
Density, Refractive Index, Apparent Specific Volume, and Electrical
Conductivity of Aqueous Solutions of Poly(ethylene glycol) 1500 at
Different Temperatures
Bernardo de Sa ́ Costa,†,‡ Edwin Elard Garcia-Rojas,‡ Jane Seĺia dos Reis Coimbra,*,†
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ABSTRACT: Thermophysical properties of aqueous solutions of poly(ethylene
glycol) 1500 g·mol−1 were measured as a function of polymer concentration w =
(0.05, 0.10, 0.15, 0.20 and 0.25) and temperature T/K = (288, 293, 298, 303 and
308). Aqueous systems composed of poly(ethylene glycol) are frequently used in
processes involving the separation of biological compounds. The density of the
solutions varied from (1001.68 to 1042.65) kg·m−3, the refractive index ranged
from (1.3377 to 1.3681), the apparent specific volume was between (0.8336 and
0.8528) g·cm−3, and the electrical conductivity varied between (66.22 and 170.29)
10−3 mS·cm−1. Polynomial models for the properties as a function of temperature
and poly(ethylene glycol) 1500 g·mol−1 concentration were fitted to the
experimental data. Models accounting for combined effects between variables
are particularly useful in industrial applications in which physical parameters must
be promptly and accurately calculated.

1. INTRODUCTION

The synthetic polymer known as poly(ethylene glycol) is
frequently used in processes involving the separation, concen-
tration, isolation, and purification of biological compounds.1−8

For this reason, accurate prediction of the physicochemical
properties of aqueous solutions of poly(ethylene glycol) (PEG)
is becoming increasingly important.9−14 PEG is a neutral
polyether composed of repeating ethylene glycol units and is
also referred to as poly(ethylene oxide) (PEO) or the IUPAC
name poly(oxyethylene) (POE).15 The material is approved by
the U.S. Food and Drug Administration (FDA) as a food
ingredient, is nontoxic, weakly immunogenic, and is efficient in
the exclusion of other polymers when present in an aqueous
environment.16−18

Extraction systems composed of poly(ethylene glycol) 1500 g·
mol−1 (PEG1500), salt, and water are classified as aqueous two-
phase systems (ATPS). These systems are widely used in the
separation of biomolecules19−21 due to their mild conditions and
greater selectivity, larger difference in density, lower viscosity,
and lower cost than ATPS formed from PEG1500 and other
polymers such as dextran or maltodextrin.22 The solute
partitioning in ATPS systems is affected by factors such as the
nature and size of the biocompound, the structure and chain size
of the polymer, type of salt, pH, initial composition of the system,

and temperature. Consequently, information concerning the
dynamic behavior of aqueous PEG1500 solutions is required for
the design of biotechnological processes in which this polymer is
used. Data on thermophysical properties of aqueous solutions
containing PEG have been reported in the literature, such as for
viscosity,7−13,22−31 density,7−14,22−30 electrical conductivity,25,28

apparent specific volume,32 and refractive index.25,28,33 However,
less accurate equipment and limited temperature ranges still
being used to measure thermophysical properties of ATPS.
Therefore, we determined the density, refractive index, apparent
specific volume and electrical conductivity of aqueous PEG1500
solutions at several concentrations and temperatures. In addition,
viscosity data obtained in previous experiments23 were used to
develop predictive models for the systems.

2. EXPERIMENTAL SECTION
2.1. Materials. Poly(ethylene glycol) [HO−(CH2−

CH2O)n−CH2OH] with an average molar mass of 1500 g·
mol−1 (PEG1500) and sodium hydroxide (NaOH; mass purity
>0.99) were purchased from Vetec Quiḿica Fina (Brazil).
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Solutions were prepared using double distilled and deionized
water (electrical resistivity ≈ 18.2 MΩ·cm; Master System P&D
Gehaka, Brazil). Table 1 presents the sample information.

2.2. Measurements. Binary aqueous solutions were
prepared on a mass basis using an analytical balance (Denver
Instruments, M-310, USA) with an accuracy of ± 0.0001 g. A
stock solution of PEG1500 (w = 0.50) was adjusted to pH 8.0
(PG 100 pHmeter, Gehaka, Brazil) by dropwise addition of
NaOH (1 mol·dm−3). This pH value is commonly used in ATPS
for separation of biological molecules.19−22 Appropriate amounts
of the stock solution were diluted in 200 cm3 amber glass bottles
and manually stirred to obtain the desired concentrations w =
(0.05, 0.10, 0.15, 0.20, and 0.25) of PEG1500 aqueous solutions.
Densities (ρ) and refractive indexes (n) were measured using a
vibrating tube densitometer (DMA4500 Anton Paar, Graz,
Austria) and digital refractometer (Abbemat RXA170 Anton
Paar, Graz, Austria) thermostatically controlled to ± 0.001 K.
Both instruments were connected to an automatic sample
changer (Xsample 122 Anton Paar, Graz, Austria). Double

distilled and deionized water, and dry air were used as reference
substances to calibrate the instruments at atmospheric pressure.
The precision of the densitometer was± 1.0·10−5 g·cm−3 and the
precision of the refractometer was ± 4.0·10−5. The reported
results are the average values of three independent measure-
ments for each solution at each of themeasurement temperatures
T/K = (288, 293, 298, 303, and 308). Electrical conductivities (κ)
were determined using a conductivity meter (W12D Bel
Engineering, Italy), with an uncertainty of ± 0.038 mS·cm−1.
The equipment was calibrated against a KCl solution (0.01 mol·
dm−3). The cell temperature was controlled using a thermostatic
water bath (Q214M2, Quimis Aparelhos Cientifícos, Brazil). The
apparent specific volume (v2⌀) was calculated from the density
data using eq 1:24
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in which ρ/kg·m−3 and ρ0/kg·m
−3 are the densities of the

polymeric solution and pure water.
2.3. Analysis. All statistical analyses were performed using

the Statistical Analysis System version 9.2 software package (SAS
Institute Inc., Cary, NC). An analysis of variance (ANOVA) was
performed on the models and the model significance was
examined using Fisher’s statistical test (F-test) to determine
significant differences between sources of variation in the
experimental results, including the significance of the regression,
the lack of fit, and the multiple determination coefficients (R2).

Table 1. Sample Information

chemical
name source

initial mass fraction
purity

purification
method

PEG1500 Vetec Quim. Fina
Ltd.a.

0.98 none

NaOH Vetec Quim. Fina
Ltd.a.

0.99 none

Table 2. Density ρ, Refractive Index n, Electrical Conductivity κ, and Apparent Specific Volume v2⌀ for PEG1500 Aqueous
Solutions (w) from T/K = (288 to 308)a

T ρ κ v2⌀

K w kg·m−3 n 10−3 mS·cm−1 g·cm−3

288 0.05 1007.39 ± 0.04 1.3402 ± 0.0003 66.22 ± 0.32 0.8361 ± 0.0008
0.10 1015.88 ± 0.03 1.3469 ± 0.0001 100.99 ± 0.68 0.8356 ± 0.0003
0.15 1024.56 ± 0.05 1.3538 ± 0.0001 123.63 ± 0.33 0.8351 ± 0.0003
0.20 1033.49 ± 0.14 1.3609 ± 0.0001 135.12 ± 0.48 0.8344 ± 0.0007
0.25 1042.65 ± 0.05 1.3681 ± 0.0001 135.99 ± 0.66 0.8336 ± 0.0002

293 0.05 1014.60 ± 0.02 1.3397 ± 0.0001 68.81 ± 0.95 0.8399 ± 0.0002
0.10 1023.06 ± 0.05 1.3462 ± 0.0001 106.69 ± 0.20 0.8395 ± 0.0003
0.15 1031.76 ± 0.14 1.3531 ± 0.0001 133.40 ± 0.84 0.8389 ± 0.0007
0.20 1040.67 ± 0.06 1.3601 ± 0.0001 146.34 ± 0.97 0.8383 ± 0.0002
0.25 1006.31 ± 0.04 1.3672 ± 0.0001 150.35 ± 0.09 0.8405 ± 0.0008

298 0.05 1013.10 ± 0.02 1.3391 ± 0.0002 73.61 ± 1.39 0.8441 ± 0.0002
0.10 1021.35 ± 0.06 1.3455 ± 0.0001 112.80 ± 0.82 0.8438 ± 0.0004
0.15 1029.83 ± 0.14 1.3524 ± 0.0001 139.24 ± 0.26 0.8433 ± 0.0007
0.20 1038.51 ± 0.05 1.3593 ± 0.0001 154.01 ± 0.40 0.8428 ± 0.0002
0.25 1004.99 ± 0.04 1.3663 ± 0.0001 158.33 ± 0.24 0.8445 ± 0.0008

303 0.05 1011.38 ± 0.02 1.3384 ± 0.0002 72.99 ± 0.69 0.8482 ± 0.0002
0.10 1019.45 ± 0.06 1.3448 ± 0.0001 113.90 ± 0.45 0.8480 ± 0.0004
0.15 1027.73 ± 0.14 1.3515 ± 0.0001 141.93 ± 0.17 0.8476 ± 0.0007
0.20 1036.19 ± 0.07 1.3584 ± 0.0001 157.27 ± 0.99 0.8472 ± 0.0002
0.25 1003.43 ± 0.03 1.3653 ± 0.0001 163.17 ± 1.01 0.8485 ± 0.0007

308 0.05 1001.68 ± 0.04 1.3377 ± 0.0002 73.60 ± 0.86 0.8528 ± 0.0008
0.10 1009.46 ± 0.01 1.3440 ± 0.0001 114.87 ± 0.55 0.8524 ± 0.0001
0.15 1017.37 ± 0.06 1.3507 ± 0.0001 143.09 ± 0.36 0.8522 ± 0.0004
0.20 1025.47 ± 0.14 1.3575 ± 0.0001 160.39 ± 0.53 0.8519 ± 0.0006
0.25 1033.74 ± 0.04 1.3643 ± 0.0001 170.28 ± 6.20 0.8515 ± 0.0002

aFor densities and refractive index the standard uncertainties u are u(T) = 0.001 K and expanded uncertainties are U(w) = 0.005; U(ρ) = 0.2 kg·m−3;
U(n) = 0.001 and U(v2⌀) = 0.002 g·cm−3. For electrical conductivity the standard uncertainties u are u(T) = 0.2 K; and expanded uncertainties are
U(κ) = 0.002 mS·cm−1.
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The correlation coefficients between the predicted and observed
values were calculated for all of the models. The expanded
uncertainties in density, refractive index, apparent specific
volume, electrical conductivity, and viscosity were calculated as
combined uncertainties multiplied by 2. The coverage factor of 2
yields a 95% confidence interval.

3. RESULTS AND DISCUSSION
The density, refractive index, apparent specific volume, and
electrical conductivity of the PEG1500 solutions were measured
at different temperatures T/K = (288, 293, 298, 303 and 308)
and the viscosity was previously measured23 at temperaturesT/K
= (283, 288, 293, 298 and 303). The PEG concentration was w =
(0.05, 0.10, 0.15, 0.20, and 0.25) by mass. This combination of
parameters provided a minimum of 96 experimental values,
including independent repetitions, for each property. Table 2
contains the density, refractive index, apparent specific volume,
and electrical conductivity measurements, and Table 3 contains
the viscosity measurements.23 Figures 1 to 5 illustrate the
behavior of the various properties as a function of PEG1500
concentration and temperature.

3.1. Density, Refractive Index, and Apparent Specific
Volume. Figure 1 is a plot of density as a function of temperature
and concentration. The density of the solutions varied from
(1001.68 to 1042.65) kg·m−3, the refractive index ranged from
(1.3377 to 1.3681), and the apparent specific volume was
between (0.8336 and 0.8528) g·cm−3. The density increased with
increasing PEG1500 concentration and decreased with increas-
ing temperature for constant PEG1500 composition. Similar
behavior may be observed in Figure 2 for the refractive index

under the same conditions of PEG1500 composition and
temperature. The apparent specific volume (v2⌀) decreased
with both increasing polymer concentration and increasing
temperature (Figure 3 and Table 2). Density, refractive index,
and apparent specific volume all varied linearly with PEG1500
mass fraction (w) under the studied conditions and could be
estimated using the general linear model in eq 2:

ψ = +a a w1 2 (2)

where ψ is the physical property and a1 and a2 are constants
derived from the experimental data. Table 4 contains the
coefficients obtained from regression analyses of density,
refractive index, and apparent specific volume, the determination
coefficients, and the correlation coefficients between the
observed and predicted values. The agreement between the
experimental and predicted values for density, refractive index
and apparent specific volume was very good, with determination
coefficients (R2) for density and refractive index exceeding 0.99
in all cases and determination coefficients for apparent specific
volume exceeding 0.97. In all cases the correlation coefficient
between the observed and predicted values exceeded 0.99. The
densities of the PEG solutions were similar to those reported by

Table 3. Viscosity η of Aqueous Binary Solutions of PEG1500
(w) from T/K = (283 to 303)b

T/K w η/mPa·s

283 0.05 1.837 ± 0.084
0.10 2.771 ± 0.094
0.15 4.210 ± 0.079
0.20 6.216 ± 0.153
0.25 9.173 ± 0.229

288 0.05 1.573 ± 0.050
0.10 2.335 ± 0.050
0.15 3.481 ± 0.247
0.20 5.115 ± 0.261
0.25 7.572 ± 0.501

293 0.05 1.443 ± 0.081
0.10 2.090 ± 0.055
0.15 3.157 ± 0.071
0.20 4.537 ± 0.085
0.25 6.637 ± 0.111

298 0.05 1.293 ± 0.061
0.10 1.860 ± 0.053
0.15 2.786 ± 0.014
0.20 4.026 ± 0.040
0.25 5.743 ± 0.040

303 0.05 1.172 ± 0.020
0.10 1.638 ± 0.078
0.15 2.414 ± 0.046
0.20 3.466 ± 0.104
0.25 4.918 ± 0.099

bThe standard uncertainties u are u(T) = 0.01 K and expanded
uncertainties are U(w) = 0.005 and U(η) = 0.1 mPa·s.

Figure 1. Density ρ of aqueous solutions of PEG1500 as function of
mass fraction at different temperatures, T/K: ■, 288; ●, 293; ▲, 298;
▼, 303; ⧫, 308.

Figure 2. Refractive index n of aqueous solutions of PEG1500 as
function of mass fraction at different temperatures, T/K:■, 288;●, 293;
▲, 298; ▼, 303; ⧫, 308.
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Mohsen-Nia et al.,25 who obtained density values ranging from
(997.8 to 1025.0) kg·m−3 for PEG1000 and (998.4 to 1027.8) kg·
m−3 for PEG10000.
3.2. Viscosity. The viscosity of aqueous PEG1500 solutions,

previously obtained using a cone and plate sensor,23 increased
with increasing polymer concentration and decreased with
increasing temperature (Figure 4). The viscosity ranged from
(1.172 to 9.173) mPa·s. To analyze the influence of temperature
on viscosity the general quadratic model (eq 3) was employed.
Table 5 contains the coefficients obtained from the polynomial
regression for viscosity.

ψ = ′ + ′ + ′a a w a w1 2 3
2

(3)

The parameters a1′, a2′, and a3′ are constants obtained from the
experimental data. Cruz et al.26 measured the viscosities of
PEG1500 solutions at temperatures from (318.15 to 363.15) K
using glass capillary viscometers. Telis-Romero et al.27 obtained
viscosities for PEG1500 solutions with concentrations ranging

from (0.10 to 0.22) mass fraction at 303.15 K and pH 7 using a
concentric cylinder rheometer. These authors also found a
nonlinear correlation between viscosity and PEG1500 concen-
tration. Mohsen-Nia et al.25 studied aqueous mixtures of
PEG1000 and PEG10000 at temperatures from (298.15 to
328.15) K and PEG concentrations ranging from w = (0.05 to
0.15). The viscosities ranged from (0.509 to 2.270) mPa·s for
PEG1000 and were approximately 20% higher for PEG10000.

3.3. Electrical Conductivity. Figure 5 depicts the electrical
conductivity (κ) of aqueous solutions of PEG1500 as a function
of mass fraction and temperature. The conductivity increased
with increasing temperature and polymer concentration. The
electrical conductivity varied between (66.22 and 170.29) 10−3

mS·cm−1. The influence of temperature on κ was modeled using
the general quadratic model in eq 3. The coefficients obtained
from the polynomial regression, theR2 values, and the correlation
coefficients between the observed and predicted values are listed
in Table 5. Silva et al.28 studied the thermophysical properties of
aqueous PEG4000 mixtures at temperatures between (278.15
and 318.15) K. The electrical conductivities ranged from (28 to
140) 10−3 mS·cm−1.

Figure 3. Apparent specific volume v2⌀ of aqueous solutions of
PEG1500 as function of mass fraction at different temperatures, T/K:■,
288; ●, 293; ▲, 298; ▼, 303; ⧫, 308.

Table 4. Adjusted Parameters of Linear Model for Density
(ρ), Refractive Index (n) and Apparent Specific Volume (v2⌀)
as Functions of Mass Fraction (w) for PEG1500 Aqueous
Solutions between 288 and 308 K

T/K α1 α2 R2 correlation coefficient

ρ /kg·m−3

288 998.35 176.28 0.9997 0.9998
293 997.51 171.74 0.9997 0.9998
298 996.42 167.56 0.9997 0.9998
303 995.08 163.72 0.9998 0.9999
308 993.50 160.26 0.9998 0.9999

n
288 1.3330 0.1396 0.9997 0.9993
293 1.3326 0.1378 0.9996 0.9998
298 1.3320 0.1362 0.9996 0.9998
303 1.3315 0.1347 0.9996 0.9998
308 1.3308 0.1333 0.9996 0.9998

v2⌀/g·cm
−3

288 0.8368 −0.1250 0.9931 0.9965
293 0.8411 −0.0109 0.9941 0.9965
298 0.8450 −0.0085 0.9856 0.9971
303 0.8489 −0.0065 0.9779 0.9971
308 0.8531 −0.0062 0.9880 0.9927

Figure 4. Viscosity η of aqueous solutions of PEG1500 as function of
mass fraction at different temperatures, T/K: ■, 283; ●, 288; ▲, 293;
▼, 298; ⧫, 303.

Table 5. Adjusted Parameters for Quadratic Model of
Viscosity (η) and Electrical Conductivity (κ) as Function of
Mass Fraction (w) for PEG1500 Aqueous Solutions at
Temperatures T/K = (283 to 303) for Viscosity and T/K =
(288 to 308) for Electrical Conductivity

T/K a1′ a2′ a3′ R2
correlation
coefficient

η/mPa·s
283 1.712 −3.294 131.761 0.9974 0.9987
288 1.521 −3.876 111.629 0.9876 0.9938
293 1.331 −1.920 91.961 0.9979 0.9989
298 1.129 −0.277 74.695 0.9993 0.9803
303 1.049 −0.621 64.209 0.9977 0.9996

κ/10−3 mS·cm−1

288 20.813 1024.095 −2255.873 0.9996 0.9996
293 19.546 1104.060 −2328.57 0.9993 0.9997
298 23.697 1119.120 −2326.03 0.9995 0.9997
303 21.373 1156.492 −2363.492 0.9994 0.9997
308 23.942 1109.279 −2105.079 0.9951 0.9975
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3.4. Combined Effect of Temperature and Concen-
tration. Polynomial models of thermophysical properties as a
function of temperature and PEG1500 concentration were
constructed by fitting the experimental data to the general
quadratic model in eq 4. Nonsignificant parameters were
eliminated on the basis of Student’s t-test and p values less
than 0.05.

ψ β β β β β β= + + + + +w T w T wT1 2 3 4
2

5
2

6 (4)

ψ is the thermophysical property and β1, β2, β3, β4, β5, and β6 are
constants determined from the experimental data. Table 6
contains the coefficients obtained from the polynomial
regression for the predictive models based on the master
model (eq 4) for density (ρ), refractive index (n), viscosity (η),
electrical conductivity (κ), and apparent specific volume (v2⌀).
The agreement between the experimental and predicted values
for thermophysical properties was good, with all R2 values and
correlation coefficients greater than 0.99.
Lee and Teja29 analyzed the influence of temperature on

viscosity, and we employed their proposed equation in our
research (eq 5):

η = +
−

A
B

T C
ln( )

(5)

In this equation A, B, and C are the model parameters and T/K.
The values of A, B, and C were obtained through nonlinear
regression analysis of eq 5 (Table 7). Gonzaĺes-Tello et al.30

described the influence of PEG concentration on the B parameter
when analyzing the combined effect of temperature and polymer
concentration on viscosity. Among the relations they tested, the
optimum model was linear. Even so, the best correlation was
achieved for solutions with values of η≥ 10mPa·s. Subsequently,

researchers have used the Gonzaĺes-Tello et al.30 equation (eq 6)
to correlate the dynamic viscosity of several binary aqueous
polymer mixtures.

η = + +
−

P
P P w

T P
ln( ) 1

( 2 3 )
4 (6)

Figure 6 illustrates the influence of PEG1500 concentration on
the parameter B in solutions with mass fractions w from (0.05 to

0.25). A quadratic model provided the best fit to the
experimental data using the coefficients in eq 7:

= + +B w w75.0266 841.1170 8136.6840 2 (7)

Combining the quadratic model of eq 3 for B with eq 5 to
represent the influence of temperature and concentration on
viscosity yields eq 8:

η = + + +
−

P
P P w P w

T P
ln( ) 1

( 2 3 4 )
5

2

(8)

Figure 5. Electrical conductivity κ of aqueous solutions of PEG 1500 as
function of mass fraction at different temperatures,T/K:■, 288;●, 293;
▲, 298; ▼, 303; ⧫, 308.

Table 6. Adjusted Parameters for Master Model (eq 4) for Density (ρ), Refractive Index (n), Viscosity (η), Electrical Conductivity
(κ), and Apparent Specific Volume (v2⌀) of Aqueous PEG1500 Solutions

properties β1 β2 β3 β4 β5 β6 R2 correlation coefficient

ρ/kg·m−3 1000.69 176.29 −0.05 38.87 −0.00 −0.80 0.9999 0.9999
n 1.3347 0.1348 0.0000 0.0311 0.0000 −0.0031 0.9998 0.9999
η/mPa·s 195.909 247.847 −1.354 94.681 −0.002 −0.852 0.9920 0.9960
κ/10−3 mS·cm−1 −3454.18 496.98 −23.18 2247.36 −0.00 5.31 0.9972 0.9986
v2⌀/g·cm

−3 0.8238 −0.1413 0.0008 −0.0107 0.0000 0.0003 0.9998 0.9999

Table 7. Adjusted Parameters for Lee and Teja28Model (eq 5)
of Viscosity (η) as Function of Temperature for PEG1500
Aqueous Solutions from w = (0.05 to 0.25)23

w A B C R2
correlation
coef f icient

0.05 −1.3400 133.0061 214.6703 0.9958 0.9999
0.10 −1.7813 249.0570 194.0110 0.9969 0.9999
0.15 −2.0597 385.1332 172.6764 0.9921 0.9999
0.20 −2.4495 559.0140 152.0191 0.9943 0.9999
0.25 −3.0383 798.5563 130.9669 0.9976 0.9999

Figure 6. Variation of B parameter (eq 5) with PEG 1500 mass fraction
(w); ■, quadratic model.
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where P1, P2, P3, P4, and P5 are the model parameters derived
from the experimental data. The values presented in Table 8 were
determined using nonlinear regression. In our research η < 10
mPa·s for all samples. Figures 7 and 8 are plots of the residuals

and predicted versus observed values for this model. The straight
45° slope of Figure 8 indicates no significant deviation between
the calculated and observed values and confirms the robustness
of the model in predicting the properties of PEG1500 solutions.

4. CONCLUSIONS
Thermophysical properties density (ρ), refractive index (n),
viscosity (η), electrical conductivity (κ), and apparent specific
volume (v2⌀) were measured for aqueous solutions of poly-
(ethylene glycol) 1500 g·mol−1 at different temperatures.

Polynomial models for the properties were well adjusted to the
experimental data.
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