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grathy. Diabetic neuropathy was induced by streptozotocin and spared
Ration of two sciatic nerve branches. Conditioned place-preference
gtreatment with one of the chambers of a CPP device once or four
was recorded after conditioning sessions to reveal place-preference.
t was assessed by the monofilament test immediately after the condi-
mg/kg; diabetic and SNI model) or intrathecally (10 pg; diabetic model)

failed to induce CPP at a dose that significantly attenuated mechanical hypersen-

clonidine (an a,-agfenocefytor agonist; 10 pg), in contrast, induced CPP in SNI but not control animals. The results
asrevealed by CPP, is less sensitive to treatment by the TRPA1 channel antagonist than
egeensitivity in peripheral neuropathy.

© 2012 Published by Elsevier Inc.

1. Introduction

Transient receptor potential ankyri A1) is a nonselective
bsed on a subpopulation

calcium-permeable ion channel that @
of nociceptive primary afferent nerve § tory et al.,, 2003; Jordt et
al., 2004). In the periphery, TRP. agnel contributes to transduction
of harmful stimuli to neuronal fischayte, whereas on central endings
of nociceptive nerve fibers i s glutamatergic transmission to
spinal dorsal horn interneuroi@ see for reviews, Patapoutian et al.,
2009; Stucky et al., 200 oran et al., 2011; Pertovaara and Koivisto,
2011; Andrade et al,, 2
Peripheral neuggpathifs are among pathophysiological conditions
that are associated hronic ongoing pain and hypersensitivity to
cutaneous stimulation, symptoms which are significant clinical prob-
lems (Scadding and Koltzenburg, 2006). Interestingly, there is recent
experimental evidence indicating that blocking the TRPA1 channel
attenuates mechanical hypersensitivity induced by peripheral diabetic
neuropathy (Wei et al., 2009, 2010a; Koivisto et al,, 2012; Koivisto
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and Pertovaara, in press) or spinal nerve injury (Eid et al., 2008; Wei
et al, 2011). While these findings indicate that the TRPA1 channel
exerts an important role in the facilitation of mechanical stimulus-
evoked pain in peripheral neuropathy, these findings still leave open
whether the TRPA1 channel is involved in maintenance of ongoing
neuropathic pain.

Assessment of ongoing neuropathic pain in experimental animals
is notoriously difficult. One approach is to apply conditioned place-
preference (CPP) paradigm. If animals have ongoing pain that is
reduced by drug treatment in one of the test chambers, the animals
are expected to prefer the test chamber paired with the analgesic treat-
ment (Sufka, 1994). Unmasking the tonic-aversive state using the CPP
paradigm has been successfully applied to study sustained pain in vari-
ous models of peripheral neuropathy (King et al., 2009; De Felice et al.,
2011; King et al,, 2011; Quetal,, 2011; He et al., 2012; Leite-Almeida et
al., 2012) as well as in some other experimental models of chronic pain
(Davoody et al., 2011; He et al.,, 2012; Okun et al., 2012). Here, we
administered a selective TRPA1 channel antagonist in the CPP paradigm
that was modified from that of King et al. (2009) to study whether the
TRPA1 channel is involved in maintenance of ongoing neuropathic
pain. The experiments were performed in two models of experimental
peripheral neuropathy, one induced by a metabolic disorder (diabetes
mellitus) and one by nerve ligations (spared nerve injury, SNI).

Please cite this article as: Wei H, et al, Dissociated modulation of conditioned place-preference and mechanical hypersensitivity by a TRPA1
channel antagonist in peripheral neuropathy, Pharmacol Biochem Behav (2013), http://dx.doi.org/10.1016/j.pbb.2012.12.014
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2. Material and methods recovery from anesthesia, the correct placing of the catheter was verified
by administering lidocaine (4%, 7-10 pl followed by a 20 pl of saline for

2.1. Experimental animals flushing) with a 50-ul Hamilton syringe (Hamilton Company, Bonaduz,
Switzerland). Only those rats that had no motor impairment before

The experiments were performed with male Hannover-Wistar lidocaine injection but had a bilateral paralysis of hind limbs following
rats (220-260 g; Harlan, Horst, The Netherlands) in Biomedicum intrathecal administration of lidocaine were studied further. The installa-

Helsinki. All experiments were approved by the ethical committee tion of the intrathecal catheter was performed about one week before the
for experimental animals studies of the State Provincial Office of start of the actual experiments. In the actual experiments, the drugs were
Southern Finland (Hdmeenlinna, Finland) and the experiments were microinjected i.t. with a 50-ul Hamilton microsyringe in a volume of 5 ul
performed according to the guidelines of European Communities followed by a saline flush in a volume of 20 pl.
Council Directive of 24 November 1986 (86/609/EEC). All efforts
were made to minimize animal suffering, to reduce the number of 2.5. Conditioned place preference (CPP)
animals used, and to utilize alternatives to in vivo techniques, if
available. The animals were housed in polycarbonate cages with a For analysis of ongoing pain, conditiongfl pjice-preference (CPP) par-
deep layer of saw dust, one to three animals in each cage, in a thermo- adigm modified from that of King et al. PO) was used. When using a
statically controlled room at 24.04+0.5 °C. The room was artificially single-drug exposure paradigm, rats#fg ent a 3 day habituation, in
illuminated from 8.30 AM to 8.30 PM. The animals received commercial which they were placed in autoy @ PP boxes (Place Preference
pelleted rat feed (CRM-P pellets, Special Diets Services, Witham, Essex, System, San Diego Instruments, Diego, CA) with access to all 3
England) and tap water ad libitum. chambers for 30 min per dgf dWing the first two days. The device
records time spent in each ¢ @ using a computer-controlled 4 x 16
2.2. Induction of diabetes mellitus array of photobeams. A #fiterences between the test chambers

was the roughness o
Diabetes mellitus was induced under pentobarbitone anesthesia of the walls (black trig&les versus bars on white surface). Time spent
by tail vein injection of streptozotocin (60 mg/kg; Sigma-Aldrich, in each of the wds recorded for 15 min on day 3 (D3). Rats
St.Louis, MO, USA) in citrate buffer (pH 4.5). Streptozotocin-induced that spent mo n 720 s in one of the conditioning chambers were
diabetes mellitus is known to cause a marked hypersensitivity to eliminated from tI® study. The following day (D4), all rats received a
various types of stimuli (Courteix et al., 1993). While peripheral morningg ion of vehicle and were immediately (or in two groups,
diabetic neuropathy is a complex disorder with multiple underlying 15 mig vehicle) placed in one of the pairing chambers for
mechanisms (Obrosova, 2007), the TRPA1 channel was recently 30 g ours later, all rats received drug (clonidine, Chembridge-
shown to exert an important role in its pathophysiology (Koivisto et 5 8, their combination, or in one control condition the second
al.,, 2012). The development of diabetes mellitus was confirmed 3 and& ehicle) and were immediately (or in two groups, 15 min after
Ch

10 days later by measurements of blood glucose concentration (One embridge-5861528) placed in the opposite chamber for 30 min.

Touch Ultra, Life Scan Inc, Milpitas, CA, USA). All streptozotocin On the next day (D5), 20 h following drug pairing, animals were
treated animals developed diabetes and had a blood glucose lev placed drug-free in the CPP boxes with access to all chambers. The
>20 mmol/l. Weight of the animals was assessed every other C@ amount of time spent in each of the two chambers (saline- and
the animal had a weight decrease of >20% or it showed signs drug-paired) was automatically registered and used to quantify the
ing, then the animal was immediately sacrificed by admj ing a conditioning effect by drug treatment. In one test group, a multiple

S

lethal dose of pentobarbitone. drug exposure-paradigm was used (for details, see Section 2.7). It

was expected that if the animal had ongoing pain that was reduced
2.3. Techniques for producing spared nerve injury of peripheral by drug treatment, the animal preferred the drug-paired chamber.
neuropathy

2.6. Assessment of pain-related behavior evoked by peripheral
There are a number of surgically induce odels of peripheral test stimulation

neuropathy (Honoré et al., 2011), of whj e Chose for this study
the spared nerve injury (SNI) model ( rd and Woolf, 2000). All animals were habituated to pain testing procedures at least 1-2 h
For SNI, the unilateral axotomy and |j o the tibial and common per day for two days before assessing drug effects on pain behavior. Since
peroneal nerves on the left side wgf perfdrmed under pentobarbitone mechanical rather than heat hypersensitivity is a frequent problem
anesthesia (60 mg/kg i.p.) as defgribegl in detail earlier (Decosterd in patients with peripheral neuropathy (Scadding and Koltzenburg,
and Woolf, 2000). Briefly, the Ry the lateral surface of the thigh 2006), the focus in testing of stimulus-evoked pain behavior was on
was incised and a section ectly through the biceps femoris mechanically evoked responses. Hypersensitivity to cold is also com-
muscle exposing the scigti rve and its three terminal branches. mon in peripheral neuropathies (Scadding and Koltzenburg, 2006)
Following ligation and remwing 2-4 mm of the distal nerve stumps and the spinal nerve injury-induced cold hypersensitivity has also

of the tibial and c eroneal nerves, muscle and skin were been attenuated by a TRPA1 channel antagonist (Chen et al., 2011).
closed in two layers. I am-operated animals, the surgical proce- The testing schedule in the present study, however, did not allow
dure was identical, except that the tibial and common peroneal assessing cold hypersensitivity.
nerves were not ligated or sectioned. After the surgery, the animals To assess mechanically evoked pain behavior, the frequency of with-
were allowed to recover before the actual testing that was performed drawal responses to the application of monofilaments (von Frey hairs)
one week after the operation. to the hind paw was examined. A series of monofilaments that
produced forces varying from 1 g to 26 g (North Coast Medical, Inc.,
2.4. Surgical procedures for the installation of intrathecal catheter Morgan Hill, CA) was applied in ascending order five times to the

plantar skin at a frequency of 0.5 Hz. A visible lifting of the stimulated

In one group of animals, drug was administered intrathecally (i.t.). For hind limb was considered a withdrawal response. If the rat failed to

i.t. drug injections, a catheter (Intramedic PE-10, Becton Dickinson and withdraw to any of the five presentations of a monofilament, the
Company, Sparks, MD) was administered into the lumbar level of the response rate for the studied force level was 0%. If the rat withdrew
spinal cord under pentobarbital anesthesia (60 mg/kg intraperitoneally) every time the monofilament was applied to the paw, the response
as described in detail elsewhere (Stgrkson et al, 1996). Following rate for the studied force level was 100%. Thus, an increase in the
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response rate represents facilitation of mechanical stimulus-evoked
pain behavior (hypersensitivity). When assessing treatment effects on
mechanical hypersensitivity, the treatment effect on the cumulative re-
sponse rate to a series of monofilaments was calculated in the following
way: the cumulative response rate after treatment — the cumulative re-
sponse rate before treatment. Treatment-induced changes in cumula-
tive response rates that were less than O represent treatment-induced
antihypersensitivity effects. Pain behavior was assessed on day 4 of
the conditioning. Testing of pain behavior was performed before placing
the animal into the CPP device and immediately after its removal from
the CPP device, both in the vehicle (morning) and drug (afternoon)
treatment conditions.

2.7. Course of the study

In general, animals were tested 1-2 weeks after induction of
diabetes or SNI/sham surgery. Each animal participated only in one test-
ing condition, each of which lasted five days (see Section 2.5 for details).
When single-exposure CPP paradigm was used, vehicle (morning)
and drug (afternoon) were administered only on D4, whereas in the
multiple-exposure CPP paradigm, vehicle and drug were administered
on four consecutive days (days 1-4); in the multiple-exposure CPP
paradigm the experimental procedure on days 1-4 was identical to
that of day 4 in the single-exposure CPP condition. Place-preference
(time spent in the vehicle- versus drug-paired chamber) was assessed
on D5. Mechanical pain behavior (see Section 2.6) was assessed on
D4. After completion of the study, the animals were sacrificed with a
lethal dose of pentobarbitone.

2.8. Drugs

Chembridge-5861528, (CHEM; a derivative of HC-030031) that
synthesized by ChemBridge Corporation (San Diego, CA) was used

TRPA1 channel antagonist. Its chemical structure is illustrated j
previous publication (Fig. 1 in Wei et al., 2009). Our calcium jnagi
d

results in human TRPA1 and TRPV1 transfected HEK c

that when mustard oil or 4-hydroxynonenal (4-HNE) yfis #fseg as a
TRPA1 channel agonist, ICso value of CHEM was 14. uM or
18.7 4+ 0.3 uM, respectively (Wei et al., 2009). Moreg showed

no TRPA1 or TRPV1 channel agonism and no TR
nism up to a dose of 100 uM (Wei et al., 2009).
at have proved to

i.p. or i.t. at doses (30 mg/kg or 10 pg, respeg
have a significant mechanical antihypersensitRgy effect, without motor
PDT0a, 2011, 2012). With

or other side-effects (e.g., Wei et al., 2489

i.p. administration of CHEM, the onse @ 'on is within 15 min, the
peak effect is reached at 30 min, a gfiration of effect is less than
two h (Wei et al.,, 2009). With j
of action is within 5 min, the p
duration of action is less th
noted that due to dissolvj

annel antago-
s administered

(Wei et al.,, 2010a). It should be
ms it was not possible to administer
the currently used 10 pg. Moreover, the
f CHEM (30 mg/kg) was the highest i.p.
reduce selectively pathophysiological pain
hypersensitivity, without a significant suppression of (physiological)
nociception that is needed for protecting the tissues from damage.
Clonidine, an a-adrenoceptor agonist (Sigma-Aldrich, St.Louis, MO)
was used in control experiments at an antinociceptive dose of 10 yg
i.t. as in the study of King et al. (2009). In general, drugs were adminis-
tered immediately before placing the animal in the test chamber. How-
ever, since it may take up to 15 min before CHEM has a significant effect
following i.p. administration (Wei et al., 2009) and since the lack of
significant drug effect during the first 10-15 min of the pairing period
of 30 min duration might prevent making the association between the
i.p. CHEM treatment and the test chamber (Bardo and Bevins, 2000),
in two experimental groups i.p. administration of CHEM (or vehicle)
was performed 15 min before placing the animal in the test chamber.

2.9. Statistical analysis

When assessing CPP during the 30 min observation period on D5,
the absolute time each animal spent in the drug-paired chamber was
compared with that spent in the vehicle-paired chamber. When
assessing mechanical antihypersensitivity effects on D4, the CHEM-
induced change in the cumulative response rate to repetitive stimulation
with a series of monofilaments was compared with that induced by
vehicle treatment. These comparisons were performed using a paired
t-test. P<0.05 was considered to represent a significant difference.

3. Results

3.1. CHEM- and clonidine-induced CPi ntrol experiments

In healthy controls, CHEM failg
amounts of time spent in the chafg
versus vehicle (t;;=0.11; J#
paired with vehicle in co
of time in the chamber {3
as in the chamber
(ts=0.75; Fig. 1B

In order to amysitive control, we replicated the single-exposure
CPP experi escribed by King et al. (2009) in the SNI model of
peripheral ne athy. Lt. treatment with clonidine (10 ug; a prototype
oa-adrenoceptor agonist) on D4 produced a significant CPP effect on D5
L by a significantly longer time spent in the chamber paired
me than vehicle (t=3.9, P=0.0037; Fig. 1C). In sham-
animals, i.t. treatment with clonidine on D4 failed to produce
Pgffect on D5 (t5 = 0.24; Fig. 1D).

N oduce CPP as revealed by equal
paired with CHEM (30 mg/kgi.p.)
¥ Also, when both chambers were
als, the animals spent equal amounts
ith the first administration of vehicle
with the second administration of vehicle

32 CHEM-induced CPP and mechanical antihypersensitivity effect in
diabetic animals

In diabetic animals, i.p. treatment with CHEM (30 mg/kg, immediately
before placing the animal in the test chamber) on D4 failed to produce
a CPP effect on D5, as revealed by the lack of significant difference in
times spent in the vehicle- versus CHEM-paired chamber (t;=2.0;
Fig. 2A). Nor did i.t. treatment of diabetic animals with CHEM (10 pg)
produce a significant CPP effect (t, =0.22; Fig. 2B).

Mechanical hypersensitivity was measured in diabetic animals by
assessing cumulative withdrawal response rates to repetitive stimu-
lation of the hind paw with a calibrated series of monofilaments be-
fore and after treatments. Before CHEM treatment, diabetic animals
were hypersensitive to mechanical stimulation as shown by an in-
creased mean withdrawal response rate to monofilament stimulation
(e.g., at the stimulus force of 8 g: 23 &+ 3% in diabetes versus 10 + 4% in
controls; t;; =2.6, P=0.023). In contrast to the failure to induce a sig-
nificant CPP effect, CHEM produced a significant antihypersensitivity
effect in diabetic animals both in the i.p. (ts=4.9, P=0.0026; Fig. 2C)
and i.t. (t;=3.9, P=0.017; Fig. 2D) treatment conditions.

3.3. CHEM-induced CPP and mechanical antihypersensitivity effect in the
SNI model of neuropathy

In SNI animals, i.p. treatment with CHEM (30 mg/kg, immediately
before placing the animal in the test chamber) on D4 failed to produce
a CPP effect on D5, as revealed by the lack of significant difference in
times spent in the vehicle- versus CHEM-paired chamber (t;o=0.52;
Fig. 3A). Since pairing of the test chamber only once (on D4) with
CHEM failed to induce significant CPP in SNI animals, we tested whether
pairing the test chamber on four consecutive days (D1-D4) induced a
significant CPP effect on D5. However, pairing of the test chamber on
four consecutive days with CHEM failed to induce a significant CPP
effect (ts=0.47; Fig. 3B).

Please cite this article as: Wei H, et al, Dissociated modulation of conditioned place-preference and mechanical hypersensitivity by a TRPA1
channel antagonist in peripheral neuropathy, Pharmacol Biochem Behav (2013), http://dx.doi.org/10.1016/j.pbb.2012.12.014
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A Healthy controls B Healthy controls
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Fig. 1. Assessment of conditioned place-preference (CPP) in control experiments. (A) CPP in healthy control ar%n— 12) following single intraperitoneal (i.p.) treatment with
Chembridge-5861528 (CHEM, a TRPA1 channel antagonist; 30 mg/kg). (B) CPP control experiment in which both cham®®rs of the CPP device were paired with vehicle in healthy controls
(n=6). (C) CPP in the spared nerve injury (SNI) model of peripheral neuropathy (n=10) following single hecal (it.) treatment with clonidine (Clon, an c;-adrenoceptor agonist;
10 pg). (D) CPP in sham-operated control animals (n=6) following single i.t. treatment with clonidine piring of each test chamber with drug/vehicle was performed only once
on day 4 and CPP was assessed as time spent in each chamber (shown by the Y-axis) on the followi e boxes represent median and its interquartile values, while whiskers
represent the range.

325 Before CHEM treatments, SNI animals were hypersensitive to forcof 8 g: 50+4 in SNI % versus 10+4% in controls; t;o=7.1, 328
326 mechanical stimulation as shown by an increased mean withdraw 0.0001). CHEM treatment (30 mg/kg i.p.) had a significant me- 329
327 response rate to monofilament stimulation (e.g., at the stim chanical antihypersensitivity effect assessed in SNI animals on D4 330
»
A DM: CPP B DM: CPP
20001 20004
——
— 15004 15004
2, -,
J—
£ 10004 2 1000
- =
500 T B 500-
Veh CHEM - Veh CHEM
Intraperitoneal treatment Intathecal treatment

DM: hypersensitivity DM: hypersensitivity

1001 1001
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-1001

(/A
A Response rate [%] )
3 8
*
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A Responserate[%] O
*
*

-150 -150

Veh CHEM Veh CHEM
Intraperitoneal treatment Intrathecal treatment

Fig. 2. Assessment of conditioned place-preference (CPP) and mechanical hypersensitivity in diabetic (DM) animals. (A) CPP and (C) the attenuation of mechanical hypersensitivity
(n=7) following single intraperitoneal (i.p.) treatment with Chembridge-5861528 (CHEM, a TRPA1 channel antagonist; 30 mg/kg). (B) CPP and (D) the attenuation of mechanical
hypersensitivity (n=5) following single intrathecal (i.t.) treatment with CHEM (10 pg). Pairing of each test chamber with drug/vehicle was performed only once on day 4. CPP
was assessed as time spent in each chamber (shown by the Y-axis) on the following day. Mechanical hypersensitivity was assessed as the cumulative response rate to a series
of monofilaments. Mechanical hypersensitivity was assessed on day 4 (before and immediately after pairing one of the test chambers for 30 min with vehicle/drug administration).
In graphs C and D, 0% (shown by the dotted horizontal line) represents the mean pre-drug response. Values<0% represent a drug-induced suppression of hypersensitivity. The
boxes represent median and its interquartile values, while whiskers represent the range. **P<0.01 (paired t-test).
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both following a single-exposure to CHEM (ts=4.8, P=0.0047;
Fig. 3C) and four exposures to CHEM (t5=10.7, P=0.0001; Fig. 3D).

Animals in the above mentioned experiments were placed in the
test chamber immediately after intraperitoneal injection of (vehicle
or) CHEM, while it may take up to 15 min before i.p. administration
of CHEM produces a significant antihypersensitivity effect (Wei et
al., 2009). Therefore, it might be argued that the failure to induce
CPP by i.p. treatment with CHEM was due to the slow onset of the
significant drug effect (15 min), due to which the animals placed
immediately after drug injection in the test chamber failed to associate
the test chamber with the (rewarding) pain relief induced by CHEM. To
exclude this possibility, a group of SNI animals were placed in the test
chamber 15 min after i.p. administration of (vehicle or) CHEM. Lp.
treatment with 30 mg/kg of CHEM failed to induce CPP in SNI animals
(ts=0.3; Fig. 4A), although the animals were placed in the test chamber
15 min after ip. drug administration (i.e., at or after the onset of the
significant antihypersensitivity effect).

In case CHEM treatment abolished ongoing pain in SNI animals, it
might be expected that pretreatment with CHEM prevents observing
a relief of ongoing pain induced by i.t. treatment with clonidine. To
address this question, we determined CPP induced by it. clonidine
(10 ug) in SNI animals that were pretreated with CHEM (30 mg/kg i.p.,
15 min prior to i.t. treatment with clonidine). In spite of i.p. pretreatment
with CHEM, i.t. treatment with clonidine produced CPP in SNI animals
(to=2.4, P=0.037; Fig. 4B).

4. Discussion

The main finding of this study was that the selective TRPA1 channel
antagonist CHEM administered at a high systemic or intrathecal dose

not associated with CPP (an index for the drug-induced relief of ongoi
pain) in experimental models of peripheral neuropathy. This findfhg
suggests that the TRPA1 channel-mediated facilitation of sti
evoked pain dissociates from mechanisms contributing to maingenan

produced a marked mechanical antihypersensitivity effect that V\K ]

V4
A SNI: CPP
2000
_. 15001 [ '
N
[ 4
g 1000
[
500+
0 —
Veh CHEM
Single intraperitoneal treatment
C SNI: hypersensitivity
Kz 100
&
2 D. aa] = jpessccscscscscscssas
o
b 1007 sk
&  -200 =
o
3 300
e 1
< 400 . T
Veh CHEM

Single intraperitoneal treatment

of sustained pain in peripheral neuropathy. The result allows conclud-
ing that ongoing pain is less sensitive to blocking the TRPA1 channel

than mechanical hypersensitivity in peripheral neuropathy. It should :
be noted that the present results don't exclude the possibility that a :
further increase in the dose of the TRPA1 channel antagonist might :

induce CPP in neuropathic animals. However, higher doses may not be

clinically feasible, due to suppression of physiological nociception that :
helps in protecting tissues from harmful stimuli. In healthy controls, :
the TRPA1 channel antagonist CHEM failed to induce CPP indicating :
that the antagonist alone had neither rewarding nor aversive properties. :

One might argue that the failure to induce CPP by administering a :

TRPA1 channel antagonist was due to lack of ongoing pain in the
currently used models of peripheral ne
supported by the finding that intrat]
the SNI model of peripheral neuropat
study by King et al. (2009). Impoy#

CPP also in SNI animals that
CHEM, which finding indicates{
was not abolished by CH
antihypersensitivity effe
streptozotocin-ind
increased discharg

nociceptive primary afferent nociceptive

2001; Chen and Pan, 2002). Moreover, SNI has

elative neurophysiological evidence to ongoing pain and CPP. This :
icated by the recent finding that systemically administered mor- :

pMne and pregabalin reduced mechanical hyperalgesia and the sponta-

neous discharge rate of the presumed pain-relay neurons of diabetic :
animals, without inducing CPP (Rutten et al., 2011). Furthermore, it :

has been pointed out that what is often considered spontaneous pain :
B SNI: CPP
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1500
@, l
o A
E 1000
=
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0 —r T
Veh CHEM
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D SNI: hypersensitivity
g 1001
- T =——T—
E kkk
@ -1004 il
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& -300+ ps, e
< 400 T r
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Fig. 3. Assessment of conditioned place-preference (CPP) and mechanical hypersensitivity in animals with the spared nerve injury (SNI) model of peripheral neuropathy. (A and B) CPP
and (C and D) the attenuation of mechanical hypersensitivity following intraperitoneal (i.p.) treatment with Chembridge-5861528 (CHEM, a TRPA1 channel antagonist; 30 mg/kg).
Pairing of each test chamber with drug/vehicle was performed only once on day 4 (A and C; n=11) or on four consecutive days (B and D; n=6). CPP was assessed as time spent in
each chamber (shown by the Y-axis) on the fifth day. Mechanical hypersensitivity was assessed as the cumulative response rate to a series of monofilaments. In both groups, mechanical
hypersensitivity was assessed on day 4 (before and immediately after pairing one of the test chambers for 30 min with vehicle/drug administration). In graphs C and D, 0% (shown by the
dotted horizontal line) represents the mean pre-drug response. Values<0% represent a drug-induced suppression of hypersensitivity. The boxes represent median and its interquartile
values, while whiskers represent the range. ***P<0.005 (paired t-test).
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Fig. 4. Assessment of conditioned place-preference (CPP) in animals with the spared nerve
injury (SNI) model of peripheral neuropathy. (A) CPP following single intraperitoneal treat-
ment with vehicle (Veh) or Chembridge-5861528 (CHEM, a TRPA1 channel antagonist;
30 mg/kg 15 min prior to placing the animal in the test chamber). (B) CPP following single
intrathecal treatment with vehicle or clonidine (Clon, an ct;-adrenoceptor agonist; 10 pg).
Animals were pretreated 15 min before intrathecal vehicle treatment with intraperitoneally
administered vehicle, and 15 min before intrathecal clonidine treatment with intraperitone-
ally administered CHEM (30 mg/kg). Pairing of each test chamber with drug(s)/vehicle wa:

#)

while whiskers represent the range. In graph A, n=6 and in graph B, n=1
(paired t-test).

performed only once on day 4. CPP was assessed as time spent in each chamber (sho V
the Y-axis) on the fifth day. The boxes represent median and its interquartile falues,
(0}

may actually represent summated pains caused by t
life (Bennett, 2012).

The present CPP results failed to give evide v@ Mysupports a role
for the TRPA1 channel in maintenance of ong®gg pain in peripheral
neuropathy. Previous results, however, ip@fts at in a number of
other conditions the peripheral TRPA1 @ may induce afferent
barrage driving ongoing pain. For g cutaneous administra-

muli of daily

(e.g., Andrade et al., 2008; Tsagal
pain behavior. In human sub
TRPA1 channel agonist (
duced sustained pain (I
Conversely, a TRPA1 chan
ated guarding, an i
the rat (Wei et al., 2012¥%"
The spinal TRPA1 channel on central terminals of nociceptive nerve
fibers, in contrast, has so far been associated only with modulation of
stimulus-evoked pain responses, such as secondary or central hypersen-
sitivity (Da Costa et al.,, 2010; Kremeyer et al,, 2010; Wei et al., 2010a,
2011; Sisignano et al., 2012; Klafke et al, 2012), or a dorsal root
reflex-mediated aggravation of cutaneous neurogenic inflammation
(Wei et al., 2010b), but not yet with spontaneous pain (Pertovaara and
Koivisto, 2011; Wei et al., 2012). In stimulus-evoked neuropathic hyper-
sensitivity the spinal TRPA1 channel has proved to play an important role
as shown by the mechanical antihypersensitivity effect induced by
spinal administration of a TRPA1 channel antagonist in nerve-injured
or diabetic animals (Wei et al., 2010a, 2011).

taneous administrations of a

il or cinnamaldehyde) also pro-
tgburg et al., 1992; Namer et al., 2005).
antagonist adjacent to a wound attenu-
ngoing postoperative pain behavior in

5. Conclusions

The results of this study indicate that the TRPA1 channel-mediated

mechanical hypersensitivity may not reflect ongoing pain in peripheral -
neuropathy. The significant TRPA1 channel antagonist-induced me- -
chanical antihypersensitivity effect in SNI and diabetic animals of the -
present study adds to the accumulating evidence indicating that selec- -
tive TRPA1 channel antagonists are promising candidates for treating -
pain hypersensitivity associated with peripheral neuropathy, while -
the CPP paradigm of the present study failed to confirm their efficacy -

against ongoing neuropathic pain.
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