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Abstract. A supervisory expert system based on fuzzy logic rules was developed for diagnosis and control 
of a lab- scale plant comprising anaerobic/anoxic/aerobic modules for combined high rate biological N and C 
removal. The design and implementation of a computational environment in LabVIEW for data acquisition, 
plant operation and distributed equipment control is described. The Fuzzy Logic toolbox for MATLAB was 
also used for the development of the fuzzy logic rule based system. The fuzzy rules were generated from 
quantitative and qualitative information, to identify the status of the plant operation and to decide the best 
commands to be sent to the final control elements to recover the stable operation in case of disturbances of 
the processes. A step increase in ammonia concentration from 20 to 60 mg N/L was applied during a trial 
period of 73 hours. Recycle flow rate from the aerobic to the anoxic module and by-pass flow rate from the 
influent directly to the anoxic reactor were the output of the fuzzy system that were automatically changed 
(from 34 to 111 L/day and from 8 to 13 L/day, respectively), when new plant conditions were recognized by 
the expert system. Denitrification efficiency higher than 85% was achieved 30 hours after the disturbance and 
15 hours after the system response at an HRT as low as 1.5 hours. Nitrification efficiency gradually increased 
from 12 to 50% at an HRT of 3 hours. The system proved to properly react in order to set adequate operating 
conditions that timely led to recover efficient N and C removal rates. 
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1. Introduction 
Conventional control methods are powerful when good analytical mathematical models are available to 

support their development and operation. This situation is uncommon in real processes. Particularly, the real-

time control of wastewater treatment plants (WWTP) is a difficult but essential task, due to the lack of accurate 

dynamical models describing the process and reliable on-line instrumentation (Olsson and Newell, 1999). 

However, WWTP can be properly operated by specialized people, having knowledge about the process, though 

in practice, this know-how is essentially qualitative, empirical, and incomplete. The operation of a WWTP 

represents therefore a knowledge intensive task. In this regard, a system capable of giving all the possible 

information about the state of the process must be available in order to establish the basis of a diagnosis system 

integrating all the possible knowledge. This requirement is an important step to have successful control 

decisions (Patry and Chapman, 1989). Applications of knowledge-based systems to activated sludge processes 

are being widely studied (Chapman et al., 1989, Barnett et al., 1992; Ozgur et al., 1994). Most of systems are 

off-line Knowledge-Based Expert Systems (KBES) mainly diagnostic and advising tools to help process 

operators. Some KBES have been designed with the main purpose of online supervision, though the emphasis 

on real-time supervisor control is usually absent. 
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Intelligent control, merging the tools of Artificial Intelligence into the control loop, whether in the direct 

digital control or in the supervision tasks, is a very promising technique. Fuzzy systems (allowing to process 

qualitative knowledge and to project qualitative-reasoning based controllers) and neural networks (allowing 

building parametric nonlinear models and controllers in a constructive way) are tools that already proved their 

capabilities (Müller et al., 1997; Du et al., 1999). 

In biological wastewater treatments processes, efficient diagnosis and control systems are becoming more and 

more important due to the complexity of the bioprocesses involved. It is difficult to take into account the 

numerous factors that can influence the specific bacterial grow rate and its metabolic activity. Several types of 

disturbances may largely affect the operating conditions of a process, even in normal conditions. Data 

acquisition systems allow an overview of the state giving information about the operation. Monitoring comprises 

both hardware-based (sensors etc) and software-based (data-mining - from data to knowledge; software sensors 

allowing the estimation of non-measured variables). Particularly, for high rate combined N and C removal 

systems, monitoring is a very important feature in order to assure its control. The development of reliable online 

instrumentation is necessary due to the complexity of these integrated biological systems. Control and diagnosis 

of the biological systems are required to ensure the stable operation of a WWTP. 

Baeza et al. (1999, 2000) reported the implementation of an expert supervisory system applied to a pilot 

WWTP comprising an anaerobic and nitrification/denitrification steps to remove nitrogen. A fuzzy control 

strategy was applied by Meyer et al. (2003) for the control of aeration in wastewater treatment plants with pre-

denitrification. The implementation of expert systems based on fuzzy logic rules are described elsewhere 

(Carrasco et al., 2002; Puñal et al., 2002a and 2002b). Recently, especially attention to the expert supervision 

and control of anaerobic digestion processes is reported (Flores et al., 2000; Genovesi et al., 1999; Polit et al., 

2002). 

In this work, a supervisory expert system based on fuzzy logic rules was developed for the diagnosis and the 

control of a high rate lab-scale wastewater treatment plant used for organic mater and nitrogen removal. The 

fuzzy rules for diagnosis and control were integrated in the fuzzy logic rule based system, using quantitative and 

qualitative information, to identify the status of the plant operation and to decide the best commands to be sent 

to the final control elements to recover the stable operation in case of disturbances of the processes. 

 
2. Methods 
 
2.1. Plant Description 

The lab-scale plant is based on a two-stage anaerobic/anoxic granular sludge bed reactors with 8 L and 8.5 L, 

respectively, working at 37ºC, followed by a 14 L nitrifying activated sludge tank, and a 2.5 L settler. A 

synthetic effluent, with a COD concentration of 2500 mg/L and a nitrogen concentration of 20 mg N-NH4
+/L, 

was fed to an equalization tank, and then was pumped to the anaerobic module. When necessary, a by-pass from 

the equalization tank was directly applied to the anoxic stage to assure efficient denitrification. To test the expert 

based fuzzy logic system, a step increase on nitrogen concentration from 20 to 60 mg N-NH4
+/L was imposed 

during a period of 73 hours. The nitrified effluent from the activated sludge tank was recirculated to the anoxic 

module. The remaining COD from anaerobic stage was used as the electron donor to the nitrogen removal in the 
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anoxic one. The seed sludge for the anaerobic and the anoxic modules was anaerobic granular sludge collected 

at a UASB reactor treating brewery wastewater. A schematic layout of the process plant is shown in Fig. 1. 

Bioreactors were equipped with two biogas flowmeters (Ritter Apparatebau, GmbH, Bochum, Germany), a TFK 

325 thermometer (WTW, Weilheim, Germany), two SensoLyt pH electrodes connected to a 296 R/RS monitor 

(WTW), an ORP Electrolyt 9816 probe (WTW), a ViSolid 700 IQ total suspended solids infrared probe and 

MIQ/S 184-H3 monitor (WTW), a TriOxmatic 690 dissolved oxygen probe (WTW). A Sequential Injection 

Analysis apparatus (Paralab, Porto, Portugal) was used for nitrite, nitrate and ammonium on-line analysis. 

Acetate was off-line measured by HPLC (Jasco, Japan) and converted to COD concentration values.  
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Fig. 1. Schematic layout of the plant: (1) equalization tank; (2) anaerobic reactor; (3) anoxic reactor; (4) gas flow-meters; 

(5) heat exchanger; (6) water regulation valve; (7) N source storage tank; (8) C source storage tank; (9) nutrient storage tank; 
(10) by-pass pump; (11) feeding pump; (12) external recycle pump; (13) internal recycle pumps; (14) aerated tank; (15) 
settler; (16) air pump, (17) stirrer; (18) anaerobic reactor to anoxic reactor pump; (19) aeration system; (20) dissolved 
oxygen probe; (21) pH probe; (22) ORP probe; (23) pH probe; (24) Pt-100 thermometer; (25) TSS probe; (26) outlet. 

 
2.2. On-line sequential injection analysis of nitrogen forms 

A Sequential Injection Analysis (SIA) system was developed to determine nitrite, nitrate and ammonia 

concentrations in the reactors. Nitrite was determined through formation of a reddish purple azo dye produced at 

pH 2.0 to 2.5 by coupling diazotized sulfanilamide with N-(1-naphtyl)-ethilinediamine dihydrochloride (APHA 

et al., 1989). The reddish purple dye was detected spectrophotometrically at 540nm. The cadmium reduction 

method was used to determine nitrates. Nitrates are reduced to nitrite by using a copperised-cadmium column. 

The method is based on the quantification of both ions using two samples from the same point of the plant. First 

nitrites, them nitrates are analyzed. Nitrites and nitrates are detected from a range of 2 mgN-NO2
- to 100 mgN-

NO2
- and 5 mgN-NO3

- to 100 mgN-NO2
-, respectively. 50 µl of sample is analyzed every 2 hours in triplicate. 

Ammonium determination was based on the Nessler method (APHA et al., 1989). 30 µl of sample was 

collected every 2 hours and ammonium concentration determined by detection of a yellow compound at 470 nm. 
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2.3. Software/Hardware 

Three distributed network personal computers (PC) are used to monitor and control the plant operation: a 

supervisory computer responsible for data acquisition, data storage, equipment control, and hosting a web 

server; a second computer that controls the sequential injection analysis (SIA) system; a third local PC is used to 

command peristaltic pumps. The LabVIEW (National Instruments, USA) graphical development environment 

was used for the distributed software tasks of signal acquisition and processing, measurement analysis, data 

presentation, network and Data Socket communication, and Internet publication. Data are acquired periodically 

and recorded to Excel format files. The supervisory computer is equipped with a PCI 6024-E board (National 

Instruments, USA). Two PCL-718 boards (Advantech, Taiwan) are installed in the pumps control PC. The 

Fuzzy Logic toolbox for MATLAB (The Mathworks, Inc., USA) was used to embed the fuzzy logic system in 

LabVIEW. 

 

2.4. Communications 

A TCP/IP communication protocol is established between both supervisory and pumps control computers to 

remotely control the peristaltic pumps. The SIA system, although controlled from the SIA PC, can be also 

controlled from the supervisory PC, using the Data Socket protocol communication. Digital output signals are 

using to open/close the electrovalves of the SIA automated sampling system. The peak values are acquired and 

ionic concentrations determined and stored on the supervisory PC, also by the Data Socket protocol 

communication. The plant is equipped with in-line sensors (dissolved oxygen, temperature, pH, ORP and total 

suspended solids) interfaced to monitors interconnected in a BUS system. The supervisory computer acquires 

data from the monitors using the digital RS-485 protocol. Total suspended solids monitor provided analogue 

signals in the range of 4-20 mA. These signals were converted to 0-5 volts, which are acquired in the differential 

input mode through the PCI 6024-E board. Feeding pumps are controlled by a squared wave signal ranging from 

0 to 5 volts issued from the PCI board. Biogas flow rates data are acquired using a digital counter of pulses 

generated by the gas flow meters.  

 

2.5. The fuzzy rules based expert system 

A supervisory expert system was built using the rule based structure IF “facts” THEN “conclusions (state or 

action)”. A rule derives operating knowledge from given facts, and is generated from the human knowledge. A 

fact is a description of the relationship between an input variable and its output variable. The rule based structure 

is made using the Fuzzy Logic toolbox for MATLAB. The rules are distinguished in five levels (very high, high, 

normal, low and very low), in order to be used by the diagnosis and control system. Fuzzy Rule is used 

respectively to build the control systems. The Fuzzy Rule Base algorithm embedded in MATLAB Fuzzy Logic 

toolbox has the following steps: the scalar inputs are transformed into memberships of fuzzy sets by fuzzifying 

functions; this information is given to the inference engine; then membership values are transformed into 

required scalar output variables by a defuzzification step.  
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The ranges of values corresponding to different levels of each variable are presented on Table 1 and Table 2. 

The main objective of the control system is to ensure low concentrations of nitrate, nitrite and COD in the plant 

effluent, actuating in the output variables of the fuzzy control system, which are the external recycle (R) and the 

by-pass (B) flow rates. The COD/N ratio at the influent of the anoxic reactor and the ammonium concentration 

in the influent of the plant are the two input variables considered in the control system.  

 
 

Table 1. Labels of the variables used for the control system. 

  V.L L N H V.H 
[N-NH4

+]in 
(mg/L) 0<N<10 10<N<30 30<N<50 50<N<80 80<N<120 

COD/N 0<C/N<2 2<C/N<4 4<C/N<6 6<C/N<9 9<C/N<15 
 
 

Table 2. Labels of the variables used for the control system. 
  COD/N (V.L) COD/N (L) COD/N (N) COD/N (H) COD/N (V.H) 

0<B<1 0<B<1 0<B<1 0<B<1 0<B<1 [N-NH4
+]in (V. L) 

0<R<1 0<R<1 0<R<1 0<R<1 0<R<1 

1<B<3 1<B<3 0<B<1 0<B<1 0<B<1 [N-NH4
+]in (L) 

3<R<67 3<R<67 3<R<67 3<R<67 3<R<67 

3<B<5 3<B<5 0<B<1 0<B<1 0<B<1 [N-NH4
+]in (N) 

67<R<135 67<R<135 67<R<135 67<R<135 67<R<135 

5<B<8 5<B<8 3<B<5 0<B<1 0<B<1 [N-NH4
+]in (H) 

135<R<236 135<R<236 135<R<236 135<R<236 135<R<236 

8<B<10 8<B<10 3<B<5 0<B<1 0<B<1 [N-NH4
+]in (V. H) 

236<R<370 236<R<370 236<R<370 236<R<370 236<R<370 
 
 

 
Fig. 2. Surface plot of the fuzzy logic control system: a) output recycle flow (R) and b) by-pass flow (B) versus COD/N 

ratio and N-NH4
+ concentration in the effluent. 
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3. Results and discussion 
The supervisory system was tested on the lab-scale biological wastewater treatment process described above. 

The wastewater is made by mixing two concentrated streams of carbon (acetate) and nitrogen (ammonium 

chloride) diluted with tap water. Different COD and Nitrogen concentrations and flow rates are automatically 

assigned and scheduled by the supervisory computer. This artifact enables to simulate real influent situations of 

organic and hydraulic shocks. 

Fig. 3 presents results concerning each reactor operation, when a step increase in nitrogen concentration from 

20 to 60 mg N/L (keeping constant the influent COD) was applied at time 0 and kept for 73 hours. During this 

period the process was intensively monitored every 2 hours. Due to the off-line nature of some analytical 

techniques the supervisory system received information with a delay. However after 15 hours, the output of the 

fuzzy system was able to set the proper flow conditions.  
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Fig. 3. Time course of main variables during the nitrogen overload.  

a) anaerobic reactor; b) anoxic reactor; c) anoxic reactor, and d) nitrification tank. 
 

The fuzzy system automatically increased the recycle flow rate from 34 to 111 L/day and the by-pass flow 

rate from 8 to 13 L/day (Fig. 3b), in order to remove the surplus nitrate and to maintain the COD/N ratio 

necessary to remove all nitrogen. In the anaerobic reactor the removed Organic Loading Rate is almost 

coincident with the applied OLR (Fig. 3a) which corresponds to high COD removal efficiencies ranging from 96 

to 85% (data not shown). The HRT ranged from 8.9 h to 10.7 h (Fig. 3a). The fluctuations in the HRT of this 

module were consequence of the by-pass flow rate adjustments needed to provide enough COD for efficient 
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denitrification in the anoxic module. The by-pass flow rate is therefore directly dependent on the COD removal 

efficiency of the anaerobic reactor. The decrease on the by-pass flow rate after the first adjustment (Fig. 3b), is 

due to the decrease in the COD removal efficiency in the anaerobic module. The anoxic reactor achieved a 

maximum of 89% N-NOx
- (nitrate and nitrite) conversion to N2 gas, at an HRT as low as 1.4 hours (Fig. 3c). The 

carbon/nitrogen ratio was maintained higher than the theoretical value of 4.7 during the assay and the excess 

COD that was not used for denitrification was efficiently converted to methane (not shown). The specific 

methanogenic acetoclastic activity of the granular sludge in this module kept 71% of the inoculum value. The 

decrease on the hydraulic retention time in the nitrification tank to a value as low as 3 hours did not impair the 

rise of the ammonia removal efficiency, from 12 to 50% during the trial period (Fig. 3d). 

 

4. Conclusions 

A KBES using rule based fuzzy logic was developed and applied to a lab-scale plant comprising 

anaerobic/anoxic/aerobic modules for combined high rate biological N and C removal. A step increase in 

ammonia concentration from 20 to 60 mg N/L was applied during a trial period of 73 hours. Recycle flow rate 

from the aerobic to the anoxic module and by-pass flow rate from the influent directly to the anoxic reactor were 

the output of the fuzzy system that were automatically changed (from 34 to 111 L/day and from 8 to 13 L/day, 

respectively), when new plant conditions were recognized by the expert system. Denitrification efficiency higher 

than 85% was achieved 30 hours after the disturbance and 15 hours after the system response at an HRT as low 

as 1.5 hours. Nitrification efficiency gradually increased from 12 to 50% at an HRT of 3 hours. The system 

proved to properly react in order to set adequate operating conditions that timely led to recover efficient N and C 

removal rates. 
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