6 Assume that the coupling function w given by (1.6), and that hypotheses

(H10), (SH1), (SH4) and (SH5) hold. If S
(
x2−x1

2

)
> W

(
π
α

)
, S

( z1
2
)
< 0, S

( z2
2
)
> 0,

S
( z3

2
)
> 0 and S

( z4
2
)
< 0, then there exists a point (a∗, b∗) belonging to the region

Ω ⊂ R2 (4.26) such that

W (a∗) +W (b∗)−W (b∗ − a∗)−W
(
π

α

)
+ S

(
b∗ − a∗

2

)
= 0, (4.27)

and

W (a∗)−W (b∗) +W (a∗ + b∗)−W
(
π

α

)
+ S

(
b∗ + a∗

2

)
= 0. (4.28)

The proof of this Theorem is given in Appendix A.

We illustrate Theorem 6 with an example. Consider the coupling function w given

by (1.6) with A = 2, k = 0.1, and α = π
10 , h = W (10), and S(x) given by (4.4) with

Ss = 8, Si = 0.5, σ > 0, xc > 0. We seek a solution (a∗, b∗) such that z1
2 < b∗−a∗

2 < z2
2

and z3
2 < b∗+a∗

2 < z4
2 . Thus, to satisfy the conditions (4.25) we choose xc ∈

( z2
2 ,

z3
2
)
. In

this example we have S(xc) = 7.5 > W (10). By Theorem 6, if S
( z1

2
)
< 0, S

( z2
2
)
> 0,

S
( z3

2
)
> 0 and S

( z4
2
)
< 0, then there exists a point (a∗, b∗) belonging to Ω (4.26) such

that (4.27) and (4.28) are satisfied. Figure 4.4 shows the region as a function of σ and

xc where the four conditions on S are satisfied.

Using σ = 2 and xc = 10 by Newton’s method (for a description of the method

see Appendix B.2) with initial approximations a∗0 = 10 and b∗0 = 20, one solution of the

nonlinear system of equations (4.27) and (4.28) is (a∗, b∗) ≈ (10.2669; 21.0692).

When the input disappears, i.e., S(x, t) = 0, the motion of the width a∗ and the

distance between the two bumps b∗ − a∗ are given by

da∗

dt
= 1
τc1

[W (a∗)−W (b∗) +W (a∗ + b∗)− h] +

1
τc2

[W (a∗) +W (b∗)−W (b∗ − a∗)− h)] ,
(4.29)

db∗

dt
− da∗

dt
= − 2

τc2
[W (a∗) +W (b∗)−W (b∗ − a∗)− h] . (4.30)
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Figure 4.4: The curves of S
(
z1
2

)
, S
(
z2
2

)
, S
(
z3
2

)
and S

(
z4
2

)
, as function of xc and σ.

In this case, it is not trivial to study the signs of da∗

dt and db∗

dt −
da∗

dt as function of a∗

and b∗ compared to the values a and b that belong to (z1, z2) and (z2, z3), respectively,

and that satisfy the conditions (4.7) and (4.8). However, it is expected that the solution

(a∗, b∗) will converge to the unique equilibrium solution (a, b) that belongs to Ω.

As h = W
(
π
α

)
, by Theorem 4 there exists a triple (a, b, c), with a = π

α and

b = −
arctan

(
p2
p3

)
α + 2π

α , and c = a+b that satisfy the conditions (2.10) and (2.11). As a∗ ≈

10.2669 and b∗ ≈ 21.0692 it is expected that a∗ converges to a = 10 and b∗ converges

to b = −10 arctan( π+10
1−10∗π )

π + 20. Using Newton’s method with initial approximation

a∗ = 10.2669 and b∗ = 21.0692, one solution of the nonlinear system of the equations

(2.10) and (2.11) is (a, b) = (10; 21.2981877) as expected.

4.4 Field response to a localized input when the field al-

ready has one excited region

Consider the connection function (1.6) and that the initial state of the field is a stable

localized excitation with width a = π
α centered at x01 , i.e.,

u(x, 0) =
∫ x01+a

2

x01−
a
2

w(x− x′)dx′ − h. (4.31)

Consider without restriction x01 = 0, u(x, 0) is then given by
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u0(x, 0) =



−2p1e
kx cosh

(
ka
2

)
(p3 cos(αx) + p2 sin(αx))− h, x < −a

2

2p1e
− ka2

(
−p3 cos(αx) cosh(kx) + p2

(
e
ka
2 − sin(αx) sinh(kx)

))
− h, −a

2 ≤ x ≤
a
2

2p1e
−kx cosh

(
ka
2

)
(−p3 cos(αx) + p2 sin(αx))− h, x > a

2
(4.32)

If x01 6= 0 the u(x, 0) = u0(x− x01 , 0).

Figure 4.5 shows an example of u0(x, 0) with width a = 10.

−50 0 50−10

−h

0

15

u
(x
,0

)

x

A B C

Figure 4.5: An example of u0(x, 0) with a = 10, A = 2, α = π
10 and k = 0.1.

When the initial state is an one-bump solution the analysis of a new excitation

pattern is more complex compared to the case of the constant initial state,−h, described

before. An important new feature is that the input strength necessary to generate

suprathreshold activity depends on the distance of the second input to the existing

bump. As can be seen in Figure 4.5, the minimum input strength necessary to create a

second input is lower in region with u(x, 0) > −h and higher in region with u(x, 0) < −h

compared to the case of a constant initial condition.

Two phenomena may occurs when a second excitation is triggered: repulsion or

attraction. Consider the regions A, B and C as shown in Figure 4.5. The intensity of
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inhibition increase in region A, decrease in region B and tends to −h in region C as the

distance becomes larger. When the second input creates a local excitation in region A,

the two local excitations mutually attract and tend to fuse in one local pattern. This

occurs because the inhibition is larger in the far sites of the local excitations than in the

near sites. When the second input creates a local excitation in region B, they repulse

each other forming two separate local excitations. When the second input creates a

local excitation in region C, the interactions between the two patterns are weak so that

the new bump persist at the input location.

Consider that the initial state of the field is u(x, 0) (4.32), and a second input

with width a = π
α is presented to the right side of the initial bump (Figure 4.6). Let

the excited region at time t be R[u] = (x∗1(t), x∗2(t)) ∪ (x∗1(t), x∗2(t)) and the motion of

the boundaries is given by (4.9). Assuming that x∗2 − x∗1 ≈ a = π
α , S (x∗1) ≈ S (x∗2) ≈ 0

and h = W
(
π
α

)
, and using Lemma 1 we have

dx∗1
dt

= e−
kπ
α

τ |c1|
[W (x∗4 − x∗2)−W (x∗3 − x∗2)]

dx∗2
dt

= 1
τ |c2|

[W (x∗4 − x∗2)−W (x∗3 − x∗2)]
dx∗3
dt

= 1
τ |c3|

[(
e−

kπ
α + 1

)
W (x∗3 − x∗2)−W (x∗4 − x∗3)− S (x3)

]
dx∗4
dt

= 1
τ |c4|

[
−
(
e−

kπ
α + 1

)
W (x∗4 − x∗2) +W (x∗4 − x∗3) + S (x4)

]
(4.33)

When W (x∗4 − x∗2) < W (x∗3 − x∗2) we have dx∗
1

dt < 0 and dx∗
2

dt < 0, i.e., the initial

bump moves to the left side (repulsion) and when W (x∗4 − x∗2) > W (x∗3 − x∗2) we have
dx∗

1
dt > 0 and dx∗

2
dt > 0, i.e., the initial bump moves to the right side (attraction). If

the second input is sufficiently distant from the initial bump, the movement of the

initial bump is negligible since W (x∗4 − x∗2) ≈ W (x∗3 − x∗2) ≈ p1p2 while attraction or

repulsion gradually increase with smaller distances.

For applications of dynamic field theory a quite interesting phenomenon is that

the identical input can produce different responses depending on the current state of

the field. Consider the example illustrated in Figure 3.3 (left) in which the input width

is not sufficient to create an one-bump. Figure 4.7 illustrates that the identical input

applied to a field in which one bump already exists (left panel) may create a second

bump that persists when the input is removed (right panel).
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Figure 4.6: An example of the excited region R[u] at time t (solid line). The external input (dashed

line) is given by I(x) = max[S(x), 0] where S(x − 15) is defined by (3.5) with Ss = 6, Si = 1 and

σ = 5√
2 ln(6)

.
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Figure 4.7: Snapshot of field activity (solid line) with initial state u(x, 0) (4.32) when an external input

S(x − 20) (dashed line) given by (3.5) with Ss = 8, Si = 0.5 and σ = 0.4 , is applied (left). Stable

two-bump solution after the input has been removed (right).

4.5 Conclusion

In this chapter, we studied the formation of a stable two-bump solution in response to:

(1) a bimodal symmetric input, when the initial state is a negative constant, and (2) an

unimodal symmetric input, when the initial state is an one-bump solution. For fixed

h = W
(
π
α

)
and α = π

a , k such that W (z2) > p1p2(
1+e

2kπ
α

) , with p1 = A
k2+α2 , p2 = αk + k,

by Theorem 4 and Theorem 5 there exists a stable two-bump solution with equal
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width a. To create this solution with a transient, bimodal symmetric input we can

conclude from the analysis in Sections 4.2 and 4.3 that S must satisfy the conditions

S
(
x2−x1

2

)
> W

(
π
α

)
, S

( z1
2
)
< 0, S

( z2
2
)
> 0, S

( z3
2
)
> 0 and S

( z4
2
)
< 0.
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Chapter 5

Analysis of multi-bump solutions

In this chapter, the mathematical analysis of two-bump solutions in one-dimensional

dynamic fields is extended to the numerical study of N -bump solutions. The existence

and stability of N -bump solutions with and without external input is discussed for

specific examples of the connectivity function. Recall that a N -bump solution is one

whose region of excitation is the union of N disjoint, finite, open intervals, that is,

R(u) = (a0, a1)∪ (a2, a3)∪ ...∪ (a2N−2, a2N−1). From (1.2), (2.1), and (2.41) it follows

that u(x) can be written as

u(x) =
N−1∑
i=0

(∫ a2i+1

a2i
w(x− x′)dx′

)
− h. (5.1)

Then, using (2.2) the N -bump solution of equation (1.1) is of the form

u(x) =
N−1∑
i=0

(W (x− a2i)−W (x− a2i+1))− h. (5.2)

For simplicity we assume that the N -bump solution is symmetric. In this sense,

consider the following proposition.

Proposition 1 Suppose that hypotheses (H1), (H2), (H6) and (H7) hold. If u is sym-

metric with respect to the point a0+a2N−1
2 , the system of equations

u(a0) = 0

u(a1) = 0

...

u(a2N−1) = 0

(5.3)

55
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can be reduced to 
u (a0) = 0

...

u (aN−1) = 0

. (5.4)

The proof of this Proposition is given in Appendix A.

In the example studies, we assume, without loss of generality, that a0 = 0 and

apply Newton’s method (see Appendix B) to approximate a solution of system (5.4).

To discuss the stability of N -bump solutions we follow the approach used to study the

linear stability of two-bump solutions in Subsection 2.2.1 and compute the eigenvalues

of the Jacobian matrix

J =


J11 · · · J1N
... . . . ...

JN1 · · · JNN

 , (5.5)

where Jij = ∂
∂aj

(
dai
dt −

da0
dt

)
, with dai

dt = − 1
ci

∂u(ai,t)
∂t , ci = (−1)i ∂u(ai,t)

∂x and
∂u(ai)
∂t =

∑N−1
k=0 W (ai − a2k)−W (ai − a2k+1), for all i, j ∈ {0, 1, ..., N}. If all eigen-

values have negative real part then the solution is stable. Otherwise, if at least one

eigenvalue has positive real part then the solution is unstable.

5.1 An example of stable multi-bump solutions

We consider a connectivity function (1.6) with A = 2, α = π
10 and k = 0.1. Table 5.1

shows the approximate solutions of (5.4) for each N ∈ {2, 3, 4, 5, 6}, when the initial

values are ai = 10i for i = {1, 2, 3, 4, 5, 6}. Table 5.2 displays the eigenvalues of (5.5)

for the solutions described in Table 5.1. All eigenvalues have negative real part and

thus all solutions are stable. Figure 5.1 shows the plot of solution (5.2) where a0 = 0,

the values of aj for j ∈ {1, ..., N} correspond to the values shown in Table 5.1 and

aj = aN + aN−1 − a2N−1−j for j ∈ {N + 1, ..., 2N − 1} representing two-bump, three-

bump, four-bump, five-bump and six-bump solutions, respectively.

For the case of a two-bump solution, we can directly compare the analytical

results for the width a and distance b− a of bumps with the numerical approximation.
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We know from Theorem 4 and Theorem 5 that for h = W
(
π
α

)
and k2 < α there exists a

two-bump solution of (1.1) with a = π
α and b =

− arctan
(
p2
p3

)
α + 2π

α . With A = 2, α = π
10

and k = 0.1, we have k2 < α. Consequently, there exists a two-bump solution of (1.1)

with a = 10 and b ≈ 21.2982, which is in perfect agreement with the approximate

values in Table 5.1 for the case N = 2.

N Solutions

2 a1 = 10; a2 = 21.2982

3 a1 = 10; a2 = 21.1910; a3 = 31.1361

4 a1 = 10; a2 = 21.1786; a3 = 31.1190; a4 = 42.2083

5 a1 = 10; a2 = 21.1770; a3 = 31.1168; a4 = 42.1943; a5 = 52.1296

6 a1 = 10; a2 = 21.1768; a3 = 31.1165; a4 = 42.1926; a5 = 52.1272; a6 = 63.1930

Table 5.1: Solutions of (5.4) for N ∈ {2, 3, 4, 5, 6} when A = 2, α = π
10 and k = 0.1.

N Eigenvalues

2 λ1,2 = −0.4928± 0.0888i

3 λ1 = −0.5169; λ2,3 = −0.2031± 0.1972i

4 λ1,2 = −0.1964± 0.0787i; λ3,4 = −0.6383± 0.0347i

5 λ1 = −0.0737; λ2 = −0.3808; λ3 = −0.6025; λ4 = −0.6922; λ5 = −0.8029

6 λ1 = −0.0526; λ2 = −0.3057; λ3 = −0.5338; λ4 = −0.6344; λ5 = −0.7123; λ6 = −0.8055

Table 5.2: Eigenvalues of (5.5) for the solutions described in Table 5.1.

5.2 Approximate values for bump width and bump dis-

tance

For the applications of N -bump solutions in cognitive neuroscience and robotics we are

particularly interested in the width and relative distance of the localized patterns in the

field. The parameter k governs the rate at which the oscillations of the connection func-

tion w decay with distance and therefore controls the strength of interaction between
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Figure 5.1: Field activity u given by (5.2) with h = W (10), w is defined in (1.6) with A = 2, k = 0.1

and α = π
10 .

the bumps. Table 5.3 compares the bump widths for different k values and distances

between successive bumps for a six-bump solution. Since we assume that the solution

is symmetric, it is sufficient to compute the width of the first three bumps and the

relative distance between the first four suprathreshold patterns. For the three tested

values of k, the width of the first bump is always 10 and the width of the two other

bumps is slightly smaller. The relative distance between the first two bumps is largest

in all cases and increases with increasing bump numbers. In general, the dependence

on k manifests in a decreased range of the obtained values with increasing k, that is,

the variability in the parameters describing the spatial pattern appears to be reduced.

This behaviour of the field dynamics can be understood by taking into account that the

parameter k controls the damping of the periodic connectivity function. With larger k,

the interactions between spatially distant bumps are less pronounced and the shape of

each individual bump is mainly determined by the excitatory-inhibitory interactions of

neighbouring field sites. The predicted approximation in the shape of individual bumps

can be clearly seen in Figure 5.2 (right panel) where the field dynamics with k = 0.2

supports a six-bump solution with approximately equal bump amplitudes (compare

with the case k = 0.1, left panel).
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k Bumps width Distance between bumps

a1 − a0 = 10 a2 − a1 = 11.1768

0.1 a3 − a2 = 9.9398 a4 − a3 = 11.0760

a5 − a4 = 9.9346 a6 − a5 = 11.0658

Range: 0.0654 Range: 0.1110

a1 − a0 = 10 a2 − a1 = 11.8322

0.15 a3 − a2 = 9.9673 a4 − a3 = 11.7756

a5 − a4 = 9.9661 a6 − a5 = 11.7734

Range: 0.0339 Range: 0.0588

a1 − a0 = 10 a2 − a1 = 12.4094

0.2 a3 − a2 = 9.9887 a4 − a3 = 12.3836

a5 − a4 = 9.9886 a6 − a5 = 12.3806

Range: 0.0114 Range: 0.0234

Table 5.3: Bump widths and distances between bumps for a six-bump solution with k = 0.1, k = 0.15

and k = 0.2.
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Figure 5.2: Field activity u given by (5.2) with h = W (10), w is defined in (1.6) with A = 2, α = π
10

and k = 0.1 (left), k = 0.15 (center) and k = 0.2 (right).

5.3 Dependence of a N-bump solution on initial condi-

tions

In the previous section we have discussed N -bump solutions with approximately equal

distances between individual bumps. These solutions are obtained when the field dy-

namics starts from a periodic pattern of initial activation that approximately matches

the periodicity of the N -bump solution. Stable N -bump solutions with significant dif-
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ferences in the relative distance of individual bumps can be also found by adapting

the initial conditions accordingly. Table 5.4 presents an example for the connectivity

function w with parameters A = 2, α = π
10 and k = 0.2 and initial activation values

of different field sites that are not equally spaced. The solution of (5.4) describes a

six-bump. The eigenvalues of the Jacobian (5.5) are all real and negative, that is, the

six-bump pattern shown in Figure 5.3 is stable.

Initial values Solutions Eigenvalues

a1 = 10 a1 = 10 λ1 = −0.3111

a2 = 20 a2 = 22.4324 λ2 = −0.2501

a3 = 30 a3 = 32.4322 λ3 = −0.2310

a4 = 60 a4 = 64.8401 λ4 = −0.0648

a5 = 70 a5 = 74.8401 λ5 = −0.0002

a6 = 100 a6 = 107.2720 λ6 = −0.0023

Table 5.4: Initial conditions (left column), numerical solutions of the system (5.4) (middle column) and

the respective eigenvalues of the Jacobian (5.5) for the case N = 6 with A = 2, α = π
10 and k = 0.2.
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Figure 5.3: Field activity u with h = W (10), w is defined in (1.6) with A = 2, α = π
10 and k = 0.2 and

initial activation at field sites 10, 20, 30, 60, 70 and 100.



61

5.4 Formation of multi-bump solutions with external in-

put

5.4.1 Field response to stationary multi-modal and mono-modal ex-

ternal inputs

For the first numerical study, we consider a multi-modal input given by the sum of

Gaussian centred at equally spaced field locations

I(x) =
n∑
j=1

Sse

(
−

(x−xcj )2

2σ2

)
− Si. (5.6)

with Ss = 6, Si = 1.5, σ = 3, xcj = 20j + 5 for j ∈ {1, ..., 6}. The spatial domain

was discretized by a 150 grid with circular boundaries conditions (for details of the

numerical integration see Appendix B.1). Applying this stationary input, multi-bump

solutions can be generated as shown in Figure 5.4. Note that the numerically obtained

six-bump solution corresponds to the six-bump solution of (5.4) in Figure 5.1 when the

pattern is centred in the interval [0, 150].
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0x 150
−15

0

15

x

Figure 5.4: Snapshots of field activity u (solid lines) with h = W (10), w is defined in (1.6) with A = 2,

k = 0.1 and α = π
10 , the stationary external input (dashed lines) is given by (5.6) with Ss = 6, Si = 1.5,

σ = 3, xcj = 20j + 5 for j ∈ {1, ..., 6}. S2(x) 6= 0 (left) and S2(x) = 0 (right).

For the second simulation study, we consider a single, localized input at x = xc

given by (3.5)

S(x− xc) = Sse

(
− (x−xc)2

2σ2

)
− Si. (5.7)

with fixed parameters Ss = 6, Si = 0.5, xc = 75 and vary the width of the

Gaussian, σ ∈ {20, 30, 40}. The number of bumps generated by this stationary input
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pattern depends on its width as shown in Figure 5.5 (top panels). As more field sites

become activated above threshold with increasing stimulus width, more bumps will

evolve. Note that the larger bump located at the centre of the external stimulation is

actually a two-bump solution of the homogeneous field dynamics. It emerges when the

external stimulus is removed (compare the top and the corresponding bottom panels

of Figure 5.5).
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Figure 5.5: Snapshots of field activity u (solid lines) with parameters used in Figure 5.4 except the

input width. The stationary external input is given by S(x−75)(dashed lines) with Ss = 6 and Si = 0.5

and three different widths, σ = 20 (left), σ = 30 (middle), σ = 40 (right). S(x) 6= 0 (top panels) and

S(x) = 0 (bottom panels).

5.4.2 Field response to transient external inputs

The numerical results of Figure 5.5 suggest that stable multi-bump solutions may be

generated by external input that exists only for a finite time. This means that the

initial condition given by the state of the field at the time of input removal is in the

basin of attraction of the multi-bump solutions discussed before.

For a concrete example, consider the external input S(x − xc) given by (5.7)

and parameters of the connection function like in Figure 5.1. Choosing σ = 3 we have

S
( z1

2
)
≈ 3.1580 and S

( z2
2
)
≈ −0.3262. Since S(0) > W (10), S

( z1
2
)
> 0 and S

( z2
2
)
< 0.

By Theorem 3 we know that there exists a solution a∗ ∈ (z1, z2) such that the equation



63

W (10)− S
(
x
2
)

= W (x) is satisfied. This means that for a stationary input with σ = 3

the field dynamics evolves an excited region of width a∗ which converges to an one-

bump solution of width a = 10 < a∗ when the input disappears (compare left column

of Figure 5.6, input at xc = 40). The existing bump together with a second transient

input centred at xc = 80 generates a three-bump solution. The lateral excitation caused

by the two suprathershold activity patterns is strong enough to trigger the evolution

of a bump between the two stimulated regions xc = 80 and xc = 40 (Figure 5.6, right

column). The situation is different when the same sequence of inputs is applied to a

field with weaker lateral interactions. Figure 5.7 shows snapshots of the field dynamics

with k = 0.2 instead of k = 0.1 used in Figure 5.6. As can be seen in the left column,

the field develops a two-bump solution with field activity between the two stimulated

locations below threshold. Additional bumps may be created by sequentially applying

localized input at the respective field sites (compare the middle and right columns of

Figure 5.7). The total number of bumps that can be created depends on the length of

the finite domain Ω of the field and the parameters of the connectivity function that

control the width and relative distance of bumps. The formation of stable multi-bump

solutions by a temporal sequence of inputs is central for the applications in the sequence

learning model.

5.5 Conclusion

In this chapter, we have investigated the existence and stability of N -bump solutions.

We described in Section 5.1 for a specific connection function of type (1.6) stable

N -bumps for N ∈ {2, 3, 4, 5, 6}. If we wish to generate these N -bump solutions by

applying N transient inputs in which each individual input generates just one bump,

the parameters of S and w must be carefully chosen. As can be seen in numerical

studies of multi-bump solutions, for different values of σ the number of bumps generated

differs. Moreover, the results in Section 5.2 and Subsection 5.4.2 illustrate that if the

interaction between bumps, which is modulated by the parameter k, is strong, localized

inputs may generate additional suprathreshold activation at field sites without external

stimulation. On the other hand, if the goal is to generate N -bumps with approximately

equal shape of individual local excitations, the amplitude of the recurrent excitatory
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Figure 5.6: Snapshots of activity u (solid lines) with parameters used in Figure 5.5 except the stimulus

width. An input of width σ = 3 is sequentially applied first at location xc = 40 (left) and subsequently

at location xc = 80 (right). S(x) 6= 0 (top panels) and S(x) = 0 (bottom panels).
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Figure 5.7: Snapshots of activity u (solid lines) with field parameters used in Figure 5.6 except k = 0.2

instead of k = 0.1. A two-bump (left), three-bump (middle) and six-bump solution (right) is generated

by sequentially applying localized input of width σ = 3 (dashed lines). S(x) 6= 0 (top panels) and

S(x) = 0 (bottom panels).
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interactions controlled by k should be sufficiently small. If the parameters of S and w

are adequately chosen, N localized inputs applied simultaneously or sequentially define

the location of N bumps in the field, as shown in the example of Section 5.4.
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A dynamic neural field model of

sequential events and its
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Chapter 6

Sequence Learning

In this chapter we introduce basic notations and concepts of sequence learning and

representation from the cognitive science literature that will be used in the dynamic

neural field models.

6.1 Memory: STM, LTM and WM

Intelligent behaviour crucially depends upon the ability to encode, store and recall

sequences of events. Virtually every aspect of our everyday routine tasks is embedded

in a sequential context. We see this in tasks like speaking, getting dressed, cooking a

meal or playing a musical instrument for which different events in a specific order must

be encoded and stored in memory. The stored information can be later recalled from

short term memory (STM) or long term memory (LTM). The two main differences

between STM and LTM are the time period for which information is remembered and

the storage capacity. While in STM the information persists only for a brief period of

time and the capacity is small, information in LTM may be hold for a lifetime and the

storage capacity is huge (Cowan, 2008). From the concept of STM emerged the notion

of working memory (WM). WM involves the temporary storage and manipulation of

information, in contrast to STM, which refers just to the information storage (Baddeley,

1992). In this sense, working memory of serial order can be described as the cognitive

system which temporarily stores a sequence of events for recalling it in a behavioural

context.
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6.2 Behavioural paradigms for serial order: ISR and SRT

Two main behavioural paradigms have been used in the past to study sequence learning:

the immediate serial recall (ISR) task and the serial reaction time (SRT) task (for a

recent review see Rhodes et al., 2004). An immediate serial recall paradigm can be

divided into two phases. A list of items or events (e.g. letters, numbers, spatial targets,

musical notes) is first presented in a specific order. Subsequently, the subject has to

recall the items in the order in which they were presented. The types and rate of errors

that occur during recall are used as a measure for sequence learning. In a typical SRT

task, participants are asked to react as quick as possible with specific button presses

to a series of stimuli presented on a screen. Sequence learning is demonstrated by a

reduced reaction time to movement initiation for stimuli that are repeated in a fixed

temporal order compared to a random order. Since subjects are typically unaware of the

temporal structure embedded in the presentation, the performance in SRT paradigms is

often considered a measure for implicit sequence learning (Nissen and Bullemer, 1987;

Dominey, 1998).

In this work, we used the ISR paradigm for the robotics experiments. However,

as discussed in Section 9.2, predictions of the DNF model of sequential events are also

in line with basic results of SRT experiments with humans.

6.3 Three theories of memory for serial order

In the vast cognitive science literature about sequence representation there are three

main theories of serial order: chaining, positional and ordinal theories (for an overview

see Henson, 1998). There exists still no general agreement about the neuro-cognitive

mechanisms supporting the organization of sequential events in humans and other pri-

mates since the specific predictions of all three theories are to some extent supported

by experimental findings. The coexistence of different theoretical approaches based on

distinct processing mechanisms is perhaps not surprising given that the nervous system

has to organize a broad range of sequential events on very different levels of abstraction

ranging from simple motor sequences (e.g., finger movements) to complex behavioural

sequences (e.g., making coffee) .
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Chaining theory assumes that temporal order is stored by the formation of as-

sociations between successive items in a list. The order is retrieved by a chain of

associations where each item cues the recall of its successor. The simplest chaining

models assume only associations between pairs of items in successive positions (Hen-

son, 1998). In compound models, however, the cue consists of a number of preceding

items (e.g., Murdock, 1995). Chaining is perhaps the most intuitive way to represent

serial order and is the backbone of recurrent neural network models of serial behaviour

(e.g., Botvinick and Plaut, 2006).

Positional theory assumes that order is stored by associating each item with its

position in the sequence. For example, in one of the first conceptual models proposed

by Conrad (1965), it is assumed that numbered boxes are hold in in memory into

which elements of a sequence can be placed. The order of elements can be retrieved by

stepping through the boxes in a predetermined routine. Whereas chaining models use

item-item associations, positional models use position-item associations to represent

serial order (e.g., Burgess and Hitch, 1999; Brown et al., 2000).

Ordinal theories assume that order is stored by a relative value along a single

dimension. For example, Grossberg (1978) postulates that order is stored in a primacy

gradient of activation over the items such that each item has a higher level of activa-

tion than its successor. Serial recall is based on an interactive process of selecting the

most active item and subsequently suppressing its activation. If some random noise is

added to the selection process, a correct item may be recalled but in wrong order (see

for instance the behaviour of the “Primacy Model” (Page and Norris, 1998)). Impor-

tantly, when an item is recalled in the incorrect ordinal position there is a tendency

for a transposition with items that are close in the target sequence. Moreover, ordinal

models are simpler than associative models because order information is implicit in the

representations, rather than encoded explicitly by forming associations between items

or items and positional codes. Ordinal models do not require feedback from preform-

ing individual steps to execute the whole sequence. This might be an advantage over

associative models when sequence execution has to be very fast (e.g., a pianist’s finger

tapping) and there is not enough time to cue the next response. On the other hand, the

lack of associations between sequence elements makes it difficult to encode longer term
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dependencies that are for instance important to represent causality in goal-directed

sequential behaviour ([e.g., a certain behaviour can only be executed if a specific set of

behaviours has been already performed (Sousa et al., 2014)).

6.4 Ordinal models: Competitive Queuing (CQ)

In his seminal article about the problem of serial order in behaviour, Lashley (1951)

argued that sequences are represented by a parallel activation of neural representations

of all sequence elements. In other words, all elements of a planned sequence are si-

multaneously active prior to sequence production. Based in this hypothesis, Grossberg

(1982, 1978) introduced a model of WM for serial evens in which temporal order is

represented by the strength of activation of successive list items that decreases across

list positions to form a primacy gradient. To reproduce the sequence, the item with

the currently highest activation is selected for output and subsequently suppressed.

This inhibition enables the next item from the activation gradient. The reproduction

of the sequence is finished when there are no active nodes in the WM representation

left. This model class was first called Item-and-order WM and later termed competitive

queuing to stress the competitive selection process (for a discussion of CQ models see

Houghton, 1990). Electrophysiological recordings from prefrontal cortex (PFC) (e.g.,

Averbeck et al., 2002, 2003) support three key predictions of CQ models: (1) neural

ensembles represent list items, (2) their relative activation strengths encode temporal

order, and (3) neural population representations are reset by inhibitory mechanisms

(e.g., self-inhibition).

The DNF model presented in this thesis belongs to the class of ordinal theories

that represent serial order as an activation gradient of neural populations encoding

individual events. Lateral inhibition implements a completion between neural ensem-

bles that leads to a decision of which item to execute next. The DNF model differs

from conceptually similar CQ models (e.g., connectionist implementations (Houghton,

1990)) in two main aspects. First, the dynamic field based implementation allows us to

rigorously analyse multi-item WM and its formation, and second, the model introduces

the idea that the activation gradient can be also used to memorize and reproduce the

relative timing of events.
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6.5 Recurrent neural network models

Recurrent neural networks (RNN) have been very popular in the past to model the

learning and processing of sequences (e.g., Cleeremans and McClelland, 1991; Dominey,

1998). RNN models are connectionist models that use distributed patterns of activa-

tion in networks of neuron-like elements to represent information. Importantly, the

recurrent connections between state units and context units allow information from

previous time steps to influence the current state of the network. The recurrent con-

nections can thus be used to represent sequence context. Indeed, RNN models have

been frequently applied for tasks that require the prediction of items in a sequence

based on their predecessors (e.g., Cleeremans, 1993). Learning in RNNs takes place as

a modification of the synaptic weights of the recurrent connections. It is well known,

however, that learning over multiple time steps introduces significant technical chal-

lenges. Perhaps more importantly for the robotics applications addressed in this thesis,

there are normally a large number of processing cycles of network activity and weight

modifications required to learn and represent a sequential task. RNNs thus do not

provide an adequate theoretical framework to rapidly memorize sequences of events.

In contrast, the activity based learning in the dynamic field model demonstrates the

acquisition of order and timing information in very few sequence demonstrations.

6.6 Benchmark properties of serial order recall

Traditionally, benchmarks for modelling serial behaviour are different types of er-

rors that typically occur when humans and non-human primates learn motor or be-

havioural sequences (Smyth and Scholey, 1996; Henson, 1998; Botvinick and Plaut,

2006; Botvinick et al., 2009). Although the proposed dynamic field model primarily

focuses on different aspects of sequence events than the majority of previous sequence

models (e.g., a shared memory representation for order and timing, fast learning etc.)

it is worth to mention the types of errors that have been used to distinguish theories.

Some of these errors will be discussed in more detail in Chapter 8.

(i) Omission errors

An omission occurs when a sequence item is omitted during serial recall. This
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error may be caused by a failure of the encoding (memory) or the recall (selection)

of the event. In the dynamic field model, the rise and decay of suprathreshold

activity may be initially not quick enough to represent and memorize all sensory

events during (fast) sequence demonstrations. The mechanism of preshaping of

neural populations from past experiences plays a crucial role in speeding up the

processing.

(ii) Transposition errors

A common phenomenon in serial recall studies is the transposition of items, that is,

an item is recalled in wrong order but near to its position in the target sequence.

Additive noise in the decision field with the activation gradient as input can

produce such errors in the DNF model.

(iii) Repetition errors

Crucial for a correct recall is that already produced items cannot become activated

again. Feedback inhibition from a working memory field representing past events

guarantees normally the long-lasting suppression of already executed items. If

the inhibition is not strong enough, repletion errors may occur. Importantly, the

model dynamics allows repetitions if the sequence contains repeated elements.



Chapter 7

DNF model of ordinal and timing

properties of sequential events

In this chapter, we start with a review of relevant findings in the fields of psychology

and neuroscience that have inspired the model. Next, we describe the architecture and

the mathematical details of the model. A report of a series of model simulations is

given, followed by a short discussion of the results.1

7.1 Neuroscientific and psychological grounding of the model

7.1.1 The parallel sequence code and iterative choice cycle

The central idea implemented in the DNF model is that in goal-directed sequence

planning all sequence elements appear to be activated in parallel at the beginning of

sequence execution. There is compelling neurophysiological support for a parallel acti-

vation of neuronal populations encoding different sequence elements (Averbeck et al.,

2002, 2003). The researchers trained two monkeys to control a cursor for drawing simple

geometric figures (triangle, square, trapezoid, inverted triangle) on a screen. Record-

ings from the prefrontal cortex (PFC) showed that at the beginning of the sequence of

cursor movements, there exists a parallel activation of different neuronal populations

1 The content of this chapter is based on the paper by Ferreira et al. (2011)
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representing all individual segments of the shape that has to be drawn. It is worth

noting that the activation patterns in PFC most likely do not directly control the hand

movements of the monkey, but represent more abstract sequential information of the

goal-directed cursor movements that could be executed for instance with different ef-

fectors (Tanji et al., 2007). Serial order is encoded by a pre-activation gradient, that

is, the population representing the first segment is highest and the activation of the

population encoding the last element is lowest. The parallel representation continues

to unfold during the execution of the sequence. After a specific segment has been ex-

ecuted, its activation decreases, and the population representing the subsequent shape

segment becomes the most strongly activated (see Figure 7.1).

The observed pattern of neuronal population dynamics is conceptually consistent

with a competitive choice process in which i) the segment with the highest activation is

selected for performance, ii) once the segment has been executed it is deleted from the

set of competitors, and iii) the process is repeated until the sequence reaches completion.

This iterative performance of serial behaviour without any reliance to associative links

between items is the hallmark of competitive queuing models reviewed in the previous

chapter (Rhodes et al., 2004).

7.1.2 Relationship between the time course of population activity and

elapsed time

A second important assumption of the DNF model is that elapsed (interval) time since

sequence onset or between sequence elements is represented by a continuous increase

or decrease of population activity until a threshold is reached which is associated with

the expected occurrence of the next event (either perceptual or motor). Studies with

monkeys that directly investigated the neural basis of timing report ensemble activity

showing a monotonic relationship between neuronal population activity and elapsed

time (e.g., Janssen and Shadlen, 2005, Genovesio et al., 2006b, for a review see Durste-

witz, 2004). Janssen and Shadlen (2005) recorded the neuronal activity in posterior

parietal cortex, while monkeys had a saccadic eye movement to peripheral targets after

a variable delay period. The timing of the “Go” signal (dimming of the fixation point)

was a random value. Many neurons systematically modulated their spike rates as a
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Figure 7.1: The time course of neural activity of different subpopulations in PFC during the drawing

tasks are shown. Note the activation gradient at the beginning of the cursor movement at time t=0.

The relative strength of activation of the individual shape elements represents the serial order of task

execution (from Averbeck et al. (2002), Figure 2).

function of elapsed time. Their firing patterns reflect the probability that the “Go”

signal will occur. Genovesio et al. (2006b) also examined the representation of elapsed

time in PFC using a similar task in which the monkey had to move the eyes after one

of three possible delay periods between the onset and the offset of a visual stimulus.

Many neurons showed ramp-like increases in firing rate that depended on the preceding

delay period.

7.1.3 Separate subpopulations in PFC for past and future events

The architecture of the model implements the idea that memories of already achieved

events and memories of upcoming events are stored in the activity patterns of separate

but connected neuronal ensembles. To avoid repetition errors it is important to keep

track of past events when planning the immediate and more distal future. On the

other hand, mistaking a pending event as already accomplished causes the error of

omission. Genovesio et al. (2006a) examined neuronal activity in the prefrontal cortex

while monkeys performed a spatial task. The monkeys had to select one of three spatial
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goals (future goal) depended on their memory of previous spatial goal. During each

trial, the decision of the future spatial goal was made based on the combination of

a symbolic visual cue that had appeared in the previous trial and the previous goal

that the monkey selected. When a symbolic visual cue presented at the fixation target

was the same as in the previous trial, the monkey stayed with its previous goal as

future goal. When the visual cue changed, the monkey was required to select one of

the two remaining positions as its future goal. The authors report that populations of

prefrontal neurons had activity that reflected either previous goals or future goals, but

only rarely did individual cells reflect both.

7.2 Model description

In the experiments designed to test the neural processing of serial order in goal-directed

behaviour, typically simple reaching or saccadic eye movements towards objects are

used. The temporal order may be defined by the spatial object position (that is, move-

ment direction and amplitude) or object features like colour, weight or size. The cen-

tral idea of dynamic field models is that suprathreshold population activity of neurons

tuned to these continuous dimensions represents specific parameter values. Figure 7.2

presents an overview of the model architecture which is inspired by the experimental

findings summarized in Section 7.1. The self-sustained activation pattern in the se-

quence memory field umem stores all items of a sequence with a strength of activation

that decreases from item to item as a function of elapsed time since sequence onset.

This activation gradient is achieved by combining a field dynamics that guarantees the

evolution of a single, self-stabilized bump in response to a localized transient input rep-

resenting a perceived event with a state-dependent threshold accommodation dynamics

for the firing rate function. Through excitatory connections, neurons in umem project

their activation to corresponding neurons in decision field ude. This input leads to a

subthreshold pre-activation of neural populations that mirrors the primacy gradient of

strengths in umem. Sequence recall starts with a continuous increase of the baseline

activity which brings neural populations closer to the threshold for the evolution of a

self-stabilized bump. The order and timing of sequence elements can be retrieved by

using the baseline dynamics to first trigger a suprathreshold response of the population
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with the highest pre-activation which then becomes suppressed due to inhibitory feed-

back from the working memory field uwm. Self-stabilized population activity in this

field is initially driven by the activation dynamics of the corresponding population in

ude and may thus be described as a memory for already achieved events or goals.

Sequence memory

Decision Working memory

Figure 7.2: Sketch of the model architecture. For illustration purpose, localized activity patterns in

two-dimensional fields are shown. The strength of neuronal population activation is colour coded.

7.3 Model equations

The dynamics in the sequence memory field is governed by the following equation:

τumem u̇mem(x, t) = −umem(x, t)+hmem(x, t)+
∫
wosc(x− x′)f

(
umem(x′, t)

)
dx′+S(x, t)

(7.1)
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where umem(x, t) represents the activity at time t of a neuron encoding dimension x.

The parameter τumem > 0 defines the time scale of the field. The firing rate function

f is taken as the Heaviside step function with threshold 0. S(x, t) represents the

time-dependent, localized input to the field, and is given by (3.5). To model working

memory for several events separated in time we used the connection function wosc given

by (1.6). The variable hmem(x, t) defines the baseline level of activation which we chose

to vary with time. Note that by including hmem(x, t) in the definition of the firing

rate function f = f (u− hmem) it becomes clear that changing the baseline level is

equivalent to changing the threshold of f . Following the idea of the phenomenological

model for threshold accommodation in dynamic fields discussed by Coombes and Owen

(2007), we apply the following state-dependent dynamics for the baseline activity:

ḣmem(x, t) = (1− g(umem(x, t))) (−hmem(x, t) + hmem0) + λhg(umem(x, t)), (7.2)

where g is chosen as the Heaviside step function, hmem0 < 0 defines the level to which

hmem converges without suprathreshold activity at position x and λh > 0 measures the

growth rate when it is present. As the result of the baseline or threshold dynamics a

primacy gradient of strengths is established when at different points in time, bumps

evolve in response to external input.

The dynamics of the decision field ude and the working memory field uwm are

governed by the following equations, respectively:

τude u̇de(x, t) = −ude(x, t) + hde(t) +
∫
wlat(x− x′)f

(
ude(x′, t)

)
dx′

−
∫
wosc(x− x′)f

(
uwm(x′, t)

)
dx′ + umem(x), (7.3)

τuwm u̇wm(x, t) = −uwm(x, t) + hwm + ude(x, t)f
(
ude(x′, t)

)
+
∫
wosc(x− x′)f

(
uwm(x′, t)

)
dx′. (7.4)

Since like umem also uwm has to represent multi-bumps as stable solution we

use the same connection function (1.6). The baseline activity hwm < 0 is constant.

The situation is different for ude where a single localized activity pattern represents

a particular event during sequence recall. To ensure the existence of an one-bump

solution we use a connection function of lateral inhibition type wlat given by (1.3).

The baseline activity hde(t) evolves continuously in time described by the equa-
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tion:

τhde ḣde(t) = 1, hde(t0) = hude0
< 0, (7.5)

where τhde controls the growth rate of hde.

7.4 Simulation results

For the numerical simulation study, we first discuss the choice of the model parameters

that is justified by the mathematical analysis in the previous chapters. As an example,

we consider a sequence of five items. In response to the series of five localized inputs, the

sequence memory field should trigger a self-localized pattern consisting of five bumps

with approximately equal width. Initially, we consider that the resting state is fixed

and we choose h = W (8). We suppose that the field is discretized by a 100 units grid

and assume that the desired bump width is 8 units.

• Parameters values of w (see Figure 7.3)

– Since the desired width is 8, we choose α = π
8 . Thus, as 8 = π

α we have

z1 < 8 < z2 and consequently the condition w(a) < 0 is satisfied for all

k > 0.

– From the N -bump analysis we conclude that for a sequential formation of

a multi-bump solution of approximately equal shape the value of k must

be chosen such that the intra-field coupling is relatively weak. We choose

k = 0.25 and A = 2.

• Parameters values of S

Each input is given by the bell-shaped function (3.5). From Theorem 3, it is

possible to generate a stable one-bump solution with input if the conditions

S(0) > W (8), S
( z1

2
)
> 0 and S

( z2
2
)
< 0 are satisfied.

– Choosing Ss = 8 and Si = 0.01 we have S(0) = 7.99 > W (8) ≈ 3.6904.

– Choosing σ = 1.5 we have S
( z1

2
)
≈ 2.0194 > 0 and S

( z2
2
)
≈ −0.0093 < 0.

The three conditions on the input shape are then satisfied.
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Figure 7.3: The coupling function, w(x), defined in (1.6) for A = 2, α = π
8 and k = 0.25.

To avoid the fusion of a newly evolving pattern with an already existing bump,

the relative distance between the inputs has to be taken into account. Since k2 < α, we

know from Theorem 5 that there exists a two-bump solution with width 8 and distance

between bumps equal to −
arctan

(
αk+k
k2−α

)
α + π

α ≈ 10.0675. Thus for convenience we choose

xc ∈ {8, 26, 44, 62, 80} as centres for the inputs. Figure 7.4 shows the response to five

inputs of the desired shape for a fixed value of h. The amplitude of the bumps are

approximately equal.

x

u
m
em

(x
)

0 8 26 44 62 80 100
−7

0

6

−h

Figure 7.4: Example of 5-bump solution in response to a sequence of five transient inputs defined

by S(x − xc) = 8e

(
− (x−xc)2

2×1.52

)
− 0.01 with xc ∈ {8, 26, 44, 62, 80}. The coupling function shown in

Figure 7.3 was used.
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Figure 7.5 shows a snapshot of a simulation of a one-dimensional version of the

sequence model. Due to the threshold accommodation dynamics (dashed line) the

bump amplitudes reflect the temporal order of events (Figure 7.5, left). Figure 7.5

(right) shows the activation patterns in the decision field (solid line) and the working

memory field (dashed line) at a time when all representations in ude are below threshold

because the activation bump at x = 44 in uwm has just suppressed the representation

of the first event and the representation of the second event at x = 26 is just about to

reach the threshold.

0 8 26 44 62 80 100
−5

0

15

x

Sequence Memory
umem
hmem

ude
uwm

0 8 26 44 62 80 100
−20

0

10

x

Decision and Working Memory

Figure 7.5: A snapshot of a simulation of a one-dimensional version of the sequence model is shown.

The connection function parameters k and α were equal for all fields, k = 0.25, α = π
8 , and A = 2

for umem and A = 5 for the others fields. Choice of the others parameters for 1) umem: τumem = 20,

hmem0 = −W (8), λh = 1
100 ; 2) ude: τude = 20, wexc = 16, σexc = 4 and winh = 0.01, τhde = 100,

hde0 = −15; 3) uwm: hwm = −W (8) and τuwm = 40.

To directly compare the timing of events during encoding and recall, Figure 7.6

compares the time courses of the population activity in the sequence memory field

(top) and the decision field (bottom) for two different choices of the time scale for the

baseline dynamics in ude. Time t = 0 indicates the start of the sequence and the first

event (i.e., first object reached) is perceived at about t = 200. Note that the events are

irregularly spaced in time. As can be seen in the bottom figures, all subpopulations

in the recall field appear to be from the beginning on pre-activated with a strength

reflecting the rank order of execution. This model behaviour reflects nicely the main

findings about parallel processing of serial order in the neurophysiological study of

Averbeck et al. (2002, 2003). If the time scale of the baseline dynamics is chosen
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as inversely related to the parameter λh controlling the growth rate of the threshold

accommodation dynamics, τhde = 1/λh, the recall dynamics nearly perfectly reproduces

the timing of events (bottom left). If the time scale for the baseline dynamics is chosen

to be faster, τhde < 1/λh, proactive timing of events can be observed (bottom right).

The total execution time decreases but the proportion of total time for each event of the

sequence remains essentially invariant. It is worth noting that this model behaviour is in

line with key principles of interval timing in humans and other animals (Machado et al.,

2009). When people are asked to speed up or slow down the execution of a movement

sequence they do so with near constancy in the relative timing. Moreover, assuming

that noise may affect the growth rate τhde of the baseline shift from trial to trial, the

model predicts that the variability of time estimation grows proportionally with interval

duration (Weber’s law for timing). Table 7.1 and Figure 7.7 show the results of model

simulations in which the variability of the time of decision, defined as the time when

population activity in ude reaches threshold, is tested for different interval duration

between successive events. The so-called Weber fraction calculated as the standard

deviation (σ) divided by the the mean estimation (µ) remain approximately constant

over tested durations.
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Figure 7.6: The time course of the maximal activation of each subpopulation in Figure 7.5 (left) is

shown during sequence encoding (top) and during sequence recall (bottom) for two different execution

speeds. For the recall τhde = 100 (left) and τhde = 70 (right) was chosen.
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Time Mean Standard

interval (∆t) (µ) deviation (σ)

100 100,325 5,9829

120 120,025 7,1861

140 139,595 8,2240

160 159,240 9,6334

180 180,785 10,8296

200 199,950 11,7364

220 220,280 12,9516

240 239,850 14,4927

260 259,470 15,2844

280 280,430 16,8005

300 300,260 17,7276

Table 7.1: Mean estimates and standard deviations

are shown for interval duration in the range of 100

to 300 time steps. For each interval, the value rep-

resent the average of 200 simulation runs with τhde
randomly taken from a uniform distribution on the

interval [90, 110]. The coefficient of variation, σ/µ,

is approximately 0, 06 in all cases.
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Figure 7.7: Plot of the mean(µ) and standard de-

viation (σ) as function of interval duration.

7.5 Discussion

We have presented a dynamic neural field model of sequential events that implements

the idea of closely related neural systems for controlling the interval and ordinal dimen-

sions. Serial order is stored in short term memory by assuming that memory strength

for each event decreases as a function of elapsed time between sequence onset and the

event. During recall, the ordinal and temporal structure is recovered from the memory

list by applying a simple dynamics for the baseline activity of the decision field. An

interesting feature of the model is that a speeding up of the baseline dynamics leads

to a proactive timing of events. For a cognitive agent such a mechanism may be im-

portant for instance to timely prepare the next action or to allocate attention. The

field model shares key features like parallel response activation and activation gradient
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with “Competitive Queuing” models (Grossberg, 1978; Houghton, 1990) that have been

applied to a wide variety of serial order problems (mostly concerning the ordinal dimen-

sion). Compared to connectionist implementations, the dynamic field approach offers

advantages because it allows us to rigorously understand the existence and stability of

activation patterns and their dependence on external inputs (Amari, 1977; Laing et al.,

2002; Coombes and Owen, 2007). This understanding may guide the development of

more complex cognitive models. An example is the DNF model of sequence learning

presented in the next chapter.



Chapter 8

DNF model for fast learning of

sequential task

The DNF model presented in the previous chapter shows that an activation based mem-

ory of order and timing may be used to robustly reproduce sequential events. Since our

ultimate interest is to apply this sequence model in the domain of human-robot inter-

actions, the question is how a robot may efficiently acquire this knowledge through the

interaction with its environment including humans. Obviously, the DNF model has to

be extended by at least two components to achieve this goal. First, the robot should be

able to perceive the events defining the sequence through its sensors, and generate in-

ternal representations of the stimuli. In the extended model, a perceptual field contains

neural populations that represent in their self-sustained activation patterns the sensory

information. Second, the robot should be endowed with the capacity to iteratively

acquire the order and timing of sequential events through repeated exposure to correct

sequential behaviour. As an elementary form of learning, we exploit here the notion of

the build-up of memory traces in the perceptual field generated by subthreshold input

from a “past” field representing the sequence memory of preceding experimental trials.

Although the proposed sequence learning model may be applied to a wide variety

of tasks, we use as an example study the learning of a musical sequence since the timing

of musical events is essential to meaning. People with varying musical experience are

able to reproduce from memory a precisely timed series of pitches at fast production

rates with very few errors . Moreover, despite their serial and temporal complexity, new

87
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melodies can be remembered with little practice. The DNF model aims at providing

insights about the neuro-cognitive mechanisms that support such a fast and efficient

learning in successive demonstration-execution cycles.

8.1 Preshaping of neuronal population by past experience

The idea that input representing prior task knowledge may pre-activate neuronal pop-

ulations in a field below the threshold necessary to trigger a self-sustained activation

pattern has been first introduced in the context of modelling the planning of reaching

movements to spatial targets (Erlhagen and Schöner, 2002; Thelen et al., 2001; Erlhagen

et al., 1999). Imagine for instance the situation in which several potential targets may

be available but only one is selected by a specific visual cue in each experimental trial.

The activation field that represents the decision to which target to reach is spanned over

the dimension movement direction. When the visual cue indicating the target direction

is presented, the evolution of suprathreshold activity of a subpopulation tuned to that

direction does not start from scratch but from a prestructured state representing move-

ment history. The probability of choice in previous trials is reflected by varying levels of

preshaping of different subpopulations representing all potential movement directions.

This neural preshaping mechanism implemented in DNF models of motor preparation

has been directly observed in reaching paradigms with monkeys. In the experiments,

a pre-cue explicitly instructed the monkey about the spatial range of potential tar-

gets before the specific input was presented. Neuronal populations tuned to movement

direction in the premotor cortex, which is believed to be crucially involved in motor

planning, showed a pre-activation pattern consistent with the spatial information given

by the pre-cue (Bastian et al., 2003; Erlhagen et al., 1999).

In the cognitive psychology literature, this activation based learning in form of

memory traces is known as priming, because the main behavioural manifestation is

a speed-up in reaction time, or an increased probability of making a particular be-

havioural response (Erlhagen and Schöner, 2002). Experimental signatures of response

biases that are consistent with the preshaping hypothesis have been observed for in-
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stance in developmental studies with infants. The DNF model of preservative reaching

proposed by Thelen and colleagues 2001 explains the classical “A-not-B” error by mem-

ory traces laid by the reaching history. In the A-not-B paradigm, an attractive toy is

first shown to the infant and then hidden in a box at one of two reachable locations,

A or B. After a few seconds, the infant is encouraged to make a motor decision either

toward the A or the B location. Young infants at an age of 11-12 months typically make

the A-not-B error of reaching toward the A location even though they saw the adult

hiding the toy at location B. This error occurs after the researcher repeatedly hides

the toy in position A and the infant correctly searches for it at that position. In the

reaching decision, movement history seemingly overrides the visual information about

the actual toy location. Older infants, however, who are better able to pay attention

to the visual input (or/and to memorize the visual input) make the correct decision

(Thelen et al., 2001).

For the present context of sequence learning, the impact of the preshaping mech-

anism on the time course of neural population activity and its biasing effect in decision

processes are both important.

8.2 Model overview

Figure 8.1 presents an overview of the model architecture with several interconnected,

one-dimensional fields representing the single cue (e.g., colour, position, pitch) that

guides sequence learning. The three fields on top of the figure implement the memory

of perceived events, whereas the two bottom fields become active during sequence recall.

A bump in the perceptual field uper representing a specific value of the sensory

cue drives through excitatory connections (solid line) the evolution of localized activ-

ity pattern at the corresponding site in the sequence memory field umem. Inhibitory

feedback (dotted line) from umem to uper in turn destabilizes the existing bump in the

perceptual field. This feedback inhibition ensures that newly arriving input to uper will

automatically create a bump at a different (albeit neighbouring) field location even if

the specific cue value is repeated during the course of the sequence. This is quite im-

portant for the representation of musical sequences since musical pitches often repeat

in different orders. The stable multi-bump pattern in umem stores all demonstrated
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sequence elements with a strength of activation decreasing from element to element as

a function of elapsed time since sequence onset. This activation gradient is achieved by

combining the field dynamics with a threshold accommodation dynamics for the firing

rate function as introduced in the previous chapter. The decision field ude receives the

stable multi-bump pattern in umem as subthreshold input. Immediate sequence recall

starts with a continuous increase of the baseline activity of the preshaped decision

field. The dynamics retrieves the order and relative timing of sequence elements by

subsequently triggering a suprathreshold response of the population with the currently

highest pre-activation. The moment in time of reaching the threshold is assumed to

initiate the corresponding overt behaviour (e.g., a pressing a key of a musical key-

board). The excitatory-inhibitory interactions between the decision field ude and the

working memory field uwm guarantee that the latest decision in ude is first stored and

subsequently suppressed so that the representation of the succeeding sequence element

can become suprathreshold.

A key role in the ability of the system to improve its performance in succes-

sive demonstration-execution cycles plays the past sequence memory field upa. It gets

excitatory input from corresponding sub-populations in umem and has excitatory con-

nections with the perceptual field uper. During successive sequence demonstrations, a

fading memory trace of the multi-bump in upa builds up. The important functional

role of this memory trace is a preshaping of corresponding neural populations in the

perceptual field uper. Functionally, this priming by past experience can be interpreted

as creating an expectation about subsequent perceptual events.
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Figure 8.1: Sketch of the distributed architecture of the field model. Dashed lines indicate inhibitory

connections, solid lines excitatory connections. For details see the text.
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8.3 Model equations

The dynamics of the perceptual field uper, the present sequence memory field umem and

the past sequence memory field upa are governed by the following field equations:

τperu̇per(x, t) = −uper(x, t) + upa(x, t) + I(x, t) +
∫
wlat(x− x′)f

(
uper(x′, t)

)
dx′

−
∫
wosc(x− x′)f

(
upr(x′, t)

)
dx′ + ξ(x, t), (8.1)

τmemu̇mem(x, t) = −umem(x, t) + hmem(t) + uper(x, t)f(uper(x, t))

+
∫
wosc(x− x′)f

(
umem(x′, t)

)
dx′, (8.2)

τpau̇pa(x, t) = −upa(x, t) + hp + λpaumem(x, t)f(umem(x, t)). (8.3)

Here, uper(x, t), umem(x, t) and upa(x, t) represents the activity at time t of a

neuron encoding dimension x. The positive constants τper, τmem and τpa define the time

scale of each field. The firing rate function f is taken as the Heaviside step function

with threshold 0 for all fields. The perceptual field uper receives a localized visual

input I(x, t) which we chose for simplicity as being of rectangular shape with constant

amplitude. The width of this input is assumed to be much larger than the width of

an individual bump. Each position in this field is affected by additive Gaussian white

noise ξ(x, t) that represents spontaneous activity and defines the position at which a

new bump evolves in response to the external stimulus. The connection functions wlat
and wosc determines the coupling between neurons within the field. For the perceptual

field and the decision field in which only one bump at a time should evolve, we use a

kernel of lateral inhibition type given by (1.3). To enable multi-bump solutions in the

memory fields, we use a kernel with oscillatory rather than monotonic decay given by

(1.6).

The constant hp < 0 is the global resting level for the past memory field upa.

The parameter λpa represents the rate at which the subthreshold pattern of the past

sequence memory is built. To ensure that the building is stronger than the forgetting,

in successive sequence presentations, the rate λpa must be larger than 1.

The dynamics of the working memory field uwm, the decision field ude and its

baseline dynamics are given by the equations (7.4), (7.3) and (7.5) respectively. The

threshold accommodation of the umem is governed by equation (7.2).
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8.4 Modelling results

8.4.1 Repeated items

Music provides an excellent example for complex sequences containing repetitions. Mu-

sical pitches repeat often within a melody, yet people do not confuse their sequential

ordering and timing. How do they achieve this? Different classes of sequence models

have proposed in the past distinct solutions for this problem (Henson, 1998). Simple

chaining models in which each item becomes cue for the next item cannot deal with

repetitions since a repeated item will become associated with more than one successor.

This ambiguity can be reduced by assuming that the current item is determined by the

history of past events rather than just the last one. Recurrent neural networks (RNN)

have been successfully applied to learn these long-term dependencies for a context-

sensitive chaining (e.g., Elman, 1990). However, the supervised learning algorithms

of RNN models typically require a large number of sequence demonstrations which

precludes their use for fast and unsupervised sequence learning.

The problem of repeated items is also well known for non-associative models that

store order by an activation gradient (Page and Norris, 1998). Since in these models, a

specific item (e.g., defined by a colour cue) is typically represented by a single node, a

second instance of that item will further increase its activation, and as a consequence,

the gradient will not correctly represent the two instances. Some ad-hoc solutions to

solve this problem have been proposed like for instance a pre-processing of the input

sequence in “chunks of items” that do not contain repeats, or the use of a tokenizer that

attributes different nodes to repeated items (e.g., Bradski et al., 1994). In a similar vein,

competitive cueing models in which the competitive item selection is followed by item

suppression, face the obvious problem of representing immediate (or temporally close)

repetitions. In principle, this problem can be overcome by hypothesizing a specific

“repetition mode” that temporally disables the usual inhibitory feedback (Houghton,

1990). However, this ad-hoc solution requires at least to learn the repetition pattern

(e.g., two or more repeats) and the point at which during sequence recall the “repetition

mode” must be entered (for a modelling account see Shieh and Elman, 2006).

The field dynamics resolves the problem of item repetition without the need to
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refer to additional processing or learning mechanisms. Figure 8.2 shows a snapshot of

a model simulation in which the same sensory input is applied twice to the perceptual

field uper. The inhibitory feedback from the memorized first event in umem guarantees

that the second bump evolves at a different position within the range of the external

stimulation. With respect to the build-up of the sequence memory in umem there is

no difference whether the currently processed item is a repeated item or not. What

determines the ordinal position of the item is the time at which population activity

reaches the threshold and not where in the field the localized pattern evolves.

Note that since the model is essentially one-dimensional we have used for simplic-

ity a scalar field with a localized input that is much larger than the width of individual

bumps. This ensures that the same input pattern may generate bumps at different

field sites. A more general solution would be to use a two-dimensional field of lateral

inhibition type with an input in form of a ridge (Erlhagen and Schöner, 2002; Faubel

and Schöner, 2008). Two-dimensional bumps that evolve along this ridge in response

to the presentation of the stimulus at different points in time would represent repeated

items.
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Figure 8.2: Snapshots of the activation of the perceptual field, uper (left, solid line) in the presence of

external input (dashed line), and the activation of the present sequence memory field, umem (right) are

shown. The dashed arrows indicate inhibitory connections and the solid arrow excitatory connections

between the two fields.
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8.4.2 Importance of preshaping

Figure 8.3 presents a model simulation in which a sequence of 6 colour coded stimulus

events with repletion of items is presented in 3 successive experimental trials. It is

assumed that after each trial remaining suprathreshold activity (e.g. in the working

memory field) is reset to resting level except in the past sequence memory field in

which a memory trace builds up. The pre-structured state of the perceptual field at

the beginning of the second and third trial (left panel) reflects the growing experience

with the task. This has dramatic consequences for the processing of sensory information

and consequently also for the encoding of events in memory. In the right panel, the

time course of population activities in umem is compared relative to the onset of the

individual stimuli (vertical lines). In the first trial, the second stimulus, which is a

repetition of the first, is not represented. This is due to the relatively short inter-

stimulus interval. At the moment when the second input is applied to the perceptual

field, the population representation of the first stimulus is still suprathreshold (not

shown), resulting in a strong inhibition of neighbouring neurons. As a result, the second

stimulus is not able to trigger a suprathreshold response. The situation is different in the

second trial in which the processing of inputs in uper already starts from an activation

level closer to the threshold. The time course of transient population activity is now fast

enough to represent also the second stimulus. The activation gradient established at the

end of the trial reflects the correct serial order of all 6 items. However, the variability

in the time delay between stimulus onset and the moment of reaching the threshold is

relatively large, indicating that the relative timing of events is still not well represented

in memory. As can be seen in the evolution of the population activities in the third trial,

a larger pre-activation of populations significantly reduces this variability, resulting in

a nearly identical delay for all item memories.

8.4.3 Sequence errors

Traditionally, specific sequence recall errors that are frequently observed in experiments

with humans have been used to discuss the advantages and limitation of different theo-

ries and models of sequence learning and memory (Henson, 1998; Rhodes et al., 2004).

Rather than trying to fit detailed error patterns that may depend on the exact nature
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Figure 8.3: Snapshots of the initial state of the perceptual field (left) and the time course of the maximal

activation of each subpopulation representing the different sequence elements are shown for the present

sequence memory field (right) in each of the three trials. Parameters value used here: τuper = 10,

wexc1 = 4, σexc = 4 and winh = 2.5, A = 2, k = 0.4 and α = π/20, for uper, and τumem = 15,

τhmem = 300, hmem0 = hp, A = 1, k = 0.6 and α = π/5, for umem, τupa = 10000, λpa = 5, hp = W (5),

for upa.
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and design of sequential tasks, we show in model simulations how the occurrence of

certain types of errors may be explained by the dynamic field concepts.

Erroneous sequence recall performance may have different origins. It may be

result of a mistake in stimulus encoding like in the example of Figure 8.3 (top), or

reflects a conflict on the output or sequence production level. Many errors involve the

production of a sequence element in a serial position other than the intended one. Like

in other gradient based models of serial performance, production errors can be generated

in the DNF model by adding random fluctuations to the decision field. However, since

order and timing errors after learning and practice are relatively rare events, the noise

level should be carefully chosen not to completely override the information encoded in

the activation strengths of the sequence memory.

Figure 8.4 shows a simulation example for a sequence with 4 memorized events

(top). The Gaussian noise added to each site of the decision field does not prevent

the field dynamics from recalling the sequence in the correct order, as shown by the

transient population activation profiles (bottom left). Moreover, the interval between

successive decisions, measured at the time of reaching the threshold, matches well the

inter-stimulus intervals of the sequence (bottom right). With the given noise level, the

variation is below 2.5% of the duration for all three inter-stimulus intervals.

Many errors involve the production of a sequence element in a different serial

position from that intended by the performer, which supports the notion of a parallel

activation of several items during sequence planning and execution. Moreover, there is

a tendency that people confuse more often elements close together in a sequence than

far apart, which is consistent with the idea of an activation gradient. These “contextual

errors” can either be anticipatory (items intended for future positions) or preservative

(intended for past positions) in nature. Figure 8.5 depicts model simulations with the

noise level used in Figure 8.4 for both error types. In the right panel, the noise in the

decision process causes a change in the order of recall of the two last items. The left

panel shows an erroneous recall of the first item in position 3. The latter error cannot

be explained by noise alone since a strong feedback inhibition from the memory of

already performed items in uwm usually prevents repetition errors. In the simulation,

the choice of a weaker feedback inhibition due for instance to a failure in the memory
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Figure 8.4: Activation pattern corresponding to the correct memory of a sequence with four differ-

ent elements (top). The time course of population activity in ude representing the different sequence

elements is shown (bottom left). The vertical lines indicate the time of cue presentation. The ex-

act inter-stimulus intervals (white) and compared with the predicted intervals from suprathreshold

population activity in ude (black, bottom right).

process (e.g., no self-sustained bump evolves) explains this error.

Anticipatory behaviour is commonly believed to be correlated with the level of

practice and to reflect the advanced preparation of future sensorimotor events. The

error rate of sequence recall decreases in general with practice but the proportion

of anticipatory errors increase in many domains (speech, sport, music performance,

for discussion see Palmer and Pfordresher, 2003). Interestingly, there exists also a

relation between the sequence production rate and the number of anticipation errors.

This specific speed-accuracy trad-off has been described for instance for expert piano

players (Pfordresher et al., 2007). The prediction of DNF model are in line with these
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Figure 8.5: Example of a repetition error (left) and an anticipatory error (right) are shown.

experimental findings. Figure 8.6 shows that the rate of anticipatory errors (number of

anticipatory errors/ number of trials) increase approximately linearly with execution

speed (r = 0.938867, P < 0.01). In the simulations, the execution speed has been

changed by adapting the growth rate of the of the h-dynamics in the decision field

accordingly (compare ).

0 0.002 0.004 0.006 0.008 0.01 0.012
0

0.01

0.02

0.03

0.04

0.05

0.06

Speed of recall

A
nt
ic
ip
at
or
y
pr
op

or
tio

n

Figure 8.6: Correlation between the number of anticipatory errors and the speed of serial recall.
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8.5 Discussion

The main purpose of the model extensions introduced in this chapter was to explain

how the ordinal and timing properties encoded in the neuronal activation patterns may

be acquired during exposure to correct sequence demonstrations. The simulation re-

sults highlight the importance of the time course of population activity for the memory

process. The preshaping of neural population by past experience speeds up the pro-

cessing of sensory information. This ensures not only that all sensory events become

stored in memory in the correct order but also that the temporal relationship between

events can be quickly acquired. Moreover, the dynamics of the perceptual field which

is shaped by the excitatory and inhibitory inputs from the memory fields automatically

generates population representation for each new sensory event. The field dynamics

thus autonomously solves the problem of repeated items without the need to refer to

additional processing or learning mechanisms.

During sequence recall, the decision time for each event is determined by the

amount of preshaping by the excitatory input from umem and the resting dynamics

which provides a linearly growing, additional input to the decision field. Since the

difference in pre-activation between successive events is linearly related to elapsed time,

the relative timing of events is automatically preserved during recall. Two observation

are worth mentioning in this context. Firstly, the assumed linear increase of activation is

in line with neural data showing an approximately linear build up of activity until a fixed

activation threshold associated with a predicted event is reached (Durstewitz, 2004).

It is important to notice however that the linear growth is by no means a necessary

model assumption. More complex dynamics for the threshold accommodation and the

resting state like for instance an exponential growth could have been used as well. This

is important to keep in mind when thinking about possible neural implementation of

the simple resting dynamics used in the model simulations. Secondly, the time course

of suprathreshold activation in the different model layers unavoidably causes processing

delays in the internal representation of external events (compare for instance the time

courses of activation in Figure 8.3). The system has to compensate these delays if

a task requires to synchronize the behaviour with external events (e. g., caused by

others’ action in a shared tasks). The anticipation of external events can be achieved
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in the model by choosing an adequate value for a “default” resting state from which

the linear h-dynamics starts (e.g., compare the simulations of Figure 8.4 where the

activation reaches threshold at the exact time of the external event). Interestingly, the

idea of a task-dependent proactive inhibition of motor behaviour to control premature

responses (Wardak et al., 2012) is in line with a context-dependent adaptation of the

global baseline level of the field dynamics defined by the parameter h < 0. Lowering

or increasing the global inhibition in the decision field will result in shorter or longer

reaction times, respectively. How can the system learn to predict the timing of future

events by choosing an adequate resting level? One possibility is to postulate an event

monitoring system (Bicho et al., 2011) that compares the time course of suprathreshold

activity in the perceptual and the decision field during the recall of a sequence from

memory. If the monitoring system detects a delay between the onset of suprathreshold

activity in both layers (that is, a mismatch between the expected and the real timing of

an event), the h-value of the decision field will be adapted until synchrony is achieved.
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Chapter 9

A real-world robotics experiment

In this chapter, we present results of a real-world robotics experiments which was

designed to directly test the assumptions and predictions of the sequence learning model

discussed in the previous chapter. First the humanoid robot ARoS has to memorize

and subsequently, execute a short musical sequence that a human teacher demonstrates

on a keyboard. Specifically, we were interested to evaluate the real-time constraints of

the perceptually-cued learning task on the processing of order and timing information

in the layered dynamic field model.

9.1 Physical and Virtual Frameworks

9.1.1 The robot ARoS

ARoS (Anthropomorphic Robotic System) is an anthropomorphic robot which has

been developed at the Anthropomorphic and Mobile Robots Laboratory at the Univer-

sity of Minho (Figure 9.2).

The body of ARoS consists of a metallic support structure on which a seven

degrees of freedom anthropomorphic robotic arm and a stereo camera system with a

pan-tilt unit are attached (Figure 9.1, (b)). A three-fingered hand mounted on the

arm allows the robot to grasp and manipulate objects that are detected by the vision

system in a flexible, that is, task dependent manner (Figure 9.1, (a), for details see

Silva, 2008). In the past, ARoS has been successfully tested in several cooperative

human-robot interaction (HRI) tasks. Its cognitive control architecture based on the

103
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dynamic neural field framework is inspired by neuro-cognitive mechanisms supporting

human joint action (Bicho et al., 2012).

The present experiments advance the robotics research in two main directions.

Firstly, while in our previous HRI studies the information about the sequential task

execution was hand-coded, the robot now efficiently learns the sequential order in just

a few demonstration trials. Secondly, aspects of action timing were addressed in our

previous work mainly in the sense of an anticipation of action outcomes ahead of their

realization to guarantee smooth and fluent human-robot interactions. For executing

a musical sequence in a recognizable manner, anticipated planning of future events is

necessary but not sufficient. Playing a melody requires precisely timed motor responses

at intervals of varying durations.

(a) (b)

Figure 9.1: The ARoS hand (a) and stereo vision system (b).

9.2 Learning a musical sequence by observation

The ultimate goal of the experiment was that after learning the robot should be able

to play a simple melody on a toy keyboard with four keys. We adopted a learning

by observation paradigm since evidence from serial response tasks (SRT) suggests that

knowledge of serial order can be acquired perceptually even in the absence of a motor

response (e.g., Howard et al., 1992, Robertson and Pascual-Leone, 2001, but see Will-

ingham et al., 1989). There is still a debate in the literature under which conditions
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and to which extent (implicit) learning can occur in the absence of motor sequencing.

Conditions that seemingly favour perceptual learning of sequential information are sim-

ple mappings between a perceptual cue and the corresponding motor response. Such

simple mappings allow the subject to pay attention to the perceptual events. Inspired

by learning experiments with elementary music students Rogers (1991), we used a dis-

play with colour coded piano keys as sensory modality and not the auditory channel

(which would be in principle also possible). A key press by the human demonstrator

produced not only a sound but also activated a coloured square on a computer screen

that was easy to detect for the robot (orange for C, blue for D, green for E and red

for F, see Figure 9.2). Moreover, the visual cues on the display matched the colour

and relative position of the keys. During sequence recall, the fingers where positioned

directly above the keys to execute a pre-defined tapping movement whenever the as-

sociated population activity in decision field reached a threshold value. Learning the

arbitrary mapping between the visual cue and the required response was thus not part

of the sequence learning process.

Figure 9.2: Human and robot playing a melody on a keyboard.

Since the robot has only three fingers and the hand does not move, the human

partner has to execute one note of the musical sequence. A joint execution of the

learned melody can be achieved by applying at the start of sequence recall an addi-

tional inhibitory input to the respective pitch representation in the decision field. As a

consequence, the neural populations representing this pitch do not reach the threshold

for overt motor behaviour. Such a proactive inhibitory control of a motor response has

been proposed as a general processing mechanisms to adjust neuronal decisions as a
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function of the prior knowledge that subjects have about their environment (Wardak

et al., 2012).

9.2.1 Experimental results

As an example of an easily recognizable melody, we selected the first part of the “Happy

Birthday" melody for the learning experiments. The musical sequence is composed of

six elements with three repetitions of the note C (C-C-D-C-F-E). The human demon-

strates the melody until the robot is able to play all keys in the correct order and

with the correct timing. To quantitatively validate the model in terms of its ability

to produce sounds with the correct temporal pattern, we compared the interval be-

tween successive tones (in percentage of sequence duration) in the demonstrations with

the model predictions. In the majority of the experiments, the robot was able to re-

produce the melody after only three demonstrations (a video with an example of the

experiments can be found at http://marl.dei.uminho.pt/public/videos/Learn_a_

musical_sequence.html).

The top panel of Figure 9.3 shows for three successive demonstrations the acti-

vation pattern in the present sequence memory field, umem. Due to the threshold ac-

commodation dynamics, the bump amplitudes reflect the temporal order of the demon-

strated musical sequence. The middle panel compares the exact point in time in which

each note was played by the teacher (vertical lines) with the time course of the maximal

activation of the corresponding population representation in umem. The bottom panel

compares the relative timing of the played melody (white bar) and the model predic-

tion when the fixed read-out threshold is applied to the evolving population activity in

umem (black bar).

After the first demonstration, the robot memorized only five of the six notes as

shown by the five bumps in the top panel of Trial 1. The fourth note was lost, due to

the time delay in encoding the first three notes (compare the time course in the middle

panel of Trial 1). When the fourth note is played, the population representation of

the third note has just reached threshold and due the strong competition mediated by

lateral inhibition no suprathreshold activity representing the forth note evolves (panel

2, Trial 1). The processing delay in umem is due to a relatively slow formation of bumps

http://marl.dei.uminho.pt/public/videos/Learn_a_musical_sequence.html
http://marl.dei.uminho.pt/public/videos/Learn_a_musical_sequence.html
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Figure 9.3: Comparison of population activity in umem in 3 successive demonstration trials. top panel:

Self-stabilized activation pattern. middle panel: Time course of population activity representing the

different sequence elements, and timing of notes during demonstration (vertical lines). bottom panel:

Relative time intervals between successive tones (white) and predicted intervals from suprathreshold

population activity in umem (black).

in the perceptual layer which does not follow the presentation rate of the demonstration.

During the second demonstration, the preshaping from the past sequence memory

field lead to a much faster processing of the colour information in uper, and consequently

also to a speeded processing in umem (middle panel, Trial 2). The robot is able to

memorize all notes of the melody (top panel, Trial 2). The errors in the relative

timing, however, are still considerable (bottom panel, Trial 2). When playing the

musical sequence with the encoded temporal pattern, the difference to the demonstrated

pattern is easy to detect for a human listener. In the third experimental trial, the

processing of the preshaped input and sensory input in umem results in a time course of

suprathreshold activity of the different populations that robustly matches the relative

timing of all notes in the demonstrated sequence.
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9.2.2 Different execution speeds

The top panel of Figure 9.4 compares the time course of population activity in the

decision field when the robot jointly executes with the human partner the melody from

memory with two different speeds. As can be nicely seen, the population representations

of all notes that the robot has to play appear to be pre-activated at the time of sequence

onset with a relative strength reflecting the temporal order. For the joint execution of

the learned melody, the F-key has been assigned to the human partner and therefore

its population representation receives additional inhibitory input. Consequentially, the

input from the memory field umem is not sufficient to drive the population representing

F (red line Figure 9.3) beyond threshold.

Different execution speeds are achieved by adapting the time constant of the

baseline dynamics in the decision field, τde. If τde is chosen equal to the parameter

τmem controlling the growth rate of the threshold accommodation dynamics, the re-

call dynamics nearly perfectly reproduces the stored timing of notes of the sequence

demonstrations (vertical lines). If the time scale for the baseline dynamics is chosen

smaller, the execution of the sequence appears to be accelerated.

In line with a key principle of interval timing in humans and other animals

(Machado et al., 2009), the characteristic temporal pattern of the melody appears

to be preserved in the speeded execution. A comparison of the two bottom panels of

Figure 9.4 shows that the pattern of interval timing between successive events in the

two execution trials is nearly identical and matches the relative timing information

encoded in the memory gradient in umem.

In this context it is worth noting that the variability in decision timing introduced

by additive noise in ude violates Weber’s law, another hallmark of interval timing. As

shown in Figure 7.7, the model predicts a nearly constant variability σ independent of

the interval to time T . This means that the Weber fraction defined as the coefficient

of variation (CV = σ
T ) decreases with interval length and thus does not reproduce the

scalar property of interval timing (compare Figure 7.7). Interestingly, a recent study

in which participants reproduced different target intervals with finger tapping found

that for some duration ranges training led to a reduction of variability to a value that

remained constant over interval length (Grondin and Killeen, 2009). Moreover, the
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Figure 9.4: Time course of the maximal activation of each element in the decision field (top). Relative

timing of successive tones in umem and in ude (bottom).

authors report a significant difference between musicians and non-musicians in task

performance. Only participants which lacked an intensive musical training showed an

invariant CV. Seemingly, skilled musicians have learned to minimize variability over

trials since the correct timing of intervals with different lengths is fundamental to

give meaning to a musical sequence. In the model simulation of the Weber law, the

subthreshold population activity in the decision layer rises linearly to the threshold for

response initiation at a rate that varies from trial to trail with a Gaussian distribution

(compare Figure 7.7). Assuming that this source of variability can be reduced to nearly

zero by training would explain the decrease of the CVs of musicians with interval length

since only the noise-induced variability in the timing of the decision process would

contribute.

9.3 Discussion

Learning to play a piece of music is an excellent example for studying the intimate cou-

pling between ordinal and timing properties of complex sequence behaviour. At first

glance, the fact that in music performance the duration of the sequence and therefore
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also the timing of the single movements can be changed without affecting the sequen-

tial order speaks for a (at least partly) separated representation of both aspects of

sequential behaviour. The observation in many motor sequence learning studies that

serial order is typically leaned much quicker than the temporal properties has been in-

terpreted as further evidence for a separated view (e.g., Kornysheva et al., 2013). The

robotics experiments show that a fully integrated representation in form of an adap-

tive activation gradient is sufficient to achieve both precise interval timing and proper

order. To adapt the speed of performance, the only additional assumption to make is

that a growing signal related to elapsed time is integrated with the learned sequential

information to control the time of motor decision. In the model, the urgency of motor

preparation can be “voluntarily” changed by simply adapting the time constant of the

baseline dynamics (for a discussion of a possible neural substrate see Lewis and Miall,

2006). The experiments also show that an integrated memory of order and timing is

not in disagreement with a two-stage learning process since the activation gradient rep-

resenting order is established first followed by a fine tuning of the activation strengths

representing the timing information.

The present work complements previous experimental and modelling studies with

the serial reaction time task that also advocates the integrated view (Dominey, 1998;

Shin and Ivry, 2002; O’Reilly et al., 2008; Gobel et al., 2011).

In the field of human-robot interactions, robot learning by observation is consid-

ered highly attractive since it allows in principle a normal user to teach a robot new

tasks in an intuitive and simple manner (Dautenhahn and Nehaniv, 2002). Importantly,

since users will not likely invest time in many repeated demonstrations, the learning

should be efficient and fast. In the activation based dynamic field model, correctly rep-

resenting the musical sequence takes just a few demonstrations. This contrasts with the

performance of typical recurrent neural network models of serial behaviour that usually

need a large number of training trials to successfully store sequential information in

connection weights (e.g., Cleeremans and McClelland, 1991; Dominey, 1998).

The present learning experiments were simplified in two important ways. The vi-

suomotor associations, or mapping between the visual cues and the required responses

were pre-defined. In principle the arbitrary mapping could be also learned using stan-
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dard associative (Hebbian) learning rules between the neuronal representations of the

cue (colour or pitch) and the respective position on the keyboard or the specific effec-

tor. More challenging is the learning of anticipatory finger motion towards upcoming

key presses when the hand has to move during the execution of more complex musical

sequences.

In the context of robotics applications it is important to stress that due to the

self-stabilized properties of the field dynamics the model runs autonomously without

feedback from the environment. This can be used by the robot for instance to “men-

tally” simulate the order and timing of sequential events. Such an internal simulation

offers new perspectives for learning generalized sequence knowledge in task that are for

instance not defined by a unique order (Bicho et al., 2011). A fast activation based

learning system like the one presented here could be used to train a slow learning system

based on the synaptic weight adaptation to extract from different examples generalized

task knowledge (e.g., different orders of task execution, Sousa et al., 2014).
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General discussion and future
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Chapter 10

General discussion and Future

Work

10.1 Discussion

The work presented in this thesis was guided by two closely related objectives. Firstly,

the formation of multi-bump solution of a scalar neural field in the presence of localized

external input was studied. Secondly, the new mathematical insights allowed us to

develop and apply an innovative sequence learning model that stores the order and the

timing of events in stable multi-bump patterns of neuronal activity.

For modeling the recurrent interactions in neuronal populations, we applied a

coupling function with oscillatory rather than monotonic decay first suggested by Laing

et al. (2002), and used a step function to approximate the nonlinear firing rate or

activity of neurons. The proofs of the existence and stability of patterns followed the

ideas introduced by Amari in his seminal 1977 paper for the case of lateral inhibition

type connections (for follow up studies see Pinto and Ermentrout, 2001; Guo and Chow,

2005a,b).

The main mathematical results of Part II of the thesis are summarized as follows.

We achieved:

1. the derivation of sufficient and necessary conditions for the existence of one-bump

solutions (with a range of possible widths) (Theorem 1);
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2. the derivation of a sufficient condition that guarantees the existence and stability

of a one-bump solution with a minimum width (Theorem 2);

3. the derivation of a sufficient criterion that guarantees the existence of a value of

a∗ that satisfies the necessary condition for the existence of one-bump solutions

in a presence of localized external input (Theorem 3);

4. the derivation of sufficient conditions that guarantee the existence of equal width

two-bump solutions for a specific value of h (Theorem 4);

5. the derivation of a sufficient condition that guarantees the existence and stability

of equal width two-bump solutions with a minimum width and minimum distance

between bumps for a particular value of h (Theorem 5);

6. the derivation of a sufficient criterion that guarantees the existence of the two

values of a∗ and of b∗ that satisfy the two necessary conditions for the existence

of equal width two-bump solutions in a presence of external input (Theorem 6).

The rigorous mathematical results obtained for the cases of one and two bumps

allowed us to systematically test analytical and in numerical studies pattern formation

for the case N > 2. The specific focus of the numerical integration of the field dynamics

was on the impact of the spatio-temporal characteristics of the external input applied

to the field. The results provide important constraints for the applications in which

the spatial shape and the relative distance of inputs to the field are important.

The theoretical results of Part II were the backbone for the DNF models of se-

quence learning and memory developed and tested in Part III. To generate a stable

multi-bump solution with an activation gradient, a threshold accommodation dynam-

ics was applied. Neurons with suprathershold activity adapt according to a simple

linear dynamics their threshold for triggering the recurrent interactions within the lo-

cal population. It is important to notice that this accommodation dynamics increases

the stability of the patterns since excited neurons with higher threshold appear to

be less sensitive to spatial perturbations of the activity profile. In neurophysiological

terms, the gradient of activation of different subpopulations in the field not only rep-

resents specific values of a stimulus dimension (e.g. colour in the robotics example,
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for discussion see Erlhagen et al., 1999), but also encodes in addition elapsed time as

a second dimension in the relative activation strengths. In general, the model builds

on the assumption that self-sustained activity in neuronal populations constitutes a

fundamental processing principle supporting several high-level cognitive functions like

working memory, timing and decision making (Miller, 2000).

Coupled with an h-adaptation dynamics in the decision field, the sequence learn-

ing model allows not only to recall the order of events but also the relative timing of

events. The model makes a new contribution to the hotly debated question in cogni-

tive neuroscience (e.g., Kornysheva et al., 2013) whether the timing of events is stored

independently of the order of events. While results of the serial response time (SRT)

paradigm are in general interpreted as evidence for an integrated representation of these

dimensions (Shin and Ivry, 2002), evidence from learning studies and studies imposing

constraints on sequence duration seemingly favour the existence of separate represen-

tations. For instance, learning a musical sequence typically occurs in two phases. The

order of notes is memorized first which is followed by an adjustment of their exact

timing. After the sequence has been learned, it can be executed with different speeds

thereby preserving the relative timing of notes (Janata and Grafton, 2003). Both find-

ings show that significant changes in the temporal structure of the sequence can be

observed without affecting the ordinal dimension. The DNF model demonstrates that

the development of memory representations that are sensitive both to the sequential

structure and the timing of events is not in contradiction with experimental findings

showing a relative independence of the two dimensions.

The implementations of the model as part of the DNF architecture for human-

robot interactions on the humanoid robot ARoS (Bicho et al., 2010, 2011) allowed us

to test hidden model assumptions. For instance, the time course of the field dynamics

has to be adapted so that the evolution and decay of self-stabilized population activity

may follow the real-time presentation of the musical sequence. Indeed, even if the

visual system of the robot is fast enough to detect the colour code of each note and

the robot knows the mapping onto the respective key press, existing suprathreshold

activity from a previous event may prevent a newly presented signal to be encoded

due to the competitive field dynamics. This happens to occur in the perceptual layer
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in the first demonstration trials and caused an omission error. The mechanism of

preshaping of populations due to prior experience is not only responsible for speeding

up the processing in general, but also for the correct timing of the key presses on the

keyboard. The memory of the previous sequence demonstration in the past memory

field generates an expectation of each sensory event in the perceptual field and primes

the corresponding motor preparation in the decision field. The learning experiments

show that the robot is able to correct in a series of demonstration-execution cycles

initial order and timing errors.

Although the sequence model presented in Chapter 8 has been developed with the

goal to apply it for the learning of short musical sequence, it can be easily adapted for

many others situations in which ordinal and timing information are tightly coupled (e.g.

typing, speech, social interactions). For instance, a fluent and pleasant human-robot

cooperation in routine service tasks such as preparing the dinner table or handing over

(or receiving) a set of objects to an elderly, a judgement about the ordinal sequence

structure but also a metrical judgement that involves the analysis of elapsed time

between routine events is essential. Moreover, the robot should be able to synchronize

its actions and decisions with different users, making the capacity to adjust its timing

of actions a central one. With an integrated representation of ordinal and timing

properties of sequential tasks the robot is able not only to anticipate what the user

needs next (Bicho et al., 2010), but may also predict the moment in time when it

should for instance start a handing over sequence.

10.2 Future Work

10.2.1 Mathematical analysis

10.2.1.1 Existence and stability of multi-bump solution

In this thesis, we have analysed the existence and stability of N -bump solution for

N > 2 for specific cases only. A more rigorous mathematical analysis in the sense of

Chapters 3 and 4 that also includes external inputs remains an open question for future

research.
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10.2.1.2 Extension to two space dimensions

For the two-dimensional case, the dynamic field equation (1.1) can be generalized to

τ
∂u(x, y, t)

∂t
= −u(x, y, t) +

∫ ∫
Ω
w (x− q, y − s) f (u(q, s, t)) dqds+ h+ S(x, y, t),

(10.1)

where Ω is an open connected subset of R2, f(u) is the Heaviside function, and

w represents a two-dimensional connectivity function given by

w(r) = w(x, y) = Ae−k
√
x2+y2

(
k sin

(
α
√
x2 + y2

)
+ cos

(
α
√
x2 + y2

))
. (10.2)

Laing et al. (2002) show numerical results supporting the notion that also in two-

dimensional fields multiple localized excitations may co-exist simultaneously when the

class of connectivity functions used for the scalar case is generalized to two dimensions.

A rigorous existence and stability analysis remain an open problem.

10.2.2 Sequence model

10.2.2.1 Generalization to two dimensions

In robotics applications there are many situations in which the position of a bump in

two-dimensional domain would be of interest. For instance, the bump may not only

encode the colour but also the position of a specific object in space. Figure 10.1 shows

an example of self-stabilized bump in a two-dimensional sequence memory field with a

gradient of activation encoding the order and elapsed time of 5 sequence elements.

It is straightforward generalize the model equations presented in Sections 7.3 and

in 8.3 to two dimensions. However, new mathematical insights about the conditions for

pattern formation in the presence of time-varying input from connected fields would be

highly desirable to constrain the model parameters for the numerical studies.

10.2.2.2 Chunking mechanisms

The melody used for the learning experiments was very short. Typical musical se-

quences that can be readily memorized and recalled consist of hundreds of tones. The

idea of a single activation gradient cannot be applied to robustly represent such large

numbers of elements. The solution could be to exploit structural and relational aspects
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Figure 10.1: Example of multiple self-stabilized bumps a two-dimensional in sequence memory field.

of individual elements to group them together to larger units (Janata and Grafton,

2003). We are currently exploring in simulation studies how “chunking" mechanisms

may be integrated in dynamic neural field models of serial behaviour to cope with this

challenge (Sousa et al., 2014).

10.2.3 Robotics applications

10.2.3.1 Coding of note duration

The model presented in Chapter 8 and tested in represents Chapter 9 the serial order

of notes and their relative onsets. This information is sufficient to reproduce in a

recognizable manner a simple melody. However, for more complex melodies also the

tone duration (time length) of each note has to be taken in consideration. Figure 10.2

sketches an extended version of the model described in Section 8.2 in which also the

tone duration is memorized. The basis idea is that during demonstration not only the

onset but also the offset of the sensory signal (visual or auditory) is registered. There

is therefore an “on” memory field like in the previous version and in addition an “off”

memory field. The “off” field receives input from the perceptual field and the multi-

bump pattern from the “on” field as preshaping input. As a further modification, the

working memory field for already executed movements is replaced by an “off” decision

field. Evolving suprathreshold activities in the “on” or the “off” decision fields are

associated with pressing or lifting finger movements, respectively. Moreover, inhibitory
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feedback connections form the “off” decision field to corresponding positions in the “on”

decision field guarantee that an already executed note of the melody is not accidentally

repeated.

The implementation of this extended model on ARoS and its validation in learn-

ing by demonstration tasks is part of future work.
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Figure 10.2: Sketch of the distributed architecture of the musical sequence model with the codification

of note duration. Dashed arrows indicate inhibitory connections, solid arrows excitatory connections.
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10.2.3.2 Playing with two hands

In the experiment presented in Chapter 9, the robot used its three-fingered hand to

play on a keyboard with four keys. Since the robot is not moving its hand, it needs the

cooperation of a human partner to play simple pieces with 4 notes (as in the example

shown in Subsection 9.2.1). Although playing more notes does not present a new

challenge for the neural mechanisms implemented in the model, it is obviously more

impressive. One of the next steps of the robotics experiments is therefore to implement

the sequence leaning model on the robot ARoS with two arms and two three-fingered

hands. We have already bought a new keyboard for this purpose which can be easily

controlled by a computer and is sufficiently large to place the two robot hands (see

Figure 10.3). A nice side effect of this more sophisticated keyboard is that it allows us

to demonstrate a human-robot team playing a real duet in which each partner plays a

significant part of a melody. Such demonstration would ideally complements previous

work on human-robot interactions with ARoS in sequential tasks by focusing on the

timing aspects of joint action.

Figure 10.3: The new keyboard.
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Appendix A

Proofs

We start by summarising all conditions on the connection functions and the external

input that have been used for the existence and stability proofs presented in Part II of

the thesis.

(H1) w(x) is symmetric, i.e., w(−x) = w(x) for all x ∈ R;

(H2) w is both continuous and integrable on R;

(H3) w(x) > 0 on an interval (−x, x), and w(−x) = w(x) = 0;

(H4) w(x) < 0 on (−∞,−x) ∪ (x,∞);

(H5) w(x) is decreasing on (0,∞);

(H6) w(x) is an oscillatory function that tends to zero as x→ ±∞;

(H7) w(0) > 0, and w(x) changes sign infinitely often on (0,∞);

(H8) w has infinite positive zeros at values zn = −arctan( 1
k )

α + nπ
α for all n ∈ N;

(H9) W (z2) > 0;

(H10) W (z2) > p1p2(
1+e

2kπ
α

) , with p1 = A
k2+α2 , p2 = αk + k;

(SH1) S(x) is continuous on R and symmetric, i.e., S(−x) = S(x) for all x ∈ R;

(SH2) S(x) > 0 on an interval (−x, x), S(x) < 0 on (−∞,−x)∪ (x,∞) , and S(−x) =

S(x) = 0;
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(SH3) S(x) is increasing on (−∞, 0] and is decreasing on [0,∞);

(SH4) S(x) > 0 on (−x2,−x1)∪ (x1, x2), S(−x2) = S(−x1) = S(x1) = S(x2) = 0, and

S(x) < 0 on (−∞,−x2) ∪ (−x1, x1) ∪ (x2,∞);

(SH5) S(x) is increasing on
(
−∞,−x2−x1

2

)
and on

(
0, x2−x1

2

)
, and is decreasing on(

−x2−x1
2 , 0

)
and on

(
x2−x1

2 ,∞
)
.

A.1 Proof of Theorem 1 :

Theorem 1 Suppose that hypotheses (H1) and (H2) hold. The equation u(x) = W (x)−

W (x−a)−h defines an one-bump solution with R[u] = (0, a) if and only if the following

three conditions are satisfied

(i) W (x)−W (x− a)− h = 0, if x = a,

(ii) W (x)−W (x− a)− h > 0, if x ∈
(
a
2 , a

)
,

(iii) W (x)−W (x− a)− h < 0, if x > a.

Proof:

If u(x) = W (x) −W (x − a) − h is an one-bump solution with R[u] = (0, a), we

have u(0) = u(a) = 0, u(x) > 0 on (0, a) and u(x) < 0 otherwise. Thus, u(a) = 0,

u(x) > 0 if x ∈
(
a
2 , a

)
and u(x) < 0 if x > a. These relations can be transformed into

(i), (ii) and (iii).

On the contrary, we assume that (i)-(iii) hold. Hypotheses (H1) and (H2) imply

thatW is continuous and odd. Using the oddness ofW we have that u(x) is symmetric

with respect to x = a
2 , that is, u

(
x− a

2
)

= u
(
x+ a

2
)
. Then, u(0) = u

(
a
2 −

a
2
)

=

u
(
a
2 + a

2
)

= u(a) = 0, u(x) > 0 if x ∈
(
0, a2

)
and u(x) < 0 if x < 0. Therefore,

u(0) = u(a) = 0, u(x) > 0 on (0, a) and u(x) < 0 otherwise, that is, u(x) is an

one-bump solution with R[u] = (0, a).
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A.2 Proof of Theorem 2 :

Theorem 2 Assume that hypotheses (H1), (H2), (H6)− (H9) hold. Let a ∈ (z1, z2) be

a solution of W (a) = h. If h > W (z3) then

u(x) = W (x) +W (x− a)− h

defines a stable one-bump solution.

Before proving Theorem 2, we consider the following result:

Lemma 3 If w(x) is given by (1.6) and a ∈ (z1, z2), then F (x) = W (x)−W (x− a) is

increasing on
[
0, a2

]
and decreasing on

[
a
2 , a

]
.

Proof of Lemma 3: The function w(x) is positive and decreasing on [0, z1).

Thus, as
[
0, a2

]
⊂ [0, z1) and

[
a
2 , z1

)
⊂ [0, z1) it follows

w(x) ≥ w
(
a

2

)
, when 0 ≤ x ≤ a

2 , (A.1)

and

w(x) ≤ w
(
a

2

)
, when a

2 ≤ x < z1. (A.2)

The function w(x) is negative on (z1, z2). Thus, as a ∈ (z1, z2) we have (z1, a] ⊂

(z1, z2) and then

w(x) < 0, when z1 < x ≤ a. (A.3)

From (A.2) and (A.3), and as w(z1) = 0 we have

w(x) < w

(
a

2

)
, when a

2 ≤ x ≤ a, (A.4)

and consequently

− w(a− x) > −w
(
a

2

)
, when 0 ≤ x ≤ a

2 . (A.5)

From (A.1) and (A.5) we obtain

w(x)− w(a− x) > w

(
a

2

)
− w

(
a

2

)
= 0, when 0 ≤ x ≤ a

2 . (A.6)

Therefore F (x) is increasing on
[
0, a2

]
.
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From (A.1) we obtain

− w(a− x) < −w
(
a

2

)
, when a

2 ≤ x ≤ a. (A.7)

Then from (A.4) and (A.7) we have

w(x)− w(a− x) < w

(
a

2

)
− w

(
a

2

)
= 0, when a

2 ≤ x ≤ a. (A.8)

Therefore F (x) is decreasing on
[
a
2 , a

]
and the proof of Lemma 3 is complete.

Proof of Theorem 2 :

Let W (x) be the integral of w(x) satisfying (H1), (H2) and (H6) − (H8). The

value of W (z2) is the first relative minimum of W when x > 0. From (H9) and the fact

that W is odd, continuous and its oscillations decay with distance, we can conclude

that W (x) ≥ 0 for all x ≥ 0 and W (x) < 0 for all x < 0.

Let a ∈ (z1, z2) be a solution of W (a) = h, the value of W (z3) is the first relative

maximum of W when x > a. Thus, if h > W (z3) then

W (x) < W (a), for all x > a. (A.9)

From (A.9) and the fact that W is odd it follows that

W (x− a) > W (−a), for all x < 0. (A.10)

Then, if x < 0

u(x) < 0−W (−a)− h = W (a)− h = 0, for all x < 0. (A.11)

By Lemma 3, u(x) is increasing on
(
0, a2

)
and it follows that

u(x) > W (0)−W (−a)− h = 0, when 0 < x <
a

2 . (A.12)

As u(x) is symmetric with respect to x = a
2 (u

(
a
2 − x

)
= u

(
a
2 + x

)
), u(x) > 0 when

a
2 < x < a and u(x) < 0 when x > a. Therefore, u(x) is an one-bump solution with

R[u] = (0, a).

Because a ∈ (z1, z2), we have w(a) < 0, and therefore the solution is stable.
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A.3 Proof of Lemma 1

Lemma 1 Let n be a natural number, x be any non-negative real number, and W is

defined by (3.1). Then

W

(
x+ nπ

α

)
=


−e−

knπ
α W (x) + p1p2

(
1 + e−

knπ
α

)
, if n is odd

e−
knπ
α W (x) + p1p2

(
1− e−

knπ
α

)
, if n is even

,

and

W

(
x− nπ

α

)
=


−e

knπ
α W (x) + p1p2

(
1 + e

knπ
α

)
, if n is odd

e
knπ
α W (x) + p1p2

(
1− e

knπ
α

)
, if n is even

,

hold, if x− nπ
α > 0.

Proof:

From (3.1) it follows that W
(
x+ nπ

α

)
, for all n ∈ N, can be written as

W
(
x+ nπ

α

)
= −p1

(
e−k(x+nπ

α ) (p3 sin (αx+ nπ) + p2 cos(αx+ nπ))− p2
)
.

If n is odd we have

W
(
x+ nπ

α

)
= −p1e

−kxe−
knπ
α (−p3 sin (αx)− p2 cos(αx)) + p1p2

= −e−
knπ
α

(
−p1e

−kx (p3 sin (αx) + p2 cos(αx)) + p1p2
)

+ e−
knπ
α p1p2 + p1p2

= −e−
knπ
α W (x) + p1p2

(
1 + e−

knπ
α

)
.

On the other hand, if n is even we have

W
(
x+ nπ

α

)
= −p1e

−kxe−
knπ
α (p3 sin (αx) + p2 cos(αx)) + p1p2

= e−
knπ
α

(
−p1e

−kx (p3 sin (αx) + p2 cos(αx)) + p1p2
)
− e−

knπ
α p1p2 + p1p2

= e−
knπ
α W (x) + p1p2

(
1− e−

knπ
α

)
.

This proves the first equality, second equality can be proven similarly.

A.4 Proof of Lemma 2:

Lemma 2 Assume that W is defined by (3.1) and that (H1) holds. Then W
(
π
α

)
>

W (z3).
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Proof:

By Lemma 1 we obtain

W

(
π

α

)
= W

(
0 + π

α

)
= −e−

kπ
α W (0) + p1p2

(
1 + e−

kπ
α

)
;

and

W (z3) = W

(
z2 + π

α

)
= −e−

kπ
α W (z2) + p1p2

(
1 + e−

kπ
α

)
.

As W (0) = 0,

W

(
π

α

)
= p1p2

(
1 + e−

kπ
α

)
.

Suppose that W (z2) > 0, then −e−
kπ
α W (z2) < 0 and

p1p2
(
1 + e−

kπ
α

)
> −e−

kπ
α W (z2) + p1p2

(
1 + e−

kπ
α

)
i.e.,

W

(
π

α

)
> W (z3) .

A.5 Proof of Theorem 3:

Theorem 3 Assume that hypotheses (H1), H2), (H6)−(H9), and (SH1)−(SH3) hold.

If S(0) > W
(
π
α

)
, S

( z1
2
)
> 0 and S

( z2
2
)
< 0 then the equation

W

(
π

α

)
− S

(
x

2

)
= W (x)

has an unique positive solution a∗ that belongs to (z1, z2).

Proof:

From (H2) and (SH1) the function defined by G(x) = W (x) + S
(
x
2
)
−W

(
π
α

)
is continuous for all x ≥ 0. Because π

α ∈ (z1, z2) and W is decreasing on (z1, z2) we

conclude that

W (z1) > W

(
π

α

)
, (A.13)

and

W

(
π

α

)
> W (z2). (A.14)

Assuming that S
( z1

2
)
> 0 and from (A.13) we obtain

W (z1) + S

(
z1
2

)
−W

(
π

α

)
> 0. (A.15)
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On the other hand, assuming that S
( z2

2
)
< 0 and from (A.14) we obtain

W (z2) + S

(
z2
2

)
−W

(
π

α

)
< 0. (A.16)

Thus, by the Intermediate Value Theorem, there exists a∗ ∈ (z1, z2) such that G(a∗) =

0. As G(x) is monotonically decreasing on [z1, z2] there exists a unique a∗ ∈ (z1, z2)

that satisfy the equation G(x) = 0. In additional, when x ∈ (0, z1] we have W
(
π
α

)
−

S
(
x
2
)
−W (x) < 0 because W

(
π
α

)
− S

(
x
2
)
−W (x) is decreasing and S(0) > W

(
π
α

)
.

When x ≥ z2 we have W
(
π
α

)
− S

(
x
2
)
−W (x) > 0 because W

(
π
α

)
> W (x), S

(
x
2
)
is

decreasing and S
( z2

2
)
< 0. Therefore the equation

W

(
π

α

)
− S

(
x

2

)
= W (x) (A.17)

has an unique positive solution a∗ that belongs to (z1, z2).

A.6 Proof of Theorem 4

Theorem 4 Assume that the coupling function w is given by (1.6). If h = W
(
π
α

)
and

τ a triple of the form (a, b, a+ b), then there exists an a-quasi-solution uτ of (1.1).

Proof:

If h = W
(
π
α

)
(W

(
π
α

)
= p1p2

(
1 + e−

kπ
α

)
> 0) and τ is a triple of the form

(a, b, a + b), then uτ is a a-quasi-solution if and only if uτ (0) = uτ (a + b) = 0 and

uτ (a) = uτ (b) = 0. Next, we find a non-trivial solution to the system of the follows two

equations

W (a+ b)−W (b) = 0, (A.18)

and

W (b)−W (b− a) = 0. (A.19)

Let a = π
α , it follows that

W

(
π

α
+ b

)
−W (b) = 0, (A.20)

and

W (b)−W
(
b− π

α

)
= 0. (A.21)
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Using (3.1) and by Lemma 1 we obtain

− e−
kπ
α W (b) + p1p2

(
1 + e−

kπ
α

)
−W (b) = 0, (A.22)

and

W (b) + e
kπ
α W (b)− p1p2

(
1 + e

kπ
α

)
= 0, (A.23)

It follows

W (b) = p1p2. (A.24)

Since b > a and W (b) = p1p2 we obtain

b = π

2α + nπ

α
for some n ∈ N, if p3 = 0, (A.25)

or

b = −
arctan

(
p2
p3

)
α

+ nπ

α
for some n ∈ N, if p3 < 0, (A.26)

or

b = −
arctan

(
p2
p3

)
α

+ nπ

α
for some n ∈ N \ {1}, if p3 > 0. (A.27)

Thus, for a = π
α there exists a value for b such that the conditions (A.18) and

(A.19) are satisfied. This complete the proof of the theorem.

A.7 Proof of Theorem 5:

Theorem 5 Assume that the coupling function w is given by (1.6), and that hypothesis

(H10) holds. If a = π
α and b ∈ (z2, z3) such that W (b) = p1p2, then

u(x) = W (x)−W (x− a) +W (x− b)−W (x− a− b)−W
(
π

α

)
defines a stable two-bump solution.

Proof:

If a = π
α and b ∈ (z2, z3) such that W (b) = p1p2 by Theorem 4 we have that

u(0) = u
(
π
α

)
= u(b) = u

(
b+ π

α

)
= 0. As b ∈ (z2, z3) and W (b) = W (b+ (n−3)π

α ) = p1p2

for all n ∈ N we have for all x ∈
[
b+ (n−3)π

α , b+ (n−2)π
α

]
W (x) ≥ p1p2, if n is odd, (A.28)



133

and

W (x) ≤ p1p2, if n is even. (A.29)

When b + π
α < x ≤ b + 2π

α , from (A.28) and (A.29) we have W (x) ≤ p1p2,

W
(
x− π

α

)
≥ p1p2, W (x− b) < π

α , and W
(
x− b− π

α

)
> 0. Thus, we obtain

u(x) < p1p2 − p1p2 +W

(
π

α

)
− 0−W

(
π

α

)
= 0, when b+ π

α
< x ≤ b+ 2π

α
. (A.30)

When x > b + 2π
α , we have W (x) < W (z5), W

(
x− π

α

)
> W (z4), W (x − b) <

W (z3), and W
(
x− b− π

α

)
> W (z2), consequently we obtain

u(x) < W (z5)−W (z4) +W (z3)−W (z2)−W
(
π

α

)
. (A.31)

By Lemma 1 it follows that

u(x) < −
(
e−

3kπ
α + e−

2kπ
α

) (
1 + e

2kπ
α

)
W (z2) + p1p2

(
e−

3kπ
α + e−

2kπ
α

)
. (A.32)

From (H5) we obtain

u(x) < −
(
e−

3kπ
α + e−

2kπ
α

)
p1p2 + p1p2

(
e−

3kπ
α + e−

2kπ
α

)
= 0 when x > b+ 2π

α
. (A.33)

Therefore, from (A.30) and (A.33) u(x) < 0, for all x > b+ π
α .

By Lemma 3, W (x)−W
(
x− π

α

)
≥W (0)−W

(
0− π

α

)
if x ∈

[
0, π2α

]
and W (x)−

W
(
x− π

α

)
≥W

(
π
α

)
−W

(
π
α −

π
α

)
if x ∈

[
π
2α ,

π
α

]
. Thus

W (x)−W
(
x− π

α

)
≥W

(
π

α

)
, when 0 < x <

π

α
. (A.34)

Since W is odd, W (x− b)−
(
x− b− π

α

)
= −W (b−x) +

(
b+ π

α − x
)
, from (A.28)

and (A.29) it follows that

W (x− b)−
(
x− b− π

α

)
> −p1p2 + p1p2 = 0, when 0 < x <

π

α
. (A.35)

Then, from (A.34) and (A.35) we obtain

u(x) > W

(
π

α

)
+ 0−W

(
π

α

)
= 0, when 0 < x <

π

α
. (A.36)

Therefore, u(x) > 0, when 0 < x < π
α .
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If π
α < x ≤ b

2 + π
2α we have W (x) < W

(
π
α

)
, W

(
x− π

α

)
> 0, as b

2 −
π
2α ≥ b − 2π

α

from (A.28) follows W (x− b) = −W (b−x) ≤ −p1p2 and as b
2 + π

2α ≤ b−
π
α from (A.29)

follows −W
(
x− b− π

α

)
= W

(
b+ π

α − x
)
≤ p1p2. Then

u(x) < W

(
π

α

)
− 0− p1p2 + p1p2 −W

(
π

α

)
= 0, when π

α
< x ≤ b

2 + π

2α. (A.37)

Therefore, u(x) < 0, when π
α < x ≤ b

2 + π
2α .

As u(x) is symmetric with respect to x = π
2α + b

2 , that is, u
(
π
2α + b

2 − x
)

=

u
(
π
2α + b

2 + x
)
, u(x) < 0 if x < 0 and if b2 + π

2α < x < b, and u(x) > 0 if b < x < b+ π
α .

Therefore we have u(x) is a two-bump solution with R[u] =
(
0, πα

)
∪
(
b, b+ π

α

)
.

We recall from the stability analysis in Subsection 4.1.1 that the solution corre-

sponding to (a, b) =
(
π
α , b

)
is stable if b ∈ (z2n, z2n+1) for some n ∈ N. Since b ∈ (z2, z3)

we conclude that the solution is stable with respect to perturbations that do not break

the equal-width condition. This complete the proof of the theorem.

A.8 Proof of Theorem 6:

Theorem 6 Assume that the coupling function w given by (1.6), and that hypotheses

(H10), (SH1), (SH4) and (SH5) hold. If S
(
x2−x1

2

)
> W

(
π
α

)
, S

( z1
2
)
< 0, S

( z2
2
)
> 0,

S
( z3

2
)
> 0 and S

( z4
2
)
< 0, then there exists a point (a∗, b∗) belonging to the region

Ω ⊂ R2 (4.26) such that

W (a∗) +W (b∗)−W (b∗ − a∗)−W
(
π

α

)
+ S

(
b∗ − a∗

2

)
= 0,

and

W (a∗)−W (b∗) +W (a∗ + b∗)−W
(
π

α

)
+ S

(
b∗ + a∗

2

)
= 0.

Recall that the region Ω is defined by

Ω =
{

(x, y) ∈ R2|x > z1 ∧ x+ z1 < y < x+ z2 ∧ −x+ z3 < y < −x+ z4
}
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z1
π
α

z2
z2

z3

Ω

y = −x+ z3

y = x+ z2

y = x+ z1

y = −x+ z4

x
y

Figure A.1: Region Ω ⊂ R2.
Proof:

We define

F1(x, y) = W (x) +W (y)−W (y − x)−W
(
π

α

)
+ S

(
y − x

2

)
(A.38)

and

F2(x, y) = W (x)−W (y) +W (x+ y)−W
(
π

α

)
+ S

(
x+ y

2

)
. (A.39)

First consider the line y = x + z1 for π
α ≤ x < z2 and the line y = x + z2 for

z1 < x ≤ π
α . Substituting y by x+ z1 and x+ z2 in (A.38) we obtain

F1(x, x+ z1) = W (x) +W (x+ z1)−W (z1)−W
(
π

α

)
+ S

(
z1
2

)
, (A.40)

and

F1(x, x+ z2) = W (x) +W (x+ z2)−W (z2)−W
(
π

α

)
+ S

(
z2
2

)
. (A.41)

Since S
( z1

2
)
< 0 by hypothesis, W (x) < W

(
π
α

)
and W (x+ z1) < W (z1) for all

x ∈
[
π
α , z2

)
, we conclude that

F1(x, x+ z1) < 0 for all x ∈
[
π

α
, z2

)
. (A.42)

On the other hand, since S
( z2

2
)
> 0 by hypothesis, W (x) > W

(
π
α

)
and W (x+ z2) >

W (z2) for all x ∈
(
z1,

π
α

]
, we conclude that

F1(x, x+ z2) > 0 for all x ∈
(
z1,

π

α

]
. (A.43)
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Thus, in the line that joins the two points P1 = (x1, x1 +z1) and P2 = (x2, x2 +z2) with

x1 ∈
[
π
α , z2

)
and x2 ∈

(
z1,

π
α

]
, there exists a point (x∗, y∗) such that F1(x∗, y∗) = 0. In

addition ∂F1
∂y (x, y), the partial derivative of F1(x, y) with respect to y, is positive in the

region

Ω1 =
{

(x, y) ∈ R2|x+ z1 < y < x+ z2 ∧ r1 < y < r2
}
, (A.44)

where r1, r2 are the lines defined by the points P1 and P2 with x1 = π
α , x2 = z1, and

x1 = z2, x2 = π
α , respectively. Therefore, by the implicit function theorem, the equa-

tion F1(x, y) = 0 defines y implicitly as a increasing function of x in the region Ω1.

Now, consider the line y = −x+ z3 for z1 < x ≤ π
α and the line y = −x+ z4 for

π
α ≤ x < z2. Substituting y by −x+ z3 and −x+ z4 in (A.39) we conclude that

F2(x,−x+ z3) = W (x)−W (−x+ z3) +W (z3)−W
(
π

α

)
+ S

(
z3
2

)
, (A.45)

and

F2(x,−x+ z4) = W (x)−W (−x+ z4) +W (z4)−W
(
π

α

)
+ S

(
z4
2

)
. (A.46)

Because S
( z3

2
)
> 0 by hypothesis, W (x) > W

(
π
α

)
and W (z3) > W (−x+ z3) for

all x ∈
(
z1,

π
α

]
, we conclude that

F2(x,−x+ z3) > 0 for all x ∈
(
z1,

π

α

]
. (A.47)

On the other hand, S
( z4

2
)
< 0 by hypothesis,W (x) < W

(
π
α

)
andW (z4) < W (−x+ z4)

for all x ∈
[
π
α , z2

)
, we have

F2(x,−x+ z4) < 0 for all x ∈
[
π

α
, z2

)
. (A.48)

Thus, in the line that joins the two points P3 = (x3,−x3 + z3) and P4 =

(x4,−x4 + z4) with x3 ∈
(
z1,

π
α

]
and x4 ∈

[
π
α , z2

)
, there exists a point (x∗, y∗) such that

F2(x∗, y∗) = 0. In addition ∂F2
∂y (x, y), the partial derivative of F2(x, y) with respect

to y is negative. Thus, the equation F2(x, y) = 0 defines y implicitly as a increasing

function of x, in the region

Ω2 =
{

(x, y) ∈ R2| − x+ z3 < y < −x+ z4 ∧ r3 < y < r4
}
, (A.49)
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where r3, r4 are the lines defined by points P3 and P4 with x3 = π
α , x4 = z1 and

x3 = z2, x4 = π
α , respectively.

Therefore, we can conclude that there exists a unique point (a∗, b∗) ∈ Ω1∩Ω2 ⊂ Ω

that satisfies the system of equations F1(a∗, b∗) = 0 and F2(a∗, b∗) = 0.

A.9 Proof of Proposition 1:

Proposition 1 Suppose that hypotheses (H1), (H2), (H6) and (H7) hold. If u is sym-

metric with respect to the point a0+a2N−1
2 , the system of equations

u(a0) = 0

u(a1) = 0

...

u(a2N−1) = 0

can be reduced to 
u (a0) = 0

...

u (aN−1) = 0

.

Proof:

From (5.2) we can write

u (aN+m) =
N−1∑
i=0

(W (aN+m − a2i)−W (aN+m − a2i+1))− h, m ∈ {1, ..., N − 1}.

(A.50)

As u is symmetric with respect to the point a0+a2N−1
2 , we have aN+m = aN + aN−1 −

aN−(1+m),m ∈ {1, ..., N − 1} and then

u (aN+m) =
N−1∑
i=0

(
W
(
aN + aN−1 − aN−(1+m) − a2i

)
−W

(
aN + aN−1 − aN−(1+m) − a2i+1

))
− h.

(A.51)

As aN+m = aN + aN−1 − aN−(1+m), for m = N − 1− 2i and m = N − 2− 2i we

have

aN + aN−1 − a2i = a2(N−i)−1 (A.52)
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and

aN + aN−1 − a2i+1 = a2(N−i−1), (A.53)

respectively. Thus, we obtain

u (aN+m) =
N−1∑
i=0

(
W
(
a2(N−i)−1 − aN−(1+m)

)
−W

(
a2(N−i−1) − aN−(1+m)

))
− h.

(A.54)

Using the oddness of W it follows that

u (aN+m) =
N−1∑
i=0

(
−W

(
aN−(1+m) − a2i+1

)
+W

(
aN−(1+m) − a2i

))
−h, m ∈ {1, ..., N−1}.

(A.55)

Therefore,

u (aN+m) = u
(
aN−(1+m)

)
(A.56)

and the system (5.3) can be reduced to



u(a0) = 0

u(a1) = 0

...

u(aN−1) = 0.

(A.57)



Appendix B

Numerical methods

For the numerical integration of the computational models, specific code written in

MATLAB has been developed.

B.1 Forward Euler method

We used a simple forward Euler scheme (Kincaid and Cheney, 2002; Elvin and Laing,

2005) to find approximate solutions of the neural field equation

τ
∂u(x, t)
∂t

= −u(x, t) +
∫ ∞
−∞

w(x− y)f (u(y, t)) dy + g(x, t), (B.1)

where g(x, t) denotes a function that depends on the resting level h and the

external S(x, t) to the field.

We assume a finite domain Ω with length L and discretise over space by divid-

ing the domain Ω into n equal intervals of size ∆x such that ∆x = L
n . The spatial

discretisation defines the position of neurons labelled as xi = i∆x for i = 0, 1, ..., n.

To find u(x, T ) where T > 0, we discretise time T into m equal steps of size ∆t and

write tj = j∆t for j = 0, 1, ...,m. The derivative in (B.1) is replaced by the forward

difference approximation

ut = vi,j+1 − vi,j
∆t

+O(∆t), (B.2)

where vi,j denotes the approximation of u(xi, tj) = u(i∆x, j∆t). Ignoring the

integral term, we have the scheme
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vi,j+i = (1− ∆t

τ
)vi,j

∆t

τ
g(xi, tj). (B.3)

This method is stable if the coefficient of vi,j is non-negative, i.e., if 1 − ∆t
τ ≥ 0.

Therefore the condition for stability is

τ ≥ ∆t (B.4)

with truncation error of O(∆t). The time step ∆t must not be greater than τ to

maintain stability.

To solve equation (B.1) numerically, the nonlinear term that correspond to the

convolution integral is evaluated at step j (the previous time step) using the function

conv of MATLAB with circular boundary conditions. Then the forward Euler scheme

is given by

vi,j+i = (1− ∆t

τ
)vi,j + ∆t

τ
(g(xi, tj) +Wj) , (B.5)

where Wj denotes the evaluation of the nonlinear integral term at time step j.

B.2 Newton’s iteration method for solution of nonlinear

equations

We use Newton’s method to solve systems of n non-linear equations given by

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0
...

fn(x1, x2, . . . , xn) = 0

. (B.6)

The system can be written in a single expression using vectors, i.e.,

f(x) = 0, (B.7)

where x = (x1, x2, . . . , xn) ∈ Rn and f = (f1, f2, . . . , fn), f : Rn → Rn. Newton’s

method is started with an initial guess x0. Using a linear approximation of f at x0

f(x) ≈ f(x0) + J(x0)(x− x0), (B.8)
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where J(x0) is Jacobian matrix

J(x0) =



∂f1
∂x1

(x0) ∂f1
∂x2

(x0) ∂f1
∂x3

(x0) · · · ∂f1
∂xn

(x0)
∂f2
∂x1

(x0) ∂f2
∂x2

(x0) ∂f2
∂x3

(x0) · · · ∂f2
∂xn

(x0)
...

...
... . . . ...

∂fn
∂x1

(x0) ∂fn
∂x2

(x0) ∂fn
∂x3

(x0) · · · ∂fn
∂xn

(x0)


. (B.9)

To approximate teh zero of the nonlinear function f(x) the iteration

xn+1 = xn − (J(xn))−1f(xn), n = 0, 1, . . . (B.10)

is applied where J−1 denotes the inverse matrix of the Jacobian.

As convergence criterion for the solution of the system, we use the difference

between consecutive values

|xn+1 − xn| < ε. (B.11)

where the tolerance is given by ε = e−10.



142



Bibliography

Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields.

Biological Cybernetics, 27(2):77–87.

Amari, S. (1980). Topographic organization of nerve fields. Bulletin of Mathematical

Biology, 42(3):339–364.

Amari, S. (1982). Competitive and cooperative aspects in dynamics of neural excita-

tion and self-organization. In Amari, S.-i. and Arbib, M. A., editors, Competition

and Cooperation in Neural Nets, volume 45, chapter I, pages 1–28. Springer Berlin

Heidelberg.

Andry, P. (2004). Learning Invariant Sensorimotor Behaviors: A Developmental Ap-

proach to Imitation Mechanisms. Adaptive Behavior, 12(2):117–140.

Averbeck, B. B., Chafee, M. V., Crowe, D. A., and Georgopoulos, A. P. (2002). Parallel

processing of serial movements in prefrontal cortex. Proceedings of the National

Academy of Sciences of the United States of America, 99(20):13172–13177.

Averbeck, B. B., Crowe, D. A., Chafee, M. V., and Georgopoulos, A. P. (2003). Neural

activity in prefrontal cortex during copying geometrical shapes. II. Decoding shape

segments from neural ensembles. Experimental brain research, 150(2):142–153.

Baddeley, A. (1992). Working memory. Science, 255(5044):556–559.

Bastian, A., Schoner, G., and Riehle, A. (2003). Preshaping and continuous evolution

of motor cortical representations during movement preparation. European Journal

of Neuroscience, 18(7):2047–2058.

143



144

Bicho, E. (2000). Dynamic approach to behavior-based robotics : design, specification,

analysis, simulation and implementation. Shaker Verlag, Aachen.

Bicho, E., Erlhagen, W., Louro, L., and e Silva, E. C. (2011). Neuro-cognitive mecha-

nisms of decision making in joint action: a human-robot interaction study. Human

Movement Science, 30(5):846–868.

Bicho, E., Erlhagen, W., Sousa, E., Louro, L., Hipolito, N., Silva, E. C., Silva, R.,

Ferreira, F., Machado, T., Hulstijn, M., Maas, Y., de Bruijn, E., Cuijpers, R. H.,

Newman-Norlund, R., van Schie, H., Meulenbroek, R., and Bekkering, H. (2012).

The power of prediction: Robots that read intentions. In 2012 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS 2012), pages 5458–5459,

Vilamoura, Portugal.

Bicho, E., Louro, L., and Erlhagen, W. (2010). Integrating verbal and nonverbal

communication in a dynamic neural field architecture for human-robot interaction.

Frontiers in neurorobotics, 4, doi:10.3389/fnbot.2010.00005.

Bicho, E., Louro, L., Hipólito, N., and Erlhagen, W. (2008). A dynamic neural Field

architecture for Flexible and Fluent human-robot interaction. In Proceedings of the

2008 International Conference on Cognitive Systems, pages 179–185, Karlsruhe, Ger-

many. University of Karlsruhe.

Bicho, E., Louro, L., Hipólito, N., and Erlhagen, W. (2009). A dynamic field approach

to goal inference and error monitoring for human-robot interaction. In Dautenhanhn,

E., editor, AISB Convention 2009 on Adaptive & Emergent Behaviour & Complex

Systems : proceedings of the International Symposium on New Frontiers in Human-

Robot Interaction, pages 31–37, Edinburgh, Scotland.

Bicho, E. and Schöner, G. (1997). The dynamic approach to autonomous robotics

demonstrated on a low-level vehicle platform. Robotics and Autonomous Systems,

21(1):23–35.

Botvinick, M. and Plaut, D. C. (2004). Doing without schema hierarchies: a recurrent

connectionist approach to normal and impaired routine sequential action. Psycho-

logical Review, 111(2):395–429.



145

Botvinick, M. M. and Plaut, D. C. (2006). Short-term memory for serial order: a

recurrent neural network model. Psychological Review, 113(2):201–233.

Botvinick, M. M., Wang, J., Cowan, E., Roy, S., Bastianen, C., Patrick Mayo, J., and

Houk, J. C. (2009). An analysis of immediate serial recall performance in a macaque.

Animal Cognition, 12(5):671–678.

Bradski, G., Carpenter, G. A., and Grossberg, S. (1994). STORE working memory net-

works for storage and recall of arbitrary temporal sequences. Biological Cybernetics,

71:469–480.

Brown, G. D. A., Preece, T., and Hulme, C. (2000). Oscillator-based memory for serial

order. Psychological Review, 107(1):127–181.

Burgess, N. and Hitch, G. J. (1999). Memory for serial order: A network model of the

phonological loop and its timing. Psychological Review, 106(3):551–581.

Cleeremans, A. (1993). Mechanisms of implicit learning: Connectionist models of se-

quence processing. MA: MIT Press, Cambridge.

Cleeremans, A. and McClelland, J. L. (1991). Learning the structure of event sequences.

Journal of Experimental Psychology: General, 120(3):235–253.

Conrad, R. (1965). Order error in immediate recall of sequences. Journal of Verbal

Learning and Verbal Behavior, 4(3):161–169.

Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biological

Cybernetics, 93(2):91–108.

Coombes, S. and Owen, M. (2007). Exotic dynamics in a firing rate model of neural

tissue with threshold accommodation. AMS Contemporary Mathematics, 440:123–

144.

Cowan, N. (2008). What are the differences between long-term, short-term, and working

memory? Progress in Brain Research, 169:323–338.

Dautenhahn, K. and Nehaniv, C. L. (2002). Imitation in animals and artifacts. MIT

Press.



146

Dominey, P. F. (1998). A shared system for learning serial and temporal structure of

sensori-motor sequences? Evidence from simulation and human experiments. Cogni-

tive Brain Research, 6(3):163–172.

Durstewitz, D. (2004). Neural representation of interval time. NeuroReport, 15:745–749.

Elman, J. (1990). Finding structure in time. Cognitive Science, 14(2):179–211.

Elvin, A. and Laing, C. (2005). Evaluation of numerical integration schemes for a partial

integro-differential equation. Research Letters in the Information and Mathematical

Sciences, (7):171–186.

Erlhagen, W., Bastian, A., Jancke, D., Riehle, A., and Schöner, G. (1999). The distri-

bution of neuronal population activation (DPA) as a tool to study interaction and

integration in cortical representations. Journal of Neuroscience Methods, 94(1):53–

66.

Erlhagen, W. and Bicho, E. A dynamic neural field approach to natural and efficient

human-robot collaboration. In Progress in Dynamic Field Theory. Springer, in press.

Erlhagen, W. and Bicho, E. (2006). The dynamic neural field approach to cognitive

robotics. Journal of Neural Engineering, 3(3):R36–54.

Erlhagen, W., Mukovskiy, A., Bicho, E., Panin, G., Kiss, C., Knoll, A., van Schie,

H., and Bekkering, H. (2006). Goal-directed imitation for robots: A bio-inspired

approach to action understanding and skill learning. Robotics and Autonomous Sys-

tems, 54(5):353–360.

Erlhagen, W. and Schöner, G. (2002). Dynamic field theory of movement preparation.

Psychological Review, 109(3):545–572.

Faubel, C. and Schöner, G. (2008). Learning to recognize objects on the fly: a neurally

based dynamic field approach. Neural Networks, 21(4):562–576.

Ferreira, F., Erlhagen, W., and Bicho, E. (2011). A dynamic field model of ordinal and

timing properties of sequential events. In Honkela, T., Duch, W., Girolami, M., and

Kaski, S., editors, Artificial Neural Networks and Machine Learning -ICANN 2011,

volume 6792 of LNCS, pages 325–332. Springer Berlin Heidelberg.



147

Genovesio, A., Brasted, P. J., and Wise, S. P. (2006a). Representation of future and pre-

vious spatial goals by separate neural populations in prefrontal cortex. The Journal

of Neuroscience, 26(27):7305–7316.

Genovesio, A., Tsujimoto, S., and Wise, S. P. (2006b). Neuronal activity related to

elapsed time in prefrontal cortex. Journal of Neurophysiology, 95(5):3281–3285.

Gobel, E. W., Sanchez, D. J., and Reber, P. J. (2011). Integration of temporal and ordi-

nal information during serial interception sequence learning. Journal of Experimental

Psychology. Learning, Memory, and Cognition, 37(4):994–1000.

Grondin, S. and Killeen, P. R. (2009). Tracking time with song and count: differ-

ent Weber functions for musicians and nonmusicians. Attention, Perception & Psy-

chophysics, 71(7):1649–1654.

Grossberg, S. (1978). Behavioral contrast in short term memory: Serial binary memory

models or parallel continuous memory models? Journal of Mathematical Psychology,

17(3):199–219.

Grossberg, S. (1982). A theory of human memory: Self-organization and performance

of sensory-motor codes, maps, and plans. In Studies of Mind and Brain, volume 70,

pages 498–639. Springer Netherlands.

Guo, Y. and Chow, C. C. (2005a). Existence and Stability of Standing Pulses in Neural

Networks: I. Existence. SIAM Journal on Applied Dynamical Systems, 4(2):217–248.

Guo, Y. and Chow, C. C. (2005b). Existence and Stability of Standing Pulses in Neural

Networks: II. Stability. SIAM Journal on Applied Dynamical Systems, 4(2):249–281.

Gutkin, B. S., Bard Ermentrout, G., and O’Sullivan, J. (2000). Layer 3 patchy recurrent

excitatory connections may determine the spatial organization of sustained activity

in the primate prefrontal cortex. Neurocomputing, 32-33:391–400.

Henson, R. N. (1998). Short-term memory for serial order: the Start-End Model.

Cognitive Psychology, 36(2):73–137.



148

Houghton, G. (1990). The problem of serial order: A neural network model of sequence

learning and recall. In Dale, R., Mellish, C., and Zock, M., editors, Current research

in natural language generation, pages 287–319. Academic Press, London.

Howard, J. H., Mutter, S. A., and Howard, D. V. (1992). Serial pattern learning by

event observation. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 18(5):1029–1039.

Janata, P. and Grafton, S. T. (2003). Swinging in the brain: shared neural substrates

for behaviors related to sequencing and music. Nature Neuroscience, 6(7):682–687.

Jancke, D., Erlhagen, W., Dinse, H. R., Akhavan, a. C., Giese, M., Steinhage, A., and

Schöner, G. (1999). Parametric population representation of retinal location: neu-

ronal interaction dynamics in cat primary visual cortex. The Journal of Neuroscience,

19(20):9016–9028.

Janssen, P. and Shadlen, M. N. (2005). A representation of the hazard rate of elapsed

time in macaque area LIP. Nature Neuroscience, 8(2):234–241.

Johnson, J. S., Spencer, J. P., and Schöner, G. (2008). Moving to higher ground: The

dynamic field theory and the dynamics of visual cognition. New Ideas in Psychology,

26(2):227–251.

Kincaid, D. and Cheney, W. (2002). Numerical Analysis: Mathematics of Scientific

computing. American Mathematical Society, 3 rd edition.

Kishimoto, K. and Amari, S. (1979). Existence and stability of local excitations in

homogeneous neural fields. Journal of Mathematical Biology, 7(4):303–318.

Kornysheva, K., Sierk, A., and Diedrichsen, J. (2013). Interaction of temporal and ordi-

nal representations in movement sequences. Journal of Neurophysiology, 109(5):1416–

1424.

Kubota, S., Hamaguchi, K., and Aihara, K. (2009). Local excitation solutions in one-

dimensional neural fields by external input stimuli. Neural Computing and Applica-

tions, 18(6):591–602.



149

Laing, C. R. and Troy, W. C. (2003). Two-bump solutions of Amari-type models of

neuronal pattern formation. Physica D: Nonlinear Phenomena, 178(3-4):190–218.

Laing, C. R., Troy, W. C., Gutkin, B., and Ermentrout, G. B. (2002). Multiple Bumps

in a Neuronal Model of Working Memory. SIAM Journal on Applied Mathematics,

63(1):62–97.

Lashley, K. S. (1951). The problem of serial order in behavior. Number 7. Jonh Wiley

& Sons, New York.

Levesque, H. and Lakemeyer, G. (2008). Cognitive Robotics. In van Harmelen, F.,

Lifschitz, V., and Porter, B., editors, Handbook of Knowledge Representation, pages

869–886. Elsevier B.V.

Lewis, P. a. and Miall, R. C. (2006). Remembering the time: a continuous clock. Trends

in Cognitive Sciences, 10(9):401–406.

Machado, A., Malheiro, M. T., and Erlhagen, W. (2009). Learning to Time: a perspec-

tive. Journal of the Experimental Analysis of Behavior, 92(3):423–458.

Miller, E. K. (2000). The prefrontal cortex and cognitive control. Nature Reviews

Neuroscience, 1(1):59–65.

Murdock, A. J., Botelho, F., and Jamison, J. E. (2006). Persistence of spatial patterns

produced by neural field equations. Physica D: Nonlinear Phenomena, 215(2):106–

116.

Murdock, B. B. (1995). Developing TODAM: Three models for serial-order information.

Memory & Cognition, 23(5):631–645.

Nissen, M. J. and Bullemer, P. (1987). Attentional requirements of learning: Evidence

from performance measures. Cognitive Psychology, 19(1):1–32.

O’Reilly, J. X., McCarthy, K. J., Capizzi, M., and Nobre, A. C. (2008). Acquisition

of the temporal and ordinal structure of movement sequences in incidental learning.

Journal of Neurophysiology, 99(5):2731–2735.



150

Page, M. P. A. and Norris, D. (1998). The primacy model: A new model of immediate

serial recall. Psychological Review, 105(4):761–781.

Palmer, C. and Pfordresher, P. Q. (2003). Incremental planning in sequence production.

Psychological Review, 110(4):683–712.

Perko, L. (1996). Differential Equations and Dynamical Systems, volume 7 of Texts in

Applied Mathematics. Springer US, New York, NY.

Pfordresher, P. Q., Palmer, C., and Jungers, M. K. (2007). Speed, accuracy, and serial

order in sequence production. Cognitive Science, 31(1):63–98.

Pinto, D. J. P. and Ermentrout, B. G. (2001). Spatially Structured Activity In Synap-

tically Coupled Neuronal Networks: I. Traveling Fronts And Pulses. SIAM Journal

on Applied Mathematics, 62:206–225.

Rhodes, B. J., Bullock, D., Verwey, W. B., Averbeck, B. B., and Page, M. P. a. (2004).

Learning and production of movement sequences: behavioral, neurophysiological,

and modeling perspectives. Human Movement Science, 23(5):699–746.

Robertson, E. and Pascual-Leone, a. (2001). Aspects of sensory guidance in sequence

learning. Experimental Brain Research, 137(3-4):336–345.

Rogers, G. L. (1991). Effect of Color-Coded Notation on Music Achievement of Elemen-

tary Instrumental Students. Journal of Research in Music Education, 39(1):64–73.

Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends in

Cognitive Sciences, 3(6):233–242.

Schöner, G. (2008). Dynamical systems approaches to cognition. In Sun, R., editor,

The Cambridge Handbook of Computational Psychology, pages 101–126. Cambridge

University Press, Cambridge.

Schöner, G. (2009). Development as Change of System Dynamics: Stability, Insta-

bility, and Emergence. In McClelland, J., Spencer, J., and Thomas, M., editors,

Toward a unified theory of development. Connectionism and dynamic systems theory

re-considered., pages 25–47. Oxford University Press, New York.



151

Schöner, G., Dose, M., and Engels, C. (1995). Dynamics of behavior: Theory and

applications for autonomous robot architectures. Robotics and Autonomous Systems,

16(2-4):213–245.

Shieh, D. X. and Elman, J. L. (2006). The Divergent-Reconvergent Model of Serial

Order Encoding and Retrieval. In Proceedings of the 29th Annual Meeting of the

Cognitive Science Society, pages 786–791.

Shin, J. C. and Ivry, R. B. (2002). Concurrent learning of temporal and spatial se-

quences. Journal of Experimental Psychology: Learning, Memory, and Cognition,

28(3):445–457.

Silva, R. (2008). Design e construção de um robot antropomórfico. Master thesis,

University of Minho.

Smyth, M. M. and Scholey, K. A. (1996). Serial order in spatial immediate memory. The

Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology,

49(1):159–177.

Sousa, E., Erlhagen, W., and Bicho, E. (2014). On observational learning of hierarchies

in sequential tasks: A dynamic neural field model. In Computational Models of

Cognitive Processes, pages 196–210. World Scientifc.

Tanji, J., Shima, K., and Mushiake, H. (2007). Concept-based behavioral planning and

the lateral prefrontal cortex. Trends in Cognitive Sciences, 11(12):528–534.

Thelen, E., Schöner, G., Scheier, C., and Smith, L. B. (2001). The dynamics of embodi-

ment: A field theory of infant perseverative reaching. Behavioral and Brain Sciences,

24(1):1–34.

Wardak, C., Ramanoël, S., Guipponi, O., Boulinguez, P., and Ben Hamed, S. (2012).

Proactive inhibitory control varies with task context. The European Journal of Neu-

roscience, 36(11):3568–3579.

Willingham, D. B., Nissen, M. J., and Bullemer, P. (1989). On the development of

procedural knowledge. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 15(6):1047–1060.



152

Wilson, H. R. and Cowan, J. D. (1973). A mathematical theory of the functional

dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2):55–80.


	I General introduction
	General introduction
	Dynamic Neural Fields
	Dynamic Neural Field Equation
	Stable states of the field dynamics
	Single bump versus multiple bumps
	The role of subthreshold activation 

	The dynamic neural field approach to robotics
	Thesis outline


	II Mathematical analysis of multi-bump solutions 
	Existence and stability of local excitations in one-dimensional neural fields: state of the art
	One-bump solution in the absence of external input
	Two-bump solutions in the absence of external input
	Stability of two-bump solutions 

	Multi-bump solutions in the absence of external input
	One-bump solution with external input  
	Conclusion

	Analysis of one-bump solutions
	One-bump in the absence of external input
	One-bump with external input 
	Stability of one-bump solutions with input

	Field response to an unimodal and symmetric external input 
	Conclusion

	Analysis of two-bump solutions
	Two-bumps in the absence of external input
	Stability of an a-quasi-solution 

	Two-bumps with external input 
	Stability of two-bump solutions with input

	Field response to a bimodal symmetric external input 
	Field response to a localized input when the field already has one excited region
	Conclusion

	Analysis of multi-bump solutions
	An example of stable multi-bump solutions 
	Approximate values for bump width and bump distance 
	Dependence of a N-bump solution on initial conditions 
	Formation of multi-bump solutions with external input 
	Field response to stationary multi-modal and mono-modal external inputs
	Field response to transient external inputs 

	Conclusion


	III A dynamic neural field model of sequential events and its validation in a real-world robotics experiment
	Sequence Learning
	Memory: STM, LTM and WM
	Behavioural paradigms for serial order: ISR and SRT
	Three theories of memory for serial order
	Ordinal models: Competitive Queuing (CQ)
	Recurrent neural network models
	Benchmark properties of serial order recall

	DNF model of ordinal and timing properties of sequential events
	Neuroscientific and psychological grounding of the model 
	The parallel sequence code and iterative choice cycle
	Relationship between the time course of population activity and elapsed time
	Separate subpopulations in PFC for past and future events

	Model description
	Model equations 
	Simulation results
	Discussion

	DNF model for fast learning of sequential task
	Preshaping of neuronal population by past experience 
	Model overview 
	Model equations 
	Modelling results
	Repeated items
	Importance of preshaping
	Sequence errors

	Discussion

	A real-world robotics experiment
	Physical and Virtual Frameworks
	The robot ARoS

	Learning a musical sequence by observation
	Experimental results 
	Different execution speeds 

	Discussion


	IV General discussion and future work
	General discussion and Future Work
	Discussion
	Future Work
	Mathematical analysis
	Existence and stability of multi-bump solution
	Extension to two space dimensions

	Sequence model
	Generalization to two dimensions
	Chunking mechanisms

	Robotics applications
	Coding of note duration
	Playing with two hands




	V Appendix
	Proofs
	Proof of Theorem 1 :
	Proof of Theorem 2 :
	Proof of Lemma 1
	Proof of Lemma 2:
	Proof of Theorem 3:
	Proof of Theorem 4
	Proof of Theorem 5:
	Proof of Theorem 6:
	Proof of Proposition 1:

	Numerical methods
	Forward Euler method 
	Newton's iteration method for solution of nonlinear equations 



