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Abstract. The design of cell factories for the production of compounds
involves the search for suitable heterologous pathways. Different strate-
gies have been proposed to infer such pathways, but most are optimiza-
tion approaches with specific objective functions, not suited to enumerate
multiple pathways. In this work, we analyze two pathway enumeration
algorithms based on graph representations: the Solution Structure Gen-
eration and the Find Path algorithms. Both are capable of enumerating
exhaustively multiple pathways using network topology. We study their
capabilities and limitations when designing novel heterologous pathways,
by applying these methods on two case studies of synthetic metabolic en-
gineering related to the production of butanol and vanillin.

1 Introduction

The quest for sustainable industries lead to an increased interest in Biotech-
nology. One of its key features is to re-engineer microbes to produce valuable
compounds [5]. The development of cell factories is an iterative process involving
steps as the search for suitable hosts and viable synthetic pathways. Heterolo-
gous pathways augment their capabilities to produce non native compounds. The
definition of pathways allows to organize chemical reactions into set providing a
coherent function, such as transforming a substrate to a target compound.

The constraint based modeling (CBM) approach is often adopted for in silico
analysis of genome scale metabolic models (GSMM) not requiring kinetic infor-
mation. The system is subjected to constraints such as reaction stoichiometry,
reversibility and assumption of a pseudo-steady state, allowing the computation
of a feasible flux space that characterizes the system. Flux Balance Analysis
(FBA) is a popular method to determine the flux distribution that maximizes
an objective (e.g. related to cellular growth) using linear programming [16].

Pathway optimization has been approached using different strategies. Regard-
ing CBM, FBA was used to determine producible non native compounds [3] by
merging GSMMs with large databases as KEGG, allowing to infer heterologous
reactions. A limitation of FBA is the fact that it determines a single solution,
while multiple optimal solutions exist. Furthermore, sub-optimal solutions may
offer valuable information on alternative routes. On the other hand, Elementary
Flux Modes (EFM) are defined as the minimal subsets of reactions to maintain
steady state. However, their computation is restricted to small networks [14].
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Figueiredo et al [6] propose an enumeration strategy to compute the k short-
est EFMs expanding the size of partially computable problems. Nonetheless,
database size networks (e.g. KEGG or MetaCyc) still offer a great challenge for
full EFM computation. The OptStrain algorithm [17] uses mixed integer linear
optimization to obtain the pathway with the smallest number of heterologous
reactions, but does not enumerate alternatives.

Other methods have applied standard graph methods, taking advantage of
shortest path algorithms to infer the shortest pathway between two compounds
[8,18]. This strategy can also be augmented by using shortest path enumerating
methods, such as the k -shortest path algorithm [4]. A major problem with this
strategy is that graph paths return linear routes between compounds, while in
reality these may involve more compounds. Additionally, compounds represented
as hubs in the network mislead the algorithms by shortening the paths since they
connect many reactions. To circumvent this problem, weighting [8] or filtering
methods [7] have been proposed to reroute the solutions.

An alternative is to use more complex representations. Hypergraphs or pro-
cess graphs (which are directed bipartite graphs) are capable to model chemical
reactions with higher detail. This allows to address the problem of multiple prod-
ucts and reactants, since edges connect to vertex sets instead of a single vertex.
Process graphs were used by Friedler et al [9–11] in an exhaustive approach for
decision mapping in synthesis processes, being later adapted for pathway identi-
fication [13]. The work of Carbonell et al [2] introduced an enumeration strategy
to extract pathways using hypergraphs.

In this work, we analyze two existing algorithms for multiple pathway enumer-
ation, the Solution Structure Generation (SSG) and the Find Path (FP), both
based on set systems representations. These algorithms are implemented and
tested with two case studies, regarding the production of butanol and vanillin,
using the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae,
two model organisms for which there are available GSMMs. The results ob-
tained by both are provided and discussed, being clear the need to introduce
some improvements to allow the scalability of the methods.

2 Problem Definition

In a topological approach, a pathway extraction problem can be defined as a de-
pendency problem. Thus, a reaction needs to be satisfied and satisfies metabo-
lites (that are dependencies of other reactions), that correspond to reactants
and products, respectively. Here, the notation used in the following is defined.
Mostly, it is based on the axioms and algorithms presented in [9–11].

Networks will be composed only by metabolites and reactions. In this system,
metabolites are the vertex entities, while reactions are represented by an ordered
pair 〈M1,M2〉, that connects two disjoint sets of metabolites.

Definition 1. (Reaction) A reaction is an ordered pair 〈M1,M2〉 of two disjoint
sets of metabolites (i.e., M1 ∩ M2 = ∅). The first set represents the reactants,
while the second represents the products.
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Definition 2. (Metabolic Network) A metabolic network Σ is a pair composed
by a set of metabolites Π and a set of reactions Υ .

A reversible reaction r is represented by including another entity r′, such
that the metabolite sets are swapped. Additionally, a network Σ′ = 〈Π ′, Υ ′〉 is
defined as a subnetwork of Σ〈Π,Υ 〉 if every element of Σ′ is contained in Σ (i.e.,
Π ′ ⊆ Π and Υ ′ ⊆ Υ ), then Σ′ ⊆ Σ.

A retrosynthetic metabolic problem can be defined as follows:

Definition 3. (Retrosyntehtic Metabolic Problem) A retrosynthetic metabolic
problem Γ is defined by a triplet 〈Σ,S, T 〉, where Σ is a metabolic network that
represents the search space, while S and T are two disjoint sets of metabolites
(i.e, S ∩ T = ∅) which are the constraints of the heterologous pathways. The set
S keeps the initial substrates (e.g., supplies or raw materials), while the set T
defines the target compounds of interest.

An heterologous pathway is a set of reactions, in most cases a subnetwork of
a larger network (defined as the search space), if it satisfies the following:

Definition 4. (Heterologous Pathway) An heterologous pathway σ of a synthetic
problem Γ is any network (or subnetwork), such that: a) the product set T is
included in 〈M,R〉, i.e., T ⊂ M and b) for every metabolite m in the subnetwork
that is not included in the substrate sets of Γ (i.e., M − S) there is a reaction r
in R such that m is a product of R.

The heterologous pathway definition is not sufficient to guarantee that the
solution is feasible, because it omits the stoichiometry of the reactions. Both
algorithms addressed in this work do not take account this property for the
computation of heterologous solutions. This eventually will lead to the compu-
tation of infeasible solutions that later can be verified by applying FBA.

3 Algorithms

3.1 Solution Structure Generation

The Solution Structure Generation (SSG) algorithm enumerates solutions of Γ
by recursively branching all possible combinations. This technique, denoted as
decision mapping, can be described as follows: let Σ′ be a subnetwork such that
condition a) verifies. Then, in order to fulfill condition b), the sub-problem Γ ′ is
solved producing the unsatisfied metabolites in Σ′. Let Σ = 〈T, ∅〉 be a network
containing T and no reactions, then a) trivially verifies. Then, ℘(producers of t),
t ∈ T (where ℘(X) denotes the power set of X) are candidates for partial
solutions of Γ , since if solutions of Γ exists, then at least one element of ℘
eventually must be present in one or more solutions of Γ . Recursively, we solve
the sub-problem Γ ′, with the new target set T ′ = R − S −M , where R is the
set of reactants of the newly introduced reactions (minus the initial set S and
producible metabolites in the partial solution), until eventually either there are
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no possible reactions to add, and this implies that we have reached a dead end
that happens when we pick a producer of T that does not belong to any solution,
or T = ∅ which implies that we achieved a solution.

There are several limitations of the SSG method. The first is the high amount
of memory that is required to compute power sets which grows exponentially
with the number of elements (2n). Additionally, this generates an extensive
amount of possible combinations. If the network is not pruned, meaning that
the network contains reactions that do not belong to any solution, then the
algorithm may contain branches that return no solutions and, depending the
depth of these branches, this increases severely the computation time to obtain
solutions. Friedler et al [10] proposed a polynomial algorithm to prune process
graphs to remove all reactions that might exhibit this behavior. Because of these
limitations, in this work, some modifications were implemented to the original
algorithm. Given space constraints, the full algorithms including these changes
are fully given and explained in supplementary material that is available in
http://darwin.di.uminho.pt/pacbb14-liu.

3.2 Find Path

The Find Path (FP) algorithm proposed by Carbonell et al [2] enumerates path-
ways by using hypergraphs. In a metabolic context, both hypergraphs and pro-
cess graphs are much similar. A solution of the FP algorithm is defined as a
hyperpath P , which is an hypergraph (usually a subgraph) where the hyperarcs
(reactions) can be ordered as r1, r2, . . . , rm such that ri is dependent only on
the substrates in S and the products of the previous reactions. This is com-
puted with a subroutine, Find All [2], that sorts the entire network satisfying
this condition. Additionally, reactions that cannot be satisfied are removed.

Not all pathways can be expressed by the definition of an hyperpath [2]. Lets
consider for instance co-factor metabolitesma andmb. Usually, these metabolites
are both present in a single reaction r = 〈M1,M2〉 where ma ∈ M1 and mb ∈ M2

or vice versa. These reactions can be satisfied by each other in a way where there
is an r′ = 〈M ′

1,M
′
2〉 where mb ∈ M ′

1 and ma ∈ M ′
2. Therefore, it is impossible

to sort an hyperpath if neither ma or mb are included in S. Examples of these
metabolites are ATP/ADP, NADH/NAD, etc. Fortunately, if assuming S to be
an organism chassis, these metabolites are usually include in S. However, this
does not guarantee that other more complex cycles do not exist.

This issue enables the generation of redundant solutions. Let Γ = 〈Σ, {s0},
{t0}〉 be a retrosynthetic problem, assuming that a) an heterologous pathway
Σ′ ⊂ Σ exists from s0 to t0, such that b) r, r′ ∈ Σ′ where r = 〈{m0, p0}, {m1,
p1}}〉 and r′ = 〈{m1, p1}, {m2, p0}〉. The FP algorithm can only identify such
pathway if Γ ′ = 〈Σ, {s0}, {p0,m0}〉 is feasible. Since r, r′ satisfy the metabolites
p0, p1 of each other (i.e., r + r′ = 〈{m0}, {m2}〉) this implies that any effort to
produce p0 in Γ ′ is unnecessary and every solution that b) verifies may contain
multiple redundant solutions (the reactions included in the solutions are unique
but in steady state they are redundant).

http://darwin.di.uminho.pt/pacbb14-liu
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In this work, to extend the capabilities of the FP algorithm a modification
was implemented in the Minimize subroutine (see supplementary material in
http://darwin.di.uminho.pt/pacbb14-liu. The redundancy problem still re-
mains an open topic for further improvement.

4 Experiments and Results

4.1 Case Studies

The algorithms were tested by applying two case studies of synthetic metabolic
engineering. The first example is the production of 1-butanol using E. coli [1],
while the second concerns vanillin synthesis using S. cerevisiae [12]. Both algo-
rithms (i.e., SSG and FP) are applied using the set of compounds in the KEGG
Ligand and MetaCyc databases as the chemical search space. Additionally, to
integrate and test the obtained solutions in silico, a GSMM is required: the
iJO1366 GSMM for E. coli and iMM904 [15] for S. cerevisiae were used. There-
fore, a total of 8 result sets were generated for two algorithms, two case studies
and two search spaces (databases).

4.2 Data Preprocessing

Before running the algorithms, several pre-processing tasks needed to be per-
formed. The first was to select and define the constraints of the problem, se-
lecting the search space Σ, the initial set S and the target compounds T . For
both case studies, the target set is a singleton containing only the compound
of interest, 1-butanol in the first case and vanillin in the second. For the sub-
strate set, all metabolites included in the GSMMs were selected. This later will
allow to integrate the obtained solutions with these models and evaluate their
performance. The BiGG database [19] aided in the transformation of the species
identifiers of the model to those in the databases. The species that did not match
any cross-referencing were discarded.

The reference pathway of the 1-butanol synthesis was mostly present in the
iJO1366 GSMM. So, to obtain alternative pathways we removed the following
species: M btcoa c (Butanyl-CoA), M btal c (Butanal), M b2coa c (Crotonyl-
CoA), M 3hbcoa c (3-hydroxybuty), M aacoa c (Acetoacetyl-Coa). Additionally,
every reaction connected to these compounds was also removed. The impact in
the biomass value calculated using the FBA was minimal reducing to 0.977 (from
0.986). Removing these species will allow to find alternative paths from other
internal metabolites of iJO1366 to 1-butanol, since an alternative solution to
the identified in [1] is desired which may or may not be optimal against existing
pathway. Note that the algorithms do not generate solutions including reactions
to produce the initial substrate set since these are defined as supplied. Regarding
the other case study, no modifications were made in the iMM904 GSMM.

A minor modification was done in the MetaCyc database, since it contains
reactions with the metabolite pairs NAD-P-OR-NOP/NADH-P-OR-NOP which are

http://darwin.di.uminho.pt/pacbb14-liu
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instances of either NAD/NADH or NADP/NADHP. These reactions were unfolded to
their correct instances. This is essential to infer the 1-butanol pathway, as several
reactions of this pathway were expressed in this format. The KEGG Ligand
database did not require pre-processing.

4.3 Algorithm Setup

Because of the combinatorial explosion of possible pathways, it is impossible
to obtain every solution existing in a database size network using any of the
algorithms. To compare the algorithms, the search space was split into subsets
by radius. The radius is an integer that defines the minimum number of links
(i.e., reactions) required to reach that reaction from an initial set of metabolites.
This implies that a reaction that belongs to radius i also belongs to i + 1, and
therefore a sub-network Σi of radius i always complies to Σi ⊆ Σi+1.

With these reduced search spaces, solutions were computed using each of the
algorithms. An attempt was made to obtain the entire set of candidate solutions
for each radius, until either the proces crashes due to lack of memory or exceeds
computational time allotted (> 24 hours). To validate the solutions, FBA was
used to maximize the yield of the target product and validate its feasibility
integrating the solution into the respective GSMM.

4.4 Results

Figure 1 shows the number of solutions computed and their feasibility. SSG is
more limited than FP by the size of the search space. A major problem of the SSG
algorithm is the high memory demand because of the power set computation.
With the reduction of the power set size (only partial sets are computed), it
still presents high memory demand to branch all the possible combinations.
Moreover, the SSG computes every solution that satisfies Definition 4 which
eventually leads to the computation of infeasible pathways.

Still, in general, the SSG shows better performance in the computation of so-
lutions (Figure 2) mainly because of the branching technique which gives a major
advantage to the computation time per solution because of the backtracking. As
the algorithm moves to a candidate solution, the next solution reuses the pre-
vious partial solution. This results in a neglectable impact on the computation
time per solution as the search space increases (i.e., increasing size of the radius).
However, since the number of solutions exponentially grows with the increasing
size of the search space, the total computation time increases.

The FP is capable to compute larger search spaces, being the major bottle-
neck the computation time per solution, since the internal Minimize routine has
quadratic complexity to the number of reactions [2]. A scenario was also found
where FP computes multiple distinct redundant solutions.

For every solution that satisfies the feasibility test, its performance was eval-
uated by integrating into the corresponding GSMM. The farthest radius that
either algorithm was able to compute was selected for this process. For the
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(a) 1-butanol - MetaCyc (BUTANOL) (b) 1-butanol - KEGG (C06142)

(c) vanillin - MetaCyc (VANILLIN) (d) vanillin - KEGG (C00755)

Fig. 1. Pathways computed for each of the problems by radius. The number of solutions
on the left. The percentage of infeasible or redundant solutions on the right. Blue -
SSG. Orange - FP.

(a) 1-butanol (b) vanillin

Fig. 2. Time cost (milliseconds) per each solution

1-butanol case, from the 42482 and 60356 solutions obtained from the FP al-
gorithm, a total of 32692 and 22968 were compatible with the iJO1366 GSMM
for search spaces of MetaCyc and KEGG, respectively. In the vanillin case, 944
of 974 computed solutions are valid (MetaCyc), being the numbers for KEGG
of 1600 out of 1852. The 1-butanol case shown a massive amount of solutions
mostly because of the NAD/NADH alternatives for many reactions.

(a) 1-butanol (b) vanillin

Fig. 3. Histogram of theoretical yield values of 1-butanol in iJO1366 and vanillin in
iMM904 . On the y-axis - number of solutions, x-axis yield range. Last value is the
optimal solution (for better yield).
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KEGG provided the solutions with highest yield, with 6.98 of vanillin in
iMM904 , and 152 pathways with 9.99 for 1-butanol compared to 114 pathways
from MetaCyc. There is a noticeable difference in the stoichiometry of the reac-
tions between KEGG and MetaCyc in the 1-butanol pathways. A detailed view
of the pathways obtained in this case study can be found in the supplementary
material (http://darwin.di.uminho.pt/pacbb14-liu).

5 Conclusions and Future Perspectives

The algorithms analyzed both present errors in the computation of heterologous
pathways. Although topologically they are correct, as they have the common
goal which is to infer heterologous pathways (subnetworks) that satisfy the rules
of initial substrates and target product, in a steady state point of view several
examples may be infeasible. However, by using post-processing methods such as
FBA, the correct solutions can be identified, which allows to correctly enumerate
multiple pathways. The case study of 1-butanol shows that there are many viable
routes for 1-butanol production in iJO1366 all with the same optimal yield.
Moreover, even if a problem contains only a single optimal solution (e.g., vanillin
in iMM904 ), examples of sub-optimal pathways also show a broad range of yield
values many near the optimal. Other methods hardly can achieve such a range
of feasible steady state heterologous pathways.

Thus, it is shown that although neither of the algorithms is readily suitable
to compute steady state heterologous pathways for large databases, they are
still able extract potential pathways, after targeted improvements in scalability.
Additionally, they offer a generic method to infer pathways for multiple purposes,
since they to not follow any strict objective function (e.g., yield or size).
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