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Ana Isabel Freitas1,2, Carlos Vasconcelos3, Manuel Vilanova2 and Nuno Cerca1

1 IBB – Institute for Biotechnology and Bioengineering, University of Minho, Campus de Gualtar, Braga, Portugal
2 ICBAS-UP – Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
3 Hospital Santo António, Centro Hospitalar do Porto, Porto, Portugal

Biofilm formation is recognized as the main virulence factor in a variety of chronic infections.
In vitro evaluation of biofilm formation is often achieved by quantification of viable or total cells.
However, these methods depend on biofilm disruption, which is often achieved by vortexing or
sonication. In this study, we investigated the effects of sonication on the elimination of
Staphylococcus epidermidis cell clusters from biofilms grown over time, and quantification was
performed by three distinct analytical techniques. Even when a higher number of sonication
cycles was used, some stable cell clusters remained in the samples obtained from 48- and 72-h-old
biofilms, interfering with the quantification of sessile bacteria by plate counting. On the other
hand, the fluorescence microscopy automatic counting system allowed proper quantification of
biofilm samples that had undergone any of the described sonication cycles, suggesting that this is
a more accurate method for assessing the cell concentration in S. epidermidis biofilms, especially in
mature biofilms.
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Introduction

Staphylococcus epidermidis, a member of the coagulase-
negative staphylococci, is now recognized as one of the
most prevalent pathogens in nosocomial infections,
which frequently originate from biofilms formed on
the surface of synthetic medical devices [1]. A biofilm is
generally described as a microbial community attached
to a surface that develops by accumulation of multilay-
ered cell clusters and is embedded in an extracellular
matrix [2]. Biofilm formation is recognized as the main
virulence factor in a variety of chronic infections [1, 3],
representing a major problem in public healthcare.
Biofilm bacteria usually present higher resistance to
antibiotics [2, 4, 5], higher tolerance to the immune
system [5, 6], and better adaptation to environmental
stress factors [7, 8].

Except when more fundamental and detailed studies
are being pursued, colorimetric methods such as those
using crystal violet or safranin staining or optical density
(OD) evaluation of bacterial cultures are common, easy,
and straightforward biofilm cellular quantification
techniques [9–13]. While very useful for screening
purposes [14, 15], these methods do not provide
information regarding the number of total or viable
bacteria. Due to this limitation, biofilm quantification is
often made by colony-forming unit (CFU) counting.
However, CFU evaluation has been described as suffering
from a lack of reproducibility [16, 17] and can lead to
significant errors due to the presence of cell clusters
promoted by the biofilm matrix. Furthermore, as it has
been shown by flow cytometry, S. epidermidis biofilm CFU
counting only allows the quantification of cultivable
bacteria, but does give an indication of total and live
bacteria [18]. Despite these limitations, this is a
widespread method. An important aspect of CFU
quantification concerns the requirement of preparing a
homogeneous cell suspension, derived from the biofilm.
This is often achieved by vortexing or sonication. Some
studies focusing on the removal of biofilms from infected
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medical devices have clearly demonstrated that vortexing
and scraping do not offer sufficient biofilm disaggre-
gation [19, 20]. On the other hand, sonication contributes
to a better dispersion of the cells, making the culture
after sonication easier to quantify [20–22]. However, the
issue of biofilm maturation was not taken into account,
and often these studies were performed using young
biofilms (24 h of growth). As we have shown before,
biofilm formation is a dynamic process [23], and mature
S. epidermidis biofilms are often associated with higher
biomass and higher expression levels of adhesins [24, 25]
and are consequently more complex to evaluate.

In this study, we addressed the effect of sonication on
the elimination of S. epidermidis cell clusters present in
cell suspensions derived from biofilms molded for 24, 48,
and 72 h. The bacterial cells from the biofilms were
quantified by three analytical techniques to test the
accuracy of each method. We show that older biofilms
formed more cell clusters which remain present after
sonication, significantly affecting bacterial quantifica-
tion by CFU counting, while fluorescence microscopy
automatic counting proved to be a more accurate
method.

Material and methods

Bacterial strains and culture conditions
Three well-known biofilm-forming strains were used in
this study: S. epidermidis RP62A (PubMed accession
number: PRJNA57663, ID: 57663), S. epidermidis
9142 [26] and S. epidermidis 1457 [27]. Biofilm cultures
of each strain were performed in fed-batch mode as
previously described [23]. Briefly, a starter culture was
grown overnight in Tryptic Soy Broth (TSB) (Oxoid) at 37 °
C with agitation (120 rpm). Of the starter culture, 5 ml
was inoculated into 1 ml TSB supplemented with 1%
(w/v) glucose (TSBG) to induce biofilm formation in a
24-well plate (Orange Scientific). The cultures were
grown for 24, 48, and 72 h at 37 °C on an orbital shaker
at 120 rpm. The growth medium was completely
removed and replaced using an equal volume of fresh
TSBG every 24 h. Each experiment was repeated at least
three times.

Biofilm disruption
After the respective incubation times, the biofilms were
washed twice with saline solution before being detached
from the culture plate surface. Each biofilm was
resuspended in 1 ml of a physiological saline solution
(NaCl 0.9%) and dislodged by scraping, followed by
sonication (Cole-Parmer® 750-Watt Ultrasonic Homoge-

nizer, 230 VAC, employing a 13-mmmicrotip) using three
different cycles differing in time (s) and amplitude (%):
cycle A – 10 s at 30%; cycle B – 30 s at 30% plus 40 s at
40%, and cycle C – cycle B plus 120 s at 40%. The tubes
containing the samples were kept in ice during sonica-
tion. The scraping procedure removed more than 98% of
the biomass, determined by the reduction in crystal
violet staining, as previously shown by us [28]. A cell
suspension vortexed for 1 min (WS) was used as the no-
sonication control. Vortexing for 1 min was previously
used by Olson et al. [29] to dislodge bacteria from
intravascular catheters.

Biofilm quantification
Biofilms were quantified using three different methods.
To determine cell viability, the biofilms were resus-
pended in 0.9%NaCl, followed by sonication or vortexing
as described above. Several serial 10-fold dilutions were
made in saline solution and plated on Tryptic Soy Agar
(TSA). The plates were incubated at 37 °C for 24 h before
counting the number of CFU. Biofilm biomass quantifi-
cation was done by measuring the OD at 595 nm of each
sonicated cell suspension, a method used to evaluate the
bacterial growth rate [12, 30]. For this, biofilm suspen-
sions were diluted until the measured OD was below 0.8;
then, the determination of the OD was performed by
multiplying the dilution factor by the measured OD.
Finally, total and dead cells were quantified using a
Neubauer chamber coupled with an Olympus BX51
epifluorescence microscope equipped with a CCD color
camera DP71 (Olympus). Cell suspensions were stained
with the commercially available LIVE/DEAD® BacLight™
Bacterial Viability Kit (Invitrogen) following the manu-
facturer’s instructions. A negative control was used to
determine the baseline threshold for dead cells, killed
by treating the cells for 15 min at 100 °C. Cells were
counted using the automated enumeration software
SigmaScan Pro 5.0 (Systat Software Inc.), as described
before [28], using a magnification of 200�. Briefly, 20
TIFF images (1360 � 1024) per condition were acquired
and converted to eight bit 256 grayscale, to be analyzed
by differences in the gray intensity of each pixel, by
using an appropriate intensity threshold determined
experimentally. Under these conditions, 18420 � 1575
pixels were equivalent to 0.0025 cm2 at 200�
magnification.

Quantification of bacterial cell clusters
Biofilms of S. epidermidis strain 9142 grown for 24, 48, and
72 h as described above were sonicated for 10 s at 30%
(cycle A) and then adjusted to the same OD (OD595nm

� 0.8). OD readings at 595 nm (Spectronic 20 Genesys,
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Sigma–Aldrich) were carried out every 2 min for a total
of 30 min. Before being placed in a 2.5-ml polystyrene
spectrophotometer cuvette (Labbox), the biofilm cell
suspension was vortexed to assure homogeneity. Plank-
tonic bacteria grown to the early exponential phase were
used as a control. This experiment was performed three
times.

Statistical analysis
All the assays were compared using one-way analysis of
variance (ANOVA) by applying Levene’s test of homoge-
neity of variances and Tukey’smultiple comparisons test,
and also the paired sample t-test, using SPSS. All tests
were performed with a confidence level of 95%.

Results

Automatic image counting validation
To validate the SigmaScan Pro 5.0 software for automatic
counting of adhered S. epidermidis cells using the
fluorescence-based Live/Dead staining, we tested several
different parameters and compared the results with
manual counting. As can be seen in Fig. 1A, no significant
differences were found using any of the three software
thresholds and the manual counting (r > 0.05), indicat-
ing that the Live/Dead staining was strongly discrimina-
tive between bacteria and background and that there was
no significantfluorophore bleach effect that could impair
the automatic counts. Furthermore, in Fig. 1B, no
significant differences were found when using two
different appropriate optical magnifications (r > 0.05).
Finally, to discriminate between the two different
fluorophores present in Live/Dead staining, the total
number of live and dead bacteria was determined either
with manual or automatic counting, using 200�
magnification and a medium intensity threshold
(Fig. 1C). Both fluorophores were correctly discriminated
by the software (r > 0.05), validating our automatic
counting system.

Effect of cell agglomeration on bacteria quantification
In order to address the impact of sonication in biofilm
quantification, we tested three different sonication
cycles. The optimization of the sonication conditions in
biofilm quantification following 24, 48, and 72 h of
bacterial growth was done on the S. epidermidis 9142
strain, using three different methods broadly employed
in research laboratories: biomass determination by OD,
quantification of viable cells by plate counting, and
quantification of total cells by fluorescence microscopy
analysis. A no-sonication control was used.

As expected, biofilm biomass quantification by OD
determination showed a progressive accumulation dur-
ing the analyzed time course of biofilm formation.
Noticeably, the different sonication cycles resulted in
significant changes in the OD quantification in more
mature biofilms (Fig. 2), while in 24-h-old biofilms
differences were only found between vortexing and the

Figure 1. Validation of the SigmaScan Pro 5.0 software. (A) Effect of
the intensity threshold range in bacteria quantification, as compared
with manual counting. (B) Manual versus automatic counting of total
and dead cells obtained by using Live/Dead staining. (C) Bacterial
quantification by automatic counting using 400� or 200� magnifica-
tion. The values represent the means � standard deviation of three
independent experiments. No significant changes were found
(r < 0.05, paired t-test).
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three sonication cycles (r < 0.05, ANOVA). Similar to the
OD measurements, significant differences (r < 0.05,
ANOVA) in the cell quantification of samples that had
undergone different sonication cycles were only observed
for older biofilms (48 and 72 h). Interestingly, only in
these two growth periods significant differences between
samples prepared by either sonication or vortexing
(r < 0.05, ANOVA) were detected, as shown in Fig. 3B
and C. Not surprisingly, microscopic quantification
allowed the detection of higher numbers of bacteria in
biofilms after 48 and 72 h of growth (Fig. 3B and C).
Moreover, microscopic quantification was the only
approach that provided constant amounts of quantified
bacteria, under all conditions tested, as further discussed
below. Also, to determine if our observations could be
extrapolated to other S. epidermidis strains, we selected
two other known biofilm-forming strains to validate our
findings: 1457 and RP62A. As shown in Table 1, similar
results were found in comparison to the strain 9142,
validating the model strain used in this study.

As can be seen in Fig. 4A, the microscopic observa-
tions detected small cell clusters in mature biofilms,
despite the sonication cycles used. As expected, the size
of the microscopic cell aggregates was reduced by
increasing the sonication period; however, they were
nonetheless present. Since bigger cell aggregates would
sediment more quickly than individual bacteria, we
devised a simple experiment based on the sedimenta-
tion velocity of particles of different size, to quantify
the presence of the microscopic cell aggregates through
detecting the corresponding reduction in the OD. As
can be seen in Fig. 4B, older biofilms had a higher
content of cell clusters, as determined by the faster
reduction in the OD.

Discussion

Automatic image counting validation
An automatic image counting software is a useful tool in
research laboratories, but care should be taken to
guarantee that the selected software accurately quanti-
fies the desired study object [31]. We previously used the

Figure 2. OD595nm measurements in cell suspensions of 24-, 48- and
72-h-old biofilms, following vortexing (WS) and the different sonication
cycles (A, B, and C). The values represent the means � standard
deviation of three independent experiments. Statistical differences
(r < 0.05) between the no-sonication control (WS) and any other
sonication cycle (�) and between sonication cycle A and other
sonication cycles (¥) are indicated (ANOVA Tukey’s test).

Figure 3. Quantitative results obtained by CFU counting and by
fluorescence microscopy in 24- (A), 48- (B), and 72-h-old (C) biofilms,
after each treatment. Bars represent the means of the number of
bacterial cells within a biofilm � standard deviation evaluated in
samples obtained upon the different treatments tested, as indicated.
Results are representative of three independent experiments.
Statistical differences (r < 0.05) between the no-sonication control
(WS) and any other sonication cycle (�) and between sonication cycle
A and other sonication cycles (¥) are indicated (ANOVA Tukey’s test).
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SigmaScan Pro 5.0 software for automatic counting of
adhered S. epidermidis cells stained with safranin [28]. To
validate this approach using the fluorescence-based Live/
Dead staining, we first tested the intensity threshold
settings of the software (Fig. 1A) since it has been shown
before that different fluorophores can yield different
quantification results of bacteria [32]. We also tested
bacteria quantification by using a magnification of either
200� or 400� (Fig. 1B). A high intensity threshold has the
potential to exclude bacteria that either have low
fluorescence or are slightly out of focus. A low intensity
threshold can include pixels that do not represent
bacteria but result from overstaining of the fluorophore.
The automatic counting system proved to be robust as all
tested settings resulted in numbers of cells equivalent to
the manual counting. A big advantage was the ability to
use a lower magnification. While using 200× magnifica-
tion would not be appropriate for manual counting of S.
epidermidis cells, as it would be nearly impossible to
discriminate between the background and individual
cells or even between individual cells and small cell
aggregates, this was not the case with the automatic
counting software since it is possible to differentiate
individual pixels. A further advantage of using 200�
images is that, with the same amount of images, double
the actual area (as compared with 400� magnification)
can be analyzed. While it clearly demands some
optimization, automatic counting has important advan-
tages [16, 33, 34]: It is fast (and the speed of processing
is of upmost importance), whereas manual counting is
very time consuming. Furthermore, by applying the
same settings, automatic counting is more reliable
since it is not affected by user-to-user interpretation
variability.

Effect of cell agglomeration in bacterial quantification
S. epidermidis is known to adhere tomultiple surfaces, and
subsequent cell–cell aggregation and matrix production
allows the establishment of biofilms [16, 35]. Since
biofilm formation is considered a major virulence factor
of S. epidermidis [1], many studies addressed the
optimization of methodologies to detach bacteria from
infected medical implants [20, 36, 37]. An in vitro implant
infection model employed by Kobayashi et al. [37] showed
that a sonication time between 1 and 5 min (frequency of
40 kHz) is ideal for dislodging biofilm bacteria from a
metal substrate; however, the authors also remark that
the use of short periods of sonication may be beneficial
since the cell morphology and viability are less
perturbed. Our results confirmed that, under certain
conditions, intense vortexing can be used instead of
sonication. As a vortex mixer is more affordable than a
sonicator, some researchers might choose this option.
However, it was clear that 1 min of vortexing was unable
to reduce the cell cluster size formed in older biofilms,
showing that sonication is a more effective treatment,
even at reduced duration and lower intensity. Of note, the
longest duration and sonication intensity used here (cycle
C) did not influence the viability of S. epidermidis bacteria
within the biofilm, as determined by the live/dead
microscopic observations (Fig. 3). While a strong sonica-
tion cycle can easily kill gram-negative bacteria, gram-
positive ones withstand higher sonication rates [38].
Moreover, our results are in agreement with the study
performed by Joyce et al. [36].

Interestingly, microscopic quantification was the only
approach that provided a constant amount of quantified
bacteria, under all conditions tested. This can be
explained by the ability to accurately differentiate

Table 1. Biomass and viable and total cell quantification from biofilms of theS. epidermidis strains 9142, 1457, and RP62A grown for 24,
48, and 72 h.

24-h-old biofilm 48-h-old biofilm 72-h-old biofilm

9142
OD 1.61 � 0.05� 4.02 � 0.03� 5.84 � 0.41
CFUa 6.48 � 0.68E þ 08 8.18 � 0.44E þ 08¥ 8.43 � 1.76E þ 08
Total cellsa 7.40 � 3.05E þ 08 1.44 � 0.06E þ 09 2.45 � 0.49E þ 09

1457
OD 1.92 � 0.07� 5.72 � 0.33� 6.79 � 0.23
CFUa 6.15 � 0.35E þ 08 6.11 � 0.12E þ 08¥ 6.63 � 1.03E þ 08
Total cellsa 8.13 � 0.30E þ 08 1.96 � 0.24E þ 09 3.37 � 0.53E þ 09

RP62A
OD 0.41 � 0.01� 1.72 � 0.04� 2.30 � 0.03�

CFUa 1.97 � 0.12E þ 08¥ 4.38 � 0.16E þ 08¥ 4.45 � 0.07E þ 08
Total cellsa 2.21 � 0.41E þ 08 5.84 � 0.95E þ 08u 7.78 � 0.99E þ 08u

The values represent the means � standard deviation of two to three independent experiments. Statistical differences (r < 0.05)
between OD (�), CFU (¥), and total cells (u) in the different strains are indicated (ANOVA Tukey’s test).
aValues are expressed in the logarithmic scale.
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between a cell cluster and an individual cell, which would
otherwise be considered indistinguishable by CFU
determination. This reasoning is based on the fact that
one bacterium or a cluster of bacteria will both result in
only one CFU, despite the obvious fact that they represent
different amounts of bacteria, as has been shown
previously [17].

Although most of our study was performed with S.
epidermidis 9142, our findings were also confirmed by
repeating key experiments with the biofilm-forming

strains 1457 and RP62A. These strains were selected since
they show a distinct ability to produce biofilms: Strains
9142 and 1457 produce a more dense and crusty biofilm
whereas the biofilm produced by RP62A is smoother [39].
Of note, the S. epidermidis strain RP62A used in the
present study did not produce a significant amount of
biofilm, in contrast to studies performed by Christensen
et al. [40]. This is, however, in agreementwith thefindings
of Handke et al. [39]. Indeed, it is documented that
phenotypic variations in S. epidermidis RP62A biofim

Figure 4. Effect of bacterial cell clusters during the time course of biofilm formation: (A) OD595nm measurements over time. (B) Typical examples
of cell clusters observed by microscopy in samples under the indicated conditions. The results are representative examples of three independent
experiments.
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production occur in 30% of the variants [41]. Of note,
while strains 9142 and 1457 showed a significantly
higher biomass than RP62A, these differences were not
correlated with the CFU counting at 72 h of growth.
While this can be easily explained by the fact that a
biofilm is the sum of the bacteria and the matrix,
suggesting only that 1457 and 9142 would accumulate a
denser matrix, it is nevertheless peculiar that microscop-
ic counting was better able to discriminate between the
three tested strains.

Our study pointed out that older biofilms will have
more microscopic clusters that can interfere with the
quantification of biofilm bacteria. Taken together, our
results show that fluorescence-based microscopy, in
association with an automatic image counting software,
appears to be the most promising and more precise
method among the conventional techniques to assess the
amount of bacteria in S. epidermidis biofilms at different
incubation times. While it clearly demands some initial
optimization, automatic counting has important
advantages [16]. Furthermore, by applying the same
settings, automatic counting is more reliable since it is
not affected by the user-to-user interpretation variability.
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