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ABSTRACT 

 
We present OptFerm, a computational platform for the 

simulation and optimization of fermentation processes. The 

aim of this project is to offer a platform-independent, user-

friendly, open-source and extensible environment for 

Bioengineering process optimization that can be used to 

increase productivity. This tool is focused in optimizing a 

feeding trajectory to be fed into a fed-batch bioreactor and to 

calculate the best concentration of nutrients to initiate the 

fermentation. Also, a module for the estimation of kinetic 

and yield parameters has been developed, allowing the use of 

experimental data obtained from batch or fed-batch 

fermentations to reach the best possible model setup.   

The software was built using a component-based modular 

development methodology, using Java as the programming 

language. AIBench, a Model-View-Control based application 

framework was used as the basis to implement the different 

data objects and operations, as well as their graphical user 

interfaces. Also, this allows the tool to be easily extended 

with new modules, currently being developed. 

 
INTRODUCTION 

 
Nowadays, several products such as antibiotics, proteins, 

amino-acids and other chemicals are produced using 

fermentation processes. Due to the rise of petroleum prices 

and the incentive to replace petroleum derivatives by “green 

products”, many traditional processes have been replaced by 

new biotechnological ones. Consequently, an effort to 

improve biotechnological techniques has been verified. 

Recombinant DNA applications were conceived to produce 

new microorganisms, while several computational tools have 

been designed and implemented for modelling and 

simulation of metabolic pathways of the cell (Pettinen et al. 

2005). All share a common purpose: to increase the 

production yield and get a higher purity of the final product.  

To optimize the productivity of a biological process, in the 

majority of the cases, two different steps have to be 

addressed: firstly, a selection and genetic improvement of 

the organism strain is accomplished; in a second step, the 

best conditions of the fermentation process are identified, 

such as the initial nutrient concentrations, operating modes, 

feeding profiles for fermentations, temperature and pH.  

In industry, the second step is mostly done experimentally 

using trial-and-error heuristics (Kawohl et al. 2007). 

Although there are several tools to study, simulate and 

optimize cellular pathways, there is still a clear lack of tools 

to perform the optimization of fermentation processes.  

Fermentation processes are affected by biochemical and 

chemical phenomena such as the chemical interactions 

between components, concentrations of substrates, products 

and biomass, and environmental conditions like temperature, 

pH and dissolved oxygen concentration (Tzoneva 2006; 

Zhang 2008). The complex dynamic behavior and the 

unpredictable effects of these factors increase the difficulty 

of establishing accurate models to describe the real systems 

(Benjamin et al. 2008). However, new methods to control, 

predict and optimize bioprocesses have been proposed. 

The OptFerm platform was developed using the Java 

programming language, with the aim of being a user-

friendly, extensible and platform-independent tool. It was 

designed to allow the user to evaluate and compare several 

different methods for the tasks of simulation, optimization 

and parameter estimation, in the context of fermentation 

processes. The aim is to allow users to improve process 

productivity, achieving better results in reduced times.  

The available optimization algorithms in this tool were 

developed and validated in previous work by the authors, 

namely Evolutionary Algorithms (Rocha et al. 2004, 2007; 

Mendes et al 2006, 2008), Differential Evolution (Mendes et 

al. 2006, 2008) and Simulated Annealing (Rocha et al. 

2007). Any of these algorithms can be used in feed 

optimization or parameter estimation. Metaheuristic 

optimization approaches are used, since the underlying 

problems are typically quite complex.  OptFerm is available 

in the following website: http://darwin.di.uminho.pt/optferm. 

 

MAJOR FEATURES 

 
The main aim of the OptFerm software is to provide specific 

computational tools for the simulation and optimization of 

fermentation processes. The tools should enable its users to 

use several methods and parameter configurations, thus 

saving time in performing expensive wet experiments.  

 

Fermentation models 
 

The basis for all operations available within OptFerm are the 

models of the fermentation processes. The internal 

representation of a model is based on ordinary differential 

equations (ODEs). In OptFerm, model information can be 

divided in two main entities, a Process and a Function: 



• Process – contains information on the state variables 

such as names, initial values and upper and lower limits, 

and the objective function for optimization purposes.  

• Function – keeps the kinetic parameters (names, values 

and limits), kinetic reactions and the ODEs that describe 

the current problem dynamics.   

 

The kinetic reactions and the ODEs are defined separately, 

allowing any type of kinetic equations to be defined for a 

given set of ODEs. The user can apply constraints to limit or 

impose a condition when a value of a state variable or kinetic 

reaction is exceeded. The kinetics functions can be 

implemented using any of  the control flow statements in 

Java, demanding some knowledge of the programming 

language, but allowing a greater flexibility.  

The dynamical model describing the state variables behavior 

along time is described by a set of ODEs (see the case 

study). There are only two restrictions in the definition of the 

model: it is necessary to associate a substrate feeding rate 

parameter and  a dilution rate factor has to be associated to 

all differential equations, with the exception of the equation 

describing volume/ weight variations.  

Currently, the ODEs and kinetics have to be written in the 

Java language. The definition of a new model requires the 

implementation of two classes: one for the Process and the 

other for the Function. The structure of these classes is 

always the same, since they are based on a common 

interface. After the compilation of a model, the different data 

values associated with it are considered as default data and 

cannot be modified. Nevertheless, new instances can be 

created with different sets of values for different parameters. 

Indeed, when a Project is created, new sets of initial values 

for state variables, model parameters and feeding profiles 

can be defined and kept for future use.  

 

Simulation 
 

Regarding the process simulation, the user has the ability to 

test various combinations of the initial values for state 

variables, parameters and experimental or hypothetical 

feeding trajectories along time. Furthermore, it is possible to 

perform simulations with feed trajectories obtained from 

optimization. Likewise, after executing the estimation of 

model parameters, the results are immediately accessible and 

can be used to perform a simulation. The simulation results 

can also be compared with experimental data. The results are 

displayed via graphs, where each state variable or kinetic 

rate can be visualized separately. These figures can be 

exported as JPEG files. Simulations are performed by 

running a numerical integration process, using a linearly 

implicit-explicit Runge-Kutta scheme or a constant Runge-

Kutta scheme, included in OdeToJava (Ascher et al. 1997). 

 

Optimization 
 

Three types of operations can be performed: the optimization 

of a simple feeding trajectory, of the feeding trajectory plus 

initial conditions or of the feeding trajectory plus final time 

(Rocha et al, 2004). In the first case, the ideal amount of 

substrate to be fed into the reactor per time unit along time is 

determined; the second scenario allows determining the best 

initial concentrations for each selected state variable, while 

in the third case the optimal duration of the fermentation is 

also provided.  

The minimum and maximum pump limits can be defined by 

the user and these values are used as constraints on the 

optimization operations. Some preferences related with the 

algorithms can be modified by the user, such as the number 

of iterations, the population size, the discretization step and 

an interpolation factor. This factor is used to reduce the 

solution size, so that feeding values are defined only at 

certain equally spaced points. A report on the optimization 

operations performed can be generated, describing the 

conditions that were used and the results obtained.  

 

Parameter estimation 

 

To perform the estimation of parameters, a simple GUI is 

available, where the various estimation options are easily 

understandable. It is possible to fix certain parameters or to 

assert that certain state variables should be ignored during 

the estimation (this is important because if a state variable 

has null values over time, the objective function is affected, 

causing a numerical error). The results are presented in 

graphs or tables and both can be saved to files. As with feed 

optimization, a report can be generated. The fitting is 

performed by minimizing a total cost function that represents 

the adjustment between experimental and simulated data: 
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 represents the simulated data and exp,ijξ
 the 

experimental data for the state variable ξ (n is the number of 

state variables) for every point (p is the total of data points). 

The difference is divided by an average value exp,ijξ
 with the 

purpose of giving the same importance to all state variables. 

 

IMPLEMENTATION ISSUES 

 
OptFerm is built in a modular way, using a component-based 

approach to software development. AIBench, a general 

purpose Java application framework for scientific software 

development, was used to manage the data objects and 

execute the operations, also making the linkage with the 

graphical interface. All information related with AIBench 

can be found in http://www.aibench.org/.  

AIBench is a MVC (Model-View-Control) based Java 

application developed by the University of Vigo, with the 

collaboration of the authors. It uses a plug-in engine, which 

provides the capability to load or unload operations, 

allowing to create applications based in software modules. 

All applications developed with AIBench are structured 

through two main concepts: datatypes, defining data 

structures used in the application and operations describing 

functions receiving input objects and creating output objects.  

To implement OptFerm, it was necessary to define the 

corresponding datatypes and operations. A general schema 

of OptFerm structure is shown in Figure 1. 

A datatype is a Java class that specifies the internal 

representation of an object, in which simple data or complex 

data (other datatypes) are incorporated. It may be considered 



as a container. They can be used or created during the 

various operations. 

 

Figure 1: The general internal structure of OptFerm

 

In OptFerm, the datatypes were structured as (Figure 2):

 

• Project – it is the basic datatype; when a Project 

created, each of the objects shown in Figure 2 

instantiated. A Project is directly related to a 

has to contain one Model object and cannot contain more 

than a single one). A project has a list of Simulation, 

Optimization and Parameter Estimation results. These 

lists are extended, during the execution of each operation.

• Model – Within each Model there are four different 

datatypes, as shown in Figure 2, namely: State Variables, 

Kinetic Parameters, Feed Data and Experimental 

These datatypes are of type List, in which a new set of 

initial values for the state variables, parameters, fe

profiles or an experimental dataset can be added to the 

list. Consequently, different combinations of state 

variables, feed profiles and kinetic parameters can be 

used in the simulation, optimization and 

estimation operations, without the need to change the 

internal structure of the model.  

• Simulation, Optimization and Estimation Results

these are datatypes of type List. After the execution of 

each of these operations, a new object is created 

containing the results. The conditions that were used in 

these operations are saved, such as state variables, 

parameters, feed profiles and experimental data sets.  

 

Figure 2: Structure of the Datatypes within
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within a Project 

All datatypes are organized in a Clipboard

the user as a tree. The data contained inside 

be accessed through viewers, graphical interface

is presented in tables, graphics or other suitable means

In terms of the source code organization, a

gathers the various packages with the simulation, 

optimization and estimation functions and 

the models. A module containing specific optimization 

routines were created for feed optimization and related tasks

This module uses JECoLi (Java E

Library; http://darwin.di.uminho.pt/jecoli

generic optimization routines based 

algorithms. Some adaptations had to be made to 

algorithms to support feed optimizations,

Rocha et al (2004) and Mendes et al (2006).

algorithms belonging to the main group

Algorithms, Differential Evolution and 

are used to perform optimizations.  

A package for kinetic parameter estimation was developed, 

using the same optimization routines

were made to enable the user to perform estimations 

needing to modify the internal structure of 

Functions to import/ export data were 

 

CASE STUDY 

 
The case study is related to production of ethanol by 

Saccharomyces cerevisiae , described by 

(1990). The purpose is to explain in a 

most important features of OptFerm and n

study of the used model. Due to space constraints only 

Simulation and Optimization operations are considered.

The model represents a fed-batch bioreactor system and 

encompasses the following equations 
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The objective function was set to obtain 

when the maximum of reactor capacity (x
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inetic variables are given by: 
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to obtain a maximum of x3 

when the maximum of reactor capacity (x4) is reached: 
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Model edition 

 

The first step was to define the Process Java class and the 

Function Java class. The ODEs (equations 2 to 5) are 

converted into the equations presented in Figure 3. This 

represents a function that receives the present time value and 

an array of state variables calculated in the previous 

iteration. Next, it calls the updateKineticCoefs(t) method to 

calculate new values for the kinetic variables at time t, and 

then it calculates and returns an array containing the new 

values for the state variables at time t.   
 

 
 Figure 3: How ODEs are defined in the Function Java class 
 

The kinetic equations 6 and 7 have to be converted to the 

Java language as shown in Figure 4 . The variables g1 and g2 

at each iteration are saved in an array kCoefs, and these 

values are used later in the ODEs. The modelPars are the 

kinetic parameters defined in the Function java class as well.  

 

 
Figure 4: How kinetic variables are defined in Java 

 
An objective function must be defined, describing the 

purpose of the optimization. The aim was to obtain the 

maximum of ethanol (x3) and equation 8 was used, being 

defined in the Process class as the productivity method:  

 

 
Figure 5: The objective function in the Java language 

 

OptFerm ClipBoard 

 
After defining the process and function classes, these are 

compiled and are ready to use in OptFerm. A new project is 

created and all initial Datatypes are displayed (Figure 6). 

They are presented as a tree structure, and the data contained 

can be viewed by simply clicking over the datatypes. All 

functionalities are displayed in the menus.  

Different sets of initial values for state variables, kinetic 

parameters, feeding profiles and experimental data can be 

created and added to the clipboard (Figure 7). Data can also 

be removed from the clipboard. The internal data of these 

new sets can be modified when necessary, and the user can 

save or load previously saved data.  

 
Figure 6: Example of OptFerm Clipboard 

 

 
 

Figure 7: Menus and sub-menus of the OptFerm toolbox: 

example on how a new set of state variables can be created 

 

Simulation 

 

An interface is presented to the user with all options to 

perform simulations (Figure 8). A Project, the initial values 

of state variables and kinetic parameters have to be selected. 

It is possible to select between feeding profiles that had been 

defined  by the user and the ones resulting from optimization 

procedures. After performing a parameter estimation, the 

model parameters are also available to be used. 
 

 
Figure 8: The graphical interface to perform simulations 

 

After performing a simulation, the results are displayed in a 

graph (Figure 9). The state variables or kinetic rates can be 

visualized. The right panel displays the parameters used. 

 

Optimization  

 

To perform an optimization, a panel is presented (Figure 10). 

On this panel, several options can be selected and the 

available sets of initial values for state variables and model 

parameters are displayed.  



Figure 9: How simulation results are presented to the user
 

Figure 10: Graphical interface to execute optimization
 

After performing the optimization, the results are displayed 

as shown in Figure 11. A graph and a table are used to show 

the optimized feed trajectory. Information about 

objective function is displayed, as well as the best 

user can also see the parameters used in the optimization. 

 

Figure 11: Results of the performed optimization

 

CONCLUSIONS AND FURTHER WORK 
 

The aim of the OptFerm software was not to replace 

bioprocess optimization by trial-and-error approach, but

 
results are presented to the user 

 
Graphical interface to execute optimization tasks. 

performing the optimization, the results are displayed 

A graph and a table are used to show 

nformation about the 

best value. The 

optimization.  

 
optimizations  

was not to replace 

error approach, but to 

reduce the number of trials that are

best results. So, with this tool the user is able to analyze the 

robustness of a fed-batch model, 

with experimental data, determine unknown parameters and 

optimize a feeding profile to be fed into a 

The current software version has 

absence of a graphical interface to visualize and edit models

This feature will be available in a future version.

can still create the corresponding Java classes describing the 

model by differential equations and kinetic reactions.

future versions, functions for export

SBML (System Biology Markup Language) format will be 

implemented. Because OptFerm is implemented inside 

AIBench framework that has a plug

functionalities or algorithms can be easily integrated.   
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