ISY 2000

Tenth International Symposium on Yeasts

The rising power of yeasts in science and industry

27 August - 1 September 2000
Papendal, Arnhem, The Netherlands

Symposium Book

Under the auspices and guarantee of The Netherlands Foundation for Biotechnology and Delft University of Technology.
Abstracts of the Tenth International Symposium on Yeasts (ISY 2000)
The rising power of yeasts in science and industry
27 August – 1 September 2000
Papendal, Arnhem, The Netherlands

Editors: Johannes P. van Dijken and W. Alexander Scheffers
Kluwer Laboratory for Biotechnology, Delft University of Technology

Lay-out: Jenny Boks-Zondervan, Maria H.P. Komen-Zimmerman
Cover: Coach Consult, Zuidhorn
Cover photographs are kindly provided by Marten Veenhuis

Published and distributed by:
Delft University Press
P.O. Box 98
2600 MG Delft
The Netherlands
Telephone: +31 15 2785121
Telefax: +31 15 2781661
E-mail: dup@library.tudelft.nl

ISBN 90-407-2067-3

Copyright 2000 by:
Delft University of Technology.
Kluwer Laboratory for Biotechnology
Delft, The Netherlands

All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the publisher: Delft University Press.
Rising power of yeasts

SECRETION OF ASPERGILLUS NIGER β-GALACTOSIDASE BY FLOCCULENT YEAST CELLS

Lucília Domingues¹, José A. Teixeira¹, Nelson Lima¹ and Merja Penttilä²
¹Centro de Engenharia Biológica- Instituto de Biotecnologia e Química Fina
Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
²VTT Biotechnology and Food Research, PO Box 1500, FIN-02044 VTT, Finland.

The culture of flocculent yeast cells allows for the continuous operation at a high cell density. With an appropriate bioreactor design the cell aggregates are retained inside the bioreactor allowing for the operation at higher dilution rates leading to higher productivity than the one obtained in conventional continuous systems (chemostat). Moreover, the downstream processing is greatly facilitated as the aggregates are easily separated from the product. A flocculent continuous system has been successfully employed for alcoholic fermentation (Domingues et al., 1999).

The secretion of heterologous protein by S. cerevisiae is attractive by several reasons (e.g. GRAS organism, eukaryote organism, cultures are easy to handle and scale-up, few proteins are naturally secreted by yeast) but is hampered by its low secretion rate. Due to its industrial importance, β-galactosidase production has been largely studied. The overall productivity of bioreactors for β-galactosidase secretion can be enhanced using continuous high cell density systems operating with flocculent yeast cells. As in other high cell density systems, diffusional mass transfer limitations may be a main concern. However, in a previous study, it has been shown that this is not significant for brewer’s yeast flocculating cells secreting A. niger β-galactosidase (Domingues et al., 2000).

In this work, the secretion of A. niger β-galactosidase by a flocculent yeast cell has been studied. For that, the flocculent S. cerevisiae strain NCYC869-A3 has been transformed with the plasmid pVK1.1 (Kumar et al., 1992). Higher levels of β-galactosidase were detected in the supernatant and overall enzyme productivity was clearly better than the productivity obtained in the previous work (Domingues et al., 2000). Biochemical characterization of β-galactosidase secreted to the supernatant was done. The recombinant β-galactosidase is seen as a diffuse high molecular weight band (>250 KDa) in SDS-PAGE gels. The identity of the refered band was confirmed by an enzymatic gel assay. Treatment with EndoH resulted in a sharp band around 116 KDa, clearly indicating heterogeneous glycosylation in some of the N-linked sites in the cloned fungal β-galactosidase. This results agree with the ones previously obtained with nonflocculent S. cerevisiae cells (Kumar et al., 1992). Batch fermentations aiming at the β-galactosidase production optimization are also presented. The effect of lactose concentration, aeration rate and yeast extract concentration on the recombinant β-galactosidase production were considered.

References

The authors acknowledge the financial support provided by the IBGF, Portugal. Lucília Domingues was supported by a grant (PRAXIS XXI/BD/11306/97) from FCT, Portugal.

27 August - 1 September 2000, Arnhem, The Netherlands

264