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ABSTRACT: A simple homogenization approach accounting for mortar joint damaging is presented, 

suitable to analyse entire panels in two-way bending in the non-linear dynamic field. A rectangular 
running bond elementary cell (RVE) is subdivided into several layers along the thickness and, for 
each layer, a discretization where bricks are meshed with plane-stress three-noded triangular 
elements and joints are reduced to interfaces with damaging behaviour is assumed. Non linearity is 
due exclusively to joints cracking, which exhibit also a frictional behaviour with limited tensile and 
compressive strength with softening. A damaging material is utilized for joints in order to properly take 
into account the actual opening and closure of cracked mortar under cyclic loads. Finally, 
macroscopic curvature bending moment diagrams are obtained integrating along the thickness in-
plane micro-stresses of each layer. 

Homogenized masonry flexural response under load-unload conditions is then implemented at a 
structural level in a FE non-linear code based on a discretization with rigid three-noded elements and 
elasto-damaging interfaces where elastic and inelastic deformation is allowed only for flexural actions. 
The two step model proposed is validated both at a cell and structural level, comparing results 
obtained with both experimental data and existing macroscopic numerical approaches available in the 
literature. 
 

Keywords:  masonry, non-linear dynamic analysis, homogenization 

1 INTRODUCTION  

The out-of-plane weakness is a quite common feature for masonry structures [3][4] and is due to 
several factors, among the most important is the relatively low tensile resistance of the mortar joint. 
Earthquake damage surveys have demonstrated that the lack of out-of-plane strength is a primary 
cause of failure in most traditional forms of masonry construction. This fact is confirmed in the case of 
old masonry monuments for which the thickness of façades is often relatively small with respect to the 
other dimensions.  

Despite renewed research efforts, a number of difficulties still remain for the numerical analysis of 
masonry structures, especially in modelling their constitutive behaviour at a structural level, whose 
salient characteristics include heterogeneity, orthotropy, different responses under tension and 
compression and softening behaviour. At present, it can be affirmed that still the most effective 
strategy for the analysis of large masonry walls in the non-linear range [5] is the so called macro-
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modelling approach. In addition, it must be noted that dynamic analyses are probably the most suited 
numerical approach to predict both the actual strength of single walls and the damage induced by an 
earthquake excitation. 

In this context, the determination of the macroscopic mechanical properties to be utilized is a key 
but tricky issue. To properly take into account masonry orthotropic behaviour in the inelastic range, it 
is possible to use micro-modelling [6], macro-modelling [7], or homogenization [8]-[10]. The typical 
need of micro-modelling of a distinct representation of blocks and mortar makes its application 
prohibitive for large scale structures [11] and hence more suited for small specimens and single 
structural elements. For large scale simulations, homogenization could be rather useful, by 
accounting the complex geometry of the basic cell and the constituent material properties only at the 
meso-scale.  
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Figure 1: The micro-mechanical model used to determine macroscopic masonry behaviour. 

At the macro-scale, the approach here presented is founded on the hypothesis that in many cases 
the seismic damage of masonry monuments can be investigated by considering their architectural 
parts as separate, i.e. subdividing the structure into “macro-elements” [4]. As a matter of fact, for 
simple façades (i.e. without significant variations of thickness) the slenderness (intended as the ratio 
between height and thickness) is often relatively high and failures tend to occur with the developing of 
cylindrical yield lines. 

In the present work, attention is focused on the out-of-plane behaviour of this masonry walls, so 
that a Kirchhoff-Love approach is suitable for the description of its behaviour under dynamic loads. 
The model assumes a discretization with Munro and Da Fonseca [12] triangular rigid infinitely 
resistant elements connected by inelastic flexural interfaces exhibiting softening and damage. 
Mechanical properties of the interfaces are suitably deduced from a recently presented 
homogenization procedure in the inelastic range. 
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Figure 2: Modified Mohr–Coulomb criterion for the mortar joint/mortar–brick interface. 

2 HOMOGENIZATION 

The homogenization model is based on the identification of an elementary cell or Representative 
Element of Volume (REV) constituted by elastic blocks and joints reduced to interface with a 
homogeneous plate [13].  

The representative element of volume Y (RVE or elementary cell) depicted in Figure 1 is 
considered. Y contains all the information necessary for describing completely the macroscopic 
behaviour of an entire wall. Homogenization consists in introducing averaged quantities for 

macroscopic strain and stress tensors ( E  and Σ ), as follows:  

dY
A

Y

 )(
1

uεεE  

dY
A

Y

 σσΣ
1

, 

( 1 ) 

where A stands for the area of the elementary cell, ε and σ  stand for the local quantities  and <*> is 

the average. 
Periodicity conditions are imposed on the stress field σ  and the displacement field u, so that:  
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where per
u  stands for a periodic displacement field. 

In the model, joints are reduced to interfaces with zero thickness and bricks are discretized by 
means of a coarse mesh constituted by plane-stress elastic triangles, Figure 1. All the non-linearity in 
the RVE is concentrated exclusively on interfaces between adjoining elements both on brick and joint. 

The elastic domain of joints is bounded by a composite yield surface that includes tension, shear 
and compression failure with softening (see Figure 2). A multi-surface plasticity model is adopted, with 
softening in both tension and compression. The parameters ft and fc are, respectively, the tensile and 

compressive Mode-I strength of the mortar or mortar–brick interfaces, c is the cohesion,   is the 

friction angle, and   is the angle which defines the linear compression cap. 
The usual elasto-plastic equations for single surface plasticity hold; assuming the hypothesis of 

small deformations, the total strain rate ε  is decomposed into an elastic component elε and a plastic 

component plε . The elastic strain rate is related to the stress rate by the elastic constitutive matrix D 

as elεDσ    whereas the non-associated plasticity assumption allows to link plε  with i
  as 
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σε  /iipl g  where ig  is the plastic potential corresponding to the i-th yield surface (which rules 

the direction of plε  in the stress space) and  Tσ . In classic non-associated plasticity ig  may 

not coincide with if . 

For the tension mode, exponential softening on the tensile strength is assumed according to the 
mode I experiments by many authors. The yield function reads: 

   111 ,  tff σ  ( 3 ) 

where the yield value  1tf  deteriorates in agreement with the following formula: 
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where 0tf  is the initial joint tensile strength and 
I

fG  is the mode I fracture energy. An associated flow 

rule is assumed here.  
When dealing with the shear mode, a Mohr-Coulomb yield function is adopted: 

     2222 tan,  cf σ  ( 5 ) 

where the yield values c  and tan  are ruled by the following formulas: 
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being 0c  and 0tan  the initial cohesion and friction angle, 
II

fG  is the mode II fracture energy and 

rtan  is the residual friction angle. A non-associated flow rule is assumed here, with 2g .  

When dealing with the linearized compressive cap, an associated elastic-perfectly plastic behaviour is 
assumed, with the yield function expressed by: 

     tan3 cff σ  ( 7 ) 

where cf  is the uniaxial compressive strength. 

The response of the RVE under out-of-plane actions is obtained subdividing along the thickness 
the unit cell into several layers (typically 20). A displacement driven approach is adopted, meaning 

that macroscopic curvature increments 11 , 22  and 12  are applied through suitable periodic 

boundary displacement increments. Thus each layer undergoes only in-plane displacements and may 
be modelled through plane stress FEs. Bending moments and torsion are finally obtained at each step 

simply by integration along the thickness of the quantity σ 3y : 

dYy
A

y
Y

 33

1
σσM  ( 8 ) 

For the macroscopic dynamic nonlinear analyses, the elasto-plastic unloading behaviour would be 
not realistic. For this reason, the unloading rule is assumed as the material was a damaging one, i.e. 
there is a decrease of the stiffness.  

3 NON LINEAR MASONRY FLEXURAL BEHAVIOUR AT DIFFERENT ORIENTATION OF 
THE BED JOINT WITH RESPECT TO MATERIAL AXIS 

Some experimental information regarding crack pattern and moment-curvature diagrams for clay 
brick masonry in flexion and in absence of pre-compression is available from van der Pluijm [14][15]. 
In particular, the flexural behaviour of several small panels in four point bending with the bed joints 
making a variable angle   with the direction of loading were experimentally tested. 
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For the experimentation, standard Dutch bricks of dimensions 200×52×100 mm3 with 10 mm thick 
mortar joints were used. Mechanical properties of the constituent materials are summarized in Table 1 
and are taken, where possible, in agreement with average experimental values available for 
constituent materials.  

Three directions are here investigated, namely  =0° (vertical bending),  =30° (inclined bending), 

 =90° (horizontal bending). For all experimentally tested wallettes, both the elastic limit and the peak 

resistance point in the curvature-bending moment diagram are available from the literature. On the 
contrary, no information is given on the post-peak branch (softening) and on the effect of vertical 
compressive loads on the flexural behaviour.  

A full comparison between experimental data and numerical model response is summarized in 
Figure 3. While the orthotropy at failure is somewhat evident, the dispersion of experimental data 
does not allow estimating the typical anisotropy exhibited by masonry in the elastic range. 
 
Table 1: [14][15] experimental data. Mechanical properties assumed for the constituent materials. 

 joint 
brick-brick 
interface 

Triangles 
brick 

  

E 4000 11000 11000 [MPa] Young Modulus 

G 2000 5500 5500 [MPa] Shear Modulus 

c 1.8 ft 1 - [MPa] Cohesion 

ft 0.3 - - [MPa] Tensile strength 

fc 20 - - [MPa] Compressive strength 

Φ 30 45 - [ ° ] Friction angle 

Y 45 - - [ ° ] 
Angle of the linearized 

compressive cap 

Gf
I 0.018 10 - [N/mm] Mode I fracture energy 

Gf
II 0.022 10 - [N/mm] Mode II fracture energy 

 

4 STRUCTURAL NON-LINEAR DYNAMIC PROBLEM 

The finite element model utilized next for the non-linear analysis of masonry panes out-of-plane 
loaded is based on the triangular element proposed by Munro and Da Fonseca [12] and seems 
perfectly suited to solve in a simple way the dynamic problem, since elastic-plastic deformation is 
concentrated only at the interfaces between adjoining elements and is due exclusively to bending 
moment. The displacement field is assumed linear inside each element and nodal velocities are taken 

as optimization variables. Denoting with  TE

k

E

j

E

iE wwww  element E  nodal velocities and with 

 TE

k

E

j

E

iE θ  side normal rotations, Eθ  and Ew  are linked by the compatibility equation 

(Figure 4-a and –b): 
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Figure 3: Simulations at cell level. [14][15] experimental data. Bending moment-curvature diagrams at 
different orientations of the bending moment/horizontal joint. -a: 0°. -b: 30°. -c: 90°. 
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with kji yyb  , jki xxc   ad EA  element area. Due to the linear interpolation of displacements 

perpendicular to the plate middle plane, elastic deformation and plastic dissipation occurs only along 

each interface I  between two adjacent triangles R  and K or on a boundary side B  of an element 

Q  (see Figure 4-c). Internal work in

IW  stored in each interface I  can be written as follows: 

0
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Where 
K

j

R

iI    is the relative rotation between R  and K  along I  (see Figure 4-b) and 


InnM ,  

and 


InnM ,  are positive and negative bending moments along I . 
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Figure 4: Triangular plate element used for the FE non-linear analyses (-a), rotation along an 
interface between adjacent triangles (-b), discretization of the 2D domain (-c). 

 
The time integration scheme is a classic Newmark approach where the dynamic equilibrium equation 
is written node by node. 

Translational equilibrium equation along the perpendicular direction of an element E  reads as 
follows: 

iiiiiii FUKUUm     ( 11 ) 

Where iF  is the force acting on node I, im , i  and iK  are mass, damping and stiffness, iU , iU  and 

iU  are acceleration, velocity and displacement of the node. 

Each single nodal equation may be properly assembled into a global matrix formulation. In particular, 
remembering that: 

EEE UBθ   

E

T

EE MBR   

( 12 ) 

Where we indicate with Eθ  the edge rotations matrix and with ER  the out-of-plane forces applied on 

vertexes of the element which maintain the element in equilibrium. 

Considering the non-linear relationship between EM  and Eθ  in the form   EEE t θKM  , the 

previous equations may be re-written as: 

  EEE

T

EE t UBKBR   ( 13 ) 

The contribution to the three nodes belonging to an element E of the single element is: 

  EEEE

T

EEEEE t FUBKBUξUm    ( 14 ) 

Where Em  is the element mass matrix and Eξ  the damping. 

Considering a single node, say i , the contribution of each element having i  as vertex has to be 

considered, so that the dynamic nodal equilibrium equation has to be re-written, in the most general 
case as: 
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Where: 

1. jn  is a 13 unitary vector with   1kjn  if node i  for the local internal ordering of element j  is 

equal to k ,   0kjn  otherwise; 

2. 
i

EN  is the total number of elements sharing node i ; 

3. jU  is a 31 vector of displacements of element j  vertices. 

Within a  -Newmark scheme iU , iU  and iU  for each node may be re-written as 

     1221  nn UUU   . When the constant average acceleration method is used, then  =1/4. 

Assuming  =1/2, the update rules are the following: 
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Assuming values of 
 nU , 

 nU  and 
 nU  at time step n  known, the only unknown to determine is the 

acceleration at step n +1. 
 nU  is solved by means of the matrix dynamic equilibrium equation, as 

follows: 
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Rearranging the previous equation, we obtain: 
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Which, assembled for all nodes provides a system of equations on the updated nodal accelerations 
 1n

iU  at step n +1. 

5 STRUCTURAL APPLICATIONS 

In this Section, a structural application on a perforated masonry wall experimentally tested by 
Vaculik and Griffith [17] is numerically analysed. The experimental work to compare with was 
conducted at the University of Adelaide, on a series of perforated walls with complex boundary 
conditions and eventually axial pre-compression, Figure 5. The authors were not able to collect 
sufficient information from [17] to match exactly experimental results. However, since the aim of the 
present paper is only to preliminarily show the capabilities of the procedure proposed, the same 
sinusoidal acceleration applied to the specimens by Vaculik and Griffith [17] is considered. The wall 
here considered is 1840 mm in length and 1232 mm in height, with an asymmetrically positioned 
window opening, see Figure 5. The wall was restrained by means of a complex experimental setup, 
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so that Vaculik and Griffith [17] considered on their models the walls constrained by simple supports 
at the top and bottom edges and full moment restraint at the vertical edges, with boundary conditions 
representative of a real situation. The walls were built on concrete slabs, which were lifted together 
onto the shake-table prior to testing. As shown by Figure 5, the test wall was restrained at the vertical 
edges by a stiff frame representative of the in-plane stiffness expected for a masonry wall acting in-
plane to the seismic excitation. A horizontal cross bar attached to the stiff in-plane frame provided 
support to the wall at the top edge. 

The brick units, cut from clay pavers are in scale ones with 110 × 50 × 39 mm dimensions (length 
× width × height). Material properties adopted in the model are summarized in Table 2 and they 
generally agree with those reported in [17], where a wide preliminary characterization of the 
constituent materials was done. Masonry tensile strength adopted in the model is generally lower than 
that experimentally determined in single bending tests, however authors experienced an elastic 
behaviour with higher values of ft for the model. Finally the adopted elastic modulus of the brick is kept 
lower than that experimentally determined, i.e. 32100 MPa, with the sole aim of finding the exact 
elastic modulus experimentally determined for masonry, i.e. 9180 MPa. 
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to apply axial load
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Figure 5: Experimental set-up to perform the dynamic analyses (left) and geometry of the perforated 
wall (in mm) subjected to the dynamic tests in two way bending (right) 
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Figure 6: time-displacement law applied to the shake table base  
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Table 2: Perforated wall subjected to dynamic excitation. Mechanical properties assumed for the 
constituent materials. 

 joint 
brick-brick 
interface 

Triangles 
brick 

  

E 6000 18000 18000 [MPa] Young Modulus 

G E/2 E/2 E/2 [MPa] Shear Modulus 

c 1.2 ft 1 - [MPa] Cohesion 

ft 0.05 - - [MPa] Tensile strength 

fc 25.9 - - [MPa] Compressive strength 

Φ 30 45 - [ ° ] Friction angle 

Y 45 - - [ ° ] 
Angle of the linearized 

compressive cap 

Gf
I 0.02 10 - [N/mm] Mode I fracture energy 

Gf
II 0.04 10 - [N/mm] Mode II fracture energy 

 

The results of the numerical analysis are summarized in Figure 7, where the time-displacement curve 
of point P and the deformed shape at the end of the simulation process are represented. As can be 
noted, there is a clear residual displacement (order of magnitude 2 mm) with a formation of a failure 
mechanisms involved inclined yield lines passing through the corners of the internal window and a 
vertical yield line on the first row of elements, near the fixed support.  

While the approach proposed needs further validation with experimental data (if present) and 
alternative numerical simulations conducted with both commercial FEM and the distinct element 
method, the simple procedure proposed in the paper appears quite appealing from a practical point of 
view, needing very reduced computational time to be performed and being the dynamic analyses fully 
explicit. 

6 CONCLUSIONS 

The first preliminary results obtained with a homogenization model for the out-of-plane non-linear 
dynamic analysis of masonry walls has been presented. The model requires an initial non-linear 
homogenization with softening materials and a coarse FE discretization of the unit cell. The structural 
implementation is done within a Kirchhoff-Love thin plate hypothesis and with a discretization with 
rigid triangular elements and non-linear homogenized interfaces exhibiting deterioration of the 
mechanical properties and possible energy dissipation only for flexural actions. 

The dynamic problem is particularly simple, explicit and requires very few kinematic variables to be 
solved under any input accelerogram. 

The code is preliminary tested on a windowed panel subjected to a sinusoidal excitation and already 
experimentally tested at the University of Adelaide under different levels of pre-compression and 
dynamic excitation. 
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Figure 7: Time-displacement history of point P (corner of the window) and final deformed shape 
configuration of the wall.  

 

 

 

Control point P 



Milani, G.; Lourenço, P. 

 
 9

th
 International Masonry Conference, Guimarães 2014 12 

[3] Corradi, M.; Borri, A.; Vignoli, A.: Strengthening techniques tested on masonry structures struck 
by the Umbria–Marche earthquake of 1997–1998. Construction and Building Materials, 16 
(2002) 4, 229-239. 

[4] Doglioni, F.; Petrini, V.; Moretti, A. (Eds) (1994). Le chiese e il terremoto [Churches and 
earthquake]. LINT press, Trieste, Italy. 

[5] Pietruszczak, S.; Ushaksarei, R.: Description of inelastic behaviour of structural masonry. Int J 
Solids Struct, 40 (2003), 4003–19. 

[6] Lourenço, P.B.; Rots, J.: A multi-surface interface model for the analysis of masonry structures. 
Journal of Engineering Mechanics ASCE, 123 (1997) 7, 660-668. 

[7] Lourenço, P.B.; de Borst, R.; Rots, J.G.:  A plane stress softening plasticity model for orthotropic 
materials. International Journal for Numerical Methods in Engineering, 40 (1997), 4033-4057. 

[8] Luciano, R.; Sacco, E.: Homogenisation technique and damage model for old masonry material. 
International Journal of Solids and Structures, 34 (1997) 24, 3191-3208. 

[9] Massart, T.; Peerlings, R.H.J.; Geers, M.G.D.: Mesoscopic modeling of failure and damage-
induced anisotropy in brick masonry. Eur J Mech A/Solids, 23 (2004), 719–35. 

[10] Milani, G.; Tralli, A.: Simple SQP approach for out-of-plane loaded homogenized brickwork 
panels, accounting for softening. Computers and Structures, 89 (2011), 201–215. 

[11] Gambarotta, L.; Lagomarsino, S.: Damage models for the seismic response of brick masonry 
shear walls. Part II: The continuum model and its applications. Earthquake Engineering and 
Structural Dynamics, 26 (1997) 4: 441-462. 

[12] Munro, J.; Da Fonseca, A.M.A.: Yield-line method by finite elements and linear programming. J. 
Struct. Eng. ASCE, 56B (1978), 37-44. 

[13] Milani, G.; Lourenço, P.B.; Tralli, A.: Homogenised limit analysis of masonry walls. Part I: failure 
surfaces. Computers & Structures, 84 (2006) 3-4,166-180.  

[14] Van der Pluijm, R.; Rutten, H.S.; Schiebroek, C.S.: Flexural behaviour of masonry in different 
directions. In: Proc. 4th Int. Masonry Conf., Brit. Mas. Soc. 1992, 117-123. 

[15] Van der Pluijm, R.: Out-of-plane bending of masonry. Behavior and strength, PhD Thesis: 
Eindhoven University of Technology, The Netherlands 1999. 

[16] Lourenço, P.B.: Aspects related to the out-of-plane numerical modelling of masonry. Masonry 
International, 14 (2000) 1, 31-34. 

[17] Vaculik, J.; Griffith, M.: Shaketable tests on masonry walls in two-way bending. In: Proc. AEES 
2007 Conference, Australian Earthquake Engineering Society, Nov. 2007, Wollongong, Aust. 

[18] Vaculik J.: Unreinforced masonry walls subjected to out-of-plane seismic action. PhD Thesis, 
University of Adelaide, Australia 2012. 


