
OPTFERM – A COMPUTATIONAL PLATFORM FOR THE OPTIMIZATION OF

FERMENTATION PROCESSES

Orlando Rocha1,2,3, Paulo Maia1,2, Isabel Rocha1,3, Miguel Rocha2
1IBB – Institute for Biotechnology and Bioengineering / Centre for Biological Engineering

2
CCTC – Computer Science and Technology Center / Dep. Informatics - Universidade do Minho

Campus de Gualtar, 4710-057 Braga, Portugal

E-mails: {orocha,pmaia,irocha}@deb.uminho.pt, mrocha@di.uminho.pt

 3Biotempo, Lda., Avepark – Zona Industrial Gandra, Apartado 4152, 4806–909, Caldas Taipas, Portugal

KEYWORDS

Fermentation processes, open-source software, process

simulation and optimization, Evolutionary Computation,

Differential Evolution

ABSTRACT

We present OptFerm, a computational platform for the

simulation and optimization of fermentation processes. The

aim of this project is to offer a platform-independent, user-

friendly, open-source and extensible environment for

Bioengineering process optimization that can be used to

increase productivity. This tool is focused in optimizing a

feeding trajectory to be fed into a fed-batch bioreactor and to

calculate the best concentration of nutrients to initiate the

fermentation. Also, a module for the estimation of kinetic

and yield parameters has been developed, allowing the use of

experimental data obtained from batch or fed-batch

fermentations to reach the best possible model setup.

The software was built using a component-based modular

development methodology, using Java as the programming

language. AIBench, a Model-View-Control based application

framework was used as the basis to implement the different

data objects and operations, as well as their graphical user

interfaces. Also, this allows the tool to be easily extended

with new modules, currently being developed.

INTRODUCTION

Nowadays, several products such as antibiotics, proteins,

amino-acids and other chemicals are produced using

fermentation processes. Due to the rise of petroleum prices

and the incentive to replace petroleum derivatives by “green

products”, many traditional processes have been replaced by

new biotechnological ones. Consequently, an effort to

improve biotechnological techniques has been verified.

Recombinant DNA applications were conceived to produce

new microorganisms, while several computational tools have

been designed and implemented for modelling and

simulation of metabolic pathways of the cell (Pettinen et al.

2005). All share a common purpose: to increase the

production yield and get a higher purity of the final product.

To optimize the productivity of a biological process, in the

majority of the cases, two different steps have to be

addressed: firstly, a selection and genetic improvement of

the organism strain is accomplished; in a second step, the

best conditions of the fermentation process are identified,

such as the initial nutrient concentrations, operating modes,

feeding profiles for fermentations, temperature and pH.

In industry, the second step is mostly done experimentally

using trial-and-error heuristics (Kawohl et al. 2007).

Although there are several tools to study, simulate and

optimize cellular pathways, there is still a clear lack of tools

to perform the optimization of fermentation processes.

Fermentation processes are affected by biochemical and

chemical phenomena such as the chemical interactions

between components, concentrations of substrates, products

and biomass, and environmental conditions like temperature,

pH and dissolved oxygen concentration (Tzoneva 2006;

Zhang 2008). The complex dynamic behavior and the

unpredictable effects of these factors increase the difficulty

of establishing accurate models to describe the real systems

(Benjamin et al. 2008). However, new methods to control,

predict and optimize bioprocesses have been proposed.

The OptFerm platform was developed using the Java

programming language, with the aim of being a user-

friendly, extensible and platform-independent tool. It was

designed to allow the user to evaluate and compare several

different methods for the tasks of simulation, optimization

and parameter estimation, in the context of fermentation

processes. The aim is to allow users to improve process

productivity, achieving better results in reduced times.

The available optimization algorithms in this tool were

developed and validated in previous work by the authors,

namely Evolutionary Algorithms (Rocha et al. 2004, 2007;

Mendes et al 2006, 2008), Differential Evolution (Mendes et

al. 2006, 2008) and Simulated Annealing (Rocha et al.

2007). Any of these algorithms can be used in feed

optimization or parameter estimation. Metaheuristic

optimization approaches are used, since the underlying

problems are typically quite complex. OptFerm is available

in the following website: http://darwin.di.uminho.pt/optferm.

MAJOR FEATURES

The main aim of the OptFerm software is to provide specific

computational tools for the simulation and optimization of

fermentation processes. The tools should enable its users to

use several methods and parameter configurations, thus

saving time in performing expensive wet experiments.

Fermentation models

The basis for all operations available within OptFerm are the

models of the fermentation processes. The internal

representation of a model is based on ordinary differential

equations (ODEs). In OptFerm, model information can be

divided in two main entities, a Process and a Function:

• Process – contains information on the state variables

such as names, initial values and upper and lower limits,

and the objective function for optimization purposes.

• Function – keeps the kinetic parameters (names, values

and limits), kinetic reactions and the ODEs that describe

the current problem dynamics.

The kinetic reactions and the ODEs are defined separately,

allowing any type of kinetic equations to be defined for a

given set of ODEs. The user can apply constraints to limit or

impose a condition when a value of a state variable or kinetic

reaction is exceeded. The kinetics functions can be

implemented using any of the control flow statements in

Java, demanding some knowledge of the programming

language, but allowing a greater flexibility.

The dynamical model describing the state variables behavior

along time is described by a set of ODEs (see the case

study). There are only two restrictions in the definition of the

model: it is necessary to associate a substrate feeding rate

parameter and a dilution rate factor has to be associated to

all differential equations, with the exception of the equation

describing volume/ weight variations.

Currently, the ODEs and kinetics have to be written in the

Java language. The definition of a new model requires the

implementation of two classes: one for the Process and the

other for the Function. The structure of these classes is

always the same, since they are based on a common

interface. After the compilation of a model, the different data

values associated with it are considered as default data and

cannot be modified. Nevertheless, new instances can be

created with different sets of values for different parameters.

Indeed, when a Project is created, new sets of initial values

for state variables, model parameters and feeding profiles

can be defined and kept for future use.

Simulation

Regarding the process simulation, the user has the ability to

test various combinations of the initial values for state

variables, parameters and experimental or hypothetical

feeding trajectories along time. Furthermore, it is possible to

perform simulations with feed trajectories obtained from

optimization. Likewise, after executing the estimation of

model parameters, the results are immediately accessible and

can be used to perform a simulation. The simulation results

can also be compared with experimental data. The results are

displayed via graphs, where each state variable or kinetic

rate can be visualized separately. These figures can be

exported as JPEG files. Simulations are performed by

running a numerical integration process, using a linearly

implicit-explicit Runge-Kutta scheme or a constant Runge-

Kutta scheme, included in OdeToJava (Ascher et al. 1997).

Optimization

Three types of operations can be performed: the optimization

of a simple feeding trajectory, of the feeding trajectory plus

initial conditions or of the feeding trajectory plus final time

(Rocha et al, 2004). In the first case, the ideal amount of

substrate to be fed into the reactor per time unit along time is

determined; the second scenario allows determining the best

initial concentrations for each selected state variable, while

in the third case the optimal duration of the fermentation is

also provided.

The minimum and maximum pump limits can be defined by

the user and these values are used as constraints on the

optimization operations. Some preferences related with the

algorithms can be modified by the user, such as the number

of iterations, the population size, the discretization step and

an interpolation factor. This factor is used to reduce the

solution size, so that feeding values are defined only at

certain equally spaced points. A report on the optimization

operations performed can be generated, describing the

conditions that were used and the results obtained.

Parameter estimation

To perform the estimation of parameters, a simple GUI is

available, where the various estimation options are easily

understandable. It is possible to fix certain parameters or to

assert that certain state variables should be ignored during

the estimation (this is important because if a state variable

has null values over time, the objective function is affected,

causing a numerical error). The results are presented in

graphs or tables and both can be saved to files. As with feed

optimization, a report can be generated. The fitting is

performed by minimizing a total cost function that represents

the adjustment between experimental and simulated data:

2

, exp,

exp,1 1

1
pn

sim ij ij

p iji j

Total Cost
N

ξ ξ

ξ= =

  −
 =  

  
  

∑ ∑ (1)

where ,sim ij
ξ

 represents the simulated data and exp,ijξ
 the

experimental data for the state variable ξ (n is the number of

state variables) for every point (p is the total of data points).

The difference is divided by an average value exp,ijξ
 with the

purpose of giving the same importance to all state variables.

IMPLEMENTATION ISSUES

OptFerm is built in a modular way, using a component-based

approach to software development. AIBench, a general

purpose Java application framework for scientific software

development, was used to manage the data objects and

execute the operations, also making the linkage with the

graphical interface. All information related with AIBench

can be found in http://www.aibench.org/.

AIBench is a MVC (Model-View-Control) based Java

application developed by the University of Vigo, with the

collaboration of the authors. It uses a plug-in engine, which

provides the capability to load or unload operations,

allowing to create applications based in software modules.

All applications developed with AIBench are structured

through two main concepts: datatypes, defining data

structures used in the application and operations describing

functions receiving input objects and creating output objects.

To implement OptFerm, it was necessary to define the

corresponding datatypes and operations. A general schema

of OptFerm structure is shown in Figure 1.

A datatype is a Java class that specifies the internal

representation of an object, in which simple data or complex

data (other datatypes) are incorporated. It may be considered

as a container. They can be used or created during the

various operations.

Figure 1: The general internal structure of OptFerm

In OptFerm, the datatypes were structured as (Figure 2):

• Project – it is the basic datatype; when a Project

created, each of the objects shown in Figure 2

instantiated. A Project is directly related to a

has to contain one Model object and cannot contain more

than a single one). A project has a list of Simulation,

Optimization and Parameter Estimation results. These

lists are extended, during the execution of each operation.

• Model – Within each Model there are four different

datatypes, as shown in Figure 2, namely: State Variables,

Kinetic Parameters, Feed Data and Experimental

These datatypes are of type List, in which a new set of

initial values for the state variables, parameters, fe

profiles or an experimental dataset can be added to the

list. Consequently, different combinations of state

variables, feed profiles and kinetic parameters can be

used in the simulation, optimization and

estimation operations, without the need to change the

internal structure of the model.

• Simulation, Optimization and Estimation Results

these are datatypes of type List. After the execution of

each of these operations, a new object is created

containing the results. The conditions that were used in

these operations are saved, such as state variables,

parameters, feed profiles and experimental data sets.

Figure 2: Structure of the Datatypes within

AIBench (core, workbench, plugins manager)

Graphical

Interface

Datatypes

Operations (BioFerm package

Simulation

functions

Optimization

functions

Parameter

Estimation

functions

Model

Process

Project

Model

State

Variables

Kinetic

Parameters

Feed data

Experimental

Data

Simulation

Results

Optimization

Results

Estimation

Results

as a container. They can be used or created during the

OptFerm

atatypes were structured as (Figure 2):

when a Project is

created, each of the objects shown in Figure 2 is

is directly related to a model (it

and cannot contain more

a list of Simulation,

Estimation results. These

he execution of each operation.

Model there are four different

, namely: State Variables,

Kinetic Parameters, Feed Data and Experimental Data.

atatypes are of type List, in which a new set of

tate variables, parameters, feed

or an experimental dataset can be added to the

list. Consequently, different combinations of state

kinetic parameters can be

imulation, optimization and parameter

estimation operations, without the need to change the

Simulation, Optimization and Estimation Results –

execution of

each of these operations, a new object is created

he conditions that were used in

, such as state variables, model

and experimental data sets.

within a Project

All datatypes are organized in a Clipboard

the user as a tree. The data contained inside

be accessed through viewers, graphical interface

is presented in tables, graphics or other suitable means

In terms of the source code organization, a

gathers the various packages with the simulation,

optimization and estimation functions and

the models. A module containing specific optimization

routines were created for feed optimization and related tasks

This module uses JECoLi (Java E

Library; http://darwin.di.uminho.pt/jecoli

generic optimization routines based

algorithms. Some adaptations had to be made to

algorithms to support feed optimizations,

Rocha et al (2004) and Mendes et al (2006).

algorithms belonging to the main group

Algorithms, Differential Evolution and

are used to perform optimizations.

A package for kinetic parameter estimation was developed,

using the same optimization routines

were made to enable the user to perform estimations

needing to modify the internal structure of

Functions to import/ export data were

CASE STUDY

The case study is related to production of ethanol by

Saccharomyces cerevisiae , described by

(1990). The purpose is to explain in a

most important features of OptFerm and n

study of the used model. Due to space constraints only

Simulation and Optimization operations are considered.

The model represents a fed-batch bioreactor system and

encompasses the following equations

1 1
1 1

4

dx x
g x u

dt x
= −

2 2
1 1

4

150
10

dx x
g x u

dt x

−
= − +

3 3
2 1

4

dx x
g x u

dt x
= −

4dx
u

dt
=

where x1, x2 and x3 are the cell mass, subst

concentrations (g/L), x4 the volume of the reactor (

the feeding rate (L/h). Kinetic variables are given by:

2
1

3 2

0.408

0.22
1

16

x
g

x x
=

+
+

2
2

3 2

1

0.44
1

71.5

x
g

x x
=

+
+

The objective function was set to obtain

when the maximum of reactor capacity (x

3 4() ()f fprod x T x T=

where Tf is the final time.

core, workbench, plugins manager)

BioFerm package)

Model

Functions

State

Variables

Kinetic

Parameters

Feed data

Experimental

Data

Clipboard and presented to

a tree. The data contained inside the datatypes can

s, graphical interfaces where data

or other suitable means.

In terms of the source code organization, a main library

gathers the various packages with the simulation,

optimization and estimation functions and a description of

containing specific optimization

for feed optimization and related tasks.

Evolutionary Computation

; http://darwin.di.uminho.pt/jecoli) that contains

generic optimization routines based on metaheuristic search

ome adaptations had to be made to adapt these

feed optimizations, as explained in

Rocha et al (2004) and Mendes et al (2006). Three

algorithms belonging to the main groups of Evolutionary

Differential Evolution and Simulated Annealing

A package for kinetic parameter estimation was developed,

using the same optimization routines. Some modifications

perform estimations without

the internal structure of the models.

export data were also implemented.

production of ethanol by

, described by Chen and Huang

is to explain in a descriptive way the

features of OptFerm and not to make any

Due to space constraints only

Simulation and Optimization operations are considered.

batch bioreactor system and

equations (Chen e Hwang 1990):

 (2)

 (3)

 (4)

 (5)

are the cell mass, substrate and ethanol

olume of the reactor (L) and u

inetic variables are given by:

 (6)

 (7)

to obtain a maximum of x3

when the maximum of reactor capacity (x4) is reached:

 (8)

Model edition

The first step was to define the Process Java class and the

Function Java class. The ODEs (equations 2 to 5) are

converted into the equations presented in Figure 3. This

represents a function that receives the present time value and

an array of state variables calculated in the previous

iteration. Next, it calls the updateKineticCoefs(t) method to

calculate new values for the kinetic variables at time t, and

then it calculates and returns an array containing the new

values for the state variables at time t.

 Figure 3: How ODEs are defined in the Function Java class

The kinetic equations 6 and 7 have to be converted to the

Java language as shown in Figure 4 . The variables g1 and g2

at each iteration are saved in an array kCoefs, and these

values are used later in the ODEs. The modelPars are the

kinetic parameters defined in the Function java class as well.

Figure 4: How kinetic variables are defined in Java

An objective function must be defined, describing the

purpose of the optimization. The aim was to obtain the

maximum of ethanol (x3) and equation 8 was used, being

defined in the Process class as the productivity method:

Figure 5: The objective function in the Java language

OptFerm ClipBoard

After defining the process and function classes, these are

compiled and are ready to use in OptFerm. A new project is

created and all initial Datatypes are displayed (Figure 6).

They are presented as a tree structure, and the data contained

can be viewed by simply clicking over the datatypes. All

functionalities are displayed in the menus.

Different sets of initial values for state variables, kinetic

parameters, feeding profiles and experimental data can be

created and added to the clipboard (Figure 7). Data can also

be removed from the clipboard. The internal data of these

new sets can be modified when necessary, and the user can

save or load previously saved data.

Figure 6: Example of OptFerm Clipboard

Figure 7: Menus and sub-menus of the OptFerm toolbox:

example on how a new set of state variables can be created

Simulation

An interface is presented to the user with all options to

perform simulations (Figure 8). A Project, the initial values

of state variables and kinetic parameters have to be selected.

It is possible to select between feeding profiles that had been

defined by the user and the ones resulting from optimization

procedures. After performing a parameter estimation, the

model parameters are also available to be used.

Figure 8: The graphical interface to perform simulations

After performing a simulation, the results are displayed in a

graph (Figure 9). The state variables or kinetic rates can be

visualized. The right panel displays the parameters used.

Optimization

To perform an optimization, a panel is presented (Figure 10).

On this panel, several options can be selected and the

available sets of initial values for state variables and model

parameters are displayed.

Figure 9: How simulation results are presented to the user

Figure 10: Graphical interface to execute optimization

After performing the optimization, the results are displayed

as shown in Figure 11. A graph and a table are used to show

the optimized feed trajectory. Information about

objective function is displayed, as well as the best

user can also see the parameters used in the optimization.

Figure 11: Results of the performed optimization

CONCLUSIONS AND FURTHER WORK

The aim of the OptFerm software was not to replace

bioprocess optimization by trial-and-error approach, but

results are presented to the user

Graphical interface to execute optimization tasks.

performing the optimization, the results are displayed

A graph and a table are used to show

nformation about the

best value. The

optimization.

optimizations

was not to replace

error approach, but to

reduce the number of trials that are

best results. So, with this tool the user is able to analyze the

robustness of a fed-batch model,

with experimental data, determine unknown parameters and

optimize a feeding profile to be fed into a

The current software version has

absence of a graphical interface to visualize and edit models

This feature will be available in a future version.

can still create the corresponding Java classes describing the

model by differential equations and kinetic reactions.

future versions, functions for export

SBML (System Biology Markup Language) format will be

implemented. Because OptFerm is implemented inside

AIBench framework that has a plug

functionalities or algorithms can be easily integrated.

REFERENCES

Ascher,U.M. et al. (1997) Implicit-explicit Runge

for time-dependent partial differential equations.

Numer. Math., 25, 151–167.

Benjamin,K.K. et al. (2008) Genetic Algorithms Using for a Batch

Fermentation Process Identification.

Sciences, 8, 2272–2278.

Chen,C. e Hwang,C. (1990) Optimal Control Computation for

Differential-algebraic Process Systems with General

Constraints. Chemical Engin.

Kawohl,M. et al. (2007) Model based estimation and optimal

control of fed-batch fermentation processes for the

production of antibiotics. Chemical Engineering and

Processing: Process Intensification

Mendes, R., Rocha, M., Rocha, I., Ferreira, E.C. (2006) A

Comparison of Algorithms for the Optimization of

Fermentation Processes. Proc

Computation, pp. 7371-7378,

Mendes,R. et al. (2008) Differential Evolution for the Offline and

Online Optimization of Fed

Processes. In UK Chakraborty (ed.),

Differential Evolution, ch.13, pp.299

Pettinen,A. et al. (2005) Simulation tools for biochemical networks:

evaluation of performance and usability.

21, 357–363.

Rocha, M., J. Neves, I. Rocha, E.C. Ferreira

Algorithms for Optimal Control in Fed

Fermentation Processes, In

Coimbra, Portugal, Springer, 2004.

Rocha,M., Mendes, R., Maia, P. Pinto, J.P., Rocha, I., Ferreira, E.C.

(2007) Evaluating Simulated Annealing

Optimization of Bacterial Strains.

473-484, Springer, 2007.

Tzoneva,R. (2006) Method for Optimal Control Calculation of a

Fed-batch Fermentation Process.

Control and Automation, 2006

Zhang,H. (2008) Optimal control of a fed

process based on Least Square Support Vector Machine.

Intern. J. Engin. Systems Modelling

are necessary to achieve the

So, with this tool the user is able to analyze the

, compare simulated data

with experimental data, determine unknown parameters and

to be fed into a bioreactor.

The current software version has a major limitation: the

graphical interface to visualize and edit models.

his feature will be available in a future version. The user

ava classes describing the

differential equations and kinetic reactions. In

, functions for exporting/importing models in

SBML (System Biology Markup Language) format will be

implemented. Because OptFerm is implemented inside

a plug-in concept, new

functionalities or algorithms can be easily integrated.

explicit Runge-Kutta methods

dependent partial differential equations. Appl.

Benjamin,K.K. et al. (2008) Genetic Algorithms Using for a Batch

Fermentation Process Identification. Journal of Applied

Chen,C. e Hwang,C. (1990) Optimal Control Computation for

c Process Systems with General

Chemical Engin. Communications, 97, 9.

Kawohl,M. et al. (2007) Model based estimation and optimal

batch fermentation processes for the

Chemical Engineering and

ng: Process Intensification, 46, 1223–1241.

Mendes, R., Rocha, M., Rocha, I., Ferreira, E.C. (2006) A

Comparison of Algorithms for the Optimization of

Proc. IEEE Conf. Evolutionary

7378, Vancouver, Canada, 2006.

Mendes,R. et al. (2008) Differential Evolution for the Offline and

Online Optimization of Fed-Batch Fermentation

In UK Chakraborty (ed.), Advances in

ch.13, pp.299-318, Springer, 2008.

,A. et al. (2005) Simulation tools for biochemical networks:

evaluation of performance and usability. Bioinformatics,

J. Neves, I. Rocha, E.C. Ferreira (2004) Evolutionary

Algorithms for Optimal Control in Fed-batch

In LNCS 3005, pp.84-93,

Coimbra, Portugal, Springer, 2004.

Mendes, R., Maia, P. Pinto, J.P., Rocha, I., Ferreira, E.C.

imulated Annealing Algorithms in the

Optimization of Bacterial Strains. Proc. EPIA 2007, pp.

Tzoneva,R. (2006) Method for Optimal Control Calculation of a

batch Fermentation Process. Proc. Mediterr. Conf.

Control and Automation, 2006, pp. 1–6.

Zhang,H. (2008) Optimal control of a fed-batch yeast fermentation

process based on Least Square Support Vector Machine.

. Systems Modelling Simulation,1:63–68.

