* Please note if you do not find a set of abstracts for a Concurrent Session, this is because we did not receive a set of abstracts for that session.
• Exploring the opportunities and challenges in establishing suitable business models for the delivery of personalised nutrition at all stages of the food chain, in collaboration with stakeholders (the food industry, the media, health insurers, patient groups, retailers, regulatory authorities, medical professionals and scientists)
• Developing new scientific tools for the exploration of dietary, phenotypic and genotypic data in the delivery of personalised nutrition
• Assessing the validity of delivering a personalised nutrition service in a proof of principal research study, involving a large cohort of 1280 volunteers across 8 EU states
• Assessing the attitudes of consumers in all regions of the EU to all aspects of personalised nutrition
• Exploring the ethical and legal dimensions of personalised nutrition
• Developing best practice guidelines for communicating to consumers about personalised nutrition

This presentation will provide an overview of the Food4Me project, funded by the 7th EU Framework Programme (FP7). Food4Me is an acronym for Personalised Nutrition: An Integrated Analysis of Opportunities and Challenges. The project aims to explore the scientific, business and consumers aspects of personalised nutrition and to determine whether dietary advice based on nutrient, phenotypic and genetic information, could deliver consumer benefits. The Food4Me consortium is a multi-disciplinary team of 25 European partners and includes collaboration with key players in the area of personalised nutrition globally. Professor Mike Gibney of the Institute of Food and Health at University College Dublin is the lead coordinator of the project, which began in 2011 and will run until 2015.

This work was funded by Food4Me (KBBE.2010.2.3-02, Project no. 265494)

CS6.4.3
Composites materials for food packaging and from food industry by-products only: the EcoBioCAP EU project

Nathalie GONTARD1*, Claudia SCHÖNWEITZ2, Fabio FAVA3, Chema LAGARON4, Mauro MAJONE5, Antonio VICENTE6, Lilila AHRNE7, András SEBÖK8

1INRA, Montpellier, France 5Univ. Roma, Italy
2Fraunhofer IVV, Munich, Germany 6Univ. Braga, Portugal
3Univ. Bologna, It. 7SIK, Gotheborg, Sweden
4CSIC, Valencia, Spain 8Campden BRI, Budapest, Hungary
*Corresponding author: gontard@univ-montp2.fr, phone: +33 6 12 23 14 67

EcoBioCAP project aims to provide the food industry with customizable, eco-efficient, biodegradable packaging solutions with direct benefits both for the environment and consumers in terms of food quality and safety. This next-generation packaging is developed using advanced composite structures based on constituents (biopolymers, fibres, proteins, polyphenolic compounds, bioadhesives and high-performance bio-additives) derived from food industry (oil, dairy, cereal and beer) by-products only and by applying innovative processing strategies (blends and multilayers at different scales) to enable customisation of the packaging’s properties to fit the functional, cost, safety and environmental impact requirements of the targeted fresh perishable food (fruit and vegetables, cheese and ready-to-eat meals). Demonstration activities with SMEs
and industrial partners enable the EcoBioCAP technology to be optimised in terms stability, safety, environmental impact and cost-effectiveness before full exploitation. The development of a decision support system for use by the whole packaging chain makes the EcoBioCAP technology accessible to all stakeholders. Extensive outreach activities ensure that consumers and end-users are informed of the usage conditions and benefits of such bio-degradable packaging and how it should be disposed of.

EcoBioCap project concept: The first fully biosourced and biodegradable trays of EcoBioCAP European project have been produced by pilot-scale injection-moulding with the collaboration of Fuerstplast (France). These trays are composed of bacterial polyhydroxybutyrate-co-valerate (PHBV) and wheat straw fibers (WSF up to 30% w/w).

CS6.4.4 TRADEIT: Innovation in the traditional food sector, a European initiative

Dr. Helena McMahon, Institute of Technology Tralee, Tralee, Co Kerry, Ireland

In Europe Traditional Food producing (TFP) SMEs are frequently family run micro-scale business in rural, costal and mountainous locations. The traditional foods these small enterprises manufacture are a significant element of the cultural heritage of each member state and are critical economic inputs to many regions. Consumers are realising the value of traditional foods which are valued for provenance and perceived to be more “natural” minimally processed, low preservatives products and represent a growing segment of the European food market, providing significant opportunities for traditional food producers wishing to expand market share and increase productivity. However to meet growing consumer demands, a significant increase in innovation is required to generate authentic products that meet 21st century standards in food safety, nutritional content, sensory value, convenience, traceability, environmental impact and sustainability. Furthermore to compete in the increasingly global European food market innovation needs in supply chain, marketing and business models will need to be addressed. This is a particularly challenging task for TFP SMEs as few have the resources or capability for research and innovation, seldom possessing the financial and human resources needed to participate in collaborative projects. One of TRADEIT’S key objectives is to address this capacity gap through the development of a sustainable learning network of stakeholders in the traditional Agri-food sector, underpinned by the piloting of 9 regional Technology and Knowledge Transfer Hubs (TRADEIT Hubs). Each Hub will deliver an ambitious program of events and supports tailored to the needs of SMEs in