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Abstract

This thesis is concerned with multi-state survival analysis. In this context, we

propose methods for the analysis of multi-state survival data. The methods developed

in this thesis are motivated by the applications to the medical sciences. However, they

can also be applied to economics, astronomy, and engineering, among other fields.

This is an exciting and full potential area of research, with many interesting problems.

Survival Analysis is concerned with studying inter-event times. In a classical setup,

the focus is on the elapsed time between two well-defined events: the starting event

(“alive”), and the terminating event (“death”). Multi-state models can be considered

as a generalization of the survival process where “death” is the ultimate outcome,

but where intermediate states are identified. If the events are of the same nature,

this is usually referred as recurrent events, whereas if they represent different states

they are usually modelled through their intensity functions. When analyzing recurrent

event data, the inter-event times are referred to as the gap times, and they are

of course determined by the times at which the recurrences take place (i.e. the

recurrence times). The statistical analysis of consecutive gap times is an issue of

much importance. Most of the times, one will be interested in describing not only the

marginal distribution of the gap times but also the bivariate distribution of the joint

gap times. This will be considered in Chapter 2. Specifically, we propose methods

for estimate the bivariate distribution under right censoring and conditional bivariate

distribution given a quantitative covariate.

Alternatively, we may think the gap times as arising from a particular multi-state

model such as the progressive three-state model or the progressive k-state model.
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A multi-state model is a model for a stochastic process, which is characterized by a

set of states and the possible transitions among them. The states represent different

stages of the disease course along a follow-up. Several multi-state models that have

been widely used in biomedical applications but the three-state progressive model and

the illness-death model are certainly the most common. The illness-death model is a

generalization of the three-state progressive model in which a direct transition from

the“alive”state to the final, absorbing“dead”state is possible. In this model one of the

major goals is the estimation of the so-called transition probabilities. Traditionally,

this estimation is performed under a Markov assumption, which leads to the so-

called Aalen-Johansen estimator. Unfortunately, the variance of this estimator may

be large in heavily censored scenarios. The possibility of improving this estimator via

presmoothing is explored in Chapter 3.

For the practical application of the methods presented in Chapters 2 and 3, we

developed several functions in R (R Development Core Team, 2013). Some of these

functions were used to build an R package for the estimation of the bivariate distri-

bution function. Details about this and other packages for multi-state modelling are

given in Chapter 4.

All methods are illustrated by means of its application to real biomedical datasets.
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Resumo

Esta tese está focada na análise de sobrevivência multiestado. Neste contexto, pro-

pusemos métodos para a análise de dados de sobrevivência multiestado. Os métodos

desenvolvidos nesta tese foram motivados pelas aplicações na medicina. No entanto,

estes podem ser aplicados à economia, astronomia e engenharia entre outros campos.

É uma área excitante e de grande potencial de investigação, com muitos problemas

interessantes.

A análise de sobrevivência preocupa-se com o estudo de tempos entre eventos.

Numa versão clássica, o foco é sobre o tempo decorrido entre dois eventos bem

definidos: o evento inicial (“vivo”), e o evento final (“morte”). Os modelos multiestado

podem ser considerados como uma generalização de um processo de sobrevivência

onde “morte” é o resultado final, mas onde estados intermédios são identificados. Se

os eventos são da mesma natureza, estamos no contexto de eventos recorrentes; se

os estados representam diferentes eventos então eles são habitualmente modelados

através de funções de intensidade. Na análise de dados de eventos recorrentes, os

tempos entre eventos são usualmente referidos como“gap times”, e são determinados

pelos tempos onde as recorrências ocorrem (ou seja, tempos de recorrência). A análise

estat́ıstica de “gap times” consecutivos é um tema que tem recebido muita atenção

nos últimos anos. Na maioria das vezes, não estão só interessados em descrever a

distribuição marginal dos “gap times”, mas também a distribuição bivariada conjunta

dos mesmos. Isto será considerado no Caṕıtulo 2. Especificamente, propusemos

métodos para estimar a distribuição bivariada na presença de censura e a distribuição

bivariada condicional, dada uma covariável quantitativa.
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Alternativamente, pensamos nos “gap times” como resultado de um modelo mul-

tiestado particular tal como modelo progressivo de três estados ou modelo progressivo

de k-estados. Um modelo multiestado é um modelo para um processo estocástico,

que é caracterizado por um conjunto de estados e posśıveis transições entre eles.

Os estados representam diferentes etapas do percurso da doença ao longo de um

acompanhamento “follow up”. Vários modelos multiestados têm sido amplamente

utilizados em aplicações biomédicas, mas o modelo progressivo de três estados e o

modelo doença-morte são os mais comuns. O modelo doença-morte é a generalização

do modelo progressivo de três estados em que uma transição direta do estado “vivo”

para o final, estado absorvente “morte” é posśıvel. Neste modelo um dos principais

objetivos é a estimativa das probabilidades de transição. Tradicionalmente, esta es-

timativa é calculada sob o pressuposto de Markov, que tradicionalmente recorre ao

estimador de Aalen-Johansen. Infelizmente, a variância deste estimador pode ser el-

evada em cenários com elevadas taxas de censura. A possibilidade de melhorar este

estimador com pré-suavização é explorada no Caṕıtulo 3.

Para aplicações práticas dos métodos presentes no Caṕıtulo 2 e 3, desenvolvemos

várias funções em R (R Development Core Team, 2013). Algumas dessas funções

foram usadas para construir um package no R para estimar a função distribuição

bivariada. Detalhes sobre este package e outros packages para modelação multiestado

são dados no Caṕıtulo 4.

Todos os métodos serão ilustrados por meio da sua aplicação em dados reais em

medicina.
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Chapter 1

Introduction

1.1 Survival Analysis

Survival analysis is a branch of statistics devoted to the analysis of the elapsed

time from a starting point until the occurrence of a given event of interest. Survival

analysis or time-to-event data analysis is prominently used in the biomedical sciences

where the interest is in observing time to death either of patients or of laboratory

animals. This time is therefore called the “lifetime” or the “survival time”. In engi-

neering sciences, it is also known“reliability analysis”or“failure time analysis”and the

main focus is in modelling the time it takes for machines or electronic components

to break down. Other applications include the economics, astronomy, social sciences,

and psychology among other fields. There exists an extensive literature on Survival

Analysis. Main contributions include books by Kalbfleisch and Prentice (2002), Cox

and Oakes (1984), Klein and Moeschberger (1997) and Hougaard (2000).

In survival analysis the variable of interest or response variable is time. Let T

be a random non-negative variable representing the individual survival time from a

homogeneous population. Assume T is a continuous variable with probability density

1



Chapter 1. Introduction

function f(t) and distribution function F (t) = P (T 6 t). The survivor function,

S(t), is defined to be the probability that the survival time is greater than t

S(t) = P (T > t) = 1− F (t) =

∫ ∞
t

f(x)dx

S(t) is a non-increasing left continuous function with S(0) = 1 and limx→∞S(t) =

0. The hazard function is the probability that an individual “dies” at some time t,

conditional that he survived until that time. Thus, the hazard function represents

the instantaneous probability that the event will occur at a given time t and can be

written as

h(t) = limdt→0
P (t 6 T < t+ dt|T > t)

dt
=
f(t)

S(t)

For example, h(t) is the probability that an individual, who is alive on day t, dies in

the following day, the survival time is measured in days. The function H(t) is called

cumulative hazard or cumulative risk and is defined by

H(t) =

∫ t

0

h(x)dx

We can obtain some useful relationships between each one of these functions:

S(t) = exp(−
∫ t

0

h(x)dx)

S(t) = exp(−H(t))

h(t) =
f(t)

S(t)

The distinguishable feature of survival analysis is censoring. A censored lifetime occurs

when we have some information about individual survival time, but we do not know

the survival time exactly. Right censoring take place when for some individuals the

event of interest has not been observed until the end of the study and therefore we

do not know the exact waiting time. Right censoring can occur because the event of

interest has not yet occurred but also due to loss of follow-up. Sometimes the survival

time is less than some specified time t, in other words, the observed time is bigger

than the time where the event of interest occur and the observation is called to be left-

censored. The interval-censoring is when individuals are known to have experienced

2



Chapter 1. Introduction

an event within an interval of time. Censored observations can not be ignored since

they carry important information about the survival. Because of censoring standard

statistical methods such as regression analysis or student’s t-test are not valid.

A basic task in survival analysis is the estimation of survival in the presence of

censoring. Suppose first that we have a sample of dimension n with observed survival

times, t1, t2, ..., tn, where none of the observations are censored. Then, survival can

be estimated nonparametrically using the empirical estimator, given by

Ŝ(t) =
1

n

n∑
i=1

I(ti > t)

which is the ratio of the total number of individuals alive at time t to the total number

of the individuals in the study and I is the indicator function.

The Kaplan-Meier estimator (Kaplan and Meier, 1958) is a nonparametric esti-

mator which may be used to estimate the survival distribution function from censored

data. The estimator is also referred to as the Product-Limit estimator can be seen as a

generalization of the empirical estimator for censored data. Let t(1) < t(2) < ... < t(m)

denote the distinct ordered times of death (not counting censoring times). Let di be

the number of deaths or individuals who experienced the event at t(i), and let ni be

the number of individuals at risk who were alive and uncensored just before t(i). Then

the Kaplan-Meier estimates of the survivor function is

Ŝ(t) =
∏

i:t(i)6t

(
1− di

ni

)

This estimator is a step function which steps down at each event time (only), with

Ŝ(t) = 1 for t < t(1). When there is no censoring this estimator matches with the

empirical estimator. The Kaplan-Meier estimator can also be expressed in terms of

Kaplan-Meier weights.

ŜKM(t) =
n∑
i=1

WiI(ti > t)

where Wi = δi
n−i+1

∏i−1
j=1(1− δj

n−j+1
) are the Kaplan-Meier weights. Here δi is 1 if the

event occur and 0 otherwise. We introduce an estimator based on inverse probability

3



Chapter 1. Introduction

of censoring weighted (Satten and Datta, 2001)

Ŝipcw(t) =
1

n

n∑
i=1

I(ti > t)δi

1− Ĝ(t−i )

where Ĝ(t) is the censoring distribution function.

One major goal in survival analysis is to study the relationship between the different

covariates and survival time. A classical model relating the hazard function and a

certain number of covariates is given by the proportional hazards model, called Cox

model (Cox, 1972). The Cox proportional hazards model that is a semiparametric

model can be written as

hi(t|Zi) = h0(t)eβ
tZi

where h0(t) is a non-negative baseline hazard function, Zi = (Zi1, Zi2, ..., Zip) a

vector of p covariates, and βt = (β1, β2, ..., βp) the associated vector of unknown

regression parameters. Using the Cox model to evaluate the impact of a set of

covariates on the hazard function implies two important assumptions: the effect of

covariates do not vary over the time (proportional hazards assumption) and the effect

of covariates acts linearly on the logarithm of the hazard ratio. In clinical studies,

individuals are observed and individual data and covariate information are collected

at many occasions through a follow-up study. In many medical studies covariate data

are collected longitudinally. In many instances there are covariates that change their

values over time and their analysis is most often modelled using the time-dependent

Cox proportional hazards model.

h(t|Zi) = h0e
(βtZi(t))

The introduction of these covariates in the survival process can make the patients risk

change from on time point to the next as the values of the covariates change. Time

dependent covariates might represent either a qualitative change in patient’s condi-

tions or individual continuous information. Further details about the time-dependent
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Cox model can be seen in the monographs of Kalbfleisch and Prentice (2002) and

Hougaard (2000).

1.2 Multi-state Models

Multi-state models (Andersen et al., 1993; Meira-Machado et al., 2009) are models

for a stochastic process, which at any time occupies one of a set of discrete states.

A change of state is called a transition, or an event. States can be transient or

absorbing. An absorbing state is a state from which one can ever leave once it enters.

These models can be successfully used for describing complicated event history data,

for example describing stages in the disease progression of a patient. In contrast to

traditional survival methods (e.g. the Cox model and the Kaplan-Meier estimator of

survival), in these (longitudinal) survival studies, besides overall survival, more than

one endpoint can be observed. For example, in cancer studies, other endpoints such

as locoregional recurrence, distant metastasis and dead are observed.

The state structure of a multi-state model (MSM) identifies the states and also

the transitions allowed between states (Hougaard, 2000). The complexity of a MSM

greatly depends on the number of states defined and also on the transitions allowed

between these states. The simplest form of a MSM is the mortality model (Figure

1.1) (with states“alive”and“dead”and a single transition allowed between them) for

survival analysis.

1.Alive 2.Dead

Figure 1.1: Mortality model

By splitting the“Alive”state from the simple mortality model for survival data into

two transient states, we therefore obtain the simplest progressive three-state model

(see Figure 1.2).

This model is suitable in the presence of an intermediate event (e.g. a recurrence)

which may influence the survival prognosis. A more general model is the k-state
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1.Alive 2.Recurrence 3.Dead

Figure 1.2: Progressive three-state model

progressive model with (k − 1) transient states and an absorbing state. If the events

of concern are of the same nature (e.g. cancer patients may experience several

recurrent disease episodes) this are usually referred as recurrent event data. See

Cook and Lawless (2007) for an up-to-date review of statistical methods for recurrent

event data. Another possible MSM to describe the disease progression is the illness-

death model (Figure 1.3). This model, also known as disability model, is probably the

most used model in literature. The illness-death model is fully characterized by three

states and three transition intensities (1→ 2, 1→ 3 and 2→ 3) each one describing

the instantaneous hazard of moving out of one state into another. This model can

be used to study the incidence of the disease as well as death. In particular, one may

evaluate if previously diseased subjects have the same risk of death as those who have

been healthy all their lives.

1.Alive 2.Diseased

3.Dead

Figure 1.3: Illness-death model

Other common models in literature include the competing risks model and the

bivariate model in Figure 1.4 (for bivariate failure times, e.g. survival of twins). The

competing risk model extends the simple mortality model for survival data by consid-

ering that each individual may “die” due to any of several causes (Hougaard, 1999).
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Alive Dead of Cause 2

Dead of Cause 1

Dead of Cause k

State 2

State 3

State 4State 1

Figure 1.4: Competing risks model and bivariate model

1.3 Research Significance and Objectives

In many medical studies, patients may experience several events. The analysis

in such studies is often performed using multi-state models. These models are very

useful for describing event history data offering a better understanding of the process

of the illness, and leading to a better knowledge of the evolution of the disease over

time. Issues of interest include the estimation of progression rates (state occupation

probabilities, transition probabilities), assessing the effects of individual risk factors,

survival rates or prognostic forecasting. Other interests include the estimation of the

cumulative incidence functions, the waiting time distributions, the bivariate distribu-

tion function for sequentially ordered events (gap times), etc.

In longitudinal studies of disease typical multi-state models include the illness-

death model and the progressive three-state model for which we aim to derive new

estimators for the transition probabilities and for the bivariate distribution function

for censored gap times. Main objectives of this thesis include:

• Development of new methods for estimating several quantities of interest such

as the transition probabilities and the bivariate distribution function;
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• Validation of the new methodologies through theoretical results and simulation

studies;

• Development of programs (open-source software packages in R) to implement

the new methods and promote these programs among biomedical researches;

• Application to real survival datasets.

1.4 Real Data

The methods proposed in this thesis are illustrated by means of its application to

real biomedical datasets. For illustrating our methods in the three-state progressive

and illness-death models we have used the following public and widely used medical

databases.

Bladder Cancer Study

Data coming from a Bladder cancer study (Byar, 1980) conducted by the Veter-

ans Administration Cooperative Urological Research Group are used to illustrate the

new estimators for the bivariate distribution function in the context of the progressive

three-state model in Chapter 4. In this study, patients had superficial bladder tumors

that were removed by transurethral resection. Many patients had multiple recurrences

(up to a maximum of 9) of tumors during the study, and new tumors were removed

at each visit. For illustration purposes we re-analyze data from 85 individuals in the

placebo and thiotepa treatment groups. From the total of 85 patients, 47 relapsed

at least once and among these, 29 experienced a new recurrence. Here, only the first

two recurrence times (in months) are considered. These dataset is available as part of

the R survival package (dataset bladder) and the survivalBIV package (see Section

4.5 in Chapter 4).
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Tumor removed 1 Recurrence 2 Recurrence

Figure 1.5: Progressive three-state model for Bladder cancer study

Colon Cancer Data

Due to large number of people affected by cancer of Colon, there is much demand

for information on this disease. In a large percentage of the patients, the diagnosis is

made at a sufficiently early stage when all apparent disease tissue can be surgically

removed. Unfortunately, some of these patients have residual cancer, which leads to

recurrence of disease and death (in some cases). Cancer patients who have experi-

enced a recurrence are known to be at a substantially higher risk of mortality. In the

context of multi-state modelling, we may consider the “recurrence” as an associated

state of risk, and then use the progressive illness-death model with states “Alive and

disease-free”, “Alive with Recurrence” and “Dead”. In Chapter 4 we analyzed data

from one of the first successful trials of adjuvant chemotherapy for Colon cancer.

In this trial one main goal is to compare three therapies (Levamisole, a low-toxicity

compound; 5-FU is a moderately toxic chemotherapy agent; and Observation). For

each individual, an indicator of its final vital status (censored or not), the survival

times (time to recurrence, time to death) from the entry of the patient in the study

(in days), and a vector of covariates including rx (treatment), sex, age, among oth-

ers. In the original format of the database, there are two records per person, one for

recurrence and one for death (see variable etype). From the total of 929 patients,

468 developed recurrence and among these 414 died. In the database, there are 7

individuals that relapsed and their time from recurrence to death (i.e. zero). This

observations were eliminate from our study. This database is available on the survival

package of the R statistical software; We used this dataset to show the available R

packages for the multi-state models in Chapter 4.
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Alive and disease-free Alive with Recurrence

Dead

Figure 1.6: Illness-death model for Colon cancer data

German Breast Cancer Data

The German Breast cancer study is available as part of the book by Hosmer and

Lemeshow (2008). In this dataset we have a total of 686 woman with primary node

positive Breast cancer that were recruited in the period between 1984 and 1989. From

this total 299 developed a recurrence and among these 171 died. For each patient,

the two gap times (time to recurrence and time from recurrence to death) and the

corresponding indicator status is recorded. A vector of covariates including age at

acceptance were also recorded. The covariate recurrence is the only time-dependent

covariate, while the other covariates included are fixed. Recurrence can be considered

as an intermediate transient state and modelled using a progressive three-state model

with states“Alive and disease-free”,“Alive with Recurrence”and“Dead”. This dataset

was used to illustrate the methods developed in Chapter 2 (estimation of the bivari-

ate distribution under right censoring and conditional bivariate distribution given a

quantitative covariate).

Alive and disease-free Alive with Recurrence Dead

Figure 1.7: Progressive three-state model for German Breast cancer

data
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Stanford Heart Transplant Data

In Chapter 3 we analyze data from the Stanford Heart Transplant study. This

well-known and widely used dataset is used in Chapter 3 to illustrate the new (semi-

parametric) estimator for the transition probabilities based on presmoothing. This

dataset is available as part of the R survival package, and it is also reported in the

book by Crowley and Hu (1977). This study covers the period from October 1967

to April 1974. It includes 103 patients enrolled in the Stanford Heart transplant pro-

gram, from which 69 received a heart transplant and among these 45 died. The total

number of deaths was 75 (30 without transplantation); the remaining 28 patients

contributed with censored survival times. The transplant can be considered as an

associated state of risk, and we may use the so-called illness-death model with states

“Own Heart”, “New Heart” (or transplant) and “Dead”.

Own Heart New Heart

Dead

Figure 1.8: Illness-death model for Stanford Heart Transplant data

1.5 Outline of the thesis

The thesis is organized as follows. Chapter 2 is devoted to the study of the

bivariate distribution function for censored gap times. In this section, we review some

recent proposals and introduce new estimators that account with the influence of
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covariates (conditional transition probabilities) (Section 2.2). Simulation studies are

performed to investigate the finite sample proprieties of the estimators (Section 2.3).

The real data illustration with the German Breast cancer data example is given in

Section 2.4.

In Chapter 3 we propose a modification of the Aalen-Johansen estimator (typi-

cally assumed in for estimating the transition probabilities in Markov processes) in

the illness-death model based on presmoothing. The idea of presmoothing involves

replacing the censoring indicators by some smooth fit before the Kaplan-Meier for-

mula is applied. This preliminary smoothing may be based on a certain parametric

family such as the logistic (thus leading to a semiparametric estimator). The prop-

erties of the estimator are investigated both theoretically (Section 3.5) and through

simulations (Section 3.3). Section 3.4 is devoted to the illustration of the proposed

methods using the Stanford heart transplant data example.

Chapter 4 focus to the available R packages for the analysis of multi-state survival

data and describes the R survivalBIV package. Section 4.2 contains a detailed

description of the existing software for implementing multi-state models using R. The

survivalBIV package is described in Section 4.3. Section 4.4 is devoted to the

generation of bivariate survival data. A real data illustration with the Bladder cancer

data is given in Section 4.5.

We conclude with some final remarks and possible directions for future research

in Chapter 5.
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Chapter 2

Estimators for censored gap times

2.1 Introduction

In many medical studies individuals can experience several events across a follow-

up study. The events of concern can be of the same nature (e.g., cancer patients

can experience recurrent disease episodes) or represent different states in the disease

process (e.g., alive and disease-free, alive with recurrence and dead). If the events

are of the same nature, this is usually referred as recurrent events (Cook and Lawless,

2007), whereas if they represent different states they are usually modelled through

their intensity functions (Andersen et al., 1993; Meira-Machado et al., 2009). In both

cases, it is important to study the inter-event times, also known as the gap times. In

these studies, often some events are not completely experienced before the end of a

study. This leads to (right) censored gap times and conventional methods are usually

no longer applicable. Several issues of interest arise from censored gap times: (a)

bivariate distribution function; (b) marginal distribution; (c) conditional distribution

of the second gap time; and (d) correlation between gap times. The aim of this

chapter is therefore two fold. Firstly we focus on the estimation of the bivariate
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distribution function under right censoring. Secondly, two competing nonparametric

regression estimators of the conditional bivariate distribution are also introduced.

The estimation of the bivariate distribution function is a issue that has received

much attention recently. Among others, it was investigated by Campbell (1981),

Tsai et al. (1986), Burke (1988), Dabrowska (1988), Prentice and Cai (1992), Lin

and Ying (1993), Van Der Laan (1996), Wang and Wells (1997), Lin et al. (1999),

Akritas and Keilegom (2003), Prentice et al. (2004). More recent contributions were

made by de Uña-Álvarez and Meira-Machado (2008) and de Uña-Álvarez and Amorim

(2011).

In this chapter we present four methods (estimators) for the bivariate distribution

function of the gap times. One simple estimator is based on the conditional probability

and Kaplan-Meier survival function. This estimator is related to that proposed in Lin

et al. (1999) and with estimators proposed by de Uña-Álvarez (de Uña-Álvarez and

Meira-Machado, 2008; de Uña-Álvarez and Amorim, 2011) since all use (in different

ways) the Kaplan-Meier estimator (Kaplan and Meier, 1958). The estimator proposed

by Lin in 1999 uses inverse probability of censoring weighted based on the Kaplan-

Meier estimator. On the other hand, the idea behind both estimators proposed by de

Uña-Álvarez is the use of the Kaplan-Meier estimator pertaining to the distribution

of the total time to weight the bivariate data. The difference between these two

methods is that the more recent paper uses a presmoothed version of the Kaplan-Meier

estimator (Dikta, 1998). Without smoothing, the estimator described in de Uña-

Álvarez and Amorim (2011) reduces to that in the de Uña-Álvarez and Meira-Machado

(2008).

The estimator proposed by Lin in 1999 uses weights based on inverse probability

to estimate the bivariate distribution function. However, the proposed estimator

may induce negative probability mass and therefore do not satisfy the monotonicity

requirements of a distribution function. The estimators proposed by de Uña-Álvarez

and Meira-Machado (2008) make use of the Kaplan-Meier estimator pertaining to the

distribution of the total time to weight the bivariate data. This estimator provides
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a monotone distribution function and can also be written as a sum of weights based

on inverse probability of censoring. Most of the proposed estimators are based on

the assumption that the vector of gap times and censoring times are independent. In

a number of practical situations, this is however not an acceptable assumption. In

this chapter two competing nonparametric regression estimators of the conditional

bivariate distribution are also introduced. These estimators are based on inverse

probability of censoring weighting and will account for the influence of covariates

while handling for dependent censoring. In both estimators, local smoothing is done

by introducing regression kernel weights that are either based on a local constant (i.e.

Nadaraya-Watson) or a local linear regression.

Our methods are motivated by data on Breast cancer which is available in the

book by Hosmer and Lemeshow (2008). These data can be viewed as arising from

a progressive three-state model where “alive with recurrence” can be modelled as an

intermediate state and “dead” the absorbing dead state (see Figure 1.7). We will

use this data set to illustrate the estimators for the bivariate distribution function.

In addition, we will use the two competing estimators of the conditional bivariate

distribution to study the effect of age on the bivariate distribution function. Extensive

simulation studies are provided to compare the performance of all methods in different

scenarios.

The chapter is organized as follows. In the next section, we introduce the formal

notations and the estimators. Section 2.3 describes the simulation setup and the

finding of a number of simulation experiments. In Section 2.4 we use data from the

German Breast cancer study to illustrate the proposed methods.

2.2 Estimators

2.2.1 Notation

The topic of this chapter is encountered in many medical studies (e.g., recurrences

in cancer studies; relapse episodes in schizophrenic disease) where the first gap time
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is the time from some initial stage of the disease (e.g. healthy, disease-free, etc), to

some intermediate stage of the disease or event, and finally the second gap time is

the time from that state to a subsequent episode (recurrence or relapse). This means

that one individual cannot experience the final event of interest without experiencing

the intermediate event.

Consider n independent and identically distributed pairs of successive failure (gap)

times (T1i, T2i), 1 ≤ i ≤ n with joint distribution function F12(x, y). These pairs

of gap times are subject to univariate right-censoring at times Ci with distribu-

tion function G(t) = P (C ≤ t) and which is usually assumed to be indepen-

dent of (T1i, T2i). Because of this we only observe (T̃1i, T̃2i,∆1i,∆2i) where T̃1i =

min(T1i, Ci), ∆1i = I(T1i ≤ Ci), T̃2i = min(T2i, C2i), ∆2i = I(T2i ≤ C2i) where

C2i = (Ci − T1i)I(T1i ≤ Ci). Let T = T1 + T2 be the total time and introduce

T̃ = min(T,C). If the censoring time is assumed to be independent of the pro-

cess, the marginal distribution of the first gap time T1, say F1 may be consistently

estimated by the Kaplan-Meier estimator based on the pairs (T̃1i,∆1i)’s. Similarly,

the distribution of the total time may be consistently estimated by the Kaplan-Meier

estimator based on the (T̃i,∆2i)’s. The Kaplan-Meier estimator of the second gap

time cannot be used here, since the independence of T2 and C2 can not be assumed.

Below we will introduce new estimators for the bivariate distribution assuming

that C is independent of (T1, T ) given Z, where Z denotes a quantitative covariate.

Note that this assumption does not exclude the possibility of dependent censoring

(i.e., C conditionally dependent on (T1, T )).

2.2.2 Bivariate Distribution Function

Several methods have been proposed to estimate the bivariate distribution function

F12(x, y) = P (T1 ≤ x, T2 ≤ y) in the presence of right censoring. Almost all using

the Kaplan-Meier estimator of survival. Some related problems such as estimation of

the marginal distribution of the second gap time will also be discussed.
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Conditional Kaplan-Meier estimator

A simple estimator for the bivariate distribution function of the gap times is based

on Bayes’ theorem and Kaplan-Meier survival function (conditional Kaplan-Meier,

CKM). Since F12(x, y) = P (T1 ≤ x, T2 ≤ y) = P (T2 ≤ y|T1 ≤ x)P (T1 ≤ x) one

simple estimator for the bivariate distribution is given by

F̂12(x, y) = F̂1(x)F̂KM(y|T1 ≤ x,∆1 = 1) (2.1)

where F̂1(x) is the Kaplan-Meier product-limit estimator based on the pairs (T̃1i,∆1i)’s

and F̂KM(y|T1 ≤ x,∆1 = 1) is the Kaplan-Meier estimator based on the pairs

(T̃2i,∆2i)’s. The F̂KM(y|T1 ≤ x,∆1 = 1) is the conditional distribution function for

the subset of T1 ≤ x and ∆1 = 1 (the Kaplan-Meier estimator based on the pairs

(T̃2i,∆2i)’s such that T̃1i ≤ x and ∆1i = 1).

Since the independence between T2 and C2 can not be assumed in general, the

CKM estimator may be inconsistent. The consistency of this estimator can only be

ensured when P (∆1|T1 ≤ x) = 1. These features can be seen in our simulation

results presented in Section 2.3.1. Even so, this estimator still can be used in variety

of statistical problems, for example, to the study the relation between a variable of

interest T and some covariate.

Kaplan-Meier weighted estimator

Another simple estimator was recently proposed by de Uña-Álvarez and Meira-

Machado (2008). The idea behind their estimator is to use the Kaplan-Meier estimator

pertaining to the distribution of the total time to weight the bivariate data. The

proposed estimator (Kaplan-Meier Weighted Estimator, KMW) is given by

F̃12(x, y) =
n∑
i=1

WiI(T̃1i ≤ x, T̃2i ≤ y) (2.2)

where Wi = ∆2i

n−Ri+1

∏i−1
j=1

[
1− ∆2j

n−Rj+1

]
is the Kaplan-Meier weight attached to T̃i

when estimating the marginal distribution of T from (T̃i,∆2i)’s, and for which the
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ranks of the censored T̃i’s, Ri, are higher than those for uncensored values in the case

of ties.

An alternative estimator can be proposed using inverse probability of censoring

weights:

F̃12(x, y) =
1

n

n∑
i=1

I
(
T̃1i ≤ x, T̃2i ≤ y

)
∆2i

1− Ĝ(T̃i)
. (2.3)

where Ĝ(.) is the Kaplan-Meier estimator of the censoring.

Kaplan-Meier presmooth weighted estimator

Recently, de Uña-Álvarez and Amorim (2011) propose a modification of estimator

(2.2) based on presmoothing (Dikta, 1998), which allows for a variance reduction

in the presence of censoring. Basically, this method uses a presmoothed version of

the Kaplan-Meier estimator (see e.g. Dikta (1998) and references therein) pertaining

to the distribution of the total time to weight the bivariate data. This is obtained

by replacing the censoring indicator variables in the expression of the Kaplan-Meier

weights by a smooth fit of a binary regression. This estimator (Kaplan-Meier Pres-

mooth Weighted Estimator, KMPW) is expressed as

v
F 12(x, y) =

n∑
i=1

W ?
i I(T̃1i ≤ x, T̃2i ≤ y) (2.4)

where W ?
i = m(T̃1i,T̃i)

n−Ri+1

∏i−1
j=1

[
1− m(T̃1j ,T̃j)

n−Rj+1

]
are the presmoothed Kaplan-Meier weights.

Here, m(x, y) = P (∆2 = 1|T̃1 = x, T̃ = y,∆1 = 1), belongs to a parametric

(smooth) family of binary regression curves, e.g. logistic. In practice, we assume that

m(x, y) = m(x, y; β) where β is a vector of parameters which typically will be com-

puted by maximizing the conditional likelihood of the ∆2’s given (T̃1, T̃2) for those

with ∆1 = 1.

Note that, unlike (2.2), the KMPW can attach positive mass to pair of gap times

with censored second gap time. However, both estimators (2.2) and (2.4) attach

a zero weight to pairs of gap times with censored first gap time. In the limit case
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of no presmoothing, the estimator (2.4) reduces to (2.2). Conditions under which

both estimators are consistent are fully discussed in papers by de Uña-Álvarez and

Meira-Machado (2008) and de Uña-Álvarez and Amorim (2011). In the latter paper

the authors compare the performance of the presmoothed (semiparametric) estimator

with the purely nonparametric estimator (without presmoothing) and concluded that

the presmoothed estimator improves efficiency in the multivariate setup of gap times.

Inverse probability of censoring weighted estimator

Another estimator for the bivariate distribution function was proposed by Lin

et al. (1999). This estimator is based on inverse probability of censoring weighted

(Lin). The rationale behind Lin is that each subject that is observed at time u is

representative (on average) of 1
G(u)

individuals that might have been observed if there

was no censoring. Lin’s estimator is expressed as

F 12(x, y) = H(x, 0)−H(x, y) (2.5)

where

H(x, y) =
1

n

n∑
i=1

I(T̃1i ≤ x, T̃2i > y)

1− Ĝ(T̃1i + y)

The censoring distribution function G is typically unknown and needs to be re-

placed by an estimate. This can be obtained by reversing the role of T and C,

using a Kaplan-Meier estimate Ĝ of the censoring distribution function, i.e., using

an estimate based on the (T̃1i, 1 − ∆1i)’s (for the first term in the right-hand side

of equation (2.5)) or (T̃i, 1 − ∆2i)’s (for the second term in the right-hand side of

equation (2.5)). This is the simplest choice and was assumed by Lin et al. (1999).

Other procedures for estimation of G are appropriate, for example the approach used

in Gerds and Schumacher (2006). Without ties (between event times and censoring

times) the two procedures (Lin et al., 1999; Gerds and Schumacher, 2006) provide

the same result.
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Estimator (2.5) is also written as

F 12(x, y) =
1

n

n∑
i=1

I
(
T̃1i ≤ x

)
∆1i

1− Ĝ(T̃1i)
− 1

n

n∑
i=1

I
(
T̃1i ≤ x, T̃2i > y

)
1− Ĝ(T̃1i + y)

(2.6)

Note that consistency of estimators (2.2), (2.4) and (2.5) is only guaranteed

whenever x + y is smaller than the upper bound of the support of the censoring

time. As mentioned before, the CKM estimator may be inconsistent in the presence

of censoring of the first gap time. In addition, monotonicity of this estimator is not

guaranteed. The monotonicity problem can be explained by the fact that, as the

conditioning set T1 ≤ x changes, the redistribution to the right of the probability

mass associated with censored observations also changes. In contrast to the other

two methods, the estimators based on Kaplan-Meier weights (KMW and KMPW)

are monotonic (distribution) functions, in the sense that they attach positive mass to

each observation.

Other estimators were proposed to estimate the bivariate distribution function. A

valid estimator of the bivariate distribution function, was provided by Van Keilegom

(2004) which is based on Akritas (1994). However, this approach has some limitations

since some smoothing is required. Recently, alternative estimators for these quantities

were also given in Van Keilegom et al. (2011). This methodology assumes that

the vector of gap times (T1, T2) satisfies the nonparametric location-scale regression

model, allowing for the transfer of tail information from lightly censored areas to

heavily ones.

One alternative approach is based on the conditional distribution of T2 given T1.

The expectation E [I(T1 ≤ x, T2 ≤ y)] can be estimated by

F̂ ∗12(x, y) = P̂ (T1 ≤ x, T2 ≤ y) =

∫
(0,x)

P̂ (T2 ≤ y | u− h < T1 < u+ h)dF̂1(u).

(2.7)

where F̂1(u) is an estimator of the distribution of the first gap time, for example,

the Kaplan-Meier estimator based on the pairs (T̃1i,∆1i)’s, and h is a sequence of
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positive constants tending to zero as n tends to infinity, called a bandwidth sequence.

Under random right censorship, the nonparametric estimator of the conditional

distribution (Beran, 1981) may be used to estimate the bivariate distribution function.

This estimator can also be adjusted for dependent censoring following Satten et al.

(2001). These authors suggest to estimate the conditional probabilities as follow:

P̂ (T2 ≤ y | u− h < T1 < u+ h) = 1−
∏
(0,y]

[
1− dN̂(dv, u− h < T1 < u+ h)

Ŷ (v, u− h < T1 < u+ h)

]

where

N̂(v, u− h < T1 < u+ h) =
n∑
i=1

I(T̃2i ≤ v, u− h < T̃1i < u+ h)∆2i

1− Ĝ(T̃i)

and (method 1-condBIV 1)

Ŷ (v, u− h < T1 < u+ h) =
n∑
i=1

I(T̃2i ≥ v, u− h < T̃1i < u+ h)∆2i

1− Ĝ(T̃i)

alternatively, Ŷ can be estimated (method 2-condBIV 2) by

Ŷ (v, u− h < T1 < u+ h) =
n∑
i=1

I(T̃2i ≥ v, u− h < T̃1i < u+ h)

1− Ĝ(T̃1i + v)

This method cannot be directly applied for real and simulated data without

considering the problem of the choice of an optimal bandwidth. A large num-

ber of methods for automatic bandwidth selection exist being the least squares

cross-validation one of the most common approach. However, proposed methods

are still scarce to deal the problem of censoring. Below we suggest a method for the

bandwidth selection. We propose the following procedure to obtain the bandwidth h

used to obtain the Beran-type estimator:

Step 1. First for b = 1 to B (e.g. B=1000) simulate the random sample
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Sb =
{
T̃ •b1i , T̃

•b
2i ,∆

•b
1i ,∆

•b
2i

}n
i=1

by randomly sampling the n items from the original data set
{
T̃1i, T̃2i,∆1i,∆2i

}n
i=1

with replacement.

Step 2. Then, the bandwidth h is automatically selected by minimizing the following

error criterion:

C(h) =
∑B

b=1

∑n

i=1

(
F̂12(T̃ •b1i , T̃

•b
2i )− F̂ ∗12(T̃ •b1i , T̃

•b
2i )
)2

,

where F̂12 is the estimate obtained from the sample Sb, using estimator (2.2) and

F̂ ∗12 is the estimate obtained from the Beran-type estimator (2.7) based on the same

sample.

From (2.1), (2.2), (2.4) and (2.5) we may obtain an estimator for the marginal

distribution of the second gap time, F2(y) = P (T2 ≤ y), namely

F̂2(y) = F̂12(+∞, y) = F̂1(+∞)F̂KM(y|∆1 = 1) (2.8)

F̃2(y) = F̃12(+∞, y) =
n∑
i=1

WiI(T̃2i ≤ y) (2.9)

Note that if F̂1(+∞) = 1, then (2.8) is the Kaplan-Meier estimator based on

(T̃2i,∆2i)’s such that ∆1 = 1 (i.e., for which the first gap time is uncensored).

Estimator (2.9) is different because the Kaplan-Meier weights Wi in this estimator

are based on the T̃i-ranks rather than on the T̃2i-ranks. In fact, since T2 and C2

are expected to be dependent, the ordinary Kaplan-Meier estimator of F2 (estimator

(2.8)) will be generally inconsistent. The corresponding estimator for (2.4) is obtained

using the same ideas as for (2.9) by replacing the weights Wi by the presmoothed

Kaplan-Meier weight W ?
i previously defined. Similarly, from Lin’s estimator (2.5) one

can obtain an estimator for the marginal distribution of the second gap time. Again,

note that such estimator does not guarantee monotonicity.
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Below we will provide two competing nonparametric regression estimators which

are adapted from estimators (2.2) and (2.6) to handle the influence of covariates on

the bivariate distribution function.

2.2.3 Conditional Bivariate Distribution Function

In this section we will introduce two estimators for the conditional distribution

function, F12(x, y | Z) where Z denotes a quantitative covariate. Both meth-

ods are based on inverse probability of censoring weighting. This can be done via

estimating the general conditional expectation of type E [ϕ (T1, T2) | Z = z]. To

estimate these quantities we may use kernel smoothing techniques by calculating

a local average of the ϕ(T1, T2). This can be written as
∑n

i=1W1i(x)ϕ(T1i, T2i)

where W1i(x) is a weight function which can be estimated using Nadaraya-Watson

(Nadaraya, 1965; Watson, 1964) or local linear estimators. In our case, we have to

estimate E [ϕx,y (T1, T2) | Z = z], E [ϕ̃x,y (T1, T2) | Z = z] and E [ξx (T1) | Z = z],

where ϕx,y (u, v) = I(u ≤ x, v > y), ϕ̃x,y(u, v) = I(u ≤ x, v ≤ y) and ξx(u) =

I(u ≤ x).

To estimate these quantities, we need to estimate the d.f. of C given Z, GZ . Let

GZi denote the conditional distribution function of C | Z = Zi and let ĜZi stand for

its estimator. The estimation of the conditional distribution function of the response,

given the covariate under random censoring has been considered in many papers.

This topic was introduced by Beran (1981) and was further studied by several authors

(see e.g. papers by Dabrowska (1987, 1988, 1989a,b); Akritas (1994); Van Keilegom

et al. (2001) and Van Keilegom (2004)). Their proposals can also be used to estimate

the conditional distribution function of C | Z, say ĜZ . This can be done using the

Kaplan-Meier estimator introduced by Beran (1981),

1− Ĝz(y) =
∏

T̃i≤y,∆2i=0

[
1− W0i(z, an)∑n

j=1 I(T̃j ≥ T̃i)W0j(z, an)

]
(2.10)

with
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W0i(z, an) =
K0 ((z − Zi)/an)∑n
j=1K0 ((z − Zj)/an)

where W0i(z, an) are the Nadaraya-Watson weights (NW), K0 is a known probability

density function (kernel) and an a sequence of bandwidths. This estimator reduces

to the so-known Kaplan-Meier (Kaplan and Meier, 1958) estimator when all weights

are equal. To cope with left-truncated data one can also use the estimator of the

conditional distribution, proposed by Iglesias Pérez and González Manteiga (2003).

In order to introduce our estimators note that, assuming that the support of con-

ditional distribution of T is contained in that of C|Z, we have E[ϕ(T1, T2) | Z] =

E[ϕ(T̃1, T̃2)∆/1 − GZ(T̃ ) | Z)]. We propose to plug-in Beran’s estimator ĜZ and

use the local linear estimator (LL) or a Nadaraya-Watson estimator (NW), to intro-

duce Inverse Probability Censoring Weighted estimators (IPCW) for the conditional

bivariate distribution:

F̂12(z;x, y) =
n∑
i=1

W1i(z, bn)
ϕx,y(T̃1i, T̃2i)∆2i

1− ĜZi(T̃i)
=

n∑
i=1

W1i(z, bn)
I(T̃1i ≤ x, T̃2i ≤ y)∆2i

1− ĜZi(T̃i)

where W1i(z, bn) are Nadaraya-Watson weights or local linear weights,

W1i(z, bn) =
K1 ((z − Zi)/bn) [Sn,2(z)− (z − Zi)Sn,1(z)]∑n
j=1K1 ((z − Zj)/bn) [Sn,2 − (z − Zj)Sn,1(z)]

with Sn,l =
∑n

i=1K1((z − Zi)/bn)(z − Zi)l, l = 0, 1, 2 and where bn is a sequence

of bandwidths and K1 is a known kernel function.

Note that since E[ϕx,y(T1, T2) | Z] = E[ξx(T1) | Z]−E[ϕ̃x,y(T1, T2) | Z]. Thus,

E[ϕx,y(T1, T2) | Z] = E[I(T1 ≤ x) | Z] − E[I(T1 ≤ x, T2 > y) | Z] = E[I(T̃1 ≤

x)I(C > T1)/1−G0
Z(T̃1) | Z]−E[I(T̃1 ≤ x, T̃2 > y)I(C > T1 +y)/1−GZ(T̃1 +y) |

Z]. Then, alternative estimator can be given for the conditional probabilities (Lin

et al., 1999). In this case LIN-based estimators are given by
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F̃12(z;x, y) =
n∑
i=1

W1i(z, bn)
ϕ̄x(T̃1)∆1i

1− Ĝ0
Zi

(T̃1i)
−

n∑
i=1

W1i(z, bn)
ϕ̃x,y(T̃1, T̃2)

1− ĜZi(T̃1i + y)

=
n∑
i=1

W1i(z, bn)
I(T̃1i ≤ x)∆1i

1− Ĝ0
Zi

(T̃1i)
−

n∑
i=1

W1i(z, bn)
I(T̃1i ≤ x, T̃2i > y)

1− ĜZi(T̃1i + y)

where G0
Z stands for an estimator of the conditional distribution C | Z = Zi, for

example, the based on the (T̃1i, 1−∆1i)’s.

In the Section 2.3.2 we will study the finite sample performance of IPCW and

LIN-based estimators.

2.3 Simulation Studies

2.3.1 Bivariate Distribution Function

In this section, we compare by simulations the four estimators 2.1 to 2.5, for the

bivariate distribution function. We consider two simulated scenarios, the first scenario

is the same as that described in Lin’s paper (see their Section 3). In this scenario, the

gap times were generated from Gumbel’s bivariate distribution function, the so-called

Fairlie-Gumbel-Morgenstern families of bivariate cdf’s

F (x, y) = F1(x)F2(y)[1 + δ(1− F1(x))(1− F2(y))]

where |δ| 6 1 for a bivariate density to exist. The marginal distributions, F1 and

F2 are exponential with rate parameter 1. The case of independence is obtained

for δ = 0 while the maximum of correlation (between T1 and T2) for the bivariate

exponential distribution is obtained for δ = 1 with bound equal to 0.25. As in Lin’s

paper, for this scenario, the uniform censoring time C was generated according to

models U [0, 4] and U [0, 3]. The first model (U [0, 4]) resulted in 25% of censoring

of the first gap time, and 46% of censoring in the second gap time. In the second

model (U [0, 3]) we have censoring levels of 32% and 60% for the corresponding
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gap times. One limitation of the so-called Fairlie-Gumbel-Morgenstern families of

bivariate cdf’s, is that the correlation of T1 and T2 can never exceed 1/3 (0.25 in the

bivariate exponential distribution). One potential category of bivariate distributions

is the family of bivariate weibull distributions. This distribution clearly allows for a

larger correlation between the two gap times, making it superior than the bivariate

exponential. For this reason, in our second scenario we consider the bivariate weibull

distribution with two-parameter marginal distributions. Its survival function is given

by

S(x, y) = P (T1 > x, T2 > y) = exp

−[( x
θ1

)β1
δ

+

(
y

θ2

)β2
δ

]δ
where 0 < δ 6 1, and each marginal distribution has shape parameter βi and a scale

parameter θi, i = 1, 2. The correlation between the two gap times can be obtained

though is a complicated function of the shape and scale parameters and of δ. For our

simulation we consider δ = 0.6, θ1 = θ2 = 7 and shape parameters β1 = β2 = 2, for

which we obtained about 54% of correlation.

For each scenario we have considered two sample sizes, n = 50 and n = 100 and

for each simulation, 1000 samples were generated. For each setting we computed

the mean and standard deviations for the bivariate estimators at pairs of time points

(x, y), where x and y takes values corresponding to: marginal survival probabilities

of 0.8, 0.6, 0.4, 0.2 and 0.05 for the bivariate exponential scenario; and to marginal

survival probabilities of 0.8, 0.6, 0.4, 0.2 and 0.1 for the bivariate weibull scenario.

The true values of F12(x, y) are reported in Tables 2.1 and 2.2.
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Table 2.1: True values of the bivariate exponential distribution of

the gap times.

δ = 0 δ = 1

y 0.2231 0.5108 0.9163 1.6094 2.9990 0.2231 0.5108 0.9163 1.6094 2.9990

x

0.2231 0.0400 0.0800 0.1200 0.1600 0.1900 0.0656 0.1184 0.1584 0.1856 0.1976

0.5108 0.0800 0.1600 0.2400 0.3200 0.3801 0.1184 0.2176 0.2976 0.3584 0.3914

0.9163 0.1200 0.2400 0.3600 0.4800 0.5701 0.1584 0.2976 0.4176 0.5184 0.5815

1.6094 0.1600 0.3200 0.4800 0.6400 0.7601 0.1856 0.3584 0.5184 0.6656 0.7677

2.9990 0.1900 0.3801 0.5701 0.7601 0.9028 0.1976 0.3914 0.5815 0.7677 0.9051

Table 2.2: True values of the bivariate weibull distribution of the gap

times.

y 3.3067 5.0030 6.7006 8.8805 10.622

x

3.3067 0.1130 0.1574 0.1800 0.1930 0.1972

5.0030 0.1574 0.2610 0.3294 0.3741 0.3895

6.7006 0.1800 0.3294 0.4494 0.5406 0.5751

8.8805 0.1930 0.3741 0.5406 0.6872 0.7500

10.622 0.1972 0.3895 0.5751 0.7500 0.8305

Let F̂12(x, y) denote the estimated bivariate distribution, for each (x, y) we com-

puted estimates of the bias as: bias(F̂12(x, y)) = F12(x, y)− F̂12(x, y)

Results reveal that, in general, the bias increases for higher censoring levels (C ∼

U [0, 3]) and decreases with the increasing of the sample size. Tables 2.3 to 2.7 report

the mean estimate along with the corresponding standard deviation for estimators 2.1

to 2.5.

As it can be seen, in all estimators the bias of the bivariate distribution achieved

reasonable levels. In all cases the variance increases at the right tail of the bivariate

distribution, where the censoring effects are stronger. From these tables we can see

that

a) the CKM estimator has larger bias for higher values of x, the first gap time,
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Table 2.3: Mean values and standard deviation of F̂12(x, y) for the

bivariate exponential scenario. Sample size of n = 50, uniform cen-

soring C ∼ U [0, 3].

δ = 0 δ = 1

y 0.2231 0.5108 0.9163 1.6094 2.9990 0.2231 0.5108 0.9163 1.6094 2.9990

x

0.2231 0.0674 0.1201 0.1613 0.1788 0.1870 0.0652 0.1151 0.1584 0.1794 0.1897

(0.0374) (0.0468) (0.0555) (0.0595) (0.0590) (0.0370) (0.0477) (0.0535) (0.0568) (0.0598)

0.5108 0.1191 0.2191 0.2962 0.3556 0.3727 0.1192 0.2207 0.2994 0.3661 0.3742

(0.0499) (0.0604) (0.0679) (0.0781) (0.0805) (0.0461) (0.0615) (0.0690) (0.0763) (0.0798)

CKM 0.9163 0.1592 0.3014 0.4228 0.5175 0.5557 0.1611 0.3051 0.4237 0.5211 0.5562

(0.0554) (0.0714) (0.0798) (0.0855) (0.0891) (0.0554) (0.0741) (0.0828) (0.0852) (0.0879)

1.6094 0.1955 0.3789 0.5356 0.6799 0.7325 0.1954 0.3784 0.5324 0.6812 0.7217

(0.0649) (0.0819) (0.0899) (0.0937) (0.0969) (0.0623) (0.0824) (0.0904) (0.0975) (0.0996)

2.9990 0.2186 0.4268 0.6089 0.7815 0.8372 0.2229 0.4198 0.6085 0.7772 0.8350

(0.0681) (0.0926) (0.1033) (0.1036) (0.1038) (0.0746) (0.0897) (0.0959) (0.1031) (0.1042)

0.2231 0.0384 0.0802 0.1205 0.1587 0.1966 0.0640 0.1191 0.1571 0.1829 0.1977

(0.0327) (0.0457) (0.0533) (0.0618) (0.0585) (0.0393) (0.0504) (0.0558) (0.0559) (0.0541)

0.5108 0.0798 0.1611 0.2404 0.3185 0.3965 0.1180 0.2183 0.2967 0.3604 0.4017

(0.0472) (0.0619) (0.0716) (0.0843) (0.0738) (0.0519) (0.0697) (0.0750) (0.0791) (0.0724)

Lin 0.9163 0.1225 0.2448 0.3606 0.4833 0.6015 0.1564 0.3146 0.4189 0.5065 0.5945

(0.0562) (0.0772) (0.0925) (0.1077) (0.0760) (0.0588) (0.0729) (0.0821) (0.0941) (0.0831)

1.6094 0.1601 0.3247 0.4779 0.6610 0.8003 0.1874 0.3582 0.5287 0.6820 0.7964

(0.0691) (0.0901) (0.1132) (0.1236) (0.0722) (0.0714) (0.0885) (0.1169) (0.1481) (0.0710)

2.9990 0.1894 0.3812 0.5792 0.7846 0.9269 0.1997 0.4328 0.6130 0.8103 0.9321

(0.1069) (0.1271) (0.1315) (0.1318) (0.0683) (0.0999) (0.1264) (0.1446) (0.1138) (0.0637)

0.2231 0.0400 0.0803 0.1202 0.1612 0.1883 0.0655 0.1191 0.1572 0.1861 0.1938

(0.0283) (0.0394) (0.0523) (0.0631) (0.0802) (0.0367) (0.0503) (0.0563) (0.0645) (0.0712)

0.5108 0.0798 0.1609 0.2410 0.3208 0.3698 0.1196 0.2158 0.2975 0.3591 0.3834

(0.0396) (0.0564) (0.0690) (0.0815) (0.1018) (0.0496) (0.0625) (0.0741) (0.0831) (0.0909)

KMW 0.9163 0.1213 0.2412 0.3600 0.4800 0.5481 0.1575 0.3001 0.4170 0.5195 0.5613

(0.0520) (0.0699) (0.0830) (0.0970) (0.1186) (0.0563) (0.0795) (0.0853) (0.0945) (0.1121)

1.6094 0.1597 0.3200 0.4839 0.6331 0.7036 0.1844 0.3594 0.5159 0.6608 0.6972

(0.0622) (0.0818) (0.0964) (0.1120) (0.1265) (0.0624) (0.0822) (0.0954) (0.1136) (0.1272)

2.9990 0.1850 0.3637 0.5411 0.7086 0.7708 0.1953 0.3828 0.5610 0.7020 0.7543

(0.0788) (0.0985) (0.1154) (0.1263) (0.1328) (0.0719) (0.0970) (0.1109) (0.1259) (0.1310)

0.2231 0.0416 0.0832 0.1232 0.1615 0.1896 0.0657 0.1202 0.1586 0.1847 0.1939

(0.0283) (0.0368) (0.0478) (0.0574) (0.0696) (0.0348) (0.0468) (0.0528) (0.0600) (0.0654)

0.5108 0.0826 0.1651 0.2440 0.3185 0.3732 0.1210 0.2175 0.2999 0.3574 0.3845

(0.0372) (0.0518) (0.0647) (0.0741) (0.0922) (0.0474) (0.0594) (0.0703) (0.0792) (0.0852)

KMPW 0.9163 0.1239 0.2440 0.3581 0.4728 0.5513 0.1589 0.3015 0.4163 0.5157 0.5679

(0.0477) (0.0642) (0.0766) (0.0899) (0.1068) (0.0529) (0.0743) (0.0798) (0.0875) (0.1005)

1.6094 0.1613 0.3185 0.4750 0.6247 0.7120 0.1868 0.3577 0.5072 0.6497 0.7038

(0.0558) (0.0768) (0.0883) (0.1015) (0.1112) (0.0581) (0.0762) (0.0884) (0.1024) (0.1118)

2.9990 0.1899 0.3726 0.5482 0.7107 0.7920 0.1999 0.3862 0.5565 0.7003 0.7677

(0.0680) (0.0926) (0.1035) (0.1095) (0.1080) (0.0641) (0.0853) (0.0968) (0.1095) (0.1083)

but in general is one of the estimators with less variance;

b) the KMW estimator has less bias than its smooth version, KMPW. However as

expected the later obtained less variance;

c) the KMW and Lin estimator are almost unbiased but the last one obtains higher
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Table 2.4: Mean values and standard deviation of F̂12(x, y) for the

bivariate exponential scenario. Sample size of n = 100, uniform

censoring C ∼ U [0, 3].

δ = 0 δ = 1

y 0.2231 0.5108 0.9163 1.6094 2.9990 0.2231 0.5108 0.9163 1.6094 2.9990

x

0.2231 0.0652 0.1194 0.1565 0.1845 0.1927 0.0652 0.1175 0.1585 0.1854 0.1931

(0.0253) (0.0360) (0.0389) (0.0433) (0.0401) (0.0258) (0.0350) (0.0387) (0.0419) (0.0401)

0.5108 0.1203 0.2186 0.2993 0.3596 0.3783 0.1194 0.2163 0.3002 0.3592 0.3808

(0.0349) (0.0436) (0.0500) (0.0522) (0.0536) (0.0346) (0.0425) (0.0503) (0.0557) (0.0544)

CKM 0.9163 0.1635 0.2996 0.4259 0.5247 0.5587 0.1639 0.3023 0.4217 0.5222 0.5595

(0.0403) (0.0522) (0.0603) (0.0613) (0.0639) (0.0399) (0.0512) (0.0567) (0.0626) (0.0640)

1.6094 0.1969 0.3764 0.5369 0.6776 0.7369 0.1985 0.3786 0.5405 0.6817 0.7419

(0.0467) (0.0582) (0.0638) (0.0702) (0.0738) (0.0469) (0.0613) (0.0655) (0.0682) (0.0706)

2.9990 0.2187 0.4291 0.6180 0.7897 0.8644 0.2243 0.4275 0.6169 0.7907 0.8678

(0.0476) (0.0641) (0.0694) (0.0758) (0.0802) (0.0514) (0.0637) (0.0713) (0.0781) (0.0799)

0.2231 0.0405 0.0783 0.1223 0.1603 0.1979 0.0709 0.1174 0.1585 0.1830 0.1961

(0.0235) (0.0294) (0.0370) (0.0431) (0.0422) (0.0276) (0.0369) (0.0420) (0.0417) (0.0417)

0.5108 0.0811 0.1576 0.2369 0.3222 0.3994 0.1181 0.2178 0.3090 0.3575 0.4031

(0.0317) (0.0447) (0.0503) (0.0613) (0.0515) (0.0338) (0.0444) (0.0583) (0.0545) (0.0490)

Lin 0.9163 0.1201 0.2404 0.3592 0.4816 0.5993 0.1570 0.2981 0.4205 0.5237 0.5951

(0.0401) (0.0512) (0.0624) (0.0724) (0.0568) (0.0417) (0.0579) (0.0655) (0.0741) (0.0516)

1.6094 0.1599 0.3165 0.4811 0.6570 0.7986 0.1864 0.3681 0.5289 0.6938 0.8041

(0.0497) (0.0645) (0.0802) (0.0884) (0.0521) (0.0562) (0.0648) (0.0776) (0.0812) (0.0501)

2.9990 0.1930 0.3905 0.5875 0.7900 0.9358 0.1954 0.4167 0.6024 0.8309 0.9303

(0.0856) (0.0993) (0.1019) (0.0973) (0.0501) (0.0779) (0.1033) (0.1064) (0.1030) (0.0451)

0.2231 0.0411 0.0810 0.1187 0.1589 0.1900 0.0652 0.1176 0.1589 0.1852 0.1939

(0.0202) (0.0285) (0.0368) (0.0428) (0.0571) (0.0257) (0.0348) (0.0406) (0.0453) (0.0478)

0.5108 0.0807 0.1581 0.2388 0.3168 0.3708 0.1174 0.2202 0.2949 0.3602 0.3833

(0.0294) (0.0399) (0.0487) (0.0579) (0.0756) (0.0328) (0.0461) (0.0501) (0.0591) (0.0686)

KMW 0.9163 0.1206 0.2419 0.3608 0.4805 0.5427 0.1563 0.2993 0.4210 0.5200 0.5666

(0.0358) (0.0505) (0.0586) (0.0688) (0.0877) (0.0408) (0.0528) (0.0598) (0.0693) (0.0838)

1.6094 0.1627 0.3208 0.4816 0.6380 0.7064 0.1900 0.3584 0.5162 0.6600 0.7123

(0.0424) (0.0575) (0.0680) (0.0815) (0.0962) (0.0461) (0.0565) (0.0627) (0.0824) (0.0966)

2.9990 0.1867 0.3689 0.5498 0.7082 0.7807 0.1969 0.3906 0.5678 0.7118 0.7620

(0.0565) (0.0723) (0.0875) (0.0921) (0.1033) (0.0500) (0.0703) (0.0828) (0.0950) (0.1033)

0.2231 0.0427 0.0840 0.1218 0.1594 0.1951 0.0659 0.1184 0.1593 0.1838 0.1947

(0.0187) (0.0264) (0.0326) (0.0372) (0.0486) (0.0245) (0.0327) (0.0383) (0.0417) (0.0447)

0.5108 0.0835 0.1632 0.2425 0.3172 0.3791 0.1193 0.2217 0.2953 0.3590 0.3920

(0.0267) (0.0368) (0.0448) (0.0536) (0.0697) (0.0313) (0.0438) (0.0478) (0.0551) (0.0661)

KMPW 0.9163 0.1232 0.2451 0.3609 0.4739 0.5545 0.1590 0.3013 0.4203 0.5161 0.5783

(0.0327) (0.0459) (0.0540) (0.0622) (0.0806) (0.0381) (0.0493) (0.0557) (0.0632) (0.0752)

1.6094 0.1626 0.3193 0.4745 0.6327 0.7266 0.1926 0.3594 0.5093 0.6542 0.7293

(0.0375) (0.0533) (0.0629) (0.0724) (0.0826) (0.0423) (0.0513) (0.0567) (0.0733) (0.0835)

2.9990 0.1933 0.3810 0.5619 0.7291 0.8247 0.2030 0.3961 0.5700 0.7190 0.7922

(0.0500) (0.0686) (0.0789) (0.0792) (0.0759) (0.0426) (0.0643) (0.0731) (0.0802) (0.0846)

levels of variance for small values of the second gap time, y.

In Table 2.7 we can see that for larger values of y, the Lin obtains less variance than

both KMW and KMPW.
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Table 2.5: Mean values and standard deviation of F̂12(x, y) for the

bivariate exponential scenario. Sample size of n = 50, uniform cen-

soring C ∼ U [0, 4].

δ = 0 δ = 1

y 0.2231 0.5108 0.9163 1.6094 2.9990 0.2231 0.5108 0.9163 1.6094 2.9990

x

0.2231 0.0651 0.1196 0.1603 0.1832 0.1932 0.0645 0.1207 0.1549 0.1847 0.1932

(0.0363) (0.0491) (0.0547) (0.0576) (0.0577) (0.0361) (0.0479) (0.0526) (0.0590) (0.0584)

0.5108 0.1201 0.2171 0.2999 0.3555 0.3822 0.1192 0.2172 0.3010 0.3549 0.3807

(0.0492) (0.0637) (0.0728) (0.0747) (0.0737) (0.0458) (0.0632) (0.0700) (0.0742) (0.0760)

CKM 0.9163 0.1605 0.3003 0.4179 0.5225 0.5691 0.1592 0.2971 0.4213 0.5184 0.5708

(0.0519) (0.0721) (0.0777) (0.0798) (0.0821) (0.0557) (0.0693) (0.0807) (0.0780) (0.0803)

1.6094 0.1943 0.3699 0.5310 0.6739 0.7583 0.1937 0.3736 0.5298 0.6764 0.7539

(0.0595) (0.0784) (0.0842) (0.0845) (0.0805) (0.0606) (0.0786) (0.0835) (0.0833) (0.0838)

2.9990 0.2186 0.4268 0.6089 0.7815 0.8372 0.2229 0.4198 0.6085 0.7772 0.8350

(0.0663) (0.0845) (0.0874) (0.0843) (0.0782) (0.0677) (0.0832) (0.0891) (0.0852) (0.0788)

0.2231 0.0400 0.0793 0.1205 0.1605 0.1916 0.0657 0.1188 0.1610 0.1846 0.1987

(0.0306) (0.0444) (0.0519) (0.0585) (0.0616) (0.0380) (0.0473) (0.0564) (0.0560) (0.0581)

0.5108 0.0816 0.1621 0.2392 0.3170 0.3776 0.1195 0.2165 0.2951 0.3587 0.3967

(0.0452) (0.0597) (0.0709) (0.0782) (0.0804) (0.0508) (0.0657) (0.0718) (0.0766) (0.0769)

Lin 0.9163 0.1198 0.2433 0.3638 0.4814 0.5780 0.1571 0.2960 0.4154 0.5161 0.5884

(0.0542) (0.0719) (0.0861) (0.0862) (0.0448) (0.0576) (0.0740) (0.0854) (0.0882) (0.0832)

1.6094 0.1609 0.3195 0.4804 0.6420 0.7785 0.1847 0.3520 0.5189 0.6684 0.7883

(0.0650) (0.0823) (0.0928) (0.1015) (0.0814) (0.0670) (0.0813) (0.0880) (0.0977) (0.0802)

2.9990 0.1818 0.3795 0.5772 0.7696 0.9222 0.1918 0.3919 0.5864 0.7880 0.9330

(0.0838) (0.1015) (0.1112) (0.1031) (0.0747) (0.0903) (0.0994) (0.1199) (0.1092) (0.0645)

0.2231 0.0394 0.0801 0.1207 0.1586 0.1911 0.0654 0.1180 0.1559 0.1826 0.1978

(0.0288) (0.0386) (0.0510) (0.0583) (0.0697) (0.0360) (0.0465) (0.0553) (0.0604) (0.0647)

0.5108 0.0806 0.1576 0.2387 0.3235 0.3775 0.1176 0.2174 0.2989 0.3543 0.3928

(0.0386) (0.0544) (0.0702) (0.0757) (0.0877) (0.0488) (0.0619) (0.0724) (0.0799) (0.0822)

KMW 0.9163 0.1179 0.2435 0.3603 0.4797 0.5694 0.1570 0.2976 0.4151 0.5180 0.5855

(0.0480) (0.0640) (0.0773) (0.0866) (0.0998) (0.0542) (0.0687) (0.0792) (0.0856) (0.0967)

1.6094 0.1550 0.3230 0.4815 0.6372 0.7468 0.1843 0.3600 0.5161 0.6628 0.7495

(0.0561) (0.0759) (0.0907) (0.0942) (0.1034) (0.0602) (0.0763) (0.0857) (0.0919) (0.1030)

2.9990 0.1883 0.3716 0.5735 0.7451 0.8613 0.1956 0.3857 0.5738 0.7520 0.8495

(0.0677) (0.0904) (0.0959) (0.1030) (0.0982) (0.0644) (0.0850) (0.0937) (0.1007) (0.1045)

0.2231 0.0405 0.0816 0.1225 0.1591 0.1897 0.0656 0.1171 0.1550 0.1807 0.1948

(0.0266) (0.0368) (0.0476) (0.0528) (0.0624) (0.0339) (0.0450) (0.0531) (0.0575) (0.0601)

0.5108 0.0820 0.1596 0.2417 0.3228 0.3768 0.1178 0.2169 0.2990 0.3532 0.3918

(0.0365) (0.0510) (0.0658) (0.0727) (0.0824) (0.0461) (0.0590) (0.0694) (0.0771) (0.0789)

KMPW 0.9163 0.1193 0.2452 0.3619 0.4768 0.5660 0.1576 0.2988 0.4177 0.5163 0.5847

(0.0459) (0.0610) (0.0729) (0.0806) (0.0936) (0.0510) (0.0652) (0.0764) (0.0810) (0.0895)

1.6094 0.1560 0.3229 0.4798 0.6302 0.7400 0.1860 0.3603 0.5150 0.6581 0.7482

(0.0524) (0.0705) (0.0862) (0.0860) (0.0931) (0.0568) (0.0735) (0.0790) (0.0827) (0.0905)

2.9990 0.1882 0.3711 0.5697 0.7416 0.8595 0.1979 0.3866 0.5700 0.7404 0.8421

(0.0622) (0.0846) (0.0900) (0.0928) (0.0833) (0.0597) (0.0792) (0.0863) (0.0895) (0.0887)

The problem that we consider in this part is more simpler since we are assuming

that the first gap time is uncensored. Here we consider a (X,T ) be a random vector

where the response variable T denotes a lifetime, which is subject to random right
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Table 2.6: Mean values and standard deviation of F̂12(x, y) for the

bivariate exponential scenario. Sample size of n = 100, uniform

censoring C ∼ U [0, 4].

δ = 0 δ = 1

y 0.2231 0.5108 0.9163 1.6094 2.9990 0.2231 0.5108 0.9163 1.6094 2.9990

x

0.2231 0.0651 0.1174 0.1588 0.1861 0.1955 0.0667 0.1209 0.1606 0.1868 0.1946

(0.0255) (0.0348) (0.0384) (0.0411) (0.0416) (0.0254) (0.0342) (0.0379) (0.0405) (0.0427)

0.5108 0.1191 0.2156 0.2997 0.3592 0.3879 0.1210 0.2170 0.2954 0.3607 0.3892

(0.0342) (0.0416) (0.0488) (0.0527) (0.0541) (0.0340) (0.0436) (0.0459) (0.0501) (0.0542)

CKM 0.9163 0.1629 0.3013 0.4211 0.5195 0.5816 0.1615 0.3016 0.4211 0.5223 0.5742

(0.0388) (0.0493) (0.0534) (0.0579) (0.0576) (0.0390) (0.0495) (0.0547) (0.0568) (0.0586)

1.6094 0.1958 0.3732 0.5328 0.6752 0.7630 0.1942 0.3706 0.5281 0.6744 0.7647

(0.0447) (0.0578) (0.0608) (0.0590) (0.0569) (0.0435) (0.0553) (0.0589) (0.0561) (0.0579)

2.9990 0.2161 0.4238 0.6155 0.7924 0.9003 0.2156 0.4194 0.6125 0.7908 0.9025

(0.0469) (0.0591) (0.0597) (0.0632) (0.0575) (0.0461) (0.0599) (0.0621) (0.0621) (0.0561)

0.2231 0.0397 0.0806 0.1201 0.1602 0.1878 0.0663 0.1179 0.1571 0.1867 0.1991

(0.0212) (0.0315) (0.0363) (0.0392) (0.0444) (0.0266) (0.0358) (0.0385) (0.0417) (0.0411)

0.5108 0.0787 0.1585 0.2396 0.3206 0.3784 0.1193 0.2192 0.2976 0.3603 0.3927

(0.0301) (0.0387) (0.0478) (0.0550) (0.0606) (0.0345) (0.0458) (0.0505) (0.0528) (0.0556)

Lin 0.9163 0.1190 0.2396 0.3572 0.4810 0.5760 0.1559 0.2992 0.4178 0.5185 0.5817

(0.0376) (0.0502) (0.0571) (0.0603) (0.0665) (0.0406) (0.0526) (0.0572) (0.0606) (0.0626)

1.6094 0.1614 0.3223 0.4846 0.6417 0.7728 0.1853 0.3579 0.5183 0.6632 0.7823

(0.0440) (0.0584) (0.0646) (0.0696) (0.0639) (0.0461) (0.0576) (0.0640) (0.0675) (0.0610)

2.9990 0.1909 0.3801 0.5671 0.7706 0.9236 0.1981 0.3889 0.5833 0.7878 0.9306

(0.0601) (0.0706) (0.0805) (0.0725) (0.0584) (0.0575) (0.0717) (0.0846) (0.0812) (0.0530)

0.2231 0.0396 0.0798 0.1193 0.1590 0.1892 0.0638 0.1185 0.1585 0.1875 0.1967

(0.0202) (0.0288) (0.0361) (0.0404) (0.0487) (0.0251) (0.0347) (0.0391) (0.0416) (0.0463)

0.5108 0.0794 0.1580 0.2395 0.3182 0.3814 0.1167 0.2189 0.2995 0.3604 0.3956

(0.0282) (0.0380) (0.0475) (0.0553) (0.0629) (0.0332) (0.0451) (0.0506) (0.0535) (0.0621)

KMW 0.9163 0.1217 0.2390 0.3593 0.4802 0.5694 0.1569 0.3007 0.4176 0.5198 0.5809

(0.0344) (0.0482) (0.0542) (0.0628) (0.0738) (0.0388) (0.0508) (0.0558) (0.0592) (0.0710)

1.6094 0.1586 0.3194 0.4810 0.6432 0.7544 0.1839 0.3615 0.5157 0.6670 0.7591

(0.0417) (0.0529) (0.0621) (0.0619) (0.0705) (0.0423) (0.0541) (0.0602) (0.0626) (0.0734)

2.9990 0.1904 0.3802 0.5707 0.7505 0.8716 0.1955 0.3918 0.5784 0.7595 0.8578

(0.0491) (0.0646) (0.0711) (0.0733) (0.0717) (0.0445) (0.0617) (0.0684) (0.0757) (0.0768)

0.2231 0.0410 0.0813 0.1219 0.1603 0.1895 0.0635 0.1179 0.1571 0.1846 0.1939

(0.0190) (0.0265) (0.0334) (0.0369) (0.0435) (0.0237) (0.0329) (0.0374) (0.0395) (0.0431)

0.5108 0.0817 0.1615 0.2420 0.3198 0.3811 0.1176 0.2186 0.2989 0.3581 0.3945

(0.0261) (0.0361) (0.0447) (0.0513) (0.0587) (0.0318) (0.0435) (0.0482) (0.0510) (0.0580)

KMPW 0.9163 0.1237 0.2425 0.3613 0.4775 0.5680 0.1583 0.3021 0.4187 0.5184 0.5826

(0.0320) (0.0446) (0.0516) (0.0589) (0.0675) (0.0373) (0.0491) (0.0529) (0.0568) (0.0666)

1.6094 0.1605 0.3205 0.4797 0.6377 0.7523 0.1870 0.3637 0.5151 0.6613 0.7618

(0.0380) (0.0488) (0.0581) (0.0570) (0.0650) (0.0393) (0.0512) (0.0577) (0.0573) (0.0635)

2.9990 0.1905 0.3798 0.5697 0.7524 0.8803 0.2003 0.3956 0.5743 0.7493 0.8607

(0.0429) (0.0600) (0.0664) (0.0658) (0.0590) (0.0404) (0.0562) (0.0630) (0.0634) (0.0583)

censoring, and X denotes a covariate. Note that the CKM estimator is consistent in

this case.

Now we compare by simulations the 6 estimators (CKM, KMW, KMPW, Lin,

condBIV 1 and condBIV 2), for the bivariate distribution function of (X,T ). In this
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Table 2.7: Mean values and standard deviation of F̂12(x, y) for the

bivariate Weibull scenario. Sample size n = 50 and n = 100.

n = 50 n = 100

y 3.3067 5.0030 6.7006 8.8805 10.622 3.3067 5.0030 6.7006 8.8805 10.622

x

3.3067 0.1155 0.1575 0.1821 0.1876 0.1918 0.1164 0.1608 0.1830 0.1944 0.1958

(0.0531) (0.0586) (0.0612) (0.0633) (0.0634) (0.0356) (0.0423) (0.0455) (0.0446) (0.0447)

5.0030 0.1699 0.2672 0.3334 0.3743 0.3833 0.1658 0.2661 0.3333 0.3726 0.3899

(0.0663) (0.0780) (0.0856) (0.0822) (0.0832) (0.0457) (0.0532) (0.0597) (0.0585) (0.0584)

CKM 6.7006 0.2008 0.3491 0.4647 0.5448 0.5695 0.1979 0.3496 0.4614 0.5431 0.5714

(0.0707) (0.0885) (0.0935) (0.0940) (0.0920) (0.0508) (0.0613) (0.0659) (0.0646) (0.0648)

8.8805 0.2231 0.4081 0.5657 0.7014 0.7549 0.2222 0.4100 0.5606 0.7029 0.7558

(0.0804) (0.0998) (0.1017) (0.0991) (0.0900) (0.0574) (0.0704) (0.0715) (0.0645) (0.0639)

10.622 0.2343 0.4379 0.6145 0.7719 0.8356 0.2347 0.4341 0.6139 0.7704 0.8390

(0.0826) (0.1019) (0.1073) (0.0970) (0.0860) (0.0599) (0.0724) (0.0762) (0.0653) (0.0607)

3.3067 0.1137 0.1572 0.1814 0.1917 0.1958 0.1127 0.1565 0.1793 0.1933 0.1982

(0.0574) (0.0595) (0.0647) (0.0624) (0.0639) (0.0384) (0.0444) (0.0447) (0.0441) (0.0454)

5.0030 0.1550 0.2611 0.3267 0.3757 0.3863 0.1555 0.2616 0.3315 0.3700 0.3922

(0.0678) (0.0815) (0.0847) (0.0851) (0.0821) (0.0520) (0.0586) (0.0632) (0.0585) (0.0588)

Lin 6.7006 0.1774 0.3266 0.4551 0.5412 0.5845 0.1830 0.3306 0.4506 0.5377 0.5757

(0.0786) (0.1007) (0.0996) (0.0967) (0.0914) (0.0580) (0.0674) (0.0724) (0.0642) (0.0657)

8.8805 0.1954 0.3777 0.5412 0.6906 0.7476 0.1931 0.3717 0.5407 0.6913 0.7521

(0.0860) (0.1092) (0.1112) (0.1101) (0.0994) (0.0607) (0.0767) (0.0809) (0.0732) (0.0659)

10.622 0.1991 0.3902 0.5742 0.7585 0.8322 0.1988 0.3991 0.5763 0.7525 0.8304

(0.0950) (0.1111) (0.1203) (0.1071) (0.0985) (0.0646) (0.0779) (0.0819) (0.0797) (0.0694)

3.3067 0.1141 0.1599 0.1792 0.1947 0.1987 0.1138 0.1577 0.1810 0.1939 0.1971

(0.0546) (0.0623) (0.0686) (0.0751) (0.0732) (0.0378) (0.0464) (0.0480) (0.0500) (0.0533)

5.0030 0.1573 0.2601 0.3307 0.3816 0.3895 0.1578 0.2654 0.3300 0.3754 0.3899

(0.0656) (0.0810) (0.0924) (0.0984) (0.0990) (0.0432) (0.0574) (0.0625) (0.0661) (0.0714)

KMW 6.7006 0.1765 0.3243 0.4504 0.5480 0.5776 0.1799 0.3302 0.4521 0.5431 0.5775

(0.0692) (0.0906) (0.1016) (0.1113) (0.1149) (0.0508) (0.0643) (0.0722) (0.0797) (0.0803)

8.8805 0.1898 0.3788 0.5461 0.6830 0.7559 0.1957 0.3734 0.5397 0.6835 0.7540

(0.0713) (0.0980) (0.1098) (0.1174) (0.1086) (0.0521) (0.0689) (0.0797) (0.0796) (0.0777)

10.622 0.1970 0.3890 0.5769 0.7544 0.8319 0.1945 0.3894 0.5776 0.7517 0.8279

(0.0735) (0.0983) (0.1144) (0.1117) (0.1038) (0.0520) (0.0727) (0.0803) (0.0781) (0.0722)

3.3067 0.1052 0.1502 0.1713 0.1861 0.1915 0.1036 0.1465 0.1704 0.1848 0.1894

(0.0508) (0.0599) (0.0665) (0.0719) (0.0708) (0.0346) (0.0445) (0.0459) (0.0487) (0.0514)

5.0030 0.1533 0.2541 0.3259 0.3803 0.3913 0.1543 0.2578 0.3250 0.3744 0.3912

(0.0612) (0.0799) (0.0906) (0.0963) (0.0978) (0.0405) (0.0550) (0.0618) (0.0651) (0.0697)

KMPW 6.7006 0.1779 0.3217 0.4487 0.5522 0.5838 0.1813 0.3253 0.4520 0.5484 0.5859

(0.0656) (0.0874) (0.0974) (0.1062) (0.1105) (0.0464) (0.0599) (0.0696) (0.0763) (0.0767)

8.8805 0.1929 0.3722 0.5398 0.6833 0.7591 0.2007 0.3689 0.5346 0.6860 0.7605

(0.0653) (0.0909) (0.1044) (0.1096) (0.1017) (0.0482) (0.0644) (0.0751) (0.0753) (0.0729)

10.622 0.2006 0.3807 0.5634 0.7473 0.8303 0.2014 0.3841 0.5666 0.7440 0.8282

(0.0671) (0.0901) (0.1084) (0.1041) (0.0935) (0.0471) (0.0662) (0.0759) (0.0745) (0.0670)

scenario a covariate quantitative X was generated according U [0, 1]. The survival

time of individuals T is exponential with parameter 1+X. The exponential censoring

time C was generated according to model exp(1.471972). We show the results for

n = 200 based on 1000 generated samples. We can see in Table 2.8 that the CKM

and condBIV 2 are the ones with less MSE. The method based on presmoothing leads
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to good results for some quantiles. For the largest values of x and y, we observe that

the values of MSE decreased. The values decrease when the sample size increases,

results not shown here.

Table 2.8: Mean Square Error of bivariate distribution function with

sample size n = 200

y 0.1002 0.3424 0.6603 0.8161 1.3009 1.5719

x

0.1 0.000050 0.000180 0.000362 0.000463 0.000624 0.000673

0.25 0.000143 0.000451 0.000819 0.001026 0.001435 0.001610

CKM 0.5 0.000305 0.000865 0.001539 0.001762 0.002363 0.002603

0.75 0.000480 0.001270 0.001925 0.002079 0.002658 0.002980

0.9 0.000576 0.001479 0.002136 0.002315 0.002765 0.002949

0.1 0.000218 0.000802 0.001046 0.000989 0.000730 0.000689

0.25 0.000815 0.003402 0.003976 0.003460 0.002000 0.001717

Lin 0.5 0.001211 0.007811 0.008508 0.007059 0.003744 0.003129

0.75 0.000901 0.007411 0.008536 0.007097 0.004137 0.003664

0.9 0.004424 0.004182 0.006566 0.005944 0.004326 0.003876

0.1 0.000045 0.000153 0.000360 0.000512 0.001009 0.001264

0.25 0.000132 0.000503 0.001537 0.002313 0.004757 0.005974

KMW 0.5 0.000306 0.001098 0.003812 0.005675 0.011650 0.014526

0.75 0.000609 0.001314 0.003181 0.004734 0.010109 0.012743

0.9 0.001062 0.002100 0.002347 0.002548 0.004242 0.005294

0.1 0.000022 0.000096 0.000283 0.000418 0.000890 0.001106

0.25 0.000069 0.000384 0.001403 0.002143 0.004550 0.005659

KMPW 0.5 0.000176 0.000947 0.003709 0.005559 0.011510 0.014261

0.75 0.000378 0.001054 0.002877 0.004358 0.009547 0.012039

0.9 0.000786 0.001782 0.001739 0.001876 0.003287 0.004219

0.1 0.000192 0.000643 0.000929 0.000944 0.000851 0.000774

0.25 0.000718 0.002363 0.003173 0.003110 0.002572 0.002185

condBIV 1 0.5 0.001681 0.005580 0.007034 0.006724 0.005137 0.004065

0.75 0.002477 0.007963 0.010011 0.009049 0.006572 0.005103

0.9 0.002767 0.008921 0.010925 0.010242 0.007402 0.005439

0.1 0.000037 0.000140 0.000274 0.000357 0.000496 0.000545

0.25 0.000131 0.000423 0.000751 0.000942 0.001273 0.001379

condBIV 2 0.5 0.000290 0.000844 0.001494 0.001709 0.002203 0.002337

0.75 0.000461 0.001229 0.001918 0.002058 0.002517 0.002877

0.9 0.000562 0.001444 0.002109 0.002272 0.002640 0.003041
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2.3.2 Conditional Bivariate Distribution

In this section, we carry out some simulations to investigate the behavior of the

proposed estimators for finite sample sizes. More specifically, the Beran-type estimator

with estimators by Lin et al. (1999) and de Uña-Álvarez and Meira-Machado (2008).

The two competing nonparametric regression estimators F̂12(z;x, y) (IPCW) and

F̃12(z;x, y) (LIN-based) introduced in Section 2.2.3 are compared them to each other.

To simulate the data we follow the work described by Amorim et al. (2011), but

including covariate effects. In summary, the simulation procedure is as follows:

(1) V1 ∼ U(0, 1); V2 ∼ U(0, 1) and Z ∼ U(0, 1) are independently generated;

(2) U1 = V1; A = (2U1 − 1)− 1; B = (1− (2U1 − 1))2 + 4V2(2U1 − 1)

(3) U2 = 2V2√
B−A

(4) T1 = ln( 1
1−U1

); T2 = ln( 1
1−U2

)

(5) λ(Z) = 0.6Z + 0.4; T1(Z) = T1
λ(Z)

; T2(Z) = T2
λ(Z)

and T = T1(Z) + T2(Z)

Note that the transformation of the Z and T in item (5) introduce some depen-

dency of the covariate on the gap times. For the censoring variable we considered that

C|Z = z is generated from an exponential distribution with rate λ(z) = 0.15+0.35z,

this scenario provides dependent censoring.

The goal of this simulation study is to investigate the performance of the two

proposed estimators for the conditional bivariate distribution (LIN-based and IPCW)

and to compare them to each other. For measuring the estimates’ performance we

computed the integrated mean square errors (IMSE) of the estimates. For each

simulated scenario we derived the analytic expression of F12(z;x, y) so that the MSE

of the estimator could be computed. M = 1000 Monte Carlo trials were generated

with four different sample sizes n = 50, 100, 150 and 200 (only results for sample

sizes n = 100 and n = 200 are shown). Let F̂ k
12(z;x, y) denote the estimated

conditional bivariate distribution based on the kth generated data set. For each fixed

triple (z;x, y) we computed the pointwise estimates of the MSE as:
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M̂SE(F̂12(z;x, y)) =
1

M

M∑
k=1

[F̂ k
12(z;x, y)− F12(z;x, y)]2

To summarize the results we fixed the values of (x, y) using several quantiles (the

same pairs as used in the paper by Lin et al. (1999)) and calculated the IMSE as

ÎMSE =
∑
z

M̂SE(F̂12(z;x, y))× δ

The results displayed in Tables 2.9 and 2.10 were obtained by numerical integration

on the interval of Z, taking a grid of step δ = 0.025. To compute the conditional bi-

variate distribution we have used a common bandwidth selector and Gaussian kernels.

To this end we have used the dpik function from the R KernSmooth package. This

is the data based bandwidth selector of Wand and Jones (1995). For the computation

of W1(z, bn) we have used Local Linear and Nadaraya-Watson weights.

Results shown in Tables 2.9 and 2.10 support the idea that the IPCW method

leads to better results for the conditional bivariate distribution. As expected, the

IMSE decreases with an increase in the sample size. The IMSE increase with x and

with y.

Figure 2.1 depicts the averaged estimates for the bivariate distribution function

along 1000 Monte Carlo trials of size 100. Results obtained for the two methods by

fixing x = 0.2231 and y = 0.9163, and varying Z, reveal that both methods are

almost unbiased.

In Figure 2.2 we present plots for the conditional bivariate distribution, based

on simulated data, by fixing x = 0.2231 and considering two possible values for

the covariate information (first and third quartile). The results obtained for the

two methods, based on a single Monte Carlo sample with size 1000, show that the

estimates of the bivariate distribution greatly depends on covariate information.
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Table 2.9: Integrated Mean Square Error (x1000) of the estimated

bivariate distribution F̂12(z;x, y) along 1,000 trials for different sam-

ple sizes; Results for IPCW and LIN-based methods using Nadaraya-

Watson weights.

y 0.2231 0.5108 0.9163 1.6094

x

n=100 IPCW 0.2231 0.9741 1.9338 2.6740 3.4968

LIN-based 1.0411 1.9978 2.6976 3.2134

IPCW 0.5108 1.8276 3.4581 4.7382 6.1404

LIN-based 2.0400 3.7950 5.0302 5.9663

IPCW 0.9163 2.6538 4.9718 6.6870 8.4243

LIN-based 3.0459 5.5695 7.3580 8.4556

IPCW 1.6094 3.4150 6.2015 8.4886 10.0234

LIN-based 4.0485 7.0899 9.5805 10.7170

n=200 IPCW 0.2231 0.6707 1.2795 1.8296 2.3932

LIN-based 0.7421 1.3731 1.8603 2.1953

IPCW 0.5108 1.2427 2.3095 3.2838 4.2425

LIN-based 1.4330 2.6043 3.4980 4.1050

IPCW 0.9163 1.7842 3.2508 4.5633 5.8255

LIN-based 2.0612 3.6827 4.9211 5.8276

IPCW 1.6094 2.3310 4.1534 5.9006 7.1868

LIN-based 2.8839 4.9110 6.6283 7.7565
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Figure 2.1: Conditional bivariate distribution F̂12(z; 0.2231, 0.9163).

Nadaraya-Watson (left hand-side) and Local Linear (right hand-side)

Weights.
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Table 2.10: Integrated Mean Square Error (x1000) of the estimated

bivariate distribution F̂12(z;x, y) along 1,000 trials for different sam-

ple sizes; Results for IPCW and LIN-based methods using Local

Linear weights.

y 0.2231 0.5108 0.9163 1.6094

x

n=100 IPCW 0.2231 1.0292 2.0531 2.8389 3.7110

LIN-based 1.1007 2.1078 2.8478 3.3922

IPCW 0.5108 1.9425 3.6930 5.0470 6.5451

LIN-based 2.1729 4.0381 5.3553 6.3150

IPCW 0.9163 2.8169 5.2762 7.0903 8.9606

LIN-based 3.2403 5.9146 7.7989 8.9281

IPCW 1.6094 3.6130 6.5878 9.0045 10.6468

LIN-based 4.2828 7.5701 10.1949 11.3425

n=200 IPCW 0.2231 0.7451 1.4050 2.0038 2.6408

LIN-based 0.8221 1.5046 2.0397 2.4183

IPCW 0.5108 1.3808 2.5382 3.6222 4.6908

LIN-based 1.5821 2.8487 3.8488 4.5094

IPCW 0.9163 1.9809 3.5798 5.0529 6.4570

LIN-based 2.2903 4.0397 5.4514 6.4123

IPCW 1.6094 2.5959 4.6106 6.5681 8.0202

LIN-based 3.2042 5.4484 7.4278 8.6701
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Figure 2.2: Conditional bivariate distribution F̂12(z;x, y) based

on simulated data. IPCW method (left hand-side) and Lin-based

method (right hand-side).
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2.4 Real Data Illustration

To illustrate our methods use data from a German Breast cancer (described in

detail in Chapter 1). From the total of 686 women, 299 developed a recurrence

and among these 171 died. A vector of covariates including age at acceptance were

also recorded. Recurrence can be considered as an intermediate transient state and

modeled using a progressive three-state model with states “Alive and disease-free”,

“Alive with Recurrence” and “Dead”.

In this section we will provide results for the bivariate distribution function (CKM,

KMW, KMPW and Lin) and for the conditional bivariate distribution (Lin-based and

IPCW). All methods will be illustrated using several plots and tables.

To illustrate the estimators for the bivariate distribution function we present in

Table 2.11 some estimates for several specific values for all four estimators introduced

in Section 2.2.2. We can see that all four methods provide similar values for all pairs

of values. The performance of the four methods can be seen in Figure 2.3 by fixing

x = 567. The graph reveals that the values are similar. The Lin estimator provides

non-monotone curves which can be considered a serious problem. The good behaviour

of the CKM estimator in Figure 2.3, is explain by the low proportion of censoring for

the subset of data (T1 ≤ 567).

Figure 2.4 depicts the estimates along the covariate age together with 95% point-

wise confidence bands based on simple bootstrap. In both plots it is seen that these

curves are not constant; the effects of age depicted in these plots, which are purely

nonparametric indicate some influence of this covariate in the bivariate distribution

function. Both plots, based on different methods, suggest that the bivariate distribu-

tion function decreases with age. A visual inspection suggest that patients near thirty

years old have higher values for the bivariate distribution than those in near seventy

years old.

We plot in Figure 2.5 the conditional bivariate distribution for patients with 35

years old and patients with 65 years old. A particular problem of LIN-based method

is appreciated in these figure, because the displayed curves for F12(z;x, y) are not
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Figure 2.3: Evolution of the bivariate distribution F̂12(567, y).

Breast cancer data.
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Figure 2.4: Evolution of the bivariate distribution F̂12(567, 1685)

along the covariate age. IPCW method on the left hand-side and

LIN-based method on right hand-side. Breast cancer data.

monotone increasing in y. This is a consequence of the specific reweighting of the

data which is used in this approach. This reweighting is the explanation why the

LIN-based methods has several jump point in contrast to the IPCW method. The

Table 2.12 show the estimates for the conditional bivariate distribution for patients

with 35 and 65 years old.
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Table 2.11: Estimates for the bivariate distribution function for sev-

eral quantiles. Breast cancer study.

y 567 1084 1685

x

CKM 567 0.1164 0.1511 0.1679

Lin 0.1049 0.1403 0.1345

KMPW 0.1166 0.1490 0.1639

KMW 0.1155 0.1488 0.1676

CKM 1084 0.1875 0.2553 0.2944

Lin 0.1602 0.2305 0.2745

KMPW 0.1885 0.2525 0.2852

KMW 0.1874 0.2547 0.2921

CKM 1685 0.2401 0.3326 0.3912

Lin 0.2017 0.2871 0.3770

KMPW 0.2419 0.3256 0.3993

KMW 0.2324 0.3052 0.3426

CKM 2195 0.2868 0.4025 0.4739

Lin 0.2094 0.3374 0.4273

KMPW 0.2813 0.3747 0.4485

KMW 0.2724 0.3838 0.4212
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Figure 2.5: Conditional bivariate distribution for the Breast cancer

data (IPCW method - left hand-side and LIN-based method - right

hand-side) for age = 35 and age = 65.
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Table 2.12: Estimates of the conditional bivariate distribution.

Breast cancer study.

y 567 1084 1685

x

z=35 IPCW 567 0.1202 0.1347 0.1865

(0.0324,0.2236) (0.0465,0.2381) (0.0791,0.3026)

LIN-based 0.1678 0.2060 0.2405

(0.0530,0.2974) (0.0783,0.3630) (0.1083,0.3847)

IPCW 1084 0.1619 0.2513 0.3031

(0.0518,0.2893) (0.1169,0.4030) (0.1571,0.4517)

LIN-based 0.1898 0.2944 0.3867

(0.0428,0.3404) (0.1316,0.4629) (0.2313,0.5382)

IPCW 1685 0.2052 0.2946 0.3464

(0.0769,0.3568) (0.1431,0.4628) (0.1812,0.52140)

LIN-based 0.0703 0.4781 0.5704

(0.0000,0.2906) (0.2719,0.6691) (0.3939,0.7303)

IPCW 2195 0.2056 0.2950 0.3468

(0.0773,0.3568) (0.1435,0.4665) (0.1812,0.5173)

LIN-based 0.0848 0.4927 0.5850

(0.0000,0.4400) (0.2918,0.8929) (0.4080,0.9695)

z=65 IPCW 567 0.1110 0.1179 0.1218

(0.0595,0.1729) (0.0651,0.1800) (0.0681,0.1842)

LIN-based 0.1082 0.1104 0.0000

(0.0551,0.1732) (0.0507,0.1769) (0.0000,0.1751)

IPCW 1084 0.2234 0.2458 0.2806

(0.1497,0.3043) (0.1706,0.3303) (0.1888,0.3829)

LIN-based 0.1904 0.2198 0.1924

(0.1094,0.2740) (0.1040,0.3382) (0.0000,0.3963)

IPCW 1685 0.2710 0.2934 0.3282

(0.1809,0.3623) (0.2033,0.3842) (0.2246,0.4381)

LIN-based 0.2998 0.2305 0.3673

(0.1835,0.4041) (0.0000,0.4866) (0.1124,0.5759)

IPCW 2195 0.2768 0.2992 0.3340

(0.1885,0.3651) (0.2096,0.3895) (0.2305,0.4457)

LIN-based 0.3072 0.2378 0.3747

(0.1909,0.4129) (0.0000,0.4935) (0.1182,0.5841)
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Chapter 3

Presmoothing the transition

probabilities in the illness-death

model

3.1 Introduction

Multi-state models (Andersen et al., 1993; Meira-Machado et al., 2009) are the

most common models used for the description of longitudinal survival data. A multi-

state model is a stochastic process (X(t), t ∈ T ) with a finite state space, where

X(t) represents the state occupied by the process at time t ≥ 0. For two states i,j

and s < t, introduce the so-called transition probabilities

pij(s, t) = P (X(t) = j|X(s) = i) .

Estimating these quantities is interesting, since they allow for long-term predictions

of the process. The inference in multi-state models is traditionally performed under

the Markov assumption, which states that past and future are independent given the
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present state. Aalen and Johansen (1978) introduced a nonparametric estimator of

pij(s, t) for non-homogeneous Markov models. Their estimation method extends the

time-honored Kaplan-Meier estimator (Kaplan and Meier, 1958) to Markov chains.

As for the Kaplan-Meier, the standard error of the Aalen-Johansen estimator may be

large when censoring is heavy, particularly with a small sample size. Interestingly, the

variance of the Kaplan-Meier estimator may be reduced by presmoothing. The idea

of presmoothing (Dikta, 1998) involves replacing the censoring indicators by some

smooth fit before the Kaplan-Meier formula is applied. This preliminary smoothing

may be based on a certain parametric family such as the logistic (thus leading to a

semiparametric estimator), or on a nonparametric estimator of the binary regression

curve. Successful applications of presmoothed estimators include nonparametric curve

estimation (Cao and Jácome, 2004), regression analysis (de Uña Álvarez and Campos-

Rodŕıguez, 2004; Yuan, 2005), and the estimation of the bivariate distribution of

censored gap times (de Uña-Álvarez and Amorim, 2011). The main goal of the present

chapter is to propose a presmoothed version of the Aalen-Johansen estimator for the

transition matrix of a Markov illness-death model, and to investigate its statistical

properties. The proposed estimator is different to that in Amorim et al. (2011), who

considered presmoothed transition probabilities for possibly non-Markov models. In

general, Markov and non-Markov approaches lead to completely different estimators,

so markovian estimators can not be obtained as particular cases of non-markovian

estimators, and vice-versa.

The rest of the chapter is organized as follows. In Section 3.2 we introduce the new

estimator and we formally establish its consistency. In Section 3.3 we compare by

simulations the proposed estimator to the original Aalen-Johansen curve. In Section

3.4 we illustrate the proposed method using data from the Stanford Heart Transplant

study, previously presented in Chapter 1. Technical proofs are deferred to Section 3.5.
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3.2 The estimator: Main Results

In this chapter we consider the (progressive) illness-death model depicted in Fig-

ure 1.3. We assume that all subjects are in State 1 (“healthy”) at time t = 0, and that

they may either visit State 2 (“diseased”) at some time point; or not, going directly

to the absorbing (“dead”) state. Given two time points s < t, there are in essence

three different transition probabilities to estimate: p11(s, t), p12(s, t), and p22(s, t).

The two other transition probabilities (p13(s, t) and p23(s, t)) can be obtained from

p13(s, t) = 1− p11(s, t)− p12(s, t) and p23(s, t) = 1− p22(s, t).

The irreversible illness-death model is fully characterized by three transitions rep-

resented by the arrows in Figure 1.3. Let Tij denote the potential transition time

from State i to State j. In this model we have two competing transitions 1→ 2 and

1 → 3. Therefore, we denote by ρ = I(T12 ≤ T13) the indicator of visiting state 2

at some time, and introduce Z = T12 ∧ T13, the sojourn time in state 1. A subject

visiting State 2 will arrive at the absorbing “dead” state at time T12 + T23, while this

time will be T13 for those not visiting State 2 (i.e. ρ = 0). Finally, let T = Z + ρT23

denote the total survival time of the process. However, because of follow-up limi-

tations, lost cases and so on, rather than (Z, T, ρ) one observes (Z̃, T̃ ,∆1,∆,∆1ρ)

where Z̃ = Z∧C, T̃ = T ∧C, ∆1 = I(Z ≤ C) and ∆ = I(T ≤ C). Here C denotes

the potential censoring time, which we assume to be independent of the process (that

is, C and (Z, T ) are assumed to be independent). Under continuity, the information

provided by ∆1ρ is superfluous since we have ∆1ρ = I(Z̃ < T̃ ). With this notation,

the transition probabilities are written as

p11(s, t) =
P (Z > t)

P (Z > s)
, p12(s, t) =

P (s < Z ≤ t, T > t)

P (Z > s)
,

p22(s, t) =
P (Z ≤ s, T > t)

P (Z ≤ s, T > s)
.

Under the Markov assumption, all these quantities are estimated nonparametrically

using Aalen-Johansen estimators. Explicit formulae of the Aalen-Johansen estimator
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for the illness-death model are available (Borgan, 1998). Here we give alternative

expressions for this estimator suitable to motivate our method of presmoothing below.

Assume that we have a sample of n individuals from the population under study.

Let (Z̃i, T̃i,∆1i,∆i,∆1iρi), i = 1, ..., n be the corresponding sampling informa-

tion. The Aalen-Johansen estimate of the transition probability p11(s, t) is the Kaplan-

Meier estimator

p̂AJ11 (s, t) =
∏

s<Z̃i≤t

[
1− ∆1i

nM̃0n(Z̃i)

]
(3.1)

where

M̃0n(y) =
1

n

n∑
j=1

I(Z̃j ≥ y).

Then, Aalen-Johansen estimate of the transition probability p22(s, t) is the Kaplan-

Meier estimator

p̂AJ22 (s, t) =
∏

s<T̃i≤t,Z̃i<T̃i

[
1− ∆i

nM̃1n(T̃i)

]
(3.2)

where

M̃1n(y) =
1

n

n∑
j=1

I(Z̃j < y ≤ T̃j).

Finally, the estimator for p12(s, t) is given by

p̂AJ12 (s, t) =
1

n

n∑
i=1

p̂AJ11 (s, Z̃−i )p̂AJ22 (Z̃i, t)I(s < Z̃i ≤ t, Z̃i < T̃i)

nM̃0n(Z̃i)
(3.3)

where

p̂AJ11 (s, t−) = limu↑tp̂
AJ
11 (s, u)
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Now, we discuss how to introduce modified estimators based on presmoothing.

Presmoothing the Aalen-Johansen (AJ) involves replacing the censoring indicators (in

the transition probabilities p11(s, t) and p22(s, t)) by a smooth fit. The presmoothed

version of p11(s, t) is obtained by replacing the ∆1i’s in (3.1) by some smooth fit to

the binary regression function m0(z) = P
(

∆1 = 1|Z̃ = z
)

(see e.g. Dikta (1998)).

Then, the corresponding presmoothed Aalen-Johansen (P-AJ) estimator is given by

p̃PAJ11 (s, t) =
∏

s<Z̃i≤t

[
1− m0n(Z̃i)

nM̃0n(Z̃i)

]
(3.4)

where m0n(z) stands for an estimator of the binary regression function m0(z). Then,

m0(Z̃) is the conditional probability of the event ∆1 = 1 given Z̃. Since the pair

Z̃,∆1 is observable, the function m0(z) can be estimated by standard methods. For

example, logistic regression may be performed. Consider now the presmoothed version

of (3.2) given by

p̃PAJ22 (s, t) =
∏

s<T̃i≤t,Z̃i<T̃i

[
1− m1n(Z̃i, T̃i)

nM̃1n(T̃i)

]
(3.5)

where m1n(z, t) stands for an estimator of the binary regression function m1(z, t) =

P
(

∆ = 1|Z̃ = z, T̃ = t,∆1ρ = 1
)

. Then, m1(Z̃, T̃ ) is the conditional probability of

the event ∆ = 1 given (Z̃, T̃ ) and given that transition 1→ 2 is observed (∆1ρ = 1).

Amorim et al. (2011) discussed the role of the function m1(z, t) as a suitable pres-

moothing strategy for p22(s, t); although these authors considered a different context

in which the Markov assumption may not hold, their discussion on the presmooth-

ing issue remains valid here. As before, Z̃, T̃ ,∆ and ∆1ρ are observable, allowing

the function m1(z, t) to be estimated by standard methods. Finally the transition

probability p12(s, t) can be estimated by plugging (3.4) and (3.5) into equation (3.3).

The estimator m0n(z) is based on the whole sample, while m1n(z, t) is based on

the subsample i : ∆1iρi = 1. We assume that these two empirical functions approxi-

mate well their targets in a uniform sense; more specifically, set
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U1 : sup
z
|m0n(z)−m0(z)| → 0 w. p. 1,

and

U2 : sup
z,t
|m1n(z, t)−m1(z, t)| → 0 w. p. 1.

Conditions under which U1 and U2 can be fulfilled were investigated in a number

of papers, including Dikta (1998, 2000), Devroye (1978a,b), Mack and Silverman

(1982) and Hardle and Luckhaus (1984). The uniform consistency of p̂PAJ11 (s, t) will

hold on 0 ≤ s < t ≤ τ , where τ is strictly smaller than the upper bound of the support

of Z̃. Put M̃1(y) = P (Z̃ < y ≤ T̃ ). For the uniform consistency of p̂PAJ22 (s, t) and

p̂PAJ12 (s, t) we will refer to the following assumption:

M : M̃1 is bounded from below on [τ0, τ1] .

This condition allows to handle some denominators which appear in the proofs. It

can be interpreted as a“non empty risk set”assumption for the transition from State

2 to State 3. By force, τ0 > 0, while τ1 is (similarly as for τ) strictly smaller than the

upper bound of the support of T̃ . We have the following result and the respectively

proof.

Theorem 1. (a) Under U1 we have w. p. 1

sup
0≤s<t≤τ

∣∣p̂PAJ11 (s, t)− p11(s, t)
∣∣→ 0.

(b) Besides, under U2 and M , we have w. p. 1

sup
τ0≤s<t≤τ1

∣∣p̂PAJ22 (s, t)− p22(s, t)
∣∣→ 0.

(c) Finally, under U1, U2 and M we have w. p. 1

sup
τ0≤s<t≤τ

∣∣p̂PAJ12 (s, t)− p12(s, t)
∣∣→ 0.
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3.3 Simulation Study

In this section, we compare by simulations the presmoothed Aalen-Johansen esti-

mator for the transition probabilities to the original Aalen-Johansen estimator. More

specifically, the AJ and P-AJ type estimators p̂11 (s, t), p̂12 (s, t) and p̂22 (s, t) in-

troduced in Section 3.2 are considered. As presmoothing function we always take

a parametric (logistic) family, so we actually have a semiparametric Aalen-Johansen

estimator.

To simulate the data in the illness-death model, we followed the work of Amorim

et al. (2011). We assume that all individuals are in State 1 (“healthy”) at time t = 0.

Therefore, the patient’s history (or course) may be divided into two groups according

to whether the disease occurred (that is, passing through State 2) (1 → 2 → 3) or

not (1→ 3). We separately consider these two possible subgroups of individuals. For

the first subgroup of individuals (ρ = 1), the successive gap times (Z, T − Z) are

simulated according to the bivariate distribution

F12(x, y) = F1(x)F2(y) [1 + θ {1− F1(x)} {1− F2(y)}]

with unit exponential margins. The parameter θ controls for the amount of depen-

dency between the gap times (Z, T − Z) and was set to 0 and 1, corresponding to 0

and 0.25 correlation between Z and T − Z. For the second subgroup of individuals

(ρ = 0), the value of Z is simulated according to an exponential with rate parameter

1. In summary the simulation procedure is as follows:

Step 1 Draw ρ ∼ Ber(p) where p is the proportion of subjects passing through

State 2.

Step 2 If ρ = 1 then:

a) V1 ∼ U(0, 1), V2 ∼ U(0, 1) are independently generated;

b) U1 = V1, A = θ(2U1 − 1)− 1, B = (1− θ(2U1 − 1))2 + 4θV2(2U1 − 1)

c) U2 = 2V2√
B−A
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d) Z = log( 1
1−U1

), T = log( 1
1−U2

) + Z

Step 3 If ρ = 0 then:

a) Z = log( 1
1−U(0,1)

).

In our simulation we consider that 70% of the individuals were in the first group.

The follow-up time was subjected to right censoring, C, according to uniform models

U [0, 4] and U [0, 3]. The first model results in 24% of censoring on the first gap time

Z, and in 47% of censoring on the second gap time T −Z, for those individuals with

ρ = 1. The second model increases these censoring levels to 32% and about 57%,

respectively.

After some algebra, it is seen that the function

m1(z, t) = P
(

∆ = 1|Z̃ = z, T̃ = t,∆1ρ = 1
)

is written as

m1(z, t) =
1

1 + η1(z, t)
, where η1(z, t) =

λG(t)

λ1
T |Z=z(t|z)

and where λG(.) and λ1
T |Z=z(.|z) stand respectively for the hazard rate of the censoring

variable and the hazard rate of T given Z = z under restriction ρ = 1. Note that

λG(t) = 1/(τG − t) when C ∼ U [0, τG] and that λ1
T |Z=z(t|z) is given by

λ1
T |Z=z(t|z) =

2 + 4 exp(−t)− 2 exp(−z)− 2 exp(−t+ z)

2 + 2 exp(−t)− 2 exp(−z)− exp(−t+ z)
if θ = 1,

being 1 when θ = 0. The function m1(z, t) belongs to the logistic family with some

preliminary transformation of the conditioning variables, namely we have (for β0 = 0

and β1 = 1)

m1(z, t; β) =
1

1 + exp(β0 + β1 ln(η1(z, t)))
.

This is the parametric model we fit to m1(z, t) in the simulations. For m0(z) =

P
(

∆1 = 1|Z̃ = z
)

, we have
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m0(z) =
1

1 + η0(z)
, where η0(z) =

λG(z)

λZ(z)

and where λZ(z) stands for the hazard function of Z.

Similarly as above, we also perform logistic presmoothing for the function m0(z),

with the variable Z̃ transformed by −ln(τG−Z̃). This function belongs to the logistic

family with some preliminary transformation. To estimate the function m0(z) in the

simulations, we fit the logistic model

m0(z; γ) =
1

1 + exp(γ0 + γ1 ln(η0(z)))

which contains the true presmoothing function m0 as a special case (γ0 = 0,γ1 = 1).

The β parameter in model m1(.; β) is estimated via maximization of the condi-

tional likelihood of the ∆i’s given the (Z̃i, T̃i)’s, for those subjects with ∆1ρ = 1 (see

Dikta (1998, 2000)). Similarly, the γ parameter in model m0(.; γ) is estimated via

maximization of the conditional likelihood of the ∆1i’s given the Z̃i’s. Note that the

β parameter is needed for estimating p22(s, t) and p12(s, t), while γ enters the estima-

tion of p11(s, t) and (again) p12(s, t). The aim of this simulation study is to compare

the Aalen-Johansen estimator (1978) and the new estimator based on presmoothing

(P-AJ). Again, for measuring the estimates’ relative performance, we followed the

work of Amorim et al. (2011). As in Amorim et al. (2011), we computed the inte-

grated absolute bias, integrated variance and the integrated MSE of the estimates.

For each simulated setting (θ = 0 and θ = 1) we derived the analytic expression of

pij(s, t) so that the bias and the MSE of the estimator could be examined. K = 1000

data sets were generated, with three different sample sizes n = 50, n = 100 and

n = 200.

Let p̂kij(s, t) denote the estimated transition probability based on the kth generated

data set. For each fixed (s, t) we obtained the mean for all generated data sets,

p̂ij(s, t) = 1
K

∑K
k=1 p̂

k
ij(s, t). We then computed the pointwise estimates of the bias,

variance, MSE and L1 distance as:
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b̂ias(s, t) = pij(s, t)− p̂ij(s, t)

v̂ar(p̂ij(s, t)) =
1

K − 1

K∑
k=1

[p̂kij(s, t)− p̂ij(s, t)]2

M̂SE(p̂ij(s, t)) =
1

K

K∑
k=1

[p̂kij(s, t)− pij(s, t)]2

L̂1(p̂ij(s, t)) =
1

K

K∑
k=1

|p̂kij(s, t)− pij(s, t)|

To summarize the results we also calculated the integrated absolute bias (BIAS),

integrated variance (VAR), the integrated MSE (IMSE) and the integrated L1 distance

(L1), defined in Table 3.1. We fixed the values of s using the quantiles 0.25, 0.5 and

0.75 of the exponential distribution with rate 1. The results given in Tables 3.2 to

3.5 were obtained by numerical integration on the interval [s, t1] with t1 = 4, taking

a grid of step δ = 0.05.

Table 3.1: Summary statistics measuring bias, variance, Mean

Square Error and L1 distance.

Statistic Definition Estimator

Integrated Absolute Bias
∫ t1
s
|bias(s, t)|dt

∑t1
t=s |b̂ias(s, t)|δ

Integrated Variance
∫ t1
s
var(p̂ij(s, t))dt

∑t1
t=s v̂ar(p̂ij(s, t))δ

Integrated MSE
∫ t1
s
MSE(p̂ij(s, t))dt

∑t1
t=s M̂SE(p̂ij(s, t))δ

Integrated L1
∫ t1
s
L1(p̂ij(s, t))dt

∑t1
t=s L̂1(p̂ij(s, t))δ

In Tables 3.2 to 3.5 we report the results for the summary statistics attained by

the proposed estimator when based on several presmoothing functions (P-AJ), for all

scenarios. In all tables, the row labeled with m corresponds to presmoothing with the

true function which is unrealistic in practice, because this function will be typically

unknown. However, this row represents a “gold standard” the other methods can
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be compared to. The row labeled with m(.; β, γ) corresponds to a semiparametric

estimator which is obtained using a presmoothing based on a parametric family which

contains the true m. Specifically, we consider a logistic model with the preliminary

transformation of the conditioning variables Z̃ = z, T̃ = t shown before. In order to

investigate the robustness of the proposed estimator with respect to misspecifications

of the binary regression family, we considered also presmoothing via standard logistic

models, without any preliminary transformation of the gap times. This is labeled with

m(., ξ). Note that the true m does not belong to this parametric family. Finally, we

also report the results pertaining to the Aalen-Johansen estimator, which corresponds

to the situation with no presmoothing at all. This is labeled in the Tables as AJ.

It is obvious from the analysis of Tables 3.2 to 3.5, that presmoothing leads to

estimators with smaller variance and thus attaining better results with regard to the

integrated MSE. As expected, the (integrated) MSE, bias, L1 norm and variance of

the estimated transition probabilities always decrease with an increasing sample size,

while they increase with the censoring degree. The estimator which makes use of the

true m is the one with the best performance. However, this estimator is unrealistic

since in practice one has to estimate the function m. In general, the lowest errors

among the realistic versions of the estimators correspond to the estimator based

on the correctly specified parametric family, m(.; β, γ). However, the presmoothed

estimator based on the wrong parametric model m(.; ξ) is still (much) better than

AJ. This means that it is worthwhile doing some presmoothing even when we are not

completely sure about the parametric family.

Results shown in the Tables 3.2 to 3.5 support the idea that presmoothing leads

to variance improvement. When compared to the estimators based on presmoothing,

the relative efficiency (defined as the quotient between the two integrated MSEs)

of the Aalen-Johansen estimator is always below 1. For higher values of s, where

the censoring effects are stronger, the relative efficiency can drop below 50%. These

findings agree with the results obtained by Amorim et al. (2011) and support the

intuition that the use of presmoothing for the estimation of transition probabilities
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will be more clearly seen in the presence of large censoring degrees.

In general, presmoothing introduces some bias in estimation, while reducing the

variance. This bias component is larger when there is some misspecification in the

chosen parametric model. Our simulation results serve to illustrate this issue too.

Indeed, it is seen that, despite of offering a smaller IMSE, the bias associated to the

semiparametric Aalen-Johansen estimator is sometimes larger than that of the original

Aalen-Johansen.

Tables 3.2 and 3.3 show a systematic bias for all estimators of the transition

probabilities p12(s, t) and p22(s, t). This is because these tables report the results

attained when generating data from a dependency scenario and therefore reflects

the failure of the Markov assumption. To illustrate these features we present in

Figures 3.1 to 3.6 the graphical average results for the two methods (AJ and P-AJ

corresponding to presmoothing via standard logistic models, m(., ξ)). These figures

plot the data generating functions and pointwise 95% oscillation limits of the estimates

p22(s, t), for sample sizes of n = 200 with percentages of censored data obtained using

C ∼ U [0, 3]. The good performance of the resulting estimates (for both methods)

is evident for independent gap times (θ = 0), recovering the functional forms of the

corresponding true curves very successfully. However, a systematic bias of p12(s, t)

and p22(s, t) in the dependent scenario (θ = 1) is also clear, see Figure 3.3 and 3.5.

This bias is much more evident when s is large, in agreement with the amount of

false information introduced by the Markov condition (which increases with s). In all

scenarios, the use of the presmoothing yields estimators with less variability.

To better understand the finite sample performance of these estimators we illus-

trate in Figures 3.7 to 3.11 the behavior of the MSE, variance and efficiency over a

variety of scenarios. We have considered two simulation scenarios (dependent and

independent gap times) with four sample sizes (50,100, 150 and 200) and two cen-

soring levels (U [0, 3] and U [0, 4]). Figures 3.7 and 3.8 show the behavior of the MSE

for the dependency scenario with uniform censoring U [0, 3].

54



Chapter 3. Presmoothing the transition probabilities in the illness-death model

Table 3.2: Integrated absolute bias, integrated variance and the in-

tegrated Mean Square Error of p̂ij(s, .) along 1,000 trials, case θ = 1

and C v U [0, 4].

n 50 100 200

Pij(s, t) Method IMSE BIAS V AR L1 IMSE BIAS V AR L1 IMSE BIAS V AR L1

P11(0.2877, t) m(.; β, γ) 0.01864 0.04079 0.01769 0.20299 0.00878 0.01909 0.00855 0.14024 0.00452 0.01357 0.00443 0.10110

m(.; ξ) 0.01878 0.04246 0.01800 0.20297 0.00883 0.02126 0.00868 0.14011 0.00460 0.01582 0.00452 0.10166

AJ 0.02123 0.02158 0.02092 0.22117 0.01028 0.00955 0.01022 0.15440 0.00537 0.00800 0.00533 0.11131

m 0.01312 0.02146 0.01280 0.16731 0.00665 0.01079 0.00656 0.11945 0.00344 0.00671 0.00342 0.08669

P12(0.2877, t) m(.; β, γ) 0.02174 0.03026 0.02141 0.22326 0.01121 0.02500 0.01100 0.16200 0.00612 0.02916 0.00584 0.11929

m(.; ξ) 0.02269 0.02669 0.02243 0.22802 0.01170 0.02092 0.01153 0.16527 0.00632 0.02470 0.00609 0.12118

AJ 0.02702 0.02891 0.02677 0.24970 0.01393 0.02727 0.01370 0.17924 0.00732 0.03171 0.00701 0.12949

m 0.01881 0.02859 0.01857 0.20834 0.00994 0.02612 0.00972 0.15167 0.00547 0.03169 0.00516 0.11322

P22(0.2877, t) m(.; β, γ) 0.04065 0.18028 0.03067 0.27812 0.02499 0.18808 0.01403 0.23513 0.01759 0.18551 0.00678 0.20948

m(.; ξ) 0.04094 0.17961 0.03104 0.27923 0.02509 0.18810 0.01419 0.23574 0.01752 0.18515 0.00682 0.20937

AJ 0.04237 0.16216 0.03398 0.27813 0.02599 0.18096 0.01567 0.23554 0.01812 0.18317 0.00752 0.20998

m 0.03502 0.16667 0.02628 0.25642 0.02215 0.18047 0.01192 0.22462 0.01635 0.18258 0.00577 0.20446

P11(0.6931, t) m(.; β, γ) 0.03168 0.05996 0.02947 0.24945 0.01404 0.02708 0.01352 0.16863 0.00734 0.01871 0.00713 0.12204

m(.; ξ) 0.03197 0.06149 0.03016 0.24970 0.01416 0.03022 0.01455 0.16873 0.00747 0.01962 0.00734 0.12294

AJ 0.03750 0.03148 0.03677 0.27727 0.01738 0.01321 0.01724 0.19121 0.00907 0.01069 0.00898 0.13696

m 0.02099 0.03053 0.02026 0.20057 0.01061 0.01558 0.01040 0.14329 0.00540 0.00855 0.00534 0.10299

P12(0.6931, t) m(.; β, γ) 0.03353 0.05172 0.03256 0.26512 0.01739 0.05133 0.01644 0.19139 0.00994 0.05500 0.00882 0.14398

m(.; ξ) 0.03502 0.04245 0.03435 0.27045 0.01803 0.04047 0.01740 0.19428 0.01003 0.04502 0.00926 0.14453

AJ 0.04290 0.05486 0.04186 0.29885 0.02212 0.05527 0.02104 0.21282 0.01204 0.05855 0.01080 0.15687

m 0.02989 0.05345 0.02886 0.25128 0.01623 0.05223 0.01526 0.18415 0.00934 0.05884 0.00810 0.10007

P22(0.6931, t) m(.; β, γ) 0.04377 0.16461 0.03463 0.28657 0.02471 0.15916 0.01617 0.22272 0.01634 0.15786 0.00791 0.18980

m(.; ξ) 0.04482 0.16395 0.03568 0.29072 0.02515 0.15866 0.01656 0.22495 0.01652 0.15726 0.00806 0.19097

AJ 0.05003 0.14281 0.04313 0.30182 0.02702 0.14921 0.01949 0.23006 0.01738 0.15153 0.00956 0.19308

m 0.03403 0.14646 0.02685 0.25163 0.02029 0.15018 0.01264 0.20434 0.01438 0.15295 0.00641 0.17982

P11(1.3863, t) m(.; β, γ) 0.07510 0.10977 0.06691 0.33918 0.03363 0.05112 0.03160 0.23071 0.01740 0.03539 0.01659 0.16655

m(.; ξ) 0.07165 0.09970 0.06577 0.33124 0.03213 0.04383 0.03119 0.22548 0.01680 0.02807 0.01647 0.16456

AJ 0.09922 0.06458 0.09584 0.39775 0.04451 0.02572 0.04387 0.27073 0.02321 0.01962 0.02288 0.19487

m 0.04581 0.06145 0.04256 0.26275 0.02268 0.03088 0.02176 0.18758 0.01152 0.01697 0.01126 0.13406

P12(1.3863, t) m(.; β, γ) 0.06659 0.07348 0.06401 0.33574 0.03530 0.08320 0.03225 0.24506 0.02043 0.08684 0.01714 0.18471

m(.; ξ) 0.06926 0.06745 0.06722 0.34113 0.03643 0.07357 0.03415 0.24764 0.02048 0.07735 0.01789 0.18434

AJ 0.08594 0.08094 0.08282 0.38015 0.04449 0.08388 0.04140 0.27086 0.02468 0.08903 0.02121 0.20031

m 0.06411 0.07731 0.06128 0.32803 0.03538 0.07969 0.03259 0.24512 0.02058 0.08970 0.01706 0.18585

P22(1.3863, t) m(.; β, γ) 0.07104 0.15190 0.05960 0.32833 0.03372 0.12455 0.02667 0.23020 0.01881 0.11085 0.01328 0.17492

m(.; ξ) 0.07763 0.16072 0.06520 0.34277 0.03687 0.13391 0.02867 0.24064 0.02084 0.12039 0.01417 0.18441

AJ 0.09115 0.11812 0.08482 0.37625 0.04292 0.10587 0.03798 0.26149 0.02227 0.09872 0.01794 0.19022

m 0.04746 0.11902 0.04076 0.26792 0.02412 0.10993 0.01875 0.19666 0.01413 0.09979 0.00972 0.15288
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Table 3.3: Integrated absolute bias, integrated variance and the in-

tegrated Mean Square Error of p̂ij(s, .) along 1,000 trials, case θ = 1

and C v U [0, 3].

n 50 100 200

Pij(s, t) Method IMSE BIAS V AR L1 IMSE BIAS V AR L1 IMSE BIAS V AR L1

P11(0.2877, t) m(.; β, γ) 0.02953 0.10624 0.02315 0.25453 0.01473 0.07644 0.01102 0.18122 0.00789 0.05496 0.00581 0.13110

m(.; ξ) 0.02632 0.09326 0.02210 0.24119 0.01188 0.05811 0.01025 0.16371 0.00571 0.03641 0.00514 0.11291

AJ 0.03275 0.07520 0.02880 0.27554 0.01738 0.05731 0.01481 0.20077 0.00960 0.04389 0.00799 0.14793

m 0.01576 0.06984 0.01220 0.19366 0.00829 0.05236 0.00603 0.14179 0.00476 0.04450 0.00316 0.10727

P12(0.2877, t) m(.; β, γ) 0.03195 0.07673 0.02826 0.26335 0.01770 0.06396 0.01549 0.19799 0.01073 0.05867 0.00875 0.15037

m(.; ξ) 0.03225 0.06543 0.02951 0.26496 0.01670 0.04196 0.01565 0.19267 0.00923 0.03519 0.00859 0.14224

AJ 0.04214 0.07597 0.03878 0.30293 0.02353 0.06286 0.02163 0.22571 0.01424 0.05894 0.01241 0.17096

m 0.02367 0.06837 0.02104 0.23150 0.01404 0.06356 0.01204 0.17697 0.00913 0.06058 0.00727 0.13999

P22(0.2877, t) m(.; β, γ) 0.05085 0.23753 0.03434 0.32685 0.02842 0.21001 0.01528 0.26141 0.02056 0.20695 0.00784 0.23521

m(.; ξ) 0.05044 0.23121 0.03479 0.32366 0.02757 0.20100 0.01533 0.25427 0.01920 0.19292 0.00777 0.22262

AJ 0.05321 0.20781 0.04065 0.32557 0.02933 0.19422 0.01801 0.25910 0.02112 0.19866 0.00934 0.23384

m 0.03757 0.20957 0.02484 0.28746 0.02325 0.19957 0.01140 0.24403 0.01729 0.19522 0.00594 0.22072

P11(0.6931, t) m(.; β, γ) 0.05636 0.16091 0.04151 0.32809 0.02877 0.11555 0.02023 0.23633 0.01530 0.08120 0.01059 0.17049

m(.; ξ) 0.04874 0.14156 0.03894 0.30725 0.02217 0.08628 0.01845 0.20967 0.01026 0.05163 0.00902 0.14262

AJ 0.06414 0.11352 0.05495 0.36089 0.03437 0.08654 0.02848 0.26476 0.01884 0.06642 0.01514 0.19472

m 0.02725 0.10585 0.01898 0.24243 0.01502 0.07888 0.00985 0.18085 0.00876 0.06510 0.00515 0.13766

P12(0.6931, t) m(.; β, γ) 0.04722 0.08383 0.04321 0.30800 0.02693 0.07881 0.02411 0.23421 0.01647 0.07472 0.01388 0.17838

m(.; ξ) 0.04795 0.06495 0.04518 0.31015 0.02577 0.05767 0.02435 0.22921 0.01470 0.05209 0.01351 0.17128

AJ 0.06564 0.08976 0.06141 0.35886 0.03744 0.08014 0.03469 0.26963 0.02259 0.07569 0.02003 0.20522

m 0.03907 0.08358 0.03571 0.28252 0.02342 0.08059 0.02059 0.21697 0.01528 0.07817 0.01260 0.17220

P22(0.6931, t) m(.; β, γ) 0.07295 0.25545 0.04772 0.37608 0.04069 0.22121 0.02272 0.28957 0.02646 0.20766 0.01088 0.24299

m(.; ξ) 0.07299 0.24931 0.04976 0.37558 0.03866 0.21119 0.02291 0.28075 0.02316 0.18830 0.01075 0.22489

AJ 0.07732 0.20713 0.06053 0.39031 0.04333 0.19808 0.02917 0.29899 0.02816 0.19499 0.01456 0.24824

m 0.04427 0.20789 0.02782 0.30883 0.02715 0.19887 0.01286 0.25162 0.01935 0.18761 0.00665 0.21849

P11(1.3863, t) m(.; β, γ) 0.15828 0.29155 0.10488 0.48913 0.08415 0.21623 0.05218 0.35770 0.04715 0.15201 0.02922 0.26206

m(.; ξ) 0.11915 0.22087 0.08857 0.42771 0.05278 0.12627 0.04157 0.28755 0.02464 0.06960 0.02130 0.19581

AJ 0.20944 0.23542 0.16998 0.57574 0.11095 0.17679 0.08648 0.41795 0.06199 0.13227 0.04708 0.31014

m 0.07598 0.21746 0.04090 0.35990 0.04199 0.15815 0.02099 0.26782 0.02568 0.12626 0.01136 0.20766

P12(1.3863, t) m(.; β, γ) 0.08819 0.07494 0.08539 0.38556 0.05252 0.07908 0.04934 0.29742 0.03167 0.07506 0.02885 0.22588

m(.; ξ) 0.08883 0.07613 0.08580 0.38667 0.05214 0.09063 0.04745 0.29747 0.03181 0.09885 0.02603 0.23114

AJ 0.12562 0.07176 0.12305 0.45163 0.07381 0.08038 0.07056 0.34183 0.04413 0.07355 0.04143 0.26023

m 0.09009 0.07455 0.08731 0.38742 0.05502 0.07825 0.05194 0.29976 0.03535 0.07559 0.03251 0.23500

P22(1.3863, t) m(.; β, γ) 0.16509 0.35887 0.09329 0.50415 0.08891 0.25952 0.04873 0.36668 0.05575 0.23567 0.02312 0.29257

m(.; ξ) 0.16617 0.34178 0.10439 0.50378 0.07845 0.23345 0.04957 0.34449 0.04181 0.19140 0.02324 0.25453

AJ 0.20923 0.29425 0.15625 0.57797 0.10352 0.21472 0.07417 0.40258 0.06376 0.21087 0.03698 0.31641

m 0.08661 0.28003 0.03956 0.38979 0.04982 0.22075 0.01907 0.29484 0.03531 0.20314 0.00957 0.24717
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Table 3.4: Integrated absolute bias, integrated variance and the in-

tegrated Mean Square Error of p̂ij(s, .) along 1,000 trials, case θ = 0

and C v U [0, 4].

n 50 100 200

Pij(s, t) Method IMSE BIAS V AR L1 IMSE BIAS V AR L1 IMSE BIAS V AR L1

P11(0.1438410, t) m(.; β, γ) 0.00838 0.02707 0.00809 0.11934 0.00402 0.01428 0.00393 0.08222 0.00199 0.00884 0.00196 0.05754

m(.; ξ) 0.00834 0.02676 0.00807 0.11862 0.00400 0.01280 0.00393 0.08148 0.00198 0.00754 0.00196 0.05688

AJ 0.00919 0.01602 0.00910 0.12256 0.00442 0.00933 0.00438 0.08603 0.00219 0.00603 0.00217 0.06073

m 0.00712 0.01665 0.00701 0.10465 0.00360 0.00924 0.00357 0.07483 0.00178 0.00589 0.00177 0.05274

P12(0.1438410, t) m(.; β, γ) 0.01373 0.02980 0.01327 0.17988 0.00695 0.01800 0.00681 0.12696 0.00332 0.00827 0.00327 0.08855

m(.; ξ) 0.01388 0.02675 0.01353 0.18053 0.00705 0.01811 0.00695 0.12779 0.00338 0.00883 0.00335 0.08933

AJ 0.01509 0.01858 0.01494 0.19063 0.00771 0.01066 0.00766 0.13600 0.00375 0.00444 0.00374 0.09527

m 0.01096 0.01962 0.01079 0.15451 0.00587 0.01081 0.00581 0.11415 0.00291 0.00480 0.00290 0.08099

P22(0.1438410, t) m(.; β, γ) 0.03485 0.03926 0.03406 0.27344 0.01570 0.02428 0.01547 0.18287 0.00816 0.01279 0.00808 0.13284

m(.; ξ) 0.03524 0.03541 0.03460 0.27422 0.01587 0.02268 0.01570 0.18357 0.00821 0.01549 0.00815 0.13319

AJ 0.03825 0.02212 0.03803 0.28866 0.01761 0.01110 0.01756 0.19630 0.00907 0.00601 0.00906 0.14168

m 0.02648 0.02187 0.02625 0.22917 0.01260 0.01044 0.01254 0.15853 0.00666 0.00686 0.00663 0.11623

P11(0.3465736, t) m(.; β, γ) 0.01361 0.04000 0.01295 0.15009 0.00651 0.02182 0.00631 0.10365 0.00315 0.01291 0.00309 0.07204

m(.; ξ) 0.01354 0.03944 0.01292 0.14909 0.00648 0.01945 0.00631 0.10260 0.00314 0.01082 0.00309 0.07110

AJ 0.01526 0.02288 0.01505 0.15467 0.00724 0.01392 0.00716 0.10915 0.00355 0.00833 0.00352 0.07679

m 0.01121 0.02422 0.01095 0.12959 0.00572 0.01372 0.00564 0.09296 0.00279 0.00816 0.00276 0.06547

P12(0.3465736, t) m(.; β, γ) 0.01897 0.03421 0.01836 0.20509 0.00941 0.01940 0.00923 0.14380 0.00452 0.00872 0.00446 0.10082

m(.; ξ) 0.01926 0.02938 0.01881 0.20612 0.00959 0.02009 0.00945 0.14495 0.00461 0.00891 0.00458 0.10179

AJ 0.02111 0.02110 0.02090 0.21863 0.01053 0.01259 0.01045 0.15469 0.00513 0.00495 0.00512 0.10868

m 0.01563 0.02167 0.01540 0.17913 0.00815 0.01290 0.00807 0.13082 0.00404 0.00487 0.00402 0.09301

P22(0.3465736, t) m(.; β, γ) 0.03453 0.04611 0.03336 0.27081 0.01648 0.02898 0.01612 0.18627 0.00836 0.01563 0.00824 0.13367

m(.; ξ) 0.03496 0.04375 0.03398 0.27229 0.01673 0.02831 0.01644 0.18740 0.00848 0.01709 0.00838 0.13457

AJ 0.03879 0.02603 0.03845 0.28994 0.01874 0.01389 0.01865 0.20166 0.00959 0.00743 0.00956 0.14502

m 0.02506 0.02703 0.02468 0.22237 0.01251 0.01212 0.01241 0.15849 0.00659 0.00781 0.00655 0.11577

P11(0.6931472, t) m(.; β, γ) 0.03292 0.07945 0.03021 0.22659 0.01543 0.04093 0.01460 0.15586 0.00703 0.02497 0.00676 0.10566

m(.; ξ) 0.03237 0.07819 0.02985 0.22420 0.01521 0.03796 0.01453 0.15345 0.00694 0.02117 0.00675 0.10358

AJ 0.03878 0.04530 0.03786 0.23450 0.01758 0.02712 0.01724 0.16521 0.00823 0.01612 0.00812 0.11438

m 0.02502 0.04954 0.02393 0.18901 0.01280 0.02740 0.01244 0.13609 0.00605 0.01610 0.00594 0.09438

P12(0.6931472, t) m(.; β, γ) 0.03348 0.04312 0.03259 0.25681 0.01716 0.02217 0.01688 0.18327 0.00796 0.00992 0.00788 0.12704

m(.; ξ) 0.03406 0.03520 0.03345 0.25817 0.01751 0.02291 0.01733 0.18470 0.00814 0.00865 0.00812 0.12820

AJ 0.03699 0.03089 0.03663 0.27351 0.01911 0.01463 0.01900 0.19729 0.00905 0.00719 0.00903 0.13718

m 0.02800 0.03097 0.02760 0.22821 0.01559 0.01603 0.01545 0.17015 0.00736 0.00645 0.00733 0.11954

P220.6931472, t) m(.; β, γ) 0.04656 0.06709 0.04407 0.30324 0.02035 0.03591 0.01967 0.20076 0.01041 0.02166 0.01016 0.14425

m(.; ξ) 0.04775 0.06316 0.04563 0.30664 0.02092 0.03790 0.02037 0.20326 0.01078 0.02540 0.01056 0.14672

AJ 0.05389 0.03560 0.05318 0.32949 0.02449 0.01699 0.02431 0.22332 0.01249 0.01136 0.01242 0.15989

m 0.03105 0.03742 0.03025 0.24026 0.01475 0.01626 0.01455 0.16716 0.00791 0.01171 0.00783 0.12323
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Table 3.5: Integrated absolute bias, integrated variance and the in-

tegrated Mean Square Error of p̂ij(s, .) along 1,000 trials, case θ = 0

and C v U [0, 3].

n 50 100 200

Pij(s, t) Method IMSE BIAS V AR L1 IMSE BIAS V AR L1 IMSE BIAS V AR L1

P11(0.1438410, t) m(.; β, γ) 0.01011 0.05216 0.00903 0.13916 0.00465 0.02690 0.00431 0.09372 0.00232 0.01836 0.00218 0.06636

m(.; ξ) 0.00987 0.05049 0.00890 0.13673 0.00448 0.02401 0.00422 0.09088 0.00222 0.01329 0.00214 0.06305

AJ 0.01114 0.03199 0.01072 0.13939 0.00523 0.01876 0.00506 0.09742 0.00264 0.01474 0.00255 0.07044

m 0.00721 0.03439 0.00671 0.11514 0.00358 0.01954 0.00339 0.08055 0.00188 0.01396 0.00178 0.05859

P12(0.14384410, t) m(.; β, γ) 0.01794 0.06344 0.01539 0.20468 0.01053 0.05551 0.00851 0.15756 0.00562 0.03775 0.00458 0.11471

m(.; ξ) 0.01721 0.05431 0.01536 0.20061 0.00933 0.04606 0.00819 0.14862 0.00465 0.02610 0.00429 0.10501

AJ 0.02001 0.04733 0.01853 0.22012 0.01182 0.04105 0.01052 0.17007 0.00653 0.03120 0.00571 0.12539

m 0.01256 0.05168 0.01079 0.17184 0.00712 0.03777 0.00591 0.13161 0.00401 0.03306 0.00312 0.09939

P22(0.14384410, t) m(.; β, γ) 0.04573 0.09080 0.04120 0.31646 0.02252 0.07677 0.01925 0.22833 0.01074 0.04930 0.00916 0.15877

m(.; ξ) 0.04442 0.08009 0.04103 0.31062 0.02068 0.06389 0.01878 0.21654 0.00936 0.03394 0.00880 0.14621

AJ 0.05071 0.05839 0.04834 0.33645 0.02515 0.05380 0.02319 0.24467 0.01271 0.04037 0.01150 0.17462

m 0.03039 0.06363 0.02755 0.25734 0.01440 0.05175 0.01255 0.18305 0.00727 0.03926 0.00602 0.13198

P11(0.3465736, t) m(.; β, γ) 0.01766 0.07802 0.01519 0.18081 0.00813 0.04089 0.00733 0.12200 0.00388 0.02710 0.00354 0.08509

m(.; ξ) 0.01716 0.07535 0.01495 0.17731 0.00777 0.03661 0.00716 0.11783 0.00364 0.01933 0.00346 0.08020

AJ 0.01946 0.04699 0.01853 0.18033 0.00938 0.02837 0.00898 0.12761 0.00450 0.02088 0.00430 0.09097

m 0.01185 0.05129 0.01071 0.14709 0.00601 0.02955 0.00557 0.10369 0.00309 0.02069 0.00288 0.07501

P12(0.3465736, t) m(.; β, γ) 0.02448 0.07199 0.02112 0.23327 0.01451 0.06295 0.01180 0.17975 0.00767 0.04143 0.00628 0.13062

m(.; ξ) 0.02359 0.05989 0.02117 0.22932 0.01296 0.05208 0.01142 0.16969 0.00634 0.02957 0.00587 0.11954

AJ 0.02802 0.05509 0.02599 0.25259 0.01651 0.04770 0.01472 0.19459 0.00898 0.03519 0.00786 0.14334

m 0.01787 0.05939 0.01548 0.19936 0.01006 0.04377 0.00840 0.15132 0.00558 0.03673 0.00437 0.11391

P22(0.3465736, t) m(.; β, γ) 0.04739 0.10555 0.04069 0.31873 0.02563 0.09178 0.02073 0.23817 0.01244 0.05873 0.01007 0.16668

m(.; ξ) 0.04573 0.09499 0.04068 0.31241 0.02300 0.07892 0.02004 0.22490 0.01041 0.04130 0.00953 0.15216

AJ 0.05282 0.07153 0.04933 0.34248 0.02863 0.06451 0.02571 0.25701 0.01447 0.04638 0.01268 0.18318

m 0.02883 0.07802 0.02464 0.25234 0.01509 0.05921 0.01235 0.18604 0.00787 0.04693 0.00599 0.13592

P11(0.6931472, t) m(.; β, γ) 0.05074 0.16039 0.04031 0.29141 0.02131 0.08110 0.01808 0.19131 0.00968 0.05098 0.00834 0.13232

m(.; ξ) 0.04802 0.15437 0.03876 0.28290 0.01959 0.07031 0.01720 0.18189 0.00862 0.03673 0.00789 0.12190

AJ 0.05762 0.10097 0.05343 0.29049 0.02562 0.05671 0.02394 0.20188 0.01161 0.03948 0.01081 0.14210

m 0.02894 0.10975 0.02389 0.22840 0.01380 0.05862 0.01200 0.15725 0.00720 0.03949 0.00637 0.11458

P12(0.6931472, t) m(.; β, γ) 0.04507 0.08466 0.04044 0.29743 0.02650 0.07508 0.02238 0.22817 0.01397 0.04836 0.01182 0.16650

m(.; ξ) 0.04357 0.06638 0.04038 0.29273 0.02376 0.05956 0.02157 0.21536 0.01158 0.03460 0.01090 0.15219

AJ 0.05378 0.06815 0.05080 0.32565 0.03093 0.05686 0.02813 0.24811 0.01627 0.04390 0.01452 0.18248

m 0.03633 0.07501 0.03270 0.26505 0.01927 0.05530 0.01666 0.19652 0.01094 0.04572 0.00899 0.14931

P22(0.6931472, t) m(.; β, γ) 0.06945 0.15333 0.05520 0.36666 0.03880 0.12909 0.02881 0.27527 0.01897 0.08283 0.01421 0.19413

m(.; ξ) 0.06660 0.13952 0.05570 0.35867 0.03408 0.11298 0.02785 0.25864 0.01517 0.06032 0.01330 0.17557

AJ 0.07825 0.10236 0.07088 0.39785 0.04380 0.09094 0.03791 0.30107 0.02278 0.06504 0.01923 0.21803

m 0.03859 0.10977 0.02990 0.28212 0.02029 0.08309 0.01481 0.20801 0.01138 0.06728 0.00761 0.15700
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Figure 3.1: True p11(s, t) (dotted line), average estimator (solid line),

and 95% oscillation limits of the AJ estimates (first row) and P-AJ

(second row) for s = 0.2877, s = 0.6931 and s = 1.3863. Estimates

with n = 200 and U [0, 3] censoring. Dependency scenario.
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Figure 3.2: True p11(s, t) (dotted line), average estimator (solid line),

and 95% oscillation limits of the AJ estimates (first row) and P-AJ

(second row) for s = 0.1438, s = 0.3466 and s = 0.6931. Estimates

with n = 200 and U [0, 3] censoring. Independency scenario.
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Figure 3.3: True p12(s, t) (dotted line), average estimator (solid line),

and 95% oscillation limits of the AJ estimates (first row) and P-AJ

(second row) for s = 0.2877, s = 0.6931 and s = 1.3863. Estimates

with n = 200 and U [0, 3] censoring. Dependency scenario.
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Figure 3.4: True p12(s, t) (dotted line), average estimator (solid line),

and 95% oscillation limits of the AJ estimates (first row) and P-AJ

(second row) for s = 0.1438, s = 0.3466 and s = 0.6931. Estimates

with n = 200 and U [0, 3] censoring. Independency scenario.
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Figure 3.5: True p22(s, t) (dotted line), average estimator (solid line),

and 95% oscillation limits of the AJ estimates (first row) and P-AJ

(second row) for s = 0.2877, s = 0.6931 and s = 1.3863. Estimates

with n = 200 and U [0, 3] censoring. Dependency scenario.
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Figure 3.6: True p22(s, t) (dotted line), average estimator (solid line),

and 95% oscillation limits of the AJ estimates (first row) and P-AJ

(second row) for s = 0.1438, s = 0.3466 and s = 0.6931. Estimates

with n = 200 and U [0, 3] censoring. Independency scenario.
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Figure 3.7: Mean Square Error of transition probabilities for depen-

dency scenario.

These plots show that the Aalen-Johansen estimator (labeled in the tables as AJ)

is the one with higher values of MSE while the presmoothed estimators (labeled in

the tables as m(.; β, γ) and m(.; ξ)) show lower values. The estimator with the“true

presmoothing function”(labeled in the tables as m) gets better performance but this

function is unrealistic in practice. We see that the MSE goes down with an increasing

sample size.
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Results for uniform censoring U [0, 3] are in general worse than those for U [0, 4],

this is true for all situations. The advantages between the estimators are more clear for

higher proportions of censorship. For example in the case of p12 of dependent U [0, 3]

it is easy to see that there is a big difference between the presmoothed estimators and

Aalen-Johansen estimator (see Figure 3.9). Figure 3.10 presents the corresponding

plots for variance for all sample sizes with censoring U [0, 3]. The variance decreases

with an increase in the sample size. In all cases, the variance of the Aalen-Johansen

estimator is larger. Variance tends to be a bit larger when introducing some correlation

between the gap times (case δ = 1), although some exceptions are found.
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Figure 3.8: Mean Square Error of transition probabilities for inde-

pendency scenario.
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Figure 3.10: Variance for all sample sizes with censoring U [0, 3]

To compare the efficiency of the Aalen-Johansen estimator with the presmoothed

Aalen-Johansen estimator we calculated the ratios between MSE(AJ) and MSE(PAJ)

for the two scenario (dependency and independency) with uniform censoring U [0, 3].

Values greater than 1, shown in Figure 3.11, reveal that the PAJ is more efficient

than AJ. These differences can also be seen for the four sample sizes.

In our simulations we have also considered different scenarios with different pro-

portions of individuals passing through state 2. A larger value of p = P (ρ = 1) is

favourable for the estimation of p22(s, t) (lower values for IMSE, BIAS, L1 norm and

variance), whereas a smaller value of p lead to better estimates for p12(s, t). When
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comparing the two methods (with and without presmoothing) similar conclusions were

obtained and therefore they are not reported here.
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Figure 3.11: Efficiency of the estimators.

3.4 Real Data Illustration

For illustration purposes, we apply the proposed methods of Section 3.2 to data

from the Stanford Heart Transplant study, previously presented in Chapter 1. It

includes 103 patients enrolled in the Stanford Heart Transplant program, from which

69 received a Heart Transplant and among these 45 died. We may use the so-called

illness-death model with states “Own heart”, “New heart” (or transplant) and “Dead”.

In most applications, a Markov model is often assumed for the multi-state model.

A Cox model (Cox, 1972) can be used to test this assumption (Hougaard, 1999;

Andersen et al., 2000). This is usually performed by including covariates depending

on the history, such as the time of transition to the current state or the time since

entry into the current state. This assumption was verified for the Stanford Transplant

study, e.g. by Hougaard (1999), which conclude that there is no effect of time since

transplant on mortality, and thus that the Markov model is satisfactory. This is

important, because otherwise, the consistency of the Aalen-Johansen estimator and
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the new estimator based on presmoothing cannot be ensured. On the other hand,

if markovianity is fulfilled, the use of these methods is a wise choice. To deal with

ties, a re-definition of the empiricals M0n(y) and M1n(y) is needed. Put Z̃i:n for

the i-th ordered Z-statistics. Similarly, put T̃i:n for the i-th ordered T-statistics. For

y = Z̃k:n we define M̃0n(y) = 1
n

∑n
i=k I(Z̃i:n ≥ y) while for y = T̃k:n we define

M̃1n(y) = 1
n

∑n
i=k I(Z̃[i:n] < y ≤ T̃i:n) where Z̃[i:n] is the i-th concomitant (i.e. the

Z-value attached to T̃i:n). When there are no ties, these empiricals reduce to those

introduced in section 3.2.
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Figure 3.12: Presmoothing functions m0 (left) and m1 (right) esti-

mated by logistic models. Stanford Heart Transplant data.

Our aim with this application is to illustrate the differences between the esti-

mated transition probabilities from Aalen-Johansen estimator (AJ) and the semipara-

metric estimator based on presmoothing (P-AJ). The semiparametric estimator was

obtained using standard logistic regression for m0n(z) = P̂ (∆1 = 1|Z̃ = z) and

m1n(z, t) = P̂ (∆ = 1|Z̃ = z, T̃ = t,∆1ρ = 1). Figure 3.12 displays these functions

for the Stanford Heart data. The noise around displayed line comes from the fact

that the variable z is omitted in the plot while it is present in the model. In Table 3.6

we present the summary (coefficients, standard errors between brackets and p-value)

of the two presmoothing functions. In this case the influence of Z̃ is not statisti-
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cally significant on m1(z, t). The goodness-of-fit test that we used for testing the

parametric presmoothing functions is an application of the Kolmogorov-Smirnov type

version of the model-based bootstrap approach described in Dikta et al. (2006). The

Kolmogorov-Sminorv test was used for testing the parametric logistic presmoothing

functions m0n(z), m1n(z, t). In both cases the test was not able to reject the logistic

model (respectively p-values of 0.638 and 0.237). We also show the goodness-of-fit

test proposed by Hosmer and Lemeshow (2008) was used for testing the parametric

logistic presmoothing functions m0n(z), m1n(z, t). In both cases the test was not able

to reject the logistic model (without reaching statistical significance, p-value=0.218

and p-value=0.566).

Table 3.6: Summary of the two presmoothing functions m0n and

m1n based on logistic models.

Presmoothing functions Estimated coefficients p-value

m0n(z) = (1 + exp(γ̂0 + γ̂1z))−1 γ̂0 = 4.2605(0.8310) 2.94e-07

γ̂1 = −0.0093(0.0042) 0.0283

m1n(z, t) = (1 + exp(β̂0 + β̂1z + β̂2t))
−1 β̂0 = 2.1148(0.5052) 2.83e-05

β̂1 = −0.0089(0.0058) 0.1281

β̂2 = −0.0025(0.0007) 0.0006

Figures 3.13 and 3.14 plot, for the two methods, the estimated transition prob-

abilities pij(s, t), 1 ≤ i ≤ j ≤ 3 together with pointwise confidence bands based

on the bootstrap. The bootstrap estimates were obtained for B = 1000 replicates,

by randomly sampling the n items from the original data set with replacement. The

bootstrap estimates were used to obtain the 95% limits for the confidence interval of

p11(s, t), p12(s, t) and p22(s, t). The value s was chosen to be the percentile 25 and

50 of the total time (s = 32 and s = 90 days). As expected, the P-AJ estimator

has less variability than the AJ estimator, which has fewer jump points as t increases.

For example, the extra jump points of the presmoothed AJ estimator of p22(s, t) cor-
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respond to transplanted patients with censored values of the total time. However,

both methods provide similar point estimates for all values of time. In sum, the new

approach provides more reliable curves with less variability and accordingly narrower

pointwise confidence bands.
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Figure 3.13: Estimated transition probabilities for pij(s, t) with s =

32 based on the Aalen-Johansen estimator (on the left) and based

on the presmoothed Aalen-Johansen estimator (on the right) with

the corresponding 95% pointwise confidence bands. Stanford Heart

Transplant data.
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Figure 3.14: Estimated transition probabilities for pij(s, t) with s =

90 based on the Aalen-Johansen estimator (on the left) and based

on the presmoothed Aalen-Johansen estimator (on the right) with

the corresponding 95% pointwise confidence bands. Stanford Heart

Transplant data.

3.5 Technical Proofs

In this section we give the proof to Theorem 1. Throughout this proof p̂ij(s, t)

stands for the presmoothed Aalen-Johansen estimator p̂PAJij (s, t). Theorem 1(a) is

a consequence of Dikta (1998). Now we prove Theorem 1(b), that is, the uniform
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strong consistency of

p̂22(s, t) =
∏

s<T̃i≤t

[
1− m1n(Z̃i, T̃i)I(Z̃i < T̃i)

nM̃1n(T̃i)

]

where (recall) m1n(z, t) is an estimator of m1(z, t) = P (∆ = 1|Z̃ = z, T̃ =

t, Z̃ < T̃ ) and where (recall) M̃1n(y) = n−1
∑n

j=1 I(Z̃j < y ≤ T̃j) is the em-

pirical counterpart of M̃1(y) = P (Z̃ < y ≤ T̃ ). Since continuity is assumed

throughout, note that ∆1ρ = I(Z̃ < T̃ ). The following notation will be used:

I(s, t) =
{
i : s < T̃i ≤ t, Z̃i < T̃i

}
and

I∗(s, t) =
{
i : s < T̃i ≤ t, Z̃i < T̃i,m1n(Z̃i, T̃i) > 0

}
.

With this notation, we have

p̂22(s, t) =
∏

i∈I(s,t)

[
1− m1n(Z̃i, T̃i)

nM̃1n(T̃i)

]
=

∏
i∈I∗(s,t)

[
1− m1n(Z̃i, T̃i)

nM̃1n(T̃i)

]
.

Note that p̂22(s, t) = 0 may happen; indeed, this is the case whenever nM̃1n(T̃i) =

1 and m1n(Z̃i, T̃i) = 1 for some i ∈ I(s, t). In order to avoid problems when taking

logarithms, introduce the following approximation to p̂22(s, t):

p22(s, t) =
∏

i∈I(s,t)

nM̃1n(T̃i)

nM̃1n(T̃i) +m1n(Z̃i, T̃i)
.

Since
∣∣∣∏j aj −

∏
bj

∣∣∣ ≤∑j |aj − bj| for |aj| , |bj| ≤ 1, we have

|p̂22(s, t)− p22(s, t)| ≤
∑

i∈I(s,t)

m1n(Z̃i, T̃i)
2

n2M̃1n(T̃i)2
.

We will refer to the following Lemma, which follows from e.g. Corollary 5.2.3 in

de la Peña and Giné (1999).
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Lemma 1. We have w.p. 1 supy

∣∣∣M̃1n(y)− M̃1(y)
∣∣∣→ 0.�

Under condition M , from Lemma 1 we have eventually for y ∈ [τ0, τ1] and some

constant c > 0

M̃1n(y) ≥ inf
τ0≤y≤τ1

M̃1(y)− sup
τ0≤y≤τ1

∣∣∣M̃1n(y)− M̃1(y)
∣∣∣ ≥ c.

Hence we have w.p. 1

sup
τ0≤s<t≤τ1

|p̂22(s, t)− p22(s, t)| = O(n−1). (3.6)

Now write

p22(s, t)− p22(s, t) = exp(log p22(s, t))− exp(−Ψn(s, t))

+ exp(−Ψn(s, t))− exp(−Ψ(s, t))

where

Ψ(s, t) =

∫ t

s

H1(dy)

M̃1(y)
, with H1(y) = P (T̃ ≤ y,∆ = 1, Z̃ < T̃ ),

and

Ψn(s, t) =
∑

i∈I(s,t)

m1n(Z̃i, T̃i)

nM̃1n(T̃i)
.

Note that p22(s, t) = exp(−Ψ(s, t)) because of the Markov condition, and that

Ψ(s, t) = E

[
I(s < T̃ ≤ t)∆I(Z̃ < T̃ )

M̃1(T̃ )

]
= E

[
I(s < T̃ ≤ t)m1(Z̃, T̃ )I(Z̃ < T̃ )

M̃1(T̃ )

]
.

It will be shown that p22(s, t) = exp(−Ψ(s, t)) is indeed the limit of exp(−Ψn(s, t)).

This will follow from the mean-value theorem after proving the uniform strong con-

sistency of Ψn(s, t), which is the goal of the following Lemma.
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Lemma 2. Under U2 and M we have w.p. 1 supτ0≤s<t≤τ1 |Ψn(s, t)−Ψ(s, t)| →

0.

Proof: Write

Ψn(s, t) =
∑

i∈I(s,t)

m1(Z̃i, T̃i)

nM̃1(T̃i)
+

1

n

∑
i∈I(s,t)

[
m1n(Z̃i, T̃i)

M̃1n(T̃i)
− m1(Z̃i, T̃i)

M̃1(T̃i)

]

≡ Ψ0
n(s, t) +Rn(s, t).

By the SLLN we have Ψ0
n(s, t)→ Ψ(s, t) w.p. 1. Furthermore, under M we have

w.p. 1

sup
τ0≤s<t≤τ1

∣∣Ψ0
n(s, t)−Ψ(s, t)

∣∣→ 0. (3.7)

To see this, note that for s, t ∈ [τ0, τ1] we have under M

Ψ(s, t) ≤ 1

infτ0≤y≤τ1 M̃1(y)
E
[
I(τ0 < T̃ ≤ τ1)∆I(Z̃ < T̃ )

]
<∞.

Introduce

ϕs,t(u, v) =
I(s < v ≤ t)m1(u, v)I(u < v)

M̃1(v)
.

Now, {ϕs,t : τ0 ≤ s < t ≤ τ1} is a VC-subgraph class (see Proposition 5.1.12 and

comments following Definition 5.1.14 in de la Peña and Giné (1999)), and ϕτ0,τ1 is an

integrable envelope for that class. Hence, (3.7) follows from Corollary 5.2.3 in de la

Peña and Giné (1999).

Now,

m1n(Z̃i, T̃i)

M̃1n(T̃i)
− m1(Z̃i, T̃i)

M̃1(T̃i)
=

1

M̃1n(T̃i)

[
m1n(Z̃i, T̃i)−m1(Z̃i, T̃i)

]

+
m1(Z̃i, T̃i)

M̃1n(T̃i)M̃1(T̃i)

[
M̃1(T̃i)− M̃1n(T̃i)

]
.
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Under U2 and M we have

sup
τ0≤s<t≤τ1

|Rn(s, t)| ≤

supz<t,τ0≤t≤τ1 |m1n(z, t)−m1(z, t)|
c

+
supτ0≤y≤τ1

∣∣∣M̃1n(y)− M̃1(y)
∣∣∣

c′

×
× 1

n

n∑
i=1

I(τ0 < T̃i ≤ τ1)I(Z̃i < T̃i) = o(1) w.p. 1.

Then the assertion of Lemma 2 follows.�

By the mean-value theorem,

exp(log p22(s, t))− exp(−Ψn(s, t))

= (Ψn(s, t) + log p22(s, t)) exp(−ξ∗n(s, t))

for some ξ∗n between Ψn and − log p22. Now:

log p22(s, t) =
∑

i∈I∗(s,t)

log

[
nM̃1n(T̃i)

nM̃1n(T̃i) +m1n(Z̃i, T̃i)

]

=
∑

i∈I∗(s,t)

log

[
1− 1

xi

]
where

xi =
nM̃1n(T̃i)

m1n(Z̃i, T̃i)
+ 1.

Note that xi is well defined for i ∈ I∗(s, t) and that xi > 1 (because nM̃1n(T̃i) ≥ 1

for i ∈ I∗(s, t)). Use

log(1− 1

x
) = −

∞∑
k=1

1

kxk
, x > 1,
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to write

log p22(s, t) = −
∑

i∈I∗(s,t)

∞∑
k=1

m1n(Z̃i, T̃i)
k

k(nM̃1n(T̃i) +m1n(Z̃i, T̃i))k
.

Hence

Ψn(s, t) + log p22(s, t) =
∑

i∈I∗(s,t)

m1n(Z̃i, T̃i)

nM̃1n(T̃i)

−
∑

i∈I∗(s,t)

∞∑
k=1

m1n(Z̃i, T̃i)
k

k(nM̃1n(T̃i) +m1n(Z̃i, T̃i))k

=
∑

i∈I∗(s,t)

m1n(Z̃i, T̃i)

nM̃1n(T̃i)(nM̃1n(T̃i) +m1n(Z̃i, T̃i))

−
∑

i∈I∗(s,t)

∞∑
k=2

m1n(Z̃i, T̃i)
k

k(nM̃1n(T̃i) +m1n(Z̃i, T̃i))k
≡ I + II.

Under M we have, uniformly in τ0 ≤ s < t ≤ τ1, I = O(n−1) w.p. 1. Besides,

by noting

∞∑
k=2

xk =
1

1− x
− 1− x =

x2

1− x
, x < 1,

we have that the absolute value of II is bounded by (take x = m1n(Z̃i, T̃i)/

(nM̃1n(T̃i) +m1n(Z̃i, T̃i)) )

∑
i∈I∗(s,t)

∞∑
k=2

m1n(Z̃i, T̃i)
k

(nM̃1n(T̃i) +m1n(Z̃i, T̃i))k

=
n∑

i∈I∗(s,t)

m1n(Z̃i, T̃i)
2

nM̃1n(T̃i)(nM̃1n(T̃i) +m1n(Z̃i, T̃i))
= O(n−1)

w.p. 1. uniformly in τ0 ≤ s < t ≤ τ1. This shows that

sup
τ0≤s<t≤τ1

|Ψn(s, t) + log p22(s, t)| = O(n−1) w.p. 1
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and consequently

sup
τ0≤s<t≤τ1

|exp(log p22(s, t))− exp(−Ψn(s, t))| = O(n−1) w.p. 1. (3.8)

Now, use the mean-value theorem to write

exp (−Ψ(s, t))− exp (−Ψn(s, t)) = [Ψn(s, t)−Ψ(s, t)] exp(−ξn(s, t))

from which

sup
τ0≤s<t≤τ1

|exp (−Ψ(s, t))− exp (−Ψn(s, t))| ≤ sup
τ0≤s<t≤τ1

|Ψn(s, t)−Ψ(s, t)| .

Then Theorem 1(b) follows from Lemma 2, (3.8), (3.6), and the decomposition

p̂22(s, t)− p22(s, t) = p̂22(s, t)− p22(s, t)

+ exp(log p22(s, t))− exp (−Ψn(s, t))

+ exp (−Ψn(s, t))− exp (−Ψ(s, t)) .

In order to prove Theorem 1(c) write, with J(s, t) =
{
i : s < Z̃i ≤ t, Z̃i < T̃i

}
,

p̂12(s, t) =
1

n

∑
i∈J(s,t)

p̂11(s, Z̃−i )p̂22(Z̃i, t)

M̃0n(Z̃i)

=
1

n

∑
i∈J(s,t)

[
p̂11(s, Z̃−i )− p11(s, Z̃i)

] p̂22(Z̃i, t)

M̃0n(Z̃i)

+
1

n

∑
i∈J(s,t)

[
p̂22(Z̃i, t)− p22(Z̃i, t)

] p11(s, Z̃i)

M̃0n(Z̃i)

+
1

n

∑
i∈J(s,t)

p11(s, Z̃i)p22(Z̃i, t)

[
1

M̃0n(Z̃i)
− 1

M̃0(Z̃i)

]

+
1

n

∑
i∈J(s,t)

p11(s, Z̃i)p22(Z̃i, t)

M̃0(Z̃i)

≡ I(s, t) + II(s, t) + III(s, t) + IV (s, t)
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where M̃0(y) = P (Z̃ ≥ y). Since, because of the Markov condition,

E

[
p11(s, Z̃i)p22(Z̃i, t)

M̃0(Z̃i)
I(s < Z̃i ≤ t, Z̃i < T̃i)

]
= p12(s, t),

the SLLN gives IV (s, t)→ p12(s, t) w.p. 1. Furthermore, by using Proposition 5.1.12

in de la Peña and Giné (1999) as in Lemma 2 above we get w.p. 1

sup
0≤s<t≤τ

|IV (s, t)− p12(s, t)| → 0.

It remains to show that I(s, t), II(s, t), and III(s, t) go to zero w.p.1 uniformly

on [0, τ ]. But this is easily seen by using Theorem 1(a),(b), Glivenko-Cantelli, and

the fact that M̃0 is bounded away from zero on [0, τ ].�
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Chapter 4

Software

4.1 Introduction

One important goal in multi-state modelling is to study the relationship between

the different covariates and disease evolution. Other issues of interest include the

estimation of the bivariate distribution function, the estimation of the transition prob-

abilities and survival rates. Despite its potential, multi-state modelling is not used by

practitioners as frequently as other survival techniques we believe that lack of knowl-

edge of available software of the new methodologies in user friendly software may be

responsible for this lack of popularity. The aim of this chapter is therefore two fold.

Firstly, to report an the existing software for implementing multi-state models using

free (R) statistical software. Secondly, to describe the capabilities of the survivalBIV

(Moreira and Meira Machado, 2012) package to implement of the methods described

in Chapter 2.

The first contributions with software for implementing MSMs were written in

difficult languages such as SAS (Paes and Lima, 2004; Hui-Min et al., 2004; Ros-

thøj et al., 2004) or Fortran (Marshall et al., 1995; Alioum and Commenges, 2001).
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Recently several contributions have been made to the statistical software R (www.

r-project.org). The first part of this chapter aims to provide users a guide about

these contributions.

The survival package in the software R was one important contribution to this

matter. Due to this package, survival analysis is no longer limited to Kaplan-Meier

curves and simple Cox models (Therneau and Grambsch, 2000; Lumley, 2004). The

library survival is available as part of S-plus and R statistical packages and can be used

for modelling multi-state survival data. The key here is the creation of an appropriate

data set representing each individual by several observations. This approach can be

used to perform Markov and semi-Markov multi-state regression and can deal with

any kind of process though it becomes complicated with the increase of the number

of states. More details about this procedure will be given later in our applications.

In R (http://cran.r-project.org/web/packages/msm/), multi-state regres-

sion can also be performed using the msm package by Christopher Jackson (Jackson,

2007). Jackson implemented several functions for fitting continuous-time Markov

and hidden Markov multi-state models (a model in which the stages are observed

with misclassification) to longitudinal data. Covariates can be fitted to both the

transition rates and misclassification probabilities. Allignol, Beyersmann and Schu-

macher have created two relevant packages for nonparametric estimation in multi-

state models: the mvna package (Allignol et al., 2008) which allow to estimate

transition hazards in multi-state models, potentially subject to left-truncation and

right censoring; and the etm package provides a way to easily estimate and display

the matrix of transition probabilities from MSM. The etm package handles both

left-truncated and right-censored data. Recently, Wrangler et al. (2006) developed

aRlibrary called changeLOS that compute and plot change in length of hospital stay.

Now all the functionalities offered by changeLOS can be found in the etm package.

The mstate package, developed by Putter (Putter et al., 2007), allows to estimate

hazards and probabilities, possibly depending on covariates, and to obtain prediction

probabilities in the context of competing risks and multi-state models. Recently,
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Meira-Machado and Roca-Pardiñas (2011) developed the R p3state.msm package

that contains nonparametric statistical methods for estimating quantities of interest

such as transition probabilities and the bivariate distribution function for censored

gap times. This software can also be used to fit the time-dependent Cox regression

model (TDCM) as well as semiparametric Cox proportional hazard regression mod-

els to all permitted transitions, by decoupling the whole process into various survival

models. Meira-Machado et al. (2007) developed a R based library, called tdc.msm,

for the analysis of multi-state survival data. Specifically, this software may be used

to fit the TDCM but also several MSM regression models. The TPmsm pack-

age (http://CRAN.R-project.org/package=TPmsm) was recently developed that

permits to estimate transition probabilities of an illness-death model or three-state

progressive model. Another package that is important for the multi-state models

is genSurv package (http://CRAN.R-project.org/package=genSurv) that per-

mits to generate data with one binary time-dependent covariate and data stemming

from a progressive illness-death model.

This chapter we will focus our attention to the available R packages for the analy-

sis of multi-state survival data and describes the R-based survivalBIV (available from

the Comprehensive R Archive Network at http://CRAN.R-project.org/package=

survivalBIV) package’s capabilities for implementing non-parametric and semipara-

metric estimators for the bivariate distribution function for censored gap times. In

this chapter we explain and illustrate how numerical and graphical output for the four

methods discussed in Section 2.2.2 (CKM, Lin, KMW and KMPW) can be obtained

using the survivalBIV package.

The following section provides a brief introduction to the use of the available R

packages for the multi-state models. An overview of the use of survivalBIV is given

in Section 4.3. In Section 4.4 we explain how the package can be used to simulate

bivariate censored data and how to use the several functions in the package. An

example of its application is given using data from a Bladder cancer study in Section

4.5.
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4.2 Available R based Packages for multi-state mod-

elling

In this section we have the 3.0.1 version of R software to illustrate the capabilities

of the R packages mentioned in the previous section. Most of these packages presents,

however, some difficulties and limitations in practice. Some assumes the process to

be Markovian and/or time-homogeneous; others do not provide graphical output.

Furthermore, possible comparisons between different multi-state models are rather

difficult because each of the programs requests its own data structure. We, therefore,

developed a user-friendly R function, called msmdata, that provides the user the input

data for all of the packages described in next section (see Appendix A). The msmdata

function can be used to coerce objects from one class to another. The input data for

this function is a data.frame that include the following variables: times1 (time since

entry into study to recurrence), delta (recurrence indicator), times2 (time to death

since the recurrence time),time (times1+times2) and status(censoring indicator:

dead=1, alive=0). For illustration purposes we considered the Colon cancer data

described in Chapter 1. For illustration purposes we only considered three covariates:

rx, sex and age. The database has 922 patients. A sample of the original dataset

is shown in Table 4.1.

Note that in the illness-death, possible courses for the individual include: 1 →

1 (the individual remains in state 1 until the end of the study; if delta=0 and

status=0); 1 → 3 (a direct transition from state 1 into state 3 is observed; if

delta=0 and status=1); 1→ 2→ 2 (if delta=1 and status=0 ); and 1→ 2→ 3

(if delta=1 and status=1).

This database (colon2) will be the basis for our analysis. In Table 4.2 we show

what kind of outputs, state structure of the data and assumption of the R based

packages.
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Table 4.1: Sample of the original (Colon) data.

times1 delta times2 time status rx sex age

968 1 553 1521 1 3 1 43

3087 0 0 3087 0 3 1 63

542 1 421 963 1 1 0 71

245 1 48 293 1 3 0 66

Table 4.2: Summary of output and state structure for the R based

packages .

Numerical Output Graphical Output State Structure Assumption

survival Regression Coefficients Survival Any

(TDCM, CMM, CSMM)

p3state.msm Regression Coefficients , Transition Probabilities, Progressive 3State

(TDCM, CMM, CSMM) Bivariate Distribution Function illness-death

Bivariate Distribution Function Marginal Distribution

Transition Probabilities

msm Regression Coefficients , Survival, Transition Probabilities Any Time homogeneity

(THMM, HMM) Expected Probability of Survival Markov

Transition Probabilities matrix

Hazard Ratios

mstate Regression Coefficients Estimated Cumulative Transition Intensities Any Markov

Transition Probabilities as estimated

etm Estimate Transition Probabilities Estimates of the Transition Probabilities Any Markov

Estimate Variance of the Aalen-Johansen

changeLOS Aalen-Johansen estimator for Transition Probabilities Any Markov

the matrix of Transition Probabilities

mvna Multivariate Nelson-Aalen estimator Estimates of the Cumulative Any Markov

of the Cumulative Transitions Hazards Transitions Hazards

survival

The analysis of the Cox model with time-dependent covariates can be obtained

using almost all the existing statistical packages. To accommodate time-dependent

effects, the R statistical packages use a counting process data structure introduced

by Andersen and Gill (1982). In this data-structure, an individual’s survival data is

expressed by three variables: start, stop and event. In the Colon cancer data,

recurrence (if delta=1) is the only time-dependent covariate (this covariate will be

renamed as tdcov). Individuals without change in the time-dependent covariate (i.e.

without recurrence) are represented by only one line of data, whereas patients with a
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change in the time-dependent covariate must be represented by two lines. For these

patients, the first line represents the time period until the recurrence; the second line

represents the time period that passes from the recurrence to the end of the follow-up.

The remaining (time-fixed) covariates are the same for the two lines. For each row,

variables start and stop mark the time interval (start, stop) for the data, while

event is an indicator variable, taking on value 1, if there was a death at time stop,

and 0 otherwise. As an example consider the information available from four patients.

The structure of the new database is shown in Table 4.3 (using the same individuals

as in Table 4.1). The first patient had a recurrence 968 days after enrolment and

died at time 1521. For the second patient, the time from enrolment to censoring is

3087. Patients 3 and 4 had a recurrence at days 542 and 245 respectively. The time

from enrolment to death for the these patients are 963 and 293 days,respectively.

Table 4.3: Sample of the Colon data in a counting process format.

Input data for the survival library.

id start stop event tdcov rx sex age

1 0 968 0 0 3 1 43

1 968 1521 1 1 3 1 43

2 0 3087 0 0 3 1 63

3 0 542 0 0 1 0 71

3 542 963 1 1 1 0 71

4 0 245 0 0 3 0 66

4 245 293 1 1 3 0 66

This approach for representing standard survival data can be easily extended to

more complex situations. Cox regression can be performed using survival library as

follow:

> require("survival")

> colon.surv <- msmdata(colon2, pkg = "tdcm")

> cox.tdcm <- coxph(Surv(start, stop, event) ~ tdcov +
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factor(rx) + sex + age, data = colon.surv)

> summary(cox.tdcm)

The effect of the recurrence (tdcov) leads to a increase in risk (Hazard Ratio,

HR:64.6005; 95% confidence interval, 95% CI: 45.5597 - 91.5990). Age (HR:1.0116;

95% IC: 1.0038 - 1.0190) and rx are both important factors, while sex and rx has

no significant effect (p-value=0.0585 > 0.05 and p-value=0.7153, respectively).

A partial MSM can be obtained adding interactions with the time-dependent

covariate:

> cox.tdcm2 <- coxph(Surv(start, stop, event) ~ tdcov:factor(rx)

+ tdcov:sex + tdcov:age, data = colon.surv)

> summary(cox.tdcm2)

Cox Markov models (Therneau and Grambsch, 2000; Meira-Machado et al., 2009)

can be fitted through most of the statistical packages as long as we use a counting

process notation, representing each patient by several observations. For the Colon

cancer data, individuals without recurrence contribute with two lines of data (one for

each of the transition leaving state 1) whereas individuals with a recurrence contribute

with three lines of data (one for each transition). The counting process data structure

has now one more variable representing the transition. The data structure now have

the following variables: id, start, stop, event, tdcov and transition (Table

4.4).

In this data structure, transition = 1 denotes the mortality transition without

recurrence, transition = 2 denotes the recurrence transition and transition = 3

the mortality transition after the recurrence. The events of interest are recurrence and

death. The variable event denotes whether the main event time (death) is observed

or censored.

The results for Cox Markov Model (CMM) can be obtained using the following

input commands:
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Table 4.4: Sample of the Colon data in a counting process format.

Input data for the Cox Markov model.

id start stop event tdcov transition rx sex age

1 0 968 0 0 1 3 1 43

1 0 968 1 0 2 3 1 43

1 968 1521 1 1 3 3 1 43

2 0 3087 0 0 1 3 1 63

2 0 3087 0 0 2 3 1 63

3 0 542 0 0 1 1 0 71

3 0 542 1 0 2 1 0 71

3 542 963 1 1 3 1 0 71

4 0 245 0 0 1 3 0 66

4 0 245 1 0 2 3 0 66

4 245 293 1 1 3 3 0 66

> colon.cmm <- msmdata(colon2, pkg = "cmm")

> coxph(Surv(start, stop, event) ~ factor(rx) + sex + age,

data = colon.cmm, subset = c(transition == 1))

> coxph(Surv(start, stop, event) ~ factor(rx) + sex + age,

data = colon.cmm, subset = c(transition == 2))

> coxph(Surv(start,stop, event) ~ factor(rx) + sex + age,

data = colon.cmm, subset = c(transition == 3))

Before using MSMs, we have to evaluate whether the Markov assumption is ten-

able. The Markov assumption states that future evolution only depends on the current

state at time t. The Markov assumption may be checked, among others, by includ-

ing covariates depending on the history (Kay, 1986). For the illness-death model,

the Markov assumption is only relevant for the mortality after recurrence. We can

check this assumption by examining whether the time spent in the healthy (alive and

disease-free) state (i.e. the past) is important on the transition from the disease
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(recurrence) state to death (i.e. the future). This can be done using the following

Cox model:

> coxph(Surv(stop, event) ~ start, data=colon.cmm,

subset = c(transition == 3))

which revealed that the Markov assumption is not valid (p-value < 0.05). In situations

like this, one alternative approach is to use a semi-Markov model in which the future

of the process does not depend on the current time but rather on the duration in the

current state. The Cox semi-Markov Model (CSMM) can be fitted using the following

input command:

> coxph(Surv(stop-start, event) ~ factor(rx) + sex + age,

data = colon.cmm, subset = c(transition == 3))

The results obtained from fitting this model showed us that age, which revealed a

strong effect on survival in the Cox model, under the CSMM, only obtains a significant

effect on 1→ 3 (transition=1) (HR: 1.089; 95% CI: 1.049 - 1.13). The treatment

variable, rx (treatment: Lev+5-FU), revealed to be the best predictor for the mor-

tality transition 2 → 3 (transition=3) for patients that experienced a recurrence

(HR: 1.39; 95% CI: 1.082 - 1.79), and also for transition 1 → 2 (transition=2),

corresponding to recurrence (HR: 0.595; 95% CI: 0.470 - 0.752). The effect of rx

(treatment: Lev+5-FU), on the mortality intensity in patients without recurrence was

not significant (HR: 0.846; 95% CI: 0.401 - 1.79). No significant effect of sex and

treatment with Levamisole alone was found.

p3state.msm

The p3state.msm package contains nonparametric statistical methods for es-

timating quantities of interest such as transition probabilities, bivariate distribution

function for censored gap times, etc. This package can only be used for the pro-

gressive three-state model and the illness-death model. Records in the data file must

89



Chapter 4. Software

contain the following variables: times1, delta, times2, time and status. The

remaining variables are the covariates to be studied in the regression models. Each

individual is represented by one line of data, just as shown in Table 4.1.

The p3state.msm software enables several semi-parametric Cox models to be

fitted. The time-dependent Cox model (TDCM) or multi-state Cox-like models (CMM

and CSMM) can be constructed with the following input commands:

> require("p3state.msm")

> res.p3state <- p3state(colon2, formula = ~ factor(rx) + sex

+ age)

> summary(res.p3state, model = "TDCM")

> summary(res.p3state, model = "CMM")

> summary(res.p3state, model = "CSMM")

For illustration purposes we show the results for all transition (Table 4.5).

The results are the same as for the survival package (CSMM). Note that in the

CMM the results are only different on transition 2→ 3 (results not shown).

The patients course over time may also be studied through transition probabilities.

For the p3state.msm package, the estimators for the transition probabilities can be

considered as an alternative to Aalen-Johansen estimators since they do not rely on

the Markov assumption (Meira-Machado et al., 2006). To obtain these estimates (for

a model with no covariates), the following input command must be typed:

> summary(res.p3state, time1 = 100, time2 = 800)

Number of individuals experiencing the intermediate event: 461

Number of events for the direct transition from state 1 to state 3: 38

Number of individuals remaining in state 1: 423

Number of events on transition from state 2: 409

Number of censored observations on transition from state 2: 52

The estimate of the transition probability
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P11( 100 , 800 ) is 0.6182574

P12( 100 , 800 ) is 0.1720199

P13( 100 , 800 ) is 0.2097227

P22( 100 , 800 ) is 0.05531639

P23( 100 , 800 ) is 0.9446836

The package also provides plots for several functions for the model illness-death.

The transition probabilities (see Figure 4.1) can be obtained with:

> plot(res.p3state, plot.trans = "all", time1 = 100)

The p3state.msm package can also be used to obtain estimates and plots for

the bivariate distribution function and for the marginal distribution of the second

gap (time since recurrence). However this can only be obtained in the scope of the

progressive three-state model.

Table 4.5: Cox Semi-Markov model for all transitions.

Cox Semi-Markov Model from state 1→ 3

coef exp(coef) 95% CI p-value

n=922

factor(rx)2 -0.3353 0.7151 0.3132 - 1.6329 0.4261

factor(rx)3 -0.1670 0.8462 0.4011 - 1.7853 0.6611

sex 0.4238 1.5278 0.7922 - 2.9464 0.2059

age 0.0854 1.0892 1.0486 - 1.1313 1.0231e-05

Cox Semi-Markov Model from state 1→ 2

coef exp(coef) 95% CI p-value

n=922

factor(rx)2 -0.0016 0.9984 0.8083 - 1.2333 0.9885

factor(rx)3 -0.5200 0.5945 0.4699 - 0.7522 1.4693e-05

sex -0.1068 0.8987 0.7485 - 1.0791 0.2525

age -0.0072 0.9928 0.9852 - 1.0005 0.0670

Cox Semi-Markov Model from state 2→ 3

coef exp(coef) 95% CI p-value

n=461

factor(rx)2 0.1091 1.1153 0.8900 - 1.3976 0.3432

factor(rx)3 0.3317 1.3934 1.0818 - 1.7947 0.0102

sex 0.1603 1.1739 0.9638 - 1.4299 0.1111

age 0.0072 1.0073 0.9993 - 1.0153 0.0756
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Figure 4.1: Transition probability estimates with first time equal to

100 days using the p3state.msm package for Colon cancer study.

msm

Like the preceding studied models, the homogeneous Markov model (HMM) offers

a detailed description of the survival process, making use of all the available infor-

mation to estimate the effect of prognostic factors and intensity rates. The msm

package contains functions for fitting general continuous time Markov and hidden

Markov multi-state models to longitudinal data. Transition rates and output pro-

cesses can be modelled in terms of covariates. The first four patient histories are

shown below. ptnum is the subject identifier; the state occupied is in the variable

state, with possible values 1, 2, 3 representing alive, recurrence and death respec-

tively; dtime is time to enter the state (1, 2 and 3), in days (Table 4.6).
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Table 4.6: Sample of the Colon data. Input data for the msm pack-

age.

ptnum dtime state rx sex age

1 0 1 3 1 43

1 968 2 3 1 43

1 1521 3 3 1 43

2 0 1 3 1 63

2 3087 1 3 1 63

3 0 1 1 0 71

3 542 2 1 0 71

3 963 3 1 0 71

4 0 1 3 0 66

4 245 2 3 0 66

4 293 3 3 0 66

To obtain the structure of data for this package we used the msmdata function.

A useful way to summarising multi-state data is as a frequency table of pairs of

consecutive states. This is implemented in the function statetable.msm. Can be

used the following input commands:

> require("msm")

> colon.msm <- msmdata(colon2, pkg = "msm")

> statetable.msm(state, ptnum, data = colon.msm)

to

from 1 2 3

1 423 461 38

2 0 52 409

Thus there were 38 healthy from deaths state and 409 deaths from state 2 (re-

currence). 461 patients have been healthy for the recurrence.
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We now specify the multi-state model to be fitted to the data. A model is

governed by a transition intensity matrix Q. For the cancer Colon example, there are

three possible states through which the patient can move. We assume that the patient

can advance 1→ 1, 1→ 2, 1→ 3, 2→ 2 and 2→ 3.

Q =


−(q12 + q13) q12 q13

0 −q23 q23

0 0 0

 (4.1)

We have to indicate which transitions are allowed in our model. For this purpose

we must define a matrix of the same size as Q, containing zeros in the positions

where the entries of Q are zero. All other positions contain an initial value for the

corresponding transition intensity. The diagonal entries supplied in this matrix do not

matter, as the diagonal entries of Q are defined as minus the sum of all the other

entries in the row. For example:

> qmat0 <- rbind(c(0, 0.25, 0.25), c(0, 0, 0.5), c(0, 0, 0))

The likelihood is maximized by numerical methods, which need a set of initial

values to start the search for the maximum. Initial values for a model could be

set by assuming that transitions between states take place only at the observation

times. The msm package provides a function for calculating initial values. The input

command is

> qmat1 <- crudeinits.msm(state ~ dtime, ptnum,

data = colon.msm, qmatrix = qmat0)

> qmat1

[,1] [,2] [,3]

-0.0003847123 0.0003554156 2.929673e-05

0.0000000000 -0.0016624800 1.662480e-03

0.0000000000 0.0000000000 0.000000e+00
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To fit the model, we have to call the msm function with the appropriate arguments.

We need to have the data set cancer Colon in the appropriate format (as shown in

Table 4.6), a matrix indicating the allowed transitions and the initial values. Then we

may fit the homogeneous Markov model (HMM) using the following input commands:

> colon.msm2 <- msm(state ~ dtime, subject = ptnum,

data = colon.msm, qmatrix = qmat1, exacttimes = TRUE)

> colon.msm2

State 1 State 2

State 1 -0.0003847 (-0.00042,-0.0003524) 0.0003554 (0.0003244,0.0003894)

State 2 0 -0.001662 (-0.001832,-0.001509)

State 3 0 0

State 3

State 1 2.93e-05 (2.132e-05,4.026e-05)

State 2 0.001662 (0.001509,0.001832)

State 3 0

To examine the effect of covariates (sex, age and rx), we have to supply a

formula to the covariate argument.

> colon.msm.t <- msm(state ~ dtime, subject = ptnum,

data = colon.msm, qmatrix = qmat1, death = 3,

covariates = ~ factor(rx) + sex + age)

Then, the hazard.msm function gives hazard ratios, and confidence intervals, for

the allowed transitions.

> hazard.msm(colon.msm.t)

$`factor(rx)2`

HR L U

State 1 - State 2 0.9700298 0.7856320 1.197708
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State 1 - State 3 0.6608962 0.1114504 3.919088

State 2 - State 3 1.1483350 0.9119585 1.445979

$`factor(rx)3`

HR L U

State 1 - State 2 0.5947657 0.4749321 0.7448355

State 1 - State 3 0.9237622 0.2061749 4.1388962

State 2 - State 3 1.7146097 1.3423275 2.1901410

$sex

HR L U

State 1 - State 2 0.9237646 0.7725099 1.104634

State 1 - State 3 4.0005452 0.7410271 21.597540

State 2 - State 3 1.1976163 0.9841540 1.457378

$age

HR L U

State 1 - State 2 0.9976617 0.9899469 1.005437

State 1 - State 3 1.0825319 1.0040206 1.167183

State 2 - State 3 1.0086508 1.0006585 1.016707

The plot method for msm objects produces a plot of the expected probability of

survival against time, from each transient state. Survival is defined as not entering

the final absorbing state.

> plot(colon.msm2, legend.pos = c(1550, 1))

This shows that the 1500 day survival probability of health is approximately 0.7

and with as recurrence 0.2. With as relapse the survival probability diminishes very

quickly to around 0.4 in the first 500 days after entry the study (Figure 4.2).

96



Chapter 4. Software

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

F
itt

ed
 s

ur
vi

va
l p

ro
ba

bi
lit

y

From state 1
From state 2

Figure 4.2: Plots of multi-state models.

We note that the msm package support a variety of observation schemes, includ-

ing processes observed at arbitrary times, completely observed processes, and censored

states. Any pattern of transitions between states can be specified.

mstate

The mstate package allow to estimate hazards and probabilities, possibly depend-

ing on covariates, and to obtain prediction probabilities in the context of competing

risks and multi-state models. Again, we shall use the database of Colon cancer. The

variables required by the package mstate are the following: id, from, to, trans,

Tstart, Tstop, time and status. A sample of the data can be seen in Table 4.7.

After having prepared the data in long format using the msmdata as shown in

the input commands below, estimation of covariate effects using Cox regression is

straightforward using the coxph function of the survival package (previously shown).

The delayed entry aspect of this model for transition 3 is achieved by specifying.

We consider first the model without any proportionality assumption on the baseline

hazards, for different values of trans (the transitions). The results for the CMM can
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Table 4.7: Sample of the Colon data. Input data for the mstate

package.

id from to trans Tstart Tstop time status rx sex age

1 1 2 1 0 968 968 1 3 1 43

1 1 3 2 0 968 968 0 3 1 43

1 2 3 3 968 1521 553 1 3 1 43

2 1 2 1 0 3087 3087 0 3 1 63

2 1 3 2 0 3087 3087 0 3 1 63

3 1 2 1 0 542 542 1 1 0 71

3 1 3 2 0 542 542 0 1 0 71

3 2 3 3 542 963 421 1 1 0 71

4 1 2 1 0 245 245 1 3 0 66

4 1 3 2 0 245 245 0 3 0 66

4 2 3 3 245 293 48 1 3 0 66

be obtained using the following commands:

> require("mstate")

> trans <- trans.illdeath(names = c("1", "2", "3"))

> colon.mstate <- msmdata(colon2, pkg = "mstate", tra = trans)

The number of events in the data can be summarized with the function events.

> events(colon.mstate)

$Frequencies

to

from 1 2 3 no event total entering

1 0 461 38 423 922

2 0 0 409 52 461

3 0 0 0 0 0
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$Proportions

to

from 1 2 3 no event

1 0.00000000 0.50000000 0.04121475 0.45878525

2 0.00000000 0.00000000 0.88720174 0.11279826

3

Now add transition-specific covariates to the dataset, for a numerical covariate,

the names of the expanded covariates are cov.1, cov.2, etc. The extension .i refers

to transition number i.

> colon.mstate.cov <- expand.covs(colon.mstate,

covs = c("rx", "sex", "age"), append = TRUE, longnames = FALSE)

> c1 <- coxph(Surv(Tstart, Tstop, status) ~ rx1.1 + rx2.1 +

age.1 + sex.1 + rx1.2 + rx2.2 + age.2 + sex.2 + rx1.3 + rx2.3 +

age.3 + sex.3 + strata(trans), data = colon.mstate.cov)

> c1

Results, shown in Table 4.8, are in agree with those previously found (see, for

example, Table 4.5). The first four lines represent the recurrence transition, from line

5 to line 8 the estimates for the mortality transition without recurrence. Finally, the

remaining four lines are for the mortality transition after recurrence.
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Table 4.8: Model Markov stratified hazards.

coef exp(coef) p-value

rx1.1 -0.0016 0.9980 0.9900

rx2.1 -0.5200 0.5950 1.5e-05

age.1 -0.0072 0.9930 0.0670

sex.1 -0.1068 0.8990 0.2500

rx1.2 -0.3353 0.7150 0.4300

rx2.2 -0.1670 0.8460 0.6600

age.2 0.0854 1.0890 1.0e-05

sex.2 0.4238 1.5280 0.2100

rx1.3 0.0609 1.0630 0.6000

rx2.3 0.3072 1.3600 0.0170

age.3 0.0073 1.0070 0.0700

sex.3 0.1770 1.1940 0.0790

etm

The etm package provides estimates and plots for the transition probabilities

for any multi-state model. It can also estimate the variance of the Aalen-Johansen

estimator, and handles left-truncated data. The etm package permits to compute

interesting quantities that depend on the matrix of transition probabilities. The vari-

ables required by the package etm are the following: id, entry, exit, from, to. A

sample of the data can be seen in Table 4.9.

To use etm package, we first need to define the matrix that specifies the possible

transitions. Rows represent the states from which a transition may occur whereas the

columns designate states to which a transition may occur. For instance, the possible

transitions are labeled TRUE. Next, we use msmdata function to obtain the structure

of data for etm package. The etm function computes the empirical transition matrix,

also called Aalen-Johansen estimator, of the transition probability matrix of any multi-

state model. The s represents starting value for computing the transition probabilities
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Table 4.9: Sample of the Colon data. Input data for the etm package.

id entry exit from to rx sex age

1 0 968 1 2 3 1 43

1 968 1521 2 3 3 1 43

2 0 3087 1 cens 3 1 63

3 0 542 1 2 1 0 71

3 542 963 2 3 1 0 71

4 0 245 1 2 3 0 66

4 245 293 2 3 3 0 66

and t is ending value. This function also gives the number of absorbing and transient

states and the possible transitions. Then we ran the following commands to obtain

which we describe above:

> require("etm")

> trans <- matrix(FALSE, 3, 3)

> trans[1, 2:3] <- TRUE

> trans[2, 3] <- TRUE

> colon.etm <- msmdata(colon2, pkg = "etm", tra = trans,

state.names = c("1", "2", "3"), cens.name = "cens")

> etm(data = colon.etm, state.names = c("1", "2", "3"),

tra = trans, cens.name = "cens", s = 100, t = 800)

Multistate model with 2 transient state(s)

and 1 absorbing state(s)

Possible transitions:

from to

1 2

1 3
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2 3

Estimate of P(100, 800)

1 2 3

1 0.6182574 0.1657187 0.2160239

2 0.0000000 0.2113512 0.7886488

3 0.0000000 0.0000000 1.0000000

This multi-state model have two transient states (1, 2) and one absorbing state

(3). An absorbing state is a process to will never leave an absorbing state once it

enters. Is a state from which there is a zero probability of exiting. The probability of

a patient to find the healthy 800 days since he was healthy at 100 days is 0.6183. A

patient who is in state 2 at time 100, the probability of being in state 3 at time 800

is 0.7886 (The output is not complete because the complete one have the estimated

of covariance).

We used in this case the etm function with the value zero initial (s) and final value

(t) without any specification, will be the last data time. Then we ran the following

commands to obtain a plot for the transition probabilities.

> my.etm <- etm(data = colon.etm, state.names = c("1", "2", "3"),

tra = trans, cens.name = "cens", s = 0)

> plot(my.etm, c("1 2", "1 3", "2 3"),

col = c("red", "blue", "black"))
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Figure 4.3: Plot with transition probabilities using the etm package.

Colon cancer data.

The plot shown in Figure 4.3 has 3 transitions and their transition probability in

certain times. Since state 3 is the state of death (absorbing) then the probability

of transiting to state 3 (either the 1 or 2) increases over time. The probability of

transition 1→ 2 increases to about the 500 days and then decreases.

We can calculate the transition probabilities and also the variance with the com-

mand trprob and trcov, respectively. We only put here the commands for the

transition 1→ 2.

> p12 <- trprob(my.etm, "1 2", c(30, 365, 730, 1825, 2920))

> var12 <- trcov(my.etm, "1 2", c(30, 365, 730, 1825, 2920))

Then we can see again the transition probabilities in a chart, but now the transi-

tions are discrete graphics. Should be remembered that the sum of P11+P12+P13 = 1

and that P23 = 1− P22. This chart also has confidence bands.

> xyplot(my.etm, data, c("1 3", "2 3", "1 1", "1 2"))

103



Chapter 4. Software

Table 4.10: Transition probabilities and variance for 30, 365, 730,

1825 and 2920 days.

Transition Probabilities 30 365 730 1825 2920

1→ 2 0.0054 0.1649 0.1758 0.0805 0.0291

1→ 3 0.0022 0.0824 0.2246 0.4331 0.5345

2→ 3 0.0000 0.6626 0.8409 0.9677 0.9912

Variance 30 365 730 1825 2920

1→ 2 5.8499e-06 1.4932e-04 1.5728e-04 8.0542e-05 1.7702e-04

1→ 3 2.3476e-06 8.2033e-05 1.8892e-04 2.6661e-04 5.2895e-04

2→ 3 0.0000 8.1231e-03 1.9208e-03 9.4962e-05 2.2719e-05
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Figure 4.4: Transition probabilities for transitions 1 → 1, 1 → 2,

1→ 3 and 2→ 3.

changeLOS

This package was build for computing change in LOS (Change in length of hospital

stay) based on methods described in (Schulgen and Schumacher, 1996). The main

feature of this R package is: to compute and plot change in length of hospital stay

(LOS is used to assess the utilization of hospital resources, the costs and the general
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impact of a disease)

The estimation techniques used are fully nonparametric, allowing for a time-

inhomogeneous Markov process, i.e. the future development of the process depends

only on the state currently occupied; the Markov assumption may be dropped for

estimation of state occupation probabilities. The new format of the input dataset can

be found in Table 4.11.

Table 4.11: Sample of the Colon data. Input data for the changeLOS

package.

id from to time oid

1 0 1 968 1

1 1 2 1521 1

2 0 cens 3087 2

3 0 1 542 3

3 1 2 963 3

4 0 1 245 4

4 1 2 293 4

With the changeLOS R package it is possible describe the state names and

possible transitions.

> require("changeLOS")

> trans <- matrix(FALSE, 3, 3)

> trans[1, 2:3] <- TRUE

> trans[2, 3] <- TRUE

> colon.los <- msmdata(colon2, pkg = "los", tra = trans,

cens.name = "cens")

> tr.prob <- etm(colon.los, c("0", "1", "2"), trans, "cens",s=0)

> cLOS <- etm::clos(tr.prob)

> plot(cLOS)
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The function clos estimates the expected change in length of stay (LOS) asso-

ciated with an intermediate event (IE), using the Aalen-Johansen estimator for the

matrix of transition probabilities.

Figure 4.5: Expected change in length of hospital stay (LOS).

The upper graph displays the weights used to compute the weighted average.

The lower graph displays the expected LOS for patients who have experienced the

intermediate event and for those who have not (Figure 4.5). The black curve indicates

the estimated expected time of hospital stay given recurrence has been acquired by

time t. The red curve indicates the respective time, given still without recurrence by

time t.

mvna

The multivariate Nelson-Aalen estimator of cumulative transition hazards is one

important nonparametric estimator in event history analysis. The mvna package

provides a way to easily estimate and display the cumulative transition hazards from
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a time-inhomogeneous markov multi-state model. The estimator may remain valid

under even more general assumptions. The mvna contains the following functions:

the function, xyplot.mvna, plots the cumulative hazard estimates in a lattice plot,

along with pointwise confidence intervals; the predict.mvna function gives Nelson-

Aalen estimates at time points given by the user. The main function, mvna, computes

the Nelson-Aalen estimates at each of the observed event times, and two variance

estimators. Finally, the summary function returns an object of class mvna which is a

list of data frames named after possible transitions.

The variables required by the package are the following: id, from, to, time. A

sample of the data can be seen in Table 4.12.

Table 4.12: Sample of the Colon data. Input data for the mvna

package.

id from to time rx sex age

1 1 2 968 3 1 43

1 2 3 1521 3 1 43

2 1 cens 3087 3 1 63

3 1 2 542 1 0 71

3 2 3 963 1 0 71

4 1 2 245 3 0 66

4 2 3 293 3 0 66

Each data frame of the summary function contains the following columns:

• na: nelson-aalen estimates at each transition times

• time: the transition times

• var.aalen: variance estimator give

• n.risk: number at individual at risk in the transient states just before

• n.event: number of transitions at each event time
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The input commands are the following:

> require("mvna")

> trans <- matrix(FALSE, 3, 3)

> trans[1, 2:3] <- TRUE

> trans[2, 3] <- TRUE

> colon.mvna <- msmdata(colon2, pkg = "mvna", tra = trans,

cens.name = "cens", state.names = c("1", "2", "3"))

> col.mvna <- mvna(data = colon.mvna,

state.names = c("1", "2", "3"), tra = trans, cens.name = "cens")

> summary(col.mvna)

For illustration purposes we only present the results for transition 1 → 2 and

2→ 3.

Table 4.13: Nelson-Aalen estimator in multi-state models.

Transition 1→ 2 Transition 2→ 3

na var.aalen time n.risk n.event na var.aalen time n.risk n.event

0.00 0 0 922 0 0.00 0.00 9 1 0

0.36 0 496 633 1 1.32 0.06 497 167 0

0.60 0 1178 490 0 2.55 0.07 1166 115 1

0.71 0 2209 274 0 3.79 0.09 2203 49 0

0.72 0 2598 108 0 4.05 0.10 2588 17 0

0.72 0 3325 2 0 4.59 0.22 3192 1 0

The plot method permits to draw several cumulative transition hazards on the

same panel and the second one estimates of the cumulative hazards plotted as a

function of time for all the transitions specified by the user, xyplot can also plot

several types of pointwise confidence interval (Figure 4.6).

> plot(col.mvna, col = c("red", "blue", "black"))

> xyplot(x = col.mvna)

108



Chapter 4. Software

0 500 1000 1500 2000 2500 3000

0
1

2
3

4

Time

C
um

ul
at

iv
e 

H
az

ar
d

1 2
1 3
2 3

Time

C
um

ul
at

iv
e 

H
az

ar
d

0

1

2

3

4

5

0 1000 2000 3000

1 2 1 3

0

1

2

3

4

5

2 3

Figure 4.6: Plots for a mvna object for transition 1→ 2, 1→ 3 and

2→ 3.
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TPmsm

The TPmsm package contains functions to compute estimates for the transition

probabilities in the illness-death model and the progressive three-state model. This

package can be used to implement seven methods (AJ, PAJ, KMW, KMPW, IPCW,

LIN and LS). The Inverse Probability of Censoring (IPCW) and (LIN) estimators also

permit to compute transition probabilities conditioned on a single covariate. The

package also allow users to obtain plots of the transition probabilities with or without

confidence bands. Records in the data must contain the following variables: time1,

event1, Stime and event. A single covariate can also be included. Each individual

is represented by one line of data, just as shown in Table 4.14. We construct the data

with the following input commands:

> require("TPmsm")

> colnames(colon2) <- c("time1", "event1", "time2", "Stime", "event",

"rx", "sex", "age")

> p <- which(colon2$event == 1 & colon2$event1 == 0)

> colon.tpmsm <- colon2

> colon.tpmsm[p, ]$event1 <- 1

> colonTP_obj1 <- with(colon.tpmsm, survTP(time1, event1, Stime, event))

Table 4.14: Sample of the Colon data. Input data for the TPmsm

package.

time1 event Stime event1

968 1 1521 1

3087 0 3087 0

542 1 963 1

245 1 293 1

The following four input commands provide the estimate for the KMW, KMPW,

AJ and PAJ methods. With this commands we can obtain the estimates with or
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without 95% (conf.level = 0.95) pointwise confidence intervals (conf = TRUE)

using 1000 bootstrap replicates (n.boot = 1000).

> transKMW(object = colonTP_obj1, s = 100, t = 800)

> transKMPW(object = colonTP_obj1, s = 100, t = 800)

> transAJ(object = colonTP_obj1, s = 100, t = 800)

> transPAJ(object = colonTP_obj1, s = 100, t = 800)

Kaplan-Meier Weighted transition probabilities

Estimates of P(100, 800)

1 2 3

1 0.6182574 0.17201988 0.2097227

2 0.0000000 0.05531639 0.9446836

3 0.0000000 0.00000000 1.0000000

Presmoothed Kaplan-Meier Weighted transition probabilities

Estimates of P(100, 800)

1 2 3

1 0.6176346 0.17211832 0.2102471

2 0.0000000 0.05618279 0.9438172

3 0.0000000 0.00000000 1.0000000

Aalen-Johansen transition probabilities

Estimates of P(100, 800)

1 2 3

1 0.6182574 0.1657187 0.2160239

2 0.0000000 0.2113512 0.7886488
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3 0.0000000 0.0000000 1.0000000

Presmoothed Aalen-Johansen transition probabilities

Estimates of P(100, 800)

1 2 3

1 0.6176346 0.1656508 0.2167146

2 0.0000000 0.2114037 0.7885963

3 0.0000000 0.0000000 1.0000000

The results for the estimator KMW are the same as for the p3state.msm package.

The AJ and PAJ methods are described in Chapter 3 and we can show that the results

are the same as for the etm package in the case of the AJ estimator. In Moreira

et al. (2013) we described both approaches (AJ and PAJ).

In addition to the numerical results graphical outputs can also be obtained. Figure

4.7 plots the transition probabilities for all allowed transitions using PAJ method. This

plot can be obtained using the following input commands:

> AJ <- transPAJ(object=colonTP_obj1, s=0, conf=TRUE, conf.level=0.95)

> plot(AJ, tr.choice=c("1 1","1 2", "1 3","2 2", "2 3"),

ylab="Pij(0, Time)", xlab="Time",col=1:5, lty=1, conf.int=TRUE)

The graph in Figure 4.7 is a version presmoothed of the graph in Figure 4.3 that

we see in etm package. TPmsm package provides all allowed transitions and 95%

confidence bands.

Alternatively, we can view all transitions in the same chart but in differents plots

using the following input commands:

> tr.choice <- colnames(AJ$est)

> par.orig <- par( c("mfrow", "cex") )

> par( mfrow = c(2, 3) )

> for ( i in seq_len( length(tr.choice) ) ) {
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Figure 4.7: Plot with transition probabilities. The TPmsm package

with Colon cancer data.

> plot(AJ, tr.choice = tr.choice[i], col = 1, lty = 1, legend = FALSE,

main = tr.choice[i], xlab = "", ylab = "", conf.int = TRUE)}

Figure 4.8 show the allowed transition for the PAJ method. This graph is the

version presmoothed of the plot in Figure 4.4 (etm package).

genSurv

The genSurv package provides functions to generate data for different approaches

from a progressive illness-death model. This package permits generate for the Cox

Markov model (genCMM), Cox proportional hazard model (genCPHM), Cox model

with time-dependent covariates (genTDCM) and time-homogeneous Markov model

(genTHMM).

This package can be used to generate multi-state survival data, for example data

arising from the widely used Cox Markov model represented by several lines. Results
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Figure 4.8: Transition probabilities estimates using the TPmsm pack-

age for Colon cancer data.

can easily obtained using the R survival package. Such data can be constructed with

the following input commands:

> require("genSurv")

> cmmdata <- genCMM(n = 1000, model.cens = "uniform", cens.par = 2.5,

beta = c(2, 1, -1), covar = 10, rate =c (1, 5, 1, 5, 1, 5))

> head(cmmdata, n = 11)

> library("survival")

> fit_12 <- coxph(Surv(start, stop, event) ~ covariate, data = cmmdata,

subset = c(trans == 2))

id start stop event covariate trans

1 1 0.00000000 0.51250161 0 1.890400 1

2 1 0.00000000 0.51250161 1 1.890400 2

3 1 0.51250161 0.54344208 0 1.890400 3
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4 2 0.00000000 0.39193057 0 2.112890 1

5 2 0.00000000 0.39193057 0 2.112890 2

6 3 0.00000000 0.09490459 0 4.928487 1

7 3 0.00000000 0.09490459 1 4.928487 2

8 3 0.09490459 0.99449772 0 4.928487 3

9 4 0.00000000 0.02275807 0 7.640448 1

10 4 0.00000000 0.02275807 1 7.640448 2

11 4 0.02275807 1.17040300 0 7.640448 3

This kind of database have the structure that work with survival package (Table

4.4).

Using the following commands we simulated the time-homogeneous Markov model.

In this output we can see the structure for use msm package (Table 4.6).

> thmmdata <- genTHMM(n = 100, model.cens = "uniform", cens.par = 80,

beta = c(0.09, 0.08, -0.09), covar = 80, rate = c(0.05, 0.04, 0.05))

> head(thmmdata, n = 11)

> library("msm")

> qmat0 <- rbind(c(0, 0.25, 0.25), c(0, 0, 0.5), c(0, 0, 0))

> qmat1 <- crudeinits.msm(state ~ time, PTNUM, data = thmmdata,

qmatrix = qmat0)

> msm.t <- msm(state ~ time, subject = PTNUM, data = thmmdata,

qmatrix = qmat1, exacttimes = TRUE, covariates = ~covariate)

> hazard.msm(msm.t)

PTNUM time state covariate

1 1 0.0000000 1 16.03930

2 1 1.0224553 2 16.03930

3 1 24.0678599 2 16.03930

4 2 0.0000000 1 37.27837

5 2 0.2045838 2 37.27837
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6 2 2.4227099 2 37.27837

7 3 0.0000000 1 52.91009

8 3 0.1967006 3 52.91009

9 4 0.0000000 1 24.48898

10 4 1.2975183 2 24.48898

11 4 75.9107707 2 24.48898

4.3 The survivalBIV package

The survivalBIV software contains functions that calculate estimates for the

bivariate distribution function. As mentioned in Chapter 2, this package can be used

to implement four methods (CKM, KMW, KMPW and Lin). Here we will call IPCW

to the Lin estimator (equation 2.5) in the Chapter 2, Section 2.2.2. This software

is intended to be used with the R statistical program R Team (2010). Our package

is composed of 9 functions that allow users to obtain estimates for the bivariate

distribution function. Table 4.15 provides a summary of the functions in this package.

Users can obtain the estimates for the methods discussed in Chapter 2 by means

of three functions, namely, survBIV, summary and plot. Details on the usage of

these functions can be obtained with the corresponding help pages. It should be

noted that to implement the methods described in Chapter 2 one needs the following

variables: time1, event1, time2 and event2. Covariates have not been included

in any of the implemented methods, therefore they are not necessary. The variable

time1 represents the observed time of the first event (first gap time), and event1 the

status indicator of the first gap time (if the first gap time is a censored observation, the

value is 0 and otherwise the value is 1). The variable time2 represents the observed

second time (second gap time). If event1 = 0, the second gap time is not observed

and then time2 = 0. The variable event2 is the final status of the individual (takes

the value 1 if the second event of interest is observed and 0 otherwise).
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Table 4.15: Summary of functions in the package.

Function Description

dgpBIV A function that generates bivariate censored gap times from some

known copula functions. By default returns a dataset of class

survBIV

corrBIV Provides the correlation between the bivariate times for some

copula distributions.

survBIV Provides the adequate dataset for implementing all the four

methods. The new dataset is of class survBIV.

bivCKM Provides estimates for the bivariate distribution function for the

Conditional Kaplan-Meier estimator, CKM.

bivIPCW Provides estimates for the bivariate distribution function for the

Inverse Probability of Censoring Weighted estimator, IPCW.

bivKMW Provides estimates for the bivariate distribution function for the

Kaplan-Meier Weighted estimator, KMW.

bivKMPW Provides estimates for the bivariate distribution function for the

Kaplan-Meier Presmoothed Weighted estimator, KMPW.

plot A function that provides the plots for the bivariate distribution

function and marginal distribution of the second time.

summary Summary method for objects of class survBIV.

4.4 Data Generation

Users may use the function dgpBIV to generate bivariate survival data. This func-

tion can be used to generate bivariate survival times from two of the most known

copula functions: Gumbel’s bivariate exponential distribution (Lu and Bhattacharya,

1990, 1991), also known as the Farlie-Gumbel-Morgenstern distribution and the bi-

variate weibull distribution. In the book by Johnson and Kotz (1972) several bivariate

distributions are discussed and procedures of construction are given.
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It is well known that exponential and weibull distributions are very useful for

modelling survival times. The Farlie-Gumbel-Morgenstern distribution is given by

F (x, y) = F1(x)F2(y)[1 + δ(1 − F1(x))(1 − F2(y))] where the marginal distribu-

tion functions F1 and F2 are exponential with rate parameter θi, i = 1, 2 and where

|δ| ≤ 1 is the association parameter. The case of independence is obtained for δ = 0

while the maximum of correlation (between T1 and T2) for the bivariate exponential

distribution is obtained for δ = 1 with bound equal to 0.25. These and other theo-

retical correlations between the bivariate times for this copula distribution (with unit

marginal distributions) can be obtained using the input commands shown below.

> library("survivalBIV")

> corrBIV(dist = "exponential", corr = 0, dist.par = c(1, 1))

> corrBIV(dist = "exponential", corr = 1, dist.par = c(1, 1))

In the following, using the dgpBIV function we will simulate bivariate exponential

survival data (dist = "exponential"). We will use this data to explain and illus-

trate how numerical output for all methods can be obtained using the functions in

the package. We will follow the simulation scenario described by Lin et al. (1999).

We will simulate 1000 observations (n = 1000) assuming a maximum correlation of

0.25 (corr = 1) and use an independent uniform censoring time (model.cens =

"uniform"), according to model U(0, 3) (cens.par = 3).

> set.seed(1500)

> sim_data_exp <- dgpBIV(n = 1000, corr = 1, dist = "exponential",

model.cens = "uniform", cens.par = 3, dist.par = c(1, 1))

To obtain the estimates for the methods proposed in Chapter 2 we can use the

functions shown in Table 4.15. As in the simulation by Lin et al. (1999) we are going

to obtain estimates for bivariate distribution at values t1 = 0.5108 and t2 = 0.9163.

The true value is 0.2976. The following input command provides the estimate for the

KMW method. With this command we obtain the pointwise confidence intervals (conf

= TRUE) using a 1000 bootstrap replicates (n.boot = 1000). The construction of
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the pointwise confidence intervals is obtained by randomly sampling the n items

from the original data set with replacement. This can be achieved using percentile

bootstrap (method.boot = "percentile") or using basic bootstrap (method.boot

= "basic"). By default all functions use the percentile bootstrap (Davison and

Hinkley, 1997).

> bivKMW(object = sim_data_exp, t1 = 0.5108, t2 = 0.9163, conf = TRUE,

conf.level = 0.95, n.boot = 1000)

2.5% 97.5%

0.3015313 0.2692518 0.3337527

One important issue is whether 1000 is a suitable number of resamples to generate.

Since a second and a third set of 1000 resamples gave similar results for the bootstrap

confidence intervals, this suggests that with these number of resamples the results

are consistent. From this perspective 1000 would seem sufficient.

The CPU time needed for running the bivKMW function varies according to whether

bootstrap confidence bands are requested or not, the sample size, and the type of

processor in the PC computer. The command presented above took no more than 2

second on a PC with an Intel Core i7 processor with 8 GB memory. The same input

command but with n = 10000 resamples took a little more than 17 seconds.

Results for the other methods are very similar and can be obtained using the

functions bivKMPW, bivCKM and bivIPCW with the same arguments. The bivIPCW

function has one extra argument which allows the user to choose how to estimate

Ĝ in (Chapter 2 equation 2.6) method.cens = "KM" for the Kaplan-Meier method

and method.cens = "prodlim" for the method proposed in prodlim package. In

general, the two methods (for estimating the survival of censoring times) provide

similar results; without ties (e.g., using simulated data) they provide the same result.

The method based on Kaplan-Meier is implemented in C language and is faster.

The summary function can be used to obtain estimates for the bivariate distri-

bution function. This function allows the user to obtain the estimates for all four
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methods using method = "all":

> summary(object = sim_data_exp, t1 = 0.5108, t2 = 0.9163, conf = TRUE,

conf.level = 0.95, n.boot = 1000, method = "all")

F( 0.5108 , 0.9163 )=

$CKM

2.5% 97.5%

0.3001276 0.2695496 0.3321113

$IPCW

2.5% 97.5%

0.2905816 0.2569556 0.3252051

$KMPW

2.5% 97.5%

0.2982088 0.2669539 0.3274368

$KMW

2.5% 97.5%

0.3015313 0.2688383 0.3338806

The CPU time needed for running the command presented below took a little more

than 16 seconds. The same input command but with a sample size of n = 10000

took a little more than 68 seconds. Note that this input command is the one which

requires more computational effort since all methods are implemented with bootstrap

confidence bands (optional).

One limitation of the so-called Farlie-Gumbel-Morgenstern families of bivariate

cdf’s, is that the correlation of T1 and T2 can never exceed 1/3 (0.25 in the bivari-

ate exponential distribution). The bivariate weibull distribution allows for a larger

correlation, which makes it superior to Gumbel’s bivariate exponential. The dgp-

BIV function allows the user to generate a pair of times from the bivariate weibull

distribution with two-parameter marginal distributions. Its survival function is given by
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S(x, y) = P (T1 > x, T2 > y) = exp

−[( x
θ1

)β1
δ

+
(
y
θ2

)β2
δ

]δ
where 0 < δ ≤ 1, and each marginal distribution has shape parameter βi and a scale

parameter θi, i = 1, 2. The correlation between the two gap times may be obtained

though it is a complicated function of the shape and scale parameters and of δ. Again,

the function corrBIV, from the survivalBIV package can be used to calculate the

theoretical correlation between times for this bivariate distribution. This function may

be valuable for choosing the appropriate shape and scale parameters. For example,

choosing δ = 0.6, θ1 = θ2 = 7 and shape parameters β1 = β2 = 2, lead to about

54% of correlation. Below follow two input commands to illustrate the use these two

functions. The first command provides the theoretical correlation while the second

generates bivariate survival data from the bivariate weibull with exponential censoring

with rate parameter 0.08.

> corrBIV(dist = "weibull", corr = 0.6, dist.par = c(2, 7, 2, 7))

> sim_data_wei <- dgpBIV(n = 200, corr = 0.6, dist = "weibull",

model.cens = "exponential", cens.par = 0.08,

dist.par = c(2 ,7 ,2 ,7), to.data.frame = TRUE)

It is important to note that the conditional Kaplan-Meier estimator can be ob-

tained using the survival package alone. For example, for t1 = 6.7006 and t2 =

8.8805 this can be obtained through the following input commands:

> library("survival")

> KM1 <- survfit(Surv(time1, event1) ~ 1, data = sim_data_wei)

> KM2 <- survfit(Surv(time2, event2) ~ 1, data = sim_data_wei,

subset = c(time1 <= 6.7006 & event1 == 1))

> CKM <- (1 - summary(KM1, time = 6.7006) $ surv) *

(1 - summary(KM2, time = 8.8805) $ surv)

However, the bivCKM function in our package is simpler and allows the user to

obtain the same estimate together with the bootstrap confidence bands:
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> sim_data_wei2 <- with(sim_data_wei,

survBIV(time1, event1, time2, event2))

> bivCKM(object = sim_data_wei2, t1 = 6.7006, t2 = 8.8805)

The survival package can also be used to obtain the marginal distribution of the

second gap time for the CKM method. According to equation in Chapter 2, this can

be obtained using the following input commands:

> dft1 <- survfit(Surv(time1, event1) ~ 1, data = sim_data_wei)

> dft2 <- survfit(Surv(time2, event2) ~ 1, data = sim_data_wei,

subset = (event1 == 1))

> (1 - summary(dft2, time = 8.8805) $ surv) * (1 - summary(dft1,

time = max(summary(dft1) $ time)) $ surv)

Again, our package is simpler and it provides bootstrap confidence bands. Users

can easily obtain these results for a specific method (using one of the four functions)

or for all methods. The input commands are shown below.

> bivCKM(object = sim_data_wei2, t1 = Inf, t2 = 8.8805,

conf = TRUE, conf.level = 0.95, n.boot = 1000)

> summary(object = sim_data_wei2, t1 = Inf, t2 = 8.8805,

conf = TRUE, conf.level = 0.95, n.boot = 1000)

In addition to the numerical results graphical output can also be obtained. This

will be shown in the next section using data from the well-known Bladder cancer

study. Details about this dataset are given below.

4.5 Data Illustration

To illustrate our methods we will use data from a Bladder cancer study, previously

presented in Chapter 1. From the total of 85 patients, 47 relapsed at least once and,

among these, 29 experienced a new recurrence. We have a total amount of censoring
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of 66% from which 44.7% is obtained from censored observations on the first gap

time. We have about 38% of censored total time among the uncensored first gap

time. Here, only the first two recurrence times (in months) and the corresponding

gap times, T1 and T2, are considered.

There is a high percentage of censored total time (T ’s) which in general lead

to difficulties in the estimation of the bivariate distribution function. The presence

of a reasonable amount of censored T ’s among the uncensored T1’s suggests that

presmoothing could lead to an important reduction of variance in estimation (see

de Uña-Álvarez and Amorim (2011)).

We will calculate estimates for the bivariate distribution function in several points

and plot these estimates. This will be done using the survivalBIV package.

In the following, we will demonstrate the package capabilities using data from the

Bladder cancer study. Below is an excerpt of the data with one row per individual.

> data("bladderBIV", package = "survivalBIV")

> head(bladderBIV)

time1 event1 time2 event2

1 0 0 0

4 0 0 0

7 0 0 0

10 0 0 0

6 1 4 0

14 0 0 0

Each line represents the information from one individual in study. Among the first

five observations, only individual represented by line 5 had a recurrence. This individ-

ual had a recurrence on month 6 and remained alive and without second recurrence

until time 10 (months). Note that event1 = 0 and event2 = 0 (the remaining five
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observations) corresponds to a censored first gap time in the initial state (“remained

alive without a recurrence”). All observations with event1 = 1 and event2 = 1

corresponds to individuals with a first recurrence and a second recurrence.

We computed the estimated values for the four estimators of F12(x, y), for x

equals to 3, 13, 29 and 49 and y values 3, 10, 17.75 and 36.75, corresponding to

marginal survival probabilities of 0.25, 0.5, 0.75 and 0.95. For illustration purposes

we only report the estimated values of F12(x, y) for two pairs of gap times with 95%

bootstrap confidence intervals.

> bladder_obj <- with(bladderBIV, survBIV(time1, event1,

time2, event2))

> summary(object = bladder_obj, t1 = 13, t2 = 10, method = "all",

conf = TRUE, n.boot = 10000)

> summary(object = bladder_obj, t1 = 29, t2 = 36.75,

method = "all", conf = TRUE, n.boot = 10000)

F( 13 , 10 )=

$CKM

2.5% 97.5%

0.16836961 0.08841834 0.25478264

$IPCW

2.5% 97.5%

0.15100626 0.06731521 0.24149771

$KMPW

2.5% 97.5%

0.16815396 0.09382032 0.25254201

$KMW

2.5% 97.5%

0.17192598 0.09163352 0.26381938

F( 29 , 36.75 )=
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$CKM

2.5% 97.5%

0.4498655 0.3276738 0.5755503

$IPCW

2.5% 97.5%

0.4932222 0.3499283 0.6320595

$KMPW

2.5% 97.5%

0.4303138 0.3090228 0.5603079

$KMW

2.5% 97.5%

0.4349590 0.3119461 0.5603330

In this case it is clearly seen that the four methods can provide quite different

results, specially for higher values of x or y (where the censoring effects are stronger).

The CPU time needed for running the input commands presented above took no more

than 2 minutes.

The outputs for the bivariate distribution function and for the marginal distribution

of the second gap time are useful displays that greatly help to understand the patients

course over time. Plots for these two quantities can easily be obtained. Figure 4.9

plots the marginal distribution function of the second gap time (time from first to

second recurrence) for all methods. These plots are obtained using the following input

commands:

> plot(bladder_obj, plot.marginal = TRUE, method = "KMW",

ylim = c(0, 0.65), xlim = c(0, 45))

> plot(bladder_obj, plot.marginal = TRUE, method = "KMPW",

ylim = c(0, 0.65), xlim = c(0, 45))

> plot(bladder_obj, plot.marginal = TRUE, method = "IPCW",

ylim = c(0, 0.65), xlim = c(0, 45))
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> plot(bladder_obj, plot.marginal = TRUE, method = "CKM",

ylim = c(0, 0.65), xlim = c(0, 45))
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Figure 4.9: Marginal distribution function of the second gap time.

Bladder cancer data.

In Figure 4.9 we can see new insights for each method, for example, about the

number of jump points and monotonicity. In this graphical output we have on top the

semiparametric estimator (right) and the method without presmoothing. The main

difference between the first two methods is that the semiparametric estimator has

more jump points, explicitly the censored values of the total time for which the first

gap time is uncensored. Below, the method based on Bayes’ theorem (CKM) and

the method based on inverse censoring. Clearly, we can see that estimator based on

inverse censoring (IPCW) provides a plot with more jump points than the remaining
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methods. Note also that this method provides non-monotone curves. In regard to

the number of jump points and monotonicity, similar behaviors can be found in the

plots for the bivariate distribution function (Figures 4.10 and 4.11). For illustration

purposes we only present the plot for the semiparametric method. These plots are

obtained through the following input command,

> plot(bladder_obj, plot.bivariate = TRUE, method = "KMPW")
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Figure 4.10: Bivariate distribution function. Bladder cancer data.

Plots for the different methods can be obtained by simply changing the method

argument.
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Figure 4.11: Contour plots for the bivariate distribution. Bladder

cancer data.
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Conclusions and Future Research

In this dissertation we have presented several methodological contributions to the

analysis of multi-state survival data and discussed their application to real biomedical

datasets. Below, we go through the main results presented, jointly with some resulting

open questions and related fields that motivate future research.

In the Chapter 2 we present a new estimator for the bivariate distribution function

based on the Kaplan-Meier estimator. In addition, two estimation methods are also

given for the bivariate distribution function conditionally on current or past covariate

measures. Both estimators deal with the problem of dependent censoring. The per-

formance of all methods is investigated through simulations and illustrated using real

data. It would be interesting to provide some theoretical results for these quantities.

We conjecture that this could be done by following lines similar to those in the paper

by Akritas and Keilegom (2001), but the complete adaptation of to our context is

still undeveloped. This is a topic of our current investigation and hopefully will be

published soon.

There has been several recent contributions for the estimation of the transition

probabilities in the context of multi-state models. However, the Aalen-Johansen esti-

mator is still the standard method for estimating these quantities in Markov models. In

Chapter 3 we propose a modification of Aalen-Johansen estimator in the illness-death

model, based on a preliminary estimation (presmoothing) of the censoring probability
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for the total time (respectively, of the sojourn time in state 1), given the available

information. An interesting open question is if this idea can be generalized (and how)

to more complex multi-state models. We have derived the consistency of the proposed

estimators. The consistency result is not restricted to parametric presmoothing, but

it also includes the possibility of using some nonparametric estimators to this end.

We verified through simulations that the method based on the presmoothing may be

much more efficient than the original Aalen-Johansen estimators, even when there

is some misspecification in the chosen parametric family. To this regard, it is worth

mentioning that possible misspecifications in the presmoothing model will introduce

some bias, while still allowing for a variance reduction. The size of the bias will

depend on the misspecification level of the chosen presmoothing model, and on the

amount of censored information. Dikta et al. (2005) studied this problem under a

misspecified parametric model, showing that the bias component increases with the

model’s misspecification degree and the proportion of censored observations.

In a different context, the relative importance of introducing parametric informa-

tion with censored data was investigated by Miller (1983). Similarly, in our scenario,

relative advantages of presmoothing are more clearly seen with an increasing censor-

ing degree and at the distribution’s right tail. In such a case, standard corrections for

censoring typically exhibit a large variance; however, presmoothing functions, when

accurately estimated, offer a joint control of both the bias and the variance in esti-

mation. Importantly, the validity of a given model for presmoothing can be checked

graphically or formally, by applying a goodness-of-fit tests (e.g. Dikta et al. (2006)

and Hosmer and Lemeshow (2008) for the logistic model). This implies that the risk

of introducing a large bias through a misspecified model can be controlled in practice.

We illustrated the proposed methodology and all this preliminary investigation of the

presmoothing model using data from the Stanford Heart transplant study.

We have not investigated the semiparametric efficiency of the proposed pres-

moothed Aalen-Johansen estimator. Indeed, there is some lack of research in this

line even for the basic estimators introduced in the seminal papers on semiparametric
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censorship models (Dikta, 1998; Dikta et al., 2005). As an exception, we point out

that efficiency results are available for some particular family of semiparametric cen-

sorship models (see e.g. Zhang (2004)). We wonder if these type of results can be

derived also for the semiparametric Aalen-Johansen estimator. This is an interesting

topic for our future research.

In Chapter 3 we have not dealt with the possible effect of covariates on the tran-

sition probabilities. However, it is possible to include covariates in the presmoothed

estimator following the usual approach for Markov models. For this, one just consid-

ers each transition probability as a certain transformation of the transition intensity

functions. Then, transition intensities may be allowed to depend on covariates fol-

lowing Cox-type regression models. See e.g. Andersen et al. (2000). In order to

estimate the regression parameters and the baseline transition intensities, one needs

however to adapt the likelihood function to the new setting of presmoothing in which

some parametric information on the conditional probability of uncensoring is available.

Details are not obvious and will be considered in our future research.

The original and the presmoothed AJ estimators are consistent in Markov models.

If the Markov property is violated, then the consistency of the time-honored Aalen-

Johansen estimator and of its presmoothed version can not be ensured in general.

Exceptions to this are the estimator for p11(s, t) (for which the Markov assumption

is empty) or for pij(0, t) (the so-called stage occupation probabilities, see Datta and

Satten (2001)). Alternative estimators of the transition probabilities not relying on

the Markov condition were recently proposed (Meira-Machado et al., 2006; Amorim

et al., 2011). As a drawback, these alternative methods will suffer from a larger

variance in estimation, particularly when the sample size is small and there is a large

censoring degree. Consequently, AJ-type estimators will be preferred when there is

no strong evidence against the Markov condition.

The main goal of Chapter 4 is to provide an up-to-date review of the existing

software for implementing multi-state models. To illustrate the use of these packages

we have used data from a Colon cancer study. We hope that this illustration will
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encourage the applied researches to use multi-state modelling more frequently or with

greater confidence, as part of their routine data analysis techniques.

The Colon cancer data enables us to illustrate the use of several R packages for

the analysis of multi-state survival data arising from the illness-death model. This

model is probably the most used model in literature. However, it is important to

mention that several of these packages go far beyond this model.

One severe difficulty in the analysis of multi-state survival data is that each of

these packages require its own input dataset. To avoid this limitation we developed

an R based function which can be used to obtain each of the required input format for

each software. In this way, users may easily analyse the results offered by the various

packages in order to compare them and make decisions accordingly. For the moment,

our functions are only valid for the illness-death model. One important issue is the

extension of these functions to a general multi-state model.

Chapter 4 discusses implementation in R of some newly developed methods for

the bivariate distribution function for censored gap times. The survivalBIV package

uses four nonparametric and semiparametric estimators. One of these estimators is

the conditional Kaplan-Meier, based on Bayes’ theorem and Kaplan-Meier estimator;

also, two recent estimators based on the Kaplan-Meier weights pertaining to the

distribution of the total time (time to the second or final event of interest). It also

implements the inverse probability of censoring weighted estimator proposed by Lin

et al. (1999). The package allows for numerical results as well as graphics to be

easily obtained. Covariates have not been included in our methods. This is a topic of

current research and hopefully will be implemented in future. We plan to constantly

update survivalBIV package to cope with other estimators.

The methods developed in this thesis will be applied to a real dataset on breast

cancer from the hospital of Guimarães. A protocol has been established and a dataset

with more than 200 patients has been collected. Results from this study will be

publisher elsewhere.
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Appendix A

msmdata function

eprep <- function (time, status, data, tra, state.names, cens.name = NULL,

start = NULL, id = NULL, keep, pkg)

{

if (pkg == "etm") {

if (nrow(tra) != ncol(tra))

stop("'tra' must be quadratic")

if (missing(state.names)) {

state.names <- as.character(0:(dim(tra)[2] - 1))

}

ls <- length(state.names)

n <- nrow(data)

if (ls != dim(tra)[2])

stop("Discrepancy between 'tra' and the number of states specified

in 'state.names'")

if (length(time) != ls) {

stop("The length of 'time' must be equal to the number of states")

}

colnames(tra) <- rownames(tra) <- state.names

t.from <- lapply(1:dim(tra)[2], function(i) {
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rep(rownames(tra)[i], sum(tra[i, ]))

})

t.from <- unlist(t.from)

t.to <- lapply(1:dim(tra)[2], function(i) {

colnames(tra)[tra[i, ] == TRUE]

})

t.to <- unlist(t.to)

trans <- data.frame(from = t.from, to = t.to)

absorb <- setdiff(levels(trans$to), levels(trans$from))

transient <- unique(state.names[!(state.names %in% absorb)])

ind <- match(time[!is.na(time)], names(data))

if (any(is.na(ind)))

stop("At least one element in 'time' is not in 'data'")

indd <- which(time %in% names(data))

time <- matrix(NA, n, ls)

time[, indd] <- as.matrix(data[, ind])

if (length(status) != ls) {

stop("The length of 'status' must be equal to the number of states")

}

ind <- match(status[!is.na(status)], names(data))

if (any(is.na(ind)))

stop("At least one element in 'status' is not in 'data'")

indd <- which(status %in% names(data))

status <- matrix(NA, n, ls)

status[, indd] <- as.matrix(data[, ind])

if (is.null(start)) {

start.state <- as.integer(rep(state.names[1], n))

start.time <- rep(0, n)

}
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else {

if ((start$state != nrow(data)) | (start$time !=

nrow(data)))

stop("'start$state' or 'start$time' are not as long as the data")

start.state <- start$state

start.time <- start$time

}

if (is.null(id)) {

id <- seq_len(n)

}

else id <- data[, id]

if (!missing(keep)) {

cova <- data[, keep, drop = FALSE]

}

else keep <- NULL

newdata <- lapply(seq_len(n), function(i) {

ind <- which(status[i, ] != 0)

li <- length(ind)

if (li == 0) {

from <- start.state[i]

to <- cens.name

entry <- start.time[i]

exit <- time[i, ncol(time)]

idd <- id[i]

}

else {

from <- c(start.state[i], state.names[ind[-li]])

to <- state.names[ind]

entry <- c(start.time[i], time[i, ind[-li]])
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exit <- time[i, ind]

idd <- rep(id[i], length(exit))

if (to[length(to)] %in% transient) {

from <- c(from, to[length(to)])

to <- c(to, cens.name)

entry <- c(entry, exit[length(exit)])

exit <- c(exit, time[i, ncol(time)])

idd <- c(idd, id[i])

}

}

if (is.null(keep)) {

tmp <- data.frame(idd, entry, exit, from, to)

}

else {

aa <- matrix(apply(cova[i, , drop = FALSE], 2,

rep, length(exit)), length(exit), ncol(cova))

tmp <- data.frame(idd, entry, exit, from, to,

aa)

}

tmp

})

newdata <- do.call(rbind, newdata)

names(newdata) <- c("id", "entry", "exit", "from", "to",

keep)

if (is.factor(newdata$from) || is.factor(newdata$to)) {

aa <- unique(c(levels(newdata$from), levels(newdata$to)))

newdata$from <- factor(as.character(newdata$from),

levels = aa)

newdata$to <- factor(as.character(newdata$to), levels = aa)
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}

return(newdata)

}

if (pkg == "los") {

if (nrow(tra) != ncol(tra))

stop("'tra' must be quadratic")

if (missing(state.names)) {

state.names <- as.character(0:(dim(tra)[2] - 1))

}

ls <- length(state.names)

n <- nrow(data)

if (ls != dim(tra)[2])

stop("Discrepancy between 'tra' and the number of states specified

in 'state.names'")

if (length(time) != ls) {

stop("The length of 'time' must be equal to the number of states")

}

colnames(tra) <- rownames(tra) <- state.names

t.from <- lapply(1:dim(tra)[2], function(i) {

rep(rownames(tra)[i], sum(tra[i, ]))

})

t.from <- unlist(t.from)

t.to <- lapply(1:dim(tra)[2], function(i) {

colnames(tra)[tra[i, ] == TRUE]

})

t.to <- unlist(t.to)

trans <- data.frame(from = t.from, to = t.to)

absorb <- setdiff(levels(trans$to), levels(trans$from))

transient <- unique(state.names[!(state.names %in% absorb)])
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ind <- match(time[!is.na(time)], names(data))

if (any(is.na(ind)))

stop("At least one element in 'time' is not in 'data'")

indd <- which(time %in% names(data))

time <- matrix(NA, n, ls)

time[, indd] <- as.matrix(data[, ind])

if (length(status) != ls) {

stop("The length of 'status' must be equal to the number of states")

}

ind <- match(status[!is.na(status)], names(data))

if (any(is.na(ind)))

stop("At least one element in 'status' is not in 'data'")

indd <- which(status %in% names(data))

status <- matrix(NA, n, ls)

status[, indd] <- as.matrix(data[, ind])

if (is.null(start)) {

start.state <- as.integer(rep(state.names[1], n))

start.time <- rep(0, n)

}

else {

if ((start$state != nrow(data)) | (start$time !=

nrow(data)))

stop("'start$state' or 'start$time' are not as long as the data")

start.state <- start$state

start.time <- start$time

}

if (is.null(id)) {

id <- seq_len(n)

}
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else id <- data[, id]

if (!missing(keep)) {

cova <- data[, keep, drop = FALSE]

}

else keep <- NULL

newdata <- lapply(seq_len(n), function(i) {

ind <- which(status[i, ] != 0)

li <- length(ind)

if (li == 0) {

from <- start.state[i]

to <- cens.name

entry <- start.time[i]

exit <- time[i, ncol(time)]

idd <- id[i]

}

else {

from <- c(start.state[i], state.names[ind[-li]])

to <- state.names[ind]

entry <- c(start.time[i], time[i, ind[-li]])

exit <- time[i, ind]

idd <- rep(id[i], length(exit))

if (to[length(to)] %in% transient) {

from <- c(from, to[length(to)])

to <- c(to, cens.name)

entry <- c(entry, exit[length(exit)])

exit <- c(exit, time[i, ncol(time)])

idd <- c(idd, id[i])

}

}
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if (is.null(keep)) {

tmp <- data.frame(idd, from, to, exit, idd)

}

else {

aa <- matrix(apply(cova[i, , drop = FALSE], 2,

rep, length(exit)), length(exit), ncol(cova))

tmp <- data.frame(idd, from, to, exit, idd)

}

tmp

})

newdata <- do.call(rbind, newdata)

names(newdata) <- c("id", "from", "to", "time", "oid")

if (is.factor(newdata$from) || is.factor(newdata$to)) {

aa <- unique(c(levels(newdata$from), levels(newdata$to)))

newdata$from <- factor(as.character(newdata$from),

levels = aa)

newdata$to <- factor(as.character(newdata$to), levels = aa)

}

return(newdata)

}

if (pkg == "mvna") {

if (nrow(tra) != ncol(tra))

stop("'tra' must be quadratic")

if (missing(state.names)) {

state.names <- as.character(0:(dim(tra)[2] - 1))

}

ls <- length(state.names)

n <- nrow(data)

if (ls != dim(tra)[2])
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stop("Discrepancy between 'tra' and the number of states specified

in 'state.names'")

if (length(time) != ls) {

stop("The length of 'time' must be equal to the number of states")

}

colnames(tra) <- rownames(tra) <- state.names

t.from <- lapply(1:dim(tra)[2], function(i) {

rep(rownames(tra)[i], sum(tra[i, ]))

})

t.from <- unlist(t.from)

t.to <- lapply(1:dim(tra)[2], function(i) {

colnames(tra)[tra[i, ] == TRUE]

})

t.to <- unlist(t.to)

trans <- data.frame(from = t.from, to = t.to)

absorb <- setdiff(levels(trans$to), levels(trans$from))

transient <- unique(state.names[!(state.names %in% absorb)])

ind <- match(time[!is.na(time)], names(data))

if (any(is.na(ind)))

stop("At least one element in 'time' is not in 'data'")

indd <- which(time %in% names(data))

time <- matrix(NA, n, ls)

time[, indd] <- as.matrix(data[, ind])

if (length(status) != ls) {

stop("The length of 'status' must be equal to the number of states")

}

ind <- match(status[!is.na(status)], names(data))

if (any(is.na(ind)))

stop("At least one element in 'status' is not in 'data'")
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indd <- which(status %in% names(data))

status <- matrix(NA, n, ls)

status[, indd] <- as.matrix(data[, ind])

if (is.null(start)) {

start.state <- as.integer(rep(state.names[1], n))

start.time <- rep(0, n)

}

else {

if ((start$state != nrow(data)) | (start$time !=

nrow(data)))

stop("'start$state' or 'start$time' are not as long as the data")

start.state <- start$state

start.time <- start$time

}

if (is.null(id)) {

id <- seq_len(n)

}

else id <- data[, id]

if (!missing(keep)) {

cova <- data[, keep, drop = FALSE]

}

else keep <- NULL

newdata <- lapply(seq_len(n), function(i) {

ind <- which(status[i, ] != 0)

li <- length(ind)

if (li == 0) {

from <- start.state[i]

to <- cens.name

entry <- start.time[i]
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exit <- time[i, ncol(time)]

idd <- id[i]

}

else {

from <- c(start.state[i], state.names[ind[-li]])

to <- state.names[ind]

entry <- c(start.time[i], time[i, ind[-li]])

exit <- time[i, ind]

idd <- rep(id[i], length(exit))

if (to[length(to)] %in% transient) {

from <- c(from, to[length(to)])

to <- c(to, cens.name)

entry <- c(entry, exit[length(exit)])

exit <- c(exit, time[i, ncol(time)])

idd <- c(idd, id[i])

}

}

if (is.null(keep)) {

tmp <- data.frame(idd, from, to, exit)

}

else {

aa <- matrix(apply(cova[i, , drop = FALSE], 2,

rep, length(exit)), length(exit), ncol(cova))

tmp <- data.frame(idd, from, to, exit, aa)

}

tmp

})

newdata <- do.call(rbind, newdata)

names(newdata) <- c("id", "from", "to", "time", keep)
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if (is.factor(newdata$from) || is.factor(newdata$to)) {

aa <- unique(c(levels(newdata$from), levels(newdata$to)))

newdata$from <- factor(as.character(newdata$from),

levels = aa)

newdata$to <- factor(as.character(newdata$to), levels = aa)

}

return(newdata)

}

}

msmdata <- function (data, pkg, tra = NULL, state.names = NULL,

cens.name = NULL)

{

if (missing(data))

stop("Argument 'data' is missing with no default")

if (missing(pkg))

stop("Argument 'package' is missing with no default")

if (!is.data.frame(data))

stop("Argument 'data' must be a data.frame")

if (any(names(data)[1:4] != c("time1", "event1", "Stime", "event")))

stop("'data' must contain the right variables")

if (any(data[, 2] != 0 & data[, 2] != 1))

stop("The variable 'delta' in the argument 'data' must be 0 or 1")

if (any(data[, 4] != 0 & data[, 4] != 1))

stop("The variable 'status' in the argument 'data' must be 0 or 1")

if (any(data[, 2] == 0 & data[, 3]-data[, 1] > 0))

stop("The variable 'Stime' in the argument 'data' must be equal to 0

when 'event1 = 0'")
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if (any(data[, c(1, 3)] < 0))

stop("The time variables in 'data' must be non negative")

nevent <- rep(0, dim(data)[1])

p<-which(data$time1<data$Stime)

nevent[p]<-1

data2<-cbind(data$time1, nevent, data$Stime-data$time1,

data$Stime, data$event)

if (dim(data)[2]>4) data2<-cbind(data2,data[5:dim(data)[2]])

data2<-data.frame(data2)

names(data2)[1:5]<-c("times1", "delta", "times2", "time", "status")

if (dim(data)[2]>4) names(data2)[6:(dim(data)[2]+1)]<-names(data

[5:dim(data)[2]]

data<-data2

if (pkg == "mstate") {

if (dim(data)[2]<=5) stop("There aren't covariates in 'data'")

lines <- nrow(data) + sum(data[, 2] == 1) + sum(data[,2] == 1) +

sum(data[, 2] == 0)

require(mstate)

covs <- c(names(data)[6:(ncol(data))])

colon.mstate <- msprep(time = c(NA, names(data)[1], names(data)[4]),

status = c(NA, names(data)[2], names(data)[5]), data = data,

trans = trans, keep = covs)

return(colon.mstate)

}
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if (pkg == "etm") {

if (dim(data)[2]<=5) coxdata <- eprep(time = c(NA, names(data)[1],

names(data)[4]),

status = c(NA, names(data)[2], names(data)[5]), data = data,

tra = tra, cens.name = cens.name, state.names = state.names,

keep = NULL, pkg = "etm")

else coxdata <- eprep(time = c(NA, names(data)[1], names(data)[4]),

status = c(NA, names(data)[2], names(data)[5]), data = data,

tra = tra, cens.name = cens.name, state.names = state.names,

keep = c(names(data)[6:(ncol(data))]), pkg = "etm")

return(coxdata)

}

if (pkg == "los") {

coxdata <- eprep(time = c(NA, names(data)[1], names(data)[4]),

status = c(NA, names(data)[2], names(data)[5]), data = data,

tra = tra, cens.name = cens.name, pkg = "los")

return(coxdata)

}

if (pkg == "mvna") {

if (dim(data)[2]<=5) coxdata <- eprep(time = c(NA, names(data)[1],

names(data)[4]),

status = c(NA, names(data)[2], names(data)[5]), data = data,

tra = tra, cens.name = cens.name, state.names = state.names,

keep = NULL, pkg = "mvna")

else coxdata <- eprep(time = c(NA, names(data)[1], names(data)[4]),

status = c(NA, names(data)[2], names(data)[5]), data = data,
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tra = tra, cens.name = cens.name, state.names = state.names,

keep = c(names(data)[6:(ncol(data))]), pkg = "mvna")

return(coxdata)

}

if (pkg == "tdcm") {

lines <- nrow(data) + sum(data[, 2] == 1)

coxdata <- matrix(data = NA, ncol = (ncol(data)), nrow = lines)

q1 <- 5

q2 <- ncol(coxdata)

q3 <- q2 - q1

p <- 0

for (k in 1:nrow(data)) {

if (data[k, 2] == 0 & data[k, 5] == 1) {

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- 0

coxdata[k + p, 3] <- data[k, 1]

coxdata[k + p, 4] <- 1

coxdata[k + p, 5] <- 0

for (j in 1:q3) coxdata[k + p, 5 + j] <- data[k,

5 + j]

}

if (data[k, 2] == 0 & data[k, 5] == 0) {

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- 0

coxdata[k + p, 3] <- data[k, 1]

coxdata[k + p, 4] <- 0

coxdata[k + p, 5] <- 0

for (j in 1:q3) coxdata[k + p, 5 + j] <- data[k,

5 + j]
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}

if (data[k, 2] == 1 & data[k, 5] == 0) {

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- 0

coxdata[k + p, 3] <- data[k, 1]

coxdata[k + p, 4] <- 0

coxdata[k + p, 5] <- 0

for (j in 1:q3) coxdata[k + p, 5 + j] <- data[k,

5 + j]

p <- p + 1

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- data[k, 1]

coxdata[k + p, 3] <- data[k, 4]

coxdata[k + p, 4] <- 0

coxdata[k + p, 5] <- 1

for (j in 1:q3) coxdata[k + p, 5 + j] <- data[k,

5 + j]

}

if (data[k, 2] == 1 & data[k, 5] == 1) {

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- 0

coxdata[k + p, 3] <- data[k, 1]

coxdata[k + p, 4] <- 0

coxdata[k + p, 5] <- 0

for (j in 1:q3) coxdata[k + p, 5 + j] <- data[k,

5 + j]

p <- p + 1

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- data[k, 1]

156



Appendix A. msmdata function

coxdata[k + p, 3] <- data[k, 4]

coxdata[k + p, 4] <- 1

coxdata[k + p, 5] <- 1

for (j in 1:q3) coxdata[k + p, 5 + j] <- data[k,

5 + j]

}

}

nomes2 <- c("id", "start", "stop", "event", "tdcov")

coxdata <- data.frame(coxdata)

names(coxdata) <- c(nomes2, names(data)[6:(ncol(data))])

return(coxdata)

}

if (pkg == "msm") {

lines <- nrow(data) + sum(data[, 2] == 1) + sum(data[,

2] == 1) + sum(data[, 2] == 0)

coxdata <- matrix(data = NA, ncol = ncol(data), nrow = lines)

q1 <- 5

q2 <- ncol(coxdata)

q3 <- q2 - q1

p <- 0

for (k in 1:nrow(data)) {

if (data[k, 2] == 0 & data[k, 5] == 1) {

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- 0

coxdata[k + p, 3] <- 1

for (j in 1:q3) coxdata[k + p, 3 + j] <- data[k,

5 + j]

p <- p + 1

coxdata[k + p, 1] <- k
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coxdata[k + p, 2] <- data[k, 1]

coxdata[k + p, 3] <- 3

for (j in 1:q3) coxdata[k + p, 3 + j] <- data[k,

5 + j]

}

if (data[k, 2] == 0 & data[k, 5] == 0) {

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- 0

coxdata[k + p, 3] <- 1

for (j in 1:q3) coxdata[k + p, 3 + j] <- data[k,

5 + j]

p <- p + 1

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- data[k, 1]

coxdata[k + p, 3] <- 1

for (j in 1:q3) coxdata[k + p, 3 + j] <- data[k,

5 + j]

}

if (data[k, 2] == 1 & data[k, 5] == 0) {

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- 0

coxdata[k + p, 3] <- 1

for (j in 1:q3) coxdata[k + p, 3 + j] <- data[k,

5 + j]

p <- p + 1

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- data[k, 1]

coxdata[k + p, 3] <- 2

for (j in 1:q3) coxdata[k + p, 3 + j] <- data[k,
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5 + j]

p <- p + 1

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- data[k, 4]

coxdata[k + p, 3] <- 2

for (j in 1:q3) coxdata[k + p, 3 + j] <- data[k,

5 + j]

}

if (data[k, 2] == 1 & data[k, 5] == 1) {

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- 0

coxdata[k + p, 3] <- 1

for (j in 1:q3) coxdata[k + p, 3 + j] <- data[k,

5 + j]

p <- p + 1

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- data[k, 1]

coxdata[k + p, 3] <- 2

for (j in 1:q3) coxdata[k + p, 3 + j] <- data[k,

5 + j]

p <- p + 1

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- data[k, 4]

coxdata[k + p, 3] <- 3

for (j in 1:q3) coxdata[k + p, 3 + j] <- data[k,

5 + j]

}

}

nomes2 <- c("ptnum", "dtime", "state")
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coxdata <- data.frame(coxdata)

names(coxdata) <- c(nomes2, names(data)[6:(ncol(data))])

msm <- coxdata[, 1:(ncol(coxdata) - 2)]

return(msm)

}

if (pkg == "cmm") {

lines <- nrow(data) + sum(data[, 2] == 1) + sum(data[,

2] == 1) + sum(data[, 2] == 0)

coxdata <- matrix(data = NA, ncol = ncol(data) + 1, nrow = lines)

q1 <- 6

q2 <- ncol(coxdata)

q3 <- q2 - q1

p <- 0

for (k in 1:nrow(data)) {

if (data[k, 2] == 0 & data[k, 5] == 1) {

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- 0

coxdata[k + p, 3] <- data[k, 1]

coxdata[k + p, 4] <- 1

coxdata[k + p, 5] <- 0

coxdata[k + p, 6] <- 1

for (j in 1:q3) coxdata[k + p, 6 + j] <- data[k,

5 + j]

p <- p + 1

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- 0

coxdata[k + p, 3] <- data[k, 1]

coxdata[k + p, 4] <- 0

coxdata[k + p, 5] <- 0
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coxdata[k + p, 6] <- 2

for (j in 1:q3) coxdata[k + p, 6 + j] <- data[k,

5 + j]

}

if (data[k, 2] == 0 & data[k, 5] == 0) {

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- 0

coxdata[k + p, 3] <- data[k, 1]

coxdata[k + p, 4] <- 0

coxdata[k + p, 5] <- 0

coxdata[k + p, 6] <- 1

for (j in 1:q3) coxdata[k + p, 6 + j] <- data[k,

5 + j]

p <- p + 1

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- 0

coxdata[k + p, 3] <- data[k, 1]

coxdata[k + p, 4] <- 0

coxdata[k + p, 5] <- 0

coxdata[k + p, 6] <- 2

for (j in 1:q3) coxdata[k + p, 6 + j] <- data[k,

5 + j]

}

if (data[k, 2] == 1 & data[k, 5] == 0) {

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- 0

coxdata[k + p, 3] <- data[k, 1]

coxdata[k + p, 4] <- 0

coxdata[k + p, 5] <- 0
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coxdata[k + p, 6] <- 1

for (j in 1:q3) coxdata[k + p, 6 + j] <- data[k,

5 + j]

p <- p + 1

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- 0

coxdata[k + p, 3] <- data[k, 1]

coxdata[k + p, 4] <- 1

coxdata[k + p, 5] <- 0

coxdata[k + p, 6] <- 2

for (j in 1:q3) coxdata[k + p, 6 + j] <- data[k,

5 + j]

p <- p + 1

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- data[k, 1]

coxdata[k + p, 3] <- data[k, 4]

coxdata[k + p, 4] <- 0

coxdata[k + p, 5] <- 1

coxdata[k + p, 6] <- 3

for (j in 1:q3) coxdata[k + p, 6 + j] <- data[k,

5 + j]

}

if (data[k, 2] == 1 & data[k, 5] == 1) {

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- 0

coxdata[k + p, 3] <- data[k, 1]

coxdata[k + p, 4] <- 0

coxdata[k + p, 5] <- 0

coxdata[k + p, 6] <- 1
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for (j in 1:q3) coxdata[k + p, 6 + j] <- data[k,

5 + j]

p <- p + 1

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- 0

coxdata[k + p, 3] <- data[k, 1]

coxdata[k + p, 4] <- 1

coxdata[k + p, 5] <- 0

coxdata[k + p, 6] <- 2

for (j in 1:q3) coxdata[k + p, 6 + j] <- data[k,

5 + j]

p <- p + 1

coxdata[k + p, 1] <- k

coxdata[k + p, 2] <- data[k, 1]

coxdata[k + p, 3] <- data[k, 4]

coxdata[k + p, 4] <- 1

coxdata[k + p, 5] <- 1

coxdata[k + p, 6] <- 3

for (j in 1:q3) coxdata[k + p, 6 + j] <- data[k,

5 + j]

}

}

nomes2 <- c("id", "start", "stop", "event", "tdcov",

"transition")

coxdata <- data.frame(coxdata)

names(coxdata) <- c(nomes2, names(data)[6:(ncol(data))])

return(coxdata)

}

}
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