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Abstract-Metabolic engineering (ME) strategies have been 
implemented over the last few years, in order to improve 
microbial strains of interest in industrial biotechnology. With 
the advent of experimental data concerning to regulatory 
aspects, several efforts have been conducted to incorporate 
this information in genome-scale metabolic models, aiming 
at the improvement of phenotype simulation methods. How­
ever, most of these methods can be used only by computer 
science experts, since they are not available in user-friendly 
software ME frameworks. This work presents Reg40ptFlux, a 
computational framework for ME, that integrates methods for 
phenotype simulation and optimization strain design, relying 
on integrated metabolic and regulatory models. Meta-heuristic 
approaches such as Evolutionary Algorithms and Simulated 
Annealing were appropriately modified to accommodate the 
optimization tasks, and were applied to study the optimization 
of ethanol and succinic acid production using an integrated 
model of the E.coli host. The framework was implemented as 
a plug-in for OptFlux, an open-source software for ME, and 
it is available in the OptFlux web site (www.optftux.org). 
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I. INTRODUCTION 

The inherent complexity of cellular systems has led to 

the development of a variety of in silico modeling ap­

proaches for the simulation, optimization and analysis of 

biological processes. These efforts have been driven by 

the development of engineered microbial strains capable of 

accomplishing desired biotransformations, or overproduction 

of valuable biochemicals. In recent years, constraint-based 

modeling approaches have been widely applied to analyze, 

interpret and predict cellular phenotype under defined envi­

ronmental conditions. These approaches impose governing 

physicochemical constraints, such as flux capacities, ther­

modynamics and mass conservation, in order to reduce the 
solution space of the feasible flux distributions [1]. 

Flux Balance Analysis (FBA) has been the most success­
fully used constraint-based method, relying on the linear 

optimization of an objective function, commonly the max­

imization of biomass, to reach an optimal flux distribution 

[1], [2]. Notwithstanding, alternative approaches, such as the 

method of minimization of metabolic adjustment (MOMA) 
[2] and the regulatory on/off minimization (ROOM) [3] 
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methods, were developed to address aspects related with the 

phenotype simulation of mutant strains affected by genetic 

perturbations. 

Bi-Ievel optimization strategies have been applied to pin­

point genetic modifications that can lead to improvement 

of biochemical production [4]. OptKnock [5] was the first 

optimization method designed to obtain reaction deletion 

strategies for the overproduction of a metabolite, where a 

bi-Ievel optimization problem is reformulated into a mixed 

integer linear programming (MILP) problem, based on the 

strong duality theorem. Since then, several variations of 

OptKnock have been implemented. OptReg [6] extended 

OptKnock, introducing up/down regulation of various re­

actions in addition to knockouts. OptGene and its variants 

[7], [8] presented an alternative meta-heuristic optimization 

approach using Evolutionary Algorithms (EAs) and Simu­

lated Annealing (SA) to find the best set of gene knockouts. 

Despite of providing near-optimal solutions when compared 

to OptKnock, it demands less computational time to solve 

larger size problems, being also more flexible regarding to 

the objective function that can optimized. 

With the advent of experimental data concerning reg­

ulatory aspects, several efforts have been performed to 

incorporate regulatory information (e.g. association of a tran­

scriptional/translational layer) in constraint-based models, to 

improve their accuracy in phenotype predictions. Regula­

tory constraints were firstly introduced in constraint-based 

models in the regulatory FBA (rFBA) method presented by 

Covert et at. [9]. A Boolean logic representation was used to 

characterize the transcriptional regulatory structure. The ca­

pabilities of this approach were enhanced in posterior work 

of the authors [10], [11]. Shlomi et at. [12] presented the 
Steady-state Regulatory Flux Balance Analysis (SR-FBA), 

an extension of rFBA, using a MILP approach to simulate 

a pair of consistent metabolic and regulatory steady states, 

by satisfying both regulatory and metabolic constraints. 

Later, Kim and Reed presented OptORF [4], an optimization 

method for strain design, using simultaneously regulatory 

and metabolic information. A bilevel optimization approach 

based on the OptKnock approach is used to identify the 

optimal metabolic and regulatory gene deletions, as well as 



genes to over-express, that maximize the production of a 

target metabolite being the Boolean gene-reactions rules and 

transcriptional regulatory rules imposed as constraints. 

Most of these methods have been integrated in software 

frameworks, such as the COBRA Toolbox [13], the Tiger 

Toolbox [14], OptFlux [1S] and CellNetAnalyser [16]. All 

these suites allow users to perform the most common tasks 

used in this area, such as FBA and flux variability analysis 

(FVA). However, only OptFlux and COBRA are able to 

perform strain optimization tasks. Moreover, some of these 

frameworks are capable of loading regulatory information, 

but none of them can perform strain optimization tasks using 

simultaneously regulatory and metabolic models. Also, most 

of the referred frameworks are implemented in MATLAB, 

a comercial platform. Moreover, COBRA and Tiger do 

not provide a user-friendly interface, an important feature 

for researchers. In contrast, OptFlux is a Java open-source 

framework that provides user-friendly interfaces to their 

features. Here, we present a plug-in to provide features for 

strain design in OptFlux, which encompass strain optimiza­

tion algorithms and phenotype simulation methods, able to 

work with integrated metabolic and regulatory models. 

II. CORE FEATURES OF OPTFLUX 

OptFlux is an extensive platform fully implemented in 

the Java language, that provides an extensive set of func­

tionalities for Metabolic Engineering through user-friendly 

interfaces. Stoichiometric metabolic models can be loaded 

from different model formats (i.e. flat files, Systems Biology 

Markup Language (SBML) standard and Metatool format). 

Several simulation algorithms are implemented in OptFlux 

to perform in silico phenotype simulations of wild-type 

and mutant strains (e.g FBA, parsimonious FBA (pFBA) 

[17], MOMA, ROOM). Specific environmental conditions 

can be established to impose constraints over the fluxes. 

All the information concerning models, such as reactions, 
metabolites, stoichiometric matrix and gene-protein-reaction 

associations (GPRs) can be either visualized or exported. 

Strain optimization using Single and multi-objective Evo­

lutionary Algorithms (EAs), Simulated Annealing (SA) or 

OptKnock can be performed to identify sets of reaction 

deletions that optimize a given set of objective functions 

related with desired industrial goals. 

III. PROPOSED FRAMEWORK 

A. Integrated models 

Integrated metabolic and transcriptional regulatory models 

consist of the aggregation of two layers representing the 

metabolism and regulation. The integration process is per­

formed through the mapping of GPR associations present in 

the metabolic model with genes present in the regulatory 

model. Regulatory models are merely qualitative, where 

gene relationships and environmental cues are described in 

Boolean logic. The aim is to provide a Boolean rule for 

each regulated gene, describing how they are affected by 

regulatory events (transcription factors or other regulatory 

genes) or even by environmental conditions. Logical op­

erators, AND, OR, NOT are used in the characterization 

of these perturbations, to achieve a binary state "on" or 
"off" of each gene. These genes can be either metabolic, 

those present in GPR associations, or regulatory, those that 

involved in regulatory processes. Environmental conditions 

are related to external stimuli, such as compounds in the 

media or stimuli that can cause perturbations in the system 

(e.g stress, conditions). 

The integrated framework supports the simultaneous load­

ing of both metabolic and regulatory models. It is also 

possible to create an integrated model, from a metabolic 

model (containing GPR associations) previously loaded, by 

joining the regulatory network. The integration process of 

the two models relies on the following operations: 

• Gene connections: through the mapping of genes that 

are defined in the regulatory model to metabolic genes 

present in the GPR associations of the metabolic model. 

• Mapping of the environmental conditions: by verifying 

which conditions are equal in the two models. In cases 

where the conditions correspond, these are considered 

as "true" in the regulatory model, otherwise they are 

considered as "false". Additionally, the user may set 

the conditions that are only present in the regulatory 

model (to be "true" or "false"). 

• Mapping of genes and their products: the association 
between transcriptional factors and the genes that en­

code them is performed. Then, an abstract syntax tree 

for each regulatory rule is assembled, which will be 
used to calculate the binary state of the corresponding 

gene in the simulation. The state "true/false" of any 

transcription factor that is present in a regulatory rule, 

but is not associated with a gene responsible for its 

encoding, can also be changed by the user. 

B. Methods for phenotype simulation 

The regulatory framework comprises two distinct methods 

to perform the phenotype simulation. The Boolean Reg­

ulatory Steady State Constraint-Based Approach (BRSS­

CBA) method developed by the authors [18], and the 
aforementioned SR-FBA. The BRSS-CBA is based on a 

steady state approximation like rFBA, using a two step 

approach to reach a steady-state flux distribution consistent 

with the Boolean regulatory network state. Briefly, in the 

first step, the regulatory network is simulated to calculate 

which genes are inactive. The process continues with a 

constraint-based simulation method using the information 

of the previous step as constraints. The Boolean simulation 

follows a synchronous and deterministic Boolean network 

simulation method, assuming that all variables are updated 

simultaneously in every step. The assumption is that if 

the systems have the same initialization, they will reach 
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always the same state. Thus, in this process, the regulatory 

network is iterated until an attractor is found, representing 

the steady-state of the network. In case the system reaches 

a "cyclic attractor" (i.e. the system oscillates between two 

or more states), only genes that have an "off" state in all 

states are set to "off'. As mentioned before, the aim is to 

gather a hypothetical set of genes that exhibits an inactive 

state, resulting from the Boolean operations carried out 

with the regulatory model. Subsequently, this information is 

transferred to the metabolic network through the mapping 

to GPR associations. Finally, the metabolic simulation is 

performed using one of the methods present in OptFlux (i.e., 

pFBA, FBA, MOMA, ROOM). 
The alternative is the SR-FBA method that applies a 

MILP formulation to maximize the flux through the biomass 

reaction, assuming the following constrains: (1) metabolic 

constraints, (2) regulatory constraints, (3) gene-to-reactions 

mapping and (4) reaction enzyme state constraints. The 

regulatory and GPR Boolean rules are transformed into 

linear equations, by applying the following transformations: 

• a = b AND c is formulated as -1 :s: 2b + 2c - 4a :s: 3 

• a = NOT b is formulated as a+b=1 

Other Boolean operators (including OR) are defined usmg 

the operators presented above. 

C. Algorithms for strain optimization 

Similarly to Optflux, single and multi-objective Evolu­

tionary Algorithms or Simulating Annealing methods can be 

applied to perform the optimization tasks. These optimiza­

tion methods were originally developed within the authors 

research group and their implementation can be found in 

detail in [8]. These algorithms had to be adapted to find 

the best gene knockout strategies using integrated models. 

Instead of selecting the reactions to be deleted, the algorithm 

selects a hypothetical set of genes (metabolic or regulatory), 

that when eliminated lead to an increase in the production of 

a desired metabolite, as encoded by the objective function. 
1) Solution encoding and evaluation: Only gene dele­

tions are encoded in the solution, using a fixed or variable 

size set-based representation. The solution consists of a 

set of integer values, representing the indexes of genes 

to be deleted. Therefore, this information is used in the 

aforementioned simulation methods to define which genes 

are deactivated ("off" state) in the initial Boolean state 

representation of the genes. Then, the simulation is executed 

and the output flux distribution will be used in an objective 

function to evaluate the fitness value. The available objective 

functions are the Biomass-Product Coupled Yield (BPCY) 

[7] and the Product Yield with Minimum Biomass (PYMB). 

In BPCY, the fitness value is calculated by the following 

formula: 

BPCY = P � B 
(1) 

where P is the flux of the desired metabolite, B is the value 

of biomass flux and S is the substrate intake flux. On the 

other hand, in PYMB, the fitness value is calculated through 

the ratio between the flux of the desired product and the 

substrate flux. However, a threshold value is applied that 

represents the minimal acceptable biomass flux (a percentage 

value regarding to the wild type strain). Figure 1 shows a 

general scheme of the optimization algorithms. 

2) Pre-processing and post-processing: Due to the high 

number of variables (i.e genes and reactions) present in 

the models, these problems are computationally intensive. 

Therefore, in most cases it is suitable to reduce the number 

of decision variables to improve the convergence of the 

algorithms. In this context, a feature is provided to verify 

the essential genes (e.g their removal leads to non growth 

phenotypes). Thus, in the optimization tasks, these genes are 

not considered as targets for deletion, reducing the search 

space. In a similar fashion, at the end of the optimization 

process, a simplification of the solutions is performed by re­

moving all unnecessary genes that do not affect the objective 

function value, keeping only the relevant knockouts. 

IV. CASE STUDIES 

Two case studies were performed, both considering an 

integrated model of metabolism and regulation for E. coli, 

presented by Covert et al [11]. The goal is to produce ethanol 

and succinic acid with glucose as the limiting substrate. 

The simulation is conducted in anaerobic growth condi­

tions, establishing the following parameters: glc( e) = 18.5, 
O2 = O. A series of experiments were set to analyze 

the behavior of the aforementioned optimization algorithms, 

using both phenotype simulation methods BRSS-CBA and 

SR-FBA. Moreover, each experiment was conducted using 

both objective functions: BPCY and PYMB. The variable 

size variant was used, enabling different alternatives for the 

cardinality of the maximum knockout set (k = 2, 4, 6, 8). 

The termination criteria was set to 50,000 objective function 
evaluations in all cases. Each experiment was repeated 

five times due to the stochastic nature of the optimization 

algorithms. This is a small number of runs, due to the time 

needed to run simulations using SR-FBA (a computationally 

demanding MILP formulation). The same gene knockout 

optimization experiments were also conducted for succinate, 

using the same conditions, yet without the integration of the 

regulatory network, for comparison purposes. 

V. RESULTS AND DISCUSSION 

Figure 2 summarizes the results obtained in both case 
studies, showing the mean of the best solutions obtained in 

the runs for each maximum of allowed knockouts. Figures 

2.a) and 2.b) suggest that all used approaches reached similar 

optimization results in ethanol production. Nevertheless, 

the PYMB objective function leads to solutions that can 

achieve better ethanol production rates. From the results 
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Figure 1. Structure of the strain optimization algorithms used in this work. 
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Figure 2. Results obtained by EA and SA using both simulation methods. Figure (a) and (c) are the results using PYMB; Figure (b) and (d) are the 
results using BPCY. 

obtained in the optimization of succinate, a dependence of 

the approaches to the employed objective function seems to 
exist with the better results being found by SR-FBA(EA/SA) 

using the PYMB objective function (Figure 2.c) and BSS­

CBA(EA) using the BPCY objective function (Figure 2.d). 

There were no improvements when incorporating informa­

tion about the regulatory network in the case of succinate 

production, being even observed a decrease in succinate pro­

duction comparing to solutions from optimizations without 

the regulatory network. This can be explained by the fact that 

the regulatory model of E.coli contains only a small part of 

the regulatory aspects, and most of the existing regulatory 

rules are still incomplete. Thus, these results indicate that it 

is necessary to perform a detailed analysis of the regulatory 

model to verify the accuracy of the gene rules related to 

the succinate production, which is not the purpose of this 

work. The results obtained for ethanol were also compared 

to the ones reported in [4], and it was verified that the 
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Figure 3. Screenshots of Optflux with the proposed plug-in. (A) loading models; (B) clipboard containing the OptFlux datatypes; (C) mutant simulation; 
(D) view of the simulation results; (E) strain optimization interface; (F) critical genes interface; (G) optimization runtime interface 

proposed optimization methods could achieve similar results. 

Therefore, these results show that the implemented method­

ologies are able not only to find similar strategies to the ones 

previously published, but also to suggest good alternative 

solutions concerning to gene deletions, in the overproduction 

of ethanol. Moreover, the implemented features are more 

user friendly than the existing strain design methods that 

rely on integrated models. 

VI. FEATURES OF THE IMPLEMENTED PLUG-IN 

All the features provided by this framework can be ac­

cessed by a user-friendly Graphical User Interface (GUI), in 

the form of an OptFlux plug-in. The instructions concerning 

to the installation procedure and the functionalities present 

in the plug-in are available on http://darwin.di.uminho.pt/ 

optfluxwikilindex.php/OptFlux3:RT. Figure 3 shows some 

screenshots to illustrate the framework layout. The main 

features are the following: 

• Integration of metabolic and regulatory models: 
users can load both models simultaneously (Figure 3.A) 

or create an integrated model joining the regulatory net­

work with an existing model in Optflux. After loading 

and integrating all information, they can be accessed in 

the clipboard (Figure 3.B). 

• Simulation: users can perform wild type and mutant 

strain simulations by applying different configurations 

such as: gene knockouts, environmental conditions, 

transcriptional factors, external stimuli (defined in the 

regulatory model) and the simulation method (Figure 

3.C). Moreover, users can perform simulations of the 

regulatory network using similar configurations, with 

a simulation method based on the first stage step of 

BSS-CBA Gust the Boolean simulation method). 

• Analysis of critical genes: essential genes can be 

computed by both simulation methods, in which the 

user can use different inputs of external stimuli that 

are defined in the regulatory model (Figure 3.F). These 

can be saved to a text file and loaded for future use in 

optimizations tasks. 

• Optimization: users can perform strain optimization 

tasks using single and multi-objective EA or SA. Users 

may configure different parameters in the optimization 

procedures, such as: objective function, desired flux, 

critical genes, simulation algorithm, external stimuli, 

environmental conditions, maximum number of knock­

outs and number of evaluations. In addition, in multi­

objective optimization, multiple objective functions can 

be established (Figure 3.E). The algorithms progress 

can be monitored (or stopped) while running (Figure 

3.G). 

• Results visualization: All the results obtained in the 

operations can be visualized in appropriate graphical 

interfaces (Figure 3.D). 

VII. CONCLUSIONS 

Computational optimIzation tools are essential in 

Metabolic engineering, since they can contribute signifi-

230 2014 Sixth World Congress on Nature and Biologically Inspired Computing (NaBIC) 



cantly to the improvement of microbial strains, reducing the 

production cost of valuable compounds with interest to the 
industry. In this work, a plug-in that makes the OptFlux 

platform the first available software to integrate regulatory 

and metabolic models is proposed, allowing both phenotype 

simulation and strain optimization operations. The software 

is available enlarging the tool-set at the disposal of the ME 

community. The main driving idea was to create tools able 

to use information concerning to regulatory aspects, that 

could help in finding gene knockout strategies, leading to the 

overproduction of desired compounds. Thus, the proposed 

plug-in combines optimization algorithms and phenotype 

simulation methods supporting the use of integrated models 

to help users in pinpointing genetic modifications. The 

results show that the implemented methods can provide 

insights of hypothetical gene knockout strategies, that lead 
to an improvement of desired products. In future work, the 

authors intend to improve the capabilities of the software, 

by implementing OptORF and new methods for simulation 

of Boolean networks. 
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